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Over the past decade, autonomous surface vessels (ASVs) have increasingly operated in a range of challenging
environments involving safety-critical scenarios. Their navigational capabilities rely on rich and reliable sensor
data, enabling accurate localisation, situational awareness and environmental perception. This allows ASVs to
perform motion planning, collision avoidance and navigational control tasks. To ensure maritime safety, faults
affecting onboard navigational sensors must be diagnosed.

This paper presents a model-based fault diagnosis scheme for ASVs affected by multiple sensor faults. Model-
based methods utilise available sensors and dynamical models for residual generation. However, models describ-
ing the navigation may vary considerably for ASVs due to differences in vessel types, actuator configurations
and sensor setups. To address this challenge, multiple residuals are synthesised using observer-based monitoring
modules in the navigational sensors. Considering the impact of uncertainties, the residuals are designed to be
bounded by adaptive thresholds proposed for each monitoring module. Fault isolation is then performed using a
combinatorial decision logic, achieved by grouping the available sensors into multiple sensor sets and supported
by model-based sensitivity analysis. Finally, the effectiveness of the proposed scheme is verified through sim-
ulation examples of two real-world vessels of different types with different sensor and actuator configurations,

thereby illustrating its application.

1. Introduction

Integrating autonomy across different modes of transportation is ex-
pected to mitigate congestion and capacity constraints while enabling
safer, more resilient and efficient transportation networks. For maritime
operations, increasing the autonomy level could significantly enhance
their economic viability by lowering operational costs and improving
safety. A reduced onboard crew requirement for autonomous surface
vessels (ASVs) not only facilitates deploying smaller and energy-efficient
vessels but also reduces the risk of human injury in case of an accident.
Nevertheless, for ASVs to serve as a viable solution, safety must be rig-
orously ensured.

Autonomous navigation is enabled by several heterogeneous sen-
sors that provide essential data to localise and perceive their environ-

ment. Situational awareness underpins the decision-making processes
that enable safe and efficient navigation in both open seas and inland
waterways. Although autonomous navigation offers the potential to en-
hance safety compared to conventional (human-operated) navigation,
any fault in the navigational sensors can result in serious consequences,
such as damage to the vessel, infrastructure, or even human injury,
making sensor fault diagnosis indispensable. Effective diagnostics en-
able timely remedial measures, such as activating redundant sensors or
switching to a fault-tolerant control mode, ensuring that the operations
continue with minimal disruption (Dhyani et al., 2024Db).

Faults in sensor systems may arise from signal degradation due to en-
vironmental conditions or from a physical breakdown and can be either
temporary or permanent. For example, a temporary fault might occur
when the global navigation satellite system (GNSS) positional accuracy
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$t$


$p=\begin {bmatrix} x_p & y_p\end {bmatrix}^T$


$(\nu \in \mathbb {R}^3)$


$(\psi )$


\begin {equation}\label {eq:sensors} \begin {aligned} &S_{\text {pos}}: y_{\text {pos}}= p + n_{p} + f_{p}\\ &S_\psi : y_{\psi }= \psi + n_{\psi } + f_{\psi }\\ &S_\nu : y_{\nu }= \nu + n_{\nu } + f_{\nu }\\ &S_\chi : y_{\chi }= \chi + n_{\chi } + f_{\chi },\\ \end {aligned}\end {equation}


$y_{\text {pos}} \in \mathbb {R}^2, y_\psi \in \mathbb {R}$


$y_\nu \in \mathbb {R}^3$


$y_\chi \in \mathbb {R}$


$p$


$\psi $


$\nu $


$\chi $


$n$


$f$


$f_z$


$T_{f_z}$


$o_0 - \text {NED}$


$o - x_b y_b z_b$


$D$


$z_b$


$(x_{p},y_{p})$


$o_0$


$u$


$v$


$\psi $


\begin {equation}\begin {aligned} \dot {x}_p&=u \text {cos}(\psi )-v \text {sin}(\psi )\\ \dot {y}_p&=u \text {sin}(\psi )+v \text {cos}(\psi ). \end {aligned} \label {Xeqn2}\end {equation}


\begin {equation}\begin {aligned} \dot {x}_p=U\text {cos}(\psi +\beta _c)\\ \dot {y}_p=U\text {sin}(\psi +\beta _c), \end {aligned} \label {Xeqn3}\end {equation}


$U = \sqrt {u^2+v^2}$


$\beta _c$


$\chi $


\begin {equation}\begin {aligned} \chi =\text {tan}^{-1}\left (\frac {\dot {y}_p}{\dot {x}_p}\right ). \end {aligned} \label {Xeqn4}\end {equation}


$\beta _c$


\begin {equation}\label {eq:crabangle} \beta _c=\text {tan}^{-1}\left (\frac {v}{u}\right ).\end {equation}


\begin {equation}\label {eq:heading_est1} \psi =\chi -\beta _c.\end {equation}


\begin {equation}\label {eq:concise} \begin {bmatrix}\dot {\eta } \\ \dot {\nu } \end {bmatrix} =\begin {bmatrix} R(\psi )\nu \\f(\nu ,\tau )\end {bmatrix}+\begin {bmatrix} \mathbf {0} \\\Delta (\eta , \nu ) \end {bmatrix},\end {equation}


$\eta =\begin {bmatrix} x_p & y_p & \psi \end {bmatrix}^T$


$\nu = \begin {bmatrix} u & v & r \end {bmatrix}^T$


$u,v$


$r$


$\tau =\begin {bmatrix} \tau _{u} & \tau _{v} & \tau _{r} \end {bmatrix}^T$


$R(\psi )$


\begin {align}R(\psi ) &=\begin {bmatrix} \text {cos} (\psi ) & -\text {sin} (\psi ) & 0 \\ \text {sin} (\psi ) & \text {cos} (\psi ) & 0\\ 0 & 0& 1 \end {bmatrix} .\end {align}


$f(\nu ,\tau ) , \Delta (\eta ,\nu ) \in \mathbb {R}^3$


\begin {equation}\label {eq:standardfcn} \begin {aligned} f(\nu ,\tau )&=M^{-1}(-C(\nu )\nu -D(\nu )\nu +\tau ) \\ \Delta (\eta , \nu )&= M^{-1}\tau _d, \end {aligned}\end {equation}


$\tau _{d} \in \mathbb {R}^3$


$M$


\begin {align}M & = \begin {bmatrix} m+ X_{\dot {u}} & 0 & 0 \\ 0 & m-Y_{\dot {v}} & mx_G-Y_{\dot {r}} \\ 0 &mx_G-N_{\dot {v}} & I_{z_p}-N_{\dot {r}} \end {bmatrix}.\end {align}


$m$


$I_{z_p}$


$z_p-$


$X_{\dot {u}}$


$Y_{\dot {v}}$


$Y_{\dot {r}}$


$N_{\dot {v}}$


$N_{\dot {r}}$


$x_G$


$C(\nu ), D(\nu )$


\begin {equation}\label {eq:coriolis} \begin {aligned} C(\nu ) = \begin {bmatrix} 0 & 0 & -m(x_Gr+v)+Y_{\dot {v}}v+Y_{\dot {r}}r \\ 0 & 0 & mu-X_{\dot {u}}u \\ m(x_Gr+v)-Y_{\dot {v}}v-Y_{\dot {r}}r & -mu+X_{\dot {u}}u & 0 \end {bmatrix} \end {aligned}\end {equation}


\begin {equation}\label {eq:damping} \begin {aligned} D(\nu ) = \begin {bmatrix} \begin {matrix}-X_u -X_{|u|u}|u|\\ - X_{uuu}|u^2|\end {matrix} & 0 & 0 \\ 0 & \begin {matrix}-Y_v -Y_{|v|v}|v|\\ - Y_{|r|v}|r|\end {matrix} & \begin {matrix}-Y_r -Y_{|v|r}|v|\\ - Y_{|r|r}|r|\end {matrix} \\ 0 & \begin {matrix}-N_v -N_{|v|v}|v|\\ - N_{|r|v}|r|\end {matrix} & \begin {matrix}-N_r-N_{|v|r}|v|\\ - N_{|r|r}|r|\end {matrix} \end {bmatrix} \end {aligned}\end {equation}


$X_u$


$X_{|u|u}$


$X_{uuu}$


$Y_v$


$Y_{|v|v}$


$Y_{|r|v}$


$Y_r$


$Y_{|v|r}$


$Y_{|r|r}$


$N_v$


$N_{|v|v}$


$N_{|r|v}$


$N_r$


$N_{|v|r}$


$N_{|r|r}$


\begin {equation}\label {eq:mmgfcn} \begin {aligned} f(\nu ,\tau )&= M'^{-1}( -D'(\nu ) +\tau )\\ \Delta (\eta , \nu )&= M'^{-1}\tau _d . \end {aligned}\end {equation}


$M'$


$D'(\nu )$


\begin {equation}\begin {aligned} M' &=\begin {bmatrix} (m+m_x) & 0&0\\ 0 & (m+m_y) & -x_Gm_y \\ 0 & x_Gm & (I_{z_p}+J_{z_p}) \end {bmatrix}\\ D'(\nu ) &=\begin {bmatrix} -(m+m_y)vr+x_Gm_yr^2 \\ (m+m_x)ur \\ x_Gmur \end {bmatrix}, \end {aligned} \label {Xeqn12}\end {equation}


$m_x, m_y$


$x_p$


$y_p$


$J_{z_p}$


$M'$


\begin {equation}\label {eq:azimuth} \tau = \begin {bmatrix} \tau _{u} \\ \tau _{v} \\ \tau _{r} \end {bmatrix} = \begin {bmatrix} X_{\text {pr},1}+X_{\text {pr},2}\\ Y_{\text {pr},1}+Y_{\text {pr},2}\\ N_{\text {pr},1}+N_{\text {pr},2} \end {bmatrix},\end {equation}


$X_{\text {pr},w}$


$Y_{\text {pr},w}$


$N_{\text {pr},w}$


$w \in \{1,2\}$


\begin {equation}\tau = \begin {bmatrix}\tau _1\\ \tau _2 \\ \tau _3 \end {bmatrix}=\begin {bmatrix}X_P+X_R\\ Y_R \\ N_R \end {bmatrix}, \label {Xeqn14}\end {equation}


$X_{R}$


$Y_{R}$


$N_{R}$


$X_{P}$


\begin {equation}\label {eq:nomoto2} \begin {aligned} &\ddot {r} +a_1\dot {r}+a_2r= b_1(b_{2} \dot {\delta _p} +\delta _p)+b_3(b_{4} \dot {\delta _s} +\delta _s) \\ &\dot {\psi } = r, \
\dot {u} = 0,\ \dot {v} = 0, \end {aligned}\end {equation}


$\delta _p$


$\delta _s$


$a_{(.)}$


$b_{(.)}$


$N$


$\mathcal {S}^{(I)}, I = 1,\dots , N$


$\mathcal {M}^{(I)}$


$\mathcal {M}^{(I)}$


$\mathcal {O}^{(I)}$


$\textbf {d}^{(I)}$


$\mathcal {A}$


$\mathcal {D}_s$


$N=4$


\begin {equation}\begin {aligned} \mathcal {S}^{(1)}&=\{\mathcal {S}^{(1,1)},\mathcal {S}^{(1,2)}\}=\{S_{\text {pos}},S_\psi \} \\ \mathcal {S}^{(2)}&=\{\mathcal {S}^{(2,1)},\mathcal {S}^{(2,2)}\}=\{S_\psi ,S_\nu \}\\ \mathcal {S}^{(3)}&=\{\mathcal {S}^{(3,1)}\}=\{ S_\psi \}\\ \mathcal {S}^{(4)}&=\{\mathcal {S}^{(4,1)}\}=\{S_{\text {pos}}, S_{\nu }\}. \end {aligned} \label {Xeqn16}\end {equation}


$\mathcal {M}^{(1)}-\mathcal {M}^{(4)}$


$\mathcal {M}^{(1)}-\mathcal {M}^{(3)}$


$\mathcal {M}^{(4)}$


$\mathcal {M}^{(1)}$


\begin {equation}\label {eq_observer1} \mathcal {O}^{(1)}: \begin {aligned} \dot {\hat {\eta }}^{(1)}=&R(\hat {\psi }^{(1)})\hat {\nu }^{(1)}+K_1 \tilde {\eta }^{(1)}\\ \dot {\hat {\nu }}^{(1)}=&f(\hat {\nu }^{(1)},\tau ) +K_2R^{T}(\hat {\psi }^{(1)})\tilde {\eta }^{(1)}, \end {aligned}\end {equation}


$\hat {\eta }^{(1)}$


$\hat {\nu }^{(1)}$


$\hat {\psi }^{(1)}$


$\eta = \begin {bmatrix} p & \psi \end {bmatrix}^T$


$\nu $


$\psi $


$\tilde {\eta }^{(1)}= y_\eta - \hat {\eta }^{(1)}$


$y_\eta =\begin {bmatrix} y_{\text {pos}} & y_\psi \end {bmatrix}^T$


$f(\hat {\nu }^{(1)},\tau )$


$K_1$


$K_2 \in \mathbb {R}^{3 \times 3}$


$\mathcal {M}^{(2)}$


$\mathcal {O}^{(2)}$


\begin {equation}\label {eq_observer2} \mathcal {O}^{(2)}: \begin {aligned} \dot {\hat {\psi }}^{(2)}=&\hat {r}^{(2)}+k_3 \tilde {\psi }^{(2)}\\ \dot {\hat {\nu }}^{(2)}=&f(\hat {\nu }^{(2)},\tau ) +K_4\tilde {\nu }^{(2)}, \end {aligned}\end {equation}


$\tilde {\psi }^{(2)}= y_\psi - \hat {\psi }^{(2)}$


$\tilde {\nu }^{(2)}= y_\nu - \hat {\nu }^{(2)}$


$\psi $


$\nu $


$k_3 \in \mathbb {R}$


$K_4 \in \mathbb {R}^{3 \times 3}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(2)}$


$y_\nu $


$y_{\text {pos}}$


$\mathcal {M}^{(1)}$


$\mathcal {M}^{(2)}$


$\mathcal {M}^{(3)}$


$\mathcal {O}^{(3)}$


\begin {equation}\label {eq_observer3} \mathcal {O}^{(3)}: \begin {aligned} & \begin {bmatrix} \dot {\hat {\psi }}^{(3)} \\ \ddot {\hat {\psi }}^{(3)}\\\dddot {\hat {\psi }}^{(3)} \end {bmatrix} =\begin {bmatrix} 0&1&0\\0&0&1\\ 0 &-a_2&-a_1 \end {bmatrix}\begin {bmatrix} \hat {\psi }^{(3)} \\ \hat {r}^{(3)}\\\dot {\hat {r}}^{(3)} \end {bmatrix}+\\ & \begin {bmatrix} 0&0&0&0\\0&0&0&0\\b_1&b_1b_2&b_3&b_3b_4 \end {bmatrix}\begin {bmatrix} \delta _p\\ \dot {\delta _p}\\ \delta _s\\ \dot {\delta _s} \end {bmatrix}+\begin {bmatrix} k_5\\0\\0 \end {bmatrix}\tilde {\psi }^{(3)} \end {aligned}\end {equation}


$\tilde {\psi }^{(3)}= y_\psi - \hat {\psi }^{(3)}$


$\psi $


$a_{(.)}$


$b_{(.)}$


$k_5 \in \mathbb {R}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(2)}$


$\mathcal {O}^{(3)}$


$\varkappa = \begin {bmatrix} \delta _p& \dot {\delta _p}& \delta _s& \dot {\delta _s} \end {bmatrix}^T$


$\mathcal {O}^{(3)}$


\begin {equation}\label {eq_observer3_2} \mathcal {O}^{(3)}: \begin {aligned} & \begin {bmatrix} \dot {\hat {\psi }}^{(3)} \\ \ddot {\hat {\psi }}^{(3)}\\\dddot {\hat {\psi }}^{(3)} \end {bmatrix} =\begin {bmatrix} 0&1&0\\0&0&1\\ 0 &-\frac {1}{T_1T_2}&-\frac {T_1+T_2}{T_1T_2}\end {bmatrix}\begin {bmatrix} \hat {\psi }^{(3)} \\ \hat {r}^{(3)}\\\dot {\hat {r}}^{(3)} \end {bmatrix}+\\ & \frac {K}{T_1T_2}\begin {bmatrix} 0&0\\0&0\\1&T_3\end {bmatrix}\begin {bmatrix} \delta \\ \dot {\delta } \end {bmatrix}+\begin {bmatrix} k_5\\0\\0 \end {bmatrix}\tilde {\psi }^{(3)}, \end {aligned}\end {equation}


$\mathcal {M}^{(3)}$


$\varkappa = \begin {bmatrix} \delta & \dot {\delta } \end {bmatrix}^T$


$T_1, T_2$


$T_3$


$K$


$\mathcal {M}^{(4)}$


\begin {equation}\label {eq:heading_est} y_{\psi }=y_{\chi }-\text {tan}^{-1}\left (\frac {y_v}{y_u}\right ),\end {equation}


$y_u,y_v$


$y_{\chi }$


$(y_{\psi })$


$(y_u,y_v)$


$\mathcal {O}^{(4)}$


\begin {equation}\label {eq_observer4} \mathcal {O}^{(4)}: \begin {aligned} \dot {\hat {x}}_p^{(4)}=&y_{u}\cos (y_{\psi })-y_v \sin (y_{\psi })+k_{61} \tilde {x}_p^{(4)}\\ \dot {\hat {y}}_p^{(4)}=&y_{u}\sin (y_{\psi })+y_v \cos (y_{\psi })+k_{62} \tilde {y}_p^{(4)}, \end {aligned}\end {equation}


$\tilde {x}_p^{(4)}=y_{x_p}-\hat {x}_p^{(4)}$


$\tilde {y}_p^{(4)}=y_{y_p}-\hat {y}_p^{(4)}$


$y_{x_p}$


$y_{y_p}$


$k_{61}, k_{62} \in \mathbb {R}$


$z^{(I)}, I=1,\dots ,4,$


$z^{(1)}=\begin {bmatrix} p & \psi & \nu \end {bmatrix}^T$


$z^{(2)}=\begin {bmatrix} \psi & \nu \end {bmatrix}^T$


$z^{(3)}= \psi $


$z^{(4)}=\begin {bmatrix} p & \nu \end {bmatrix}^T$


$\varepsilon _{y_z}^{(I)} \in \mathbb {R}^{N_{I}}$


\begin {equation}\begin {aligned} \varepsilon _{y_z}^{(I)}&=y_{z}^{(I)}-\hat {z}^{(I)}, \end {aligned} \label {Xeqn23}\end {equation}


$y_{z}^{(I)}$


$\hat {z}^{(I)}$


$z^{(I)}$


$I-$


$\{.\}^{(j)}$


$j-$


$j \in \{1,\dots , m_I\}$


$m_I$


$I-$


$m_I=2$


$\mathcal {S}^{(1)}, \mathcal {S}^{(2)}$


$m_I=1$


$\mathcal {S}^{(3)}$


$\mathcal {S}^{(4)}$


\begin {equation}\begin {aligned} \varepsilon _{y_z}^{(1)}&=\begin {bmatrix}\varepsilon _{y_z}^{(1,1)}\\ \varepsilon _{y_z}^{(1,2)} \end {bmatrix}=\begin {bmatrix} y_{\text {pos}} \\ y_\psi \end {bmatrix}-\begin {bmatrix} \hat {z}^{(1,1)}\\ \hat {z}^{(1,2)} \end {bmatrix}\\ \varepsilon _{y_z}^{(2)}&=\begin {bmatrix}\varepsilon _{y_z}^{(2,1)}\\ \varepsilon _{y_z}^{(2,2)} \end {bmatrix}=\begin {bmatrix} y_\psi \\ y_\nu \end {bmatrix}-\begin {bmatrix} \hat {z}^{(2,1)}\\ \hat {z}^{(2,2)} \end {bmatrix} \\ \varepsilon _{y_z}^{(3)}&=\varepsilon _{y_z}^{(3,1)} =y_\psi -\hat {z}^{(3,1)} \\ \varepsilon _{y_z}^{(4)}&=\varepsilon _{y_z}^{(4,1)}= y_{\text {pos}} - \hat {z}^{(4,1)}, \end {aligned} \label {Xeqn24}\end {equation}


$\begin {bmatrix} \hat {z}^{(1,1)}& \hat {z}^{(1,2)} \end {bmatrix}^T=\begin {bmatrix} \hat {p} & \hat {\psi } \end {bmatrix}^T$


$\begin {bmatrix} \hat {z}^{(2,1)}& \hat {z}^{(2,2)}\end {bmatrix}^T=\begin {bmatrix} \hat {\psi } & \hat {\nu } \end {bmatrix}^T$


$\hat {z}^{(3,1)}$


$= \hat {\psi }$


$\hat {z}^{(4,1)}$


$=\hat {p}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(4)}$


$\varepsilon _{y_{z}H}^{(I,j)}$


\begin {equation}\varepsilon _{y_{z}H}^{(I,j)}=y_{z_{j} H}-\hat {z}^{(I,j)}_H, \label {Xeqn25}\end {equation}


$y_{z_{j} H}$


$z^{(I,j)}$


$j-$


$\bar {\varepsilon }_{y_{z}}^{(I,j)}$


$I \in \{1,\dots ,4\}$


$j \in \{1,\dots ,m_I\}$


$\bar {\varepsilon }_{y_{z}H}^{(I,j)}$


\begin {equation}|\varepsilon _{y_{z}H}^{(I,j)}| \leq \bar {\varepsilon }_{y_{z}H}^{(I,j)} . \label {Xeqn26}\end {equation}


$\bar {\varepsilon }_{y_{z}}^{(I,j)}$


$\mathcal {S}^{(I)}$


$t$


$\mathcal {S}^{(I)}$


$\varepsilon _{y_{z}H}^{(I,j)}$


$\varepsilon _{z H}^{(I,j)}$


\begin {equation}\label {eq:residualgen} \varepsilon _{y_{z}H}^{(I,j)}=\varepsilon _{z H}^{(I,j)}+{n}_{z}^{(I,j)},\end {equation}


$\varepsilon _{z H}^{(I,j)}=z^{(I,j)}-\hat {z}_H^{(I,j)}$


$\tau $


$\mathcal {R}^{\tau } \subset \mathbb {R}^3$


$\tau \in \mathcal {R}^{\tau },$


$t \geq 0$


$j-$


$(n_{z}^{(I,j)})$


$|n_{z_k}^{(I,j)}| \leq \bar {n}_{z_k}^{(I,j)}$


$k$


$n_{z}^{(I,j)}$


$\bar {n}_{z_k}^{(I,j)}$


\begin {equation}\label {eq_adthreshold} \begin {aligned} \begin {bmatrix} |\varepsilon _{y_{z}H}^{(1,1)}| \\ |\varepsilon _{y_{z}H}^{(1,2)}| \end {bmatrix}& \leq \begin {bmatrix} |\varepsilon _{zH}^{(1,1)}| \\ |\varepsilon _{zH}^{(1,2)}| \end {bmatrix}+\begin {bmatrix} \bar {n}_z^{(1,1)}\\\bar {n}_z^{(1,2)} \end {bmatrix}\\ \begin {bmatrix} |\varepsilon _{y_{z}H}^{(2,1)}| \\ |\varepsilon _{y_{z}H}^{(2,2)}| \end {bmatrix}& \leq \begin {bmatrix} |\varepsilon _{zH}^{(2,1)}| \\ |\varepsilon _{zH}^{(2,2)}| \end {bmatrix}+\begin {bmatrix} \bar {n}_z^{(2,1)}\\\bar {n}_z^{(2,2)} \end {bmatrix} \\ |\varepsilon _{y_{z}H}^{(3,1)}|& \leq |\varepsilon _{zH}^{(3,1)}|+ \bar {n}_z^{(3,1)}\\ |\varepsilon _{y_{z}H}^{(4,1)}|& \leq |\varepsilon _{zH}^{(4,1)}|+ \bar {n}_z^{(4,1)}, \end {aligned}\end {equation}


$|\varepsilon _{zH}^{(I,j)}|$


$z^{(I)}$


$\mathcal {O}^{(1)}$


\begin {equation}\label {est_error1} \begin {aligned} \dot {\varepsilon }_{z H}^{(1)}&= \begin {bmatrix} \dot {\varepsilon }_{z H}^{(1,1)} \cr \dot {\varepsilon }_{z H}^{(1,2)} \cr \dot {\varepsilon }_{z H}^{(1,3)} \end {bmatrix}=\begin {bmatrix}-K_{11} & \mathbf {0} & \mathbf {0} \cr \mathbf {0} & -k_{12} & \mathbf {0} \cr \mathbf {0} &\mathbf {0} & -K_2 \end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(1,1)} \cr \varepsilon _{z H}^{(1,2)} \cr \varepsilon _{z H}^{(1,3)} \end {bmatrix}+\begin {bmatrix}\tilde {\gamma }^{(1)}_{1H}\cr \tilde {\gamma }^{(1)}_{2H} \end {bmatrix} \cr &\quad + \begin {bmatrix} \mathbf {0} \cr \Delta (\eta , \nu )+K_2\nu \end {bmatrix}+\begin {bmatrix}-K_{11} & \mathbf {0} & \mathbf {0} \cr \mathbf {0} & -k_{12} & \mathbf {0} \cr \mathbf {0} &\mathbf {0} & -K_2 \end {bmatrix} \begin {bmatrix} n_{z}^{(1,1)} \cr n_{z}^{(1,2)} \cr R^{T}(\hat {\psi }^{(1)}_H)y_\eta \end {bmatrix}, \end {aligned}\end {equation}


$\tilde {\gamma }^{(1)}_{1H}= R(\psi )\nu -R(\hat {\psi }^{(1)}_{H})\hat {\nu }^{(1)}_{H}$


$\tilde {\gamma }^{(1)}_{2H}= f(\nu ,\tau )-f(\hat {\nu }_H^{(1)},\tau )$


$\mathbf {0}$


\begin {equation}\label {eq:M1_solution_se} \begin {aligned} \varepsilon _{z H}^{(1)}&=\begin {bmatrix} \varepsilon _{z H}^{(1,1)} \cr \varepsilon _{z H}^{(1,2)} \cr \varepsilon _{z H}^{(1,3)} \end {bmatrix}=\begin {bmatrix} e^{-K_{11}t} & \mathbf {0} & \mathbf {0}\cr \mathbf {0} & e^{-k_{12}t} & \mathbf {0}\cr \mathbf {0} &\mathbf {0} & e^{-K_2t} \cr \end {bmatrix}\begin {bmatrix} \varepsilon _{z H}^{(1,1)}(0)\cr \varepsilon _{z H}^{(1,2)}(0) \cr \varepsilon _{z H}^{(1,3)}(0) \end {bmatrix} \cr &\quad + \int _{0}^{t}\begin {bmatrix} e^{-K_1(t-\mathfrak {t})} & \mathbf {0} \cr \mathbf {0} & e^{-K_2(t-\mathfrak {t})} \end {bmatrix} \biggl ( \begin {bmatrix} \tilde {\gamma }_{1H}^{(1)}(\mathfrak {t}) \cr \tilde {\gamma }_{2H}^{(1)}(\mathfrak {t})+ \Delta (\eta , \nu ) \end {bmatrix}\cr &\quad +\begin {bmatrix} -K_1 n_\eta \cr -K_2R^{T}(\hat {\psi }^{(1)}_H(\mathfrak {t}))n_\eta +K_2(\nu (\mathfrak {t})-R^T(\hat {\psi }^{(1)}_H(\mathfrak {t}))\eta (\mathfrak {t})) \end {bmatrix} \biggr ) d \mathfrak {t} , \end {aligned}\end {equation}


$K_1=\text {diag}( \begin {bmatrix}K_{11} & k_{12} \end {bmatrix})$


$n_\eta =\begin {bmatrix} n_z^{(1,1)} & n_z^{(1,2)} \end {bmatrix}^T$


$\varepsilon _{y_z}^{(1)}$


\begin {equation}\label {eq:residual1} \begin {aligned} \begin {bmatrix} \varepsilon _{y_z H}^{(1,1)} \\ \varepsilon _{y_z H}^{(1,2)} \end {bmatrix}&= e^{-K_1t} \begin {bmatrix} \varepsilon _{z H}^{(1,1)}(0)\\ \varepsilon _{z H}^{(1,2)}(0) \end {bmatrix} +\begin {bmatrix} n_z^{(1,1)} \\ n_z^{(1,2)} \end {bmatrix} \\ &\quad +\int _{0}^{t} e^{-K_1(t-\mathfrak {t})}\bigl ( \tilde {\gamma }_{1H}^{(1)}(\mathfrak {t}) -K_1 n_\eta \bigr ) d \mathfrak {t}. \end {aligned}\end {equation}


$\tau _{d}$


$|\tau _{d_i}| \leq \bar {\tau }_{d_i}$


$i \in \{1,2,3\}$


$\bar {\tau }_{d_i}$


$\mathcal {O}^{(2)}$


\begin {equation}\label {est_error2} \begin {aligned} \dot {\varepsilon }_{z H}^{(2)}=&\begin {bmatrix} \dot {\varepsilon }_{z H}^{(2,1)} \\ \dot {\varepsilon }_{z H}^{(2,2)} \end {bmatrix} = \begin {bmatrix}-k_3 & \mathbf {0} \cr \mathbf {0} & -K_4\end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(2,1)} \\ \varepsilon _{z H}^{(2,2)} \end {bmatrix} +\begin {bmatrix} \tilde {\gamma }^{(2)}_{1H}\\ \tilde {\gamma }^{(2)}_{2H}+\Delta (\eta , \nu ) \end {bmatrix} \\ &+\begin {bmatrix} -k_3 & \mathbf {0} \cr \mathbf {0} &-K_4 \end {bmatrix} \begin {bmatrix} n_z^{(2,1)} \\ n_z^{(2,2)} \end {bmatrix}, \end {aligned}\end {equation}


$\tilde {\gamma }^{(2)}_{1H}= r-\hat {r}_H$


$\tilde {\gamma }^{(2)}_{2H}= f(\nu ,\tau )-f(\hat {\nu }_H^{(2)},\tau )$


$\varepsilon _{y_z}^{(2)}$


\begin {equation}\begin {aligned} \begin {bmatrix} \varepsilon _{y_z H}^{(2,1)} \\ \varepsilon _{y_z H}^{(2,2)} \end {bmatrix}&= \begin {bmatrix} e^{-k_3t} & \mathbf {0} \cr \mathbf {0} & e^{-K_4t} \end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(2,1)}(0)\\ \varepsilon _{z H}^{(2,2)}(0) \end {bmatrix} \\ &\quad +\begin {bmatrix} n_z^{(2,1)} \\ n_z^{(2,2)} \end {bmatrix} + \int _{0}^{t} \begin {bmatrix} e^{-k_3(t-\mathfrak {t})} & \mathbf {0} \cr \mathbf {0} & e^{-K_4(t-\mathfrak {t})} \end {bmatrix} \\ &\quad \biggl ( \begin {bmatrix} \tilde {\gamma }_{1H}^{(2)}(\mathfrak {t}) -k_3 n_z^{(2,1)} \\ \tilde {\gamma }_{2H}^{(2)}(\mathfrak {t}) + \Delta (\eta ,\nu ) - K_4 n_z^{(2,2)} \end {bmatrix} \biggr ) d \mathfrak {t}. \end {aligned} \label {Xeqn33}\end {equation}


$\mathcal {M}^{(3)}$


$\mathcal {O}^{(3)}$


\begin {equation}\begin {aligned} \dot {\varepsilon }_{z H}^{(3,1)} =& -k_5 \varepsilon _{z H}^{(3,1)} + \dot {\psi }_H+\frac {1}{a_2} \dddot {\hat {\psi }}^{(3)}+\frac {a_1}{a_2} \ddot {\hat {\psi }}^{(3)}\\ &-\frac {b_1}{a_2}(b_2 \dot {\delta _p}+ \delta _p) -\frac {b_3}{a_2}(b_4 \dot {\delta _s}+\delta _s) -k_5 n_z^{(3,1)}. \end {aligned} \label {Xeqn34}\end {equation}


$(\varepsilon _{y_z H}^{(3,1)})$


\begin {equation}\begin {aligned} \varepsilon _{y_z H}^{(3,1)}=& e^{-k_5t} \varepsilon _{z H}^{(3,1)}(0) + n_z^{(3,1)}+ \int _{0}^{t} e^{-k_5(t-\mathfrak {t})}\biggr ( \dot {\psi }_H\\ &+\frac {1}{a_2} \dddot {\hat {\psi }}^{(3)}+\frac {a_1}{a_2} \ddot {\hat {\psi }}^{(3)}-\frac {b_1}{a_2}(b_2 \dot {\delta _p}+ \delta _p) -\frac {b_3}{a_2}(b_4 \dot {\delta _s}+\delta _s)-k_5 n_z^{(3,1)}\biggl )d\mathfrak {t}. \end {aligned} \label {Xeqn35}\end {equation}


$\mathcal {O}^{(4)}$


\begin {equation}\begin {aligned} \dot {\varepsilon }_{z H}^{(4,1)} =& -K_6 \varepsilon _{z H}^{(4,1)} \\ & + \begin {bmatrix} u(\text {cos} \psi - \text {cos} y_{\psi }^{(4)} )+ v (-\text {sin} \psi + \text {sin} y_{\psi }^{(4)} ) \\ u(\text {sin} \psi - \text {sin} y_{\psi }^{(4)} )+ v (\text {cos} \psi - \text {cos} y_{\psi }^{(4)} ) \end {bmatrix} \\ & + \begin {bmatrix} -\text {cos} y_{\psi }^{(4)} & \text {sin} y_{\psi }^{(4)} & 0 \\ -\text {sin} y_{\psi }^{(4)} & -\text {cos} y_{\psi }^{(4)} & 0\\ \end {bmatrix} n_z^{(4,2)} - K_6 n_z^{(4,1)}, \end {aligned} \label {Xeqn36}\end {equation}


$K_6 = \text {diag}( \begin {bmatrix} k_{61} & k_{62}\end {bmatrix})$


$n_z^{(4,2)} = n_\nu $


$(\varepsilon _{y_z H}^{(4,1)})$


\begin {equation}\label {eq:residual4} \begin {aligned} \varepsilon _{y_z H}^{(4,1)}& = e^{-K_6 t}\varepsilon _{z H}^{(4,1)}(0)+ \int _{0}^{t} e^{-K_6 (t-\mathfrak {t})} \\ &\quad \biggl (\begin {bmatrix} \cos {\psi } & -\sin {\psi } \\ \sin {\psi } & \cos {\psi } \end {bmatrix}\begin {bmatrix} u \\v \end {bmatrix}- \begin {bmatrix} \cos {y_{\psi }} & -\sin {y_{\psi }} \\ \sin {y_{\psi }} & \cos {y_{\psi }} \end {bmatrix} \begin {bmatrix} y_u \\ y_v \end {bmatrix} \\ &\quad - K_6 n_z^{(4,1)}\biggr ) d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(I)}$


$\mathcal {E}^{(I)}_{y_z}$


$\mathcal {S}^{(I)}$


\begin {equation}\label {eq:ARR} \mathcal {E}^{(I)}_{y_z}= \bigcup _{j} \mathcal {E}^{(I,j)}_{y_z},\end {equation}


$I \in \{ 1, \dots , 4\}$


$j-$


$\mathcal {E}^{(I,j)}_{y_z}$


\begin {equation}\label {eq:jthARR} \mathcal {E}_{y_z}^{(1,j)}: |\varepsilon ^{(I,j)}_{y_z}(t)|-\bar {\varepsilon }_{y_z}^{(I,j)}(t) \leq 0, \quad j \in \{ 1,\dots , m_I \}.\end {equation}


$j-$


$\mathcal {S}^{(I)}$


$T_{D }^{(I,j)}$


$j-$


$\mathcal {E}_{y_z}^{(I,j)}$


$\mathcal {M}^{(I)}$


\begin {equation}\label {eq:faultdetecttime} T_{D}^{(I,j)}= \begin {cases} \min \{t \in \mathbb {R}^+: |\varepsilon ^{(I,j)}_{y_z }(t)|> \bar {\varepsilon }^{(I,j)}_{y_z }(t)\}, & \neg \mathcal {E}_{y_z}^{(I,j)} \\ \infty , & \text {otherwise}. \end {cases}\end {equation}


$T_{D}^{(I,j)}$


$\mathcal {S}^{(I)}$


$\mathcal {M}^{(I)}$


$I-$


$\mathbf {d}^{(I)}(t)= \begin {bmatrix} \mathbf {d}^{(I,1)}(t),& \dots , & \mathbf {d}^{(I, m_I)}(t) \end {bmatrix}^T$


\begin {equation}\mathbf {d}^{(I,j)}(t)=\begin {cases} 0 , & \text { if } t<T_{D}^{(I,j)}\\ 1 , & \text { otherwise } \end {cases}. \label {Xeqn41}\end {equation}


$\mathcal {S}^{(I)}$


$T_{FD}^{(I)}$


$\mathbf {d}^{(I)}(t)=\mathbf {0}$


$S^{(I)}$


$\mathbf {d}^{(I)}(t)$


$\mathcal {A}$


$\mathbf {d}(t)$


\begin {equation}\mathbf {d}(t) = \texttt {vcat}(\mathbf {d}^{(I)}(t)), \label {Xeqn42}\end {equation}


$\texttt {vcat}()$


$\mathbf {d}^{(I,j)}(t)$


$\mathbf {d}(t)$


$\mathbf {d}^{(I,j)}(t)$


$\mathbf {d}(t)$


$F$


$F$


$l$


$l=\sum _{I}m_I$


$j-$


$\mathcal {E}^{(I,j)}_{y_z}$


$F$


$N_{c}=2^{\mathfrak {s}}-1$


$\mathfrak {s}$


$F_q$


$q \in \{1, \dots ,N_{c}\}$


$F_{pq}=1$


$p \in \{1,\dots ,l\}$


$\mathcal {F}_{c_q}$


$\mathcal {E}^{(I,j)}_{y_z}$


$\mathcal {S}^{(I)}$


$F_{pq}=$


$1$


$\mathcal {E}^{(I,j)}_{y_z}$


$\mathcal {F}_{c_q}$


$F_{pq}$


$\mathbf {d}(t)$


$F_q$


$\mathbf {d}_{p}(t)=F_{pq}$


$p \in \{1,\dots ,l\}$


$\mathcal {D}_s (t)$


$\mathcal {F}_{c_q}$


$\mathbf {d}(t)$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\psi }\}$


$\mathcal {F}_{c_3}=\{f_{\nu }\}$


$\mathcal {F}_{c_4}=\{f_{\chi }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\psi }\}$


$\mathcal {F}_{c_6}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\chi }\}$


$\mathcal {F}_{c_8}=\{f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_9}=\{f_{\psi },f_{\chi }\}$


$\mathcal {F}_{c_{10}}=\{f_{\nu },f_{\chi }\}$


$\mathcal {F}_{c_{11}}=\{f_p, f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_{12}}=\{f_p, f_{\psi },f_{\chi }\}$


$\mathcal {F}_{c_{13}}=\{f_{\psi }, f_{\nu }, f_{\chi }\}$


$\mathcal {F}_{c_{14}}=\{f_{\nu }, f_{\chi },f_p\}$


$\mathcal {F}_{c_{15}}=\{f_p, f_{\psi },f_{\nu }, f_{\chi }\}$


$(f_{p},f_{\psi },f_{\nu }$


$f_{\chi })$


\begin {equation}\label {eq:jacobian} \begin {aligned} &\nabla \varepsilon _{y_z}(f_z) = \\ &\begin {bmatrix} \partial \varepsilon ^{(1,1)}_{y_z}(f_p)& \partial \varepsilon ^{(1,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(1,1)}_{y_z} (f_\nu ) & \partial \varepsilon ^{(1,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(1,2)}_{y_z}(f_p)& \partial \varepsilon ^{(1,2)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(1,2)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(1,2)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(2,1)}_{y_z}(f_p)& \partial \varepsilon ^{(2,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(2,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(2,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(2,2)}_{y_z}(f_p)& \partial \varepsilon ^{(2,2)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(2,2)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(2,2)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(3,1)}_{y_z}(f_p)& \partial \varepsilon ^{(3,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(3,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(3,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(4,1)}_{y_z}(f_p)& \partial \varepsilon ^{(4,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\chi )\\ \end {bmatrix}. \end {aligned}\end {equation}


\begin {equation}\label {eq:jacobian2} \begin {aligned} &\nabla \varepsilon _{y_z}(f_z) = \\ &\begin {bmatrix} \mathbf {1}& \partial \varepsilon ^{(1,1)}_{y_z}(f_\psi ) & \mathbf {0} & \mathbf {0}\cr 0& 1 & 0 & 0\cr 0& 1 & 1 & 0\cr \mathbf {0}& \mathbf {0} & \mathbf {1} & \mathbf {0}\cr 0& 1 & 0 & 0\cr \mathbf {1}& \mathbf {0} & \partial \varepsilon ^{(4,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\chi ) \\ \end {bmatrix}, \end {aligned}\end {equation}


$\mathbf {1}$


$\mathbf {0}$


$\partial \varepsilon ^{(1,1)}_{y_z}(f_\psi )$


$\varepsilon ^{(1,1)}_{y_z}$


$\hat {\psi }^{(1)}$


$\hat {\nu }^{(1)}$


\begin {equation}\begin {aligned} \begin {bmatrix} \frac {\hat {u}^{(1)}\sin {\hat {\psi }^{(1)}}+\hat {v}^{(1)}\cos {\hat {\psi }^{(1)}}}{|\hat {r}^{(1)}|}\big (k_{23} \mathcal {J}_1+k_{12}\mathcal {J}_2\big ) \\ \frac {\hat {u}^{(1)}\cos {\hat {\psi }^{(1)}}-\hat {v}^{(1)}\sin {\hat {\psi }^{(1)}}}{|\hat {r}^{(1)}|}\big (k_{23} \mathcal {J}_3+k_{12}\mathcal {J}_4\big ) \end {bmatrix}, \end {aligned} \label {Xeqn45}\end {equation}


$k_{12}, k_{23} \in \mathbb {R}$


$K_1 = \text {diag}( \begin {bmatrix}K_{11} & k_{12} \end {bmatrix})$


$K_2 = \text {diag}( \begin {bmatrix}k_{21} & k_{22} & k_{23} \end {bmatrix})$


$\mathcal {J}_1$


$\mathcal {J}_2$


$\mathcal {J}_3$


$\mathcal {J}_4$


$\hat {u}^{(1)}, \hat {v}^{(1)}$


$\hat {r}^{(1)}$


$k_{12}, k_{23}$


$\partial \varepsilon ^{(4,1)}_{y_z}(f_\nu )$


\begin {equation*}{ \begin {bmatrix} -\cos (y_\chi )\cos \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & -\cos (y_\chi )\sin \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & 0\\ -\sin ( y_\chi )\cos \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & -\sin (y_\chi ) \sin \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & 0 \end {bmatrix}. }\end {equation*}


$[-1,1]$


$\partial \varepsilon ^{(4,1)}_{y_z}(f_\chi )$


\begin {equation}\begin {bmatrix} U_y\sin {(y_\chi )} \\ -U_y\cos {(y_\chi )} \end {bmatrix}, \label {Xeqn46}\end {equation}


$U_y = \sqrt {y_u^2+y_v^2}$


$\varepsilon ^{(4,1)}_{y_z}$


$[-1,1]$


$U_y$


$[-U_y, U_y]$


$V= 17$


$7$


$\beta _V=45 ^{\circ }$


$1.5$


$\tau _d$


$|\tau _d|= (|\tau _w|+|\tau _H|) \leq \bar {\tau }_d$


$3\,\%$


$\mathcal {S}^{(1)}$


$\mathcal {S}^{(2)}$


$\mathcal {S}^{(1)}$


$\mathcal {S}^{(2)}$


$\mathcal {M}^{(I)}, I \in \{1,2\},$


$K_1, K_2, K_4$


$(\begin {bmatrix}100, & 100, & 100 \end {bmatrix})$


$k_3$


$100$


$\mathcal {A}$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\psi }\}$


$\mathcal {F}_{c_3}=\{f_{\nu }\}$


$\mathcal {F}_{c_4}=\{f_{p},f_{\psi }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_6}=\{f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\psi },f_{\nu }\}$


$\mathbf {d}(t) = \begin {bmatrix} 0 & 1 & 1 & 1\end {bmatrix}^T$


$\mathcal {D}_s(t) = \{\mathcal {F}_{c_6}, \mathcal {F}_{c_7}\}$


$f_\psi , f_\nu $


$f_p$


$\mathbf {d}(t) = \begin {bmatrix} 1 & 1 & 1 & 1\end {bmatrix}^T$


$\mathcal {D}_s(t) = \mathcal {F}_{c_7}$


$T_{f_\psi }=200$


$T_{f_p}=500$


\begin {align}\label {eq:fault1} f_\psi &=\mathfrak {u}(t-T_{f_\psi })(\mathfrak {a}_{f_\psi }+(1-e^{-(t-T_{f_\psi })}))\\ f_p&=\mathfrak {u}(t-T_{f_p})(\mathfrak {a}_{f_p}+\text {sin} (0.45t)),\end {align}


$\mathfrak {u}(t)$


$\mathfrak {a}_{f_\psi }$


$\mathfrak {a}_{f_p}$


$1-2$


$j^{th}$


$\mathcal {M}^{(I)}$


$\mathcal {M}^{(I,j)}$


$\mathcal {M}^{(1,2)}$


$\mathcal {M}^{(2,1)}$


$\mathcal {M}^{(1,1)}$


$T_{D}^{(1,1)}=500.1$


$T_{D}^{(1,2)}=200$


$T_{D}^{(2,1)}=200.1$


$t<200$


$\mathbf {d}(t)$


$200\leq t < 500$


$\mathbf {d}(t)=\begin {bmatrix} 0&1&1&0 \end {bmatrix}^T$


$t \geq 500$


$\mathbf {d}(t)=\begin {bmatrix}1&1&1&0\end {bmatrix}$


$\mathbf {d}(t)$


$\mathcal {F}_{c_q}$


$\mathcal {D}_s(t)=\{\mathcal {F}_{c_2},\mathcal {F}_{c_4}\} = \{\{f_{\psi }\}, \{f_{p}, f_{\psi } \}\}$


$\tau _d=\tau _w$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\nu }\}$


$\mathcal {F}_{c_3}=\{f_{\chi }\}$


$\mathcal {F}_{c_4}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\chi }\}$


$\mathcal {F}_{c_6}=\{f_{\nu },f_{\chi }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\nu },f_{\chi }\}$


$\mathcal {A}$


$K_1 = \text {diag}(\begin {bmatrix}10 & 10\end {bmatrix})$


$K_4= \text {diag}(\begin {bmatrix}10 & 5 & 5\end {bmatrix})$


$K_6= \text {diag}(\begin {bmatrix}2 & 10 \end {bmatrix})$


$310$


$T_{f_{\nu }}=150$


\begin {equation}\label {eq:fault2} \begin {aligned} f_\nu (t) = 0 & \text {if } t<T_{f_{\nu }} \\ \nu (T_{f_{\nu }})-\nu (t) & \text {if } t \geq T_{f_{\nu }} . \end {aligned}\end {equation}


$\mathcal {E}^{(2,2)}_{y_z}$


$T_{D}^{(2,2)} = 163$


$\mathbf {d}(t)= \begin {bmatrix}0 & 1 & 0\end {bmatrix}^T$


$\mathcal {D}_s(t)= \{\mathcal {F}_{c_2}, \mathcal {F}_{c_6}\} = \{\{f_{\nu }\}, \{f_{\nu }, f_{\chi }\}\}$


$f_{\chi }$


$x_pz_p$


$y_pz_p$


\begin {equation}\label {eq_windforce} \tau _w= \begin {bmatrix}X_W \\ Y_W \\ N_W \end {bmatrix} = \frac {1}{2}P_aV_{r}^2 \begin {bmatrix} -c_x \text {cos}(\gamma _{r})A_{F}\\ c_y \text {sin}(\gamma _{r})A_{L}\\ c_n \text {sin}(2\gamma _{r})A_{L}L_{oa} \end {bmatrix},\end {equation}


\begin {equation}\begin {aligned} V_{r}&=\sqrt {u_{r}^2+v_{r}^2}\\ \gamma _{r}&=-\text {atan2}(v_{r},u_{r}). \end {aligned} \label {Xeqn50}\end {equation}


$P_a$


$V_{r}$


$\gamma _{r}$


$c_x,c_y$


$c_n$


$A_{F}, A_{L}$


$L_{\text {oa}}$


$u_{r}$


$v_{r}$


$V_{r}$


$x_p$


$y_p$


\begin {equation}\begin {aligned} u_{r} &= u-V \text {cos}(\beta _{V}-\psi )\\ v_{r} &= v-V \text {sin}(\beta _{V}-\psi ). \end {aligned} \label {Xeqn51}\end {equation}


$V\in \mathbb {R}$


$\beta _{V} \in \mathbb {R}$


$c_x, c_y,$


$c_n$


$\tau _H = \begin {bmatrix}X_H& Y_H& N_H \end {bmatrix}^T$


$\tau _d$


\begin {equation}\begin {aligned} X_{H}& = 0.5\rho L_{\text {oa}}TU^{2}X'_{H} \\ Y_{H}& = 0.5\rho L_{\text {oa}}TU^{2}Y'_{H} \\ N_{H}& = 0.5\rho L_{\text {oa}}^{2}TU^{2}N'_{H}, \\ \end {aligned} \label {Xeqn52}\end {equation}


$\rho $


$U$


$T$


$X'_{H}$


$Y'_{H}$


$N'_{H}$


\begin {equation}\begin {aligned} X'_{H} =& - R_{0}'\cos ^{2}\beta _{m} + X'_{\beta \beta }\beta _{m}^{2} + X'_{\beta r}\beta _{m}r' + X'_{rr}{r'^{2}} \\& + X'_{\beta \beta \beta \beta }\beta _{m}^{4} \\ Y'_{H} =& Y'_{\beta }\beta _{m} + Y'_{r}r' + Y'_{\beta \beta \beta }\beta _{m}^{3} + Y'_{\beta \beta r}\beta _{m}^{2}r' + Y'_{\beta rr}\beta _{m}{r'^{2}} \\& + Y'_{rrr}{r'^{3}} \\ N'_{H} = & N'_{\beta }\beta _{m} + N'_{r}r' + N'_{\beta \beta \beta }\beta _{m}^{3}+ N'_{\beta \beta r}\beta _{m}^{2}r' + N'_{\beta rr}\beta _{m}{r'^{2}} \\ & + N'_{rrr}{r'^{3}}, \\ \end {aligned} \label {Xeqn53}\end {equation}


$X'_{\beta \beta }, X'_{\beta r}, \ldots , N'_{rrr}$


$\beta _{m}$


$r'$


$rL_{\text {oa}}/U$


$R'_{0}$


\begin {equation}\begin {aligned} R'_{0} &= \frac {R_{\text {Sh}}}{\left ( 0.5 \rho L_{\text {oa}} T U^{2} \right )} \\ R_{\text {Sh}} &= 0.5\rho S_{W}U^{2}\left ( C_{F}\ \left ( 1 +\left ( k + \bar {k} \right ) \right ) + C_{W} \right ), \\ \end {aligned} \label {Xeqn54}\end {equation}


$S_W$


$C_F$


$C_W$


$k$


$\bar {k}$


$\mathcal {M}^{(1)}$


$|\varepsilon _{z H}^{(1)}|$


\begin {equation}\label {eq:errorbound1} \begin {aligned} |\varepsilon _{z H}^{(1)}|\leq & \begin {bmatrix} |e^{-K_1t}| & \mathbf {0} \cr \mathbf {0} & |e^{-K_2t}| \end {bmatrix}\begin {bmatrix} |\varepsilon _{z H}^{(1,1)}(0)|\\ |\varepsilon _{z H}^{(1,2)}(0)| \\ |\varepsilon _{z H}^{(1,3)}(0)| \end {bmatrix} \\ & + \int _{0}^{t} \biggl ( \begin {bmatrix} | e^{-K_1(t-\mathfrak {t})}| & \mathbf {0} \cr \mathbf {0} & | e^{-K_2(t-\mathfrak {t})}| \end {bmatrix} \left [\begin {matrix} |\tilde {\gamma }_{1H}^{(1)}(\mathfrak {t})| \\ |\tilde {\gamma }_{2H}^{(1)}(\mathfrak {t})|+ |\Delta (\eta , \nu )|+ \end {matrix}\right .\\ & \left .\begin {matrix} \\|-K_2R^{T}(\hat {\psi }^{(1)}_H (\mathfrak {t}))n_\eta |+|-K_2(R^T(\hat {\psi }^{(1)}_H (\mathfrak {t}))\eta (\mathfrak {t})-\nu (\mathfrak {t}))| \end {matrix}\right ] \\ & + \begin {bmatrix} |-K_1 e^{-K_1(t-\mathfrak {t})}| & \mathbf {0} \cr \mathbf {0} & |-K_2 e^{-K_2(t-\mathfrak {t})}| \end {bmatrix} \begin {bmatrix} |n_\eta | \\ \mathbf {0} \end {bmatrix} \biggr ) d \mathfrak {t}. \end {aligned}\end {equation}


$\begin {bmatrix}|\varepsilon _{z H}^{(1,1)}(0)|\\ |\varepsilon _{z H}^{(1,2)}(0)| & |\varepsilon _{z H}^{(1,3)}(0)| \end {bmatrix}^T$


$\begin {bmatrix} \bar {p}^{(1)} & \bar {\psi }^{(1)} & \bar {\nu }^{(1)} \end {bmatrix}^T=\bar {z}^{(1)T},$


$\begin {bmatrix} |e^{-K_1t}|& \mathbf {0}\cr \mathbf {0} & |e^{-K_2t}| \end {bmatrix} \leq \rho ^{(1)}e^{-\xi ^{(1)}t} = \Phi ^{(1)}(t),$


$\begin {bmatrix} |-K_1e^{-K_1t}| & \mathbf {0} \cr \mathbf {0} & |-K_2e^{-K_2t}| \end {bmatrix} \leq \rho _d^{(1)}e^{-\xi _d^{(1)}t} ,$


$|n_\eta |\leq \begin {bmatrix} \bar {n}_z^{(1,1)} & \bar {n}_z^{(1,2)}\end {bmatrix}^T,$


$|\tilde {\gamma }^{(1)}_{1H}| = \\ |R(\psi )\nu -R(\hat {\psi }_H^{(1)})\hat {\nu }_H^{(1)}|\leq \lambda _{\gamma _1^{(1)}} \begin {bmatrix}|\varepsilon _{z H}^{(1,1)}|&|\varepsilon _{z H}^{(1,2)}|\end {bmatrix}^T,$


$|\tilde {\gamma }^{(1)}_{2H}|=|f(\nu ,\tau )-f(\hat {\nu }_H^{(1)},\tau )| \leq \lambda _{\gamma _2^{(1)}}|\varepsilon _{z H}^{(1,3)}|,\\ |\Delta (\eta , \nu )| = \tilde {\tau }_d \leq \bar {\tilde {\tau }}_d,$


$|-K_2R^T(\hat {\psi }^{(1)}_H)n_\eta |\leq \begin {bmatrix} k_{21}(\bar {n}_{z_1}^{(1,1)}+\bar {n}_{z_2}^{(1,1)})\\ k_{22}(\bar {n}_{z_1}^{(1,1)}+\bar {n}_{z_2}^{(1,1)})\\ k_{23}(\bar {n}_{z}^{(1,2)}) \end {bmatrix}=\bar {\tilde {n}}_\eta ,$


$|-K_2(R^T(\hat {\psi }^{(1)}_H)\eta -\nu )| \leq (\tilde {\eta }-\tilde {\nu }),$


$|-K_2 R^{T}(\hat {\psi }_H)\eta |\leq $


$\begin {bmatrix} k_{21}(\bar {x}_p+\bar {y}_p)& k_{22}(\bar {x}_p+\bar {y}_p) & k_{23}(\bar {\psi })\end {bmatrix}^T= \tilde {\eta },$


$|K_2\nu | \in \big [\tilde {\nu }, \tilde {\nu }\big ],$


$\eta \in \big [\underline {\eta }, \bar {\eta }\big ] \in \big [\begin {bmatrix} \underline {x} & \underline {y} & \underline {\psi } \end {bmatrix}^T, \begin {bmatrix} \bar {x} & \bar {y} & \bar {\psi } \end {bmatrix}^T \big ],$


$\lambda _{\gamma _1^{(1)}}, \lambda _{\gamma _2^{(1)}}$


$\varepsilon ^{(1)}_{zH}$


\begin {equation}\label {eq:stateestbound1} \begin {aligned} |\varepsilon ^{(1)}_{zH}| \leq & \Phi ^{(1)}(t)\begin {bmatrix} \bar {p}^{(1)} \\ \bar {\psi }^{(1)}\\ \bar {\nu }^{(1)} \end {bmatrix} + \int _{0}^{t} \Biggl ( \rho _d^{(1)} e^{-\xi _d^{(1)}(t-\mathfrak {t})} \begin {bmatrix}\bar {n}_z^{(1,1)}\\ \bar {n}_z^{(1,2)}\\ \mathbf {0} \end {bmatrix}\\ &+ \Phi ^{(1)}(t-\mathfrak {t}) \begin {bmatrix}\lambda _{\gamma _1^{(1)}} |\varepsilon ^{(1,1)}_{z H}(\mathfrak {t}) |\\ \lambda _{\gamma _1^{(1)}} |\varepsilon ^{(1,2)}_{z H}(\mathfrak {t}) |\\ \lambda _{\gamma _2^{(1)}} |\varepsilon ^{(1,3)}_{z H}(\mathfrak {t}) |+\bar {\tilde {\tau }}_d+ \bar {\tilde {n}}_\eta +(\tilde {\eta }-\tilde {\nu })\end {bmatrix} \Biggr ) d \mathfrak {t}. \end {aligned}\end {equation}


$j-$


$(j \in \{1,2\})$


$\mathcal {S}^{(1)}$


\begin {equation}\label {eq:athres1} \begin {aligned} \bar {\varepsilon }_{y_z}^{(1,j)}(t)=&E^{(1,j)}(t)+\rho ^{(1,j)}\Lambda _1 \int _{0}^{t} Z^{(1,j)}(\mathfrak {t})e^{-\xi ^{(1,j)}(t-\mathfrak {t})} d\mathfrak {t} \\ & +\bar {n}_{z}^{(1,j)}, \end {aligned}\end {equation}


\begin {equation}\label {eq:athres11} \begin {aligned} &E^{(1)}(t)=\rho ^{(1)} e^{-\xi ^{(1)}t} \bar {z}^{(1)}+\frac {\rho _{d}^{(1)}\bar {n}_z^{(1)}}{\xi ^{(1)}_{d}} (1-e^{-\xi _{d}^{(1)}t}) \\ &\qquad \quad +\int _{0}^{t} \rho ^{(1)} e^{-\xi ^{(1)}(t-\mathfrak {t})}\begin {bmatrix} \mathbf {0} \cr \bar {\tilde {\tau }}_d+ \bar {\tilde {n}}_\eta +(\tilde {\eta }-\tilde {\nu }) \end {bmatrix} d\mathfrak {t}\\ &Z^{(1)} (t) = E^{(1)}(t)+\rho ^{(1)}\Lambda _1\int _{0}^{t} E^{(1)}(\mathfrak {t})e^{(\rho ^{(1)} \Lambda _1-\xi ^{(1)})(t-\mathfrak {t})}d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(2)}$


$|\varepsilon ^{(2)}_{zH}|$


\begin {equation}\label {eq:stateestbound2} \begin {aligned} |\varepsilon ^{(2)}_{zH}|\leq & \Phi ^{(2)}(t)\begin {bmatrix} \bar {\psi }^{(2)} \\ \bar {\nu }^{(2)} \end {bmatrix} +\int _{0}^{t} \biggl ( \Phi ^{(2)}(t-\mathfrak {t}) \\ & \begin {bmatrix} \lambda _{\gamma _1^{(2)}}|\varepsilon ^{(2,1)}_{z H}(\mathfrak {t})| \\ \lambda _{\gamma _2^{(2)}}|\varepsilon ^{(2,2)}_{z H}(\mathfrak {t})|+\bar {\tilde {\tau }}_d \end {bmatrix} +\rho _d^{(2)} e^{-\xi _d^{(2)}(t-\mathfrak {t})} \begin {bmatrix} \bar {n}_z^{(2,1)} \\ \bar {n}_z^{(2,2 )} \end {bmatrix} \biggr ) d \mathfrak {t} , \end {aligned}\end {equation}


$\begin {bmatrix}|\varepsilon ^{(2,1)}_{zH} (0)| & |\varepsilon ^{(2,2)}_{zH} (0)| \end {bmatrix}^T=\begin {bmatrix} \bar {\psi }^{(2)} & \bar {\nu }^{(2)} \end {bmatrix}^T = \bar {z}^{(2)T} ,$


$\begin {bmatrix} |e^{-k_3t}| & \mathbf {0} \cr \mathbf {0} & |e^{-K_4t}|\end {bmatrix} \leq \rho ^{(2)}e^{-\xi ^{(2)}t}=\Phi ^{(2)}(t),$


$\begin {bmatrix} |-k_3e^{-k_3t}| & \mathbf {0} \cr \mathbf {0} & |-K_4e^{-K_4t}| \end {bmatrix} \leq \rho _d^{(2)}e^{-\xi _d^{(2)}t} ,$


$\begin {bmatrix} |n_z^{(2,1)}|& |n_z^{(2,2)}| \end {bmatrix}^T \leq \begin {bmatrix} \bar {n}_z^{(2,1)} &\bar {n}_z^{(2,2)} \end {bmatrix}^T,$


$|r-\hat {r}^{(2)}_H| =|\tilde {\gamma }^{(2)}_{1H}| \leq \lambda _{\gamma _1^{(2)}} |\varepsilon _{z H}^{(2,1)}|, |f(\nu ,\tau )-f(\hat {\nu }_H^{(2)},\tau )|= |\tilde {\gamma }^{(2)}_{2H}|\leq \lambda _{\gamma _2^{(2)}}|\varepsilon _{z H}^{(2,2)}|, |\Delta (\eta , \nu )| = \tilde {\tau }_d \leq \bar {\tilde {\tau }}_d ,$


$\lambda _{\gamma _1^{(2)}}$


$\lambda _{\gamma _2^{(2)}}$


$\rho ^{(I,j)},$


$\xi ^{(I,j)},$


$\rho _{d}^{(I,j)},$


$\xi _{d}^{(I,j)}$


$|e^{-K_p t}|\leq \rho ^{(I)}e^{-\xi ^{(I)}t}$


$\xi ^{(I)}>\Lambda _I \rho ^{(I)},$


$p \in \{1,\dots ,4\}$


$\Lambda _1= \lambda _{\gamma _1^{(1)}},$


$\Lambda _2=\begin {bmatrix} \lambda _{\gamma _1^{(2)}} & \mathbf {0} \cr \mathbf {0} & \lambda _{\gamma _2^{(2)}}+\lambda _{\bar {\tilde {\tau }}_{d}} \end {bmatrix}$


$\mathcal {S}^{(2)}$


$j-$


$(j \in \{1,2\})$


\begin {equation}\label {eq:athres2} \begin {aligned} \bar {\varepsilon }_{y_z}^{(2,j)}(t)=&E^{(2,j)}(t)+\rho ^{(2,j)}\Lambda _2^{(j)} \int _{0}^{t} Z^{(2,j)}(\mathfrak {t})e^{-\xi ^{(2,j)}(t-\mathfrak {t})} d\mathfrak {t} \\ & +\bar {n}_{z}^{(2,j)}, \end {aligned}\end {equation}


\begin {equation}\label {eq:athres21} \begin {aligned} &E^{(2)}(t)=\rho ^{(2)} e^{-\xi ^{(2)}t} \bar {z}^{(2)}+\frac {\rho _{d}^{(2)}\bar {n}_z^{(2)}}{\xi ^{(2)}_{d}} (1-e^{-\xi _{d}^{(2)}t}) \\ &\qquad \quad +\int _{0}^{t} \rho ^{(2)} e^{-\xi ^{(2)}(t-\mathfrak {t})}\begin {bmatrix} 0 \\ \bar {\tilde {\tau }}_d \end {bmatrix} d\mathfrak {t} \\ &Z^{(2)} (t) = E^{(2)}(t)+\rho ^{(2)}\Lambda _2 \int _{0}^{t} E^{(2)}(\mathfrak {t})e^{(\rho ^{(2)} \Lambda _2-\xi ^{(2)})(t-\mathfrak {t})}d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(3)}$


${\varepsilon }_{z H}^{(3,1)}$


\begin {equation}\begin {aligned} |\varepsilon _{z H}^{(3,1)}| \leq & \Phi ^{(3,1)}(t)\bar {\psi }^{(3,1)} \\ & +\int _{0}^{t} \left ( \Phi ^{(3,1)}(t-\mathfrak {t}) \Lambda _\gamma ^{(3,1)} + \rho _d^{(3,1)}e^{-\xi _d^{(3,1)}(t-\mathfrak {t})}\bar {n}_z^{(3,1)} \right )d\mathfrak {t}, \end {aligned} \label {Xeqn62}\end {equation}


$|\varepsilon _{z H}^{(3,1)}(0)| = \bar {\psi }^{(3,1)} = \bar {z}^{(3,1)}$


$|e^{-k_5t}|\leq \rho ^{(3,1)}e^{-\xi ^{(3,1)}t} = \Phi ^{(3,1)}(t)$


$|-k_5e^{-k_5t}|\leq \rho _d^{(3,1)}e^{-\xi _d^{(3,1)}t}$


$\Lambda _\gamma ^{(3,1)} = \lambda _{\gamma _1^{(3)}}+|\frac {1}{a_2}|\lambda _{\gamma _3^{(3)}}+\frac {|a_1|}{|a_2|}\lambda _{\gamma _2^{(3)}}-\frac {|b_1||b_2|}{|a_2|}\bar {\bar {\delta }}_p-\frac {|b_1|}{|a_2|}\bar {\delta }_p-\frac {|b_3||b_4|}{|a_2|}\bar {\bar {\delta }}_s-\frac {|b_3|}{|a_2|}\bar {\delta }_s$


$|n_z^{(3,1)}| \leq \bar {n}_z^{(3,1)}$


$\lambda _{\gamma _1^{(3)}}, \lambda _{\gamma _2^{(3)}},$


$\lambda _{\gamma _3^{(3)}}$


$\psi $


$r$


$\dot {r}$


$(\bar {\delta }_p, \bar {\delta }_s)$


$(\bar {\bar {\delta }}_p, \bar {\bar {\delta }}_s)$


\begin {equation}\label {eq:athres3} \begin {aligned} &\bar {\varepsilon }_{y_z}^{(3,1)}(t)= \rho ^{(3,1)}e^{-\xi ^{(3,1)}t} \bar {z}^{(3,1)} + \rho ^{(3,1)}\Lambda _\gamma ^{(3,1)} \\ &\int _{0}^{t} e^{-\xi ^{(3,1)}(t-\mathfrak {t})} d\mathfrak {t} - \frac {\rho _d^{(3,1)} \bar {n}_{z}^{(3,1)}}{\xi _d^{(3,1)}}(1-e^{-\xi _d^{(3,1)} t})+\bar {n}_{z}^{(3,1)}. \end {aligned}\end {equation}


$\mathcal {M}^{(4)}$


$|\varepsilon _{z H}^{(4,1)}|$


\begin {equation}\label {eq:error4} \begin {aligned} |\varepsilon _{z H}^{(4,1)}| \leq & \Phi ^{(4,1)}(t)\bar {p}^{(4,1)} \\ & +\int _{0}^{t} \left ( \Phi ^{(4,1)}(t-\mathfrak {t}) \Lambda _\gamma ^{(4,1)} - \rho _d^{(4,1)}e^{-\xi _d^{(4,1)}(t-\mathfrak {t})}\bar {n}_z^{(4,1)} \right )d\mathfrak {t}, \end {aligned}\end {equation}


$|\varepsilon _{z H}^{(4,1)}(0)| = \bar {p}^{(4,1)} = \bar {z}^{(4,1)}$


$|e^{-K_6t}|\leq \rho ^{(4,1)}e^{-\xi ^{(4,1)}t} = \Phi ^{(4,1)}(t)$


$|-K_6e^{-K_6t}|\leq \rho _d^{(4,1)}e^{-\xi _d^{(4,1)}t}$


$\Lambda _\gamma ^{(4,1)}=\begin {bmatrix} 2(\bar {u}+\bar {v})+ \bar {n}_u+ \bar {n}_v\\ 2(\bar {u}+\bar {v})+ \bar {n}_u+ \bar {n}_v \end {bmatrix}$


$z^{(4,2)}\leq \begin {bmatrix} \bar {u} & \bar {v} & \bar {r} \end {bmatrix}^T$


$\bar {n}_z^{(4,2)}=\begin {bmatrix} \bar {n}_u & \bar {n}_v & \bar {n}_r \end {bmatrix}^T$


$|n_z^{(4,1)}| \leq \bar {n}_z^{(4,1)}$


\begin {equation}\label {eq:athres4} \begin {aligned} &\bar {\varepsilon }_{y_z}^{(4,1)}(t)= \rho ^{(4,1)}e^{-\xi ^{(4,1)}t} \bar {z}^{(4,1)} + \rho ^{(4,1)}\Lambda _\gamma ^{(4,1)} \\ &\int _{0}^{t} e^{-\xi ^{(4,1)}(t-\mathfrak {t})} d\mathfrak {t} - \frac {\rho _d^{(4,1)} \bar {n}_{z}^{(4,1)}}{\xi _d^{(4,1)}}(1-e^{-\xi _d^{(4,1)} t})+\bar {n}_{z}^{(4,1)}. \end {aligned}\end {equation}
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degrades due to obstacles such as buildings, bridges, or mountains that
hinder satellite connectivity, but there is no physical breakdown. GNSS
multipath effects can also introduce bias and significantly reduce mea-
surement accuracy (Zidan et al., 2021). Various methods have been pro-
posed in the literature to mitigate these issues; see, for example, Closas
etal. (2009), Groves (2011). Additionally, signal spoofing and jamming,
which are categorised as cyberattacks, pose serious safety risks. For ex-
ample, a malicious agent might intercept and manipulate GNSS data,
jeopardising the system’s nominal operation. On the other hand, per-
manent faults may result from physical issues such as short circuits in
sensor circuitry, Ethernet failure, or sensor wear and tear.

Current literature on fault diagnosis of marine navigation systems
primarily employs model-based fault detection and isolation (FDI)
schemes, which involve designing observers to generate residual signals
indicative of potential faults. Many of these works propose approaches
for diagnosing faults impacting the actuators; see, for example, Bene-
tazzo et al. (2015), Bhagavathi et al. (2023), Cristofaro and Johansen
(2014), Lin et al. (2018), Park and Yoo (2016), Song and He (2023),
Tsolakis et al. (2024), Wang et al. (2020), Zhou et al. (2019). Wang
et al. (2020) proposed an online fault estimator for ASVs affected by
unknown faults and disturbances. The estimator can achieve finite-time
tracking error convergence in the presence of actuator bias and partial
loss of effectiveness faults. Park and Yoo (2016) proposed a robust fault
detection observer and an adaptive fault accommodation scheme for sat-
urated actuator faults affecting underactuated surface vessels. Cristofaro
and Johansen (2014) presented an actuator and effector FDI and control
reconfiguration scheme for overactuated systems by using unknown in-
put observers. The proposed scheme is further verified by a case study
on an overactuated vessel. In Tsolakis et al. (2024), an active isolation
approach is proposed for an overactuated vessel with thruster faults,
which can integrate with a traffic rule-compliant trajectory optimisa-
tion algorithm. Bhagavathi et al. (2023) proposed a digital twin-driven
scheme for detecting and estimating faults in the vessel’s propellers us-
ing an adaptive extended Kalman filter. Zhou et al. (2019) proposed an
actuator fault diagnosis observer and a fault-tolerant controller for ASVs
in a network environment with delays, packet dropouts and packet dis-
ordering. In Benetazzo et al. (2015), Lin et al. (2018), the problem of
thruster fault diagnosis for the dynamic positioning (DP) of vessels is
addressed following the parity space and observer-based approaches.

In addition to actuator fault diagnosis, addressing the sensor FDI
problem is equally crucial, given the extensive number of sensors re-
quired for perception, situational awareness and state estimation. Fur-
thermore, the harsh marine environment, characterised by conditions
such as salt spray and high moisture levels, can accelerate sensor degra-
dation (Liu et al., 2016). Some sensor FDI approaches, including those
proposed by Blanke (2006), Rogne et al. (2014, 2015), and Asfihani
et al. (2024), rely on simple kinematic models. Blanke (2006) proposed
a structural analysis method that uses analytical redundancy relations
(ARRs) to diagnose sensor faults and provide fault tolerance via sensor
data fusion. Rogne et al. (2014, 2015) presented a sensor FDI scheme
that relies on multiple nonlinear observers for vessels performing DP
tasks. However, the aforementioned schemes do not account for the im-
pact of external disturbances acting on the vessel. These factors can have
a significant impact on diagnosis performance, leading to false alarms.
Asfihani et al. (2024) proposed an adaptive Kalman filter-based method
for sensor fault detection and estimation. The fault estimation, however,
fails in some cases when the states linked to the sensor fault are not per-
sistently excited.

On the other hand, sensor FDI schemes employing detailed dynam-
ical models of the vessel have also been proposed (Wang et al., 2024;
Zhang et al., 2021a,b). Zhang et al. (2021a) proposed an adaptive parti-
cle filter to ensure the robust navigation of unmanned vessels affected by
faults in the navigational sensors and the propeller. A switching-mode
hidden Markov model is used to describe the vessel model affected by
possible fault modes. However, this approach lacks a theoretical ver-
ification of the estimation and diagnosis performance. In Zhang et al.
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(2021b), a nonlinear observer is proposed for sensor fault estimation in
conjunction with a fault-tolerant model reference reinforcement learn-
ing control method that ensures stable tracking for ASVs affected by
a sensor fault. A limitation of the proposed scheme is that it assumes
the occurrence of a single fault. In Wang et al. (2024), an active fault-
tolerant control scheme for ASVs is proposed for simultaneous sensor
and actuator faults. The proposed method utilises a modified extended
state observer and an adaptive output feedback control strategy, focus-
ing on position-heading sensor faults. However, faults are modelled as
a multiplicative factor with known bounds, limiting their scope of ap-
plication.

External disturbances, such as winds, waves, and currents, can
greatly impact vessel navigation, and their effects can lead to erroneous
diagnostic results if not considered. In ports and inland waterways, wind
forces are among the dominant external forces (Kepaptsoglou et al.,
2015). Likewise, the vessel’s motion and manoeuvrability are highly sen-
sitive to water depth, which can vary in inland waterways and canals
(Dhyani et al., 2025; Liu et al., 2015). Depth limitations impact the ves-
sel’s behaviour in various ways: they are perceptible in medium-deep
water, highly significant in shallow water, and dominant in extremely
shallow water (Vantorre et al., 2017). These factors, however, are ne-
glected in existing model-based fault diagnosis schemes. Another key
aspect that varies across vessels is the configuration of actuators and
onboard sensors, which determines the dynamical model employed for
residual generation in model-based FDI schemes.

In Dhyani et al. (2024a), the authors addressed these limitations by
proposing a multiple-sensor FDI scheme for ASVs’ navigational sensors.
In the current article, the scheme is further extended, with the following
key modifications:

1. Additional residuals are proposed for improved fault detectability,
specifically, the residuals in the monitoring modules 3 and 4.

2. Through sensitivity analysis, the weak sensitivities of the faults to the
residuals are identified. Consequently, an updated Fault Signature
Matrix (FSM) is designed for improved fault isolability.

Overall, the main contributions of this work can be summarised as
follows:

1. The design of the multiple-sensor FDI scheme for ASVs, as detailed in
Section 3. While the FDI scheme in Dhyani et al. (2024a) focused on
multiple residual generation based on the vessel’s nonlinear dynam-
ics, this work further extends the bank of residuals to enable fault
diagnosis for a broad range of vessel characteristics. This is achieved
by designing the residuals based on varying modelling complexity of
the ASV, including a kinematic constraints model and a 3-degrees-of-
freedom (DOF) hydrodynamic model (Section 2.1). Existing research
on sensor FDI for ASVs based on detailed kinetic models is limited.

2. Adaptive thresholds are derived for bounding the generated residu-
als (Appendix B). Unlike fault detection schemes based on a constant
threshold, adaptive thresholds are robust against noise and external
disturbances affecting a vessel, ensuring that no false alarms occur.
The influence of external disturbances, such as wind forces, shallow-
water effects, and sensor noise, is also considered in the vessel mod-
elling, as well as in the computation of the adaptive thresholds to
improve sensor fault detectability (Appendix A). To the best of the
authors’ knowledge, these disturbances are not considered in the cur-
rent FDI literature.

3. A fault signature matrix (FSM) is formulated by employing a combi-
natorial logic which is supported by model-based sensitivity analysis
(Sections 3.3, 3.4). The resulting decision logic enables the isolation
of multiple sensor faults.

The rest of the paper is structured as follows: In Section 2, the mod-
elling of the vessel’s maneuvering dynamics is presented. In Section 3,
the design of the proposed sensor FDI scheme is detailed. In Section 4,
the proposed scheme is verified through simulation studies involving
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two vessel types: a pusher-barge inland vessel model with a propeller-
rudder configuration and a catamaran-type ferry equipped with azimuth
thrusters. Sensor FDI for these two vessels, which have different avail-
able models, sensors, and actuator configurations, is performed by util-
ising an appropriate selection of residuals. Finally, the conclusions and
future research directions are reported in Section 5 of the paper. For the
sake of notational convenience, the time variable ¢ is omitted from all
equations in this work, unless necessary, to avoid ambiguity. Further,
all observer gains are assumed to be strictly positive/positive-definite
to ensure convergence of the estimation errors.

2. Modelling for sensor fault diagnosis

Vessels are typically equipped with multiple redundant sensors for
localisation and state estimation, complemented by processing meth-
ods to derive specific vessel states. Table 1 summarises the commonly
used sensors for vessel navigation, with the respective data processing
methods and the obtained parameters. A GNSS sensor determines the
vessel’s position p = [x » yp]T, whereas the IMU, typically comprising
an accelerometer, gyroscope/rate sensor, etc., provides the velocities
(v € R3). A gyrocompass measures the vessel’s heading angle (), and
may be complemented by a magnetic compass. In some smaller vessels,
a gyrocompass is replaced by a dual-antenna GNSS setup, as it allows
for a sufficiently accurate heading angle estimation at a cheaper cost
(Gade, 2016). The aforementioned parameters are obtained from the
raw sensor outputs using sensor fusion and estimation methods, such
as Kalman filtering, which form part of navigation devices like an in-
ertial navigation system (INS) or the attitude heading reference system
(AHRS). Further, a Doppler velocity log (DVL) and a speed log (or elec-
tromagnetic log) measure the vessel’s speed through water (or ground)
by utilising the Doppler effect and electromagnetic induction princi-
ples, respectively. The automatic identification system (AIS) integrates
a GNSS antenna and provides the vessel’s position, speed and course in-
formation, in addition to its other functions. GNSS-IMU sensor systems
are ideal for vessel localisation due to their small size, low cost, and low
energy consumption (Liu et al., 2016).

The sensor’s outputs can be described by

Spos : .Vpos=p+”p+fp

Sy 1Yy =wtn, +f,
SV :yv=V+nv+fv

(€Y
S, iy, =x+n, 1,

where, y,,s € R%,y, € R, y, € R*and y, € R correspond to the position
p, heading angle y, velocities v, and the course angle y, respectively.
The vectors n and f represent the noise and fault(s) affecting these mea-
surements.

In this work, permanent, persistent faults are considered. A sensor
fault f, occurring at a time instant 7, is modelled according to Reppa
et al. (2016). Furthermore, the characteristics of a fault, defined by the
fault function, the time of occurrence, and the evolution rate, are all
treated as unknown in the design of the proposed scheme.

The objective of this work is to design a multiple-sensor FDI scheme
for ASVs, accounting for the impact of external disturbances, sensor
noise, and variations in sensor and actuator configurations.

2.1. Vessel maneuvering models

Vessel manoeuvring models can vary significantly in terms of com-
plexity for a specific application. The availability of an accurate ma-
noeuvring model with hydrodynamic characteristics is the foundation
for model-based FDI. This section explores various models that can be
used for generating residuals for FDI using the available sensor measure-
ments and actuator/thrust information.
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Fig. 1. The coordinate system of an ASV with the North-East-Down reference
frame (o, — NED) and the body-fixed reference frame (o — x,y,z,) (the D- and
z,-axes are not shown). (x,, y,) are the coordinates of the vessel’s position in the
o, frame. u, v and y are the surge and sway velocities and the heading angle,
respectively.

2.1.1. Kinematic model

A vessel in motion satisfies kinematic constraints, which can provide
information about the vessel’s position and its heading, and have ap-
plications in target tracking (Tahk & Speyer, 1990) and path-following
Fossen (2022). The kinematic constraints describe the relation of the
vessel’s velocities in the NED frame with its heading angle by
X, = ucos(y) — vsin(y)

. . (2)
Vp = usin(y) + veos(y).

In the amplitude-phase form, the above equations can be expressed as
%, =Ucos(y + B,)
yp =Usin(y + B,),

3

where U = Vu2 + 1?2 is the speed in the horizontal plane and g, is the
crab angle. The course angle y can be determined by filtering the po-
sition measurements, such as by employing a Kalman filter (Fossen,
2022), due to the relation

)(:tan‘1<ﬁ>. e))
Xp

Similarly, the crab angle g, can be calculated using the surge and sway
velocities as

_ -1(v
p. = tan (u) 5)
Finally, the heading angle can be expressed as
v=x-=F. (6)
Remark 1. It must be noted that the heading angle estimated using

Equation (6) is accurate only for a moving vessel. This is because the
horizontal crab angle formula (5) is numerically ill-conditioned for small
values of surge and sway velocities. To address this issue, a numerically
stable implementation is required, where crab angle calculations are
discarded at low speeds.

2.1.2. 3-DOF maneuvering model
For many applications, the motion in a horizontal plane can be ap-
proximated by the following 3-DOF hydrodynamic model (see Fig. 1):
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Table 1

Typically used sensors on vessels for localisation and state estimation, along with their corresponding measurements and the monitored parameters. These param-

eters are obtained post-processing using data processing methods as summarised below.
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Sensor

Measured Parameter(s)

Data Processing Methods

Monitored Parameter(s) for Navigation

GNSS

Position (latitude, longitude, altitude)

Kalman Filtering, Low-pass Filtering,
Sensor Fusion (e.g. with IMU)

Position in NED frame (xp, y‘,)

Dual-Antenna GNSS

Heading

Kalman Filtering, Sensor Fusion (e.g.,
with IMU)

Vessel heading (y)

IMU (accelerometer, gyroscope)

Linear accelerations and angular rates

Kalman Filtering, Sensor Fusion

Velocities in body frame (u, v, r)

Gyrocompass

Heading (true north reference)

Low-pass Filtering

Vessel heading (y)

Magnetic Compass

Heading (magnetic north reference)

Low-pass Filtering, Sensor Fusion (e.g.
with gyrocompass)

Vessel heading (y)

Doppler Velocity Log (DVL)

Velocity through water or over ground in

surge, sway directions

Kalman Filtering, Sensor Fusion (e.g. with
GNSS)

Translational velocities in body frame

(u,v)

Speed Log

Speed through water along the
longitudinal axis (surge)

Low-pass Filtering, Sensor Fusion

Surge velocity in body frame («)

AIS (Automatic Identification System)

Own vessel’s speed over ground (SOG),

Low-pass Filtering, Sensor Fusion

Speed over ground (U), course over

course over ground (COG) and position (if
integrated with onboard GNSS)

ground (y) and position in NED frame

n R(y)v 0
= + , 7
=[]+ L) @
where 5 = [xp ¥V,
North-East-Down (NED) frame, and v = [u v r]T is the generalised

velocity vector in the body-fixed frame, with u, v denoting the linear
velocities in surge and sway, and r denoting the angular velocity (yaw

T . . .
w|" is the generalised coordinate vector in the

. T .
rate). The variable r = [r, 7, 17,| represents the controlled input
force vector. The term R(y) represents the rotation matrix, described as

cos(y) —sin(y) O
R(y) =|sin(y) cos(y) O] ®
0 0 1

Further, f(v,7), A(y,v) € R? comprise the known and unknown nonlin-
ear terms, respectively, described in two ways:

o In the Abkowitz model (Abkowitz, 1980; Fossen, 2011) it is

Fv, 1) = M~ (-C(v)v — DW)v + 1) ©
A(n,v) = M_l‘rd,

where 7, € R represents the added force vector, which models the
impact of unknown forces acting on the vessel due to various external
factors such as wind, currents and forces from the towing system
(Du et al., 2021; Fossen & Strand, 1999). The term M represents the
inertia matrix, which, under the assumption that the ship is port-
starboard symmetric, can be described as

m+ X, 0 0
M = 0 m—Y, mxg —Y; |. (10)
0 mxg — N IZP—N,-

Here m is the vessel’s mass, I Z, is the moment of inertia about the z,—
axis, and, X, Y;, Y;, N, and N, are hydrodynamic parameters that
account for the added mass. Further, x; represents the x-coordinate
of the vessel’s centre of gravity. The terms C(v), D(v) are the Coriolis-
centripetal and damping matrices given by equations (11) and (12),
respectively.

0 0 —m(xgr+v)+ Yo+ Yr
C(v) = 0 0 mu — X,u
m(xgr+uv)=Y,o—=Y;r —mu+ X,u 0

1D

(x,.9,)
-X, —X|u‘2u|u| 0 0
_quulu |

D(v) = 0 -Y, - Ylvlvlvl =Y, - Ylulrlvl 12)

- |r|u|r| - |r\r|r|

0 =Ny = Npplvl =N, = Ny, lvl

_N|r|ulr| _N\r|r|r|

Here, Xu’ Xlu\u’ quu’ Yv’ Ylulv’ erlw Y,, Ylulr’ Y|r|r7 Nw valw Nlrlw

N,, N\, and N, are the hydrodynamic parameters that account
for the damping forces within the second-order modulus model rep-
resentation (Fedyaevsky & Sobolev, 1964; Skjetne et al., 2004).

e In the Maneuvering Modeling Group (MMG) model, Ogawa et al.
(1977), Yasukawa and Yoshimura (2015) it is

fv, ) =M =D'W) +1)

13)
A(,v) = M'_lrd.
Here, the matrices M’ and D’(v) are given as
(m+my) 0 0
M = 0 (m+my) —xgmy,
0 Xgm U, +J2) 149
—(m+ mvr + xgm
D'(v) = (m + m, yur 5
Xgmur

where, m,, m, are the added masses in the x,, - and y, - directions and
I, is the added moment of inertia for yaw motion. The assumption
of port-starboard symmetry is applied again to obtain the matrix M’
in this form.

Unlike the Abkowitz model in (9), where the hydrodynamic forces
and moments are aggregated into the damping and Coriolis matrices
(11),(12), in the MMG model, the hydrodynamic forces are decomposed
into individual terms arising from the hull, propeller, and rudder. This
approach is often more suitable for assessing the impact of these differ-
ent components on the vessel’s maneuverability. However, it is based on
the assumption that the vessel has a conventional propeller and rudder
configuration.

The vessel’s actuation system is directly responsible for controlling
its maneuvering motion. Therefore, its dynamics and configuration must
be accurately modelled to simulate realistic vessel behaviour. For a twin
azimuth-thruster configuration, the controlled input force vector can be
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Fig. 2. Proposed architecture of the sensor fault detection and isolation scheme.

defined as Marley et al. (2023)

Tu Xpr,l + Xpr,Z
t=|7,|=| Yor1 + Ypr2 | 1s)
T Npr.l + Npr,2

where, Xp,; , Ypr o and Ny, are the generalised force components for
each thruster, with w € {1,2}. For the rudder-propeller configuration,
the controlled input force vector is given by

T Xp+ Xg
Ye |
73 Ny

(16)

where, X represents the forward force, Y, the lateral force, and Ny
the yaw moment component due to the rudder. Further, X, represents
the forward force component from the ship’s propeller.

2.1.3. Steering model

The steering or KT model, attributed to Nomoto et al. (1957), is a
popular linear modelling approach that can sufficiently capture the turn-
ing and course-keeping behaviour of the vessel. It is a 1-DOF model that
assumes constant surge and sway velocities; therefore, it is not a com-
plete replacement of the aforementioned 3-DOF hydrodynamic models.
This work focuses on its second-order form, a common variant that sup-
ports overshooting behaviour and offers higher accuracy compared to
the first-order form. For an azimuth-type twin-thruster configuration, it
can be described by
F4ayi + ayr = by (38, + 8,) + b3(by6, + 5,) a”
w=r,u=0,0=0,
where §, and 6, are the thruster angles for the port and starboard sides,
and a(,, b, represent the parameters related to yaw rate and thruster
angles, respectively. These parameters can be determined using the ves-
sel’s operational data from free-running tests involving zigzag and/or
turning circle maneuvers.

3. Sensor fault detection and isolation scheme
In this section, the design of the proposed multiple-sensor FDI

scheme is discussed in detail. Firstly, to enable the isolation of multi-
ple sensor faults, the considered sensors are decomposed into N sensor

sets SV, T =1,..., N (Reppa et al., 2016). A monitoring module M) is
employed, composed of an observer to estimate the measurements corre-
sponding to each sensor set. Further, every monitoring module contains
a set of analytical redundancy relations (ARRs) that detect the occur-
rence of faults. Designing monitoring modules for the isolation of mul-
tiple faulty sensors is particularly challenging, as it requires that each
monitoring module be selectively sensitive to a subset of possible sen-
sor faults. This can introduce challenges in the observer design due to a
potential loss of observability. To overcome this issue and enhance isola-
bility, the sensor sets are designed to be overlapping, i.e., some sensors
belong to more than one sensor set.

As shown in Fig. 2, the monitoring module M) comprises observers
denoted by O, which are used to generate the residuals. A residual
is a signal that describes the difference between observed system be-
haviour (using sensors) and the expected one (using observers). Within
each module, the ARRs are computed and subsequently, the decisions
d, which are binary vectors representing the fault detection results.
Adaptive thresholds are derived to compute the ARRs while accounting
for sensor noise, as well as external factors described in Appendix A. Fi-
nally, the decisions obtained based on the satisfaction or violation of the
ARRs are provided to the aggregator module .4, which computes the set
of possibly occurring (multiple) fault(s) D;, thereby isolating the faulty
sensor(s).

In this work, the decomposition of sensors is performed such that
N = 4. The resulting sensor sets are defined by
s = {3(1.1)’5(12)} — {Spos’Su/}
S@ = {5(2.1)’5(22)} — {SVI’SV}
SO = (st} =15,)

S@ = {5(4,1)} — {Spos’Sv}'

18

This decomposition facilitates designing observers that are selectively
sensitive to sensor faults, as shown in the subsequent sections. The cor-
responding monitoring modules are given by M1 — M®) respectively,
and are responsible for (a) GNSS and gyrocompass, (b) gyrocompass
and IMU, (c) gyrocompass only, and (d) GNSS sensors only. While the
monitoring modules M1 — M® employ observers based on both the
sensor measurements and controlled inputs (generalised forces/thruster
angles) for residual generation, the observer in module M™ utilises only
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the sensor measurements. Depending on the sensor setup, a sensor set
and the corresponding monitoring module may be discarded, or addi-
tional monitoring modules may be integrated for residual generation.
For example, using an available, more “reliable” redundant sensor can
help improve fault isolability (Rogne et al., 2014; Zhang et al., 2024b).

3.1. Observer design

This subsection details the design of a bank of Luenberger-type ob-
servers for performing sensor FDI. The design enables structured sensi-
tivity against the set of possible faults. Firstly, the monitoring module
MW is considered for monitoring the GNSS and gyrocompass sensors,
having the observer dynamics given by

*(1) =R(‘IA/(1))‘A/(1) +K ;I(l)

(9(1) 1 1 T 1 1 (19)
W =700, 1) + KR @D,

o T
where, 4, 9D and ) denote the estimationsof y=[p  w] , v and
T
w, respectively, and 7" = y, — 4, where y, = [yp0s  »,] - The term
F(M, 1) is given by Equation (9) or (13), according to the selected mod-
elling approach. The observer gains K; and K, € R¥3 are positive di-
agonal matrices.
The monitoring module M@, designed for the gyrocompass and

IMU, comprises the observer ©®, given by

2 (2) —2(2) 7 (2)

P =Y + ke
o ;" , ) . (20)

P =P, 1) + K, 7@,
where, §® =y, — @ and ¥® = y, — 9@ are the output estimation er-
rors for w and v, respectively. Here, k5 € R, and K, € R is a diagonal
gain matrix.

Remark 2. Note that the observers OV and ®® are independent of the
sensor measurements y, and yp, respectively. As a result, the residuals
computed in the monitoring modules M and M® are structurally
sensitive only to a desired subset of faults.

The monitoring module M® is based on a linear observer O®, which
is derived from the second-order steering model given by (17). The ob-
server dynamics are given as

[y ® 0 1 0 [II/G)
yd(=10 0 1|7+
7&,’(3) 0 -a —af#® |
O® 5 21
0 0 0 o [ks
0 0 0 011+ 0 sy
(b1 biby by biby ]l S 0

where §® =y, — ¢ @ is the output estimation error for v, a(, and b,
are the identified parameters of the steering model, and ks € R is the
observer gain. Note that unlike the observers OV and ©®, O® takes
the thruster angles and their derivatives as inputs, represented by x =

[5p 5p 8 55] !

Remark 3. For the rudder-propeller configuration, the observer &
can be given by

1?((3> 0 1 0 @

5@ =10 0 T1 . 3 |+

O] 0 - _Ith) e

W P

O3 - T, T, (22)

0 0 ks

—TKT 0 0 [Z]+ 0 [#®,

211 T 0

. o aT
and the input of the monitoring module M® becomes x =[5 4] .
Here, the terms T}, T,, and T3 denote the time constants, and K denotes

the gain factor.
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Finally, the monitoring module M® is designed using only GNSS
(or AIS) and IMU measurements. Firstly, the vessel’s heading angle is
calculated as a function of its course and crab angles, and it is given by

“1( Y
Yy =¥, —tan 1(—”). 23
u
where y,, y, are the surge and sway velocity measurements and y, is
the course angle measurement provided by the GNSS or the AIS. Using
the heading angle measurement (y,,), and the velocity measurements
(¥4»¥,), the observer dynamics O® can be described by
( ) —
=y, cos(y,) — y, sin(y,,) + k61x
O - ( ) v v v (24)
¥, =y sin(y,) +y, cos(y,) + kﬁzy
where, X ”(4) =, Aff), yL“’ =¥y, = y§,4), with Yx, and y, denoting the
position measurements, and kg, k62 eR.

3.2. Residual generator design
Using the observers defined in the previous subsection, the resid-

uals are generated, and their corresponding adaptive thresholds are
computed within the respective monitoring modules. Let us define

z0 I'=1,...,4, to be vectors consisting of the vessel states such that
T T T
zZM = [p v v] , 2@ = [q/ v] ,z0 =y and z® = [p v] . The
residual vector s(y? € RN! is defined by
) — ) _ 5D
e =y =27, (25)

where, y(l ) and 2@ represent the measurements and estimations of the
vectors z(I) in the I-th monitoring module, respectively. The superscript
{.}¥) will be used to signify that the residual corresponds to the j—th
sensor, j € {1,...,m;}, where m; denotes the no. of sensors in the /—th
sensor set. In this work, m; = 2, for the sensor sets SV, @, and m; = 1,
for the sensor sets S® and S™, respectively. The corresponding residual
vectors are given by

(L1 s
O _ | €y _ |Ypos| _ 21D
£, = (12) = Yy 5(1,2)
YZ
@0 5(2,1)
2) _ =
&) = [ ( ] [ ] [2@2)] (26)

€D = g0 =y, 20D

YZ

(4>_5<41>_y

_ 54D
Yz 2 ’

where [20:0 202)" =[5 ¢]", [ze0  202]" =[p 9], 200 =
¥ and 2*D = p are generated by the observers OV,..., ¥, respectively.
Under healthy conditions (absence of faults), the residual components

(1 ’ ) are described by
€)) _ 5. 1)
€ w =V iy 27)

with Yz, denoting the healthy sensor measurement of the state z(/-/),
The j—th adaptive threshold is defined by é(yf’j ), for I €{1,...,4} and

j €{1,...,m;}, respectively. Under healthy conditions, it is denoted by
‘(1 ’ H and must be computed such that

(1 1) =(1.j)
Dl < el 28)

The following design criteria are adopted to compute the adaptive
thresholds é(yIZ" ) and subsequently, the ARRs:

1. The thresholds must be robust to uncertainties, thereby ensuring that
no false alarms occur, i.e., if S is not affected by faults, then the
corresponding set of ARRs must always be satisfied.

2. The ARRs must be structurally sensitive to the occurrence of one or
more sensor faults, i.e., if at any time instant ¢, the set of ARRs is not
satisfied, then the occurrence of at least one sensor fault in S) must
be guaranteed.
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To compute adaptive thresholds that satisfy these criteria, firstly, 5“ 0

can be expressed in terms of the state estimation error under healthy
¢ /)

conditions € ;)" as

(1 y) ([ /) , ])

€= +n (29)
with, 5(1 ) = ) - A%‘j ). Under healthy conditions, the following as-

sumptlons regarding the vessel dynamics and sensor noise are consid-
ered:

Assumption 1. The input force r remains bounded before and after
the occurrence of multiple sensor faults, i.e., there exist some compact
stability region R® ¢ R3 such that 7 € R7, for all ¢ > 0.

Assumption 2. The unknown noise _affecting the j—th sensor (r_zy J )) is
uniformly bounded, i.e., |n” D < ﬁ””), for all k elements of n{", with

(1 9 representing a known bound.

These assumptions represent realistic system behaviour under healthy
conditions while ensuring the convergence of the residual signals. As a
result, the magnitudes of the residual components are bounded by

|e(1 Ry le «, 1)| _(1 1)
le (fz)l le (IZ)l ﬁ(m)
e (21>| |£<21)| 421)
le (52>| = 5'22) -(22> (30)

3,1 3,1 =(3,1
el |e< )|+n< :

IA

IN

41 4,1 —(4,1
|( )|<|( )|+n( )

where |e(zI);[j )| are the estimation error magnitudes for the states in the
vectors z\), respectively.

Further, the dynamics governing the state estimation error of the
observer OV can be described by

LD 0 (1 D) _

-Ky; 0

~(1)
O (11’5) _ (1 th) 4
€y = =l 0 —kin 0 + ~{f{
(1 3) 0 0 -K, (1 3) |20
zH
I (1 1 GD
[ 0 -Ky; 0 0 (1 N
+ + 0 -k 0 s
A(n,v) + K v] !
g 0 0 -K] RT(W(”)y,,
where 751} = R(y)v — R(y/(]))A(f',), 7;1})1 flv,7)— f(f/“) 7), and 0 denotes

a matrix/vector of zeroes, having a suitable dlmensmn. Solving (31)
results in

eV TeKnr o 0 O
D = fl 2| o o—kiat 0 f’l '20)
(1 %) 0 0 Kot (1 3)(0)
zH
N /’ [e—'ﬂ('—‘) 0 ] ( 70t (32)
O L Y AN 2O RNORY)

-Kin
dt,
’ [ Ky RT () (), + Ko (u(t) - RW}?(t))n(t))] >

T
where K, = diag([Kn klz]), n, = [n(l’l) n(l"z)] USing the above

equation and the relation in (29), the residuals in gl
conditions can be expressed by

<1 1)
ki <11>(O) D
<|2) =e <12>(0) (12>
y,H (33)
+/ KD (0 (1) — Kyn, )dt.
0

In addition to the Assumptions 1 and 2, the following assumption
regarding the uncertainties is considered:

y ) under healthy
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Assumption 3. The unknown added force vector z, is uniformly
bounded, i.e., 74,1 < 74,5 with i € {1,2,3} representing the elements of
the vector and 7,, representing a known bound.

Assumption 3 provides a bound to distinguish the uncertain-
ties from the faults and holds practically for a vessel operat-
ing within specified operational conditions (wind limits, sea state,
speed range, etc.). Under this assumption, bounds on the magni-
tudes of the state estimation errors are derived, as detailed in the
Appendix B.

For the observer O?, the state estimation error dynamics are given
by

~(2
e Crd [—kz 0 ] (; r M
22 - 2,2 2
i G 0 -k zH) Py + AGLY)
—k 0 (2 1
NE
0 -K,

where 7%2)

(2)

(34)

=r—fy, and 7/(2) = f(v,7) - f(A( ). 7). The resulting residu-

als in £} under healthy conditions can be expressed by

| e 0 f,,;)m)
E;fil) 0 e—K4t )(0)
42D ' —ks(i—1)
e "3 0
[ o, 2)] + /O [ 0 e—lq(r-t)] (35)

7 JCa)
u -
e e | Jat
72H(t) + Ay, V) Kyn;

Next, the adaptive threshold corresponding to the residual in M® is
derived. The state estimation error for the observer @® can be described
under healthy conditions by

a
00 = — kel 4y + iy/(” + al s
? (36)
by s by PR
o (b2, +6,) 2 (byb; + 85) — kesn™D.

. . i Gy ;
The resulting residual under healthy conditions (eyZ 1) is expressed by

t
G _ —kst (3.1) 3,1) —ks(t=t) [ ,:
€, g =¢ Sery 0) + n; +/0 e s <WH
1 = ay
+ = ¢ LG

by .
—(by6,+6,) —
a a az(zp »

by .
z(bﬂss +8,)— k5n<j-”>dt.
37

Finally, for the observer ©®®), the state estimation error dynamics
under healthy conditions can be described by

u(siny — siny ) + v(cosy — cosy(4))

u(cosy — cosyw)) + v(—siny + s1ny( ))
(38)

4) 4)
—Cos, sin, 0
+ [ Yy Yy ] n — KnD,

—sinyf,f) cosyf;,” 0
where K = diag([ks;  kg]) and nS"? = n,. The resulting residual un-

P ( 1)
der healthy conditions (gyZ ) is expressed by

t
(4D _ e—Kﬁté(z4l:[1)(0)+/ )
0

vy H
cosy  —siny| |u COS y,,
sin y cosy ||v sin y,,

- Kﬁn(z4’l)>dt.

—sin yw] [yu] (39)

cosy, | |V
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Fig. 3. Simulation results from Example 1 with the magnitude of residual signals (blue curve), the corresponding adaptive thresholds (green curve), and the decisions
(dashed red curve) for the corresponding monitoring modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

3.3. Combinatorial fault decision logic

In this subsection, the design of a combinatorial fault decision logic
that enables the isolation of multiple sensor faults is presented. Firstly,
the aggregator module receives a decision on the fault detection from
the various monitoring modules based on a set of ARRs composed of
residuals and adaptive thresholds. Specifically, for the monitoring mod-
ule M, the set of ARRs Sﬁﬁ ) is defined for detecting faults in the sensor
set SO, as

) — (1.))
el = Ueyl , (40)
J
where, for I € {1,...,4}, the j—th ARR Eg’j) is given by
(L)) « 1) _g.p i
Syzj : |£sz ®)| eyzj <0, je{l,....m}. (41)

As per the design criterion (2), a violation of the j—th ARR implies the
occurrence of at least one sensor fault in the corresponding sensor set
S, Define Tl()”’ ) to be the first instance of violation of the j—th ARR

1.j) - .
Sﬁz D in MO, e,

.y _
7 = {

Specifically, Tl()”j ) indicates the first instance of fault detection in the
corresponding sensor within S(). The output of the monitoring mod-

in{t e Rt : (I’j)t >'(1’j)t , _|£(1J)
min{ 10 > &)@y, el 42

00, otherwise.

ule MY is the 7—th decision d)(r) = [d/:D(), d(I""I)(t)]T,
where,
. 0, ift<Td?
=4 S 43)
1, otherwise

Under the exoneration assumption (Reppa et al., 2013) which con-
siders that S() is functioning properly before the time instant T;’l;,
dD(t) = 0 implies that no fault has occurred in the sensor set S"). Upon
receiving the decisions d”)(¢) from each monitoring module in the ag-
gregator module A, an aggregated decision vector d(¢) is formed by com-

bining these individual decisions, i.e.,

d(t) = veat@d(r)), 44)

where vcat() represents a vertical concatenation function.

Remark 4. Unlike in some multi-level FDI schemes (e.g., see Reppa
et al., 2013), instead of aggregating the individual sensor fault deci-
sions d/~)(r) into a boolean function, the aggregated decision vector
d(r) composed of d/-/(¢) is directly used for consistency checking. Since
each sensor set may have multiple sensors, such a combinatorial logic
can isolate multiple sensor faults, as shown later.

The aggregator module includes the FSM, comprising zeros, ones or
an “*’ as its elements. Fault isolation involves conducting a consistency
test between d(r) and the FSM, represented by F. The matrix F consists
of a maximum of / rows, / = Y, m;, with each row corresponding to
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Table 2
Sensor fault signature matrix (FSM) for the designed ARRs.
¥, F, F, F, F, F, F, F, F, F, F, F., F.. F. F,

S (a.D 1 * 0 0 1 1 1 * 0 1 1 1 1
E’ “ 2) 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1
8 2 1) 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1
8}(5'2 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
SS'“ 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1
2}(;"” 1 0 * * 1 1 1 * * * 1 1 * 1 1

Fig. 4. The Waterbus 2907 vessel (Courtesy: Damen Shipyards).

the j—th ARR 8(1 ), Further, F consists of N, = 2% — 1 columns, w1th
8 representing the total no. of monitored sensors. Each column F,, ¢
{1,..., N_}, represents a theoretical sensor fault pattern. An entry F,

1 (where p € {1, ...,1}) indicates that at least one sensor fault within the
combination F., is responsible for the violation of the ARR 8;: ) thereby
impacting S). An entry F,, =*’ is used instead of ‘1’ to distinguish a
possible violation due to the weak sensitivity of the ARR 8(' ) to a sensor
fault included in Fe,r Otherwise, F,, is taken to be zero. The observed
fault pattern in d(z) is considered consistent with a theoretical pattern
F, whend,(t)=F,, forallpe {L,....1}.

The final diagnostic output, denoted as the diagnosis set D(z), is
obtained from the aggregator module and includes all possible fault
combinations 7, that pass the consistency test. It is important to note
that, as the elements of d(r) can fluctuate over time, the cardinality
of the diagnosis set may also change. This allows the diagnosis set
to reflect the evolving fault conditions as the system operates. Given
the assumption that the faults are permanent, the cardinality can only
increase.

Remark 5. The selection of monitoring modules in the proposed FDI
scheme should be based on the sensors that are to be monitored. Ac-
cordingly, the observer design, adaptive thresholds computation and the
FSM must be updated to accommodate the new sensor configuration and
additional model uncertainties.

3.4. Sensitivity analysis

While the structural sensitivity to sensor faults can be directly
inferred from the residual expressions, it may be difficult to in-
fer the weak sensitivity. A sensitivity analysis is subsequently per-
formed to realise the smaller impacts of the faults on the residu-
als (and subsequently the ARRs). For the sensors considered in this
work, the following sensor fault/fault combinations are possible: 7, =

{fp}, 7’c2={f1,,}, Fe,={/i}; c4—{f} {f,,,fl,,}, > {f,,,f},

—{f,,,fl}, S U tobs Foy = U Sl Fo = (S f ol Ty =
o fe L T 2 o for f s Fo = S fur f o 1o T, {fv,f,(,f,,},
and Fers =y fur i} A Jacobian block matrix is computed for the

residuals derived in Section 3 3.2. w.r.t. single faults (f,, f,,, f, and f,),

and is given by
Ve, (f2) =

9e0 V(£ :
el 2>(fp> 2e\7(f,)

985 (1,)
221, aei‘;”(fp
e SOy e
020 0el (|
207 s
2807 s
Here, each block of the matrix represents the partial derivative of the

corresponding residual vector elements with respect to a sensor fault.
Computing the Jacobian matrix results in

(45)

Ve, (f2) =
(1,1)

1 0e, " (f) 0 0

0 1 0 0

0 1 1 0 (46)
0 0 1 0 ’

0 1 0 0

1 0 9 (r) eyt ()

where 1, 0 represent an all-ones matrix and a null matrix of appropriate
dimensions, respectively. The ones and zeros confirm or refute the ex-
istence of a structural relationship, respectively, whereas the following
weak sensitivities are also observed:

. ae“'”( f,): Afaultin the heading angle measurement enters the resid-
ual €' it directly through the heading angle estimate (" and indi-
rectly through the velocity vector estimate 9, resulting in a Jaco-
bian given by

ah simi/“)+ﬁ“)cos ri/(”
— oy (k3 Jy + k12 J5)

2D cos D50 sin g ; (47)
%(/@3% + k12J4)
where, kj,,k,3 € R are observer gains such that K, =
diag([K,, kp|) and K, =diag([k,; ky kn3|). Further,

Ji» J», J5 and J, represent polynomial functions of the observer’s
states 41, o) and 7. By tuning the gains k,, ky3;, a balance be-
tween the fault sensitivity of the residual and observer convergence
rate can be achieved. Specifically, the gains should be selected high
enough to ensure fast convergence of the estimation errors but not
amplify the propagation of the heading angle fault into the position
residual.
. 05(;?])( f,): The Jacobian elements are given by

—cos(y,) cos (tan‘1 (%)) —cos(y,) sin (tan" (%)) 0 ‘
0

u u

—sin(y, ) cos (tan‘1 (f}—;)) —sin(y, ) sin (tan (yu ))

It can be observed that each element is bounded in the range of
[-1,1], and is independent of the observer’s gains. This prevents an
arbitrarily large variation in the residual’s value due to a fault in the
velocity measurements.
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Monitoring Module 4 (M®)
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Fig. 5. Simulation results from Example 2 of the residual signals (blue curve), the corresponding adaptive thresholds (green curve), and the decisions (dashed red
curve) for the corresponding monitoring modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

. 65%”( f,): The Jacobian elements are given by

5ol

where U, = 4/y2 + y2. The weak sensitivity of e(yt‘” to faults in course

U,sin(y,)

(48)
=U, cos(y,

angle measurements is attributed to the faults appearing in the do-
main of sine and cosine functions, which return values in a small
range [~1,1]. When multiplied by the ship’s measured speed U, a
bounded sensitivity in the [-U,, U, ] range is obtained. Therefore, the
sensitivities are small at low speeds, however, it is non-negligible at
higher speeds.

Based on the above sensitivity analysis results, the FSM for the
ARRs designed in this work is determined and is given in Table 2.
The weak sensitivity of an ARR to sensor fault(s) is denoted by a
“*? symbol.

4. Simulation results

The proposed FDI scheme is further verified in this section using
simulation examples that involve two different vessel types: a pusher-
barge inland vessel and a catamaran-type ferry.

4.1. Example 1: TPQR pusher-barge system

This section presents simulation results for an 11BP pusher-barge
system as studied in Koh and Yasukawa (2012). The vessel has full-
scale dimensions and is modified to have a twin-propeller and quad
rudder (TPQR) actuator configuration for improved maneuverability.
Its MMG model parameters, including the hydrodynamic coefficients,
are provided in Koh and Yasukawa (2012), Zhang et al. (2024a).

The vessel is simulated to follow a predefined path in an inland
waterway, emulating the practical conditions in a canal with medium-
shallow water. Wind conditions are modelled with a velocity of V = 17

10

Table 3
Parameters for designing the adaptive thresh-
olds for each residual.

Example 1
Parameters Values
P, p1D, o2 D p12 O 0.01
5(1.1)’§(|,2)’5(11)‘5‘(11»11’5;1,2)351(12,1) 0.3
P2, o3 0.0001
522, g3 45
Example 2

Parameters Values
pD 522 1

a1 (22)

4 P 10

M » ax 5
5( LD 1
£ 9

d
o), 5{(12,2) 5
p&h 0.01

(4.1)
Py 1
gD 0.3

oL 0.9

2 Corresponding to yaw-rate measurement.

m/s, corresponding to a value of 7 in the Beaufort scale, and at an angle
of f;, = 45°, coming from the southwest direction. Additionally, the total
forward resistance, including the effects of shallow water, is modelled
by considering a water depth-to-draft ratio of 1.5. Therefore, the magni-
tude of the unknown force vector 7, is equal to |z;| = (|7, | + |75 ]) < T;.
Three sensors, namely the GNSS, gyrocompass and IMU, are considered
on the vessel. Each sensor is assumed to be corrupted by Gaussian white
noise having an amplitude within 3 % of the mean absolute value of the
noiseless sensor measurement.

For residual generation, the sensor sets S and S® are con-
sidered, with S containing the GNSS and gyrocompass and S?
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(a) The GNSS and gyrocompass faults in Example 1
(Equation (49)).

x-position measurement (faulty)
3 2000 = = = x-position measurement (healthy) | |
3
£ 1000} 1
<
0 1 L . 1 . 1
0 100 200 300 400 500 600
Time(sec)
1000 y-position measurement (faulty)
3 — — = y-position measurement (healthy)
=1
‘S 500F
£
<
0 T L . L . 1
0 100 200 300 400 500 600
Time(sec)
25 T T T T T
ol Heading measurement (faulty)
g = = = Heading measurement (healthy)
215r J
E it -
<
0.5 ——— == == ma - q
0 1 L 1 L 1 T~
0 100 200 300 400 500 600
Time(sec)

(c) The healthy and faulty sensor measurements in
Example 1.
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(b) The IMU fault in Example 2 (Equation (50)).
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(d) The healthy and faulty sensor measurements in
Example 2.

Fig. 6. Visualisation of the fault functions and the resulting measurements corresponding to Examples 1 and 2.

containing the gyrocompass and IMU. Two monitoring modules
MWD, T € (1,2}, are subsequently designed, based on the measurements
obtained from the corresponding sensor sets, the input force vector,
and using ARRs as given by Equation (41). The fault detection ob-
server gain matrices K, K,, K, are taken to be equal to a diagonal ma-
trix diag([lOO, 100, 100]), and kj is equal to 100. Further, the de-

11

sign parameters for the adaptive thresholds in each monitoring mod-
ule are given in Table 3. The theoretical fault signatures used in the
aggregator module are provided in Table 4, where, Foo={foh Fo, =
Uy b Foy = AS 1 Foy = 1S iy 1o Fog = Uy ), Fog = 1S £} ad P, =
{fp» fy-f,}. An edge case is observed when the aggregated decision

vector d®)=[0 1 1 I]T is obtained. The resulting diagnosis set
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Table 4

Example 1 - Sensor fault signature matrix for the ag-

gregator A.

Fcl Fcl F., ch T‘Q F% PE7

g 0 1 1 1
8}‘,11) 0 1 0 1 0 1 1
EFD 0 1 1 1 1 1 1
£ 0 0 1 0 1 1 1

is equal to Dy(r) = {Fegr Fer b implying that the faults f,,, f, have oc-
curred, and that the fault f, may or may not have occurred. This ambigu-
ity is eliminated when d@)=[1 1 | I]T, leading to Dy(H) = F,,
thereby isolating all the occurred faults.

A fault scenario is simulated to further verify the proposed FDI
method. The simulation is carried out for a total duration of 670s. Per-
manent faults in the gyrocompass and GNSS sensors are considered to
have occurred at T, =200 secs and 7, 7, =500 secs, respectively. The
respective fault functions are given by

(49
(50)

fy=uG=T; )a; +(1~ Ty
fp=ult =Ty )a, +sin(0.450),

where 1(7) denotes a unit step function, and a 7,29y, are fault amplitudes
ranging between 1 — 2 times the mean absolute values of the noiseless
sensor measurement. The time plots of the fault functions and the re-
spective sensor measurements (under healthy and faulty conditions) are
shown in Figs. 6(a) and 6(c), respectively. The resulting residual signals
and the corresponding adaptive thresholds for the j* sensor monitored
by M) are plotted under M) in Fig. 3. As shown, the residuals corre-
sponding to the gyrocompass (in M(1-? and M?D), the residuals corre-
sponding to the GNSS (in M(D) exceed the respective thresholds. The
fault detection time, which is expressed by (42), is equal to T(Dl’l) = 500.1

secs, TI()I’Z) = 200 secs and TI()Z’I) =200.1 secs, respectively.

For t <200 secs, the aggregated decision vector d(r)’s elements
remain zero, and the diagnosis set corresponds to a null set. For
200 <7 <500 secs, the occurrence of the first fault is detected by
the residual exceeding the adaptive threshold, resulting in d(z) =
o 1 1 O]T. For ¢ > 500 secs, the second fault is detected, leading
tod@®)=[1 1 1 0]. At the end of the simulation, a consistency
test is performed by comparing the observed pattern d(r) to the theo-
retical patterns 7, , which results in a diagnosis set D (1) = {Fey Fe, b =
b A fu s tilereby isolating the faulty sensors.

4.2. Example 2: Damen Waterbus 2907 shuttle

In this section, an example of a catamaran-type passenger ferry
is considered to showcase and verify the design of the proposed FDI
scheme. The vessel, namely, the Waterbus 2907, is a fully electric water
shuttle designed by Damen Shipyards (Damen Shipyards Group, 2025),
equipped with two azimuth thrusters and two bow thrusters (see Fig. 4).
The vessel’s maneuvering model is identified using logged data, which
includes sensor measurements from onboard GNSS/INS and the propul-
sion system in various maneuvers performed on the Merwede River. The
dynamical model of the vessel and the actuation forces can be expressed
using equations (7), (9), and (15), respectively, and its main parameters
are mentioned in Table 5. For this example, the unknown added force
vector is modelled as r, = 7,,, and the wind conditions are considered
the same as in Example 1.

The vessel is equipped with an IMU and uses dual GNSS anten-
nas instead of a gyrocompass for heading angle estimation. The fault
combinations are given as Pcl ={/f,} 7?‘.2 ={fih 7?03 ={f,} Pc4 =
Up Fuds Feg = Up Fobs Feg = (o ), and Fo = (£, £, £ ). Further-
more, three residuals are considered, resulting in a fault signature ma-
trix as shown in Table 6. The observer gain matrices are given by the
diagonal matrices K, = diag([10  10]), K, = diag([10 5 5]), and

12
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Table 5
Main parameters of the Damen waterbus 2907 shuttle.
Parameter Description Value Unit
Ly, Overall length 28.65 m
b Beam 7.50 m
m Mass 45000 kg
Xg Thruster’s x-coordinate ~ -12 m
Yr Thruster’s y-coordinate + 3.175 m
Table 6
Example 2 - Sensor fault signature matrix for the ag-
gregator A.
F. Fe. Fe F. . F, F.
] 2 5 4 s s 7
é';}'” 1 0 0 1 1 0 1
8)(3'2) 0 1 0 1 0 1 1
8(3,1) 1 * * 1 1 * 1
Yz
K¢ = diag( [2 10]), respectively. The design parameters for the adap-

tive thresholds are given in Table 3.

The vessel is simulated to perform various maneuvers, including zig-
zag and turning, for a duration of 310 secs. A sensor disconnection fault
is considered, which causes new sensor measurements to be lost, with
static measurements received in their place. Such a fault can occur due
to an Ethernet failure and can be difficult to distinguish from a station-
ary or stopping vessel Conejo et al. (2025). In this example, a sensor
disconnection fault affecting the velocity measurements is simulated at
time T = 150 secs, with the fault evolution function given by

f,()=0ifr < Ty,
v(Ty,) - v(D)if t > Ty, .

(51)

Fig. 6(b) shows the time plot of the above fault function. Its impact
on the sensor measurements is visualised in Fig. 6(d). The obtained
diagnosis results, including the residual signals, adaptive thresholds,
and decisions, are shown in Fig. 5. The fault detection time, which
is equal to the instance of violation of the ARR 8;3’2), is given by

T<D2,2) =163 secs and results in an aggregated decision vector equal to

dn=[0 I O]T. Ultimately, the outcome of the consistency test is
a diagnosis set D (1) = {Fep Feoo b = AL U f ) which leads to the
isolation of the faulty IMU sensor. Therefore, the faulty IMU sensor is
isolated, whereas a possible fault £, is indicated.

5. Conclusions and future research

This paper presents an observer-based FDI scheme for diagnosing
multiple faults in the navigational sensors of an ASV. The proposed
scheme effectively addresses challenges associated with modelling com-
plexities, variations in sensor and actuator configurations, and environ-
mental disturbances impacting the ASV. By employing a bank of mon-
itoring modules with structurally sensitive residuals tailored to differ-
ent vessel dynamics and sensor measurement models, the scheme can
diagnose multiple sensor faults. Furthermore, an aggregator module is
designed, which is equipped with a combinatorial fault decision logic,
enabling the isolation of faulty sensors. Adaptive thresholds are also de-
rived for residual bounding, which helps eliminate false positives and
improve diagnostic reliability. Extensive simulations with two different
vessel types and sensor setups verify the effectiveness of the proposed
scheme, demonstrating that the faults can be isolated across various sce-
narios.

For future research, observer design incorporating adaptive approx-
imation of environmental disturbances is proposed to further enhance
fault detectability. In addition, various fault signature matrices are pro-
posed to account for factors such as the sequence of fault occurrences,
signs of residual violation, and sensitivities, for improved fault isolation.
Validation of the proposed FDI scheme in open sea conditions under
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waves and tidal currents is also a crucial step towards practical deploy-
ment and is also proposed for future work.
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Appendix A. External forces and moments

In this work, two types of external/environmental forces and mo-
ments acting on the vessel are considered: 1) forces due to wind and
2) hydrodynamic forces acting on the vessel’s hull, including the forces
due to the shallow-water effect.

A.1. Wind forces
The effect of wind forces acting on the vessel can be modelled by

using the following expression, under the assumption that the ship is
symmetrical about the XyZ, and VpZp planes (Fossen, 2011)

Xw 1 —c,COS(y,) AR

=Yy |= 5PV csinGoAL | (A1)
Ny, c,sin(2y,)A; L,,

where

V, =\/u2 +0v? (A2)

y, = —atan2(v,, u,).

Here, atan2 is a 2-argument inverse tangent function. The notation P,
denotes the air density; V, is the relative wind speed; y, the relative
wind angle of attack; c,, ¢, and ¢, the wind coefficients for the horizon-
tal plane motions; Ay, A; the frontal and lateral projected areas of the
vessel above the water, respectively; L., the overall length of the ves-
sel. u, and v, are the relative velocity components of V, in the x, and y,
directions, such that

u, =u—Vcos(fy —y)

. (A.3)
v, =v-=Vsin(fy, —y).

The wind speed V € R and direction f§,, € R can be measured in real-
time by an anemometer and a weather vane, respectively. Furthermore,
the coefficients c,,c,, and ¢, can be empirically calculated (Fossen,
2011). In this work, the wind forces acting on the vessel are treated
as unknown.

A.2. Hull forces

While the Abkowitz model (Equation (9)) considers the hydrody-
namic forces and moments acting on the vessel’s hull as part of the
known nonlinear dynamics, in this work, these forces are considered
unknown for the MMG model. The vectorty; = [X; Yy N H]T rep-
resents these forces and moments and forms a part of the unknown force
vector 7,; for Equation (13). For inland waterway vessels, this includes
the resistance due to the shallow-water effect, which is a predominant
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factor impacting the vessel’s motion. The generalised hydrodynamic
forces acting on the vessel hull are formulated as:

2
X =05pL,, TU X;_l
2
Yy =05pL,, TU YF,I
2 2 a7
Ny = O.SpLoaTU NH’

(A.4)

where p is defined as the density of freshwater, U is the vessel’s speed,
and T is the vessel’s draught. X', Y}, and N}, are dimensionless quan-
tities given by
X}y == Rycos” B, + Xy B0 + X[ B’ + X 1
! 4
+ XopppPm

=Y} p, +Y/r +Y; ﬂﬂ3 + Yﬂ/ﬁrﬁ;r’ + Yﬂ’”p,,,r’2

(A.5)
LY 3

I‘I‘I‘
Ny =Ny, + NIr' + Ny po + Ny por’ + Njfr”

+ N’ 3,

rrr

where X7 . X} ,..., N/, are the hydrodynamic derivatives in the MMG
modelling approach, B, is the midship drift angle, and ' is the non-
dimensional yaw rate which is equal to rL,,/U. The expression for the
resistance coefficient, R(’), modified to include the impact of shallow wa-

ter effect on the vessel, is given by Zhang et al. (2025):
- R

(0.5pL,, TU?)
R, =0.5pSy, U (Cp (1+ (k+k)) +Cy ),

!

(A.6)

where, S}, represents the ship’s wetted surface area; C, Cy, are the
frictional resistance and the wave-making resistance coefficients, k is the
ship’s form factor in deep water and k is the additional viscous resistance
in shallow water.

Appendix B. Adaptive thresholds computation

B.1. Monitoring module MM

A bound on |521})1| satisfies the inequality

1 le=Ku1| lg(l , O

|“|<[ 0 |e_1<2t|] 20
E’l 3)

o Ol

+/1<[|e—K1(t—t)| 0 ] |J/(1) @l
0 0 |le~Kalt=b)| |y“>(t>|+|A(n,v>|+ (B.1)

| = Ko RT Gy, (4)my | + | = Ko(RT Gy, ()t - v<t))|]
eKit-b) 0

|- K, [,
L (|

Based on the Assumption 3, a bound on each term constituting the
inequality (B.1) is determined and is given by

[ a1
1 e ol
. 12 1,3

|( OO

[p(l) u/(l) v(l)] :z(l)T,

[le=Ki1| 0 1) e 1
2. 0 |efl(zt| SP( Je= = @l )(l),
3 [| — K e ki) < Ve -0
1o | - KyeKot|| =Fd ’
4. In,| < [-(“) ﬁ(zl’z)]T,
5. 17 1=

1\ A(1 1,1 1,2
IR = RaT< 211 12"
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() _ (1) 13
Tyl = 1fv,0) = f0,/, DI < iyénlezH I
|A(n,v)| = T, < ‘f'd, and,

)
6. | — KyRT (9o, | < [ kpp(@0) + 00 | = 7,
kzs(”z 2))
| = Ky(RT(@')n = )| < (i — 9), with,
| = Ky RT (g )m| <
(ka1 (X, +5,)  kno(X, +5,) kzs(ll/)] =17,
T T
Kyle il nemilellx v v .z 5 o)
and where, iym, iym are the respective Lipschitz constants. Upon sub-
1 2

stituting the above equations into (B.1), the state estimation error under

healthy conditions e satlsﬁes
. (1.1
M) | < 2 ‘-l n%lz;
7 (1) -&a-n| (1,
le, | <@V w +/ pyed it
p ] 7o 0
1,1
Ao leC ®) 8.2
12
+ oW —t) Ao legr @ dt.

1,3 = = ~ -
Ay el )] + 7, + iy + G - )

Applying the Bellman-Gronwall lemma to Equation (B.2) and by us-
ing the relation in (30), the j—th component of the adaptive threshold
(j € {1,2}) for the sensor faults in S() can be expressed as Reppa et al.
(2016)

1
L) 5y = p(LD) (1.J) (L) (1) =1 =)
) =EVT @)+ pt A / ZV(b)e dt
¥z "o (B.3)
(1))

+ 71, 7,
where
1 1
oy i) w,

5(1)(— "

d

'
0 Tq+ i, + @ — V)

t
Z(”(t)=E“)(z)+p“)A1/ EDO et M=) g
0

EW(r) = gDtz 4

(B.4)

B.2. Monitoring module M®

Similar to Equation (B.2), a bound on the magnitude of the state
estimation error under healthy conditions |5(zz1)1 | is computed and is given
by

7@ t
ey | <0 ) [";(2)] + /0 <<I><2><t -t

2,1) (B.5)
m)le( | o [-eD
Rl A > dt,
nZ

+ry
/1<2>|6 2]+,

where,

_ _oT =
L [igron grol = o=

lek3!| 0 ) @ 5
2. [ 0 |e—K4t| < P( )e=¢ = @ )(t)’
3 | — kye ksl <P _e®
’ 0 |- K e’K4’| <Py
4. [|n<2 Dl (2,2>| < [s2D _(2,2)
e e NG )
5. r=#71=17 “|<x<>|ezH)| 05 168 iD= 17551 <

A (2>|8(22>| A, v)| =%, < 7y,
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where, /1},<2> and /17@ are the respective Lipschitz constants. Further,
1 2
let us define pU-), gD, (1 A fu ) as positive constants satisfy-
ing |e~K¢'| < pDe~¢"" and 5<’> > ArpD p € (14 Ay = A, Ay =
1752) 0

0 Ay;z) + Az,

Applying the Bellman-Gronwall lemma to Equation (B.5) and by us-
ing the relation in (30), for the faults occurring in the sensor set S®,
the j—th adaptive threshold (j € {1,2}) is expressed as

1 .
£ (1) =EC(1) + p2) AY / Z@D) (e~ g
: 0

(B.6)
7(2.J)
+ a7,
where
(2) ~(2)
Q) = pDe-E1z0  Pa "z e
E¥Y(@)=p“e z > (1—e"d ")
S
t
+ / p<2)e—¢<2>(r—t)[=0]dt (B.7)
0 T4
t
ZO@) = EQ@) + p9A, / EO(t)elrPha=621-0 gy
0
B.3. Monitoring module M®
An upper bound on the magnitude of 5( 1 is computed as
31 _
eS| <@ DD
(3.1) (B'8)
+/0 <¢<31)(t_t)A(31>+ 3.1 =€ “ﬁf}”)dt,
where,
L e8] = @b = 260,
2. Jeksi| < pBDe=er = pGD(p),
3. | ksehs'] < p(z D0
G _ lai| _ lbillbol & b1l = 1b311bs] 5
AT =2 A A@——F—=6,—1—0,— o, —
4 1510 + iAo = S, = dy = St
Ibsl
\uz|5‘”

3,1 _(3,1
5. [nSV) <A,

and ﬂ.y(3), Ay(g), and Ay(}) are the Lipschitz constants corresponding to v, r
1 2 3

and r, respectively; (Sp, §,) and (gp, 53) are the upper limits on the respec-
tive thruster angles and their angular rates, respectively. The resulting
adaptive threshold can be expressed by

3.1
3D () = pBDEE3 P16 4 HBHAGD
Yz 14
G.1) 5G3.1)

t
[
3
0 gz )

(B.9)
)+ A,

B.4. Monitoring module M®

A bounded magnitude of the state estimation error under healthy
conditions, |£ )|, can be described by

4,1 ~
eS| <@D(npD

t B.10
+/ (cb(“’”(t—t)A(y“*” (41) —.5“”(: ”ﬁ(z“'l))dt, ( )
0

where,

1 1€ )] = ph = 240,

2. |eKot| < p@De=E4D1 = eI (p),
(41>
|—K6€ K61| < p(4l) —5(/
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_ 2@+ o)+ 7, +a,
2@ + D) + i, + i,

A" and i =[5, A, 7

4, A(;“) , such that

4D <a o
5. [n*D| < gD
P <y,

Based on these computed bounds, the adaptive threshold can be ex-
pressed by

- _g@D;
E;t,l)m = eV 4 A A;4,1)

t
/ 8Dt gy _
0
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