
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2013

MSc THESIS

Measurement of Video Conferencing Libraries
using a Test Framework based on Profiling

Maulik Prabhudesai

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2013-18

Video Conferencing systems have become highly popular with the
explosion of bandwidth and computing power. This has made high
quality video conference possible on embedded hand held devices.
This has created an ecosystem of companies developing applications
which are powered by video conferencing libraries and a parallel
ecosystem of companies who make those video conferencing libraries.
An application developer has to design his system in a way that the
video conferencing library (which is the backbone of the applica-
tion) is efficiently integrated and is performing optimally. In order
to do that, the developer must be acutely aware of features such
as platform compatibility, resource usage, performance boundaries
and bottlenecks of the library in order to make an informed deci-
sion. Hence the developer needs a test-bench which can evaluate the
above mentioned features. This thesis mainly discusses the need to
arrive at one such test framework followed by the framework itself.
The framework designed in this thesis consists of a network emulator
which is combined with a popular network protocol analyser. It pro-
files the library and monitors variables essential to Quality of Service
(QoS) like bandwidth usage, frame rates, frame/packet sizes and au-
dio/video delay under varying network conditions. By observing the

change in these variables, the QoS offered by the library can be determined. This information can also be
extrapolated to understand the challenges in guaranteeing a minimum quality of experience (QoE).
This thesis applies the framework on one chosen library (Library 1) and Google Hangouts and discusses
the results. The performance of the library under varying network conditions (bandwidth, packet loss and
latency) is observed, enabling Presence Displays BV to extract information about how the library works.
Presence Displays BV is building a video conferencing enabled product and uses the framework discussed
in this thesis to analyse video conferencing libraries in order to build the application around it. It has been
observed that Library 1 favours video quality above other parameters and only compromises video quality
to accommodate more users participating in a call. Google Hangouts favour audio, motion content in the
video, interactivity and robustness over video quality. This information can be used to configure Library 1
in a way such that it delivers maximum QoE in the available resources.

Measurement of Video Conferencing Libraries
using a Test Framework based on Profiling

Requirement Specific Selection and Evaluation of Video

Conferencing Libraries

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Maulik Prabhudesai
born in Mumbai, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Measurement of Video Conferencing Libraries
using a Test Framework based on Profiling

by Maulik Prabhudesai

Abstract

V
ideo Conferencing systems have become highly popular with the explosion of bandwidth
and computing power. This has made high quality video conference possible on embedded
hand held devices. This has created an ecosystem of companies developing applications

which are powered by video conferencing libraries and a parallel ecosystem of companies who
make those video conferencing libraries. An application developer has to design his system in a
way that the video conferencing library (which is the backbone of the application) is efficiently
integrated and is performing optimally. In order to do that, the developer must be acutely
aware of features such as platform compatibility, resource usage, performance boundaries and
bottlenecks of the library in order to make an informed decision. Hence the developer needs a
test-bench which can evaluate the above mentioned features. This thesis mainly discusses the
need to arrive at one such test framework followed by the framework itself.

The framework designed in this thesis consists of a network emulator which is combined with
a popular network protocol analyser. It profiles the library and monitors variables essential to
Quality of Service (QoS) like bandwidth usage, frame rates, frame/packet sizes and audio/video
delay under varying network conditions. By observing the change in these variables, the QoS
offered by the library can be determined. This information can also be extrapolated to understand
the challenges in guaranteeing a minimum quality of experience (QoE).

This thesis applies the framework on one chosen library (Library 1) and Google Hangouts
and discusses the results. The performance of the library under varying network conditions
(bandwidth, packet loss and latency) is observed, enabling Presence Displays BV to extract in-
formation about how the library works. Presence Displays BV is building a video conferencing
enabled product and uses the framework discussed in this thesis to analyse video conferencing
libraries in order to build the application around it. It has been observed that Library 1 favours
video quality above other parameters and only compromises video quality to accommodate more
users participating in a call. Google Hangouts favour audio, motion content in the video, inter-
activity and robustness over video quality. This information can be used to configure Library 1
in a way such that it delivers maximum QoE in the available resources.

Laboratory : Computer Engineering
Codenumber : CE-MS-2013-18

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Advisor: Robbert Smit, Presence Displays BV

Chairperson: Koen Bertels, CE, TU Delft

i

Member: Arjan van Genderen, Assistant Professor CE, TU Delft

Member: Johan Pouwelse, Assistant Professor PDS, TU Delft

ii

This thesis is dedicated to the engineering and scientific community
with the hope that after reading this, they will recognise me as one

of their own.

iii

iv

Contents

List of Figures x

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Problem Statement . 1
1.2 Thesis goals . 2
1.3 Thesis Contributions . 2
1.4 Thesis organisation . 3

2 Video Conferencing Technology and Considerations 5
2.1 Introduction . 5
2.2 Video Conferencing Technology . 6
2.3 Video Conferencing Stack . 8

2.3.1 User Interface Layer . 8
2.3.2 Media . 8
2.3.3 Network Stack . 11
2.3.4 Session Management in Video Conferencing 17
2.3.5 A case study: WebRTC . 20

2.4 Topology . 21
2.4.1 Client-Server . 22
2.4.2 Peer-to-Peer . 23
2.4.3 Peer-to-Peer with Peer Contribution towards video distribution . . 24

2.5 Quality of Service . 27
2.5.1 Challenges to the QoS . 29

3 Problem Description, System Requirements and System Design 31
3.1 Concept . 31
3.2 User Requirements . 31

3.2.1 Login Scenario . 32
3.2.2 Group formation scenarios . 32
3.2.3 User shuts down/disconnects without warning Scenario 33

3.3 System Requirements . 33
3.3.1 Software System Requirements . 33
3.3.2 Video Conferencing Library Requirements 34
3.3.3 Hardware Requirements . 35

3.4 System Design . 36

v

3.4.1 Topologies . 36

3.4.2 System Architecture . 38

3.4.3 Server’s function in QoE management 42

3.4.4 Hardware Device . 43

3.5 Conclusion . 44

4 Overview of Video Conferencing Libraries 45

4.1 Introduction . 45

4.2 Criteria for Evaluation . 45

4.2.1 Quality of Experience . 46

4.2.2 Maturity . 46

4.2.3 Robustness . 46

4.2.4 Technical Support . 46

4.2.5 Android Compatibility . 46

4.2.6 Multi-User Video Conferencing . 47

4.2.7 Availability of Source Code/API 47

4.2.8 Price . 47

4.2.9 Intellectual Property . 47

4.2.10 Support for other functionalities 48

4.2.11 Summary . 48

4.3 Overview of Video Conferencing Libraries/Applications 49

4.4 Chosen Video Libraries for Implementation 52

4.5 Criteria for Quality of Experience . 53

4.5.1 Metrics affecting QoE . 55

5 Framework 59

5.1 Introduction . 59

5.2 Controlling Network Conditions . 59

5.2.1 Network Emulation . 62

5.3 Framework Structure and Capabilities . 62

5.3.1 Audio Video Delay . 62

5.3.2 Audio Video Synchronisation . 64

5.3.3 Identification of the Server and subsequent analysis 64

5.3.4 Packet Size, Frame Size and Frame Rate 65

5.3.5 Video Quality . 66

5.3.6 Bandwidth Usage of a Call . 67

5.4 Summary . 68

6 Experiments and Analysis 69

6.1 Pre-experimentation modification . 69

6.2 Configuration Experiment . 70

6.2.1 Details of each configuration . 70

6.2.2 Results . 71

6.3 Effect of Packet Loss and Packet Corruption 78

6.3.1 Effect of Packet Loss on Video with Motion 83

vi

6.3.2 Effect of Packet Corruption . 84
6.4 Effect of Network Latency . 86
6.5 Effect of Bandwidth Variation . 88

6.5.1 Full Bandwidth . 88
6.5.2 Performance in Low Bandwidth Conditions 92
6.5.3 Performance in Medium Bandwidth Conditions 93

6.6 Pre-Connection Results . 97

7 Conclusions and Evaluations 101
7.1 Congestion - The main challenge to QoS 101

7.1.1 How does each Library react to Packet Loss/Corruption ? 102
7.1.2 How does each Library react to Network Latency ? 102
7.1.3 How does each Library react to Bandwidth Constraints ? 103

7.2 Effect of Heterogeneity in Hardware . 104
7.3 Effect of Varying Call Sizes . 104
7.4 Summary . 104
7.5 Evaluations and Future Recommendations 105

Bibliography 111

vii

viii

List of Figures

2.1 A typical video conferencing system architecture based on WebRTC [10] 7

2.2 Real-Time Transport Protocol Stack . 11

2.3 An RTP Packet [3] . 12

2.4 RTP Usage and Congestion Control [89] 15

2.5 Model of the Skype video rate adaptation scheme 15

2.6 A video conference system at work [10] . 16

2.7 Session management layer within the OSI layer 18

2.8 SIP call flow diagram [57] . 19

2.9 H.323 Protocol Stack . 20

2.10 Client Server Architecture System Level Diagram 23

2.11 Architecture of a Peer-to-Peer Video Conferencing System 24

3.1 User Centric Software Design Stages . 32

3.2 Peer-to-Peer VC . 37

3.3 Each peer relays its own plus the video of another peer 38

3.4 Server Modules . 39

3.5 Client Modules . 39

3.6 Interaction between login modules . 41

3.7 User interaction with the software . 41

3.8 User interaction with the software . 42

3.9 Deployment Scenario with a Centralised Server 43

5.1 The test bench with devices connected to it 61

5.2 Measurement set up for end to end audio and video delay [90] 63

5.3 Header for Real-Time Protocol . 66

6.1 Bandwidth Usage vs. Number of Users (Device 1) 72

6.2 Frame Sizes vs. Number of Users - DUT 1 and 2 for 5 FPS 74

6.3 Frame Sizes vs. Number of Users - DUT 1 and 2 for 15 FPS 74

6.4 Frame Sizes for different configurations for a 2 user call 76

6.5 Number of packets per frame for a frame from DUT 2 77

6.6 CPU Usage for Device 1 for various call sizes 78

6.7 Traffic Rate vs. Packet Loss ratio without the effects of motion (Device 1) 81

6.8 Frame Sizes vs. Packet Loss ratio without the effects of motion (Device 1) 82

6.9 Frame Sizes vs. Packet Loss ratio without the effects of motion (Device 2) 83

6.10 Traffic Rate vs. Packet Corruption ratio without the effects of motion
(Device 2) . 85

6.11 Frame Sizes vs. Packet Corruption ratio without the effects of motion
(Device 1) . 85

6.12 Bandwidth Usage vs. Network Delay . 87

6.13 Frame Sizes vs. Network Delay . 87

ix

6.14 Source traffic rate Library 1 on DUT 1 and DUT 2 and of Google Hangouts
on DUT 1 . 89

6.15 Frame rate and Linearity of Library 1 on DUT 1 and DUT 2 and of Google
Hangouts on DUT 1 . 91

6.16 Frame Size and Average Frame Size of both the libraries when full Band-
width is available . 92

6.17 Video Source Rate of Google Hangout and Library 1 under different band-
width conditions . 94

6.18 Frame rates for Google Hangout under different bandwidth constraints . . 95
6.19 Frame sizes for Google Hangout under different bandwidth constraints . . 96
6.20 Increase in Frame Sizes accompanied by increase in RTT due to video

overdrive . 98
6.21 Login Process of Library 1 . 99

x

List of Tables

3.1 Google Nexus 10 . 44

4.1 Priority of Criteria and Evaluation Parameters 48
4.2 Evaluation of pre-selection parameters for Library 1 53
4.3 Correlation of Metrics and QoE Parameters 57

6.1 Configurations of Library 1 for the configuration experiment 70
6.2 Configurations of Library 1 and network conditions for observing the ef-

fects of packet loss . 79

xi

xii

Acknowledgements

First, I would like to thank Dr. Koen Bertels for the guidance and advice he gave me
throughout my time as a master student and for the opportunity to work in the Computer
Engineering group. Good ideas come from good inspiration, namely good mentors and
without Koen, my journey as a master student would not have been successful.

I will be forever indebted to Omar and Robbert for their assistance and advice. The
help the two of you gave me in understanding my work has been invaluable in getting
this thesis finished. Both of you were very empathetic to the challenges I faced in making
a transition from a student to a professional and I appreciate the effort you took for me.

I would like to thank Ashkan for going over my thesis multiple times in spite of his
busy schedule and for suggesting multiple tweaks and turns in order to make it as it is
today. I would like to thank Arjan for helping me throughout my time at Delft in his
role as the coordinator. I was in touch with him right from the moment I applied to
TU Delft as a prospective student to the day I graduated out of it. Also special thanks
should be accorded to Dr. Johan Pouwelse for helping me get on track initially in my
thesis and then by agreeing to be a part of my examination committee.

Thank you Akshay, Roderick, Jan Jaap and Christopher for going over my thesis
multiple times providing a fresh set of eyes. Also special thanks to Amit and Prachi for
helping me out with the drawings. You guys certainly helped me improve my English
and the discussions I had in making my point understood actually helped me understand
the problem better.

Further acknowledgements go to the wonderful people of Computer Engineering
group and my colleagues namely Mark, Joost, Gustavo and Nickos. Thank you for
sharing the office, the conversations we had and the help you gave me.

Not to forget my room mates and the new friends I made here who acted as my
family throughout these two years lending me help and support. They made sure that I
was looked after even in days when I could not contribute much due to work and other
reasons. Thank you guys.

A special thank you goes to my mother. She encouraged and supported me during
all my studies at Delft. Without her, all this would not have been possible.

Lastly, thank you Aaji because without you, I wouldn’t have been here.

Maulik Prabhudesai
Delft, The Netherlands
21, November 2013

xiii

xiv

Introduction 1
This Chapter introduces the topic of this thesis, as well as a brief description of the
challenges faced in video conferencing. First, Section 1.1 introduces the underlying
problem that this thesis tackles. Then Section 1.2 explains how this thesis will work
towards solving that problem. Section 1.3 discusses the contributions of this thesis and
finally Section 1.4 will give an overview of the structure of this thesis.

1.1 Background

As the world progressed, newer and newer business opportunities emerged and there
appeared to be a need to bridge distances and reduce travel. Deterrent economic condi-
tions from time to time spurred a general preference for reducing travel and undertaking
more and more business through remote communication. This gave a huge impetus for
developing a host of communication technologies like telegraphy, telephony, electronic
mail and then video conferencing. An anonymous commentator at Texas Instruments
once famously quipped that every time the Arabs crank up the price of oil, the world
moves closer to video conferencing.

Since its inception, video conferencing technology has evolved rapidly to enable more
and more new users to get access to it every year. From dedicated conference terminals
which were available with large organisations (like Texas Instruments), the technology
has evolved to enable users to engage in multi-user video conferences from handheld
devices like smart phones. This evolution in video conferencing technology along with
improving capabilities of embedded communication devices like tablets and smart phones
resulted in the creation of an ecosystem of companies developing products based on video
conferencing. These products also find use in domains like medical and healthcare as
people with disabilities and health issues prefer a mode of communication which does not
include travel. Realising a complete working video conferencing solution and optimising
it for specific use cases is highly complex and requires a high degree of technical expertise
and volumes of resources. Sensing this space, a supporting ecosystem of technology
companies developing video conferencing libraries has evolved. The latter companies
develop the video conferencing engines which power the products developed by former
companies. However in spite of the presence of so many video conferencing engines
available from vendors and API developers, video conferencing is still a nebulous concept
for application developers.

1.1.1 Problem Statement

The companies developing video conferencing engines make them available to application
developers as Application Programming Interfaces (APIs) where a part of the function-

1

2 CHAPTER 1. INTRODUCTION

ality can be tweaked by playing with the API so that the engine can be tuned to product
requirements. Factors like topology (which consists of design choices made at the back
end), media components (like codecs, echo cancellation etc. which consist of design
choices made at the front end) and algorithms which account for robustness in the face
of varying network conditions are part of the core structure of the video conferencing
libraries. These cannot be changed by tweaking with the API and hence it is advis-
able to make a careful analysis of the libraries to ensure that the quality of service and
experience offered by the library matches the needs of the application.

Hence there appears to be a need for a framework which can determine performance
boundaries and bottlenecks of each library. As not much information is available about
the detailed design of the library, the framework needs to be able to treat it as a black
box and through intensive profiling, needs to generate data pertaining to possible per-
formance issues and bottlenecks. Armed with this data, the application developer can
make better choices in system design to ensure a high quality of experience for his users.
This thesis will work on developing such a framework which will provide the developer
with the necessary knowledge to make informed decisions.

1.2 Thesis goals

Presence Displays BV [9] wanted to design a product which used a video conferencing
engine. This thesis draws the requirements of the product and proposes a system design
for it. The thesis then develops a method for evaluation of different video conferencing
libraries which can be used for the design of the product. Detailed performance analysis
is essential before choosing any particular library for product development. Hence, one
of the goals of this thesis to develop a framework for performance analysis of video
conferencing libraries.

There are many methodologies and proposed frameworks for performance analysis
of video conferencing libraries which can be used to interpret the quality of experience
with varying degrees of complexity and accuracy. Some aspects of this framework have
been inspired by these existing frameworks. However, this framework is different in the
aspect that it automates the measurements of various performance metrics, reducing
assessment time and complexity but also to some degree, accuracy.

The framework can be used to do qualitative assessment of quality of experience based
on quantitative results. The framework does not aim to provide software performance
bottlenecks but to assess the performance of the system as a whole from a black box
perspective. This kind of testing provides a complete and a true assessment of perfor-
mance and also provides quicker insights into the limitations of a library. This knowledge
helps the application developer to make faster and more accurate design decisions and
aid rapid software development.

1.3 Thesis Contributions

This thesis contributes a framework which can be used for quantitative analysis of the
performance of a video conferencing library. This information can be interpreted to

1.4. THESIS ORGANISATION 3

predict qualitative information like the quality of a video call. The thesis also discusses
experiments conducted using the framework which provide insights into the performance
and bottlenecks of a video conferencing library and promulgates our understanding of
how video conferencing libraries work in general.

1.4 Thesis organisation

This thesis is organised as follows: Chapter 2 will discuss a brief overview of video
conferencing technology, topologies and different components needed in video conferenc-
ing system design. The problem at hand which led to design and development of the
framework talked about in this thesis is discussed in Chapter 3. In Chapter 4, the re-
quirements which a video conferencing library used for the development of the product
are discussed. This chapter also includes a survey of available video conferencing soft-
ware development kits (SDKs), or APIs which can be used for potential development
of the product. Chapter 5 discusses the design of the framework and what components
are used in its design. The framework was applied to some video conferencing libraries
and existing video conferencing software products. The set up of the experiments using
the framework and its results are discussed and analysed in Chapter 6. This thesis is
concluded in Chapter 7.

4 CHAPTER 1. INTRODUCTION

Video Conferencing
Technology and Considerations 2
2.1 Introduction

The way people communicate with each other has changed vastly over the years. Letters
gave way to telephones. Later letters changed into emails and telephone turned into
internet telephony - Voice Over Internet Protocol (VOIP) which further evolved into
video conferencing (VC). Video conferencing has a history of about 40 years with the first
video conferencing prototype deployed commercially by AT&T Corporation sometime in
the 1970s. Video conferencing is basically transmission of audio and video to and from
two or more geographically different locations in a way which simulates a real physical
conversation. Video conferencing is done using two approaches [53]:

1. Utilizing high-quality VC equipment with dedicated resources

2. Implementing a VC application on personal devices like smart phones, computers
etc.

Video conferencing technology started using the first approach as an expensive tech-
nology which needed dedicated bandwidth and expensive dedicated equipment. Since
then a lot of the technology has been standardised and video conferencing is evolving
into more of a plug and play technology. Today, bandwidth explosion has made approach
2 possible. Applications like Skype, Yahoo Chat, Google Hangouts which support multi
way audio/video conference are fairly common. Due to increasing number of users opting
for voice/video communication over the internet, the share of time sensitive multimedia
data of the share of total data has increased. Video conferences are still bandwidth in-
tensive and perform poorly in low bandwidth scenarios (e.g. GPRS). This coupled with
the high networking costs makes video conferencing still a largely unpopular tool. This
chapter looks at essential modules which go into a video conferencing system and goes
through existing architectures and solutions.

The earlier video conferencing systems were analogue in nature and were simply two
video links in two directions. This technique was as old as the television. Evidence
suggests that they were used in the 1940’s when the German post office started video
telephony between Berlin and various cities. NASA famously used UHF and VHF video
links in two directions for manned space flights. This technology was very expensive,
inefficient, required high power, heavy equipment and could not be used by the ordinary
population. These techniques used the first approach and were still primitive as compared
to video conferencing applications in use today. As research into digital audio and video
communication picked up pace, video conferencing started to become more and more
commercially viable. Research into codecs, hardware, software and network properties
made video conferencing technology accessible to ordinary people on their PCs.

5

6 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

In the 1990s, video conferencing was fully integrated into internet with IP based video
conferencing. It was the decade of 2000 where free applications like Skype, Yahoo along
with Google’s plugins powering applications like Hangouts made video conferencing pos-
sible on nearly every PC present on the planet with sufficient bandwidth. Now as video
compression techniques are becoming more and more efficient and the bandwidth is ever
increasing, attempts have been made to achieve high definition video conferencing [11].
In the decade of 2010, newer technologies have made high quality video decoding/en-
coding on embedded computing platforms possible. This means that mobile phones and
tablets can now be connected to the internet and video conferencing can be made pos-
sible on them. This is made evident by the number of video conferencing applications
like Skype available freely [75].

In the subsequent sections, various concepts related to video conferencing are intro-
duced. It is also discussed why video conferencing is different compared to other real-time
video applications like video on demand. In spite of differences, the core essence of video
conferencing is real-time delivery of inelastic data and challenges faced in real-time video
delivery in general will be discussed.

2.2 Video Conferencing Technology

Video conferencing is a lucrative market with many opportunities and this makes the
business highly competitive. Video conferencing software vendors take great care in
optimising each and every module in the software to the fullest extent. Thus details of
modules which go into making such libraries are looked at. Lastly video conferencing is
discussed at the system architecture level.

But first it is important to have an overview of the technology which is essential for
realising a video conferencing system. In the following sections, VC technology imple-
mented on PCs is discussed primarily and not using dedicated VC equipment. To realise
a video conferencing system, a PC needs:

1. Video capturing hardware (Camera) - The camera captures live events occurring
at the source for the receiver to see in real-time. The quality of the camera heavily
determines how the video will appear at the receiving end. A good camera fetches
images at 25-30 frames per second and a minimum resolution of 640 x 480 pixels.

2. Sound capturing hardware (microphone) - The frequency used in video conferencing
usually does not exceed 7Khz and hence any capturing device which supports that
frequency is sufficient.

3. Video illustration hardware (a screen) - The receiver sends its video to the source
and it is displayed at a screen at the source. Video resolutions are fixed for certain
standards e.g. The H.323 standard supports 352 x 288 pixels.

4. Sound generation hardware (a speaker) - A normal speaker is sufficient to realise
a video conference.

5. An underlying real-time data delivering system (e.g. Real-Time Transport Protocol
- RTP)

2.2. VIDEO CONFERENCING TECHNOLOGY 7

6. A PC (or alternatively an embedded device) which packs all these components
together which is connected to the internet

These were the hardware requirements which a PC (or an embedded platform) needs
to satisfy in order to run a video conference. A typical video conference application needs
many modules of software namely a user interface layer, a session management/signalling
layer, a media module and real-time network stack. This can be seen in the figure 2.1

Audio Codec

Net EQ

Echo Cancellation

Video Codec

Video Jitter Buffer

Image
Enhancement

Real Time Protocol

Multiplexing

P2P STUN TURN
ICE

Network IOVideo Capture
Render

Audio Capture
Render

Session Management Layer

User Interface Layer

Media Network

Figure 2.1: A typical video conferencing system architecture based on WebRTC [10]

The user interface layer is where the user interacts with the software by means of a
platform for video rendering and interaction with participants in the conference. The ses-
sion management layer is responsible for signalling, conference initiation, and conference
management at the technical level. The media module is responsible generating content
(audio and video) from the users and packing them into packets which can be sent over
the internet. It also renders the audio/video data back on the screen for user’s consump-
tion. The media module contains various audio codecs, video codecs, text codecs and
other modules essential for maintaining good quality of audio/video, like equaliser for
audio and image enhancement techniques for video. Apart from that, there are some
modules unique to a video conference like echo cancellation modules.

The network stack contains real-time protocols which send inelastic data piggybacked
on UDP packets. Popular protocols are Real-Time Transport Protocol (RTP) [72] and
Secure Real-Time Transport Protocol [21] (which encrypts data for security). These
protocols, in combination with Real-Time Transport Control Protocol (RTCP), [72] also
send information which is used for interpretation of the media (information about au-
dio/video codecs, change in frame rate, bit rate etc).

Section 2.3 describes each component in the video conferencing stack in detail.

8 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

2.3 Video Conferencing Stack

This section discusses various components which go into the software stack of a typical
video conferencing system.

2.3.1 User Interface Layer

As any video conferencing system is designed to facilitate communication between two
users, the software stack must contain a layer which interacts with the user. A user
typically checks if his partner (with whom he intends to talk) is online or whether he is
willing to accept the call before initialising the call. Neither does a receiver want to start
a video conference without his consent (due to privacy issues). Also the users might feel
the need to disable audio or video in the duration of the conference or change camera
or speaker settings. Hence there has to be a user interface through which the users can
control a conference.

2.3.2 Media

As shown earlier, real-time video delivery imposes strict timing constraints. For an
interactive application like video conferencing, the end to end latency should be kept
under 300ms for the worst case of acceptable performance [53]. This means that from
the moment a frame of video is captured at the source’s camera, encoded into bits,
constructed into packets, sent over the internet, received by the receiver, reassembled
into useful packets, decoded into playable video and is displayed on the screen of the
receiver, the total time elapsed should not be more than 300ms. The delay in the network
is attributed to the number of routers and the traffic density (and congestion) in the
link. This delay is thus unpredictable and a comfortable margin of error is maintained
to account for these delays. Also video is typically encoded before sending over the
internet to save bandwidth. Thus the time spent in encoding the video should be kept
as minimal as possible.

Video Codecs

A successful video conferencing system has an efficient way of encoding and decoding
data. Even a standard definition frame costs a lot of storage space and sending such
data over the internet for real-time delivery is not recommended. Hence the systems use
a coding/decoding algorithm (codec) to compress video. Video encoding is a non trivial
task and is highly computationally intensive. The camera captures individual frames at
a certain frame rate and then it is the job of the video codec to carefully compress the
video so that maximum quality should be transmitted in minimum space.

Video clips are made up of individual frames. Video coding attempts to code each
frame and the subsequent frames such that maximum compression is achieved. Each
frame is divided into small blocks and the blocks then converted from the spatial to
frequency domain using a discrete cosine transform. Then the frame in the frequency
domain is quantized for different frequency values. The human eye is less sensitive to
higher frequencies and thus higher frequencies are coded into a smaller number of bits

2.3. VIDEO CONFERENCING STACK 9

and vice versa. If the frequency values are encoded into a larger number of bits, the
video quality turns out to be better at the cost of more data. Many codecs tweak this
parameter to alter video quality on the fly. As subsequent video frames are similar to
each other, video codecs aim to predict a future frame from a previously encoded one
(or alternatively a past frame from a previously encoded future frame).

Motion estimation is performed where a number of previous frames are checked for
which frame matches the best with its prediction. However prediction algorithms rarely
predict a frame with 100% accuracy. However the difference between the actual and
predicted frame is quite small compared to the frame itself and hence only the difference
is encoded. The frames encoded independently are called I frames and frames encoded
using an I frame is called a P frame or a B frame depending on the temporal co ordinate
of the I frame. Hence, if the receiver has an I frame, the loss of a P frame can be easily
compensated. Periodic I frames cause greater data rate but ensure higher fault tolerance
at the receiver. This part is called motion estimation and it increases the efficiency of
coding upto 200:1 for some codecs [22]. Some codecs, particularly the H.264 employ
various image enhancement techniques (they might be implemented independently also)
to correct various effects like blocking and ringing which occur because of division of
the image into blocks for processing. This part is also the most time consuming and
demands a huge amount of resources/processing power from the hardware. In general,
video codecs take up a huge amount of processing power and hence require speed up via
GPUs or dedicated hardware.

It is widely known that the H.323 standard of audio/video telephony supports H.261
[81], H.263 [35] and H.264 [73] codecs. Of them H.264 is a video codec jointly developed
by MPEG (Moving Pictures Expert Group) and ITU (International Telecommunication
Union). It is widely used for high definition video broadcast over the internet and is an
industry favourite for encoding videos. As it is a standard, dedicated H.264 hardware is
found on many embedded computing platforms including Google Nexus 7 and 10 which
makes video generation/decoding easier.

However newer and newer codecs are being developed every day and hence from an
application point of view it is important that the software architecture is modular so
that a codec may be easily replaceable with a newer more efficient one. This is evident
from the popularity of the SIP protocol which allows the users to decide their own codec
implementation as compared to H.323 which supports only 3 codecs.

The other codecs which are fast gaining popularity are the VP series of codecs from
ON2 technologies. The VP range of codecs are highly successful as VP6 has been used
in Adobe Flash and VP7 being used in Skype [87]. In late 2008, VP8 was developed
as a competition to the H.264 standard. VP8 is quickly finding popularity with video
conferencing application developers and Skype has famously declared that progressively
both codecs (VP8 and H.264) will be used in various applications.

VP8 has been designed keeping in mind implementability over various platforms,
and has been tested to prove real-time encoding/decoding ability on relatively low end
embedded hardware. VP8 has also been shown to cost less number of processor cycles
to decode as compared to other algorithms. More and more embedded platforms are
moving towards multi core systems as is evident by the launch and success of various
tablets like Google Nexus 10 and phones like HTC One X. The inability of codecs to

10 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

be parallelizable hinders with their implementation of such platforms and VP8 has been
designed to exploit multiple processor cores. Many of the smaller algorithms which are a
part of a larger codec algorithm cannot be parallelised and VP8 uses a modified version
of these algorithms which can be parallelised without compromising on efficiency [45].

In a comparison with its main opponent, H.264 edges ahead of VP8 because it enjoys
hardware acceleration support from various system on chip (SoC) manufacturers. How-
ever, newer and newer vendors are switching to offer hardware acceleration of VP8 as is
evidenced by the launch of Samsung Exynos 5 chip [84]. Other manufactures are starting
to provide devices integrated with VP8 hardware support. As VP8 is open source free
technology, its usage is expected to save money paid in royalties to MPEG for the use
of H.264. Thus for a video conferencing library, usage of VP8 or design keeping in mind
easy integrability with VP8 augurs well for the future of the application.

Audio Codecs

Audio codecs are programs which are capable of encoding and decoding audio digitally.
Some famous examples of audio codecs are Opus, iSAC, iLBC and MP3. Opus codec is
an audio codec capable of supporting constant as well as variable bit rate encoding with
bitrates varying from 6Kbit/s to 510 Kbit/s. The frame sizes vary from 2.5 ms to 60
ms and the sampling rates vary from 8KHz to 48KHz which enable it to reproduce the
entire range of the human auditory system. iSAC is a wideband/super wideband audio
codec developed by Global IP solutions. It is bandwidth adaptive and robust and is
used in millions of VOIP implementations with an adaptive and variable bit rate. iLBC
is a narrow band audio codec also developed by Global IP solutions used in VOIP and
streaming applications. Media formats like codecs and other media modules evolve over
time and the ideal library should be flexible and modular enough to allow integration of
newer and more efficient media standards into it.

Echo Cancellation

Because of the interactive nature of video conferencing application, an important factor
which may affect the quality of experience (QoE) is the echo in the system. Audio
generated at the source is generated at the speakers at the receiver and is also recorded
at the microphone of the receiver and sent back to the source as a part of the receiver’s
audio feed. If unchecked, this causes the sender to hear his own voice again. Subsequent
echoes multiply and sound reverberates in the audio channel rendering it ineffective for
any form of audio communication. The microphone may pick up some noise at the input
and due to the positive feedback loop created by the echo, a howling sound may be
observed rendering the video conferencing system useless and causing irritability to the
users.

Echo cancellation technology has been needed ever since the first interactive audio
communication devices came into being. Old telephony systems handled this challenge
by placing attenuation blocks on the channel to act as echo suppressors. As digital
telephony developed, newer and newer algorithms like Least Mean Square (LMS) and
Normalised Least Mean Square (NLMS) amongst many others have been developed.
This module is fundamental to the realisation of a successful video conferencing system

2.3. VIDEO CONFERENCING STACK 11

and operating systems such as Android have a built in echo cancellation module [15].
Upcoming IETF standard WebRTC uses AEC software developed by Global IP Solutions
which was bought by Google [10].

2.3.3 Network Stack

This section describes in detail the components which go into the network software stack
of a general video conferencing system.

Real-Time Transport Protocol

Figure 2.2: Real-Time Transport Protocol Stack

Real-Time Transport Protocol (RTP) is a transport protocol which provides end to
end connections for transmitting real-time media packets like audio and video. RTP was
standardised by the Audio Video Working Group of the Internet Engineering Task Force
in 1996 [72]. Real-time media may be either a stored video/audio which is demanded at a
remote location over the network (e.g. video on demand), or it may be generated in real-
time like a live video conferencing application. In the case of video on demand, a delay
of few seconds is tolerable while in the case of video conferencing, which is interactive in
nature, a delay of not more than a few hundred milliseconds is tolerable.

In common protocols of the transport layer like Transmission Control Protocol
(TCP), the retransmission delays make it unsuitable for sending real-time media. Me-
dia applications are typically error tolerant and thus retransmission brings unnecessary
delays in ensuring reliability which is not needed for the application. UDP (User Data-
gram Protocol) may be used, but UDP is a best effort delivery service and packets may
be delivered out of order thus making it unsuitable for sending real-time media. This
dilemma led to the design of RTP.

RTP provides a standardized format for delivering media packets through underlying
transport and network layers. RTP can be used with any of the protocols of the transport
layer. However RTP is commonly used with UDP and not with TCP because of the
aforementioned delays associated with TCP. However when piggybacked on UDP, RTP is

12 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

a best effort delivery service and blind to congestion in the network (congestion detection
feature is associated with TCP). Thus RTP has it’s own congestion detection strategy for
media applications which it implements through Real-Time Control Protocol (RTCP).
The control protocol’s functionality enables it to detect congestion and provide feedback
on Quality of Service (QoS), membership (number of participants in the conference) and
loop detection, meaning that it can detect if a packet was forwarded back to its source
from some other participant in the conference.

In this section we will see why RTP is successful in ensuring real-time delivery. An
RTP packet can be seen in the figure 2.3.

Figure 2.3: An RTP Packet [3]

The unique fields in an RTP header are:

• Payload Type - The PT field helps the application determine whether the payload
is audio, video or some other real-time data. The payload type helps specify
the codec, the encoding in case of audio codecs and similar functions. The field
supports 128 different options (7 bits) and many of the options are not utilised.
Hence this protocol is open to standardizing newer and newer audio and video
codecs.

• Sequence Number - This field is used to indicate the sequence of the incoming
packet and helps the application detect packet loss. Packet loss as we will see is
helpful in determining the congestion in the network and that information will be
subsequently used to modulate the data rate at the source. But generally, RTP
packets are piggybacked on UDP, and UDP causes segmentation and reassembly of
packets. This field helps the application layer re-arrange the packets in the correct
order.

• Timestamp - The time stamp field differentiates RTP from TCP or UDP as the
time stamp adds a temporal coordinate to the data which is usually spatial. In

2.3. VIDEO CONFERENCING STACK 13

real-time media applications, a packet which reaches after its intended display time
is useless. This field helps the application to detect and discard useless packets.
This information is also used to determine congestion and to modulate source data
rate.

• SSRC - This field is the Synchronisation Source Identifier field. This field is used
for timing synchronisation for a session and is crucial for maintaining the real-time
aspect of a session.

For providing secure payload delivery, a specific profile of RTP called Secure RTP
(SRTP) is used. The audio and video packets or packets from different RTP sessions
may be multiplexed into one single RTP packet too [32].

To ensure QoS for real-time video delivery, the following issues have to be handled:

1. Bandwidth - There has to be a minimum bandwidth available at all times during
the transmission.

2. Delay - The end to end delay has to be bounded and within a minimum value
(300 ms for video conferencing)

3. Data Loss - Packet loss ratio must be kept below a certain threshold for ensuring
quality of service.

Congestion occurring due to an unreliable network connection is the primary cause
of decrease of Quality of Service for real-time video delivery as packets are often lost
or delayed due to decreased bandwidth emanating from high network traffic. Thus
any efficient real-time video delivery system, whether for video on demand or video
conferencing, should aim at developing a robust response towards congestion in the
system.

Congestion Control

The challenge of any video conferencing applications is transmission of real-time video
over constraints such as limited bandwidth and delay. The latency is a very critical
component which will decide if the system is usable or not. Latency is the time lapse
between the time the video appears on the source (capture equipment) to the time
the video appears on the destination (rendering hardware - screen). For an interactive
application like a video conference, the end to end latency for the system should be less
than 300 ms. The lower the latency, the more room there is for error resulting due to
unreliable network connections and sudden unexpected congestion in the network.

The main difference between real-time traffic and non real-time traffic is that non
real-time traffic is elastic and the data rate can be changed to match the congestion in
the network. Thus it is sent using TCP which ensures quality of service by transmissions
and retransmissions. Real-time traffic however does not enjoy that luxury. It can tolerate
packet losses than have entire packets retransmitted by TCP again.

As UDP does not have a congestion control strategy unlike TCP, an external con-
gestion control strategy must be used. Then depending on the congestion, the bit rate

14 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

of the video is varied. By using variable bit rates and a send buffer, non elastic real-
time data is made partly elastic and tolerant to a certain amount of congestion at the
expense of lowering the quality. Also because of the strict latency constraints imposed
upon video conferencing applications due to the interactive nature unlike video on de-
mand applications, evaluation of congestion and changes in the bit rate have to be done
dynamically.

Congestion control strategies can be broadly classified into either rate control, rate
adaptive video encoding or rate shaping [89]. Rate control follows a TCP like window
based congestion control approach. This is further divided into rate control at the source
and rate control at the receiver. In the first approach, the source varies the rate of the sent
video to combat congestion. This can be done either by probing the channel for packet
loss at periodic times or by evaluating a congestion by using a mathematical model.
Some of the strategies use a TCP like approach for congestion evaluation using the
formula [36]. Depending on the nature of congestion control required, other parameters
like quantization rate, sampling rate, encoding rate may be changed to change the bit
rate of the video generated at the source.

λ =
1.22×MTU

RTT ×√p
(2.1)

The above equation gives the bandwidth λ of a TCP connection in the face of packet
loss in the network. MTU is the maximum packet size used in the connection by the
underlying protocol, RTT is the round trip time and p is the packet loss ratio observed
in the network. This formula is used to develop TCP-like congestion control for UDP or
media flows which is TCP friendly.

Congestion control can also be implemented at the receiver with the help of special
codecs which encode the video into multiple layers. This technique is called multiple
description coding (MDC) or Multiple Layered Coding (MLC). In multiple description
coding, the video is encoded into many descriptions of varying bit rates and qualities
such that any one description is independently capable of reproducing video of an ac-
ceptable quality. The receiver subscribes to as many layers as possible depending on
its bandwidth. The more descriptions available with the receiver, the higher the video
quality it is able to reproduce.

MLC is similar to MDC except that the layers are categorized into base layer and
subsequent layers. The base layer is mandatory for decoding a video of acceptable quality
and if additional layers are present higher video quality can be obtained.

In a typical conference, different users may have different link qualities and available
decoding hardware. A higher video quality may be perfectly acceptable to one receiver
whereas some other receiver may need a lower quality. This aspect makes it particularly
difficult to implement multicasting of video packets from the source. Congestion control
at the receiver works better as it gives different receivers the power to choose what video
is suitable given their network conditions and hardware. Different layers are sent as multi
casts to different groups and each receiver subscribes to one or more groups depending on
the nature of congestion (and also other criteria like the available decoding equipment).
If congestion is not detected for a long time, the receiver subscribes to more groups to
obtain higher quality. When congestion is detected, the receiver drops some layers to

2.3. VIDEO CONFERENCING STACK 15

ensure smooth degradation in receiver quality. The receiver may also use a mathematical
model to determine congestion and decide upon the number of layers to subscribe to.

Figure 2.4: RTP Usage and Congestion Control [89]

Figure 2.4 describes how RTP and RTCP together formulate a congestion control
strategy for real-time video streaming [89] and Figure 2.5 describes a model of Skype’s
video rate adaptation scheme. As it can be seen in the figure, the sending rate rs(t)
is decided using three parameters, namely frame quality q(t), video resolution s(t) and
frame rate in fps (frames per second) f(t). Information about video quality received at
the destination is sent back to the source using a feedback channel. RTCP may act as
this feedback channel when the transport protocol is RTP. RTCP sends various feedback
messages requesting a new I frame due to loss of decoder context, informing the source
about loss of picture or loss of a picture slice. The feedback messages may also ask
the source to do a temporal/spatial trade off or to limit the video source rate under a
particular threshold. The encoding parameters of the video are varied depending on this
feedback.

Figure 2.5: Model of the Skype video rate adaptation scheme
[30]

The third approach to congestion control is rate shaping [89]. Rate shaping is dy-
namic adaptation of the rate of media packets sent out in the network. If congestion is

16 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

detected, the sender may randomly drop a few frames. Those frames can then be recon-
structed at the receiver using golden frames. This actually increases video quality and
at the same time, reduces congestion. Alternatively, the bitrate of the frames may be
changed by changing the encoding scheme or the motion vector. The human eye is not
sensitive to higher frequencies and higher frequencies can be encoded into lower number
of bits or dropped completely in the quantization process.

The Figure 2.6 shows a brief overview of a video conferencing system in a browser
using RTP [10]. The audio and video data is generated separately. The data is assembled
into packets and sent over the internet using the Real-Time Transport Protocol. The
different pipes for both audio and video signify that separate SIP sessions are used for
audio and video. Thus quality of experience can be guaranteed separately for both
audio and video streams. If the video session has to be terminated for lack of bandwidth
or for other reasons, the audio session can continue without delays in setting up the
session. As we have seen earlier, RTP packets or different sessions may or may not be
multiplexed. The RTCP pipe is used for conveying congestion information which is used
by the application to alter the data rate. The audio and video packets are displayed at
the receiver’s end taking into consideration their time stamp from the RTP packet.

Figure 2.6: A video conference system at work [10]

Network variables like packet loss ratio, latency, change in RTT over time (varying
RTT is called jitter) vary for different network conditions. It can be concluded that the
goal of any congestion control strategy is that any developer should be able to customise
the response to changing network quality in order to be able to control user experience
to a much larger extent.

NAT Traversal

Majority of the users engaging in video conferencing are behind some sort of Firewall or
a NAT. A drawback of NAT is that NAT makes it difficult to deploy new IP applications.
NAT basically breaks end to end connectivity and hence some sort of NAT Traversal
technique is needed to realise client to client networking applications - like a video con-
ference. Session Traversal Utilities for NAT (STUN) are a set of methods used by many
protocols for NAT traversal. Protocols like Interactive Connectivity Establishment use
STUN servers (which are located in the public internet domain) to establish connectivity
behind a NAT.

2.3. VIDEO CONFERENCING STACK 17

Error Control

In any form of data transmission over the internet, packets are lost and information is
corrupted. The lost packets are usually resent over to the receiver. This is perfectly
acceptable if the data has no sense of timing (large files or text based information).
However, in the case of real-time video delivery (both video on demand and video con-
ferencing) resending the data cannot be the preferred solution because data which arrives
late is meaningless. Hence real-time video delivery systems employ a number of measures
for error correction, error resilience, error concealment and also retransmission (only if
the delay is within acceptable limits).

Forward error correction is a preferred strategy for error correction [89]. A block
of k packets is encoded into a block of n packets where n > k. Assuming that some
packets are lost in transmission, the entire sequence of k packets can be recovered if
the number of received packets K is such that n > K > k. This provides tolerance
to errors at the expense of increased transmission rate and delay. Another method is
encoding some redundant information about the previous block in the current block so
that the previously sent block can be reconstructed in the eventuality that it is lost. Or
a combination of these techniques can also be preferred depending upon the network
characteristics. If the link quality between the source and the receiver is relatively good
and the Round Trip Time (RTT) is less, a receiver might request a retransmission or a
sender might retransmit packets if the time to display the packet is sufficiently large.

2.3.4 Session Management in Video Conferencing

From the conference perspective, a chat (one way or multi way) is initiated by the user.
But at the protocol level, establishing, managing and terminating chat sessions is done
using session management protocols. Session management protocols provide application
level layers the necessary information to initiate, maintain and terminate a conference.
Two of the most popular protocols used for session management are Session Initiation
Protocol (SIP) [74] and the H.323 [78] standard for session management. Figure 2.7
shows how the session management protocols fit into the Open Systems Interface (OSI)
[76] hierarchical layer:

The user agent is the application level software which is running and managing the
video conference. The lower layer is the media generation layer where media may be
represented by either audio, video or even text. The session management requirements
are independent of the nature of media and because of this, session management protocols
are independent of lower layers like the transport layer, network layer and the physical
layer of the OSI stack.

Session Initiation Protocol

Of the two major protocols that are being discussed, SIP (Session Initiation Protocol)
[71] is an Requests For Comments (RFC) [47] standard from IETF (Internet Engineering
Task Force) [23]. SIP is open and allows users to modularly choose a wide range of
protocols running on layers on top as well as under it. SIP also allows users to build
hooks into it to add application oriented functionality [24]. SIP leaves network level

18 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

Figure 2.7: Session management layer within the OSI layer

reliability issues to be solved by the network level protocols itself. This means that SIP
is very light compared to other session management protocols like H.323 and also highly
modular. This highly modular structure allows users to integrate the SIP with other
standards developed for specific functions. SIP messages are text formatted like HTTP
(Hyper Text Translation Protocol) [34]. Text based messages are also easier to debug
and hence this standard is gaining fast popularity across developers all over the world
[77].

SIP works in the following way: A SIP user agent initiates a session request. The
client application level software is called the SIP user agent. The user agent can work as
a client (when requesting a connection) or as a server (when responding to a request).
These roles are temporary and when the roles are switched, user agent client and server
positions are interchanged. This request is forwarded to the other user agent who is
going to be a part of the conference call. A SIP server receives this and returns either
an accept or a reject response depending on whether the user wishes to take the call or
not. Proxy servers are redirecting servers which are used to route the call request to its
proper destination. Once the request procedure has been done, the call establishment
procedures take a few handshakes before the media exchange occurs. Figure 2.8 describes
the call flow diagram of SIP.

H.323

The other popular choice for session management, the H.323 protocol was standardized
by the International Telecommunications Union and was designed to provide sessions
on any packet network, including a telephone line. It is a comparatively complex and a
pre-agreed upon standard and hence is deterministic and does not allow users to make

2.3. VIDEO CONFERENCING STACK 19

Figure 2.8: SIP call flow diagram [57]

many application specific modifications. H.323 has a focus on providing a bare minimum
quality of service and hence specifies everything from codecs to the underlying transport
protocol). It has various components aimed at different use cases for e.g. H.245 for
multimedia call set up and to provide feedback about quality of service, T.38 which is a
text codec used for facsimile, T.120 which is a set of data protocols for media conferencing
etc.

It assumes and provides for various cases when the underlying network may develop
issues. Extensions in H.323, due to the lack of a general modular structure as compared
to SIP, are typically non standard. This makes integration across varying standards
difficult. Unlike SIP, H.323 has binary messages which make debugging difficult. As
compared to the simplicity of SIP, the complexity of H.323 protocol stack can be observed
in the following figure 2.9. As it can be clearly seen, there is a lot of overhead to support
functions, many of which may not be needed for a particular application. Also the
support for codecs in this format is fixed which means that newer and more efficient
codecs cannot be easily integrated into this format.

Other Protocols

The other widely used protocol for session management is the Jingle protocol which was
developed by Google. Jingle is an extension to the Extensible Messaging and Presence
Protocol (XMPP). XMPP is famously used in Google Talk and Google Hangouts.

Session Description Protocol (SDP) may be used with Session Initiation Protocol for
describing Session Initialisation Parameters. A session may be described by specifying
identifiers like network address of the originator, encryption key, port numbers of ports
used in connection or sending real-time media and the time the session is active. It may
be used to describe nature of media like codecs, type of protocol for media delivery,
nature of media interaction (audio, video, text, presence etc) and the uniform resource

20 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

locator (url) of the session if available. SDP is being proposed for use in the upcoming
WebRTC [44] standard of video conferencing and also features in many other video
conferencing applications using the SIP. However many applications (famously Skype)
do not use the SDP at all.

Figure 2.9: H.323 Protocol Stack

2.3.5 A case study: WebRTC

WebRTC is a free, open source client side library which enables Real-Time Communica-
tions (RTC) capabilities via simple Javascript Application Programming Interface (API)
[10]. The library also has modified versions which enable application development on
Android, Windows, and iOS. The WebRTC API allows third party developers to develop
real-time communication applications like a video conference. The library contains basic
building blocks for high quality audio/video communications in real-time. The library is
being standardised at both the API level (by the W3C) and at the protocol level by the
IETF. WebRTC is currently a W3C working draft and is proposed to reach candidate
recommendation status in a year [83].

The transport engine (network stack) of the WebRTC library uses RTP and RTCP
for real-time transport delivery and also employs NAT punching technologies like STUN,
ICE and TURN (Traversal Around Relays around NAT). This enables WebRTC to ensure
connectivity even when one user is behind a firewall or a NAT. WebRTC uses dynamic
jitter buffers and error concealment techniques to counter packet loss emanating from
unreliable networks.

The Voice engine supports various codecs like iSAC, iLBC and Opus. The audio
package also includes other useful functionality like acoustic echo cancellation module
developed by Global IP solutions and modules for automatic gain control, noise reduction
and noise suppression. However other audio codecs can be integrated with the WebRTC

2.4. TOPOLOGY 21

library after some amount of engineering effort. The video engine of WebRTC mainly
supports the VP8 codec but as with the case with audio codecs, newer codecs can
be integrated with somewhat engineering effort. The video engine also has modules
to enhance image quality and a buffer to conceal packet loss and to ensure smooth
video quality modulation in the presence of rapidly changing bit rate. The components
of the voice and video engine are supported over multiple platforms and their highly
modular structure gives developers the freedom to choose their own implementations
and customisations.

However as the standardisation process of the API is still quite young, a lot of
implementation specific concerns are unadressed and it is up to the developer to solve
them locally. WebRTC is designed mainly as a client side API designed for peer-to-peer
telephony. However it has been discussed in previous and subsequent sections that the
peer-to-peer choice for architecture is not very bandwidth efficient for multi-user video
conferencing and poses a lot of challenges in the case of heterogeneity in bandwidth and
users. Also WebRTC has no server side functionalities, in case a media relay server has
to be implemented. Hence implementing a media relay server and integrating it with a
WebRTC powered client is left for the developer to figure out. Apart from that, WebRTC
has no specifications for signalling services and it is left up to the developer to decide
which signalling protocol to use for his application.

WebRTC uses a unique congestion control algorithm called RTP Media Congestion
Avoidance Technique (RMCAT) which is designed to compete with both long standing
and bursty TCP flows, other RMCAT compatible and non compatible media flows and
even LEDBAT flows [64]. Finalising a congestion control strategy for WebRTC is part of
the standardisation effort which hopes to have a single robust congestion control strategy
for all WebRTC real-time interactive media flows.

WebRTC also carries a Berkeley Software Distribution (BSD) licence and can be
used to build commercial products and copyright them. Thus the WebRTC package
is a unique, free, high quality complete solution that enables real-time communication
over the internet. There are many contemporary solutions available which use WebRTC
as a base like OpenTok [62], AndBang, Plivo [67] and Twilio also uses WebRTC in its
video conferencing client. WebRTC has thus made cross device video conference easy
[70] across Tablets, phone, desktops, laptops and even Google TV.

2.4 Topology

The software stack only comprises of the front end of any video conferencing system.
The topology comprises the back end of the video conferencing infrastructure. Just as
the front end, there are multiple design choices available at the back end to realise an
infrastructure complete with benefits and disadvantages of each option. This section
discusses the various topologies which can be used for a video conferencing architecture,
namely client-server, peer-to-peer and peer-to-peer with peer contribution towards video
distribution.

22 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

2.4.1 Client-Server

As we have discussed, one of the main bottlenecks in providing a good video conferencing
service is the bandwidth. The users may be spread over a varying bandwidth conditions
and even then, the upload bandwidth is typically one-fifth of download bandwidth. This
means that multiple copies of the same video cannot be sent over the limited bandwidth
more number of times. This bottleneck multiplies in the case of high definition video
and as a high definition video has a higher data rate than standard definition video.

The other concern with making direct connections with the other users for video
conference is that the receivers among themselves have great heterogeneity in network
conditions (namely bandwidth) and hardware. A video quality which may be enjoyed
easily by one receiver cannot be decoded or downloaded in real-time at the other. To
overcome this, the sender must encode video in different bit rates/definitions which may
be decoded at the receiver. Now as we have pointed out in earlier sections, encoding a
video is a very complex task which demands huge resources. Encoding the same video
with different bit rates is complex from the source point of view. Alternatively video
may be encoded in a format which can be decoded by the weakest of the receivers but
then in the case of a group video conference, the quality of experience of an entire group
may be severely degraded by presence of a weak peer. In cases where the underlying
network supports multicasting, it is an easier alternative. This approach saves upload
bandwidth as one video packet (decodable by the weakest receiver) may be sent across all
users. This approach is again unjust to stronger peers but saves bandwidth as different
connections do not have to be formed with each of the peers. However for multicasting
to work effectively, all routers between the source and the receiver have to be multicast
enabled. Multicasting is not popular among internet service providers because deploying
multicasting routers is not only highly cost intensive but also time consuming. This
creates a security risk as the system is vulnerable to attack.

The architecture which compensates for heterogeneity in bandwidth and hardware is
the client-server model. Each client uploads a video to the server and downloads from a
server the feed of each of the users in the video conference. Thus each user has to upload
only one stream and download the streams of the other participants from the server.
Some of the weaker members may not be able to download a high quality stream. In
that case, each user encodes his video in a format which is downloadable by the weakest
peer.

The other approach to network heterogeneity is video coding at the server. The user
encodes his video and sends it to the server. The server re-encodes the video in different
bit rates for peers with different bandwidth conditions. This causes more complexity in
the server implementation and increased latency in the video communication. As video
conferences are bounded by a latency of around 300 ms for a good quality of experience,
the server hardware must be powerful enough to encode the video in real-time and not
affect the latency by a greater margin. More latency would impose restrictions on the
maximum geographical distance between users in the video conference.

Alternatively, depending on the upload bandwidth available, video can be encoded
into two different streams and sent to the server for the other users to download. As the
server now does not have to perform network coding functions, the server does not have

2.4. TOPOLOGY 23

to be very complex and the latency is reduced. Sending either a single or multiple streams
of video to and from the server causes a huge bandwidth bottleneck and the organisation
maintaining the server has to pay huge amounts of money for the bandwidth. Also in
the case of a server failure, a secondary server which supports all the functionality of the
primary server is needed to ensure that the system does not break down. Hence for a
company with limited resources and engineering manpower, the client-server architecture
would be difficult to sustain. Architecturally this option is not limited to any codec and
a wide variety of options may be used. For session management, SIP servers are available
which help maintain a session via a server. Such an architecture can be seen in figure
2.10.

Figure 2.10: Client Server Architecture System Level Diagram

Google Hangout is a client-server based video conferencing solution. This architecture
is feasible for Google given the high capacity of its already existing infrastructure. Google
Hangouts used H.263 and H.264 codecs in the past (they have since switched to VP8)
and are powered by Vidyo [70]. Following the design challenges which occurred in the
development of Google Hangout, Google launched the standardization effort of WebRTC.

2.4.2 Peer-to-Peer

The other option at realising a multi-user video conferencing architecture is through
a peer-to-peer system. The system can be viewed in figure 2.11 where each peer is
connected to the other peer. This approach does not require the need of a powerful
high bandwidth server and is relatively easier to maintain. A server is still needed for
activities like maintaining the database of all active users, for signalling and for other
activities like NAT traversal but as video distribution is not done through the server,
the server does not need a high bandwidth internet connection.

However with more number of users joining the conference there is an upload band-

24 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

Figure 2.11: Architecture of a Peer-to-Peer Video Conferencing System

width bottleneck at each user. As upload bandwidth is less than the download band-
width, this limits the size of the group considerably. Using this technology to realise
a multi-user video conference only increases the upload and the download bandwidth
demand. Thus users with slow connections cannot join a multi-user video conference.
Video decoding by the weakest peer is still a concern and the source usually sends video
of a quality which is decodable by every receiver. In this architecture, multi layered
coding techniques can be used to have each user decide his choice of video so that no
user has to content with lower video quality when he has the capacity to download and
decode a video of higher quality.

Several video conferencing applications allow pair wise video conference. Skype uses
this architecture for conferences up to 3 users. Many other applications have been built
using this architecture as it is easy to maintain.

Peer-to-peer conferencing is inefficient, quality deteriorates very quickly as more users
join. The incoming and outgoing bandwidth at the client is not the same and is even
less in case of mobile devices. For multiple users, multiple encoding of video for different
users takes up huge amounts of processing power as video encoding is computationally
intensive. With suitable choice of technology, it can be done only once. But sending video
to different users directly over the internet requires bandwidth and network processing
power. Hence a media relay server seems to be the better solution in supporting multi-
user chat. But maintaining a server is expensive and complex. The bandwidth at the
server affects scaling capacities. In addition to that it transfers the processing time and
complexity of maintaining a multi-user conference from each of the client to one central
server resulting in the usage of significantly higher number of resources.

2.4.3 Peer-to-Peer with Peer Contribution towards video distribution

The problem of delivering high quality video in larger and larger groups of video con-
ferences can only be solved by reducing the bandwidth footprint of a video conferencing
system. Scalability of video chat takes a hit as the number of participants increases,
both in the case of server based systems and peer-to-peer systems. Many approaches
have been discussed to reduce the bandwidth footprint of a video conferencing system.
One of them is introducing devices in the network which have access to a higher band-

2.4. TOPOLOGY 25

width internet connection. These devices are called MCU (Multipoint control units).
They receive video signals of various users and distributes them to all participants [88].
However the high cost and complexity of the system makes it suitable only for the use
of large businesses who have the capability and resources to manage these devices.

However, in a different approach, a user who is one of the receivers of the video can be
made to act as a MCU and be used to share video with other receivers. This approach
is aimed at distributing the video signal efficiently by utilising the bandwidth of the
users to distribute the video. This removes the bottleneck in the upload bandwidth as
each user only uploads his video once and acts as a source in a live stream. The other
users subscribe to all streams and realise a video conference. This approach has the
benefit of scaling in the download bandwidth rather than the upload bandwidth. This
approach is distributed and thus is robust as there is no single point for failure. As in a
P2P system, each user is a stream generator who generates the stream of his live video
to be subscribed by others, a user only uploads one stream of his video. The stream
propagates via trees to users with each user acting as a node who consumes the video
but also utilises his upload bandwidth by sharing the video with other user who wishes
to consume it. This means the available upload bandwidth for dissipation increases with
increase in number of peers subscribing to it. The data may dissipate in a tree like
structure with nodes at the top of the tree contributing more in bandwidth as compared
to the nodes at the bottom of the tree.

Systems like these are implemented using a robust P2P streaming protocol at the
application layer. There are many systems which have been evaluated in literature as
possible candidates for supporting a multi-user video conferencing system. They are
Narada, NICE, ZIGZAG, End System Multicast, Overlay Multicast etc. The challenges
in realising a video conference using these technologies are as follows:

• Costly Framework - These protocols have been basically developed as real-time
video streaming systems. A streaming video system, although real-time may not
have as hard real-time requirements as an interactive video conferencing system.
A stream may start after an initialisation delay of several seconds followed by an
end to end latency in excess of 300 ms. However a video conference should have
minimal initialisation delay (less than 300 ms) and also the end to end delay should
be limited to 300 ms in the worst case. In these conditions, a lot of engineering
effort has to be put in to optimise the latency at various levels. Also to ensure
robustness, lot of performance related optimisations may be required which will
again take a lot of engineering effort. Although these systems promise scalability
of greater orders of magnitude than traditional video conferencing systems, the
cost-benefit ratio for these systems remains quite high.

• Congestion Control - Due to inherent structural difference between traditional
video conferencing technologies and these, standard channel reservation or session
maintenance strategies cannot be used. However congestion still affects these sys-
tems and a channel specific feedback cannot be obtained. On the other hand,
many peers may have downloading capability more than they need and could up-
load multiple descriptions of videos. Hence the strategy employed here is that

26 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

every peer uploads multiple streams of a MDC video with every stream being ev-
ery description. Peers download only the number of descriptions their bandwidth
permits. Video packets may also be re coded according to the appropriate outgoing
bandwidth at every node. This is called network coding but this leads to increased
latency at every node of the tree which reduces the tree depth and severely limits
the available bandwidth in the network.

• Session Management - Session initialisation and management is done using stan-
dard P2P handshakes querying for data availability and tracker address and at the
application level, these handshakes may be too time consuming. This increases
the overall complexity in session establishment and increases the initial connection
time. Depending on how populated the network is with potential video distributing
peers, the connection time may vary from a few milliseconds to several seconds.
Such lack of reliability affects robustness making these systems less attractive for
deployment scenarios.

• Tree Creation - The underlying structure which dissipated real-time video data
amongst participants of the video conferencing system is the tree. The ideal tree
would be characterised by nodes having the highest bandwidth being the higher
branches whereas nodes having less bandwidth lower in the order. As each node will
be a source of its own data dissipation tree, a group of participants would symbolize
a mesh of different trees together. The depth of the tree of the peer with the weakest
bandwidth would determine the maximum number of participants (which would be
more than that of a traditional VC because of more available bandwidth in general).
However the critical catch in this condition is the maintenance and repair of the
tree in the case of additional peers joining or a peer leaving the conference. When
newer peers join the conference, the peers with higher bandwidth should be placed
nearer to the top while peers with low bandwidths should be placed near to the
bottom. If a peer from the bottom of the tree leaves the conference, there is not
much change in the available bandwidth but if a peer at the top of the tree decides
to leave, the tree must be repaired in real-time to ensure that the conference quality
of experience does not degrade due to loss of link or unsustainable video quality.
This challenge requires a very complex and an adaptive algorithm and ensuring
robustness of such algorithm in deployment conditions remains a challenge.

Skype audio calling software is famously known to use multi point peer-to-peer ar-
chitecture using their own proprietary protocol (Kazaa) and video conferencing systems
like Chatroulette use this architecture too.

Case study: Libswift - Peer-to-Peer Streaming Protocol

Libswift is a peer-to-peer streaming protocol developed at TU Delft. The Peer-to-Peer
Streaming Protocol working group has adopted the Swift peer-to-peer streaming pro-
tocol (P2PSP) as a working group reference. This protocol is called Swift, for brevity.
The basic difference between Swift and other P2P streaming solutions is that the other
protocols are at the overlay level or at the application layer while Swift is at the trans-
port layer. Applications like GetMiro, MyP2P, Coolstreaming [93] and Narada [65] have

2.5. QUALITY OF SERVICE 27

shown that Real-Time Video can be streamed using P2P networking and Civanlar et
al. [27] also demonstrated a video conferencing system developed using underlying P2P
network. However as mentioned the main difference with the P2P streaming applica-
tions in them and in Swift is that unlike the other protocols, Swift is implemented at
the transport layer.

Swift can be an ideal candidate for implementing a video conferencing system as it
satisfied all the above requirements and in some cases it is even better than contempo-
rary protocols available. Subsequent paragraphs discuss how Swift fares in dealing with
challenges offered by a video conferencing system.

• Framework - Swift has been basically developed as video streaming protocol.
Hence even though Swift may be capable to host a video conference, it has not
been tested under hard real-time requirements. A lot of engineering effort has to be
put in to optimise the latency at various levels. However, the handshake associated
with starting a Swift download is less compared to other streaming systems like
Bit Torrent and because of this inherent difference, Swift is easier to optimise for
hard real-time requirements as compared to other P2P systems like Bit Torrent.
However, the cost benefit ratio for Swift in terms of engineering effort would still
remain quite high.

• Congestion Control - Swift uses LEDBAT (Low Extra Delay Background Trans-
port) which aims to mimic a kind of congestion control which is TCP compliant.
Congestion Information is available at the transport layer and hence the overhead
induced in performing congestion control at the application layer is reduced.

• Session Management - As Swift was not originally designed for real-time in-
teractive media communication, there is no concept of sessions associated with a
Swift stream. Hence a lot of engineering effort would be expended in maintaining
a session with one of the existing session management protocols. It would also
be interesting to investigate whether the use of session management protocols is
needed or not.

2.5 Quality of Service

Quality of Service (QoS) of any application is the guarantee that the application will
meet certain basic performance requirements. Video conferencing applications are net-
work based applications and hence Quality of Service can be defined as the performance
measured from the network perspective at the packet level. However video conferencing
is in many ways error tolerant and sometimes, little degradation in QoS may mean no
degradation in the performance from a user’s perspective. Hence careful measurement
of QoS and the effect of change in QoS on the resulting performance from a user’s per-
spective is needed to assess the robustness of the application. The QoS is subject to
variations as network behaviour can be random and unpredictable at times and change
in QoS is largely correlated to change in network behaviour.

The performance of the application from the user’s perspective is just as important as
the QoS. This performance is called Quality of Experience (QoE). QoE can be defined

28 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

as the QoS at the application layer. With regard to application performance, QoE
and QoS are parametrically correlated with QoS being a performance measured at the
network level and QoE being the performance measured from the user’s perspective.
Degradation in QoS can lead to degradation in QoE and hence by monitoring one of
them, the other can be estimated to a fair degree. Measuring QoE accurately requires
human experiments which are subjective, not scalable and are hence more likely introduce
human error. It is comparatively more easier to measure QoS, identify and correlate QoS
and QoE parameters, and then determine the QoE empirically.

If one wishes to build a high quality video conferencing application, the QoS should be
carefully monitored to ensure that it does not drop below acceptable standards. In order
to monitor the QoS, the network conditions should be monitored. As mentioned earlier,
network conditions tend to be unpredictable and a tool is needed which can assert control
over network characteristics and subject the video conferencing application through a
variety of network conditions in order to asses its performance in the best case as well
as the worst case.

Statistical data generated by common network monitoring tools may or may not be
sufficient to provide an insight into the behaviour and robustness of VOIP and video
conferencing applications. A dedicated tool needs to be used which can monitor the
network conditions, control them for a brief period of time, collect information pertain-
ing to the behaviour of the application and store this information in a database. This
information can be used later for forensic analysis, recognising trending patterns, iden-
tifying trigger thresholds pertaining to various network conditions and for viewing the
general real-time behaviour of the application. This information can also be used to
provide recommendation for values of critical parameters leading to optimised and or
better performance.

Various tools have been developed and they have been discussed in literature where an
attempt has been made to characterise the behaviour of video conferencing applications.
Cicco et al. [30] developed a framework to determine how Skype [75] adapts its video
source rate as a response to changing bandwidth. Zhang et al. [92] developed a tool
for profiling a Skype video call and also studied the variation in video source rate with
variation in network conditions. Xu et al. [90] used a tool and analysed the topology,
video adaptation and quality of experience of iChat [28], Google Hangouts [37] and
Skype. Kuipers et. al used a tool for measurement study of multi party video conference
in order to study their working, determine use of resources and bottlenecks. Schulzrinne
and Baset developed a framework [20] for analysis of Skype VOIP protocol. Apart
from these many other frameworks have also been discussed which generate data with
varying degree of accuracy and need varying levels of manual intervention. Some of the
frameworks need costly setups and a high level of manual intervention (and hence are
time consuming) like the need to visually monitor a call, using a camera to record video
quality etc. Some of them are designed to collect empirical data in a way which requires
little or no manual intervention, sacrificing accuracy for speed. However all of them
intend to test the effect of changing network conditions on the application performance.

2.5. QUALITY OF SERVICE 29

2.5.1 Challenges to the QoS

Being a network application, the challenges to the QoS can be summarised as follows:

1. Bandwidth - Video source rate is dependent on video quality and when the avail-
able bandwidth is higher, higher quality video can be enjoyed by the user. Alter-
natively, the bandwidth can be used to accommodate more users in the call. A
change in the bandwidth has to be compensated with change in video quality or
change in the call group size.

2. Delay - Increased delay decreases the interactivity of the application. Variation
in delay is known as jitter and studies have shown that users are more likelier to
disconnect the call sooner if the jitter is higher [26].

3. Loss - Although multimedia applications like video conferencing are loss tolerant
up to a certain degree, the user experience of such applications suffers if the loss
increases beyond a limit.

4. Heterogeneity - In a two party or a multi party call, video stream decodable by
one of the users may not be decodable by the other due to differences in hardware.
Hence the video must be carefully customised so that it is decodable on weaker
platforms with loss in video quality.

The tools discussed above attempt to quantify and measure application performance
while changing the above mentioned parameters. Alternatively, the information can be
also used to determine optimum operating conditions for a video conferencing library as
follows:

1. The data can be used to determine what bandwidth is enough for a video con-
ference. This information can be used to limit call sizes. Bandwidth usage is a
function of video quality and thus this information can also determine the maxi-
mum quality which can be made available to the user in a video call.

2. It can determine the worst case network conditions (delay, packet loss etc) which
a library can handle before the call becomes unsustainable.

3. A library may be configured beforehand to ensure that it meets some performance
constraints (like maximum bandwidth, minimum video quality etc.). The data can
be used to find out if the library overshoots the constraints placed on it.

4. Lastly, the framework can divulge information pertaining to topology (like loca-
tion of the server or other peers) which can be utilised to optimise the back end
infrastructure required by the library.

Moreover, data like delay, packet loss ratio and jitter can be used to model the
congestion in the network and the resulting model can be used to design the optimum
response of the library to the available congestion. Model based estimation techniques
run the risk of being either too complex or oversimplified and therefore the data generated
from these tools can be used to carefully calibrate the model.

30 CHAPTER 2. VIDEO CONFERENCING TECHNOLOGY AND
CONSIDERATIONS

Later chapters of this thesis discuss a problem statement of building a system which
uses a video conferencing library as an engine. They draw requirements which are placed
on the library, discuss existing libraries which meet a basic set of requirements. Later
they discuss the design of a framework like the ones discussed above in order to determine
whether a chosen library is able to deliver a minimum required QoE or not and present
the findings of applying the framework to the chosen library.

Problem Description, System
Requirements and System
Design 3
This chapter discusses the initial steps towards the design of a video conferencing system
for Presence Displays BV [9]. The product is aimed at the health care sector with special
focus on connecting people with disabilities and psychosis through a virtual platform.
The system is designed to be an application targeted on an Android platform (given the
low cost) and is aimed at realising a virtual space where users meet for a multi-user video
conference. This chapter lists the technical and design challenges posed by the design
and the proposed development of the application. This chapter is organised as follows.
Section 3.1 presents the unique aspect of this concept which differentiates it from other
applications in the market. Section 3.2 discusses the use cases which need to be analysed
in a user centric software design flow. Section 3.3 discusses the system requirements
which are derived from the use cases and a system architecture and a modular design
are presented in section 3.4. Section 3.5 concludes this chapter with future directions for
product development based on the analysis presented in this chapter.

3.1 Concept

The video conferencing system in question which is being developed envisions the re-
alisation of a virtual online space where users can meet fellow users using the same
application and choose to engage in a video chat with them. In this virtual space, users
will be represented by a thumbnail (or a bigger size window as per the screen resolution)
of their video. The thumbnail sized video makes rendering of more and more users pos-
sible on a small screen (as tablet screens are smaller than laptop screens). The users will
be able to engage in a group video chat with fellow users in the virtual space. Hence one
of the unique aspects of this product is that it facilitates multi-user video conferencing
with dynamic connections. As the unique aspect of the product is its user experience, a
set of basic user requirements have to be satisfied at all times and hence a user centric
design approach was selected.

According to the development model seen in figure 3.1 [12], the first part of the design
is the analysis of user requirements and extracting the system requirements from that
design.

3.2 User Requirements

The following sections analyse the important use cases to better understand the user
requirements. Some of the user cases are not discussed in this document because of
confidentiality purposes. The purpose of this section is to give the reader a common
understanding about scenarios encountered in deployment.

31

32 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

Figure 3.1: User Centric Software Design Stages

To better introduce the user scenarios, we define the following terms for brevity:

• Server - For centralised management, a server may be needed. This centralised
conference management entity will be called the server.

• Feed - The combined audio/video generated by each participant in the conference
will be called the feed.

• Client - There is software running on the tablet of every user. This user side
software is referred to as the client.

• Participant - The average user who participates in the conference is referred to
as the participant. We call them A, B, C and so on.

3.2.1 Login Scenario

In order to detect a new user who has just started a session and to ensure that only
registered users are using the software, the video conferencing library in use will have to
provide some type of user authentication like a login/logout service. This prevents the
usage of the software by unauthorised users or users who are not meant to access the
service at that particular point in time.

3.2.2 Group formation scenarios

As the application intends to let users make groups of more than two users, the video
conferencing library must be capable of handling a multi-user video conference. To allow
new users to dynamically join the conference (and to modify the user experience so that
the user does not have to re-authenticate himself each time he joins a group), information
on the login procedure of the video conferencing library is needed.

If more number of users subscribe to the chat, the video quality has to be lowered
to accommodate the decrease in per user bandwidth. Once a stage is reached where an
acceptable quality of video cannot be delivered, audio should take priority and the users
should engage in only an audio conversation.

3.3. SYSTEM REQUIREMENTS 33

3.2.3 User shuts down/disconnects without warning Scenario

This scenario deals with the possibilities arising when the user does a non procedural
shut down (disconnection without a warning). If the user does a non procedural shut
down, the server disconnects the conference after a certain period of time and does a
log out procedure for the client. The opposite of this scenario is the scenario where the
server fails. If the server does not acknowledge an alive message or any message from the
client for a certain specific amount of time, the client considers the server to be failed
and stops all activity. It also notifies the user that the server has failed, so the user is
not surprised with the sudden loss of connection. It probes the server with repeated
periodic login requests to see if the server is back up again.

3.3 System Requirements

From the use cases, the requirements for system design have been formulated. These
requirements will help us establish important criteria for the selection of software
libraries/pre-built modules for realising the application. It will also give the designers a
clear idea of what is expected of the software that they are building.

The requirements of the system can be divided into three parts:

1. Software system requirements

2. Video Conferencing Library requirements

3. Hardware requirements

3.3.1 Software System Requirements

The system requirements can be summarised as follows:

1. From a brief overview of the discussed scenarios, it is clear that the presence of a
central server for administrative and conference management purposes is essential.

2. There should be a graphical user interface (GUI) which allows users to interact
with the application and shows the video thumbnail of everyone on the screen.

3. There should be an audio/video renderer module present which displays feed from
the other users in the system on the tablet screen of the user.

4. There should be an audio/video generator module which records audio/video of
the user and generates media content which is streamed in real-time to the other
participants in the conference.

5. The client and the server both should have a software module which performs the
login and logout procedure. The server must be able to authenticate the validity of
the users and do a login/logout procedure whenever requested by the user. These
modules ensure that application is not misused and that only authenticated users
are allowed access.

34 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

6. The user searches other users in the system in order to interact with them. Hence
the client needs to know the other users if it wants to open a video conference
connection with those clients. Hence, a requirement is low interaction times with
a centralised connection server enabling these tasks to be done in real-time.

7. The client software should have a real-time video communications library which is
equipped to handle multi-user video conferencing services. The multi-user aspect
of the library is crucial as the application aims at supporting as many users as
possible in a conference.

8. The connection establishment time of the library is a critical parameter for quality
of experience. It has been observed that users tend to get dissatisfied with the call
quality if the call establishment time increase beyond a limit [26].

9. The video quality needs to be changed depending on the congestion status in the
group (which also depends on the group size). Thus the underlying library which
implements the video conference needs to have varying or scalable video quality.

10. The application is expected to run on wireless networks in different geographical
locations. In such networks, the connection quality depends on the geography and
may vary over time. Hence the video conferencing library should have a strong
and robust congestion control strategy.

11. As the application is designed for a tablet, it should maintain a strict power budget
and CPU resources should be minimally used.

3.3.2 Video Conferencing Library Requirements

In this section, the necessary functional requirements for the video conferencing library
are described.

• A Server is required to keep track of which group of users are in conference with
each other. This server can also be a media relay server depending on the topology
of the library.

• Scalable Video Quality - The video conferencing library in use should have
scalable video quality so that video delivery is not impaired due to heterogeneity
in bandwidth and hardware across users.

• NAT Traversal - The video conferencing library in use should have NAT traversal
functionality like TURN (Traversal Using Relays around NAT) [55]. TURN is a
protocol which enables clients behind a NAT or a firewall to connect with other
peers via TCP or UDP. As media packets are sent over UDP, TURN or any other
NAT traversal protocol is essential for establishing a connection with other peers
for a video conference.

• CPU Usage - The CPU usage of the video conferencing library should be such that
the running of other applications on the tablet should not be adversely affected.

3.3. SYSTEM REQUIREMENTS 35

• Acoustic Echo Cancellation - Echo cancellation is a problem encountered in
real-time interactive audio applications and an AEC module must be present to
eliminate the irritative effects of the echo.

3.3.3 Hardware Requirements

The requirements and the system design impose certain broad requirements on the choice
of the implementation platform. The requirements can be summarized as follows:

• Power Supply - The tablet should be powered by a battery which can be charged
with an adapter connected to the standard power supply (220 V).

• Operating System - The tablet should be running an Android OS.

• Display - For input/output, the tablet should have a standard multi touch display.

• Speaker - The tablet should have a stereo loudspeaker with a 3.5 mm jack for a
standard headphone.

• Camera - The tablet should have a web cam and it should be capable of providing
a resolution and frame rate comparable to that of other devices in the market.

• Microphone - The tablet should have a microphone for audio input with accept-
able noise and crosstalk levels.

• Internet - The tablet should be capable of supporting a wireless LAN connection.

• Hardware Acceleration - The tablet device should have a GPU which can be
used to accelerate encoding and decoding of the video.

Apart from the above mentioned requirements, there are some other practical re-
quirements which the software needs to fulfil. Some of the requirements are as follows:

1. Maturity - A critical requirement while selecting a component is its maturity. A
highly mature software already meets a large number of the general technological
challenges in video conferencing and less engineering effort is required in making
production code. Also a mature software also typically has a strong developer
community which can be turned into for advice in case a fundamental challenge
is encountered. A mature software component greatly reduces the resources used
and the time to market. This is even more critical in the case of a company like
Presence Displays which has limited resources owing to its size.

2. Cost - The cost of the components used in design should be as low as possible.
Higher cost of development results in a higher price of the product and it takes
a longer time to get financial returns from the product. This criterion is relevant
for any company’s business needs and becomes even more critical in the case of
Presence Displays.

36 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

3. Modular Structure - Even though video conferencing is a technology which has
been standardised at many levels, newer and newer standards are still being pushed
[49] and newer and more efficient components are being developed. Integrating a
newer and more efficient component in a product can be challenging and many
newer challenges can be encountered which demand highly skilled know-how and
engineering effort. To avoid these problems, the initial choice of implementation
should be easily modifiable and newer components should be easily integrated into
it.

4. Intellectual Property Rights - It is in the interest of Presence Displays that
the copyright of the software developed remains within the company. It is essential
that the knowledge acquired in solving the product specific challenges remains with
the company. Hence the company should be able to white brand and not publicly
disclose the software to the open source community.

Video conferencing is much researched technology which is 40 years old. Hence vari-
ous modules which constitute a video conferencing stack have been optimised for specific
use cases over the years. Anybody wishing to build a video conferencing application
does not need to implement the complete infrastructure but can use already existing
libraries and modules to design the system. The application centric modifications can be
made to the library later which do not require as much engineering effort as compared
to designing a video conferencing infrastructure itself. Hence the next step of design
is to identify which existing components can be used for making this application. The
requirements derived from this section give us a brief idea of the criteria that must be
looked into before making the choice of which components to use in the product design.

3.4 System Design

From the previous sections, a clear idea has been obtained of all the requirements which
must be satisfied by the system. This section tries to explain how the requirements
were translated into system design. As the topology is the most important part of any
system design, it is important to fix the topology first. The next sections discuss various
topologies.

3.4.1 Topologies

For a video conferencing system, as already pointed out in earlier chapters, there are
predominantly three types of architectures:

1. Client-Server

2. Peer-to-Peer

3. Peer-to-Peer with usage of peer bandwidth for video distribution

The challenges posed by each of the architectures are discussed in the following
subsections.

3.4. SYSTEM DESIGN 37

Client-Server

In the client server architecture a robust server with a high bandwidth has to be im-
plemented. This architecture lacks scalability and becomes difficult to maintain as the
number of users increases beyond a certain number. Also the server is a single point
of failure and hence a back up server must be in place to ensure seamless functionality.
This architecture is flexible to heterogeneity in bandwidth and hardware across peers
as the server can modulate video quality for each peer depending on its bandwidth and
decoding capacity.

Peer-to-Peer

The peer-to-peer architecture is more cost effective from the perspective of the company
as it company does not need to maintain a server for delivering audio/video data. This
does not present a single point of failure and if there is a failure at any peer, only that
peer is affected and the rest can continue their video conference. This architecture is less
flexible to heterogeneity in bandwidth and hardware across peers as a single peer cannot
send different qualities of video conference across different peers. Another drawback of
this architecture that it is not group scalable. The upload bandwidth is less than the
download bandwidth and hence uploading the same video to larger and larger number
of peers does not scale in upload bandwidth. This problem can be seen in figure 3.2.
Ensuring that each user gets the highest quality of experience available irrespective of
hardware/bandwidth constraints is very difficult. Managing and tracking potentially
thousands of users will increase the complexity in this architecture.

Figure 3.2: Peer-to-Peer VC

38 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

Peer-to-Peer with peer bandwidth usage for video distribution

This architecture is scalable in the download bandwidth and is hence more scalable than
the one discussed previously. Here, each peer uploads his own video once and acts as
a relay for video of some other peer. Each peer subscribes to streams originating from
other peers it wishes to be in a video conference with. Each peer may receive the feed
from a peer who has enough bandwidth to relay his as well as the source’s feed. This
approach makes it possible to utilise the complete bandwidth available in the system.
Apart from that, as the application has number of users logged on to it at any given
point of time, their bandwidth can be utilised for video distribution. This approach
requires less back-end infrastructure and reduces infrastructure costs for the company.
The drawbacks are that such systems are mostly tested for use in VOIP and very few
have been tested for use in video conferencing systems. The engineering effort required
to realise such a system is high. This architecture can be seen in figure 3.3.

Figure 3.3: Each peer relays its own plus the video of another peer

The topology depends on the video conferencing library which is available for use
in the product. Other parts of the system will then be designed keeping in mind the
topology used by the library.

3.4.2 System Architecture

The above topologies are mainly for interactive media communication between users.
However from the requirements generated by the application, one of the conclusions that
can be drawn is that a server will be nevertheless needed for application specific purposes
and whether there should be an additional server to relay media is a decision that will
have to be taken depending on the availability of suitable video conferencing libraries.
Hence from the analysis of various requirements a client-server based architecture was

3.4. SYSTEM DESIGN 39

proposed with the modular architecture for server shown in figure 3.4 and for the client
in figure 3.5

TCP Socket

Login/Logout
Manager

Handshake Module

Conference Manager

Server Software Modules

Figure 3.4: Server Modules

GUI

A V Generator/Render

Login
Video Conferencing

Library

TCP UDP

Conference Controller

Client Software

Figure 3.5: Client Modules

The software modules at the server can be described as follows:

1. TCP Socket - The server communicates to the client via TCP as a transport
protocol. TCP is reliable and thus ensures that no packets are missed or lost.

2. Handshake Module - The server has a handshake module which tracks dead or a
live activity from the client. If the client is requesting a login/logout procedure, or
information about its peers necessary to make connection, then the server knows
it is alive. If the client is not communicating with the server for these cases, as

40 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

may be the case when a long conference is in process, the server tracks the status
of the client through periodic handshakes which are carried out by the handshake
module.

3. Conference Controller - This module takes decisions on conference initiation,
disconnection and quality of experience of the users. This module will be equipped
to perform all conference management functions.

4. Login/Logout Manager - This module authenticates the user at initial sign in
and prevents misuse of the application.

Similarly the software modules in the client software as shown in figure 3.5 are de-
scribed as follows:

1. GUI - The GUI is the interaction point between the user and the software and is
the layer where the unique user experience of the application is delivered.

2. AV Generator/Renderer Module - The audio video module records the au-
dio/video and generates content for delivery to participants in the conference.

3. Video Conferencing Library - The content generated by the above module
is sent through this module which is well equipped to handle multi-user video
conference.

4. UDP Socket - User Datagram Protocol is used as the underlying protocol for
media delivery as TCP is not well suited for inelastic media transport.

5. Conference Controller - This module communicates with the controller module
at the server and depending on the requests made by the user or decisions made
by the server, initiates, disconnects or takes decisions pertaining to the quality of
experience in the conference.

6. Login/Logout Manager - This module is responsible for the user authentication
initial sign in.

7. TCP Socket - The modules need quality of assurance at the packet level to ensure
that none of the elastic data is lost. Hence The modules communicate with the
server through a TCP socket.

Figure 3.6 shows the interaction between the client and the server at the modular
level for the login/logout process. The login module at the client communicates with the
login module at the server through a TCP socket.

The complete interaction process can be clearly understood with the help of the
following user interaction and sequence diagrams. The user interacts with the client
software through a graphical user interface as seen in Figure 3.7. Then the client does
a login procedure with the server and authenticates the client. As the video conference
starts via the video conferencing library, the video is rendered through the GUI for
the user via the renderer module. The conference manager at the client continuously

3.4. SYSTEM DESIGN 41

Figure 3.6: Interaction between login modules

GUI

Server

Login

AV Gen/Render

Conference
Manager Client

Conference
Manager Server

User

Video
Conferencing

Library

Other participants

Figure 3.7: User interaction with the software

interacts with it’s counterpart at the server. It also takes user preferences from the GUI
and the changes in conference structure/experience etc. can be seen on the GUI.

The sequence diagram seen in figure 3.8 better explains the chronological order in
which interactions take place between two users, A and B, leading to connection being
established between them. User A initiates the login process through a login module
present at his end. The login module requests authentication and waits for validation
from the server. The conference manager module of User A then requests connection
details of User B to the server so that a video conference between both the users can
be initiated. The server then provides the conference managers of both Users A and B
with the connection details of each other. These processes are invisible to the user and
require no input from the user. As soon as the connection details are exchanged, the

42 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

conference manager module of User A establishes connection with User B notifying that
a video conference is about to take place.

Once a connection has been established, a video conference is initiated by the video
conferencing module present with both the users. As the conference is established, the
the video of User B is rendered on the GUI of User A and vice versa.

<<User A>>
/UI

<<User B>>
/UI

<<User A>>
/Conf. Mgr

<<User A>>
/Video Library <<Server>> <<User B>>

/Conf. Mgr

Login

Validation

Req. Connection (B)

Connection Req. Success

Send Connection Id (B)

Establish Connection

<<User B>>
/Video Library

Send Connection Id (A)

Video Conference GUI RenderGUI Render

Update GUI (A)Notify Connection (A)Update GUI (B)

Exchange Connection Id

Login

Req. Connection (B)

Figure 3.8: User interaction with the software

3.4.3 Server’s function in QoE management

The application is committed to offering a minimum Quality of Experience (QoE) to
the users taking part in the group. Thus if the bandwidth is not enough to provide
an acceptable quality of experience, the application prohibits more users from joining
the conversation. Usually QoE is the prerogative of the video conferencing library and
measures taken to maintain a decent QoE such as encoding video to use less bandwidth,
putting a cap on number of users for congestion control are implemented by the video
conferencing library itself. As our application is built on top of the video conferencing
library, the application server can also be used to supplement the congestion control
features of the library.

All users periodically transmit information like alive handshakes and position co
ordinates with the server. This channel which has already been established can be used
to transmit sender’s and receiver’s reports about congestion and QoE. This approach
can be used as a supplement to the congestion control strategy of the video conferencing
library and not a replacement as robust congestion control is difficult to implement.
Each user can relay important parameters like RTT (Round Trip Time), current video
resolution, frame rate at their end to the server. The server can then pass on this
information to other users or to the media relay server who then take appropriate steps
to reduce congestion. Because of this approach the server has a constantly updated
knowledge about QoE parameters which can be intelligently used to deliver varying

3.4. SYSTEM DESIGN 43

levels of service to the users.

Also in the future, the server can be used to realise the following functions:

• Additional software modules can be installed at the server to keep a track of any
user’s preferences.

• The server can be used to support server based applications for users in the future.

• The server can be used to send software updates to users if and when the need
arises.

The following figure 3.9 shows the deployment scenario of the application in brief
where it can be seen that different clients are connected to one centralised application
server.

Figure 3.9: Deployment Scenario with a Centralised Server

3.4.4 Hardware Device

Google Nexus 10 was chosen as the tablet device for implementation as it fulfils all the
necessary requirements to support a multi-user video conference. The features of the
tablet pertaining to our requirements can be seen in table 3.1. The tablet runs Android
OS and is thus cheaper as compared to other tablets running different operating systems.
It has a large display of around 10 inches and thus rendering space is larger as compared
to other smaller tablets and mobile devices. Video capture is available at 1080p and
30 FPS which suggests that a true HD video conference can be possible on this tablet.
Nexus 10 also has a powerful GPU accelerator which aids suitably in video rendering.

44 CHAPTER 3. PROBLEM DESCRIPTION, SYSTEM REQUIREMENTS AND
SYSTEM DESIGN

Table 3.1: Google Nexus 10

Requirements Google Nexus 10

Power Supply Li-Po 9000 mAh battery, 9 hours Talk Time
USB charger with a 220 V adapter.

Operating System Android v4.3

Display Multitouch, Super PLS capacitive touch screen,
2560 x 1600 pixels, 10.1 inches display (299 ppi)

Speaker Stereo speakers with a 3.5 mm audio jack

Camera 5 MP, 25921936 pixels, Video capture @ 1080p (30 fps)

Microphone Noise levels of -82.3dB Crosstalk levels of -81.4dB.

Internet WLAN Wi-fi 802.11

Hardware Acceleration Mali-T604 GPU accelerator

3.5 Conclusion

After the various requirements and functionality of different modules has been finalised,
the next step is the identification of available video conferencing libraries in both the open
source and closed source domain which will be used to implement the video conferencing
software. The requirements extracted and discussed in this chapter will heavily decide
which libraries are deemed fit for implementation. These libraries will then be tested
for various parameters like robustness and maturity and a qualitative and quantitative
performance analysis will be done to choose one final library for implementation.

Overview of Video
Conferencing Libraries 4
4.1 Introduction

This chapter discusses different video conferencing libraries which can be used for im-
plementation in the development of the application for Presence Displays. The system
requirements were proposed after analysing the user scenarios and based on these re-
quirements a system design was proposed for the video conferencing system. For the
implementation of the system, the next step is the identification of software modules in
both the open and closed source domain which can be used. The modules at the server
are highly application centric and need to be designed and developed from scratch. How-
ever the other part of the system, which is the video conferencing infrastructure need
not be developed from scratch as many libraries are available both in the open source
and closed source domain. Hence the next logical step in the development of the ap-
plication is identifying which video conferencing library suits best for the given set of
conditions and proceeding with that library for implementation. In this chapter the
available libraries were surveyed and some relevant libraries were found which were cho-
sen for further development. Section 4.2 discusses the important criteria which were
considered while narrowing down the list of libraries for development. In section 4.3 the
available libraries which can be considered for development are listed and in section 4.4
the choice of libraries is narrowed down in a detailed discussion.

4.2 Criteria for Evaluation

Chapter 3 discussed the requirements needed for video conferencing software design.
However not all the video conferencing libraries in the open and closed source domain
match all the requirements. Hence some criteria is needed for short listing the libraries.
The chosen library should have a good quality of experience. However testing all the
libraries for quality of experience is time consuming. Therefore the criteria are to be
divided into two sections. In the first section, the libraries are scanned for non functional
but highly critical requirements like availability of code etc. The second criteria which
will be tested is the quality of experience (QoE) itself. The short listed libraries of the
first section are then subjected to an extensive qualitative and quantitative analysis for
quality of experience and a library which suits all the requirements is selected.

The highly critical requirements which can be summarized as pre-selection criteria
for the library are described in the following sections:

45

46 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

4.2.1 Quality of Experience

Quality of Experience (QoE) of a video conferencing library is the general user experience
each library provides. Although highly subjective, it can be measured using various
qualitative and quantitative parameters like frame rates, variation in frame rates, frame
resolutions, variation in frame resolution, audio quality, communication delay, variation
in delay, etc. The criterion that the library should have decent QoE has a high priority.

4.2.2 Maturity

Presence Displays is a small company with limited resources and engineering man power.
Hence the primary requirement for selecting a library is that it is highly mature so that
less engineering effort is expended in developing a product. A mature library already
solves various basic technological challenges and thus reduces the time to market as a
lot of time is saved in making product oriented optimisations into it. This criterion has
a high priority.

4.2.3 Robustness

Robustness to unknown network conditions is an important criteria which is required
for the library. A production version which handles unexpected network conditions is
needed as the company cannot make fundamental changes to proprietary software in
case changes are required for ensuring robustness. Although the actual robustness of the
library under varying network conditions will be tested later to evaluate the performance,
a basic guarantee of robustness through discussions in developer community and users
will be much appreciated. This criterion has the highest priority.

4.2.4 Technical Support

There should be an active developer community so that challenges could be solved en-
suring a fast time to market development cycle. An active developer community is a
big help to the engineers designing and maintaining the software and makes it easier to
debug and add future functionality. Considering the options or the lack of thereof, the
priority for this criterion is low.

4.2.5 Android Compatibility

The application to be developed is intended for use on Android and hence the video
conferencing library should be able to compile and work on an Android platform. An-
other option could be porting an already existing library to Android, but that would
require a lot of engineering effort and many newer challenges would have to be solved
in guaranteeing robustness in deployment conditions. If an appropriate solution is not
found, a library which works on Linux systems can be ported to Android with extensive
modifications. This criterion has a high priority.

4.2. CRITERIA FOR EVALUATION 47

4.2.6 Multi-User Video Conferencing

The library should be able to allow a multi-user video conference. The session man-
agement and bandwidth usage scenarios differ in case of a two-way conference and a
multi-user video conference. Thus modifying a library which supports only a two-way
video conference into a four-way video conference would require a lot of engineering work
in ensuring robustness for different conditions. In order to avoid the challenges of porting
a two-way video conferencing library to a four-way video conference, this criterion also
has a high priority.

4.2.7 Availability of Source Code/API

The software library should be open to developers so that any application oriented cus-
tomisations can be made to it. If the library does not have a developer API, we cannot
make our modifications to it. This pre-selection criterion is a highly critical as a library
cannot be used if the developer API is not available.

4.2.8 Price

The cost of obtaining the library for development should be relatively low and affordable.
This criterion also has a high priority as a high cost solution increases the development
cost and the time to fetch returns on investment. Also as the application is targeted
towards the health care sector and people with disabilities, the cost of the application
cannot be high as it would make it unaffordable.

4.2.9 Intellectual Property

Any modifications done to the library will be the result of engineering effort, time and
resources expended by the company. Thus the company should enjoy the sole right over
these modifications. There are commonly three types of licences:

1. GNU Public Licence - If the library carries a GNU Public Licence (GPL), the
entire application which uses the library will have to be made open source. This
means that the uniqueness in the application will be out in the open source domain
and the company will lose any strategic advantage it might have had due to the
novelty of the concept.

2. Lesser GNU Public Licence - If the library carries a Lesser GNU Public Licence
(LGPL), any modifications made to the library will have to be made open source.
However other modules which do not need to be compiled with the library can still
be kept secret to avoid breach of company confidentiality.

3. Berkely Software Distribution Licence - Berkely Software Distribution (BSD)
Licence is a more company friendly licence which allows the company to own the
copyright and not release the modifications of the source code to the public.

Some libraries with a developer API come with clauses like the software needs to be
evaluated by the developers of the library and that the developers may prohibit the use

48 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

of the library for that application in the future. These clauses cause a lot of uncertainty
for future use of the application and application development itself. Therefore these
intellectual property issues need to be carefully evaluated before choosing a library.
Finding a library with an appropriate licence has a medium priority.

4.2.10 Support for other functionalities

The application expects to support other functionalities in the future like file sharing
and chat. If the video library can support these applications, future development on
the application will be easier. However, this criterion has low priority and if a library is
found which does not support this criterion, it is still usable.

4.2.11 Summary

All the criteria priority and the parameters used in their evaluation are summarised in
table 4.1. A ’Good’ evaluation parameter stands for acceptable levels of QoE. An ’OK’
parameter means acceptable level and ’Bad’ means an unacceptable level. However as it
will be shown, QoE is a highly subjective parameter requiring extensive analysis which
is discussed in later chapters. If the source code or the API of a library is available, the
parameter is ’Yes’ otherwise ’No’. In case of favourable licensing issues, the library is
given a ’Feasible’ rating or otherwise a ’Not Feasible’ rating is given to it. Likewise other
parameters are used to determine where exactly a library ranks in order of preference
when it comes to pre-selection criteria. As criteria like robustness and QoE cannot be
determined at the pre-selection time, only the other criteria are used to select a library.
The libraries would then be subjected to a framework discussed in later chapters in order
to evaluate robustness and QoE.

Table 4.1: Priority of Criteria and Evaluation Parameters

Criteria Priority Evaluation Parameters

Quality of Experience High Good, OK, Bad

Availability High Yes, No

Maturity High High, Low

Robustness High High, Low

Android Compatibility High Yes, No

Multi-User High Yes, No

Price Medium Acceptable, Not Acceptable

Technical Support Medium Available, Partly, None

Intellectual Property Issues Low Feasible, Not Feasible

Other activities Low Possible, Not Possible

4.3. OVERVIEW OF VIDEO CONFERENCING LIBRARIES/APPLICATIONS 49

4.3 Overview of Video Conferencing Libraries/Applica-
tions

This section presents a review of most common video conferencing libraries available in
the public and private domain which may be available for use. The domain space for
VOIP (Voice Over Internet Protocol) applications reveal the existence of many VOIP
libraries and applications. The search for these libraries was narrowed down to the
applications that support video chat as the initial criteria to reveal an extensive list.
The list is as follows:

1. AOL - AOL (America On Line) Instant Messenger is a video chat service which is
made for Macintosh OS and Windows. It is also capable of file transfer and placing
voice calls from PC to telephones. It is closed source and no API is available for
developers to develop and build their own application using the library [16].

2. Bria - Bria is a program developed by CounterPath Corporation which is a video
conferencing client. It is available for Windows, Macintosh. A Linux version is
also available but only voice calling features are implemented. It is closed source
and no developer API is available for building applications [29].

3. Ekiga - Ekiga is a free software available under the GNU public licence and is
available for Windows and Linux platforms. The source code is available and
hence newer modifications can be added onto it. It also has support for making
phone calls to telephones via PC [31].

4. Eyeball - Eyeball chat is a free application for windows platform and along with
video, it also has voice calling feature in it. Eyeball measured a nine in the top ten
video conferencing softwares according to this review [1]. However the software is
not open source and there is no developer API available for development [33].

5. Eyebeam - Eyebeam is also a program developed by CounterPath corporation and
is a proprietary video conferencing application developed for Windows. It supports
other features like voice calls. But a developer API has not been released for this
library [29].

6. Google Talk - Google Talk is a voice, video and chat client available for Linux,
Windows, Macintosh OSX and Android, and is available as a plugin. As the name
suggests, it is developed by Google and it is closed source. Developers have access
to an API allowing them to integrate hangouts within their application but the
API does not make it possible to have a customisable independent client [37].

7. iCall - iCall is a voice and video conferencing client available for Linux, Mac, iOS,
Windows as well as Android. It is a free software for download but a developer
API is not available for developer services. It however supports other applications
like file transfer and instant messages [17].

8. Jitsi - Jitsi is a free software for Linux, Mac and Windows operating systems. As
it carries with it a Lesser GNU Public Licence (LGPL), its source code is available

50 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

and any modifications to the code will have to be made public. It supports features
like text messaging [46].

9. KPhone - KPhone is a free software developed for Linux available under the GNU
public Licence. Its source code is available for development as it is a free software.
It has support for voice chat, instant messaging and IPv6 [48].

10. Linphone - Linphone is a video and instant messaging client available for all op-
erating systems such as Windows, Linux, Android, Mac, iOS and even Blackberry.
This software is a freeware and is available under the GNU Public Licence. Hence
any changes to the source code will have to be made public under the GPL as well.
However it is possible to get a commercial licence from the company. This library
supports a lot of audio as well as video codecs and also supports high definition
video provided the CPU is capable enough [52].

11. MicroSIP - MicroSIP is a free software for video conferencing, voice chat and
instant messaging. It is available freely under the GNU Public Licence but is
available only for Windows. As the name suggests, it uses the Session Initiation
Protocol (SIP) for session management [58].

12. Mirial Softphone - Mirial Softphone is a proprietary software available for Win-
dows and Mac OS which supports a High Definition and a full multi party video
conference. However, it is closed and no developer API is available for customising
applications [51].

13. OOVOO - OOVOO is a free software available for Mac OS, iOS, Windows and
Android and supports various features like calling from PC to phone, instant mes-
saging, and a full video conference with up to 12 users. This software is popular
among users and came in at number 4 in the top ten list of video conferencing
softwares [1]. A free developer API was also available for the developer commu-
nity until 2007. This has however been discontinued. An API can be obtained by
paying a registration fee and the choice of this library would depend on the cost
benefit analysis in terms of robustness and scalability [60].

14. QuteCom - QuteCom is a free software available under the GNU Public Licence
and hence the source code is available to the developer community. The application
is available for Windows, Mac and Linux. It supports other features like instant
messaging and can be integrated with other chat clients [68].

15. Revation Communicator - Revation Communicator is an application available
for Windows and is proprietary in nature. It supports full multi party video confer-
encing, voice conferencing, instant messages, file transfer and even desktop sharing.
However the source code is not available and neither is a developer API [69].

16. Sight Speed - Sight Speed is a free ware developed for Mac OS and Windows. It
supports features like multi party calling and voice communication. But a devel-
oper API is not available. This application was rated at number 7 in the top ten
reviews for video conferencing software [1].

4.3. OVERVIEW OF VIDEO CONFERENCING LIBRARIES/APPLICATIONS 51

17. Skype - Skype is a Microsoft owned free software available for all platforms like
Linux, Mac, Windows, Android and iOS. It supports features like instant messaging
file transfer, audio chat, and multi party audio chat. A multi party video chat
option is available but is not free. Skype is one of the most popular software
packages available for video chat and its robustness is well known to users all
across the world. As it is a closed proprietary software, the source code is not
available. However a developer API has been made available for the developer
community for customising the testing. This developer API along with a testing
framework is also available for Android. Hence Skype would be a good choice for
implementing a multi-user application. However Skype was rated at 11 amongst
popular video conferencing software [1] [59].

18. TokBox - TokBox is an application which can be used through browsers and is also
available for Mac, Windows and Android. It features at number 6 in the top ten
reviews for video conferencing software in 2013 [1]. A developer API is available
for TokBox and can be used to develop applications for Android platform [79].

19. X-Lite - X-Lite is a software developed for Mac, Linux, and Windows. A developer
API is not available and the support for Linux applications has been discontinued
since 2012 [29].

20. Yahoo Messenger - Yahoo Messenger is an application for chat, voice and video
conferencing available on all available platforms like Mac, Windows, Linux and
Android. It is free to download but is closed source and hence the source code is
not available for modification. However a developer API is available for instant
messaging and file transfer and not for video conferencing. Yahoo features at
number 2 in the list of top ten video conferencing software [1] [91].

21. Acrobits - Acrobits is a video conferencing application developed by Acrobits
which is a leading provider of VOIP solutions. It is developed for mobile phones and
hence would be better suited for the application in question. However a developer
API is not available and neither is the source code available [13].

22. Farstream - Farstream is an open source project aimed at providing a framework
which supports all audio and video conferencing protocols [5]. This library has
good documentation support and as it carries a Lesser GNU Public Licence with
it, the source code is available [5].

23. OPAL Library - Open Phone Abstraction Libary or OPAL is an open source
library for VOIP and multi-user audio/video conferencing. The library is open
source and hence the source code is freely available. The VOIP client Ekiga dis-
cussed before is based on this library. However, this library is too experimental
and hence is not mature enough for production deployment [61].

24. Vidyo - Vidyo is a video conferencing application available for all major plat-
forms including Windows, Linux and Android. An API of Vidyo is available for a
developer fee [82].

52 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

25. Auralink - Auralink is an application developed for Windows and Mac OS. It
supports a multi point chat and a javascript based developer API is available for
integration into browsers. But an Android based API is not available for devel-
opment. An android version is available but not much documentation is available
about it [18].

26. Radvision - Radvision is an Avaya company which develops proprietary video
conferencing applications for business needs. A developer API is not available
directly but a sales representative would have to be contacted in order to negotiate
the availability of an API at a certain fee.[19].

27. AndBang - AndBang is a WebRTC based application which is available for all
operating systems including Android. There is also a developer API available, but
the price is too prohibitive to use. There are also similar API’s using WebRTC
available via applications like Plivo and AT&T. However they need to be purchased
and the cost benefit analysis must be done before making a decision to continue
with them. WebRTC is an open source framework developed by Google which
aims at integrating video conferencing functionality into browsers [10] [14].

28. WebRTC - WebRTC itself can be used to develop a video conferencing applica-
tion and its source code is available freely. We have even compiled a WebRTC
demonstration on Android working on the tablet. However multi party function-
ality has not been built into WebRTC yet and developing it will require a lot of
engineering effort and time. However, WebRTC is a very promising candidate for
implementation as a very strong developer community is active and newer and
newer functionality is being added to WebRTC day by day [10].

29. SIP on Android - Using Session Initiation Protocol and the Android API, a SIP
based VOIP application can be created. As the SIP protocol can also be used
for signalling in video conferencing sessions, a video conferencing application can
be developed in Android. However thus quite a large extent of the video library
would have to developed and providing robustness would require a great amount
of engineering effort [41].

30. TringMe - Tring Me is an application for video conferencing through browser and
has a PHP based API for development. The API supports Windows mobile but
support for Android is not available [80].

31. PJSIP - PJSIP is a free open source library developed in C for implementing stan-
dard real-time communications technology like SIP, SDP, RTP, STUN, TURN and
ICE [66]. Multi-user video conferencing might be possible in PJSIP and Android
support is also available but there is no information about the stability and matu-
rity of this application. A proprietary API may be made obtained by contacting
the company [66].

4.4. CHOSEN VIDEO LIBRARIES FOR IMPLEMENTATION 53

4.4 Chosen Video Libraries for Implementation

Each of the above libraries and some others were evaluated on the pre-selection criteria
to narrow down the list of suitable libraries. Due to the unique constraints placed by
licensing issues, availability for Android and maturity, only one library was available in
the end. This library is called Library 1 from now on in this thesis.

Library 1 - A developer API (for Android) of the library was purchased by Presence
Displays on parameters of cost based analysis and availability of technical support. The
API of the library was found to be highly mature and the functionality could be changed
(partly) after playing with the API. Due to presence of such a robust API, low develop-
ment times could be anticipated. The library supported full multi-user video conferencing
and hence was well suited for our needs. It has internal performance measurement tools
which make performance analysis easier for application developers.

Technical support is made available by the vendors and extensive online documen-
tation is available on the software. This provided pointers to the application developers
to tweak the API in order to match the needs of the application thereby ensuring ef-
ficient integration of the video conferencing library in their application. Furthermore
Library 1 allowed integration of proprietary software with the library without the obli-
gation of sharing it with the open source community or even the vendors of the library
themselves. Table 4.2 summarises the evaluation of Library 1 using the pre-selection pa-
rameters. None of the important criteria scored a ’Bad’ or a ’Non Acceptable’ justifying
the choice of Library 1.

Table 4.2: Evaluation of pre-selection parameters for Library 1

Criteria Library 1

Availability of Code/API Yes

Maturity High

Android Compatibility Yes

Multi-User Yes

Price Acceptable

Technical Support Available

Intellectual Property Issues Feasible

Other activities Possible

Before selection of Library 1 for application implementation, a robustness analysis
and a QoE evaluation had to be done. The next section introduces the concept of QoE
in detail and describes what does QoE consist of and what metrics affect it.

4.5 Criteria for Quality of Experience

The most important criterion which needs to be evaluated is the Quality of Experience.
Quality of Experience is a combined output of various subjective and objective parame-
ters. These parameters are mostly related to video quality, audio-video synchronisation,

54 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

quality of interaction and general experience with the usage of the application. This
section discusses parameters related to QoE, as follows:

1. Video Quality - Video quality is a subjective parameter which would vary on
users perception of what is good video quality and bad video quality. However to
evaluate video quality scientifically, we need an objective parameter to compare
video quality. This parameter is the Batch Video Quality Metric (bVQM)[2] or
MSU video quality measurement metric (MSUVQM)[8]. A score is obtained by
comparing the video quality of the received video stream with the video stream
that is generated at the source. In the case of bVQM, the bVQM score is usually
between 0 and 1, with 1 being a score for very bad video quality and 0 for good
video quality. However evaluation using this format takes a lot of standardisation
and hence video is gauged to be good, tolerable or bad by observation.

2. Audio Video Synchronisation - Many users experience lack of synchronisation
in audio and video in a video conference and that leads to general degradation in
the quality of experience. The International Telecommunications Union suggests
that a lag of about +45 ms to -125 ms is indistinguishable and a lag of +90 ms
to -185 ms is acceptable [4]. However any delay after causes great degradation in
quality of experience. These audio-video lags are caused by frame losses. Measuring
audio-video synchronisation also takes a lot of time if it has to be done accurately.
Hence the audio video synchronisation is quantified to be either good tolerable or
bad.

3. Audio Quality - Due to bandwidth constraints, hardware constraints or reasons
like privacy, the library should substitute the video conference by an audio con-
ference. Having audio conference capability is of the highest priority and audio is
gauged to be either good or bad.

4. Delay - The main different between a video conference and video on demand de-
spite both being real-time in nature is that video conference is interactive in nature.
This means that the quality of experience is closely related to quality of interac-
tion. The interactive nature is dependent on the communication delay between the
source and the receiver. It is generally known that the largest value of acceptable
delay in a video conference is 300 ms and if the delay exceeds that, the partici-
pants have to resort to tactics like saying ’over’ at the end of each sentence which
takes the real-time interactiveness out of the application. Communication delay
can be quantitatively assessed in terms of milliseconds and hence no qualitative
assessment parameter is decided.

5. Dynamic video rate control - Variable data rate is by far the only reliable
solution to congestion control and considering that our application is going to run
on a wireless channel and in larger group sizes, congestion control has a higher
priority over maintaining a high video quality throughout the call. Hence the
chosen library should have variable data rate (can be realised via change in frame
rate, video resolution, quantization parameters). However considering that almost
all video conferencing libraries have variable data rate to combat congestion, the

4.5. CRITERIA FOR QUALITY OF EXPERIENCE 55

deciding factor becomes which libraries has a robust strategy which allows for
smooth degradation in video quality. Assessment of this parameter is difficult as
variable data rate affects video quality but improves experience by ensuring that
there are no disconnections. Hence this is gauged in three categories:

(a) Not present - In this case, the library has zero rate variability and in the
face of congestion, the quality of experience reduces drastically and in some
cases, the call may be dropped.

(b) Coarsely tuned - In this case, rate variability is present but is coarsely
tuned. This means that if congestion increases even slightly than a particular
threshold, the data rate will be reduced considerably. This is less efficient in
use of bandwidth and resources but less complex in computation on the part
of the library.

(c) Finely tuned - In this case, the data rate is finely adjusted with changes in
congestion and this ensures that the bandwidth and resources are properly
utilised and the user gets the best quality of video possible at all times.

6. Power Consumption - As the application is meant for an embedded comput-
ing platform (a tablet) the power footprint of this library has to be low. A library
which consumes more power threatens to drain the battery of the tablet and makes
it unattractive for use on tablets. If a user at the end of his session finds that the
battery is drained, he will not be happy with the general performance of the appli-
cation - which will go further as to reduce the quality of experience. A numerical
cap cannot be put over the power consumption for evaluating each library. However
if power consumption is noticeably faster (battery gets drained in a short period
of time), this raises a red flag suggesting that detailed analysis of the power profile
of the library is needed.

7. CPU Usage - Higher CPU usage causes to more consumption in power and also
may reduce the performance of applications running in the background. If that
happens, the user experience with the application degrades to a great extent. Hence
care must be taken that the application has low CPU footprint. If the performance
of other applications noticeably suffers due to high CPU usage by the library, this
signifies undesirably high CPU usage.

4.5.1 Metrics affecting QoE

Superficial evaluation of the above mentioned criteria is not enough for choosing a library
for implementation. A more detailed analysis should be done to find out which differences
in these libraries cause noticeable difference in QoE. The following metrics affect the
quality of experience due to various parameters:

1. Signalling Overhead - Signalling data which is required for session management
and handshaking is sent through TCP. The initial connection delay depends on how
heavy the signalling is. This signalling is different for different protocols like SIP
(Session Initiation Protocol), H.323 or XMPP (Extensible Messaging and Presence

56 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

Protocol) and an analysis of the signalling overhead can give us an idea about the
connection establishment time as well as the bandwidth expended in maintaining
the connection. A high signalling overhead requires high bandwidth. Although
this does not majorly affect the video as the bandwidth used for signalling is still
much higher as compared to video bandwidth.

2. Traffic - Real-Time traffic is inelastic and is sent through UDP. By monitoring the
UDP traffic, we can find out which library generates on an average more traffic.
The library generating more traffic more likely delivers better video quality but is
also susceptible to congestion and less likely to be scalable for a multi-user video
conference. A high traffic rate denotes efficient usage of bandwidth and is a sign of
high quality video. However the call is then more susceptible to bandwidth changes
and the conference becomes less scalable. A low source rate denotes lower quality
of video, inefficient usage of bandwidth but higher robustness in face of varying
network quality and more scalability (as more users can share the bandwidth). As
source rates exceeds the available bandwidth, this causes increase in RTT and thus
increases end to end communication delay.

3. Architecture - Among the architectures we have seen in the previous chapter,
the ones predominantly used are client-server and peer-to-peer. In a client-server
architecture, the video is routed through the server. This increases the round
trip time between the source and the receiver. The variation between the round
trip times can be large depending on the geographical location of the source, the
receiver and the server. But the server can be used to change the video encoding
to counter receiver heterogeneity. A peer-to-peer architecture has a lower RTT
(round trip time) from source to receiver. But the trade off with this approach
is that adding more peers to the conference causes a bottleneck in the upload
bandwidth and affects scalability. Thus different topologies can cause different
values of communication delay. In the case of a server, the server can repackage
video (or transcode it alternatively) and add redundancy to video if the connection
with the other users is lossy. The server can also drop packets to change data rates.

4. Real-Time Protocols - The real-time transport protocol used for video/audio
delivery affects video quality. Parameters like size of packets, ordering of packets
and congestion control are implemented at the transport protocol level and different
protocols may give different results. More number of packets per frame make the
library more susceptible to congestion as one lost packet results in a lost frame.

5. Heterogeneity of Receivers - In a multi-user video conferencing set up, different
users have different network conditions and different hardware capability. Different
hardware devices have different efficiencies in encoding and decoding video. This
may be visible in the difference in the source rates and video parameters and
efficiency of error handling of video from different devices.

6. Round Trip Time - As we had pointed out earlier, delay in audio and video
causes great degradation in QoE. The delay comprises of several components such
as delay in encoding at the source, delay in decoding at the receiver, delay in the

4.5. CRITERIA FOR QUALITY OF EXPERIENCE 57

network in addition to delay at the server in the case of a client-server architecture.
The delay in network from a source to a receiver (or alternatively client-server) can
be evaluated using the Round Trip Time (RTT). The RTT is a characteristic of the
network and is highly variable unlike the encoding decoding times which depend
on the video and the hardware. The variation in the RTT is called jitter.

7. Video Parameters - Video quality is basically dependent on three parameters,
namely frame rate (fps), video resolution and quantization parameter of the codec.
The only way to combat congestion is to reduce the amount of data being sent
on the network. The data rate can be influenced by changing these parameters.
Packet level analysis must be done to find out which library is most robust and can
handle packet losses in a better way. Also this analysis is instrumental in pointing
out how smoothly the library adapts to sudden change in bandwidth at the receiver
or the sender.

8. Error Handling - Every video conferencing library has error correction and/or
retransmission policy. Retransmission is possible if the time to decode the packet
is greater than the time taken by the packet to reach the receiver from the source.
This imposes boundaries on the maximum delay in the network between sender
and receiver. Error correction mechanisms like FEC (Forward Error Correction)
[54] do not require retransmission but increase the data rate. This increase in data
rate must be compensated by a subsequent decrease in video quality (in case the
bandwidth is limited). Thus the error handling strategy affects the QoE.

The table 4.3 shows the correlation of the above discussed metrics with QoE param-
eters:

Table 4.3: Correlation of Metrics and QoE Parameters

Metrics Parameters

Signalling Overhead Video Quality (weakly affects video quality)

Traffic Video Quality, Audio, Delay, Power, CPU usage

Architecture Delay, Synchronisation, Video Quality

Real-Time Protocols Synchronisation, Delay

Heterogeneity of Receivers Delay, Synchronisation, Video Quality

Round Trip Time Delay, Synchronisation

Video Parameters Video Quality, Synchronisation, Delay, CPU usage, Power

Error Handling Video Quality, CPU usage, Power

A framework was developed to test the robustness and analyse the performance of the
library using some of the above described metrics which will be described in Chapter 5.

58 CHAPTER 4. OVERVIEW OF VIDEO CONFERENCING LIBRARIES

Framework 5
5.1 Introduction

This chapter focuses on the framework used for profiling and testing the video libraries.
It discusses the design choices, the rationale behind making those design choices and
the trade-offs made while designing this framework. The video conferencing library was
installed on four different Android devices:

• Google Nexus 10 - The tablet device which is the main device for this product.
This device is user 1.

• Google Nexus 7 - Another tablet device but with less powerful hardware. This
device is user 2.

• Samsung Galaxy XCover 2 - Two phones joined the conference as users 3 and
4.

The results of performance at User 1 (Google Nexus 10) are more important to us
and hence the choice of device for users 2, 3 and 4 can be any device provided it runs
on Android and is connected to the internet through a Wi-Fi. The framework attempts
to measure how robust the library is and tries to determine the QoE qualitatively using
quantitative measurements of video parameters like source rate, frame sizes and frame
resolutions [53]. The network conditions have to be carefully controlled, modified and
varied to create various scenarios. To study the library under various network conditions,
a controlled test bench (which is the framework) was set up which is discussed in the
next section.

5.2 Controlling Network Conditions

Video conferencing libraries are advertised as showing exceedingly good performance in
conditions of high available bandwidth and powerful hardware to encode/decode video
with resources to spare. However adaptability of a library to different network condi-
tions is an important performance criterion. During deployment, not all users may have
access to excellent network conditions and hence a qualitative and quantitative perfor-
mance analysis of the library is needed to evaluate the performance under poor network
conditions. Thus, a controlled environment was set up where the effect of the conditions
on the library can be observed easily with the help of packet sniffing tools like Wireshark
[63]. In the controlled environment, network parameters like delay, packet loss ratio and
available bandwidth are variable so that behaviour of the library under different condi-
tions can be observed. This section describes the test bench set up for conducting the
experiments. To recreate network conditions, there are predominantly three options:

59

60 CHAPTER 5. FRAMEWORK

1. Traffic Shaping Router - This is a dedicated router which shapes both incoming
and outgoing traffic be varying various network parameters. However purchasing
the router is costly and a new router would have to be purchased every time the
hardware becomes out dated.

2. Network Simulator - Network simulators like NS-2, NS-3, GNS3 and OmNet++
[85] provide a complete simulation of complex networks and the topology. However
interest lies in the effect of varying network conditions on the QoE of one partic-
ular application running on one particular node rather than the effectiveness of a
particular topology. Due to this reason, this option is not useful for the current
experiment.

3. Network Emulator - Network emulators allow simulation of real network con-
ditions on a real network link between two nodes. Using network emulators, the
behaviour of various applications which use the internet and the reaction of the
applications when the quality of the link changes can be observed. Thus network
emulators help to determine the correlation between network conditions and ap-
plication behaviour.

As the goal of this effort is observing changes in application behaviour as a function
of network conditions, it was decided that an emulator needed to be set up instead of a
simulator. A traffic shaping router would not allow the running of packet sniffers and
observation of conversations at the packet level. Also, the framework which was set up
needed to be easily modifiable and upgradable in case changes were needed to it. Hence
a Linux PC with an internet connection was set up as a wireless access point. Linux
was chosen as the choice of operating system because some tools required for network
emulation were found available on Linux directly. The PC had a wired connection which
connected it to our modem connecting it to the internet. The wireless adapter of the PC
was configured to provide an Ad-Hoc network to which the devices under test would be
connected. Thus the PC now acted as a router for the devices under test. Both the links
(wireless as well as wired) could be monitored using this set up. The test bed can be
seen in figure 5.1. Mainly four Devices Under Test (abbreviated to DUT) can be seen as
taking part in the experiment. DUT 1 and DUT 2 are the two tablet devices and they
are connected to the router as the performance of the application on tablet devices is of
interest. As the application is not targeted for launch on mobile phones, performance
analysis of the library on the other two devices, DUT 3 and DUT 4 is not interesting.

A packet analyser had to be installed on the Ad-Hoc PC and analysers like ngrep [56]
and tcpdump [42] were considered. Wireshark was chosen as the packet sniffer of choice
because of the flexibility it offers although tcpdump, which is a command line based
packet analyser based on pcap (packet capture library) [43] can also be used to profile
the library. Wireshark supports various protocols (RTP being of main interest) and thus
traces generated as UDP or TCP conversations between two different IP addresses and
port numbers can be decoded using higher level protocols. Thus a conversation can be
observed between higher levels protocols directly (for eg. RTP) making analysis easier.
Wireshark has a huge developer and users community which can be turned into for
support. It is also compatible with the pcap [43] in Linux and thus added functionality

5.2. CONTROLLING NETWORK CONDITIONS 61

Figure 5.1: The test bench with devices connected to it

can be integrated with ease. Apart from that, there are various tools available with
Wireshark such as:

• dumpcap - dumpcap is a tool which dumps the packets sniffed on the line and
writes them to a file for offline analysis. The file is in the pcap-ng (Packet Capture
New Generation) format and thus all tools in the Wireshark suite are compatible
with it. Various capture and display filters can be employed with it in order to
generate a trace of relevant packets. Capture filters capture packets which are
useful to the analysis and reject the other packets as per the condition mentioned
in the capture filter (eg. ip.addr == 192.168.1.XXX meaning only packets which
are to or from the given IP address will be captured). Additional packets increase
the size of the capture file and add to noise in case of statistical analysis performed
on the trace. A display filter will only display the packets as per the requirements
from an already captured trace of packets. Using a combination of capture and
display filters, we can generate traces which are highly relevant to the data we
want to analyse thus minimising noise interference [50].

• capinfos - capinfos is a tool which performs statistical analysis on captured pack-
ets. The analysis consists of various parameters like data rate, size of the trace etc.
Data rates generated by any call are of specific interest for analysis [50].

• tshark - tshark is a command line based version of Wireshark. The tool is used to
translate the captured file from the pcap-ng format to the text format thus allowing
us to use text based search to analyse packets in a session [50].

Wireshark was not installed directly on the DUTs as the conference would have to
be stopped every time data had to be collected. Apart from that, installing Wireshark
on the router gave an opportunity to observe the outgoing trace if need be. Wireshark

62 CHAPTER 5. FRAMEWORK

provides microsecond level precision in identifying the system time at which the packet
was sent or received. Although microsecond level precision is not required because as
per International Telecommunication Union (ITU) recommendations, the quality of ex-
perience is adversely affected if the delay/synchronisation offset is within the order of
hundreds of milliseconds.

5.2.1 Network Emulation

Linux kernel has an embedded program called netem [39] which provides network emu-
lation functionality. It can emulate network parameters like delay, variable delay, loss,
corruption, duplication, reordering. netem uses a command line tool called tc [40] which
stands for ’traffic control’. tc, in combination with netem, can also be used effectively
for bandwidth shaping. These tools provide an easy to use command line interface and
can be used to shape traffic at both the wired and wireless links. This tool was used for
network emulation in this test bench. As it can simulate a variety of network parameters,
future changes to the test bench can be made easily.

5.3 Framework Structure and Capabilities

This section describes the design of the framework, lists its capabilities and explains how
helpful and accurate it is in measuring various metrics of our interest.

5.3.1 Audio Video Delay

To measure delay accurately, the source and the receivers have to be synchronised.
Except in the case of very poor network connection in which case the delay is in the
order of seconds, the delay is usually in the order of milliseconds. Such a small delay,
though perceptible cannot be accurately measured without any electronic equipment.
An approached is discussed in literature [90] where a microsecond timer is played on
the screen of a PC and the video camera of the source is pointed to it. The receiver
is positioned right next to the PC screen so that both the original live timer and the
video appearing at the receiver can be seen at the same time. Photos of the PC and the
receiver (using a camera of reasonable quality so that the timer can be viewed clearly)
are taken at regular intervals (while changing network parameters). These techniques
help determine the end to end communication delay for the conference.

The end to end delay between two users comprises of the following components:

1. Encoding and packetization of the frame.

2. Network delay encountered by the packets.

3. Processing delay at the server (which would not be present in the case of a peer-
to-peer architecture).

4. Decoding and rendering of the frame.

5.3. FRAMEWORK STRUCTURE AND CAPABILITIES 63

Figure 5.2: Measurement set up for end to end audio and video delay [90]

This can be visualised by the following equation where ’D’ stands for delay:

DTot = Denc +Dpacketisation +Dnetwork +Dserver +Ddec +Drender (5.1)

An important requirement for this framework is that measurement of critical param-
eters should be done with a high degree of automation. The method described above
is time consuming and requires a lot of manual intervention. Hence a technique which
could be automated easily is preferred over a possibly more accurate but manual one.
Moreover, the average and the worst case delay are two different parameters which need
to be calculated and the approach of having a timer on screen is not very accurate when
it comes to measuring both. The accuracy of the set up is also heavily dependent on
the frequency of sampling (how frequently snapshots are taken by a camera) and hence
enough useful information cannot be determined. Encoding and packetisation delay can
be correlated to packet sizes and the number of packets each frame is encoded in. As
two devices are connected to the router, a packet which is uploaded by one device can
be seen downloaded by the other device due to the same value of the ”time stamp” field
or the same sequence number in the RTP header. The network delay can be obtained
from subtracting the detection times of both the packets in Wireshark.

Audio data is far less bandwidth insensitive as compared to video data and does not
face problems of frame level delays. Frame level delays are different than packet level
delays as a frame may be delayed even if one of the packet constituting the frame is
delayed. However, in cases where the user wishes to keep his video private and chooses
to communicate only using audio, the audio delay becomes an important parameter
and needs to be measured. Measurement of audio delay encounters the same problem
as measurement of video delay as human ears are not sensitive to delays in the level of
microseconds. Unlike measurement of video delay where a still picture of one of the video
frames can be used to measure the delay, a still audio frame is more difficult to capture.
A method has been discussed in literature [90] to determine audio delay accurately which
uses a digital audio analyser [6]. A ticking sound is played at the source and the audio is
heard at the receiver. The source and receiver are placed nearby and the original audio
as well as the audio from the receiver are captured by the audio analyser. The tick at
the source marks a distinct spike in the audio wave and the tick from the receiver marks
a more subdued spike. By comparing the time different between the spikes, the audio
delay between the source and the receiver can be almost accurately measured.

64 CHAPTER 5. FRAMEWORK

This approach has the same drawbacks as discussed in the case of measuring video
delay. While running the experiments, even a small noise like a tap on the table can create
enough noise to make distinction between the original tick and the table tap impossible.
Hence the framework uses a similar approach as discussed for measuring video delays.
Audio packets can be differentiated from video packets due to the presence of a mark
bit in them. Some video packets have the mark bit set which is used to determine frame
boundaries. Using this, audio payload can be differentiated from video payload and audio
packets can be identified. Following isolation of audio packets, unique packets can be
detected due to their unique time stamp or sequence number and the delay determined
by subtracting the detection time of both the packets at different devices.

5.3.2 Audio Video Synchronisation

Audio Video synchronisation plays an important part in the QoE as discussed previously.
By superimposing the results of video delay and audio delay measured at the same time,
empirical evidence can be collected which can determine whether large scale audio video
synchronisation is absent or not. Even if one of the media is delayed more than the
other, the library can still delay the other one in order to ensure audio video synchro-
nisation at the expense of total delay. Audio video synchronisation may be affected by
other competing data, or more of CPU resources being dedicated towards competing
applications. This approach however is useful in determining whether architectural fal-
lacies in the infrastructure are responsible for the lack in synchronisation or not. This
approach has less visibility as compared to the direct approach where a video will be
playing a clock and making a timer tick simultaneously and the delay will be measured
using the approaches discussed in the previous subsection. However as discussed above,
automation is not possible for this approach.

5.3.3 Identification of the Server and subsequent analysis

In case of a client-server library (S/C), the geographical location of the server plays an
important part in determining the latency of the video signal. If the server is located
in a place far away from the users, it adds a considerable latency to the video signal
as compared to the case when the server is geographically near. The IP address of the
server is found out by identifying RTP streams originating from one of the devices. The
destination address of the packets in the media stream is the address of the server. The
topology of the conference can also be found out using this approach. If all the devices
send media streams to one IP address (or different IP addresses within the same subnet),
then that IP address is the address of the server and the topology of the library is S/C.
If each device sends its media stream directly to the other device then the topology can
be identified as peer-to-peer. Using IP geo-location tools on the internet [7] the location
of the server is found out. The IP address of the server is also used to filter out relevant
conversations using Wireshark (as media traffic from each user will be sent directly to
the server).

If the video is relayed using a server, the server may play an important part in
maintaining the QoE and congestion control. The role of the server if any, in shaping the
media stream can be determined by manual observation of the Wireshark trace. Packets

5.3. FRAMEWORK STRUCTURE AND CAPABILITIES 65

uploaded by one device can be tracked while being downloaded at the other device using
techniques discussed earlier. If the packets are reshaped, the value in the ’timestamp’
field in their RTP header would be different. The size of the uploaded and downloaded
packets may be different, suggesting reshaping at the server. In case of transcoding,
the payload type of the uploaded packets will be different from the downloaded ones.
The packets which are missing (are seen in the upload stream but not in the download
stream) have been lost either due to random packet loss in the internet or they have
been dropped by the server to prevent overload of packets at the receiver. As frames can
be detected in the video stream (using ’Mark’ bits - something which will be discussed
in the later part of this section), information can be obtained whether an entire frame
has been dropped or reshaped. This data can be used to determine the role of the server
in congestion control.

5.3.4 Packet Size, Frame Size and Frame Rate

If data is encapsulated in larger packets, it is more susceptible to packet loss as lost of
one packet would lead to loss of a large amount of data. Each RTP packet is identified by
decoding the media stream as RTP in Wireshark and the sizes of the packet are known
in bytes. The average size of packets in a trace can be found out during offline analysis.

Each RTP packet from a source has a unique sequence number. The sequence num-
ber of each packet is used for ordering and helps detect out of order packets. The
”timestamp” field carries the time stamp of the packets and is used to determine the
exact time at which each packet has to be rendered. The timestamp values are de-
cided at the time of session creation and are exchanged at the beginning through the
session management protocol which is in use. Once a session has been created, senders
and receivers exchange synchronisation information using Real-Time Transport Control
Protocol (RTCP) senders and receivers report (SR and RR).

Each user who is a part of the call has a unique Synchronisation Source Identifier
(SSRC) which is decided at the time of session creation. The origin of each packet in the
call can be determined using its SSRC field. Using a combination of SSRC, the sequence
number and the timestamp value, every packet can be uniquely identified and tracked
as it is uploaded by a device and downloaded by the other.

An RTP packet has a ’Mark’ bit in the RTP header. In case of an audio stream, the
’Mark’ bit denotes the beginning of a talk spurt. Usually audio streams do not enable
the mark bit. In case of a video stream, the ’Mark’ bit denotes the end of an frame.
Figure 5.3 shows the RTP header where all the fields like Mark, SSRC, sequence number,
payload type number, time stamp etc. can be seen. Packets within the same frame have
the same time stamp value. Only one of the packets with the same time stamp has the
Mark bit enabled and this packet signifies the end of a frame. In case of a single packet
frame, each packet will have the Mark bit enabled.

By observing the number of frames detected in an n second trace, the frame rate of
the video can be determined. If a frame is comprised of more than one packet, loss of a
single packet may cause loss of an entire frame resulting in choppy video quality. Large
scale frame losses also affect audio video synchronisation.

The PT field is the payload type. The Internet Engineering Task Force has a fixed

66 CHAPTER 5. FRAMEWORK

payload number for standardised media types. However the registration format also
allows for dynamic registration where newer payloads like VP8 encoding for video which
is not yet standardised can be incorporated. By identifying the payload type number
for the video stream, the use of specific codecs, if any, can be determined (only if the
call uses standardised media types). However even if the call does not use standardised
media types, different payload type numbers in use for audio and video streams can be
determined which stay constant throughout the session. These payload type numbers
help discriminate an audio stream from a video stream easily.

Figure 5.3: Header for Real-Time Protocol

5.3.5 Video Quality

An objective measure of video quality is essential for gauging the video quality in a
standardised manner. Objective methods like bVQM [2] (Batch Video Quality Metric)
for establishing video quality have been discussed previously. The algorithm compares
two videos, one which is injected into the input of the sender and the received video at
the receiver and comes up with a score which is a reflection of its fidelity as compared
to the original one. A score of 0 or near to it suggests very good quality and a score
nearing 1 suggests bad quality. In exceptional cases a score of more than 1 may be seen
suggesting worse (completely unusable) video quality.

For successful usage of the algorithm, the same video source should be used for every
run of the experiment for standardisation purpose. A virtual software camera allows
streaming of a pre-recorded video as a captured video. A screen recorder would have to
be used for isolating the received video. However in a multi-user conference, videos from
all users are rendered simultaneously on the screen and hence isolating one particular
video is difficult. Also a suitable virtual camera was not found for Android.

However linear correlation has been observed between bVQM and MOS (Mean Opin-
ion Score) [53]. Mean Opinion Score is a score derived from showing users the video and
asking them of its quality. A score of 1 suggests bad video quality, 2 = poor, 3 = fair, 4
= good and a score of 5 suggests exceptionally good video quality. The correlation has
been observed to be valid in the range of MOS between 1 and 4. Hence the mean opinion

5.3. FRAMEWORK STRUCTURE AND CAPABILITIES 67

score based approach was chosen for comparing video quality. However as standardis-
ation of video sources was not possible, video quality was judged by observation to be
either Good, Bad or Tolerable. A good video means that motion and lip movement is
seen clearly. A tolerable video means that motion is present to a low degree and a bad
video means that very little or no motion is seen.

Video quality can be empirically determined using frame sizes and frame rates. If
the average frame rate of a call (sampled over a known period) turns out to be high, the
video will have high motion content. If the frame sizes are high, the video carries high
resolution. A video having a high resolution frame but a frame rate of 12-15 FPS may
seem good to a user as also a frame having relatively low resolution but a higher frame
rate. By plotting both frame sizes and frame rates in time, it can be conjectured with
whether the video quality is ’Good’ or ’Bad’.

5.3.6 Bandwidth Usage of a Call

Measuring the total traffic for each user is an important metric as it reveals how effi-
ciently a video conferencing library uses the bandwidth available to it. The bandwidth
required for any call increases as more number of users connect to a call. However as the
download bandwidth is limited, the library may try to improve scalability by reducing
the bandwidth usage of the call by employing traffic shaping techniques. Measuring the
bandwidth usage of a call reveals whether any traffic shaping techniques were used. It
can be used to determine how effective the traffic shaping strategy is and whether more
users can be added to the call with the given bandwidth or not. In order to differentiate
between shaping of video, audio and signalling traffic, the conference is profiled under
three different scenarios as follows:

1. Full conference - In this mode the traffic consists of video, audio and signalling
traffic. This mode measures the audio, video as well as signalling bandwidth usage.

2. Audio - In this mode, the video is disabled and the conference is run as a audio
conference with signalling overhead. This mode measures the audio and signalling
bandwidth usage.

3. Signalling - In this mode neither audio nor video is enabled and all the users only
exchanging signalling messages with the server. This mode measures the only the
signalling bandwidth usage.

The video bandwidth usage can be determined by subtracting the audio mode (audio
+ signalling) bandwidth usage from the full conference (audio + video + signalling)
bandwidth usage. Similarly audio, and signalling bandwidth usage can be determined.
The following equation shows the dissection of the traffic into video traffic, audio traffic
and signalling traffic.

TTot = TV ideo + TAudio + TSig

Bandwidth usage, along with the frame rates and frame sizes can also be used to
estimate video quality. A call with higher frame sizes and frame rates is likelier to have

68 CHAPTER 5. FRAMEWORK

high bandwidth usage as compared to a call with lower frame sizes, frame rates or both.
When measured for scenarios (network conditions, configurations or different libraries),
these three parameters can be used to estimate whether the higher bandwidth usage is
because of higher frame sizes or frame rates or both.

5.4 Summary

This framework is mainly designed to promulgate our understanding of how video confer-
encing technologies work and to determine how much resources are used by them. This
framework enables us to identify bottlenecks in realising a multi-user video conference
on an embedded computing platform and to use our developed knowledge to make a
decision on which group of choices suit our requirements the best. It mainly profiles
the performance of the video conferencing library at run-time by monitoring data such
as audio/video delay, frame/packet sizes, frame rates and bandwidth usage of the call
under different network conditions. The framework was written using a combination of
shell and python scripts and by using netem and tc [40] for traffic shaping.

Different experiments can be set up using this framework to test different aspects of
the library. The next chapter discusses how the experiments were designed and analyses
the results. The interpretation of the results is also discussed at length allowing us to
draw conclusions about performance of the libraries. The experiments were performed
in the months of July, August and September 2013 in Delft, The Netherlands. All the
devices were tested in the Netherlands itself as the initial launch of the product is the
Dutch market.

Experiments and Analysis 6
This chapter describes the experiments which were designed using the framework and
discusses the results generated after the framework was applied to two different libraries,
Library 1 and Google Hangouts. These experiments are designed to test and understand
various functionalities of a video conferencing library. Apart from the experiments,
various components used in the design of the framework provide an interesting insight
into the behaviour of a library, like its topology and pre-connection process. This chapter
also discusses these findings derived in the course of applying the framework.

6.1 Pre-experimentation modification

Library 1 is different from Google Hangouts in the way that Library 1 is available to us
as an Android software development kit (SDK) along with an application programming
interface (API). The API could be played with to tweak certain functionality. Library
1 had multi conferencing capabilities but rendered only one user at a time. Hence in
order to check whether it had true multi-conferencing capabilities, the functionality was
changed to allow it to render up to three more users at a time (one plus three other
participants in the conference making the total number of participants four).

The size of the rendering window was fixed at 320 x 240 pixels so that up to 4 users
could be rendered simultaneously. The changes made were successful as the library could
be compiled for Android and a true multi conference video call was possible as all the 4
users could be rendered on the screen. This provided an accurate estimate of the CPU
usage in the case of a multi-user call as video rendering famously uses a lot of CPU.

Library 1 could be configured by application developers for different values of frame
rates, frame resolutions and bit rates. For example if the library is configured for a
maximum of 25 FPS (frames per second), the frame rate of the video should ideally
never exceed 25, thus acting as an upper cap. Google Hangouts is however a software
application and hence it is not possible for a user to configure video parameters.

Any questions during the development/modification were asked to the vendors and
technical support was available at a short notice. Availability of technical support was a
plus point as the development of newer products based on the library can be accelerated
in the presence of good technical support.

Library 1 was found to contain an Acoustic Echo Cancellation module (AEC) and a
Noise Suppression module (NS) and hence it was decided that it meets certain mandatory
requirements for realising a video conference with a decent quality of experience (QoE).

The following sections discuss in detail how each experiment was designed using the
framework and how the generated results were interpreted to arrive at a useful conclusion.

69

70 CHAPTER 6. EXPERIMENTS AND ANALYSIS

6.2 Configuration Experiment

This experiment mainly tries to understand how the library behaves differently under
different configurations. As discussed earlier, Library 1 can be configured for different
values of video parameters like bit rate, capture resolution and frame rate. This experi-
ment also tries to understand how the library adapts to change in traffic load resulting
from addition of more users. Hence this experiment was run under 9 different configu-
rations for 3 different group sizes of 2 users, 3 users and 4 users. The capture resolution
for all configurations was kept constant at 320 x 240 pixels. For each configuration and
group size, this experiment measures the following parameters:

1. Audio, video and signalling bandwidth usage at DUT 1.

2. Frame sizes in bytes and in number of packets per frame for both DUT 1 and 2.

3. Packet sizes for both audio and video for both DUT 1 and 2.

4. System level packet delay for both audio and video packets from DUT 1 to 2 and
DUT 2 to 1.

5. CPU usage for DUT 1

The configurations of the library for this experiment are summarised in Table 6.1.

Table 6.1: Configurations of Library 1 for the configuration experiment

Configuration Call Sizes

5 FPS, 256 Kbps 2 Users 3 Users 4 Users

5 FPS, 512 Kbps 2 Users 3 Users 4 Users

5 FPS, 1024 Kbps 2 Users 3 Users 4 Users

10 FPS, 256 Kbps 2 Users 3 Users 4 Users

10 FPS, 512 Kbps 2 Users 3 Users 4 Users

10 FPS, 1024 Kbps 2 Users 3 Users 4 Users

15 FPS, 256 Kbps 2 Users 3 Users 4 Users

15 FPS, 512 Kbps 2 Users 3 Users 4 Users

15 FPS, 1024 Kbps 2 Users 3 Users 4 Users

6.2.1 Details of each configuration

Each configuration consists of 3 parameters. This subsection discusses how each config-
uration was selected for this experiment.

1. Frame Rate - Three different frame rate values were chosen for experiment 1. A
frame rate of 5 FPS was chosen to observe the behaviour of the library in low frame
rate conditions. The frame rate was then increased to 10 FPS and 15 FPS in order
to observe how the behaviour of the library changes with frame rate. Although

6.2. CONFIGURATION EXPERIMENT 71

a frame rate of 15 FPS is low as compared to High Definition video (60 FPS) or
even standard definition video (30 FPS, 24 FPS) it was chosen as a representative
value. A typical house hold video conference has less motion (compared to out door
surroundings or sports feed) and a frame rate of 15 FPS was observed to provide
’Good’ video on observation. In subsequent experiments, more data points with
higher frames per second will be tested.

2. Bit rates - Three representative values were chosen for conditions of low, medium
and high bit rate. For low bit rate conditions, the bit rate was fixed at 256 Kbps.
For medium conditions, the bit rate was fixed at 512 Kbps and for high bit rate
conditions, the bit rate was fixed at 1024 Kbps.

3. Number of users - As we had 4 Android devices on which we could run our tests, we
had 3 different conference configurations: - two users (which constitutes a two way
conference), three users (a basic multi-user conference) and a four user conference
(a multi-user conference with higher population and hence higher traffic at each
user).

User 1 uses the Google Nexus 10 and always launches the conference. User 1 stays
connected to the framework for this and for all other experiments. User 2 always uses
a Nexus 7 and is always the second user (which means that in a 2 user call, User 2
always uses a Nexus 7). Users 3 and 4 use Samsung Galaxy XCover 2 phones and are
not connected to the framework.

As video traffic is subject to changes over time with motion estimation getting efficient
with time, the full conference is run for 10 minutes and the average traffic load measured.
The audio only conference is run for one minute and the signalling only conference is
run for 30 seconds.

6.2.2 Results

This part of the section discusses the results after the framework was applied on Library
1.

For each experiment, the framework always begins with finding out the topology of
the library. It was observed that all the users in the conference uploaded their media
packets to one particular IP address. That particular IP address remained constant
throughout the duration of the call. This meant that the IP address was the address
of the server for that particular call session. Occasionally, different servers were used
for different sessions but they remained the same throughout each session. Hence it is
observed that the library is a client-server (S/C) library.

RTP packets of payload type 76 were observed in the framework. This means that the
library uses RTCP for providing feedback via senders and receivers reports. The payload
type 76 is reserved for RTCP so that data and control packets can be distinguished.
Packets of 2 other payload types were observed where both the payload types were
within the dynamic range. This meant that the audio/video encoding formats used
were defined before the start of the session using some conference control protocol and
were not standardised with a payload type number as defined by the Internet Assigned

72 CHAPTER 6. EXPERIMENTS AND ANALYSIS

Numbers Authority (IANA) [25]. In a conference where the video was switched off,
packets of only one payload type were observed and hence it was concluded that this
payload type corresponded to audio. The other payload type was thereby concluded to
be the number for the video codec. As the audio packets were not arranged into frames,
it was concluded that a frame based audio codec was not used.

Bandwidth Usage of Call

The audio, video and signalling bandwidth of the call was measured for each configuration
using the framework using the technique described in the previous chapter. For video
bandwidth, the call was sampled for 600 seconds so that it would have enough time
to stabilise and any undue variations in traffic would smooth out. In order to further
mitigate the random effects of motion, the cameras of all users in the conference were
made to face plain white paper. Bandwidth usage for audio and video for some of the
configurations is plotted in Figure 6.1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 2.5 3 3.5 4

T
ra

ffi
c

(K
bp

s)

Number of Users

Traffic Usage vs Number of Users

Video 5 FPS 256 Kbps
Video 5 FPS 1024 Kbps
Video 10 FPS 256 Kbps

Video 10 FPS 1024 Kbps
Video 15 FPS 256 Kbps

Video 15 FPS 1024 Kbps
Audio 5 FPS 256 Kbps

Audio 5 FPS 1024 Kbps
Audio 10 FPS 256 Kbps

Audio 10 FPS 1024 Kbps
Audio 15 FPS 256 Kbps

Audio 15 FPS 1024 Kbps

Figure 6.1: Bandwidth Usage vs. Number of Users (Device 1)

The different configurations of the library all have differently configured video streams
and not audio streams. Hence no major changes in the audio traffic profile should be
expected. Figure 6.1 corroborates this hypothesis as the audio bandwidth usage for
different configurations is nearly similar. The bandwidth usage increases monotonically
as the number of users in the conference increases. No evidence of traffic shaping in

6.2. CONFIGURATION EXPERIMENT 73

audio traffic suggests that audio traffic has a high priority and uses the same bandwidth
irrespective of video quality. No significant change in size of audio packets was observed
for different configurations as well as different call sizes.

An interesting fact is that silence suppression was not visible in Library 1. Audio
packets were observed to flow between users even though they were not speaking. Al-
though this approach consumes more bandwidth, it helps the audio session between the
two users remain alive and maintains UDP bindings. Thus in case of a user speaking sud-
denly, overhead in establishing UDP bindings is eliminated. This also helps to transmit
background noise at the user so that a complete conference experience can be generated.
Comfort Noise (CN) packets can be observed easily in the RTP stream [94] and in this
case, they were not observed. Comfort noise packets are sent so that the users do not
mistake periods of silence in the conversation for loss of transmission.

It was observed that the bandwidth usage of signalling remained nearly constant
(between 2 Kbps and 3 Kbps) for all configurations and group sizes. As the library had
a client server architecture, each client connected to the server and maintained connection
with it irrespective of the group size. The signalling overhead was observed to consist of
periodic RTCP messages (Sender’s and Receiver’s reports) [86] for signalling information
from server to client. Apart from that, encrypted messages from client to server (over
TCP) were observed. This signalling overhead is too minimal to be considered bandwidth
intensive and is not likely to become a bottleneck in the case of increasing group sizes.

Video traffic was observed to show signs of traffic shaping. At low bit rates (256
Kbps) and low frame rates (5 FPS), video call was observed to consume less bandwidth
as compared to configurations with higher bit rates and higher frame rates (e.g. 10 FPS
1024 Kbps and 15 FPS 1024 Kbps). For the low bandwidth configurations, the total
bandwidth usage was sufficiently low and more users could be incorporated into the call
without employing any traffic shaping. This can be observed due to the monotonically
increasing video traffic profile of these configurations. However in the case of the config-
urations requiring high bandwidth, evidence of traffic shaping techniques was observed.
For these configurations, the bandwidth usage of a 3 user call was observed to be lower
than a 2 user call suggesting that some traffic shaping took place. This traffic shaping
took place most likely by changing the configuration dynamically, i.e. by changing bit
rates, frame rates, frame sizes, frame quality or a combination of these options. Also the
video traffic profile for all configurations for group sizes of 3 and 4 was similar. This sug-
gests that for a 3 user call, the library switches to a default low bandwidth configuration,
irrespective of the original configuration.

To investigate the traffic shaping more carefully, the frame sizes for both the devices
was observed for all configurations. Figure 6.2 plots frame sizes for both DUT1 and
DUT2 for a frame rate of 5 Hz and Figure 6.3 plots the same for a frame rate of 15 Hz.

The first observation that can be made from both the figures is that the frame sizes
for DUT 1 are very small as compared to DUT 2. This can be explained by the different
hardware configurations of both the devices. DUT 1 is a Google Nexus 10 running on an
Exynos 5 Dual chipset. This chip has an ARM Dual-core 1.7 GHz Cortex-A15 CPU, a
Mali-T604 GPU along with a RAM of 2 GB. Opposed to that DUT 2 which is an Asus
Nexus 7 running a NVIDIA Tegra 3 processor core comprising of an ARM Quad-core
1.2 GHz Cortex-A9 CPU, a ULP GeForce GPU along with a 1 GB RAM. Studies have

74 CHAPTER 6. EXPERIMENTS AND ANALYSIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 Users 3 Users 4 Users

F
ra

m
e

S
iz

es
 (

B
yt

es
)

Call Size

Frame Sizes for DUT 1 and DUT 2 (Frame Rate 5Hz)

256 Kbps DUT1
512 Kbps DUT1

1024 Kbps DUT1
256 Kbps DUT2
512 Kbps DUT2

1024 Kbps DUT2

Figure 6.2: Frame Sizes vs. Number of Users - DUT 1 and 2 for 5 FPS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2 Users 3 Users 4 Users

F
ra

m
e

S
iz

es
 (

B
yt

es
)

Call Size

Frame Sizes for DUT 1 and DUT 2 (Frame Rate 15Hz)

256 Kbps DUT1
512 Kbps DUT1

1024 Kbps DUT1
256 Kbps DUT2
512 Kbps DUT2

1024 Kbps DUT2

Figure 6.3: Frame Sizes vs. Number of Users - DUT 1 and 2 for 15 FPS

shown Exynos 5 to be much faster in performance as compared to Tegra 3 and this
coupled with larger RAM sizes enables DUT 1 to achieve higher compression for the
same quality.

Very low frame sizes for DUT 1 as compared to DUT 2 are indicative of the fact
that the compression of DUT 1 is far more efficient than on DUT 2. Both DUT 1 and
DUT 2 have encoding and decoding support for H.264 and only decoding support for
the VP8 codec. DUT 1 is however running Android 4.3 which has VP8 support which
is not present in Android 4.2.2 which is running on DUT 2. This may lead us to believe
that VP8 might be the codec used for library 1. However it cannot be determined with
certainty as the technical specifications of library 1 are not disclosed.

6.2. CONFIGURATION EXPERIMENT 75

Bandwidth usage for DUT 1 consists of bandwidth used by video uploaded by DUT
1 to the server as well as video downloaded by DUT 1 from the server (which is uploaded
by DUT 2 and other users in the conference). It can also be observed in Figure 6.2 that
the frame sizes of DUT1 remained relatively constant for call sizes of 2, 3 and 4 users,
for frame rates of both 5 Hz and 15 Hz. This suggests that the bandwidth shaping
techniques employed by Library 1 affect the video stream of DUT 2 more than that of
DUT 1. DUT 2 generates on an average higher bit rates as compared to DUT 1 and
hence video traffic shaping at DUT 2 is likelier to bring more results.

Frame Sizes

It can be seen in Figure 6.2 that the frame sizes for DUT 2 reduced for a 3 user call as
compared to a 2 user call. As the maximum resolution is fixed, the frame sizes depend
largely on compression. It can be observed that for a configuration of 256 Kbps bit rate,
the frame sizes for DUT 2 are relatively constant for all call sizes suggesting that the
bandwidth usage of that configuration is too low to warrant any traffic shaping. However
for higher bit rates, the frame sizes readjust to more or less the same for a configuration
with bit rate of 256 Kbps. This suggests that the reconfigured video has a maximum
bit rate of 256 Kbps. This finding is corroborated by looking at Figure 6.3 as it can
be observed that for DUT 2, frame sizes remain relatively constant for a bit rate of 256
Kbps but for higher bit rates, they readjust to become more or less equal to the frame
sizes generated for a bit rate of 256 Kbps. This strongly suggests that in order to avoid
congestion, library 1 reconfigures the maximum bit rate of a video to 256 Kbps. When
the results generated for a frame rate of 10 Hz are considered, they are observed to be
consistent with this hypothesis.

It was also observed that the frame sizes generated by library 1 for DUT 1 remained
more or less constant for allowable bit rates of 256 Kbps, 512 Kbps and 1024 Kbps for
varying frame rates. For the same video resolution, the configurations allowing higher
bit rates generated similar frame sizes for configurations allowing a maximum bit rate of
256 Kbps. This suggests that DUT 1 is able to achieve the same amount of compression
for all configurations irrespective of the available cap. Sensing this, library 1 encodes
videos for a lower bit rate thus ensuring robustness against congestion and minimising
bandwidth usage.

Thus it has been determined that video source rate shaping takes place when call
sizes are greater than 2. Hence in order to determine the effect of different configurations
(especially frame rates and bit rates) on frame sizes on different devices, only the results
of a 2 user call are considered. Figure 6.4 plots frame sizes for DUT 1 and 2 for different
configurations for a call size of 2.

The graph validates our finding that DUT 1 achieves nearly the same amount of
compression for all configurations. DUT 2 has higher frame sizes and it has been ob-
served that the frame sizes increase as the upper limit on bit rates increases. The video
resolution for all configurations is the same meaning that the increase in size is due to
increase in quality. For frame rates of 10 Hz and 15 Hz, the frame sizes increase mono-
tonically for increase in maximum bit rate. hence DUT 2 delivered higher quality video
when the bit rate limit was increased. For a frame rate of 5 Hz, the frame size decreases

76 CHAPTER 6. EXPERIMENTS AND ANALYSIS

 0

 2000

 4000

 6000

 8000

 10000

 12000

256 Kbps 512 Kbps 1024 Kbps

F
ra

m
e

S
iz

es
 (

B
yt

es
)

Bit Rate (Kbps)

Comparison of frame sizes for DUT 1 and DUT 2

5 Hz DUT1
10 Hz DUT1
15 Hz DUT1
5 Hz DUT2

10 Hz DUT2
15 Hz DUT2

Figure 6.4: Frame Sizes for different configurations for a 2 user call

when the maximum achievable bit rate is 1024 Kbps. This suggests that some resolution
is dropped in order to accommodate higher quality while keeping the data rate on the
network within allowable limits.

Another noticeable observation is that frame sizes for a frame rate of 5 Hz are gen-
erally higher than the frame sizes for higher frame rates. When the frame rate is lower,
the motion content in the video is low and hence more number of I frames are present
as compared to P frames. As I frames require more data compared to P frames, the
average frame size in the call increases.

Delay

The system level packet delay was measured between DUT 1 and DUT 2 and vice versa
for both audio and video packets. It was observed that delay for audio packets was the
same as that of the video packets, for both DUT 1 to 2 and vice versa. Hence no large
level delays between audio and video are observed for DUT 1.

It was also observed that the delay for video (and also audio) packets from DUT 1 to
DUT 2 remained around between 145 to 155 ms for all configurations and all call sizes.
However, the delay for video packets from DUT 2 to 1 was observed to be around 158 to
173ms. DUT 2 generates very high traffic as compared to DUT 1 (due to much higher
frame sizes) and this high traffic increases congestion on the link leading to slightly higher

6.2. CONFIGURATION EXPERIMENT 77

delays for both video and audio packets. Although this delay is less than the 300 ms
which is prescribed by International Telecommunications Union as the necessary delay
for interactive communication, it can still be further reduced by reducing the frame sizes
(by efficient use of hardware). This delay in both the paths (DUT 1 to 2 and DUT 2 to
1) does not adversely affect the QoE and is too small to be noticed by the user.

The higher values of delay from DUT 2 to DUT 1 suggests that video from DUT 2
is more susceptible to jitter due to the higher bandwidth usage. This affects the end to
end delay (which is experienced by the user in the following way) as it may delay the
frame by a value corresponding to the maximum delay faced by a packet. Each frame
may be composed of more than one packet. This can be seen in Figure 6.5 which plots
the number of packets for each frame.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

5 Hz 10 Hz 15 Hz

N
um

be
r

of
 P

ac
ke

ts
 p

er
 fr

am
e

Frame Rate (Hz)

Number of packets per frame for DUT 2

256 Kbps
512 Kbps

1024 Kbps

Figure 6.5: Number of packets per frame for a frame from DUT 2

The delay values measured by the framework are the average delays for each call
session. The delay faced by each individual packet may be larger than the average delay.
If a packet comprising a frame is delayed, it means that the entire frame is delayed. If
the delay for any one packet causes the frame to miss its rendering deadline, the entire
frame is useless. This causes choppy video at the user and reduces the video quality at
his end. Hence the higher the number of packets per frame, the more susceptible the
frame is to delays. Modifications can be made to the framework to directly deduce the
frame level system delay, which is the maximum delay faced by any packet comprising
that frame.

CPU Usage

When only one user is connected to the server (before the other users join), the CPU
usage of the library on DUT 1 is observed to be nearly constant irrespective of the
configuration. Encoding is a function of CPU usage and hence no variation in CPU
values suggests two things:

78 CHAPTER 6. EXPERIMENTS AND ANALYSIS

1. All configurations are encoded using the same target bit rate.

2. Hardware acceleration is used.

Apart from that, for constant call size and frame rate, the CPU usage of the library
was nearly constant for different values of target bit rate. CPU usage does not vary
much for different configurations and this is strong evidence that library 1 uses hardware
acceleration for DUT 1.

The CPU usage did increase marginally when the frame rate was increased. When
the frame rate increases (frame rate increases for all users, a configuration where frame
rates for different users are different is not tested), the video of the other participant
which is rendered on the screen has to be refreshed more number of times per second
resulting in higher CPU usage.

It was observed that the CPU usage increased when the call sizes increased. For a
call size of 2, only one (the other participant) is rendered on the screen whereas in the
case of a 4 user call three other users are rendered on the screen. Hence call size increases
the rendering area and hence CPU usage increases for increasing call sizes. Figure 6.6
plots the call sizes for various configurations for frame rates of 5 Hz and 15 Hz and bit
rates of 256 and 1024 Kbps.

 0

 10

 20

 30

 40

 50

 60

 70

2 3 4

C
P

U
 U

sa
ge

 (
%

)

Call sizes

CPU Usage for call sizes

5,256
5,1024
15,256

15,1024

Figure 6.6: CPU Usage for Device 1 for various call sizes

6.3 Effect of Packet Loss and Packet Corruption

This experiment is designed to study the effects of packet loss, packet corruption and
network latency. DUT 1 and DUT 2 engage in a two way call and are connected to our
ad-hoc router and the conference is run in a video only mode.

This experiment measures the following parameters:

1. The bandwidth used by the video stream uploaded from DUT 1.

6.3. EFFECT OF PACKET LOSS AND PACKET CORRUPTION 79

2. Frame sizes at DUT 1 and 2.

3. Number of packets per frame for DUT 1 and 2.

4. System level packet delay for video packets from DUT 1 to 2 and DUT 2 to 1.

The experiment was performed in network conditions with four different values of
packet loss ratio, 0% to represent good network conditions, 2% to represent low loss
conditions, 10% to represent medium loss conditions and 25% to represent high loss
conditions. Measurements were taken immediately after the network conditions changed
(so that robustness could be observed) and the video data was obtained for a trace of
duration 120 seconds.

One instance of the experiment was run by posturing the cameras of the devices in
front of a plain paper so that the variable effects of motion could be mitigated. For
this instance, the packet loss ratio and packet corruption ratio were changed. Another
instance was run with the camera pointing to normal surroundings allowing for random
motion effects to influence traffic rate. Table 6.2 summarises the configurations of the
library as well as the network conditions they were subjected to.

Table 6.2: Configurations of Library 1 and network conditions for observing the effects
of packet loss

Configuration Packet Loss/Corruption Ratio

5 FPS, 1024 Kbps 0% 2% 10% 25%

15 FPS, 256 Kbps 0% 2% 10% 25%

15 FPS, 1024 Kbps 0% 2% 10% 25%

25 FPS, 1024 Kbps 0% 2% 10% 25%

Random packet loss can cause degradation in the quality of experience as even one
lost packet may cause loss of a complete frame. There are mainly three techniques used
to guarantee performance in lossy conditions:

1. Retransmission - The lost packets are retransmitted.

2. Source Rate Control - Reduce the source rate as packet loss may be caused by
congesting the network with a high number of media packets.

3. Adding Redundancy - Temporal, spatial or quality redundancy is added to the
video or error correction (or lost packet recovery) techniques like Forward Error
Coding (FEC) are used.

An approach to lossy conditions can be sending duplicate packets so that even though
some packets are lost, the redundant packet can make up the frame thus reducing the
chances of a frame being completely lost. Such redundant packets can be seen in the
trace and identified by the same time stamp.

Some systems decide that the loss of packets is due to congestion of the network due
to flooding of media packets. Hence the source rate is reduced to avoid congestion and

80 CHAPTER 6. EXPERIMENTS AND ANALYSIS

thus reduce packet loss. Some networks employ QoS at the router (using the diffserv
mechanism in IPv4 and IPv6) to ensure that time sensitive media packets receive priority
and are not lost or delayed due to congestion. However the framework is incapable of
detecting whether QoS at the router is being used to control video overload.

Yet another approach is adding spatial redundancy to each frame where the frame
can be reconstructed at the receiver even with the loss of a few packets. As opposed to
spatial redundancy, the frame rate may be increased, thus adding temporal redundancy
so that good quality video may be received even in the loss of few frames.

One of the most common techniques for lost packet recovery is Forward Error Cor-
rection (FEC) where a k source packets are encoded into a group of n source packets
where any k of the n packets can be used to generate all n packets. The other packets
which are used for error correction are called parity packets and in order to reduce the
bandwidth usage, the library may only send a subset of the parity packets and send the
later in case they are essential to the receiver. This approach although it saves band-
width may increase end to end delay from the source to the receiver. The parity packets
can be added at the Application Data Unit level (which means additional RTP packets)
or at the Protocol Data Unit level (increase in the number of underlying UDP packets).
They may be used individually or a combination of these approaches can be used to
ensure robustness of a higher degree but at a higher level of complexity. Use of these
approaches mark an increase in the source rate and more information about the use of
these approaches can be found out by tracking the frame rates and frame sizes.

A video predominantly consists of three types of frames:-

1. I Frames - These frames are encoded using blocks in the same frame itself. These
are reference frames and can be decoded by themselves without the need of any
other frames.

2. P Frames - A P frame of predicted frame is encoded using previously encoded
frames as reference frames (both I and P frames may be used for reference).

3. B Frames - These frames are encoded using both previously coded and future
reference frames. Hence a B frame may be encoded after a future reference frame,
several frames into the future is encoded.

P frames require considerably less data to encode as compared to I frames, but the
encoding process demands more RAM and computational complexity. Decoding each
frame requires that the decoder has access to the previous encoded reference frames. In
case one or more of the reference frames is lost, the P frame can be decoded with low
quality or not decoded at all. Due to this dependence, the loss of a single packet may
cause loss in quality or complete loss of more than one frame in the video.

B frames generate much less data per frame as compared to both I and P frames but
also increase the latency in the video upto limits which are not tolerable in the case of
interactive applications. Hence video conferencing applications seldom use B frames and
use video composed of purely I and P frames. Loss of P frames or B frames causes less
damage to video quality as compared to the loss of I frames.

In case of loss of decoding context due to loss of some frames (due to packet loss),
the decoder (receiver) demands more I frames from the encoder (source) through the use

6.3. EFFECT OF PACKET LOSS AND PACKET CORRUPTION 81

of RTCP FIR (Real-Time Control Protocol Full Intra Request) message as an I frame
is needed to repair the decoding context of a prediction chain. Hence lossy conditions
may cause the receiver to demand more and more I frames. I frames generate consider-
ably more data than P frames and the average size of frames in a trace might increase
if the number of I frames increase. As discussed, this behaviour may be detected con-
clusively by decoding the RTCP RR (Receiver’s Report) for presence of FIR messages.
The framework at this point is not capable of decoding RTCP messages but with some
modifications, this functionality can be added.

In the end, it can be summarised that the ultimate goal of these techniques is to re-
duce the likelihood of packet loss and to allow media flows to use the available bandwidth
efficiently.

In case of Library 1, no information is available on what error correction techniques
are used and how robust they are in face of packet loss. This experiment applies our
framework to the library in order to see how does error redundancy manifests itself at
the frame size, frame rate and bandwidth usage levels.

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0 5 10 15 20 25

T
ra

ffi
c

R
at

e
(K

bp
s)

Packet Loss Ratio (%)

Traffic Rate vs Packet Loss Ratio

Library 1 15 FPS 1024 Kbps
Library 1 15 FPS 256 Kbps

Library 1 25 FPS 1024 Kbps

Figure 6.7: Traffic Rate vs. Packet Loss ratio without the effects of motion (Device 1)

Figure 6.7 shows the correlation of video source rate for three different configurations
of Library 1, namely 15 FPS and 1024 Kbps, 15 FPS for 256 Kbps and at 25 FPS for
1024 Kbps. The video source rate was noted down for packet loss ratios such as 0%, 2%,
10% and 25%.

The graph shows that the video source rate clearly increases with increasing packet
loss ratio. The increase in video source rates is different for different configurations but
a clear trend is visible in these graphs. The source rate appears to decrease a bit for
the case when the maximum allowable bit rate is 256 Kbps. But this may be because
in order to achieve the low target bit rate, the video source rate is decreased. But it is
still visible that the source rate at 25% packet loss ratio is still much greater than that
at 0% or 2%.

It is visible that the increase in source rate is sharp for lower values of packet loss

82 CHAPTER 6. EXPERIMENTS AND ANALYSIS

ratio as compared to higher values. Thus it can be concluded that an aggressive source
rate shaping strategy is employed for lower packet loss ratios than at higher ratios and
that no further rate shaping takes place in lossier conditions.

In videos where random motion effects are present, the source rate may vary as can
be seen in later results leading to absence of evidence pointing out to this trend. In the
case of other configurations (e.g. frame rate of 5 FPS), the traffic rates were lower but
the trend of increasing source rate in lossier conditions is evident. If the frame sizes are
plotted for different configurations for different values of the packet loss ratio, it can be
seen from Figure 6.8 that the frame sizes increase steeply for low values of packet loss
ratio (less than 10%) and then increase smoothly for higher values. From the evidence,
one of the explanations is that spatial or quality redundancy is added to the frame.

However, an alternative explanation for the increase in the average frame size can be
that more I frames are sent by the source so that the decoder can repair the decoding
context despite the loss of reference frames.

 0

 50

 100

 150

 200

 250

 300

 350

0 2 10 25

F
ra

m
e

S
iz

e
(B

yt
es

)

Packet Loss Ratio (%)

Traffic Rate vs Packet Loss Ratio for Library 1

15 Hz, 1024 Kbps
15 Hz, 256 Kbps

25 Hz, 1024 Kbps

Figure 6.8: Frame Sizes vs. Packet Loss ratio without the effects of motion (Device 1)

In the absence of video with motion effects, DUT 1 was observed to code each frame
in 2 packets. Similar results were seen in this experiment where DUT 1 coded each frame
into 2 packets for conditions of no packet loss. However at higher packet loss ratios the
average frame size increased to 2.05 packets per frame which meant that few 3 packet
frames were detected.

As the loss of a packet may result in complete loss of a frame, the frame rate may
be increased to ensure that despite the loss of some frames, video of substantial frame
rate may be received by the receiver. This adds temporal redundancy to the video as
compared to spatial redundancy discussed above. However, the frame rate did not vary
substantially in face of packet loss which strongly suggested that Library 1 used spatial
redundancy as a method of combating packet loss.

The measurement for frame sizes for DUT 2 appear to show a similar trend seen in
Figure 6.9 where the frame sizes increase with the increase in lossy conditions. DUT 2

6.3. EFFECT OF PACKET LOSS AND PACKET CORRUPTION 83

however has on an average higher data rate as compared to DUT 1 and hence in the
case where the bit rate is limited to 256 Kbps, DUT 2 has to readjust frame sizes and
reduce them in order to limit the data rate rate. This reduction may be due to reduction
in resolution or video quality. This reduction allows DUT 2 maintain the low target bit
rate as spatial of quality redundancy is added to the frame.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 2 10 25

F
ra

m
e

S
iz

e
(B

yt
es

)

Packet Loss Ratio (%)

Traffic Rate vs Packet Loss Ratio for Library 1, Device 2

15 Hz, 1024 Kbps
25 Hz, 1024 Kbps

Figure 6.9: Frame Sizes vs. Packet Loss ratio without the effects of motion (Device 2)

The number of packets each frame is coded into is larger for DUT 2 as compared to
DUT 1. This makes DUT 2 more susceptible to packet loss as compared to DUT 1 as then
even the loss of 1 packet can render the entire frame useless. For lower values of packet
loss conditions, each frame is encoded into an average of around 2.1 to 4.64 packets per
frame (for different configurations) and for packet loss values up to 25% it increases to
around 7.1 packets per frame. However frame rate remains nearly constant for changing
packet loss ratios. This is conclusive evidence that spatial or quality redundancy and not
temporal redundancy is added to each frame by Library 1 to counter lossy conditions.

If FEC is used as a method of error correction, parity packets may or may not be
differentiated from media packets by using a different Payload Type number in RTP.
As no packets carrying a different payload type number were observed, no evidence is
observed that the library uses FEC for error correction.

6.3.1 Effect of Packet Loss on Video with Motion

Video with motion has a higher data rate as compared to video without motion. This
causes an increase in frame rates and frame sizes leading to increase in number of packets
per frame. As the number of packets each frame is coded into increases, the call becomes
more susceptible to packet losses as each lost packet leads to a lost frame. The effects
of motion on frame sizes and frame rates are highly unpredictable the evidence of which
is seen later in this chapter and there are too many factors like the library trying to
utilise the available bandwidth, limitations in frame rate due to configuration, target bit

84 CHAPTER 6. EXPERIMENTS AND ANALYSIS

rate and hence no substantial evidence of traffic rates being solely affected by packet loss
ratio is seen.

No duplicate packets were observed and hence we conclude that the library does not
use retransmission to combat packet loss. If the library used source rate control, a sharp
decrease in the source rate would be observed. It has been seen that Skype uses source
rate control to deal with packet loss [92]. As no substantial decrease in source rate was
observed for any of the cases, it can be concluded that Library 1 does not use source
rate control as a method of dealing with packet loss.

At lower frame rates (5 FPS), the frame sizes appear to increase suggesting addition
of spatial redundancy. For higher frame rates (15 FPS), there is less processing time
available per frame and hence the resolution is decreased so that the same number of
frames can be encoded along with redundancy in the same amount of time.

For 2% packet loss, the deprecation in video quality was detectable but not obvious.
For values of packet loss at 10%, serious deterioration in video quality was observed. The
video appeared to be choppy and the amount of motion in it was considerably reduced.
This can be attributes to loss of complete frames. As the loss of even one packet leads
to loss of an entire frame, more number of frames are lost resulting in choppy video.
In such conditions, audio video synchronisation loses meaning as lip movements cannot
be deciphered. When the packet loss ratio was 25%, the video quality was bad and no
communication was possible.

6.3.2 Effect of Packet Corruption

Adding packet corruption to the network shows similar results to packet loss. A corrupt
packet is as good as a lost packet and hence error detection techniques are commonly
used at the application layer to detect any corruption in data. Figure 6.10 shows that
the source rates at higher values of packet corruption are higher than source rates at
lower values of packet corruptions. The lower source rate(for 25 FPS, 1024 Kbps) at 2%
value of packet corruption ratio is due to a lower frame rate which was observed at the
source. This variation in frame rate can be considered an aberration as it has been seen
that the frame rates tend to vary a lot for video conferencing applications.

It can be seen in figure 6.11 that again, spatial redundancy is being used to deal with
corrupt packets. The frame sizes increase suggesting that more redundancy is packed
into the frame as the library detects that some of the packets at the receiver have been
corrupted. The number of I frames in the trace would also increase leading to an increase
in the average frame size in the trace.

Google Hangouts

When this experiment was performed on Google Hangouts, no evidence of source rate
shaping was observed. The source rate did not increase with a particular trend suggesting
that FEC or similar error correction/lost packet recovery techniques were not used. The
frame sizes for DUT 2 were observed to increase for increase in packet loss ratio. This
suggests that spatial or quality redundancy might be added by Google Hangouts for
DUT 2. But is is highly unlikely that different techniques for error correction will be
used for different devices. A more likely explanation is that the number of I frames

6.3. EFFECT OF PACKET LOSS AND PACKET CORRUPTION 85

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

T
ra

ffi
c

R
at

e
(K

bp
s)

Packet Corruption Ratio (%)

Traffic Rate vs Packet Corruption Ratio in Library 1

5 FPS 1024 Kbps
15 FPS 256 Kbps

15 FPS 1024 Kbps
25 FPS 1024 Kbps

Figure 6.10: Traffic Rate vs. Packet Corruption ratio without the effects of motion
(Device 2)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0 2 10 25

F
ra

m
e

S
iz

e
(B

yt
es

)

Packet Corruption Ratio (%)

Frame Size vs Packet Corruption Ratio for Library 1

5 Hz 1024 Kbps
15 Hz 256 Kbps

15 Hz 1024 Kbps
25 Hz 1024 Kbps

Figure 6.11: Frame Sizes vs. Packet Corruption ratio without the effects of motion
(Device 1)

generated by the library increases to ensure maintenance of video decoding context in
lossy network conditions.

Google Hangouts maintained a particularly high frame rate (around 30 FPS). At
high frame rates, even the loss of half of the frames will provide a decent video quality
at 15 FPS. This makes Google Hangouts more robust to packet loss and can provide
a reasonable quality of experience. It has been determined from previous studies that
Google Hangouts shapes video at the server and that each receiver gets a personalised
video stream from the server. Our framework successfully detected that Google Hang-

86 CHAPTER 6. EXPERIMENTS AND ANALYSIS

outs recodes packets at the server. For each packet in the uploaded video stream, the
framework tries to find the same packet in the download stream of the receiver. However
as the same packet was not found, it is concluded that reshaping takes place at the
server.

However this framework monitors video source rate, the frame rate, frame sizes and
the bandwidth usage of the source device, any changes in the frame rate and frame sizes
in the downloaded video are not calculated. However, the data is recorded and can be
monitored to identify the frame rate and frame sizes of the received video. Some frames
can be dropped to reduce the video bandwidth usage. By noting the difference in the
upload and download frame rates, it can be found out how many frames were dropped.

Google Hangouts was known to use the scalable video coding approach previously.
In a scalable video coding approach, each frame is coded as a number of layers where the
one layer (the lowest) is sufficient to provide suitable video quality. However if the other
layers too can be decoded in addition to this layer providing a better video quality. The
server may send the receiver all the layers in order to enable the receiver to have a high
quality video. However in lossy conditions, the server may drop some layers in order to
reduce the source rate of the video. By observing the frame sizes of the received video as
compared to the sent video, it can be determined whether the server drops some layers
of the video before sending it to the receiver. But then Hangouts switched to VP8 codec
where scalable coding approach was not used. Hence no further investigation into this
approach was required.

6.4 Effect of Network Latency

This experiment investigates the effect of a large propagation delay on the performance
of the library and also investigates whether the library tries to employ any techniques
to maintain quality of experience.

To measure the effects of network latency, the library was configured at 25 FPS and
1024 Kbps (so that bandwidth usage would be high) and the delay was periodically
increased for the following values: 100 ms, 200 ms, 400 ms, 1000 ms and 2000 ms. For
values of delay larger than 2000 ms, the user is more than likely to drop the call and
hence values more than 2000 ms were not considered.

Figure 6.12 plots video bandwidth for different cases for Library 1 and Google Hang-
outs. It can be observed that for Library 1, the bandwidth usage is fairly constant both
when motion is present and is absent. This shows that no source rate shaping takes
place for increasing values of delay.

For Google Hangouts, when motion is not present, the video bandwidth remains
nearly constant even as the delay is increased. Video without motion uses less bandwidth
as compared to video with motion. However for when the video had motion components,
the video source rate progressively decreased for higher values of delay until it reached
a low value beyond which it stopped decreasing the video source rate.

This can be explained as increase in the Round Trip Time (RTT) is interpreted
as congestion caused by video overloading the available bandwidth. Hence the library
decreases the source rate of the video to a point where video of sufficient quality can

6.4. EFFECT OF NETWORK LATENCY 87

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ra

ffi
c

Lo
ad

 (
K

bp
s)

Delay (ms)

Traffic Load vs Network Latency

Library 1 (Motion)
Library 1 (No Motion)

Google Hangouts (Motion)
Google Hangouts (No Motion)

Figure 6.12: Bandwidth Usage vs. Network Delay

be delivered. This decrease in video may be caused by decrease in frame rate, video
resolution or frame quality.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

pa
ck

et
 S

iz
es

 (
B

yt
es

)

Delay (ms)

Packet Sizes vs Network Latency

Library 1 (Motion)
Library 1 (No Motion)

Google Hangouts (Motion)
Google Hangouts (No Motion)

Figure 6.13: Frame Sizes vs. Network Delay

The decrease in the video source rate can be explained by observing the frame sizes
in the video for different values of latency. The frame rate was nearly constant and hence
the decrease in video source rate was due to decrease in frame sizes or frame quality. It
can be observed that the packet sizes follow the same profile as the video source rate.
The number of packets per frame was nearly constant in this case and hence larger packet
sizes were indication of larger frame sizes. This suggests that the decrease in source rate
for Google Hangouts was due to reduction in video resolution or quality.

88 CHAPTER 6. EXPERIMENTS AND ANALYSIS

For Library 1, the disconnection time (the time at which the client disconnects from
the server due to a large network latency) was observed to be as high as 9000 ms. This
is however very tolerable as the user is more likely to disconnect the call himself if and
when the delay exceeds 2000 to 3000 ms.

6.5 Effect of Bandwidth Variation

This experiment studies video adaptation for both Library 1 and Google Hangouts under
different network conditions. It observes how the libraries adjust to different bandwidths
and how do they ramp up its bandwidth usage in case of good network conditions.

Different configurations of Library 1 use different bandwidth.To observe properly the
effects of changing bandwidth conditions, it was necessary that the library was actually
allowed to use maximum bandwidth available and then see if it can still adapt to lesser
bandwidth conditions. Library 1 was configured at 30 FPS, the maximum allowable bit
rate was set at 1024 Kbps and the capture resolution was set to 800 X 600.

Another goal of this experiment is also to determine how fast the library can ramp
up its bandwidth in the case of abundant bandwidth and whether it can detect low
bandwidth conditions and adapt its initial sending rate accordingly. The configuration
parameters specify the upper limit at which the video will be encoded and the video may
never exceed these limitations although a lower quality video may be streamed by the
library depending on various factors.

To simulate low quality connections, the bandwidth was fixed to 64 Kbps. The
experiment was repeated for bandwidth limitations for 128 Kbps, 256 Kbps, 512 Kbps
and the full available bandwidth which was about 10 Mbps. A limit of 1 Mbps was not
chosen as the video almost never exceeded 1 Mbps.

As one of the goals of this framework is to understand performance of Library 1, for
this experiment, Library 1 was run on both DUT 1 and DUT 2 as conference initiators.
This means that two instances of the experiment were run where in the first one only
DUT 1 is connected to the framework and DUT 2 joins the conference from outside the
framework. In the second instance, their positions are interchanged and performance of
Library 1 on DUT 2 is determined. Analysis with DUT 2 helps us gauge the performance
of the library for heterogeneity of hardware. For Google Hangouts, only DUT 1 was used
as the conference initiator.

Video parameters like bandwidth usage, frame size and frame rate were measured at
the interval of every 10 seconds for a period of 10 minutes so that more granularity can
be obtained in the changes in packets and traffic rates. Then for additional analysis,
a moving average of data rates, frame rates and frame sizes was computed in order to
better understand variation in bandwidth usage, frame sizes and frame rates for a period
of 600 seconds.

6.5.1 Full Bandwidth

Initially, no constraints were placed on the bandwidth to see how the library ramps up
its bandwidth usage and tries to utilise better bandwidth. The library was monitored
for a period of 600 seconds and the sampling interval (in order to generate periodic data)

6.5. EFFECT OF BANDWIDTH VARIATION 89

was 10 seconds. This allowed us to minutely observe changes in frame size, frame rate
and bandwidth usage over each period of 10 seconds.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

A
ve

ra
ge

 T
ra

ffi
c

(K
bp

s)

Time (s)

Source Video Traffic vs Time

Library 1 DUT 2 Average Traffic Rate
Library 1 DUT 1 Average Traffic Rate

Google Hangouts Average Traffic Rate

Figure 6.14: Source traffic rate Library 1 on DUT 1 and DUT 2 and of Google Hangouts
on DUT 1

Figure 6.14 shows that for DUT 2 Library 1 uses less bandwidth at the start of the
call and ramps up its bandwidth usage 120 seconds into the call to rapidly increase the
traffic rate to ensure high bandwidth utilisation. On DUT 1, for the same configuration,
the bandwidth usage ramps up smoothly as compared to on DUT 2. Moreover, it can
be seen that the peak bandwidth usage for DUT 2 is much higher than that for DUT 1.

If traffic rates for Library 1 and Google Hangouts for DUT 1 are observed, it can
be clearly seen that Library 1 starts at a similar traffic rate as compared to Google
Hangouts but starts ramping up the bandwidth usage 30 seconds into the call. It can
also be seen that the bandwidth usage for Library 1 on an average is much higher as
compared to Google Hangouts. The average traffic load has been computed by taking a
moving average of the traffic load computed every 10 seconds by the framework. It can
be observed that Library 1 has been observed to use up to 1305 Kbps bandwidth for a
call on DUT 2 and 971 Kbps for a call on DUT 1. Meanwhile the maximum bandwidth
usage for Google Hangouts was 558 Kbps.

The actual traffic load oscillates heavily due to the presence of jitter. Jitter is the
variation of the network latency in time. At low values of delay, the rate of packets
reaching the receiver might be much higher than the rate at which packets are consumed
by the receiver. However at high values of delay, the rate of packets reaching the receiver
may not be high and there is a threat of the buffer being rendered empty by the fast
consuming receiver. In the case of network based video applications like video on demand,
this jitter can be tolerable as the video is already encoded and hence the source rate can
be varied by temporal or spatial scaling and in the worst case, the receiver can interrupt
the video rendering as it waits for new packets to arrive, a process which is commonly
known as buffering. Video conferencing, being a real-time interactive application, has

90 CHAPTER 6. EXPERIMENTS AND ANALYSIS

to have very small values of buffering delay (a larger de jitter buffer increases delay)
and hence has less tolerance to jitter. Hence video conferencing applications have to
vary their source rate appropriately in order to ensure interactivity amongst users by
managing the jitter in the network.

Frame Rates

The source rate can be varied by varying the frame rate or frame size. Figure 6.15
plots the frame rates measured every 10 second by the framework. It can be observed
that Google Hangout maintains a relatively higher frame rate as compared to Library 1.
Hangout starts at a frame rate of around 27 Hz and maintains a frame rate in excess of
25 Hz for most part of the call duration. For Hangouts, a highest frame rate of 30.4 Hz
has been observed and a lowest frame rate of 10.8 was seen. Library 1 however uses low
frame rates as compared to Google Hangouts. In the case of Library 1, frame rate as
high as 15.6 Hz and as low as 5.5 Hz was observed for DUT 1 and for DUT 2, a frame
rate as high as 14.5 Hz and as low as 2.5 Hz were observed. A video of higher frame rate
is more robust to packet loss as the even the loss of some of the frames would still lead
to a decent frame rate. Higher frame rate captures motion more efficiently and increases
the quality of experience.

The oscillation in frame rates is due to the variation in the motion content and the
level of detail captured in each frame apart from the need to constantly change the
source rate. When the frame rate is higher, the video has more amount of motion and
more artefacts as the hardware may have less time to compress each frame. Various de-
blocking and de-ringing filters are used by the codec to iron out the artefacts and these
filters require high CPU usage. Thus high frame rates may overload the CPU resulting
in lossier compression resulting in lossier compression. Apart from that, events like OS
glitches can produce a minor variation in frame rates.

However, it has been discussed in this section how the source rates vary and one of
the cause of these varying source rates is the varying frame rate. Figure 6.15 confirms
this by plotting the frame rate. However, the frame rate is not the only criteria which
determines the quality of experience. A library may encode 30 frames in the first second
and only 4 in the other leasing to an average frame rate of 17 Hz. But the change in the
the frame rate causes choppy video and greatly reduces quality of experience. Linearity
of frame rate is determined by taking a moving average of the frame rate and it helps us
understand the variation in frame rate better. From the linearity plots, it can be seen
that Google Hangouts maintains a much higher frame rate than Library 1. Library 1
maintains a slightly higher frame rate for DUT 1 as compared to DUT 2 as DUT 1 has
more powerful hardware.

However the linearity curve for Library 1 is smoother as compared to Google Hang-
outs meaning that the frame rate for Library 1 tends to vary less as compared to Google
Hangouts. However the average frame rate in Hangouts always remains between 20 and
25 Hz and the slight variation in the frame rate may not be visible to the viewer at higher
frame rates. In the case of library 1, the variation in frame rates, even though much less
as compared to Hangouts, can be detected by the user as it falls below 10 Hz. Below
10 Hz, video tends to be choppy and as lip sync cannot be seen clearly, audio video

6.5. EFFECT OF BANDWIDTH VARIATION 91

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

F
P

S
 (

H
z)

Time (s)

Frame Rate vs Time

Library 1 DUT 2 Average Frame Rate
Library 1 DUT 1 Average Frame Rate

Google Hangouts Average Frame Rate
Library 1 DUT 2 Frame Rate
Library 1 DUT 1 Frame Rate

Google Hangouts Frame Rate

Figure 6.15: Frame rate and Linearity of Library 1 on DUT 1 and DUT 2 and of Google
Hangouts on DUT 1

synchronisation loses meaning. However for thumbnail videos with less motion, the low
frame rates might be sufficient at providing the user with a good quality of video.

Frame Sizes

Video quality cannot be gauged by frame rates alone. A video with a high frame reso-
lution and quality at a frame rate of 15 Hz and a video with comparatively low frame
quality and resolution but at a significantly higher frame rate (30 Hz) may both be
considered good by viewers. Hence the frame sizes of Google Hangouts for DUT 1 and
Library 1 for both DUT 1 and 2 are plotted to observe the change in frame sizes.

It is observed from Figure 6.16 that the average frame size is much higher for library
1 as opposed to Hangouts. This higher size indicated higher quality or higher resolution.
This higher size is the reason for higher traffic rates. Library 1 starts with a lower
frame size and increases the resolution and reaches nearly the full resolution at around
90 seconds into the call. Hangouts shows more variation in frame sizes as compared to
Library 1 but on an average has much lower frame size. The frame size for DUT 2 for
Library 1 is much higher as compared to DUT 1. This might be because of the fact that
DUT 1 has more powerful hardware as compared to DUT 2. DUT 2 uses low frame sizes
initially and once it detects that sufficient bandwidth is available, it ramps up the frame

92 CHAPTER 6. EXPERIMENTS AND ANALYSIS

sizes. This however leads to increases bandwidth usage and low robustness in conditions
of varying bandwidth.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600

F
ra

m
e

S
iz

es
 (

B
yt

es
)

Time (s)

Frame Size vs Time

Library 1 DUT 2 Frame Sizes
Library 1 DUT 1 Frame Sizes

Google Hangouts Frame Sizes
Library 1 DUT 2 Average Frame Size
Library 1 DUT 1 Average Frame Size

Google Hangouts Average Frame Size

Figure 6.16: Frame Size and Average Frame Size of both the libraries when full Band-
width is available

The framework detected that Google Hangouts re-encodes each frame at the server.
This re-encoding delay increases the source to receiver delay. Due to higher delay, Google
Hangouts is more susceptible to jitter and congestion and has to vary the source rate to
ensure robust performance. Lower frame sizes reduce the processing complexity at the
server thus reducing the delay.

6.5.2 Performance in Low Bandwidth Conditions

When a video conferencing library suddenly has to face low bandwidth conditions while
operating under high bandwidth conditions, the video adaptation to a lower bandwidth
usually takes some time and meanwhile the RTT to the server increases and reaches an
extent where the connection breaks and the call drops. Hence low bandwidth conditions
were created before the call was established and then the performance of the call was
tracked. For low bandwidth conditions, two bandwidth options were selected, 64Kbps
and 128 Kbps.

6.5. EFFECT OF BANDWIDTH VARIATION 93

Bandwidth limit 64 Kbps

For the bandwidth limit of 64 Kbps None of the libraries was able to sustain a call for
more than 120 seconds. Library 1 started with a traffic source rate of more than 180
Kbps both in the case of DUT 1 and DUT 2. This caused a very high RTT to the server
and the call dropped immediately in less than 20 seconds. Hangouts were comparatively
more robust and a call was sustained for around 100 seconds. However the traffic source
rate increased above 64 Kbps causing the RTT to increase and dropping the call.

Google Hangout started with a low frame rate and maintained the frame rate for
around 90 seconds. After that it increased the frame rate while decreasing the frame
sizes by a quarter. However the readjustment was not enough to decrease the source
rate and the call dropped due to increase in RTT from video overload. The frame rate
increases starts around 5 FPS and increases up to 20 when the source rate increases
beyond the threshold causing disconnection. Library 1 starts with very high frame sizes
which causes increase in RTT due to video overload.

Bandwidth limit 128 Kbps

For a limit of 128 Kbps, Google Hangout was robust enough to sustain a call whereas
Library 1 failed to sustain a call for more than 30 seconds. Google Hangout is able to
sustain the average traffic load to a value way less than the available bandwidth and
also manages to keep the peak traffic load also less than the available bandwidth. Figure
6.17 plots the video source rates for Google Hangouts for bandwidth conditions of 128
Kbps, 256 Kbps and 512 Kbps. The video source rate for Library 1 was plotted only for
DUT 1 for available bandwidth of 512 Kbps and DUT 2 for the available bandwidth of
256 Kbps as in all other cases, the bandwidth usage was high leading to a call drop and
call times in excess of 120 seconds were not observed.

6.5.3 Performance in Medium Bandwidth Conditions

Under medium bandwidth conditions, the bandwidth limit was fixed to 256 Kbps and
512 Kbps.

Bandwidth limit 256 Kbps

At 256 Kbps, it was observed that Library 1 starts with a traffic source rate of just
under the available bandwidth while Google Hangouts starts with a rate much less than
100 Kbps. Hangouts then ramps up its available bandwidth and reaches an average
bandwidth near the available bandwidth while ensuring that the peak traffic rate does
not exceed the available bandwidth. Library 1 starts with source rate just less than 256
Kbps and ramps it up to more than 500 Kbps. The RTT increases due to video overload
and the call drops. However in the case of DUT 2, Library 1 keeps its source rate below
256 Kbps.

94 CHAPTER 6. EXPERIMENTS AND ANALYSIS

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

V
id

eo
 S

ou
rc

e
R

at
e

(K
bp

s)

Time (s)

Video Source Rate vs Time

Google Hangouts under BW 128 Kbps
128 Kbps

Google Hangouts under BW 256 Kbps
256 Kbps

Google Hangouts under BW 512 Kbps
Library 1 DUT 1 under 512 Kbps

512 Kbps
Library 1 DUT 2 under 256 Kbps

Figure 6.17: Video Source Rate of Google Hangout and Library 1 under different band-
width conditions

Bandwidth limit 512 Kbps

At 512 Kbps, Google Hangouts was able to maintain a source rate well below 512 Kbps
which ensured a robust call. Library 1 however held a call on DUT 1 for around 8 minutes
before the source rate increased causing runaway increase in RTT and disconnection.
This behaviour can be observed from Figure 6.17.

The video bandwidth used by a Hangout call was always observed to be considerably
less than the available bandwidth. This bandwidth is utilised for audio calls, signalling,
other application level data sharing (text) and other flows emanating from the same ma-
chine (competing TCP and UDP flows). This bandwidth gap also allows for robustness
in case of jitter as there is enough margin to vary the source rate.

For Library 1, the call was not sensitive to bandwidth limitations and the in most of
the cases dropped due to video overload. In some cases, the library manages to sustain
a call beyond 300 seconds but in those cases, the average source rate occupied a greater
portion of the bandwidth. This results in less available bandwidth for audio, signalling,
other application level data and TCP/UDP flows from the same machine. From this we
concur that Library 1 is less sensitive to bandwidth limitations and must be carefully
configured in order to prevent overload of the bandwidth.

The bandwidth sensitivity of Google Hangouts is further investigated by observing

6.5. EFFECT OF BANDWIDTH VARIATION 95

frame rates and frame sizes throughout the duration of the call.

Frame Rate of Google Hangouts The frame rates of Google Hangouts were ob-
served for different values of available bandwidth. Figure 6.18 plots the frame rates for
Google Hangout for different bandwidth conditions. Google Hangouts tends to maintain
a frame rate of between 20 and 25 Hz for a call. However when the available bandwidth
was 128 Kbps, for some periods of time, the average frame rate dropped to as low as
10 Hz during the call. Thus it can be concurred that Google Hangouts places more
emphasis on maintaining a high frame rate and that QoE of a call under low bandwidth
conditions would be less due to varying frame rate. However, as frame rates are still
higher than 10 Hz, audio video synchronisation is possible (lip sync corresponding to
audio can be identified).

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

F
ra

m
e

R
at

e
(H

z)

Time (s)

Frame Rate vs Time

Google Hangouts under BW 128 Kbps
Google Hangouts under BW 256 Kbps
Google Hangouts under BW 512 Kbps

Google Hangouts without BW constraint

Figure 6.18: Frame rates for Google Hangout under different bandwidth constraints

As discussed earlier, frame rates in combination with frame sizes determine the call
quality. The trend in frame sizes and frame rates with traffic rate is consistent under
512 Kbps bandwidth restrictions. Google Hangouts has a source rate well under the
maximum bandwidth and uses occasionally the peak source rate increases but never
increases beyond the available bandwidth. Library 1 is able to keep its source rate below
the available bandwidth but once it detects that the bandwidth is not being utilised fully,
it increases the source rate to a point where it increases beyond the available bandwidth
causing runaway increase in the RTT leading to call drop.

96 CHAPTER 6. EXPERIMENTS AND ANALYSIS

The frame sizes are plotted in Figure 6.19 and it can be observed Google Hangouts
uses low sized frames (meaning low quality and low resolution) to keep video source
rates low in low bandwidth conditions. However the frame sizes vary a lot through
out the duration of the call which means that the user sees high quality video at some
points and low quality at some other points. The frame sizes increase when the available
bandwidth is 256 Kbps and still increase when the available bandwidth increases. This
suggests that Google Hangouts primarily uses scaling in frame quality/resolution while
maintaining a high frame rate as the method of varying source rate. The variations in
source rate at low bandwidth are necessary as the margin for handling jitter reduces at
low bandwidths. When higher bandwidth is available, Google Hangouts delivers better
quality video. However the high frame rate enables Google Hangouts maintain a decent
QoE even when the video has low resolution/quality.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

F
ra

m
e

S
iz

e
(B

yt
es

)

Time (s)

Frame Size vs Time

Google Hangouts under BW 128 Kbps
Google Hangouts under BW 256 Kbps
Google Hangouts under BW 512 Kbps

Google Hangouts without BW constraint

Figure 6.19: Frame sizes for Google Hangout under different bandwidth constraints

Failure Analysis

The results of this experience can be used to determine the cause of failure of a library
in the case of less available bandwidth. The call session fails as the video overloads the
bandwidth. This causes runaway increase in RTT leading to excessive delays. As we
have discussed earlier, Video source rate can be reduced by reducing either the frame
sizes or frame rates. Thus frame sizes and frame rates are observed to pinpoint the cause

6.6. PRE-CONNECTION RESULTS 97

of the failure.
The failure of library 1 to sustain a call on DUT 1 under available bandwidth of 512

Kbps is used as a case study here determine the cause of failure and suggest methods to
ensure that the call does not fail. Library 1 maintains an average frame rate between
10 and 15 Hz throughout the call. Frame sizes at the beginning of the call are observed
to be around 1800 bytes which then later increase. At around 480 seconds, the video
bandwidth exceeds the available bandwidth causing a failure. Hence the video source
rate must be maintained below the available bandwidth at all point of time during the
call.

Video bandwidth should be ideally 80% of the total available bandwidth. The re-
maining bandwidth is used for audio traffic, signalling traffic and other competing TCP
and UDP flows from the machine. Hence the video bandwidth usage should be around
410 Kbps for a sustainable call. The video bandwidth can be controlled by controlling
the frame rate or the frame sizes. Frame rate cannot be decreased further below 10 Hz
as they would result in choppy video and identifying lip sync will not be possible. Hence
the frame sizes should be limited to limit the video bandwidth usage.

It can be observed from Figure 6.17 that the video achieves a target bandwidth usage
of around 400 Kbps in the time period between 300 and 400 seconds. The frame sizes
and the average RTT to the server between that time period can be seen in Figure 6.20.
It has been suggested that the ideal value of RTT is around 150 ms [38]. It can be
corroborated that the RTT is around 150 ms in the time period between 300 and 400
seconds into the call. The figure shows that as the frame sizes keep on increasing, the
RTT increases due to the video overloading the network.

The library should be tested for different configurations using the framework to check
which configuration achieves the target frame sizes while maintaining an RTT to the
server of about 150 ms or lower. That particular configuration can be used for the target
bandwidth. If runtime, reconfiguration of video bitstream is available, that particular
configuration should be used when it is detected that the available bandwidth is 512
Kbps.

6.6 Pre-Connection Results

The framework is designed using Wireshark and a simple observation of the Wireshark
traces reveals a lot of useful information about behaviour of the library. Apart from the
media streams, the traces also reveal information about the pre-connection process of
the library. A pre-connection process is defined as the actions a library takes from the
moment the call is initiated by the user to the point until the first media packet is seen.
This information is relatively easy to obtain and can be included in the framework in
the future.

The pre-connection procedure of Library 1 was observed to find out the complications
and the time required before the first media packet was sent. This information can be
used at the application design level to determine when a connection request is to be
made in case seamless connectivity has to be provided to the user of the application.
The login process of library 1 can be best described as a three step process as seen in
Figure 6.21.

98 CHAPTER 6. EXPERIMENTS AND ANALYSIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600

F
ra

m
e

S
iz

e
(B

yt
es

)

Time (s)

Frame Size vs Time

Library 1 Frame Sizes under BW 512 Kbps
Library 1 Average Frame Sizes under BW 512 Kbps

(a) Frame Sizes of Library 1 for DUT 1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500 600

R
T

T
 (

m
s)

Time (s)

RTT to the server vs Time

RTT to the server

(b) RTT to the server

Figure 6.20: Increase in Frame Sizes accompanied by increase in RTT due to video
overdrive

1. The first step is carried out when the application is launched by the user. The
application performs a handshake with a server meant for verifying whether the
user is a valid user or not.

2. In the second step the library performs a handshake with another server which
returns the IP address of a media relay server (and the port number) which will be
used by the library for the session. Usage of different media relay servers (identified
by different IP addresses in different subnets) has been observed.

3. In the third step, the media relay server performs a handshake with the client and

6.6. PRE-CONNECTION RESULTS 99

after identification and verification, the video stream starts relaying video data.

Figure 6.21: Login Process of Library 1

The system time stamp of the first packet sent on initialising the call was noted and
the time stamp of the first media packet was noted. The average difference in the time
stamps was found to be around 1 second. In conditions of delay of around 1000ms,
the login process has been observed to take up to 7 seconds on account of multiple
retransmissions. This information can be useful at the application design level where
a request to initiate a call can be taken as early as possible depending on the needs of
the user and the network conditions. Transmission Control Protocol is used throughout
the login process and once login is established, the media packets are sent using UDP.
Decoding the media stream using RTP results in a detailed analysis where port numbers,
source identification numbers, sequence numbers and frame start boundaries can be
identified.

100 CHAPTER 6. EXPERIMENTS AND ANALYSIS

Conclusions and Evaluations 7
Measuring qualitative multimedia parameters using quantitative analysis requires ex-
trapolation. There are standards for video conference framework defined at various
levels, but no standards to define performance and quality of experience. Quality of
Experience (QoE) is a subjective parameter and may vary for each user. A video with
a frame rate of 15 Hz at a high resolution may be perceived as ’good’ as well as a video
with a high frame rate and a low resolution. Hence it is difficult to predict the QoE
based on measurement of QoS parameters like audio and video delay, frame sizes, frame
rates and video source rates. However, by monitoring these variables, a near accurate
insight into the behaviour of the library can be obtained. This information can then be
used to determine the QoE up to a certain extent and the values of the variables can
be determined for optimum performance. The framework discussed in previous chapters
attempts to determine the variable values allowing the developer to extract information
for optimum performance of the library through reproducible experiments. This infor-
mation allows him to determine the robustness of the library under varying network
conditions and helps determine major bottlenecks in offering a decent QoE.

The previous chapter discusses the results obtained after applying the framework on
Library 1 and Google Hangouts. The conclusions derived from these experiments are
discussed in the following sections.

7.1 Congestion - The main challenge to QoS

The internet is a best effort delivery network and hence the onus of meeting certain QoS
(Quality of Service) standards lies on the application (or protocol) being used. Media
applications use UDP which does not provide QoS at the transport layer and therefore
the higher level application has to take various measures to guarantee the QoS. The
main challenge to QoS is network congestion. Network congestion can present itself in
the following ways:

1. Delay - Larger traffic means larger queues at routers leading to increased de-
lay. Variable traffic on the internet (as is the case) results in varying amounts of
queueing sizes leading to variable delay. This variable delay is called Jitter.

2. Packet Loss - In a network with high traffic, incoming packets may tend to
saturate the queueing buffer leading to excess packets being dropped. This causes
packet loss.

Apart from that if the available bandwidth is less than the data rate generated by
the application, the data overload may cause congestion which can manifest itself in one
of the two ways mentioned above. Hence any video conferencing library which aims to

101

102 CHAPTER 7. CONCLUSIONS AND EVALUATIONS

provide a decent QoE should have appropriate congestion control and error control. To
evaluate that, some questions were asked by the framework to each library which can be
summarised as follows:

7.1.1 How does each Library react to Packet Loss/Corruption ?

Library 1

Library 1 responded to packet loss by increasing the source rate of the video. This
increase in source rate was due to increase in frame sizes. Frame sizes increase as re-
dundancy is added to each frame. It is not clear whether the added redundancy is due
to usage of error correction techniques like FEC (Forward Error Correction) or due to
simple redundancy in video resolution/quality as no information on error detection/cor-
rection/concealment strategies employed by the library is available. This is useful as if
one of the redundant packets is lost, the other can be used to decode the frame without
comparable loss in video quality. The average frame size can also be increased due to the
presence of more number of I frames. The receiver loses decoding context due to packet
loss and requests more I frames to repair the decoding context. I frames generate more
data as compared to P frames leading to an increase in the average size.

This suggests that Library 1 is less error tolerant and must be deployed in situations
where the available network conditions are good.

Google Hangouts

Google Hangouts adjusted to increased packet loss with a mild increase in the source
rate. Hangouts uses a high frame rate which means that despite the loss of few frames,
the frame rate is still enough to provide a decent quality of experience. The increase in
source rate is due to the increase in frame sizes meaning that some redundancy is added
to the video frame (or more number of I frames are detected in the trace). However in
hangouts, the video is recoded at the server and hence it is not possible to determine
how exactly the recoding affects the video.

However it can be observed that Google Hangouts is able to provide a decent video
quality at values of packet loss ratio up to 10% as compared to Library 1 where the video
quality deteriorates even at low values of packet loss ratio.

7.1.2 How does each Library react to Network Latency ?

Library 1

Performance of Library 1 is largely unhindered by increasing network latency. There is
no noticeable change in the video source rate, frame sizes and frame rates. This suggests
that Library 1 does not use total delay as a measure of congestion and good video quality
may be delivered by the library even if the propagation delay between the end points is
too high. Thus users may be present in different corners of the globe (leading to a large
scale propagation delay) and still be able to enjoy a high quality video conference. This
indicates that Library 1 favours video quality over interactivity.

7.1. CONGESTION - THE MAIN CHALLENGE TO QOS 103

Google Hangouts

It can be observed that Google Hangouts perceives the delay as an indicator of congestion
and decreases the video source rate. The reduction in source rate is due to reduction
in packet (frame) sizes and the frame rate is not varied significantly. This shows that
Google Hangouts favours interactivity over video quality and tries to decrease the video
quality in order to improve interactivity.

7.1.3 How does each Library react to Bandwidth Constraints ?

Library 1

Library 1 failed to sustain a call indefinitely when the available bandwidth was less than
1 Mbps. It did sustain a call for around 8 minutes when the available bandwidth was 512
Kbps but it attempted to increase the video quality leading to increase in video source
rate. This overloaded the network with video leading to disconnection. From this we
can conclude that Library 1 has no bandwidth detection system. The library tries to
achieve the configuration suggested by the developer without monitoring the available
bandwidth (which means, it decides that the developer knows what he is doing).

Library 1 maintained a low frame rate (despite the available bandwidth) of around
15 Hz even when the configuration allowed it to go up to 30 Hz. Frame sizes are frame
quality were used to vary the source rate ensuring that the user got the highest possible
video quality. This caused disconnection as soon as the source rate exceeded the available
bandwidth. As the source rate increased, an increase in the round trip time (RTT) to
the server was seen and the call was disconnected as soon as the RTT exceeded 9000 ms
(which was earlier reported to be the maximum RTT at which call was still operational).
This suggests that Library 1 monitors RTT to the server in order to decide whether to
drop the call or not.

Ideally, video bandwidth usage should be 80% of the available bandwidth in order to
account for audio, signalling and other competing TCP flows emanating out of the same
machine. This suggested that Library 1 did not have good bandwidth awareness.

Google Hangouts

Google Hangouts uses a higher frame rate of between 25 and 30 Hz and considerably
lower frame sizes. Google Hangouts favours motion over relative video quality. The
higher frame rate allows Google Hangouts to be more robust to random packet loss
(decent video quality can be offered at the loss of few frames).

When the available bandwidth increases, Google Hangouts increases its frame sizes
(similar to Library 1), by either increasing video resolution or video quality to increase
the video quality. However hangouts monitors the available bandwidth and always keeps
its source rate below the available bandwidth. The video bandwidth usage for hangouts
was in fact considerably less than the available bandwidth. This remaining bandwidth
is required to ensure that good quality audio can accompany the video call. This gap
in bandwidth (which can be referred to as the audio gap) suggests that hangouts gives
higher priority to audio than video. This helps to deliver a better QoE as good quality
audio can still sustain an interactive call in the absence of video.

104 CHAPTER 7. CONCLUSIONS AND EVALUATIONS

It was observed that Hangouts does not saturate the link with audio/video as the
highest bandwidth used by a Google Hangouts call was reported to be around 400 Kbps
(even when the available bandwidth was in excess of 10 Mbps). Thus Hangouts does not
use bandwidth efficiently and does not try to increase video quality for the user (even
when higher bandwidth is available).

Apart from that, different configurations of the library were investigated for different
call sizes in order to determine the effect of heterogeneity of the hardware and varying
call sizes. The conclusions from those experiments are presented in the following sections.

7.2 Effect of Heterogeneity in Hardware

The experiments discussed in the previous chapter were performed on two devices, Device
Under Test 1 and 2. DUT 1 was a Nexus 10 and DUT 2 was a Nexus 7. One of the main
challenges in providing a good QoE over a multi-user video conference is the heterogeneity
of hardware. DUT 1 was found to be more powerful as compared to DUT 2. Both Library
1 and Google Hangouts show better video quality on DUT 1 as compared to DUT 2.

DUT 1 used bandwidth far more efficiently as compared to DUT 2 without any
noticeable loss in video quality. Also frame sizes observed for DUT 1 were far lower as
compared to DUT 2. DUT 1 could compress the bit rate to a value of 256 Kbps (or a
value lower than that) even if the target bit rate allowed by the developer was high. This
suggests that DUT 1 can achieve higher compression as compared to DUT 2. DUT 1 is
powered by a Samsung Exynos 5 chipset which is far more powerful than the NVIDIA
Tegra 3 chipset which is used in DUT 2. This heterogeneity in hardware causes different
bandwidth usage and different video quality. Higher bandwidth usage also places a limit
on the call size. Hence if DUT 2 has to be used, the library has to be configured carefully
for lower video quality to ensure that it uses less bandwidth.

7.3 Effect of Varying Call Sizes

It was observed that Library 1 monitored the call sizes and reconfigured the video in
order to reduce bandwidth usage in the case of multi-user calls. Video from DUT 2 was
observed to consume a lot of bandwidth and as expected, evidence of traffic shaping was
visible for DUT 2. When the call size increased from 2 to 3, the video was reconfigured
to occupy less bandwidth. As evident from the available frame sizes, the reconfigured
video has a bit rate of 256 Kbps.

7.4 Summary

The important conclusions derived from the above sections can be summarised as follows:

1. Both the libraries try to maintain a near constant frame rate and use frame sizes
to throttle the sending rate.

2. Library 1 reacts to packet loss by increasing the source rate. The increase in source
rate is due to increase in frame sizes. The increase in frame sizes is partly due to

7.5. EVALUATIONS AND FUTURE RECOMMENDATIONS 105

the presence of more number of I frames in the trace. Thus even though error
control is seen, the video quality is badly affected due to packet loss.

3. Library 1 reacts to increasing call sizes by reconfiguring the video to occupy less
bandwidth.

4. Library 1 is not sensitive to bandwidth variations and does not reconfigure the
video for lower bandwidth usage even when less bandwidth is available.

5. Library 1 favours video quality over interactivity and audio.

6. Google Hangouts provides robust performance even when the available bandwidth
is lower than usual. It sacrifices video quality for efficient use of bandwidth.

7. Google Hangouts prioritises audio over video and ensures that enough bandwidth
is available for an audio call even if it means encoding video of a lower quality.

8. Google Hangouts prioritises interactivity over video quality and sacrifices video
quality in order to improve interactivity.

In the end, it can be concluded that by use of run-time profiling, the framework can
successfully extract significant information about the quality of service of the library.
This information can be successfully utilised to predict the quality of experience offered
by the library.

7.5 Evaluations and Future Recommendations

It was observed that for ideal testing of video conferencing libraries, a common video
source for all experiment sets should have been used. However as that was not possible
owing to limitations in the available software, two sets of video sources have been used:

1. Camera facing plain paper (resulting in omission of random effects arising out of
motion).

2. Camera facing normal surroundings (single person in front of camera) where mo-
tion, although unreliable is limited.

However, in the future, a standardised video source can be used resulting in standardised
and more reproducible results.

Jitter Emulation

Jitter is recognised as of the main identifiers which can be used to detect, measure and/or
model congestion. The framework currently does not emulate jitter and in the future,
jitter emulation can be added to measure the library’s response.

106 CHAPTER 7. CONCLUSIONS AND EVALUATIONS

Packet Loss

In the case of packet loss, it is difficult to estimate loss of quality by loss of packets as
not all packets are equally important to video/audio quality. In the future, video quality
can be measured comprehensively bVQM [2] or other similar algorithms and the loss in
quality due to packet loss can be accurately measured and quantified.

Topology

The framework is currently optimised for the following topologies:

1. A peer-to-peer topology for two users.

2. A client-server topology for two or more users.

A fully meshed peer-to-peer topology for a multi-user conference is not yet tested using
the framework and some modifications will be needed in this particular use case.

Automation

Real-Time Transport protocol is used by most libraries for real-time transport. Wire-
shark can be made to do an even more detailed statistical analysis by carefully decoding
and filtering various components of the RTP stream (for e.g. different RTCP feedback
messages, statistics like ratio of audio to video bandwidth usage etc.). The accuracy and
relevance of the framework would improve even more if the framework does this analysis
automatically and generates highly relevant information for user interpretation.

Bibliography

[1] 2013 video chat im software product comparisons.

[2] Batch video quality metric (bvqm) user’s manual.

[3] Cisco telepresence secure communications and signaling.

[4] Cisco white paper on video conferencing standards.

[5] Farstream - audio/video communications framework.

[6] Goldwave.

[7] Ip geolocation website.

[8] Msu video quality measurement tool.

[9] Presence displays bv.

[10] Web real time communication.

[11] Polycom high-definition (hd) video conferencing, 2005.

[12] Usability, accessibility, research and consulting, 2013.

[13] Acrobits, Acrobits mobile voip solutions.

[14] Andbang, Andbang.

[15] Android, Acousticechocanceler.

[16] AOL, Aol instant messaging.

[17] Apple, icall.

[18] Auralink, Auralink.

[19] Avaya, radvision an avaya company.

[20] Salman A Baset and Henning Schulzrinne, An analysis of the skype peer-to-peer
internet telephony protocol, arXiv preprint cs/0412017 (2004).

[21] Mark Baugher, D McGrew, M Naslund, E Carrara, and Karl Norrman, The secure
real-time transport protocol (srtp), 2004.

[22] BDTI, How video compression works, 2007.

[23] Scott Bradner, The internet engineering task force, Open sources: Voices from the
open source revolution (1999), 47–52.

107

108 BIBLIOGRAPHY

[24] Ben Campbell, Jonathan Rosenberg, Henning Schulzrinne, Christian Huitema,
and David Gurle, Session initiation protocol (sip) extension for instant messaging,
(2002).

[25] Stephen L Casner, Media type registration of rtp payload formats, (2007).

[26] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei, Quantify-
ing skype user satisfaction, ACM SIGCOMM Computer Communication Review,
vol. 36, ACM, 2006, pp. 399–410.

[27] M Reha Civanlar, Öznur Özkasap, and Tahir Çelebi, Peer-to-peer multipoint video-
conferencing on the internet, Signal Processing: Image Communication 20 (2005),
no. 8, 743–754.

[28] Apple Computers, Apple ichat, 2013.

[29] Counterpath, Counterpath.

[30] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano, Skype video responsiveness
to bandwidth variations, Proceedings of the 18th International Workshop on Network
and Operating Systems Support for Digital Audio and Video, ACM, 2008, pp. 81–
86.

[31] Ekiga, Ekiga.

[32] K El-Khatib, G Luo, G Bochmann, and F Pinjiang, Multiplexing scheme for rtp
flows between access routers, INTERNET ENGINEERING TASK FORCE (IETF),
INTERNET DRAFT 24 (1999), 1–13.

[33] Eyeball, Eyeball chat.

[34] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee, Hypertext transfer protocol–http/1.1, 1999.

[35] Frank HP Fitzek and Martin Reisslein, Mpeg-4 and h. 263 video traces for network
performance evaluation, Network, IEEE 15 (2001), no. 6, 40–54.

[36] Sally Floyd and Kevin Fall, Promoting the use of end-to-end congestion control
in the internet, IEEE/ACM Transactions on Networking (TON) 7 (1999), no. 4,
458–472.

[37] Google, Google hangouts.

[38] Christina Hatting et al., End-to-end qos network design, Cisco Press, 2005.

[39] Stephen Hemminger et al., Network emulation with netem, Linux Conf Au, Citeseer,
2005, pp. 18–23.

[40] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn van Oost-
erhout, P Schroeder, Jasper Spaans, and Pedro Larroy, Linux advanced routing &
traffic control, Ottawa Linux Symposium, 2002, p. 213.

BIBLIOGRAPHY 109

[41] i-p-tel GmbH, Free sip/voip client.

[42] Van Jacobson, Craig Leres, and S McCanne, The tcpdump manual page, Lawrence
Berkeley Laboratory, Berkeley, CA (1989).

[43] Van Jacobson, Craig Leres, and Steven McCanne, pcap-packet capture library, UNIX
man page (2001).

[44] Cullen Jennings and Suhas Nandakumar, Sdp for the webrtc, (2013).

[45] On2 Jim Bankoski, The vp8 video codec: High compression+low complexity.

[46] Jitsi, Jitsi.

[47] Jukka Korpela, What rfcs are.

[48] KPhone, Kphone.

[49] HTML5 Labs, Interoperability cu-rtc-web, February 2013.

[50] Ulf Lamping and Ed Warnicke, Wireshark user’s guide, Interface 4 (2004), 6.

[51] LifeSize, Lifesize softphone.

[52] LinPhone, Linphone.

[53] Yue. Lu, Fernando. Kuipers, Yong. Zhao, and Piet Van Mieghem, Optimizing poly-
nomial expressions by algebraic factorization and common subexpression elimina-
tion, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on (2010), 96–107.

[54] Michael Luby, Lorenzo Vicisano, Jim Gemmell, Luigi Rizzo, M Handley, and Jon
Crowcroft, Forward error correction (fec) building block, Tech. report, RFC 3452,
December, 2002.

[55] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg, Traversal using relays
around nat (turn): relay extensions to session traversal utilities for nat (stun),
Internet Request for Comments (2010).

[56] Niall Mansfield, Practical tcp/ip: designing, using, and troubleshooting tcp/ip net-
works on linux and windows, Addison-Wesley, 2003.

[57] Jan Mastalir, Understanding sip-based voip, 2013.

[58] microsip, microsip.

[59] Microsoft, Skype.

[60] OOVOO, Oovoo.

[61] OPAL, Opal voip solutions.

[62] OpenTok, Getting started with opentok 2.0.

110 BIBLIOGRAPHY

[63] Angela Orebaugh, Gilbert Ramirez, and Jay Beale, Wireshark & ethereal network
protocol analyzer toolkit, Syngress, 2006.

[64] Joerg Ott and Varun Singh, Evaluating congestion control for interactive real-time
media, (2013).

[65] Shrideep Pallickara and Geoffrey Fox, Naradabrokering: a distributed middleware
framework and architecture for enabling durable peer-to-peer grids, Middleware 2003,
Springer, 2003, pp. 41–61.

[66] PJSIP, Pjsip version 2.1.

[67] Plivo, Voip sdk - add voice communications to web and mobile apps.

[68] QuteCom, Qutecom.

[69] Revation, Revation.

[70] Janko Roettgers, The technology behind google+ hangouts, June 2011.

[71] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon
Peterson, Robert Sparks, Mark Handley, Eve Schooler, et al., Sip: session initiation
protocol, Tech. report, RFC 3261, Internet Engineering Task Force, 2002.

[72] Henning Schulzrinne, Rtp: A transport protocol for real-time applications, (1996).

[73] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, Overview of the scalable video
coding extension of the h. 264/avc standard, Circuits and Systems for Video Tech-
nology, IEEE Transactions on 17 (2007), no. 9, 1103–1120.

[74] Stage SDP, Session initiation protocol, (2002).

[75] Skype, Skype - free im & video calls.

[76] William Stallings, Handbook of computer-communications standards; vol. 1: the
open systems interconnection (osi) model and osi-related standards, Macmillan Pub-
lishing Co., Inc., 1987.

[77] Hadeel H Taha, E Koerner, and K Reinhardt, Architecture for a sip-based confer-
encing server, Computer Engineering Department, University of Applied Sciences
Mannheim (2005).

[78] Gary A Thom, H. 323: the multimedia communications standard for local area
networks, Communications Magazine, IEEE 34 (1996), no. 12, 52–56.

[79] TokBox, Tokbox.

[80] tringme, Tring me.

[81] Thierry Turletti, H. 261 software codec for videoconferencing over the internet,
(1993).

BIBLIOGRAPHY 111

[82] Vidyo, Vidyo.

[83] W3C, Web real-time communications working group.

[84] Samsung Website, Samsung exynos 5 dual.

[85] Elias Weingartner, Hendrik Vom Lehn, and Klaus Wehrle, A performance compar-
ison of recent network simulators, Communications, 2009. ICC’09. IEEE Interna-
tional Conference on, IEEE, 2009, pp. 1–5.

[86] Stephan Wenger, U Chandra, M Westerlund, and B Burman, Codec control mes-
sages in the rtp audio-visual profile with feedback (avpf), Work in Progress (2007).

[87] Paul Wilkins, The on2 vp6 codec.

[88] MH Willebeek-LeMair, Dilip D Kandlur, and Z-Y Shae, On multipoint control units
for videoconferencing, Local Computer Networks, 1994. Proceedings., 19th Confer-
ence on, IEEE, 1994, pp. 356–364.

[89] Dapeng Wu, Yiwei Thoms Hou, and Ya-Qin Zhang, Transporting real-time video
over the internet: Challenges and approaches, Proceedings of the IEEE 88 (2000),
no. 12, 1855–1877.

[90] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu, Video telephony for end-
consumers: Measurement study of google+, ichat, and skype, Proceedings of the
2012 ACM conference on Internet measurement conference, ACM, 2012, pp. 371–
384.

[91] Yahoo, yahoo messanger.

[92] Xinggong Zhang, Yang Xu, Hao Hu, Yong Liu, Zongming Guo, and Yao Wang, Pro-
filing skype video calls: Rate control and video quality, INFOCOM, 2012 Proceedings
IEEE, IEEE, 2012, pp. 621–629.

[93] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Y-SP Yum, Coolstreaming/donet: a data-
driven overlay network for peer-to-peer live media streaming, INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, IEEE, 2005, pp. 2102–2111.

[94] Robert Zopf, Real-time transport protocol (rtp) payload for comfort noise (cn),
(2002).

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Problem Statement

	Thesis goals
	Thesis Contributions
	Thesis organisation

	Video Conferencing Technology and Considerations
	Introduction
	Video Conferencing Technology
	Video Conferencing Stack
	User Interface Layer
	Media
	Network Stack
	Session Management in Video Conferencing
	A case study: WebRTC

	Topology
	Client-Server
	Peer-to-Peer
	Peer-to-Peer with Peer Contribution towards video distribution

	Quality of Service
	Challenges to the QoS

	Problem Description, System Requirements and System Design
	Concept
	User Requirements
	Login Scenario
	Group formation scenarios
	User shuts down/disconnects without warning Scenario

	System Requirements
	Software System Requirements
	Video Conferencing Library Requirements
	Hardware Requirements

	System Design
	Topologies
	System Architecture
	Server's function in QoE management
	Hardware Device

	Conclusion

	Overview of Video Conferencing Libraries
	Introduction
	Criteria for Evaluation
	Quality of Experience
	Maturity
	Robustness
	Technical Support
	Android Compatibility
	Multi-User Video Conferencing
	Availability of Source Code/API
	Price
	Intellectual Property
	Support for other functionalities
	Summary

	Overview of Video Conferencing Libraries/Applications
	Chosen Video Libraries for Implementation
	Criteria for Quality of Experience
	Metrics affecting QoE

	Framework
	Introduction
	Controlling Network Conditions
	Network Emulation

	Framework Structure and Capabilities
	Audio Video Delay
	Audio Video Synchronisation
	Identification of the Server and subsequent analysis
	Packet Size, Frame Size and Frame Rate
	Video Quality
	Bandwidth Usage of a Call

	Summary

	Experiments and Analysis
	Pre-experimentation modification
	Configuration Experiment
	Details of each configuration
	Results

	Effect of Packet Loss and Packet Corruption
	Effect of Packet Loss on Video with Motion
	Effect of Packet Corruption

	Effect of Network Latency
	Effect of Bandwidth Variation
	Full Bandwidth
	Performance in Low Bandwidth Conditions
	Performance in Medium Bandwidth Conditions

	Pre-Connection Results

	Conclusions and Evaluations
	Congestion - The main challenge to QoS
	How does each Library react to Packet Loss/Corruption ?
	How does each Library react to Network Latency ?
	How does each Library react to Bandwidth Constraints ?

	Effect of Heterogeneity in Hardware
	Effect of Varying Call Sizes
	Summary
	Evaluations and Future Recommendations

	Bibliography

