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Multiple Faults Estimation in Dynamical Systems:
Tractable Design and Performance Bounds

Chris van der Ploeg, Mohsen Alirezaei, Nathan van de Wouw, Fellow, IEEE
and Peyman Mohajerin Esfahani

Abstract— We propose a tractable nonlinear fault estimation
filter along with explicit performance bounds for a class of linear
dynamical systems in the presence of both additive and non-
linear multiplicative faults. We consider the case where both faults
may occur simultaneously and through an identical dynamical
relationship, a setting that is relevant to several application do-
mains including automotive driving, aviation, and chemical plants.
The proposed filter architecture combines tools from model-based
approaches in the control literature and regression techniques
from machine learning. To this end, we view the regression oper-
ator through a system-theoretic perspective to develop operator
bounds that are then utilized to derive performance bounds for the
proposed estimation filter. In the case of constant, simultaneously,
and identically acting additive and multiplicative faults, it can be
shown that the estimation error converges to zero with an exponen-
tial rate. The performance of the proposed estimation filter in the
presence of incipient faults is validated through an application on
the lateral safety systems of SAE level 4 automated vehicles. The
numerical results show that the theoretical bounds of this study
are indeed close to the actual estimation error.

Index Terms— Fault estimation, regression, convex opti-
mization.

I. INTRODUCTION

Fault detection and isolation in dynamical systems are fundamental
problems for safety-critical applications. In the detection task, the
objective is to detect the presence of a fault in real-time while being
insensitive to natural disturbances [1] and/or model uncertainty [2]
to prevent false positives. Considering the occurrence of multiple
faults at the same time, we typically refer to isolation as the task to
identify which one of the faults occurs. A classical approach towards
isolation is to treat the problem as a special case of detection in
which all the possible faults are viewed as natural disturbances. This
methodology is found in a great variety of model settings, e.g., from
single non-linear systems [3] towards multi-agent, possibly large-
scale, systems [4], [5], [6]. A more integral approach for detection
and isolation of faults is an unknown-input type estimator, which
decouples the effect of unknown state measurements and disturbances
(or faults) from the residual through an algebraic approach [7], [8]
or approaches using the generalized inverse [9], [10].

A follow-up step to fault detection and isolation is fault-tolerance
(or fault-resilience) control in which the objective is to counteract and
mitigate the faults in real-time. To this end, estimation of the exact
value of the fault signal is a vital aspect. When assuming a linear or
linearized system description, additive faults can be estimated using
standard system-theoretic tools [11]. When the fault is multiplicative,
estimation is a more challenging task due to the nonlinear impact of
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the fault. A possible approach to deal with multiplicative dynam-
ics is to borrow tools from the machine learning literature (e.g.,
regression [12]), or by reformulating multiplicative faults as additive
faults [13]. The combined estimation problem of both additive and
multiplicative faults, acting on the same system, can be considered a
form of simultaneous state and parameter estimation. This problem is
relevant in a broad range of application domains (e.g., automotive as
illustrated later in this work, aviation [14] and chemical plants [15])
where actuators/sensors, which can inhibit simultaneously a bias
(i.e., an additive fault) or loss-of-effectiveness (i.e., a multiplicative
fault) [16], are used in safety-critical applications. This problem has
been considered in several different settings, an example of which
is the simultaneous appearance of multiplicative input faults and
additive output faults [17], i.e., the faults are assumed to appear lin-
early independent. Other works consider additive and multiplicative
faults acting through the same dynamical relationship (i.e., linearly
dependent) [16]. The problem is however largely unexplored when
both additive and multiplicative fault types act simultaneously in the
system while assuming this linear dependence between the faults.

The central problem, defined and solved in this manuscript, is to
estimate the fault signals (rather than only acknowledging/detecting
their presence) in real-time when both additive and multiplicative
faults are present and act simultaneously through identical dynamical
relationships. Due to the dynamical inseparability of the additive and
multiplicative faults, the estimates of such faults will, by definition,
be affected by one another. It is therefore vital to determine an explicit
performance bound that quantifies these effects. In this light, the
following problem is the main focus of this study.

Problem. Consider a linear dynamical system with the available
measurement signal z and the multivariate signal f = [fa, fm]
comprising possibly both additive (fa) and multiplicative (fm) faults
that are not dynamically separable. We aim to design an estimation
filter that turns the signal z to an estimation signal f̂ = [f̂a, f̂m]
(i.e., a causal dynamic mapping z 7→ f̂ ) such that the additive and
multiplicative faults can be estimated separately, where the combined
estimation error ∥f − f̂∥2 is bounded by

∥f(k)− f̂(k)∥2 ≤ C(Cz , Cf , k − k0), (1)

where the constant C is an explicit bound depending on the dynamical
model, the parameters Cz and Cf representing characteristics of the
measurement z and fault signals f , and the time difference k−k0 in
which k0 denotes the discrete starting sample of the fault signal f
and k is the current time instance. The signals characteristics can,
for instance, include the information of the average and variance of
the respective signals.

Let us emphasize that a performance bound in the form of (1)
provides a real-time estimation error for every single element of the
multivariate signal f .

Our contributions: The distinct feature of the problem above
that makes it particularly challenging is the combination of three
aspects: (i) real-time estimation of a multivariate fault signal, (ii) the
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Fig. 1: Block diagram of the proposed estimation filter.

presence of inseparable1 additive and multiplicative faults, and hence
a (particular) form of nonlinear dynamics, (iii) explicit, rigorous
performance bounds for fault detection. To our best of knowledge, no
approach in the existing literature addresses all these aspects at the
same time. Our proposed solution method leverages concepts from
the system theory literature concerning the aspects (i) and (iii) while
using tools from the machine learning literature to deal with the
aspect (ii). This combination yields an estimation filter with three
components as depicted in Figure 1. More specifically, the technical
contributions of this work are summarized as follows:

(i) We develop system-theoretic (error) bounds for the regression
operator, a well-known scheme borrowed from the machine
learning literature (Proposition III.3). These bounds are crucial
to quantify the performance of the proposed estimation filter.

(ii) We propose a general estimation architecture as in Figure 1 that
comprises three intertwined components. When the component
pre-filter is a simple identity operation, we develop an explicit,
computable performance bound in terms of the average and vari-
ance of the fault signals (Theorem III.5). In the special case of
constant faults, the proposed performance bound provides insight
regarding the convergence and boundedness of the estimation
error (Corollary III.6).

(iii) Building on the insight obtained from the performance of the
static pre-filter, we propose an alternative design utilizing a
dynamic pre-filter and develop the corresponding performance
bound (Theorem III.7). We further show that in the special case
of constant fault the estimation error decays to zero exponen-
tially fast (Corollary III.8).

Furthermore, we also develop two technical results concerning the
output bounds of linear time-invariant systems with zero steady-state
gain (Lemma III.4) and the variance of product signals (Lemma IV.1)
that facilitate the proof of the main results highlighted above. While
these results admittedly seem standard, we however did not find them
in the literature in the present form as needed for the main results
of this study. The proof of these lemmas is relegated to an extended
version of this work [18] due to the space limitation.

The remaining part of this paper is organized as follows. Section II
introduces a detailed problem description and challenges of the
research topic; furthermore, an outline of the proposed approach is
given. Following the problem description , the main theoretical results
of the work are given in Section III. The theoretical results are backed
by technical proofs, which are given in Section IV. In Section V,
the theoretical results are accompanied by numerical simulations,
showing the contributions of the set of developed theorems in more
practical daylight.

Notation. The symbols N and R represent the set of integers and
real numbers and the symbol R+ represents the set of non-negative
real numbers. The ones column vector with the length n is denoted
by 1n := [1, 1, . . . , 1]⊺. The p-norm of a vector v is denoted by

1See Section II-B for a more precise definition of this terminology.

∥v∥p where p ∈ [1,∞]. Given a square matrix A with strictly
real eigenvalues, we denote by λ ∈ R and λ ∈ R the maximum
and minimum eigenvalue values of the matrix, respectively. Given a
matrix A ∈ Rn×m, its transpose is denoted by A⊺ ∈ Rm×n, the

norm ∥A∥2 = σ(A) =
√
λ(A⊺A) is the largest singular value, and

A† := (A⊺A)−1A⊺ is the pseudo-inverse. Given two matrices with
an equal dimension A,B ∈ Rm×n, the operator A ◦ B ∈ Rm×n

denotes the element-wise (also known as Hadamard) product of two
matrices. The operators µn[x] and Vn[x] map R-valued discrete-
time signals to R-valued discrete-time signals, and are defined as
the first moment µn[x] (k) := 1

n

∑n−1
i=0 x(k − i) and the centered

second moment V 2
n [x] (k) := 1

n

∑n−1
i=0 x

2(k − i) − µ2n[x] (k) of
the signal x over the last n time instants. Throughout this study
we reserve the bold sub-scripted by n xn as the concatenated
version of the signal x over the last n time instants: xn(k) :=[
x(k), x(k − 1), . . . , x(k − n+ 1)

]⊺. The symbol q represents the
shift operator, i.e., q[x(k)] = x(k + 1).

II. PROBLEM DESCRIPTION AND OUTLINE OF THE
PROPOSED APPROACH

In this section, a formal description of the generic model class
along with the basic principles of existing FDI schemes is given.
Using this class of models, a high-level problem can be formulated.
We further elaborate on the challenges and shortcomings of the
current literature. Finally, an outline of the proposed solution is
provided, addressing the challenges in the preceding parts.

A. Model description

Throughout this study, we consider dynamical systems described
via a discrete-time non-linear differential-algebraic equation (DAE)
of the form,

H(q)[x] + L(q)[z] + F (q)
[
fa + E(z)fm

]
= 0, (2)

where x, z, fa, fm represent discrete-time signals, indexed by the
counter k (e.g., x(k)), taking values in Rnx ,Rnz ,Rnf , respectively.
The mapping E : Rnz → RnE is a static algebraic mapping
capturing the nonlinearity of the fault dynamics, which is assumed
known and, depending on the application, can be obtained through
first-principle modeling (see Section V). The dependency on the
signal z of the mapping E can be extended to other unknown signals
x through the use of additional state estimators. Let nr represent
the number of rows in (2), and the matrices H(q), L(q), F (q) are
polynomial functions with nr rows and nx, nz , nf columns in
the variable q, which represents the shift operator. As such, these
matrices may be cast as linear operators in the space of discrete-time
signals. The signal x contains all unknown signals in the DAE system,
typically comprising the internal states and unknown exogenous
disturbances. The signal z is composed of all known signals including
the control inputs u and the output measurements y. The signal fa
represents an additive fault while the signal fm is considered to be
a multiplicative fault or intrusion which interacts non-linearly with
the signal E(z). The overall contribution of both fault signals can
then be seen in the term fa + E(z)fm, to which we may refer
as the “aggregated fault signal” hereafter. Note that, for the sake
of generality in this work, the location of the faults fa and fm is
not restricted to any particular location and hence could represent
amongst others the notions of, e.g., sensor faults or actuator faults as
widely adopted in the FDI literature.

The modeling framework (2) encompasses a large class of dynam-
ical systems. A motivating example to show its level of generality is
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the set of nonlinear ordinary difference equations (ODE) described
by 

GX(k + 1) = AX(k) +Buu(k) +Bdd(k)

+Bf

(
fa(k) + EX

(
BXX(k), u(k)

)
fm(k)

)
,

y(k) = CX(k) +Duu(k) +Ddd(k)

+Df

(
fa(k) + EY

(
BYX(k), u(k)

)
fm(k)

)
,

(3)

where u is the input signal, d the unknown exogenous disturbance,
X the internal state of the system, Y the measurable output, fa the
additively acting set of faults or intrusions and finally fm the set
of faults acting as a multiplication on a non-linear combination of
the internal states and input. The matrices G, A, Bu, Bd, Bf , BX ,
BY , C, Du, Dd and Df are constant matrices with appropriate
dimensions. The following fact provides a simple-to-check condition
under which the ODE model (3) falls into the category of our
nonlinear DAE model (2).

Fact II.1 (From ODE to DAE). Consider the ODE (3) and suppose
there exist matrices KX ,KY such that{

BX = KXC, KXDf = 0, KXDd = 0,

BY = KY C, KYDf = 0, KYDd = 0.
(4)

Then, the ODE model can be viewed as a DAE model (2) by
introducing

x =

[
X
d

]
, z =

[
y
u

]
, E(z) =

[
EX(KX(Y −Duu), u)
EY (KY (Y −Duu), u)

]
,

H(q) =

[
−qG+A Bd

C Dd

]
, L(q) =

[
0 Bu

−I Du

]
, F (q) =

[
Bf

Df

]
.

Note that from a computational point of view checking the exis-
tence condition in (4) is a linear programming (LP) problem, which
can be certified highly efficiently.

Throughout this study, the following assumption holds, which
serves as a necessary and sufficient condition for the detectability
of the aggregated fault signal fa + E(z)fm in (2).

Assumption II.2 (Detectability). The polynomial matrices H(q)
and F (q) in (2) satisfy the rank condition Rank

{[
H(q), F (q)

]}
>

Rank
{
H(q)

}
. For simplicity of the exposition, we further assume

that F (q) is a polynomial column vector, i.e., nfa = nfm = 1.

Assumption II.2 paves the way to acknowledge whether the ag-
gregated fault signal is nonzero. However, differentiating the exact
contribution between additive fault fa and the multiplicative fault
fm introduces challenges that we shall discuss in the next section.

B. Current approach and open challenges

In order to design a residual generator for the system (2), fulfilling
the desired conditions of fault detection, it suffices to introduce a
linear filter polynomial N(q) which can be characterized through the
following polynomial arguments:

N(q)H(q) =0, (5a)

N(q)F (q) ̸=0. (5b)

The first condition (5a) is concerned with the rejection of the natural
disturbances and the unknown states, while the second condition (5b)
ensures a non-zero response of the residual generator when the fault
is non-zero. In the light of Assumption II.2, we restrict our attention
to a proper LTI estimation filter of the form:

r := a−1(q)N(q)L(q)[z], (6)

where the polynomial row vector N(q) fulfills the requirements (5),
and the stable transfer function a−1(q) is intended to make the
residual generator proper (i.e., the degree of a(q) is not less than the
degree of N(q)L(q) and stable (i.e., all the zeros of the polynomials
a(q) reside inside in the unit circle). Following the definition of the
residual (6) and the DAE model (2), it holds that the mapping from
the signals fa, fm to the residual r can be described by

r = T
[
E(z)fm + fa

]
, where T := −N(q)F (q)

a(q)
. (7)

A typical approach to isolate multiple faults (fa, fm) from one
another is to introduce all the faults but one as natural disturbances
encoded in the signal d. However, this technique fails for the DAE
systems of the form (2) since Assumption II.2 does no longer hold
in that case. In fact, by virtue of (7), one can see that the residual r
is linearly dependent on both fault signals fa, fm. Due to this linear
dependency, the residual can only be sensitive to the aggregated fault
signal fa+E(z)fm and it is not possible to isolate this combination
utilizing linear filters, an important scenario which we define in this
work as dynamical inseparability. This is the central fault isolation
challenge studied in this work.

C. Outline of the proposed approach

As mentioned in the preceding section, the key challenge of fault
isolation is to estimate the additive fault fa and multiplicative fault
fm when their impact on the dynamics (i.e., the corresponding
dynamic matrix F (q)) are linearly dependent. In this study, we aim to
address this challenge by leveraging tools from the regression theory,
a well-known concept from the Machine learning literature [19].
However, to integrate those tools in a dynamical system setting
and provide rigorous performance guarantees, it is required to view
these tools from a system-theoretic perspective and treat them as a
dynamical system. This is the main part of the focus of this study.

More specifically, our proposed “estimation filter” comprises three
blocks, see Figure 1. The first block is called “fault detection” and
its role is to estimate the aggregated signal fa + E(z)fm. This is
essentially adopted from the current literature of fault detection with
a slight extension that the residual signal r is expected to estimate
the behavior of fa + E(z)fm (rather than only acknowledging the
existence of a fault). We call the second block “fault isolation” that
aims at isolating and estimating the contribution of the additive fault
signal fa and the multiplicative one fm. This block is essentially
a (nonlinear) regression operator that also receives an additional
signal e, a required regressor signal containing the information of
E(z). As we will discuss in detail later, the dynamics of the system
(and as such the dynamics of E(z)) have a nontrivial impact on
the performance of the fault isolation block. This effect motivates
the inclusion of the third block, to which we refer as the “pre-filter”.
With regards to the pre-filter, we consider two cases in which one is a
trivial identity (i.e., e = E(z)), and the second case is a linear transfer
function with the input E(z), aiming to compensate for the dynamical
behavior between the true aggregated signal and the residual.

III. ESTIMATION FILTER DESIGN: MAIN RESULTS

As sketched in Figure 1, the proposed estimation filter in this study
comprises three blocks (i) fault detection, (ii) fault isolation, (iii) pre-
filter, which will be elaborated in detail in this section. Here we only
discuss the main results and their implications, and we will present
the technical preliminaries and proofs in section IV.
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A. Fault detection: linear residual generators
The following lemma is a slight specialization of [8, Lemma 4.2]

that characterizes the class of linear residual generators with a desired
asymptotic behavior. In this refined lemma, a steady-state condition
on the residual is introduced. This serves as the basis for the detection
block whose main objective is to detect and track (i.e., estimate) the
aggregated fault signal fa + E(z)fm.

Lemma III.1 (LP characterization of fault detection). Consider a
polynomial row vector N(q) =

∑dN
i=0Niq

i, and the system (2) with
the model polynomial matrices

H(q) =

dH∑
i=0

Hiq
i, F (q) =

dF∑
i=0

Fiq
i, a(q) =

da∑
i=0

aiq
i,

where dH , dF , dN , da denote the degree of matrices
H(q), F (q), N(q), a(q), respectively. Let us define the matrices

H :=


H0 H1 . . . HdH 0 . . . 0

0 H0 H1 . . . HdH 0
...

...
. . .

. . .
. . . 0

0 . . . 0 H0 H1 . . . HdH

 ,

F :=


F0 F1 . . . FdF 0 . . . 0

0 F0 F1 . . . FdF 0
...

...
. . .

. . .
. . . 0

0 . . . 0 F0 F1 . . . FdF

 ,
N :=

[
N0 N1 . . . NdN

]
, a :=

[
a0 a1 . . . ada

]
.

Under Assumption II.2, the linear program{
N H = 0,

N F1dN×dF = −a1da ,
(8)

is feasible and any solution N is an admissible fault detector filter
with zero-steady state error from the aggregated fault to the residual.
For any constant fault signals (fa, fm) and filter initial conditions,
the residual (7) fulfills limt→∞ fa + E(z(t))fm − r(t) = 0.

The proof is omitted as it is a straightforward adaptation from [20,
Lemma 4.6].

B. Fault Isolation: nonlinear regression
Next, we present the design of the fault isolation block. A central

object of this part is the regression operator, a well-known scheme
adopted from the machine learning literature [19]. This operator
represents the fault isolation block whose domain and range spaces
are discrete-time signals with appropriate dimensions.

Definition III.2 (Regression operator). Given an integer n and
scalar-valued signals e and r, we define

Φn[e, r](k) := ϕ†n[e](k) rn(k), (9)

where ϕn[e](k) :=
[
en(k), 1n

]
∈ Rn×2,

with the operator † as the pseudo-inverse (i.e., A† := (A⊺A)−1A⊺).

In the context of the fault estimation scheme in Figure 1, the
output Φn[e, r](k) of the nonlinear regression operation in Defini-
tion III.2 is, in fact, equal to the fault estimate f̂ . The nonlinear
regression operator in Definition III.2 enjoys certain regularity prop-
erties that are key for the results we will develop later. The following
proposition provides input-output bounds of the regression operator.
These bounds will be utilized later to develop a performance bound
for the proposed estimation filter.

Proposition III.3 (Regression bounds). Consider the regressor oper-
ator in Definition III.2. For all discrete-time scalar-valued signals r, e
and y = [y(1), y(2)]⊺, at each time instant k ∈ N where Vn[e] ̸= 0
it holds that∥∥Φn[e, y

(1) + e y(2)]− µn[y]
∥∥
2
≤

Cn(en)
Vn[e]

(
Vn

[
y(1)

]
+ Vn

[
y(2)

]
∥en∥∞

)
, (10a)∥∥Φn[e, r]

∥∥
2
≤ Cn(en)√

nVn[e]
∥rn∥2, (10b)

where the constant is defined as Cn(en) :=
√
V 2
n [e]+µ2n[e]+1.

Proof. Due to the space limitation, we relegate the proof to the
extended version [18, Proposition III.3 in our arXiv paper].

We emphasize that the bounds in (10) hold for each time instant
k ∈ N, but to avoid clutter we drop the time-dependency of the
signals (e.g., Φn[e, r] instead of Φn[e, r](k)). We also note that the
parameter Cn only depends on the signal e (more precisely, on the
last n time instants of the signal e denoted by en). In this view, the
inequality (10b) indeed represents an operator norm for the linear
mapping r 7→ Φn[e, r]. Let us elaborate further on how the bounds
as in (10) are the first stepping-stones towards our main goal in
this study. Measuring the “aggregated” signal y(1) + e y(2), one can
utilize (10a) to bound the error on the estimation of the average of the
multivariate signal y = [y(1), y(2)]⊺ (i.e., µn[y]) via the regression
operator. It is worthwhile to note that when the signal y is constant,
then y = µn[y] and Vn

[
y(1)

]
= Vn

[
y(2)

]
= 0, and that the

estimation error reduces to zero provided that Vn[e] ̸= 0. The second
result (10b) allows us to bound the output of the nonlinear regression
operator given a bounded input, which can be viewed as a means to
bound estimated faults given the dynamically filtered residual r as
an input. The bounds (10) offer a rigorous framework to treat the
isolation block as a nonlinear dynamical system whose induced gain,
and as such the boundedness of its output, is determined by Vn[e],
the variance of signal e over a horizon with the length n.

C. Pre-filter: dynamic compensator
In this section, we focus on the pre-filter block in Figure 1. Before

presenting the main results of this paper, we first need to proceed
with a basic preparatory lemma on the output bound of LTI systems.
To improve the flow of the paper, we skip the technical proofs of the
results in this section and defer them to Section IV.

Lemma III.4 (Zero steady-state LTI output bound). Consider a
proper LTI system with the numerator b(q) =

∑d
i=0 biq

i, and the
denominator a(q) =

∏d
i=1(q− pi) where the poles are distinct and

the dominant one (i.e., the one closest to the unit circle) is p with
|p| < 1. Suppose the steady-state gain of the filter is 0 (i.e., b(1) = 0),
the internal state (in the Jordan canonical form) is initiated at X(0),
and the input signal u(t) is 0 until time k0 and takes possibly nonzero
values for t ≥ k0. Then, the output signal y(t) satisfies the bound

∥yn∥2 ≤ C0∥X(0)∥2|p|k−n + C1∥µk−k0
[u]∥2|p|k−n−k0

+ C2
√
k − k0Vk−k0

[u] ,

where the constants C0, C1, C2 are defined as

ri =
b(−pi)∏

j ̸=i(pj − pi)
, C0 =

√√√√n

d∑
i=1

r2i ,

C1 =

√
nd

∑d
i=1 r

2
i

1− |p| , C2 = |bd|+
d∑

i=1

|ri|
1− |pi|

.
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Proof. Due to the space limitation, we relegate the proof to the
extended version [18, Lemma III.4 in our arXiv paper].

The statement of Lemma III.4 is rather classical and is not unex-
pected. However, we need such an assertion with explicit, computable
bounds for the main results of this study, which to our best knowledge
does not exist in this form in the literature.

We further propose two possible designs for the pre-filter, each of
which comes along with certain pros and cons. The first, and simplest,
design option is the static identity block. The next theorem presents
a performance bound for this static pre-filter design.

Theorem III.5 (Performance bound: (I) static pre-filter). Consider
the system (2) and the fault estimation filter in Figure 1 where the
fault detection block is characterized by the linear program (8) and
a denominator a(q) with distinct and real-valued poles. The fault
isolation block is the regression operator in (9) with the horizon n.
Suppose the pre-filter block is identity (i.e., e = E(z)), and the fault
signal starts at time k0. Then, at each time instant k ∈ N we have∥∥∥f̂ − µn[f ]

∥∥∥
2
≤ 1

Vn[e]

(
α0|p|k−k0 + α1Vk−k0

[fa]

+α2Vk−k0
[fm] + α3

)
, (11a)

where the constant p ∈ R is the dominant pole of the denomina-
tor a(q) and the involved constants are defined as

α0 = C1
Cn(en)√

n

(
|µk−k0

[fa]|+ |µk−k0
[efm]|

)
, (11b)

α1 = C2Cn(en)
√
k − k0
n

, (11c)

α2 = C2Cn(en)
√
k − k0
n

(√
k − k0Vk−k0

[e] (11d)

+ |µk−k0
[e]|

)
,

α3 = Cn(en)
(
Vn[fa] + Vn[fm] ∥en∥∞ (11e)

+ C2

√
k − k0
n

|µk−k0
[fm]|Vk−k0

[e]
)
.

in which Cn(en) is defined in Proposition III.3 and the constants
C1, C2 are defined in Lemma III.4.

Proof. The proof is provided in Section IV.

By Theorem III.5, one can inspect how different aspects of the
proposed design contribute to the fault estimation error. The most
critical term is Vn[e] in the denominator of the right-hand side
of (11a). This challenging dependency is, however, an inherent
limitation of the desired isolation task. In fact, one can show that
when the signal E(z) is constant (i.e., Vn[e] ≡ 0), separation of the
two faults (fa, fm) is even theoretically impossible. To reinforce this
statement, consider the case Vn[e] ≡ 0 with arbitrary faults fa and
fm. It can be observed that the regression operator (9) contains the
inverse of a degenerate component ϕn[e]⊺ϕn[e] which, by definition,
does not exist in such a case. This result shows that the signal e, over
horizon n, does then not span the behavior of the aggregated fault
over the same horizon, a concept close to the well-known persistence
of excitation property for LTI systems [21]. The term α0 in (11b)
reflects the contribution of the average behavior of fault signals.
In (11b), it can be seen that this term diminishes exponentially fast
after the start of the fault signal due to its proportionality with the
exponentially decaying term containing the dominant pole p of the
stable denominator a(q). In this light, we can deduce that the impact
of these average behaviors on performance is negligible. The terms
concerning α1 and α2 in (11) are mainly influenced by the variance

of the fault since the beginning of the fault. The contribution of
these variances in combination with the dynamics constants C1, C2
from Lemma III.4 is also an inevitable factor in the estimation
error, since the regression model in Definition III.2 assumes constant
contributions of the faults fa and fm appearing through the transfer
function (7) in the residual r over a horizon n. Finally, the last
term involving α3 is a critical and potentially persistent source of
error. In particular, the variance signal Vk−k0

[e] introduces a non-
zero estimation error even in the case of constant fault signals. The
next corollary highlights this effect.

Corollary III.6 (Constant faults: part I). Consider the system and
the estimation filter as in Theorem III.5. Suppose the fault signals
are constant f = (f̄a, f̄m), starting from the time k0. Then, for any
time instant k ≥ k0 + n we have∥∥∥f̂ − f

∥∥∥
2
≤ Cn(en)√

nVn[e]

(
C1

(
|f̄a|+ |f̄m|µk−k0

[e]
)
|p|k−n−k0

+ C2
√
k − k0|f̄m|Vk−k0

[e]
)
. (12)

Proof. The proof is a direct application of Theorem III.5. Under the
assumption that the fault signals are constants after time k ≥ k0,
we know that Vk−k0

[fa] = Vk−k0
[fm] = 0. Moreover, assuming

further that k ≥ n + k0, we can also conclude that Vn[fa] (k) =
Vn[fm] (k) = 0. In addition, the average terms of the signal reduces
to µk−k0

[fa] = f̄a and µk−k0
[fm] = f̄m. Substituting these

quantities in the bound (11) concludes (12).

As noted above, the variance of the signal e is a persistent factor
contributing to the performance bound, which is captured by the last
term on the right-hand side of the inequality (12). This is somehow
expected due to the causality effect of the system dynamics. More
specifically, the residual r, the output of the fault detection block,
opts to follow the aggregated fault signal fa + E(z)fm but it relies
on the dynamics T (q) (cf., (7)). However, when the pre-filter is set
to identity (i.e., e = E(z)), the information of the signal is provided
instantly for the isolation block (due to the static identity pre-
filter), rendering some persistent potential error, that is proportional
to Vk−k0

[e]. This error exists because the fault isolation block
assumes a static mapping e 7→ r for the static pre-filter case, whereas
this mapping is inherently dynamic due to the dynamics of the system
and the fault detection block (7). This dynamical misalignment in the
fault isolation block manifests itself in the estimation error, even for
constant faults, as shown in (12). Next, we aim to address this issue
by filtering the information of the signal E(z) through the same
dynamics that the residual of the detection filter experiences. This
novel viewpoint brings us to the second choice of pre-filter next.

Theorem III.7 (Performance bound: (II) dynamic pre-filter). Con-
sider the system (2) and the fault estimation filter in Figure 1 where
the fault detection block is characterized by the linear program (8)
and a denominator a(q) with distinct and real-valued poles. The fault
isolation block is the regression operator in (9) with the horizon n.
Suppose the pre-filter block is the linear system T as defined in (7)
(i.e., e = T [E(z)]) with the internal states denoted by Xp. If the
fault signal starts at time k0, then at each time instant k we have∥∥∥f̂ − µn[f ]

∥∥∥
2
≤ 1

Vn[e]

(
β0|p|k−k0 + β1Vk−k0

[fa] (13a)

+ β2Vk−k0
[fm] + β3

)
,

where the constant p ∈ R is the dominant pole of the denomina-
tor a(q) and the involved constants are defined as

β0 =
Cn(en)√

n

(
C1

(
|µk−k0

[E(z)fm]− µk−k0
[E(z)]µn[fm]|

)
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+ C0|µn[fm]|∥Xp(k − k0)∥2 + |µn[fa]|
)
, (13b)

β1 = C2Cn(en)
√
k − k0
n

, (13c)

β2 = C2Cn(en)
√
k − k0
n

(√
k − k0Vk−k0

[e]+|µk−k0
[e]|

)
, (13d)

β3 = Cn(en)
(
Vn[fa] + Vn[fm] (∥en∥∞ + ∥en − E(zn)∥∞)

+ C2

√
k − k0
n

∣∣µk−k0
[fm]−µn[fm]

∣∣Vk−k0
[E(z)]

)
. (13e)

in which Cn(en) is defined in Proposition III.3, the constants
C0, C1, C2 are defined in Lemma III.4, and the vector-valued sig-
nal E(zn) is understood as the evaluation of the function E(·) on
each of the elements of the vector zn.

Proof. The proof is provided in Section IV.

In a comparison with Theorem III.5, one can see that the main
difference in the fault estimation error bound appears in the last
coefficient of the error bounds (cf, α3 in (11a) and β3 in (13a)).
In particular, the idea of an appropriate dynamic pre-filter allows
us to shift the contribution of the variance signal Vk−k0

[e] to the
third term related to β2 in (13d), which is multiplied by the variance
of the multiplicative fault Vk−k0

[fm]. This shift has a significant
impact on the performance when the fault signals are constant during
the activation time (i.e., k ≥ k0). Before proceeding with the
simplification of the result, in this case, let us note that the dynamic
pre-filter does not necessarily outperform the static one proposed
by Theorem III.5 due to the difference in the term Vn[e]. Indeed,
the filtered signal T [E(z)] may have a lower variance, which has a
negative impact on the performance bounds.

Corollary III.8 (Constant faults: part II). Consider the system and
the estimation filter as in Theorem III.7. Suppose the fault signals
are constant (f̄a, f̄m) starting at time k0. Then, for any time instant
k ≥ k0 + n

∥f̂ − f∥2 ≤ Cn(en)√
nVn[e]

(
C1|f̄a|+C0|f̄m|∥Xp(k0)∥2

)
|p|k−k0 . (14)

Proof. In parallel to Corollary III.6, the proof is a direct application
of Theorem 13 when the fault signals are constants after time k ≥
n + k0, and as such Vk−k0

[fa] = Vk−k0
[fm] = 0, Vn[fa] (k) =

Vn[fm] (k) = 0, µk−k0
[fa] = f̄a and µk−k0

[fm] = f̄m. Besides,
we also note that the term µk−k0

[fm]−µn[fm] = 0 vanishes as well.
Substituting these quantities in the bound (13) concludes (14).

In the case of constant faults, Corollary III.8 indicates that the fault
estimation error goes to zero exponentially fast if the filtered signal e
behaves “nicely” (i.e., Vn[e] is uniformly away from zero). In com-
parison with the assertion of Corollary III.6, this outcome highlights
the role of the dynamic pre-filter on the estimation performance.
The following remark provides insight on the computational com-
plexity of the used fault estimation methods.

Remark III.9 (Computational complexity). Given the fact that the
optimal fault-detection filter (6) and pre-filter (7) are computed
offline, the computational complexity of the real-time running algo-
rithm, for both Theorems III.5, III.7, is governed by the fault isolation
block. Due to the regression operation, as defined in Definition III.2,
this method will have a time computational complexity of O(4n+8),
where n represents the prediction horizon of the fault isolation filter.

Let us close this section with a summary of the results. In this
section, a general estimation architecture has been proposed. System
theoretic bounds for the regression operator (Definition III.2) and
the LTI bound (Lemma III.4) have been used for the construction

of guaranteed performance bounds for two pre-filter variants within
this estimation architecture. The insights gained from the first pre-
filter variant (i.e., the identity block in Theorem III.5) and its
behavior for constant faults (Corollary III.6), have been leveraged
to propose a second design variant (i.e., the dynamic pre-filter in
Theorem III.7), which has been proven to have an exponentially
decaying performance bound for constant faults (Corollary III.8).

IV. TECHNICAL PRELIMINARIES AND PROOFS OF MAIN
RESULTS

This section presents the technical proofs of the theoretical results
in Section III. Before proceeding with the proofs of the main theo-
rems, we need first to provide a useful additional lemma concerning
the variance of the product of two signals. The results of this section
will later facilitate the proofs of the main theorems.

Lemma IV.1 (Variance of product signals). Consider the discrete-
time signals a, b over time-horizon n. At each time instant, we have

|V 2
n [a+ b]− V 2

n [a]− V 2
n [b]|

≤2min {∥an∥2Vn[b] , ∥bn∥2Vn[a]} , (15a)

Vn[ab] ≤
√
nVn[a]Vn[b] + |µn[a]|Vn[b] + |µn[b]|Vn[a] . (15b)

Proof. Due to the space limitation, we relegate the proof to the
extended version [18, Lemma IV.1 in our arXiv paper].

Proof of Theorem III.5. Let us first introduce the shorthand notation

G := T − I, δ(k) := fa + efm(k), e = E
(
z(k)

)
, (16)

where the transfer function T is as defined in (7) and I is the identity
transfer function. Notice that in this part the pre-filter is the static
gain identity, and that its output signal e is indeed the measurement
signal E(z) (cf. Figure 1). Based on the definition of the estimated
fault and the regression operator in Definition III.2 we have

f̂ = Φn[e, r] = Φn[e, r − δ] + Φn[e, δ]− µn[f ] + µn[f ] ,

where the second equality simply follows from the linearity of
the regression operator in the second argument. Let moving the
term µn[f ] to the left-hand side and taking the 2-norm on both sides
of the above equality. Using the triangle inequality and the regression
bounds from Proposition III.3, we arrive at

∥f̂ − µn[f ] ∥2 ≤ ∥Φn[e, r − δ]∥2 + ∥Φn[e, δ]− µn[f ] ∥2

≤ Cn(en)√
nVn[e]

∥rn − δn∥2 (17)

+
Cn(en)
Vn[e]

(
Vn[fa] + Vn[fm] ∥en∥∞

)
,

where the first and second bounds in (17) follow from (10b) and
(10a), respectively. It then remains to bound the term ∥rn− δn∥2 on
the right-hand side of (17). Following the definitions of the residual r
in (7), and the signal δ and the transfer function G in (16), we have

r − δ = T [fa + E(z)fm]− (fa + efm) = G [fa] + G [efm] .

Note that by construction the transfer function G has a zero steady-
state gain since the transfer function T has unit steady-state gain (see
Lemma III.1). As such, we can apply Lemma III.4 to the right-hand
side of the above relation. This leads to

∥rn − δn∥2 ≤ C1
(
|µk−k0

[fa]|+ |µk−k0
[efm]|

)
|p|k−k0

+ C2
√
k − k0

(
Vk−k0

[fa] + Vk−k0
[efm]

)
,

≤ C1
(
|µk−k0

[fa]|+ |µk−k0
[efm]|

)
|p|k−k0
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+ C2
√
k − k0

(
Vk−k0

[fa]+|µk−k0
[fm]|Vk−k0

[e]

+
√
k − k0Vk−k0

[fm]Vk−k0
[e]

+ |µk−k0
[e]|Vk−k0

[fm]
)
,

where in the last line we apply (15b) from Lemma IV.1 to the variance
of the product signals Vk−k0

[efm]. Substituting the above bound
in (17) results in

∥f̂−µn[f ]∥2

≤ Cn(en)√
nVn[e]

(
C1

(
|µk−k0

[fa]|+ |µk−k0
[efm]|

)
|p|k−k0

+ C2
√
k − k0

(
Vk−k0

[fa] + |µk−k0
[e]|Vk−k0

[fm]

+ Vk−k0
[e]

(√
k − k0Vk−k0

[fm] + |µk−k0
[fm]|

)))
+

Cn(en)
Vn[e]

(Vn[fa] + Vn[fm] ∥en∥∞) .

Finally, it suffices to factor out the right-hand side of the above
inequality to the exponentially decaying term and the variance
terms Vk−k0

[fa], Vk−k0
[fm], as well as the remaining parts in-

cluding Vn[fa] , Vn[fm] , Vk−k0
[e]. This concludes the desired as-

sertion (11).

Proof of Theorem III.7. The key difference between the setting of
this theorem with Theorem III.5 is the choice of pre-filter, and as
such, the definition of the signal e. Consider the same definitions of
the transfer function G and the signal δ as in (16) where the output
of the pre-filter is defined as

e = T [E(z)] , with the internal states Xp. (18)

Note that the relation (17) still holds in the setting here as well. We
then only need focus on the term ∥rn − δn∥2. In the rest of the
proof, we fix the time instant k ∈ N and define the average of the
multiplicative fault fm over the horizon [k − n, k] as the constant
denoted by

fm := µn[fm] (k). (19)

Let us emphasize that we view the value fm as constant over the
entire time horizon prior to k. We further introduce the shorthand
notation of the step function

Uk0(k) :=

{
0 k < k0
1 k ≥ k0 .

With straightforward but tedious algebraic computation, the signal r−
δ can be rewritten as

r − δ = G [fa] + G
[
E(z)(fm − fmUk0)

]
(20a)

+ fmT
[
E(z)(Uk0 − 1)

]
Uk0 − G [E(z)] (fm − fmUk0).

Recall that G = T − I is a stable transfer function with
zero steady-state gain. Also, note that for k ≥ k0 the third
term T

[
E(z)(Uk0 − 1)

]
in (20a) is in fact the contribution of the

internal states Xp(k0) of the transfer function T when the input
signal is E(z) (Uk0 − 1 = 0 for all k ≥ 0). Therefore, we can apply
Lemma III.4 to each term on the right-hand side in (20a) and obtain
the bound

∥rn − δn∥2 ≤ C1|fa||p|k−k0 + C2
√
k − k0Vk−k0

[fa] (21)

+ C1|µk−k0

[
E(z)(fm − fmUk0)

]
||p|k−k0

+ C2
√
k − k0Vk−k0

[
E(z)(fm − fmUk0)

]
+ |fm|C0∥Xp(k0)∥2|p|k−k0

+ ∥en − E(zn)∥∞
√
nVn[fm]

u

lf
lr

vx

−vy

κ = 1
R

ye

ψe

ψ̇

S1

S2

S1 S2

φ

1

Fig. 2: Visual representation of the bicycle model.

We first note that in (21) we can simplify the first term of the
second line as µk−k0

[
E(z)(fm − fmUk0)

]
= µk−k0

[E(z)fm] −
µk−k0

[E(z)] fm. We further borrow the results of Lemma IV.1 to
bound the terms involving the product of two signals in (21). More
specifically, we have

Vk−k0

[
E(z)(fm − fmUk−k0)

]
≤

√
k − k0Vk−k0

[E(z)]Vk−k0
[fm]

+ |µk−k0

[
fm − fmUk0

]
|Vk−k0

[E(z)]

+ |µk−k0
[E(z)]|Vk−k0

[fm]

=
√
k − k0Vk−k0

[E(z)]Vk−k0
[fm] (22)

+ |µk−k0
[fm]− fmUk0 |Vk−k0

[E(z)]

+ |µk−k0
[E(z)]|Vk−k0

[fm] .

It now suffices to substitute the upper bounds (22) in (21), and then
invoke the resulting bound on ∥rn−δn∥2 in (17). Finally, it remains
to factor out the right-hand side of the inequality to the exponentially
decaying term, the variance terms Vk−k0

[fa], Vk−k0
[fm], as well as

the remaining parts including Vn[fa], Vn[fm], Vk−k0
[E(z)]. This

concludes the desired assertion (13).

V. CASE STUDY: LATERAL CONTROL OF AUTONOMOUS
VEHICLES

In this section, the presented theory is illustrated using a fault
isolation problem in the scope of the lateral control of autonomous
vehicles. In this context, fault detection and isolation are increasingly
important in the automotive industry. The lateral dynamics of the
vehicle are modeled using the bicycle model [22, Equation 1]
(depicted in Figure 2). This model represents a linearization of the
full non-linear lateral dynamics of an automated vehicle. The state of
the vehicle is chosen as X = [vy, ψ̇, ye, ψe]

⊺ where vy represents
the lateral velocity, ψ̇ represents the yaw-rate, ye represents the lateral
error from the lane centre and ψe represents the heading error from
the lane centre. The disturbance vector is chosen as d = [sin(ϕ), κ]
where ϕ represents the banking angle of the road (as depicted by
cross-section S1 − S2 in Figure 2) and κ represents the curvature
of the road. The input u represents the steering wheel angle of the
front wheels of the vehicle. In this case study, we consider additive
and multiplicative faults acting on the steering input signal u. These
faults could realistically occur as an offset in the steering column,
fa, or a loss of actuator efficiency, fm. These faults may result in
unexpected transient and steady-state tracking errors and hence result
in dangerous situations for the vehicle passengers if not estimated
and mitigated independently. The model description with its states,
disturbances, faults, and input can be written in the continuous-time
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Fig. 3: True estimation error in comparison with the corresponding
performance bounds in (12) and (14).

equivalent of the linear difference equation from (3), with system
matrices [22, Equation 1]:

Ā=


Cf+Cr

vxm

lfCf−lrCr

vxm
−vx 0 0

lfCf−lrCr

vxI

l2fCf+l2rCr

vxI
0 0

−1 0 0 vx
0 −1 0 0

 , B̄u, B̄f =


−Cf

m

− lfCf

I
0
0

 ,
G = I4, B̄d =

[
g 0 0 0
0 0 0 vx

]⊺
, C =

[
0 I3

]
,

where I3, I4 represent the identity matrix of size 3 and 4, respectively.
Furthermore, Cf = 1.50 · 105N · rad−1, Cr = 1.10 · 105N · rad−1,
lf = 1.3m, lr = 1.7m, vx = 19m·s−1, m = 1500kg, I = 2600kg·
m2 and finally g = 9.81m · s−2. The physical intuition behind these
constants is omitted for the sake of brevity and can be found in [22].
In order to fit the discrete-time model setting employed in this paper,
we first exactly discretize the dynamical system by calculating the
discrete-time states-space matrices as A = eĀh and B =

∫ h
0 eĀsB̄ds

(for all matrices B̄u, B̄f and B̄d). For which the sampling interval h
is chosen as h = 0.01s and f = fmu+fa represents the aggregated
fault signal. Note, that the discretized system matrices can be written
in the DAE framework by virtue of Fact II.1 when setting KX = 0,
KY = 0, and EX = u. For the synthesis of the fault detection filter,
the degree of the filter N(q) is set to dN = 3. The denominator a(q)
is selected as a(q) = (q+0.60)(q+0.59)(q+0.58). The filter N(q)
can be found by solving the linear program in (8). For the synthesis
of the fault isolation filter, the time horizon n is initially chosen
as n = 10. The input signal u to the system dynamics is selected
to be a sinusoidal signal with an amplitude of 2.3 · 10−3 radians
at a frequency of 0.3Hz. The frequency content of the input signal
is inspired by experimental data of an automated vehicle, driving
in-lane using a PD-type controller, while being excited by natural
disturbances [22]. For this simulation study, the additive fault and
the multiplicative fault are selected as incipient fault functions fa =
π

1800 · 10−2k, fm = −0.2 · 10−2k, reaching their final values after
1s, starting from time instances 0.1s and 1.9s, respectively.

Figure 3 depicts the estimation errors (left-hand side of (11a)
and (13a) for the static pre-filter and the dynamic pre-filter, re-
spectively) and their simulated performance bounds (right-hand side
of (11a) and (13a) for the static pre-filter and the dynamic pre-
filter, respectively). As expected (according to Corollary III.6), the
performance bound and estimation error for the static pre-filter remain
non-zero for as long as the input signal u is excited, which is
inherently needed for separation of the fault terms. The dynamic pre-
filter follows the result from Corollary III.8, where the performance
bound and estimation error converge to zero in finite time. This
allows the automated vehicle to act upon two different fault-types
accordingly, as opposed to having to conservatively act on the
presence of an aggregated fault signal fa + efm without knowing
the separate contributions of the faults.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, a fault estimation architecture for the estimation
of additive and multiplicative faults, acting simultaneously through
identical dynamical relationships is presented. Simulation results in
the domain of SAE level 4 automated driving show the practical value
and the potential of the proposed approach in relevant future-proof
applications. Future work includes incorporating model uncertainty,
non-linearities, delays, and closed-loop fault mitigation.
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