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Abstract
In this overview paper, we present low-temperature electronic transport
measurements of carbon nanotube quantum dots with a back gate. In a
semiconducting tube, charge carriers could be completely depleted. The
addition energy and the excitation spectrum have been studied as a function
of the number of charges (electrons or holes), one by one. We observe
electron–hole symmetry, which is a direct consequence of the symmetric
band structure of the nanotube. The excitation spectrum for metallic
nanotubes exhibits four-fold shell filling and is completely described by an
extended constant-interaction model. Furthermore, nanotubes with a
four-fold shell structure are investigated in a parallel magnetic field. The
magnetic field induces a large splitting between the two orbital states of each
shell, demonstrating their opposite magnetic moment and determining
transitions in the spin and orbital configuration of the quantum dot ground
state. Also, a small coupling is found between orbitals with opposite
magnetic moments leading to anti-crossing behaviour at zero field.
Current–voltage characteristics of suspended carbon nanotube quantum dots
show an additional series of steps equally spaced in voltage. The energy
scale of this harmonic, low-energy excitation spectrum is consistent with that
of the longitudinal low-k phonon mode (stretching mode) in the nanotube.
Finally, we report on a fully tunable carbon nanotube double quantum dot.
We perform inelastic transport spectroscopy via the excited states in the
double quantum dot, a necessary step towards the implementation of new
microwave-based experiments for quantum information technology.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since their discovery [1], carbon nanotubes (CNTs) have
emerged as prototypical one-dimensional conductors [2].
A continuous improvement in device fabrication and CNT
quality has enabled the recent observation of many different
quantum phenomena, e.g. Luttinger liquid behaviour [5],
Fabry–Perot interferences [6], Kondo effect [7, 8], influence
of vibrations [9, 10] and effects of superconductivity [11–13].
At low temperatures, CNT devices form quantum dots (QDs)
where single-electron charging and energy level quantization
effects dominate [3, 4]. In this paper, we focus on low-
temperature electron transport in CNT QDs. We start with the
most basic three-terminal field effect transistor type geometry

on insulating substrates. We continue our investigation with
suspended CNTs (to study effects of vibrations) and finish
with more sophisticated CNT structures to form double QDs.

2. Fabrication

Nanotubes are grown/deposited on the top of oxidized silicon
substrates. The Si substrates are highly doped (p-doped in
our case) so that they remain conductive at low temperatures
and can serve as a back gate in our devices. The thickness
of the thermally grown oxide is typically ∼250 nm and
isolates the devices from the back gate. A set of markers
is necessary to later locate the position of the nanotubes
and for the fabrication of the electrodes. These include a

0268-1242/06/110052+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK S52

http://dx.doi.org/10.1088/0268-1242/21/11/S08
mailto:sami@qt.tn.tudelft.nl
http://stacks.iop.org/SST/21/S52


Quantum dots in carbon nanotubes

heterostructure

resist

e-beam after
development

substrate

(a) (b)

(d )(c) Metal evaporation After lift-off

Figure 1. Schematic electron beam lithography cycle. (a) Double
layer of organic resist is spun on a substrate and a predesigned
pattern is irradiated with a beam of electrons. (b) After
development, an opening is left in the resist. (c) Metal is evaporated
on the top of the substrate + remaining resist. (d) The remaining
resist is removed and the metal is left at the predesigned positions.

set of electron beam lithography alignment markers (e-beam
markers) and atomic force microscopy (AFM) markers.
The patterning of these markers requires one e-beam
lithography ‘cycle’ (figure 1), which consists of spinning
a double layer of e-beam resist, e-beam lithography,
development, metal evaporation and lift-off. The bottom
layer of resist (poly-methyl methacrylate (PMMA) 350K 3%
in chlorobenzene) is thicker and more sensitive to e-beam
radiation; it serves as a spacer and ensures a proper lift-off.
The top resist layer (PMMA 950K 2% in chlorobenzene) is less
sensitive and serves as the actual mask for metal evaporation.
Once the resist is spun, a pattern is ‘written’ by irradiating the
PMMA with a beam of electrons, which breaks the bonds in the
polymer. The ‘exposed’ resist is removed from the substrate
by immersing the sample in a developer (a 1:3 solution of
methyl isobutyl ketone (MIBK) and iso-propyl alcohol (IPA)).
Then, the substrate is placed in an e-beam evaporator, where
(Cr or Ti)/Pt (5/70 nm) is evaporated. Chromium or titanium
is used as a sticking layer for the platinum. We use Pt for the
markers because they withstand, without severe deformation,
the high temperatures (∼900 ◦C) during nanotube growth.
After metal evaporation, the unexposed resist and excess metal
are removed by immersing the sample in hot acetone (∼55 ◦C).
After lift-off, the substrate contains e-beam markers, AFM
markers, as well as a series of optical and numerical markers
to help handling and tagging of samples.

We have used two methods to place nanotubes on the
substrates: direct deposition from a solution and chemical
vapour deposition (CVD) growth. For the first one, we
put a small amount of carbon nanotube material in a bottle
containing DCE (dichloroethane) and sonicate until the
nanotube material has disentangled into separate nanotubes
(typically ∼30 min to 1 h). Then, a few droplets of solution
are placed on a substrate and blown-dried with nitrogen. This
process leaves nanotubes all over the substrate. It is easy
and fast, but it has certain disadvantages. Many times the
nanotubes appear in ropes and not individually. We have
also noted that it is harder to make good contact to deposited
NTs than to CVD-grown tubes. For these reasons, most of
our experiments have been performed with carbon nanotubes
grown by CVD. For the catalyst, 40 mg of Fe(NO3)3·9H2O,
2 mg of MoO2(acac)2 and 30 mg of alumina nanoparticles

Figure 2. Fabrication process. Left: scheme of a substrate with the
AFM markers, catalyst particles at predefined positions, grown
nanotubes and designed electrodes. The separation between AFM
markers is 6 µm. Right: actual AFM picture of one of our devices.

are mixed in 30 ml of methanol and sonicated for ∼1 h.
The resulting liquid catalyst is deposited onto the substrate
with 0.5 µm2 openings in the PMMA resist (patterned on
specific known locations by e-beam lithography) and blown
dry. After lift-off in acetone, the substrate with patterned
catalyst is placed in a 1 inch quartz tube furnace and the CVD
is carried out at 900 ◦C with 700 sccm H2 and 520 sccm
CH4 for 10 min. Argon flows through during heating up
and cooling down. The methane and hydrogen flows have
been optimized to obtain long and clean nanotubes (∼10 µm)
without amorphous carbon deposition. After growth, typically
a few tubes have grown from each catalyst site.

After the nanotube deposition/growth, the substrates are
inspected by atomic force microscopy. All our devices have
‘customized electrodes’, i.e., we design electrodes individually
for each nanotube device. We typically choose straight
segments of nanotubes located on ‘residue-free’ areas. The
AFM pictures determine the precise location of the nanotubes
with respect to the predefined AFM markers. We import
these pictures into a CAD program and directly design the
electrodes on the top of the desired NTs. A subsequent
e-beam lithography step is carried out to write the electrodes
and evaporate the metal. The contact metal can be Cr/Au,
Ti/Au, Pd, Ti/Al, etc depending on the type of experiment.
After lift-off, the sample is ready for optical inspection and
room temperature characterization. In some cases, we etch
part of the SiO2 in order to suspend the nanotubes. This is
done by immersing the samples in buffered HF for ∼1–2 min,
transfer to water and followed by a gentle drying in hot IPA
(to prevent the collapse of the nanotube due to surface tension
effects).

So far, we have only described the fabrication process for
the ‘standard’ three-terminal nanotube devices. For making
more complex device architectures, additional e-beam steps
are required. In the following, we describe the extra fabrication
steps to make nanotube double quantum dots with tunable
tunnel barriers defined by aluminium top gates (see figure 3).
The tunable tunnel barriers are the very narrow Al top
gates. The advantage of a narrow top gate is that it controls the
tunnelling barrier on a local scale and only a small portion of
the tube is covered with oxide. To fabricate nanotube double
dot devices, we first make the Pd contacts to the tubes in the
same way as described above. Pd is used, because it introduces
little or no barrier at the nanotube–metal contact [14]. In a
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Figure 3. AFM picture of a carbon nanotube double quantum dot
device. The contacts (source and drain) are made of Pd and the gate
structures of Al. The top gates (TGL, TGM and TGR) create tunable
tunnel barriers and the side gates are used to change the
electrochemical potential of the separate dots individually.

subsequent electron beam lithography step, we make the gate
structures. First, we evaporate 2 nm thin layer of Al and then
this layer is completely oxidized for 10 min at 1 bar pure
oxygen atmosphere. This step can be repeated to obtain a
thicker oxide. After the oxidation, evaporation is continued
with 35 nm of Al and followed by 15 nm of AuPd.

3. Semiconducting carbon nanotubes in the
few-charge regime

We focus on the regime of a few charge carriers (electrons
or holes) in clean semiconducting nanotubes. High-purity
carbon nanotubes (HiPco [15]) are used, which are deposited
with low density on a doped Si substrate (serving as a back
gate) that has an insulating SiO2 top layer [16, 17]. Individual
nanotubes are electrically contacted with source and drain
electrodes (thickness 50 nm Au on 5 nm Cr). We then
suspend the nanotubes by etching away part of the SiO2

surface [17]. We generally find that removing the nearby oxide
reduces the amount of potential fluctuations (i.e. disorder) in
the nanotubes, as deduced from transport characteristics.

We focus on a particular semiconducting device that
shows regular single QD behaviour for both few-hole and
few-electron doping. The distance between the electrodes in
this device is 270 nm (inset in figure 4(a)). The dependence
of the linear conductance on gate voltage shown in figure 4(a)
is typical for semiconducting p- and n-type behaviour [18].
The conductance in the n-type region is lower than that in
the p-type, as usually observed in ambipolar nanotube FETs
[18, 19]. A low-temperature measurement around zero
gate voltage (figure 4(b)) shows a large zero-current gap of
about 300 meV in bias voltage, reflecting the semiconducting
character of this nanotube. The zigzag pattern outside
the semiconducting gap is due to Coulomb blockade [20].
These Coulomb blockade features are more evident in
figure 4(c), where a high-resolution measurement of the
differential conductance shows the semiconducting gap with
the first two adjacent Coulomb blockade diamonds.

The identification of the Coulomb diamonds for the
first electron and first hole allows for an unambiguous
determination of the particle number as we continue to fill
the QD by further changing the gate voltage. Figure 5(a)
shows the filling of holes, one by one, up to 20 holes. The
region for the first two holes is enlarged in figure 5(b). The
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Figure 4. (a) Linear conductance, G, as a function of gate voltage,
VG, at a temperature T ∼ 150 K showing the p- and n-conducting
regions separated by the semiconducting gap. Inset: atomic force
microscope image of the device before suspension (scale bar:
200 nm). (b) Large-scale plot of the current (in the light regions the
current is blocked) versus both V and VG at T = 4 K. (c) High-
resolution measurement of the differential conductance as a function
of V and VG in the central region of (b) at 0.3 K. Between
VG ∼ −250 and 650 mV, the nanotube QD is depleted entirely of
mobile charge carriers. As VG increases (decreases), one electron
(hole) enters the dot as indicated in the right (left) Coulomb
diamond.

regularity in the Coulomb diamonds indicates a nanotube that
is free of disorder. A closer inspection shows that the size
of the Coulomb diamonds varies periodically on a smooth
background as the hole number increases (figure 5(c)). The
alternating, even–odd pattern in this addition energy, Eadd,
reflects the subsequent filling of discrete orbital states with
two holes of opposite spin [20]. These features are explained
in more detail below.

We first focus on the additional discrete lines outside
the Coulomb diamonds running parallel to its edges, as for
instance indicated by arrows in figure 5(b). Whereas the
upper-left edge of the N-hole diamond reflects the ground
state energy of the (N + 1)th hole, the extra lines located at
higher voltages, V , represent the discrete excitation spectrum
for (N + 1) holes [20]. The spacing in V directly measures the
energy separation between the excitations.

The ambipolar character of the devices allows us to
compare the excitation spectra for a particular hole (h) number
with the same electron (e) number. The left and right columns
in figure 6 show the spectra for, respectively, holes and
electrons. The upper row compares the spectra for 1h and 1e.
The arrows in figure 6(a) point at the first three excited states
for a single hole. (Note that only lines with positive slopes
are observed because of asymmetric tunnel barriers [20].) The
arrows in figure 6(b) indicate the corresponding first three
excitations for a single electron. Remarkably, we have simply
mirror-imaged the arrows from the hole to the electron side
without any adjustment of their spacing. We thus find that the
1h and 1e excitations occur at the same energy. Since one-
particle systems are free from particle–particle interactions,
this symmetry implies that the confinement potential for
electrons is the same as for holes.

Electron–hole symmetry also survives interactions as
demonstrated in the lower rows in figure 6. Again the arrows
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Figure 5. (a) Two-dimensional colour plot of the differential conductance, dI/dV , versus V and negative VG at T = 4 K (black is zero,
white is 3 µS). In the black diamond-shaped regions, the number of holes is fixed by the Coulomb blockade. (b) Zoom-in taken at 0.3 K of
the region with 0, 1 and 2 holes (white represents dI/dV > 10 nS). Lines outside the diamonds running parallel to the edges correspond to
discrete energy excitations (the black arrow points at the one-electron ground state and the light (red) arrows at the one-electron excited
states). (c) Addition energy, Eadd, as a function of hole number. Eadd is deduced from the diamond size for positive and negative V . Inset:
the capacitances CS (green), CD (blue) and CG (black) versus hole number. (d) Calculation of the addition energy spectrum for a
semiconducting nanotube (as an example we have taken a zigzag (35, 0), with Egap ∼ 259 meV, meff = 0.037me) for a harmonic potential
(top) and a hard-wall potential (bottom). The parameters for the harmonic potential are V (x = 135 nm) = Egap/2. (e) Zeeman splitting
energy, EZ, versus magnetic field, B, for the one-hole orbital states. Inset: g-factor as a function of hole number.
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Figure 6. Excitation spectra for different electron and hole numbers
demonstrating electron–hole symmetry. dI/dV is plotted versus
(V , VG) at T = 0.3 K. (a) The transition from the 0 to 1h Coulomb
diamonds. (b) Corresponding transition from 0 to 1e. The white
dotted lines in (b) are guides to the eye to indicate the diamond edge
(not visible for this choice of contrast). (c) and (d) Same for 1–2h
and 1–2e. (e) and (f ) Low-bias zoom-in of the 1–2h and 1–2e
crossings.

pointing at the hole excitations have simply been mirror-
imaged to the electron side. Thus, we find that the spectra
for 2h and 2e and for 3h and 3e (not shown here) show
virtually perfect electron–hole symmetry in the excitation
spectra. From a closer look, one can see that also the

relative intensities of the excitation lines display electron–hole
symmetry.

The quality of our data allows for a quantitative analysis.
The addition energy is defined as the change in electrochemical
potential when adding the (N + 1) charge to a QD already
containing N charges. The constant-interaction (CI) model
[20] gives Eadd = U + δE, where U = e2/C is the charging
energy (C = CS + CD + CG) and δE is the orbital energy
difference between N + 1 and N particles on the QD. In the
case of a semiconductor QD, the addition energy for adding
the first electron to the conduction band equals U + Egap.
From the observed gap size of 300 meV and U ∼ 50 meV, we
determine the semiconducting gap Egap ∼ 250 meV, which
corresponds to a nanotube diameter of 2.7 nm [21]. AFM
measurements, that usually underestimate the real height [22],
indicate an apparent tube height of 1.7 ± 0.5 nm.

Since two electrons with opposite spin can occupy a single
orbital state, the CI model predicts an alternating value for
Eadd, where Eadd = U for N = odd and Eadd = U + δE for
N = even. We indeed observe such an even–odd alternation in
figure 5(c) with δE ∼ 4.3 meV throughout the entire range of
N = 1 to N = 30. Measurements of the Zeeman spin splitting
in a magnetic field [23] confirm our assignment of even–odd
particle number: lines corresponding to ground states for odd
N split (i.e. total spin = 1/2), whereas even-N lines do not
split (i.e. total spin = 0). The data in the lower inset of
figure 5(c) yield a g-factor, g = 1.0 ± 0.2, which is a factor of
2 lower than that reported in metallic nanotubes [3, 24]. Lower
g-factors are usually due to spin–orbit coupling, but this effect
is small for carbon. It may hint at strong electron–electron
interactions in the 1D QD.

The addition energy spectrum indicates that δE ≈
4.3 meV for consecutive states as we fill the QD with holes.
Previous spectra from metallic nanotubes have been analysed
by considering a hard-wall potential in the nanotube, with an
effective mass determined by the band structure. Our data
show that this approach is not justified for semiconducting
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Figure 7. (a) Current as a function of V and VG at T = 300 mK. Current ranges from −40 nA to +40 nA. (b) Values of the parameters for
three different groups of four. In the inset, the low-energy band structure of a metallic SWNT is shown. For a finite-length SWNT, the wave
vector k is quantized along the tube axis which leads to a set of quantized energy levels separated by � in each band. δ is the mismatch
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have been used to deduce the model parameters. The predicted excitations are indicated by (yellow) arrows. (d) Calculated spectrum. The
stars correspond to the arrows in (c). The white diagrams indicate the spin filling of the ground state.

nanotubes. Lack of effective screening in 1D and the low
number of mobile charges yield a gradual potential decay
from the contacts [25]. We have computed the addition
energy spectrum for a semiconducting nanotube whose gap is
∼250 meV for two situations (figure 5(d)): hard-wall and
harmonic potentials of height Egap/2 at the contacts [25]. For
hard walls, the level spacing increases slowly up to ∼1.9 meV
for N = 34. In the case of a harmonic potential, the
level spacing is constant, as in the experiment, and equals
2.7 meV, in reasonable agreement with the experimental value
of ∼4.3 meV.

On the top of the predicted even–odd pattern, there
is a monotonic decrease of the average charging energy
with N, implying that the total capacitance is changing. We
have performed a detailed analysis of the QD electrostatics
following [26]. The result is given in the top-right inset of
figure 5(c). It shows that the change in C is mainly due to
an increase in CS and CD. This increase can be assigned
to a decrease of the tunnel barrier widths as |VG| increases,
consistent with the simultaneous decrease of dI/dV in
figure 5(b). Indeed, dI/dV varies from 5 G� in the first
Coulomb peak to 400 k� at large negative VG.

The observation of electron–hole symmetry imposes
severe restrictions on the QD system: the effective masses
for holes and electrons should be equal and the QD should be
free of disorder. Scattering by negatively charged impurities,
for example, is repulsive for electrons but attractive for holes,
so it would break electron–hole symmetry. A symmetric band
structure has been theoretically predicted for graphite materials
and carbon nanotubes [21].

A detailed analysis of the excitation spectrum requires
calculations that are beyond the constant-interaction model.
The change in orbital energy when adding a charge is
unambiguously given by �E ∼ 4.3 meV, seemingly
independent of N. Excitations of a smaller energy scale have

to be related to interactions. The likely interactions in
semiconducting nanotubes are the following. (1) Exchange
interaction between spins (e.g. spin = 1 triplet states gain
energy from the exchange interaction). Note that we observe
an even–odd pattern, which seems to exclude ground states
with spins >1/2. Excited states, however, can have spins
>1/2. (2) Electron–phonon interactions. The vibrational
modes in a suspended nanotube also have a discrete spectrum,
which can show up in the excitation spectra [27]. Note that
vibrational modes do not affect the addition spectrum of the
ground states. (3) Electron–electron interactions. The value
for the interaction strength parameter U/�E ∼ 10. Such
a large U/�E ratio points to the presence of phenomena
that are not captured by the CI model. Luttinger liquid
models developed for finite-length metallic nanotubes are not
applicable to our few-particle nanotubes. A more appropriate
starting point is the exact calculations for 1D QDs. In
the few-particle regime, the charge carriers tend to localize
and maximize their separation, thereby forming a Wigner
crystal [28]. In such a Wigner state, the spectrum consists
of both high-energy single-particle excitations and collective
excitations at low energy [29], similar to our experiment.

4. Excitation spectrum and shell filling in metallic
carbon nanotubes

The two-fold degenerate, low-energy band structure of a
metallic SWNT is schematically shown in the inset of
figure 7(b). Quantization along the nanotube axis leads to
a set of single-particle states that are equally spaced because
of the linear energy dispersion relation [21]. The combination
of the two bands and the spin yields a four-fold periodicity
in the electron addition energy. This four-fold periodicity
has been measured by different groups [30–34]. To describe
CNT QDs, the CI model has been extended [35] to include five
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independent parameters: the charging energy EC, the quantum
energy level separation �, the subband mismatch δ (see inset
in figure 7(b)), the exchange energy J and the excess Coulomb
energy dU (the excess interaction of two electrons occupying
the same level). The CNT QD has an energy gain of J when
two electrons have aligned spins compared to the situation
of two electrons having opposite spins. An independent
verification of this extended CI model [35] requires the
observation of the ground-state addition energies and of at least
two excited states. In this section, we investigate the excitation
spectrum of closed SWNT QDs. Not only the ground but also
the complete excited state spectrum of these QDs has been
measured by transport spectroscopy experiments, enabling us
to determine all five parameters independently. With these,
the remaining measured excitation energies are well predicted
leading to a complete understanding of the spectrum, without
adjustable parameters.

The device is made from a HiPco NT [15] with L =
180 nm and a diameter of 1.1 nm as determined by AFM.
It is contacted by evaporating Cr/Au (5/75 nm) electrodes.
Figure 7(a) shows the current, I, as a function of source–drain
bias voltage, V , and gate voltage, VG. In the light-coloured
diamond-shaped regions, the current is blocked due to CB
and the number of electrons is fixed. The clear four-fold
periodicity makes it possible to assign the number of electrons
in the last occupied shell. The sizes of the diamonds form
an interesting pattern, namely a repetition of small medium
small big. This pattern is a consequence of the large subband
mismatch compared to the exchange energy, as we discuss
below. The addition energy is obtained by multiplying the
diamond width, �VG, by a conversion factor, α (≈0.017),
which relates the gate voltage scale to the electrochemical
potential [26].

The Oreg et al model [35] yields the following equations
for the addition energy of the Nth electron added1:

�µ1 = �µ3 = EC + dU + J, (1)

�µ2 = EC + δ − dU, (2)

�µ4 = EC + � − δ − dU. (3)

To extract all five parameters, two more equations are
needed. These are provided by the excitation spectrum. In
figure 7(c), we show the numerical derivative of figure 7(a)
(i.e., the differential conductance) for the first group of four.
Excited states of the electrons are visible for all diamonds.
The value of a particular excitation energy equals the bias
voltage at the intersection between the excitation line and the
Coulomb diamond edge (see figure 7(c)). The dotted (white)
arrows in diamonds 1 and 2 in figure 7(c) correspond to the
first excitation for one and two electrons extra on the CNT QD,
respectively. The theoretical values of these two energies are

�µex
1 = δ, (4)

�µex
2 = δ − J − dU. (5)

Equations (1)–(5) allow us to uniquely determine the five
unknown parameters from the experimental data alone. We
find EC = 4.3 meV, � = 9.0 meV, δ = 3.2 meV, J = 0.4 meV
and dU ≈ 0 meV. The values of the parameters do not vary

1 This set of equations corresponds to a singlet ground state for N = 2. The
triplet case is incompatible with the experimental data.
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by (red and blue) dotted (solid) lines. Only the orbital splitting of
the energy levels is shown in this figure. (b) Linear conductance, G,
versus gate voltage, VG, taken at T = 8 K. Inset: device scheme.

significantly between the different groups of 4, as shown in
figure 7(b). The theoretically expected value for the level
spacing is � = hvF/2L [3]. With vF = 8.1 × 105 m s−1

[36] and L = 180 nm (the CNT length between the contacts),
we find 9.3 meV in excellent agreement with the experimental
value.

Figure 7(d) shows the calculated spectrum of the NT
QD using the parameters deduced from the experiment. Some
excitations are split by the exchange energy. The stars in
the calculated spectrum correspond to the arrows in the
experimental data. The excitations denoted with ‘x’ were used
for obtaining the parameters and correspond to the dashed
arrows in figure 7(c). The calculated spectrum resembles
the measured one strikingly well. Although the results in
this section have been obtained in a HiPCO tube, four-fold
shell filling is also commonly observed in our CVD grown
nanotubes.

5. Magnetic field dependence of carbon nanotube
quantum dot excitations exhibiting a four-fold
shell structure

In this section, we describe magnetic field dependent electronic
transport spectroscopy measurements on CNT QDs exhibiting
a four-fold shell structure. We show that (i) each shell
consists of two orbitals with opposite magnetic moment, (ii)
the splitting of the orbital states with B accounts for all the
observed transitions in the spin and orbital configuration of
the CNT QD, (iii) a weak coupling exists between orbitals
with opposite magnetic moment resulting in level repulsion
at B = 0, and (iv) Zeeman and orbital contributions to the
electron magnetic moment can be distinguished by inelastic
co-tunnelling spectroscopy.
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Ajiki and Ando [37] predicted that the orbital degeneracy
should be lifted by a magnetic field parallel to the CNT axis
(figure 8(a)). This effect can be understood by noting that,
due to clockwise and anti-clockwise motion around the tube,
electrons in degenerate ‘+’ and ‘−’ subbands should have
opposite orbital magnetic moments, µorb. In the case of finite-
length CNTs, a discrete energy spectrum is expected from
size quantization. The level spectrum of a CNT QD can then
be described as two sets of spin-degenerate levels, E

(n)
+ and

E
(n)
− , where n = 1, 2, 3, . . . is the quantum number in the

longitudinal direction (see figure 8(a)). In the absence of inter-
subband mixing, E(n)

+ = E
(n)
− at B = 0, a four-fold degenerate

shell structure is expected for every n. Below we show that a
finite coupling can exist, resulting in a small orbital splitting
even at B = 0.

The four-fold shell filling emerges in a measurement of
the linear conductance, G, versus gate voltage, VG. This is
shown in figure 8(b) for a QD device fabricated from a metallic
nanotube with a small band gap2 [38]. G exhibits Coulomb
blockade oscillations [26, 20] corresponding to the filling of
the ‘valence’ band of the CNT. From left to right, electrons are
consecutively added to the last three electronic shells, n = 3,
2 and 1, respectively. The shell structure is apparent from the
VG spacing between the Coulomb oscillations. The addition
of an electron to a higher shell requires an extra energy cost
corresponding to the energy spacing between shells. This
translates into a larger width of the Coulomb valley associated
with a full shell3. The first group of four Coulomb peaks on
the left-hand side of figure 8(b) (n = 3) is strongly overlapped
due to a large tunnel coupling to the leads and the Kondo effect
[8]. The coupling decreases with VG and becomes very small
near the band gap, which lies just beyond the right-hand side of
the VG range shown. Due to this small coupling, the Coulomb
peaks associated with the last two electrons in n = 1 are not
visible (see figure 9(b)).

The shell structure breaks up at finite B (figure 9(a)),
which shows gate traces as a function of magnetic field.
Peaks in the conductance appear white. In each group of
four Coulomb peaks, the first (last) two peaks shift towards
lower (higher) VG. This behaviour demonstrates the strong
B-dependence of the orbital levels described in figure 8(a).
The magnetic field shifts the ‘−’ orbital levels down in energy,
while the ‘+’ orbitals are shifted up due to their opposite µorb.
Consequently, the addition of the first (last) two electrons to a
shell results in a pair of Coulomb peaks shifting towards lower
(higher) VG. For each shell, µorb can be extracted from the
shift, �VG(n), in the position of the corresponding Coulomb
peaks. Neglecting the Zeeman splitting, we use the relation
eα�VG(n) = |µorb(n) cos ϕ�B|, where �B is the change
in B, ϕ is the angle between the nanotube and B, and α is
the capacitance ratio extracted from nonlinear measurements.
The values obtained (0.90, 0.80 and 0.88 meV T−1 for n = 1,
2 and 3, respectively) are an order of magnitude larger than the
electron spin magnetic moment (1/2gµB = 0.058 meV T−1

2 This band gap can be due to perturbations such as curvature or strain. The
measured value of the band gap is ∼30 meV.
3 From measurements in the nonlinear regime (not shown), we estimate
�1,2 ∼ 3 meV and �2,3 ∼ 5 meV, where �n,n+1 ≡ E

(n)
+ − E

(n+1)
+ =

E
(n)
− − E

(n+1)
− . The Coulomb charging energy is U ∼ 5 meV.
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Figure 9. G versus B on a colour scale at T = 0.34 K for the VG

range shown in figure 8(b). Red, white and blue indicate high,
intermediate and low G, respectively. The conductance range is 0
(dark blue) to 3e2/h (dark red). (b) Zoom-in of (a). Here G ranges
from 0 (dark blue) to 2e2/h (dark red). The green dashed lines
highlight the evolution of the Coulomb peaks with B. They are
labelled as AA′, BB′, . . . , FF′. These divide the plot into different
Coulomb blockade regions indicated by the number of electrons in
the last two shells (white numbers 0 to VI). The high-G regions
(indicated by yellow dashed lines) in between Coulomb peaks are
due to the Kondo effect. Numbers (orange) indicate the spin in each
region. On the right-hand side, G is multiplied by 20, so that the
triplet–singlet transition is clearly seen along F1G1.

for g = 2) and in good agreement with an estimate of µorb

based on the nanotube diameter4.
The strong B-dependence of the orbital states induces

changes in the orbital and spin configuration of the QD similar
to previous findings in semiconducting QDs [39]. These are
reflected as kinks in the evolution of the Coulomb peaks with
B (figure 9(b)). Remarkably, a fully consistent description
of the B-dependent energy spectrum and the ground-state
spin/orbital configuration can be obtained through a careful
analysis of all the kinks in figure 9(b) [40].

Note that kinks in figure 9(b) are connected by
conductance ridges crossing the Coulomb valleys. The
enhancement of G at these ridges is due to Kondo effects of
different origins. At B1C1, D1E1 and F1G1, the Kondo effect
arises from singlet–triplet degeneracy [41]. At AB, CD and
EF, an enhanced Kondo effect is observed in relation to orbital
degeneracy [8]. The Kondo ridges at C2D2 and E2F2 are due
to the recovery of orbital degeneracy between E

(2)
− and E

(1)
+

[8]. Note that, as a result of electron–hole symmetry, region
III (three electrons in shell n = 2) and region V (one electron
in shell n = 1) have a certain degree of mirror symmetry, both
in terms of the slope of the Coulomb peaks’ evolution with B
and the Kondo ridges.

The data shown so far have been explained in terms of a
B-induced splitting of orbital degeneracy, as if the two orbital
states of every shell were degenerate at B = 0. A small zero-
field orbital splitting, however, may exist and it may be masked
by the Kondo effect at AB, CD and EF. In order to investigate
this possibility, we considered a different device, which has
a much smaller coupling to the leads and hence a much
weaker Kondo effect. This device also exhibits a four-fold

4 From the value for n = 1, we extract a nanotube diameter D = 4µorb/evF =
4.5 nm, in agreement with the measured diameter of 4.0 ± 0.5 nm as
determined by atomic force microscopy. For this device, ϕ = 37◦.
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Figure 10. (a) Colour plot of the differential conductance, dI/dV ,
versus bias, V , and B, measured in the centre of the Coulomb
diamond (see (c)) at T = 30 mK. The (yellow) dashed lines indicate
the traces shown in the top and bottom insets. Insets: (top) dI/dV
trace taken at B = 80 mT, showing the onset of inter-orbital IC and
a small zero bias peak due to ordinary spin-1/2 Kondo effect. The
vertical axis scale spans from 0.02 to 0.08 e2/h; (bottom) same as
the top inset, but at B = 0.7 T, showing the six IC steps.
(b) Numerical derivative of the dI/dV plot in (a). The two inner
lines result from Zeeman splitting of the Kondo peak at B = 0. The
outer lines represent the B-evolution of the spin-split orbital levels.
(c) dI/dV versus V and VG, for a single electron in a shell at
B = 80 mT. (d) Calculated B-dependence of the IC spectrum for a
single electron in a spin-degenerate level for two coupled orbitals.
Red (blue) lines indicate upwards (downwards) steps in dI/dV with
increasing V .

periodicity in the Coulomb peaks’ pattern. Figure 10(c) shows
a Coulomb diamond corresponding to one electron in a shell at
B = 80 mT. Inside the diamond, single-electron tunnelling is
suppressed and transport occurs via higher order co-tunnelling
processes. A sharp increase in the differential conductance,
dI/dV , is observed at a bias |V | = Vin ∼ 190 µV, denoting
the onset of inelastic co-tunnelling (IC) [26, 42, 43]. The IC
transition takes place between the two spin-degenerate orbital
levels of the same shell (see the discussion below), thereby
indicating the existence of a finite splitting at B = 0. Before
discussing the B-dependence of the IC edges, we note that
a weak Kondo peak is also present at V = 0 (top inset in
figure 10(a)). This Kondo effect arises from the single-electron
occupancy of the spin-degenerate orbital ground state.

At finite B, both the Kondo peak and the IC edges split
due to Zeeman spin splitting. This is shown in figure 10(a),
where dI/dV is plotted versus (V , B) for VG at the centre of
the Coulomb diamond. In order to identify the dI/dV steps
more clearly, figure 10(b) shows the numerical derivative of the
dI/dV plot in figure 10(a) (i.e. d2I/dV 2 versus V and B). IC
steps in figure 10(a) turn into peaks (V > 0) or dips (V < 0)

in figure 10(b). The zero-bias Kondo peak evolves into two
dI/dV steps at V = gµBB/e (g = 2). These correspond
to IC processes in which the spin state of the QD is flipped,
i.e. from |−,↑〉 (ground state) to |−,↓〉 (excited state). Each
of the two dI/dV steps associated with inter-orbital IC splits
by gµBB/e and they move further apart due the increasing
orbital splitting, 2µorbB cos ϕ (ϕ = 33◦), as illustrated

in figure 10((d)). We estimate 2µorb ∼ 350 µeV T−1,
i.e. ∼3 times the Zeeman splitting. The six steps (‘Zeeman’,
‘orbital’ and ‘orbital + Zeeman’) can be seen in the bottom
inset of figure 10(a). An important consequence of the angular
dependence of the orbital splitting is that researchers have now
two ‘semi-independent’ knobs to control the energy spectrum
of CNT QDs (B controls the Zeeman splitting and the angle
nanotube–B controls the orbital splitting).

The evolution of the outer IC peaks is nonlinear at
low B, indicating an anti-crossing between the ‘+’ and ‘−’
orbital levels. Such an IC spectrum can be readily modelled
using a Hamiltonian that includes an inter-orbital coupling
besides orbital and Zeeman terms. The corresponding energy
eigenstates are E = ±

√
(δ/2)2 + (µorbB cos ϕ)2 ± 1/2gµBB

(the four possible sign combinations). The IC spectrum
calculated with this simple model (figure 10(d)) clearly
accounts for the experimental data. The nonlinear evolution
of the orbital splitting with B constitutes direct evidence that
the so-called subband level mismatch, usually denoted by δ

[30–35], is due to a small, but finite, quantum-mechanical
coupling between the two orbital subbands in carbon
nanotubes.

6. Excitations in suspended carbon nanotube
quantum dots

So far, we have considered excitations arising from the
electronic structure of the NT. In this section, we investigate
suspended CNT QDs to probe the effect of vibrations on
electron transport. We have performed low-temperature
electronic transport spectroscopy measurements on suspended
single-wall NTs of different lengths [44]; here we focus on
a single device. In figure 11(a), we show a stability diagram
[20, 26] for a suspended NT sample, with a length of 1.2
µm and a diameter of about 1 nm, measured at 10 mK.
The differential conductance, dI/dV , is plotted as a function
of bias and gate voltages. In the diamond-shaped regions
(Coulomb diamonds), the current is blocked due to the
Coulomb blockade and the charge number in the dot is fixed.
Regular and closing Coulomb diamonds indicate single dot
behaviour [20]. For the gate voltage range shown, single
dot behaviour is observed. The inset in figure 11(a), which
was taken at a higher temperature (300 mK) in a different
cool down, illustrates that the diamonds close. The low bias
current, however, is suppressed which could be a signature of
strong electron–phonon coupling [45–47].

As shown in section 3, electronic excitations in nanotubes
typically differ between adjacent charge states [24, 32]. In
figure 11(a), a dense set of equally spaced excitation lines
(starting from the first electronic excitation) is clearly visible
near VG = 210 mV and 230 mV, i.e., adjacent charge states
exhibit a similar set of excitations with approximately the same
energy spacing. The fact that excitations occur primarily in
one direction is due to asymmetric tunnel barriers [20]. The
energy difference between the excitation lines in figure 11(a)
is shown in figure 11(c). Clearly, the excitation energy is an
integer multiple of the first (fundamental) excitation. Thus,
they form a harmonic spectrum with up to five levels. A linear
fit yields an excitation energy of 140 µeV for this 1.2 µm long
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Figure 11. (a) Stability diagram for a suspended nanotube with
1.2 µm length and a diameter of about 1 nm. The conductance
(dI/dV ) is plotted as a function of source–drain voltage, V , and
gate voltage, VG. The range is from low to high conductance (blue to
red). Measurement has been done at T = 10 mK base temperature.
In the inset, a measurement performed at 300 mK temperature with
regular closing Coulomb diamonds is shown to illustrate that we
have single quantum dot behaviour for the shown gate voltage
range. In the main figure, a strong suppression of the conductance
for low bias is present. We furthermore observe a closely spaced set
of lines running parallel to the Coulomb diamond edges for two
charge states. These lines are excitations of the quantum dot. (b)
The current–voltage characteristic taken along the (green) line in
(a). The (red) lines represent the step heights calculated in the
Franck–Condon model (see the text) for an electron–phonon
coupling of 0.95. The calculated step heights follow the measured
steps well. (c) The energy separation between the excitation lines is
plotted. Clearly, the separation is equidistant and thus we have a
harmonic spectrum. The slope of the linear fit is 140 µeV.

nanotube. This value is an order of magnitude smaller than
the mean electronic level spacing given by � = hvF/2L.

The observed harmonic spectra indicate the presence
of a vibrational mode coupled to electron tunnelling [27].
Multiple steps with identical spacing would then arise from the
excitation of an integer number of vibrational quanta. Indeed,
the observed equidistant energy separation is consistent with
that expected from the longitudinal stretching mode in the
nanotubes. In figure 12, we plot the energy of important low-
energy vibrational modes of single-wall nanotubes [50–52].
For comparison, we plot the mean electronic energy level
separation, �, in black. Squares (blue) correspond to the
fundamental vibrational excitation energy extracted from the
linear fit in figure 11(c) and for two other devices [44].
The energy of the radial breathing mode (green) does not
depend on the nanotube length and equals 28 meV/d (nm)
[50]. The bending mode (red) has a L−2 dependence [53]
and an energy much smaller than the measured excitation
energy. The stretching mode vibration energy (blue) is
inversely proportional to the length [54], E = (nh/L)

√
Y/ρm,

where Y is Young’s modulus, ρm is the density and n is
the vibrational quantum number. For nanotubes with ρm =
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Figure 12. Energy scales of different vibrations and electronic
excitations plotted on a log scale for a nanotube with 1.4 nm
diameter. The radial breathing mode (green) does not depend on the
length L. The bending mode vibrations (red) have a L−2

dependence. The mean electronic level spacing (black) and the
stretching mode (blue) vibrations depend inversely on the length.
The symbols are excitation energy values obtained for suspended
NTs with different lengths.

1.3 g cm−3, Y = 1 TPa, the vibrational energy corresponding
to the fundamental mode is ∼110 µeV/L (µm).5 As figure 12
shows, the data are in good agreement with these predicted
values.

The coupling of electronic levels with vibrational modes
(quantum harmonic oscillators) can be described in terms of
the Franck–Condon model [55]. According to the Franck–
Condon principle, an electron in an electronic transition
moves so fast that the nuclear positions are virtually the same
immediately before and after the transition. As a consequence,
the transition rate is proportional to the Franck–Condon factors
defined as the square of the overlap integral between the
vibrational wavefunctions of the two states involved. An
important parameter is the electron–phonon coupling factor,
g = 1

2

(
x
x0

)2
. This is the ratio of the classical displacement

length, x, to the quantum-mechanical oscillator length, x0 =√
h̄/mω0.

For low damping, the vibrational levels remain sharp
and the Franck–Condon model predicts steps in the current–
voltage characteristics, that are equally spaced in energy
(bias voltage). In the presence of strong relaxation, the
normalized step heights are given by [45] Pn = e−ggn/n!.
In the strong coupling (g 
 1) limit, the height of the first
steps is exponentially suppressed (phonon blockade) [45–47].
Multiple steps only arise if g is of the order of 1 or larger and the
observation of a spectrum of equally spaced excitation lines
therefore indicates that the e–ph coupling in our suspended
nanotubes must be rather strong.

In figure 11(b), the red curve represents the step
heights (Pn) given by the Franck–Condon model with strong
relaxation discussed above. Considering the simplicity of the
model, reasonable agreement is obtained. The comparison
yields an estimate of g of 0.95. Similar values of g are found
for different samples with different lengths [44] indicating
that it is approximately length independent. The mechanism
behind this surprising high e–ph coupling is not understood
[44].

5 The twisting mode vibration of the nanotube has a comparable energy with
the stretching mode. However, the twisting mode does not couple [51].
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Figure 13. Differential conductance measured using a lock-in
amplifier as a function of the back-gate voltage with the top-gate
values such that they induce almost no barrier. Fabry–Perot-type
interferences are observed over a wide gate range. The inset shows a
zoom-in of the region in the white rectangle. Destructive
interferences at ±0.6 meV are clearly identified (see arrows). The
high conductance (up to G = 3.1e2/h) shows that the Pd contacts
have a transmission close to T = 1.

7. Excited states in carbon nanotube double
quantum dots

Double quantum dots (DQDs) are interesting systems [56]
and have gained renewed interest for the possibility of
realizing solid-state quantum bits [48]. Here we present low-
temperature measurements in a fully tunable CNT DQD. A
new fabrication technique has been used for the top gates
(TGs) in order to avoid covering the whole nanotube with an
oxide layer. The TGs allow us to form single dots and control
the coupling between them [49]. We observe four-fold shell
filling and excited states in the DQD, a necessary step for
determining the spin and orbital relaxation times.

In order to realize CNT DQDs (figure 3), it is desirable to
create tuneable tunnel barriers at arbitrary locations in a CNT,
and some elementary devices have already been demonstrated
[57–60]. In order to make use of a CNT DQD in quantum
information processing access to (spin) excited states is crucial.
Narrow top gates are evaporated such that only a small portion
of the CNT is covered with oxide. We show electronic
transport through the ground and excited energy states of CNT
DQDs.

We have fabricated several devices which we can operate
in both the p-doped and n-doped regions. Only one sample
will be considered here. At low temperatures (300 mK),
we observe the highest conductance when applying negative
voltages to the top gates and operate the device in this hole-
transport regime. Figure 13 shows a differential conductance
plot as a function of source–drain and back-gate voltages.
The highly doped silicon substrate is used as the back gate
and changes the electrochemical potential of the nanotube
uniformly. Note that the average conductance is between two
and three times e2/h (the measured maximum is 3.14e2/h).
The pattern in figure 13 is due to interference of the charge
carriers in the nanotube (Fabry–Perot interference), which has
been studied in nanotubes [6]. The pattern here is less regular.
The bias voltage at the crossing point, VC, between adjacent
left- and right-sloping dark lines (see white arrows) depends
on the length of the nanotube L as hvF/2e = LVC. The first
intersection occurs around VC ∼ 0.5–0.6 meV, corresponding
to a length of about 3 µm. This suggests that the electron
scattering occurs primarily at the nanotube–Pd interfaces,
which are about 2 µm apart, since the extracted length is
much larger than the top-gate spacing (∼500 nm).

(N,M+1)(N,M)

(N+4,M+1)

(a) (b)

Figure 14. (a) Characteristic honeycomb pattern for the CNT DQD
system in the strongly coupled regime when measured as a function
of the two side gates for 1 mV bias voltage. The four-fold shell
filling of the left dot is clearly visible, from which we can identify
the filled shells when the charge number is N,N + 4, etc.
(b) Honeycomb structure of the current for the DQD in the weakly
coupled regime. Triple points with excited states are visible
(bias 5 mV).

By applying positive voltages to the top gates, we form
barriers in the p-type region and can form single dots on both
the left and right CNT segments individually (see figure 3).
The energy level spacing, �, we extract corresponds to the
length of the CNT between top gates [49].

Figure 14(a) shows the characteristic ‘honeycomb’
structure of the current through a DQD [56] in the strongly
coupled regime. Here, the two dots are not completely
separated but interact via tunnel coupling, thus forming the
analogue of a molecule with covalent bonding. The co-
tunnelling lines of the hexagonal pattern are visible and exhibit
four-fold shell filling for the left dot: a large hexagon is
followed by three small ones in the vertical direction of the
left side gate. This pattern repeats for every electron number
in the right dot. In figure 14(b), we show the double dot in the
weakly coupled regime, i.e. the inter-dot tunnel resistance is
high and the capacitive coupling between the dots dominates
the transport behaviour. The triple points of the expected
hexagon pattern are clearly visible and, due to the large bias,
develop into overlapping triangles [56]. Excited states are
observed at every triple point.

A high-resolution measurement of a pair of triple points
(electron and hole cycles) [56] is shown in figure 15 for
VSD = 4 mV. At the baseline of the triangle, the ground states
of the two dots are aligned and shifted together from the Fermi
level of the drain (point a in figure 15) to the Fermi level of
the source (point b). At the centre of the baseline, they lie
exactly in the middle between source and drain. On a line
from this point to the tip of the triangle (point c), the states
of the right dot are shifted downwards to the Fermi level of
the source, while the states of the left dot shift upwards to the
drain (a positive bias is applied at the source contact, while
the drain contact is put to ground). Along this line, we see
sharp excitations at 0.33, 1.24, 1.55 and 1.8 meV (see inset in
figure 15). These lines belong to different excited states of the
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Figure 15. Current versus side-gate voltages for a typical example
of a triple point pair at high bias (VSD = 4 mV) in the p-doped
region (hole transport). The ground-state tunnelling is weaker than
tunnelling through excited states. Lines parallel to the base (point a
to point b) of a triangle belong to tunnelling through excited states
of the left dot, while the right dot excited states show up parallel to
the upper-right side of the triangle (the first one enters the bias
window at point (*)). The inset shows a line cut from the centre of
the base of the upper triangle to the triangle tip (black line from
point d to point c), i.e., current as a function of the detuning between
levels. The level schemes of the double dot corresponding to the
points a–f depicted in the triangle are shown on the right-hand side
of the figure. Light (orange) lines represent the ground states and
dark (blue) lines the hole-excited states (the measurement is done in
the p-doped region). The dashed lines belong to the next excited
states corresponding to (**).

left dot which are probed by states of the right dot. An area of
non-resonant current spreads between 2 and 2.8 meV.

In the following, we give a possible scenario for the
resonant transport. Afterwards, we discuss the non-resonant
current. On the right-hand side of the triangles of both triple
points, there appears to be a region of strongly suppressed
current. This feature could be explained by bad coupling of
the ground state of the right dot to the source. As the levels
of the dots move upwards with lowering side-gate voltages, at
point (*) the first hole-excited state of the right dot enters the
bias window at ∼650 µeV. The coupling of this level to the
source contact is stronger, thus enhancing the current.

The lines parallel to the baseline of the triangle belong to
resonant transport through hole-excited states of the left dot.
Only the first of these excited states at ∼330 µeV is probed
by the ground state of the right dot (point e). At the other
lines, the excited state of the right dot at ∼650 µeV is aligned
with the excited states of the left dot (see point f as an
example). This could also explain the larger current through
these lines, as the excited states are probably better coupled to
the contacts. The energy splitting of the second excited state
(**) of the left dot to its ground state is 1.9 meV. This fits
well with the value for the level splitting we obtained from
the single dot measurement. The next two lines are separated
by 310 and ∼560 µeV with respect to the level (**) at �.

Like the first one at ∼330 µeV (point e), they are comparable
in size with the low energy splitting found in the single dot
measurement of the left QD.

Non-resonant transport can occur if an electron loses
energy due to spontaneous emission of an acoustic phonon
[61]. However, we do not observe the expected decay of the
current for one-dimensional acoustic phonons with detuning
of the DQD states. The non-resonant current between 2 meV
and 2.8 meV seems to have its origin rather in level broadening
of excited states at higher energy.

Electron–phonon coupling in a molecule such as a CNT
can show up as sharp resonance lines. These would be
equidistant with an energy difference that depends on the
diameter and length of the tube [44]. For a length of 2 µm,
an energy difference of Ephonon ∼ 55 µeV is expected for the
stretching mode [44]. If the size of the single QDs of ∼500 nm
determined the energy of the phonons, one would expect
Ephonon ∼ 440 µeV. None of these energy scales show up
in the lines inside the triangle. Thus, we conclude that the
lines inside the triangle are due to resonant transport through
electronic excitations.
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