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 a b s t r a c t

Over the past decade, autonomous surface vessels (ASVs) have increasingly operated in a range of challenging 
environments involving safety-critical scenarios. Their navigational capabilities rely on rich and reliable sensor 
data, enabling accurate localisation, situational awareness and environmental perception. This allows ASVs to 
perform motion planning, collision avoidance and navigational control tasks. To ensure maritime safety, faults 
affecting onboard navigational sensors must be diagnosed.
 This paper presents a model-based fault diagnosis scheme for ASVs affected by multiple sensor faults. Model-
based methods utilise available sensors and dynamical models for residual generation. However, models describ-
ing the navigation may vary considerably for ASVs due to differences in vessel types, actuator configurations 
and sensor setups. To address this challenge, multiple residuals are synthesised using observer-based monitoring 
modules in the navigational sensors. Considering the impact of uncertainties, the residuals are designed to be 
bounded by adaptive thresholds proposed for each monitoring module. Fault isolation is then performed using a 
combinatorial decision logic, achieved by grouping the available sensors into multiple sensor sets and supported 
by model-based sensitivity analysis. Finally, the effectiveness of the proposed scheme is verified through sim-
ulation examples of two real-world vessels of different types with different sensor and actuator configurations, 
thereby illustrating its application.

1. Introduction

Integrating autonomy across different modes of transportation is ex-
pected to mitigate congestion and capacity constraints while enabling 
safer, more resilient and efficient transportation networks. For maritime 
operations, increasing the autonomy level could significantly enhance 
their economic viability by lowering operational costs and improving 
safety. A reduced onboard crew requirement for autonomous surface 
vessels (ASVs) not only facilitates deploying smaller and energy-efficient 
vessels but also reduces the risk of human injury in case of an accident. 
Nevertheless, for ASVs to serve as a viable solution, safety must be rig-
orously ensured.

Autonomous navigation is enabled by several heterogeneous sen-
sors that provide essential data to localise and perceive their environ-
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ment. Situational awareness underpins the decision-making processes 
that enable safe and efficient navigation in both open seas and inland 
waterways. Although autonomous navigation offers the potential to en-
hance safety compared to conventional (human-operated) navigation, 
any fault in the navigational sensors can result in serious consequences, 
such as damage to the vessel, infrastructure, or even human injury, 
making sensor fault diagnosis indispensable. Effective diagnostics en-
able timely remedial measures, such as activating redundant sensors or 
switching to a fault-tolerant control mode, ensuring that the operations 
continue with minimal disruption (Dhyani et al., 2024b).

Faults in sensor systems may arise from signal degradation due to en-
vironmental conditions or from a physical breakdown and can be either 
temporary or permanent. For example, a temporary fault might occur 
when the global navigation satellite system (GNSS) positional accuracy 
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$t$


$p=\begin {bmatrix} x_p & y_p\end {bmatrix}^T$


$(\nu \in \mathbb {R}^3)$


$(\psi )$


\begin {equation}\label {eq:sensors} \begin {aligned} &S_{\text {pos}}: y_{\text {pos}}= p + n_{p} + f_{p}\\ &S_\psi : y_{\psi }= \psi + n_{\psi } + f_{\psi }\\ &S_\nu : y_{\nu }= \nu + n_{\nu } + f_{\nu }\\ &S_\chi : y_{\chi }= \chi + n_{\chi } + f_{\chi },\\ \end {aligned}\end {equation}


$y_{\text {pos}} \in \mathbb {R}^2, y_\psi \in \mathbb {R}$


$y_\nu \in \mathbb {R}^3$


$y_\chi \in \mathbb {R}$


$p$


$\psi $


$\nu $


$\chi $


$n$


$f$


$f_z$


$T_{f_z}$


$o_0 - \text {NED}$


$o - x_b y_b z_b$


$D$


$z_b$


$(x_{p},y_{p})$


$o_0$


$u$


$v$


$\psi $


\begin {equation}\begin {aligned} \dot {x}_p&=u \text {cos}(\psi )-v \text {sin}(\psi )\\ \dot {y}_p&=u \text {sin}(\psi )+v \text {cos}(\psi ). \end {aligned} \label {Xeqn2}\end {equation}


\begin {equation}\begin {aligned} \dot {x}_p=U\text {cos}(\psi +\beta _c)\\ \dot {y}_p=U\text {sin}(\psi +\beta _c), \end {aligned} \label {Xeqn3}\end {equation}


$U = \sqrt {u^2+v^2}$


$\beta _c$


$\chi $


\begin {equation}\begin {aligned} \chi =\text {tan}^{-1}\left (\frac {\dot {y}_p}{\dot {x}_p}\right ). \end {aligned} \label {Xeqn4}\end {equation}


$\beta _c$


\begin {equation}\label {eq:crabangle} \beta _c=\text {tan}^{-1}\left (\frac {v}{u}\right ).\end {equation}


\begin {equation}\label {eq:heading_est1} \psi =\chi -\beta _c.\end {equation}


\begin {equation}\label {eq:concise} \begin {bmatrix}\dot {\eta } \\ \dot {\nu } \end {bmatrix} =\begin {bmatrix} R(\psi )\nu \\f(\nu ,\tau )\end {bmatrix}+\begin {bmatrix} \mathbf {0} \\\Delta (\eta , \nu ) \end {bmatrix},\end {equation}


$\eta =\begin {bmatrix} x_p & y_p & \psi \end {bmatrix}^T$


$\nu = \begin {bmatrix} u & v & r \end {bmatrix}^T$


$u,v$


$r$


$\tau =\begin {bmatrix} \tau _{u} & \tau _{v} & \tau _{r} \end {bmatrix}^T$


$R(\psi )$


\begin {align}R(\psi ) &=\begin {bmatrix} \text {cos} (\psi ) & -\text {sin} (\psi ) & 0 \\ \text {sin} (\psi ) & \text {cos} (\psi ) & 0\\ 0 & 0& 1 \end {bmatrix} .\end {align}


$f(\nu ,\tau ) , \Delta (\eta ,\nu ) \in \mathbb {R}^3$


\begin {equation}\label {eq:standardfcn} \begin {aligned} f(\nu ,\tau )&=M^{-1}(-C(\nu )\nu -D(\nu )\nu +\tau ) \\ \Delta (\eta , \nu )&= M^{-1}\tau _d, \end {aligned}\end {equation}


$\tau _{d} \in \mathbb {R}^3$


$M$


\begin {align}M & = \begin {bmatrix} m+ X_{\dot {u}} & 0 & 0 \\ 0 & m-Y_{\dot {v}} & mx_G-Y_{\dot {r}} \\ 0 &mx_G-N_{\dot {v}} & I_{z_p}-N_{\dot {r}} \end {bmatrix}.\end {align}


$m$


$I_{z_p}$


$z_p-$


$X_{\dot {u}}$


$Y_{\dot {v}}$


$Y_{\dot {r}}$


$N_{\dot {v}}$


$N_{\dot {r}}$


$x_G$


$C(\nu ), D(\nu )$


\begin {equation}\label {eq:coriolis} \begin {aligned} C(\nu ) = \begin {bmatrix} 0 & 0 & -m(x_Gr+v)+Y_{\dot {v}}v+Y_{\dot {r}}r \\ 0 & 0 & mu-X_{\dot {u}}u \\ m(x_Gr+v)-Y_{\dot {v}}v-Y_{\dot {r}}r & -mu+X_{\dot {u}}u & 0 \end {bmatrix} \end {aligned}\end {equation}


\begin {equation}\label {eq:damping} \begin {aligned} D(\nu ) = \begin {bmatrix} \begin {matrix}-X_u -X_{|u|u}|u|\\ - X_{uuu}|u^2|\end {matrix} & 0 & 0 \\ 0 & \begin {matrix}-Y_v -Y_{|v|v}|v|\\ - Y_{|r|v}|r|\end {matrix} & \begin {matrix}-Y_r -Y_{|v|r}|v|\\ - Y_{|r|r}|r|\end {matrix} \\ 0 & \begin {matrix}-N_v -N_{|v|v}|v|\\ - N_{|r|v}|r|\end {matrix} & \begin {matrix}-N_r-N_{|v|r}|v|\\ - N_{|r|r}|r|\end {matrix} \end {bmatrix} \end {aligned}\end {equation}


$X_u$


$X_{|u|u}$


$X_{uuu}$


$Y_v$


$Y_{|v|v}$


$Y_{|r|v}$


$Y_r$


$Y_{|v|r}$


$Y_{|r|r}$


$N_v$


$N_{|v|v}$


$N_{|r|v}$


$N_r$


$N_{|v|r}$


$N_{|r|r}$


\begin {equation}\label {eq:mmgfcn} \begin {aligned} f(\nu ,\tau )&= M'^{-1}( -D'(\nu ) +\tau )\\ \Delta (\eta , \nu )&= M'^{-1}\tau _d . \end {aligned}\end {equation}


$M'$


$D'(\nu )$


\begin {equation}\begin {aligned} M' &=\begin {bmatrix} (m+m_x) & 0&0\\ 0 & (m+m_y) & -x_Gm_y \\ 0 & x_Gm & (I_{z_p}+J_{z_p}) \end {bmatrix}\\ D'(\nu ) &=\begin {bmatrix} -(m+m_y)vr+x_Gm_yr^2 \\ (m+m_x)ur \\ x_Gmur \end {bmatrix}, \end {aligned} \label {Xeqn12}\end {equation}


$m_x, m_y$


$x_p$


$y_p$


$J_{z_p}$


$M'$


\begin {equation}\label {eq:azimuth} \tau = \begin {bmatrix} \tau _{u} \\ \tau _{v} \\ \tau _{r} \end {bmatrix} = \begin {bmatrix} X_{\text {pr},1}+X_{\text {pr},2}\\ Y_{\text {pr},1}+Y_{\text {pr},2}\\ N_{\text {pr},1}+N_{\text {pr},2} \end {bmatrix},\end {equation}


$X_{\text {pr},w}$


$Y_{\text {pr},w}$


$N_{\text {pr},w}$


$w \in \{1,2\}$


\begin {equation}\tau = \begin {bmatrix}\tau _1\\ \tau _2 \\ \tau _3 \end {bmatrix}=\begin {bmatrix}X_P+X_R\\ Y_R \\ N_R \end {bmatrix}, \label {Xeqn14}\end {equation}


$X_{R}$


$Y_{R}$


$N_{R}$


$X_{P}$


\begin {equation}\label {eq:nomoto2} \begin {aligned} &\ddot {r} +a_1\dot {r}+a_2r= b_1(b_{2} \dot {\delta _p} +\delta _p)+b_3(b_{4} \dot {\delta _s} +\delta _s) \\ &\dot {\psi } = r, \
\dot {u} = 0,\ \dot {v} = 0, \end {aligned}\end {equation}


$\delta _p$


$\delta _s$


$a_{(.)}$


$b_{(.)}$


$N$


$\mathcal {S}^{(I)}, I = 1,\dots , N$


$\mathcal {M}^{(I)}$


$\mathcal {M}^{(I)}$


$\mathcal {O}^{(I)}$


$\textbf {d}^{(I)}$


$\mathcal {A}$


$\mathcal {D}_s$


$N=4$


\begin {equation}\begin {aligned} \mathcal {S}^{(1)}&=\{\mathcal {S}^{(1,1)},\mathcal {S}^{(1,2)}\}=\{S_{\text {pos}},S_\psi \} \\ \mathcal {S}^{(2)}&=\{\mathcal {S}^{(2,1)},\mathcal {S}^{(2,2)}\}=\{S_\psi ,S_\nu \}\\ \mathcal {S}^{(3)}&=\{\mathcal {S}^{(3,1)}\}=\{ S_\psi \}\\ \mathcal {S}^{(4)}&=\{\mathcal {S}^{(4,1)}\}=\{S_{\text {pos}}, S_{\nu }\}. \end {aligned} \label {Xeqn16}\end {equation}


$\mathcal {M}^{(1)}-\mathcal {M}^{(4)}$


$\mathcal {M}^{(1)}-\mathcal {M}^{(3)}$


$\mathcal {M}^{(4)}$


$\mathcal {M}^{(1)}$


\begin {equation}\label {eq_observer1} \mathcal {O}^{(1)}: \begin {aligned} \dot {\hat {\eta }}^{(1)}=&R(\hat {\psi }^{(1)})\hat {\nu }^{(1)}+K_1 \tilde {\eta }^{(1)}\\ \dot {\hat {\nu }}^{(1)}=&f(\hat {\nu }^{(1)},\tau ) +K_2R^{T}(\hat {\psi }^{(1)})\tilde {\eta }^{(1)}, \end {aligned}\end {equation}


$\hat {\eta }^{(1)}$


$\hat {\nu }^{(1)}$


$\hat {\psi }^{(1)}$


$\eta = \begin {bmatrix} p & \psi \end {bmatrix}^T$


$\nu $


$\psi $


$\tilde {\eta }^{(1)}= y_\eta - \hat {\eta }^{(1)}$


$y_\eta =\begin {bmatrix} y_{\text {pos}} & y_\psi \end {bmatrix}^T$


$f(\hat {\nu }^{(1)},\tau )$


$K_1$


$K_2 \in \mathbb {R}^{3 \times 3}$


$\mathcal {M}^{(2)}$


$\mathcal {O}^{(2)}$


\begin {equation}\label {eq_observer2} \mathcal {O}^{(2)}: \begin {aligned} \dot {\hat {\psi }}^{(2)}=&\hat {r}^{(2)}+k_3 \tilde {\psi }^{(2)}\\ \dot {\hat {\nu }}^{(2)}=&f(\hat {\nu }^{(2)},\tau ) +K_4\tilde {\nu }^{(2)}, \end {aligned}\end {equation}


$\tilde {\psi }^{(2)}= y_\psi - \hat {\psi }^{(2)}$


$\tilde {\nu }^{(2)}= y_\nu - \hat {\nu }^{(2)}$


$\psi $


$\nu $


$k_3 \in \mathbb {R}$


$K_4 \in \mathbb {R}^{3 \times 3}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(2)}$


$y_\nu $


$y_{\text {pos}}$


$\mathcal {M}^{(1)}$


$\mathcal {M}^{(2)}$


$\mathcal {M}^{(3)}$


$\mathcal {O}^{(3)}$


\begin {equation}\label {eq_observer3} \mathcal {O}^{(3)}: \begin {aligned} & \begin {bmatrix} \dot {\hat {\psi }}^{(3)} \\ \ddot {\hat {\psi }}^{(3)}\\\dddot {\hat {\psi }}^{(3)} \end {bmatrix} =\begin {bmatrix} 0&1&0\\0&0&1\\ 0 &-a_2&-a_1 \end {bmatrix}\begin {bmatrix} \hat {\psi }^{(3)} \\ \hat {r}^{(3)}\\\dot {\hat {r}}^{(3)} \end {bmatrix}+\\ & \begin {bmatrix} 0&0&0&0\\0&0&0&0\\b_1&b_1b_2&b_3&b_3b_4 \end {bmatrix}\begin {bmatrix} \delta _p\\ \dot {\delta _p}\\ \delta _s\\ \dot {\delta _s} \end {bmatrix}+\begin {bmatrix} k_5\\0\\0 \end {bmatrix}\tilde {\psi }^{(3)} \end {aligned}\end {equation}


$\tilde {\psi }^{(3)}= y_\psi - \hat {\psi }^{(3)}$


$\psi $


$a_{(.)}$


$b_{(.)}$


$k_5 \in \mathbb {R}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(2)}$


$\mathcal {O}^{(3)}$


$\varkappa = \begin {bmatrix} \delta _p& \dot {\delta _p}& \delta _s& \dot {\delta _s} \end {bmatrix}^T$


$\mathcal {O}^{(3)}$


\begin {equation}\label {eq_observer3_2} \mathcal {O}^{(3)}: \begin {aligned} & \begin {bmatrix} \dot {\hat {\psi }}^{(3)} \\ \ddot {\hat {\psi }}^{(3)}\\\dddot {\hat {\psi }}^{(3)} \end {bmatrix} =\begin {bmatrix} 0&1&0\\0&0&1\\ 0 &-\frac {1}{T_1T_2}&-\frac {T_1+T_2}{T_1T_2}\end {bmatrix}\begin {bmatrix} \hat {\psi }^{(3)} \\ \hat {r}^{(3)}\\\dot {\hat {r}}^{(3)} \end {bmatrix}+\\ & \frac {K}{T_1T_2}\begin {bmatrix} 0&0\\0&0\\1&T_3\end {bmatrix}\begin {bmatrix} \delta \\ \dot {\delta } \end {bmatrix}+\begin {bmatrix} k_5\\0\\0 \end {bmatrix}\tilde {\psi }^{(3)}, \end {aligned}\end {equation}


$\mathcal {M}^{(3)}$


$\varkappa = \begin {bmatrix} \delta & \dot {\delta } \end {bmatrix}^T$


$T_1, T_2$


$T_3$


$K$


$\mathcal {M}^{(4)}$


\begin {equation}\label {eq:heading_est} y_{\psi }=y_{\chi }-\text {tan}^{-1}\left (\frac {y_v}{y_u}\right ),\end {equation}


$y_u,y_v$


$y_{\chi }$


$(y_{\psi })$


$(y_u,y_v)$


$\mathcal {O}^{(4)}$


\begin {equation}\label {eq_observer4} \mathcal {O}^{(4)}: \begin {aligned} \dot {\hat {x}}_p^{(4)}=&y_{u}\cos (y_{\psi })-y_v \sin (y_{\psi })+k_{61} \tilde {x}_p^{(4)}\\ \dot {\hat {y}}_p^{(4)}=&y_{u}\sin (y_{\psi })+y_v \cos (y_{\psi })+k_{62} \tilde {y}_p^{(4)}, \end {aligned}\end {equation}


$\tilde {x}_p^{(4)}=y_{x_p}-\hat {x}_p^{(4)}$


$\tilde {y}_p^{(4)}=y_{y_p}-\hat {y}_p^{(4)}$


$y_{x_p}$


$y_{y_p}$


$k_{61}, k_{62} \in \mathbb {R}$


$z^{(I)}, I=1,\dots ,4,$


$z^{(1)}=\begin {bmatrix} p & \psi & \nu \end {bmatrix}^T$


$z^{(2)}=\begin {bmatrix} \psi & \nu \end {bmatrix}^T$


$z^{(3)}= \psi $


$z^{(4)}=\begin {bmatrix} p & \nu \end {bmatrix}^T$


$\varepsilon _{y_z}^{(I)} \in \mathbb {R}^{N_{I}}$


\begin {equation}\begin {aligned} \varepsilon _{y_z}^{(I)}&=y_{z}^{(I)}-\hat {z}^{(I)}, \end {aligned} \label {Xeqn23}\end {equation}


$y_{z}^{(I)}$


$\hat {z}^{(I)}$


$z^{(I)}$


$I-$


$\{.\}^{(j)}$


$j-$


$j \in \{1,\dots , m_I\}$


$m_I$


$I-$


$m_I=2$


$\mathcal {S}^{(1)}, \mathcal {S}^{(2)}$


$m_I=1$


$\mathcal {S}^{(3)}$


$\mathcal {S}^{(4)}$


\begin {equation}\begin {aligned} \varepsilon _{y_z}^{(1)}&=\begin {bmatrix}\varepsilon _{y_z}^{(1,1)}\\ \varepsilon _{y_z}^{(1,2)} \end {bmatrix}=\begin {bmatrix} y_{\text {pos}} \\ y_\psi \end {bmatrix}-\begin {bmatrix} \hat {z}^{(1,1)}\\ \hat {z}^{(1,2)} \end {bmatrix}\\ \varepsilon _{y_z}^{(2)}&=\begin {bmatrix}\varepsilon _{y_z}^{(2,1)}\\ \varepsilon _{y_z}^{(2,2)} \end {bmatrix}=\begin {bmatrix} y_\psi \\ y_\nu \end {bmatrix}-\begin {bmatrix} \hat {z}^{(2,1)}\\ \hat {z}^{(2,2)} \end {bmatrix} \\ \varepsilon _{y_z}^{(3)}&=\varepsilon _{y_z}^{(3,1)} =y_\psi -\hat {z}^{(3,1)} \\ \varepsilon _{y_z}^{(4)}&=\varepsilon _{y_z}^{(4,1)}= y_{\text {pos}} - \hat {z}^{(4,1)}, \end {aligned} \label {Xeqn24}\end {equation}


$\begin {bmatrix} \hat {z}^{(1,1)}& \hat {z}^{(1,2)} \end {bmatrix}^T=\begin {bmatrix} \hat {p} & \hat {\psi } \end {bmatrix}^T$


$\begin {bmatrix} \hat {z}^{(2,1)}& \hat {z}^{(2,2)}\end {bmatrix}^T=\begin {bmatrix} \hat {\psi } & \hat {\nu } \end {bmatrix}^T$


$\hat {z}^{(3,1)}$


$= \hat {\psi }$


$\hat {z}^{(4,1)}$


$=\hat {p}$


$\mathcal {O}^{(1)}$


$\mathcal {O}^{(4)}$


$\varepsilon _{y_{z}H}^{(I,j)}$


\begin {equation}\varepsilon _{y_{z}H}^{(I,j)}=y_{z_{j} H}-\hat {z}^{(I,j)}_H, \label {Xeqn25}\end {equation}


$y_{z_{j} H}$


$z^{(I,j)}$


$j-$


$\bar {\varepsilon }_{y_{z}}^{(I,j)}$


$I \in \{1,\dots ,4\}$


$j \in \{1,\dots ,m_I\}$


$\bar {\varepsilon }_{y_{z}H}^{(I,j)}$


\begin {equation}|\varepsilon _{y_{z}H}^{(I,j)}| \leq \bar {\varepsilon }_{y_{z}H}^{(I,j)} . \label {Xeqn26}\end {equation}


$\bar {\varepsilon }_{y_{z}}^{(I,j)}$


$\mathcal {S}^{(I)}$


$t$


$\mathcal {S}^{(I)}$


$\varepsilon _{y_{z}H}^{(I,j)}$


$\varepsilon _{z H}^{(I,j)}$


\begin {equation}\label {eq:residualgen} \varepsilon _{y_{z}H}^{(I,j)}=\varepsilon _{z H}^{(I,j)}+{n}_{z}^{(I,j)},\end {equation}


$\varepsilon _{z H}^{(I,j)}=z^{(I,j)}-\hat {z}_H^{(I,j)}$


$\tau $


$\mathcal {R}^{\tau } \subset \mathbb {R}^3$


$\tau \in \mathcal {R}^{\tau },$


$t \geq 0$


$j-$


$(n_{z}^{(I,j)})$


$|n_{z_k}^{(I,j)}| \leq \bar {n}_{z_k}^{(I,j)}$


$k$


$n_{z}^{(I,j)}$


$\bar {n}_{z_k}^{(I,j)}$


\begin {equation}\label {eq_adthreshold} \begin {aligned} \begin {bmatrix} |\varepsilon _{y_{z}H}^{(1,1)}| \\ |\varepsilon _{y_{z}H}^{(1,2)}| \end {bmatrix}& \leq \begin {bmatrix} |\varepsilon _{zH}^{(1,1)}| \\ |\varepsilon _{zH}^{(1,2)}| \end {bmatrix}+\begin {bmatrix} \bar {n}_z^{(1,1)}\\\bar {n}_z^{(1,2)} \end {bmatrix}\\ \begin {bmatrix} |\varepsilon _{y_{z}H}^{(2,1)}| \\ |\varepsilon _{y_{z}H}^{(2,2)}| \end {bmatrix}& \leq \begin {bmatrix} |\varepsilon _{zH}^{(2,1)}| \\ |\varepsilon _{zH}^{(2,2)}| \end {bmatrix}+\begin {bmatrix} \bar {n}_z^{(2,1)}\\\bar {n}_z^{(2,2)} \end {bmatrix} \\ |\varepsilon _{y_{z}H}^{(3,1)}|& \leq |\varepsilon _{zH}^{(3,1)}|+ \bar {n}_z^{(3,1)}\\ |\varepsilon _{y_{z}H}^{(4,1)}|& \leq |\varepsilon _{zH}^{(4,1)}|+ \bar {n}_z^{(4,1)}, \end {aligned}\end {equation}


$|\varepsilon _{zH}^{(I,j)}|$


$z^{(I)}$


$\mathcal {O}^{(1)}$


\begin {equation}\label {est_error1} \begin {aligned} \dot {\varepsilon }_{z H}^{(1)}&= \begin {bmatrix} \dot {\varepsilon }_{z H}^{(1,1)} \cr \dot {\varepsilon }_{z H}^{(1,2)} \cr \dot {\varepsilon }_{z H}^{(1,3)} \end {bmatrix}=\begin {bmatrix}-K_{11} & \mathbf {0} & \mathbf {0} \cr \mathbf {0} & -k_{12} & \mathbf {0} \cr \mathbf {0} &\mathbf {0} & -K_2 \end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(1,1)} \cr \varepsilon _{z H}^{(1,2)} \cr \varepsilon _{z H}^{(1,3)} \end {bmatrix}+\begin {bmatrix}\tilde {\gamma }^{(1)}_{1H}\cr \tilde {\gamma }^{(1)}_{2H} \end {bmatrix} \cr &\quad + \begin {bmatrix} \mathbf {0} \cr \Delta (\eta , \nu )+K_2\nu \end {bmatrix}+\begin {bmatrix}-K_{11} & \mathbf {0} & \mathbf {0} \cr \mathbf {0} & -k_{12} & \mathbf {0} \cr \mathbf {0} &\mathbf {0} & -K_2 \end {bmatrix} \begin {bmatrix} n_{z}^{(1,1)} \cr n_{z}^{(1,2)} \cr R^{T}(\hat {\psi }^{(1)}_H)y_\eta \end {bmatrix}, \end {aligned}\end {equation}


$\tilde {\gamma }^{(1)}_{1H}= R(\psi )\nu -R(\hat {\psi }^{(1)}_{H})\hat {\nu }^{(1)}_{H}$


$\tilde {\gamma }^{(1)}_{2H}= f(\nu ,\tau )-f(\hat {\nu }_H^{(1)},\tau )$


$\mathbf {0}$


\begin {equation}\label {eq:M1_solution_se} \begin {aligned} \varepsilon _{z H}^{(1)}&=\begin {bmatrix} \varepsilon _{z H}^{(1,1)} \cr \varepsilon _{z H}^{(1,2)} \cr \varepsilon _{z H}^{(1,3)} \end {bmatrix}=\begin {bmatrix} e^{-K_{11}t} & \mathbf {0} & \mathbf {0}\cr \mathbf {0} & e^{-k_{12}t} & \mathbf {0}\cr \mathbf {0} &\mathbf {0} & e^{-K_2t} \cr \end {bmatrix}\begin {bmatrix} \varepsilon _{z H}^{(1,1)}(0)\cr \varepsilon _{z H}^{(1,2)}(0) \cr \varepsilon _{z H}^{(1,3)}(0) \end {bmatrix} \cr &\quad + \int _{0}^{t}\begin {bmatrix} e^{-K_1(t-\mathfrak {t})} & \mathbf {0} \cr \mathbf {0} & e^{-K_2(t-\mathfrak {t})} \end {bmatrix} \biggl ( \begin {bmatrix} \tilde {\gamma }_{1H}^{(1)}(\mathfrak {t}) \cr \tilde {\gamma }_{2H}^{(1)}(\mathfrak {t})+ \Delta (\eta , \nu ) \end {bmatrix}\cr &\quad +\begin {bmatrix} -K_1 n_\eta \cr -K_2R^{T}(\hat {\psi }^{(1)}_H(\mathfrak {t}))n_\eta +K_2(\nu (\mathfrak {t})-R^T(\hat {\psi }^{(1)}_H(\mathfrak {t}))\eta (\mathfrak {t})) \end {bmatrix} \biggr ) d \mathfrak {t} , \end {aligned}\end {equation}


$K_1=\text {diag}( \begin {bmatrix}K_{11} & k_{12} \end {bmatrix})$


$n_\eta =\begin {bmatrix} n_z^{(1,1)} & n_z^{(1,2)} \end {bmatrix}^T$


$\varepsilon _{y_z}^{(1)}$


\begin {equation}\label {eq:residual1} \begin {aligned} \begin {bmatrix} \varepsilon _{y_z H}^{(1,1)} \\ \varepsilon _{y_z H}^{(1,2)} \end {bmatrix}&= e^{-K_1t} \begin {bmatrix} \varepsilon _{z H}^{(1,1)}(0)\\ \varepsilon _{z H}^{(1,2)}(0) \end {bmatrix} +\begin {bmatrix} n_z^{(1,1)} \\ n_z^{(1,2)} \end {bmatrix} \\ &\quad +\int _{0}^{t} e^{-K_1(t-\mathfrak {t})}\bigl ( \tilde {\gamma }_{1H}^{(1)}(\mathfrak {t}) -K_1 n_\eta \bigr ) d \mathfrak {t}. \end {aligned}\end {equation}


$\tau _{d}$


$|\tau _{d_i}| \leq \bar {\tau }_{d_i}$


$i \in \{1,2,3\}$


$\bar {\tau }_{d_i}$


$\mathcal {O}^{(2)}$


\begin {equation}\label {est_error2} \begin {aligned} \dot {\varepsilon }_{z H}^{(2)}=&\begin {bmatrix} \dot {\varepsilon }_{z H}^{(2,1)} \\ \dot {\varepsilon }_{z H}^{(2,2)} \end {bmatrix} = \begin {bmatrix}-k_3 & \mathbf {0} \cr \mathbf {0} & -K_4\end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(2,1)} \\ \varepsilon _{z H}^{(2,2)} \end {bmatrix} +\begin {bmatrix} \tilde {\gamma }^{(2)}_{1H}\\ \tilde {\gamma }^{(2)}_{2H}+\Delta (\eta , \nu ) \end {bmatrix} \\ &+\begin {bmatrix} -k_3 & \mathbf {0} \cr \mathbf {0} &-K_4 \end {bmatrix} \begin {bmatrix} n_z^{(2,1)} \\ n_z^{(2,2)} \end {bmatrix}, \end {aligned}\end {equation}


$\tilde {\gamma }^{(2)}_{1H}= r-\hat {r}_H$


$\tilde {\gamma }^{(2)}_{2H}= f(\nu ,\tau )-f(\hat {\nu }_H^{(2)},\tau )$


$\varepsilon _{y_z}^{(2)}$


\begin {equation}\begin {aligned} \begin {bmatrix} \varepsilon _{y_z H}^{(2,1)} \\ \varepsilon _{y_z H}^{(2,2)} \end {bmatrix}&= \begin {bmatrix} e^{-k_3t} & \mathbf {0} \cr \mathbf {0} & e^{-K_4t} \end {bmatrix} \begin {bmatrix} \varepsilon _{z H}^{(2,1)}(0)\\ \varepsilon _{z H}^{(2,2)}(0) \end {bmatrix} \\ &\quad +\begin {bmatrix} n_z^{(2,1)} \\ n_z^{(2,2)} \end {bmatrix} + \int _{0}^{t} \begin {bmatrix} e^{-k_3(t-\mathfrak {t})} & \mathbf {0} \cr \mathbf {0} & e^{-K_4(t-\mathfrak {t})} \end {bmatrix} \\ &\quad \biggl ( \begin {bmatrix} \tilde {\gamma }_{1H}^{(2)}(\mathfrak {t}) -k_3 n_z^{(2,1)} \\ \tilde {\gamma }_{2H}^{(2)}(\mathfrak {t}) + \Delta (\eta ,\nu ) - K_4 n_z^{(2,2)} \end {bmatrix} \biggr ) d \mathfrak {t}. \end {aligned} \label {Xeqn33}\end {equation}


$\mathcal {M}^{(3)}$


$\mathcal {O}^{(3)}$


\begin {equation}\begin {aligned} \dot {\varepsilon }_{z H}^{(3,1)} =& -k_5 \varepsilon _{z H}^{(3,1)} + \dot {\psi }_H+\frac {1}{a_2} \dddot {\hat {\psi }}^{(3)}+\frac {a_1}{a_2} \ddot {\hat {\psi }}^{(3)}\\ &-\frac {b_1}{a_2}(b_2 \dot {\delta _p}+ \delta _p) -\frac {b_3}{a_2}(b_4 \dot {\delta _s}+\delta _s) -k_5 n_z^{(3,1)}. \end {aligned} \label {Xeqn34}\end {equation}


$(\varepsilon _{y_z H}^{(3,1)})$


\begin {equation}\begin {aligned} \varepsilon _{y_z H}^{(3,1)}=& e^{-k_5t} \varepsilon _{z H}^{(3,1)}(0) + n_z^{(3,1)}+ \int _{0}^{t} e^{-k_5(t-\mathfrak {t})}\biggr ( \dot {\psi }_H\\ &+\frac {1}{a_2} \dddot {\hat {\psi }}^{(3)}+\frac {a_1}{a_2} \ddot {\hat {\psi }}^{(3)}-\frac {b_1}{a_2}(b_2 \dot {\delta _p}+ \delta _p) -\frac {b_3}{a_2}(b_4 \dot {\delta _s}+\delta _s)-k_5 n_z^{(3,1)}\biggl )d\mathfrak {t}. \end {aligned} \label {Xeqn35}\end {equation}


$\mathcal {O}^{(4)}$


\begin {equation}\begin {aligned} \dot {\varepsilon }_{z H}^{(4,1)} =& -K_6 \varepsilon _{z H}^{(4,1)} \\ & + \begin {bmatrix} u(\text {cos} \psi - \text {cos} y_{\psi }^{(4)} )+ v (-\text {sin} \psi + \text {sin} y_{\psi }^{(4)} ) \\ u(\text {sin} \psi - \text {sin} y_{\psi }^{(4)} )+ v (\text {cos} \psi - \text {cos} y_{\psi }^{(4)} ) \end {bmatrix} \\ & + \begin {bmatrix} -\text {cos} y_{\psi }^{(4)} & \text {sin} y_{\psi }^{(4)} & 0 \\ -\text {sin} y_{\psi }^{(4)} & -\text {cos} y_{\psi }^{(4)} & 0\\ \end {bmatrix} n_z^{(4,2)} - K_6 n_z^{(4,1)}, \end {aligned} \label {Xeqn36}\end {equation}


$K_6 = \text {diag}( \begin {bmatrix} k_{61} & k_{62}\end {bmatrix})$


$n_z^{(4,2)} = n_\nu $


$(\varepsilon _{y_z H}^{(4,1)})$


\begin {equation}\label {eq:residual4} \begin {aligned} \varepsilon _{y_z H}^{(4,1)}& = e^{-K_6 t}\varepsilon _{z H}^{(4,1)}(0)+ \int _{0}^{t} e^{-K_6 (t-\mathfrak {t})} \\ &\quad \biggl (\begin {bmatrix} \cos {\psi } & -\sin {\psi } \\ \sin {\psi } & \cos {\psi } \end {bmatrix}\begin {bmatrix} u \\v \end {bmatrix}- \begin {bmatrix} \cos {y_{\psi }} & -\sin {y_{\psi }} \\ \sin {y_{\psi }} & \cos {y_{\psi }} \end {bmatrix} \begin {bmatrix} y_u \\ y_v \end {bmatrix} \\ &\quad - K_6 n_z^{(4,1)}\biggr ) d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(I)}$


$\mathcal {E}^{(I)}_{y_z}$


$\mathcal {S}^{(I)}$


\begin {equation}\label {eq:ARR} \mathcal {E}^{(I)}_{y_z}= \bigcup _{j} \mathcal {E}^{(I,j)}_{y_z},\end {equation}


$I \in \{ 1, \dots , 4\}$


$j-$


$\mathcal {E}^{(I,j)}_{y_z}$


\begin {equation}\label {eq:jthARR} \mathcal {E}_{y_z}^{(1,j)}: |\varepsilon ^{(I,j)}_{y_z}(t)|-\bar {\varepsilon }_{y_z}^{(I,j)}(t) \leq 0, \quad j \in \{ 1,\dots , m_I \}.\end {equation}


$j-$


$\mathcal {S}^{(I)}$


$T_{D }^{(I,j)}$


$j-$


$\mathcal {E}_{y_z}^{(I,j)}$


$\mathcal {M}^{(I)}$


\begin {equation}\label {eq:faultdetecttime} T_{D}^{(I,j)}= \begin {cases} \min \{t \in \mathbb {R}^+: |\varepsilon ^{(I,j)}_{y_z }(t)|> \bar {\varepsilon }^{(I,j)}_{y_z }(t)\}, & \neg \mathcal {E}_{y_z}^{(I,j)} \\ \infty , & \text {otherwise}. \end {cases}\end {equation}


$T_{D}^{(I,j)}$


$\mathcal {S}^{(I)}$


$\mathcal {M}^{(I)}$


$I-$


$\mathbf {d}^{(I)}(t)= \begin {bmatrix} \mathbf {d}^{(I,1)}(t),& \dots , & \mathbf {d}^{(I, m_I)}(t) \end {bmatrix}^T$


\begin {equation}\mathbf {d}^{(I,j)}(t)=\begin {cases} 0 , & \text { if } t<T_{D}^{(I,j)}\\ 1 , & \text { otherwise } \end {cases}. \label {Xeqn41}\end {equation}


$\mathcal {S}^{(I)}$


$T_{FD}^{(I)}$


$\mathbf {d}^{(I)}(t)=\mathbf {0}$


$S^{(I)}$


$\mathbf {d}^{(I)}(t)$


$\mathcal {A}$


$\mathbf {d}(t)$


\begin {equation}\mathbf {d}(t) = \texttt {vcat}(\mathbf {d}^{(I)}(t)), \label {Xeqn42}\end {equation}


$\texttt {vcat}()$


$\mathbf {d}^{(I,j)}(t)$


$\mathbf {d}(t)$


$\mathbf {d}^{(I,j)}(t)$


$\mathbf {d}(t)$


$F$


$F$


$l$


$l=\sum _{I}m_I$


$j-$


$\mathcal {E}^{(I,j)}_{y_z}$


$F$


$N_{c}=2^{\mathfrak {s}}-1$


$\mathfrak {s}$


$F_q$


$q \in \{1, \dots ,N_{c}\}$


$F_{pq}=1$


$p \in \{1,\dots ,l\}$


$\mathcal {F}_{c_q}$


$\mathcal {E}^{(I,j)}_{y_z}$


$\mathcal {S}^{(I)}$


$F_{pq}=$


$1$


$\mathcal {E}^{(I,j)}_{y_z}$


$\mathcal {F}_{c_q}$


$F_{pq}$


$\mathbf {d}(t)$


$F_q$


$\mathbf {d}_{p}(t)=F_{pq}$


$p \in \{1,\dots ,l\}$


$\mathcal {D}_s (t)$


$\mathcal {F}_{c_q}$


$\mathbf {d}(t)$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\psi }\}$


$\mathcal {F}_{c_3}=\{f_{\nu }\}$


$\mathcal {F}_{c_4}=\{f_{\chi }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\psi }\}$


$\mathcal {F}_{c_6}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\chi }\}$


$\mathcal {F}_{c_8}=\{f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_9}=\{f_{\psi },f_{\chi }\}$


$\mathcal {F}_{c_{10}}=\{f_{\nu },f_{\chi }\}$


$\mathcal {F}_{c_{11}}=\{f_p, f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_{12}}=\{f_p, f_{\psi },f_{\chi }\}$


$\mathcal {F}_{c_{13}}=\{f_{\psi }, f_{\nu }, f_{\chi }\}$


$\mathcal {F}_{c_{14}}=\{f_{\nu }, f_{\chi },f_p\}$


$\mathcal {F}_{c_{15}}=\{f_p, f_{\psi },f_{\nu }, f_{\chi }\}$


$(f_{p},f_{\psi },f_{\nu }$


$f_{\chi })$


\begin {equation}\label {eq:jacobian} \begin {aligned} &\nabla \varepsilon _{y_z}(f_z) = \\ &\begin {bmatrix} \partial \varepsilon ^{(1,1)}_{y_z}(f_p)& \partial \varepsilon ^{(1,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(1,1)}_{y_z} (f_\nu ) & \partial \varepsilon ^{(1,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(1,2)}_{y_z}(f_p)& \partial \varepsilon ^{(1,2)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(1,2)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(1,2)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(2,1)}_{y_z}(f_p)& \partial \varepsilon ^{(2,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(2,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(2,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(2,2)}_{y_z}(f_p)& \partial \varepsilon ^{(2,2)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(2,2)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(2,2)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(3,1)}_{y_z}(f_p)& \partial \varepsilon ^{(3,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(3,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(3,1)}_{y_z}(f_\chi )\\ \partial \varepsilon ^{(4,1)}_{y_z}(f_p)& \partial \varepsilon ^{(4,1)}_{y_z}(f_\psi ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\chi )\\ \end {bmatrix}. \end {aligned}\end {equation}


\begin {equation}\label {eq:jacobian2} \begin {aligned} &\nabla \varepsilon _{y_z}(f_z) = \\ &\begin {bmatrix} \mathbf {1}& \partial \varepsilon ^{(1,1)}_{y_z}(f_\psi ) & \mathbf {0} & \mathbf {0}\cr 0& 1 & 0 & 0\cr 0& 1 & 1 & 0\cr \mathbf {0}& \mathbf {0} & \mathbf {1} & \mathbf {0}\cr 0& 1 & 0 & 0\cr \mathbf {1}& \mathbf {0} & \partial \varepsilon ^{(4,1)}_{y_z}(f_\nu ) & \partial \varepsilon ^{(4,1)}_{y_z}(f_\chi ) \\ \end {bmatrix}, \end {aligned}\end {equation}


$\mathbf {1}$


$\mathbf {0}$


$\partial \varepsilon ^{(1,1)}_{y_z}(f_\psi )$


$\varepsilon ^{(1,1)}_{y_z}$


$\hat {\psi }^{(1)}$


$\hat {\nu }^{(1)}$


\begin {equation}\begin {aligned} \begin {bmatrix} \frac {\hat {u}^{(1)}\sin {\hat {\psi }^{(1)}}+\hat {v}^{(1)}\cos {\hat {\psi }^{(1)}}}{|\hat {r}^{(1)}|}\big (k_{23} \mathcal {J}_1+k_{12}\mathcal {J}_2\big ) \\ \frac {\hat {u}^{(1)}\cos {\hat {\psi }^{(1)}}-\hat {v}^{(1)}\sin {\hat {\psi }^{(1)}}}{|\hat {r}^{(1)}|}\big (k_{23} \mathcal {J}_3+k_{12}\mathcal {J}_4\big ) \end {bmatrix}, \end {aligned} \label {Xeqn45}\end {equation}


$k_{12}, k_{23} \in \mathbb {R}$


$K_1 = \text {diag}( \begin {bmatrix}K_{11} & k_{12} \end {bmatrix})$


$K_2 = \text {diag}( \begin {bmatrix}k_{21} & k_{22} & k_{23} \end {bmatrix})$


$\mathcal {J}_1$


$\mathcal {J}_2$


$\mathcal {J}_3$


$\mathcal {J}_4$


$\hat {u}^{(1)}, \hat {v}^{(1)}$


$\hat {r}^{(1)}$


$k_{12}, k_{23}$


$\partial \varepsilon ^{(4,1)}_{y_z}(f_\nu )$


\begin {equation*}{ \begin {bmatrix} -\cos (y_\chi )\cos \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & -\cos (y_\chi )\sin \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & 0\\ -\sin ( y_\chi )\cos \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & -\sin (y_\chi ) \sin \left (\tan ^{-1}\left (\frac {y_v}{y_u}\right )\right ) & 0 \end {bmatrix}. }\end {equation*}


$[-1,1]$


$\partial \varepsilon ^{(4,1)}_{y_z}(f_\chi )$


\begin {equation}\begin {bmatrix} U_y\sin {(y_\chi )} \\ -U_y\cos {(y_\chi )} \end {bmatrix}, \label {Xeqn46}\end {equation}


$U_y = \sqrt {y_u^2+y_v^2}$


$\varepsilon ^{(4,1)}_{y_z}$


$[-1,1]$


$U_y$


$[-U_y, U_y]$


$V= 17$


$7$


$\beta _V=45 ^{\circ }$


$1.5$


$\tau _d$


$|\tau _d|= (|\tau _w|+|\tau _H|) \leq \bar {\tau }_d$


$3\,\%$


$\mathcal {S}^{(1)}$


$\mathcal {S}^{(2)}$


$\mathcal {S}^{(1)}$


$\mathcal {S}^{(2)}$


$\mathcal {M}^{(I)}, I \in \{1,2\},$


$K_1, K_2, K_4$


$(\begin {bmatrix}100, & 100, & 100 \end {bmatrix})$


$k_3$


$100$


$\mathcal {A}$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\psi }\}$


$\mathcal {F}_{c_3}=\{f_{\nu }\}$


$\mathcal {F}_{c_4}=\{f_{p},f_{\psi }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_6}=\{f_{\psi },f_{\nu }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\psi },f_{\nu }\}$


$\mathbf {d}(t) = \begin {bmatrix} 0 & 1 & 1 & 1\end {bmatrix}^T$


$\mathcal {D}_s(t) = \{\mathcal {F}_{c_6}, \mathcal {F}_{c_7}\}$


$f_\psi , f_\nu $


$f_p$


$\mathbf {d}(t) = \begin {bmatrix} 1 & 1 & 1 & 1\end {bmatrix}^T$


$\mathcal {D}_s(t) = \mathcal {F}_{c_7}$


$T_{f_\psi }=200$


$T_{f_p}=500$


\begin {align}\label {eq:fault1} f_\psi &=\mathfrak {u}(t-T_{f_\psi })(\mathfrak {a}_{f_\psi }+(1-e^{-(t-T_{f_\psi })}))\\ f_p&=\mathfrak {u}(t-T_{f_p})(\mathfrak {a}_{f_p}+\text {sin} (0.45t)),\end {align}


$\mathfrak {u}(t)$


$\mathfrak {a}_{f_\psi }$


$\mathfrak {a}_{f_p}$


$1-2$


$j^{th}$


$\mathcal {M}^{(I)}$


$\mathcal {M}^{(I,j)}$


$\mathcal {M}^{(1,2)}$


$\mathcal {M}^{(2,1)}$


$\mathcal {M}^{(1,1)}$


$T_{D}^{(1,1)}=500.1$


$T_{D}^{(1,2)}=200$


$T_{D}^{(2,1)}=200.1$


$t<200$


$\mathbf {d}(t)$


$200\leq t < 500$


$\mathbf {d}(t)=\begin {bmatrix} 0&1&1&0 \end {bmatrix}^T$


$t \geq 500$


$\mathbf {d}(t)=\begin {bmatrix}1&1&1&0\end {bmatrix}$


$\mathbf {d}(t)$


$\mathcal {F}_{c_q}$


$\mathcal {D}_s(t)=\{\mathcal {F}_{c_2},\mathcal {F}_{c_4}\} = \{\{f_{\psi }\}, \{f_{p}, f_{\psi } \}\}$


$\tau _d=\tau _w$


$\mathcal {F}_{c_1}=\{f_{p}\}$


$\mathcal {F}_{c_2}=\{f_{\nu }\}$


$\mathcal {F}_{c_3}=\{f_{\chi }\}$


$\mathcal {F}_{c_4}=\{f_{p},f_{\nu }\}$


$\mathcal {F}_{c_5}=\{f_{p},f_{\chi }\}$


$\mathcal {F}_{c_6}=\{f_{\nu },f_{\chi }\}$


$\mathcal {F}_{c_7}=\{f_{p},f_{\nu },f_{\chi }\}$


$\mathcal {A}$


$K_1 = \text {diag}(\begin {bmatrix}10 & 10\end {bmatrix})$


$K_4= \text {diag}(\begin {bmatrix}10 & 5 & 5\end {bmatrix})$


$K_6= \text {diag}(\begin {bmatrix}2 & 10 \end {bmatrix})$


$310$


$T_{f_{\nu }}=150$


\begin {equation}\label {eq:fault2} \begin {aligned} f_\nu (t) = 0 & \text {if } t<T_{f_{\nu }} \\ \nu (T_{f_{\nu }})-\nu (t) & \text {if } t \geq T_{f_{\nu }} . \end {aligned}\end {equation}


$\mathcal {E}^{(2,2)}_{y_z}$


$T_{D}^{(2,2)} = 163$


$\mathbf {d}(t)= \begin {bmatrix}0 & 1 & 0\end {bmatrix}^T$


$\mathcal {D}_s(t)= \{\mathcal {F}_{c_2}, \mathcal {F}_{c_6}\} = \{\{f_{\nu }\}, \{f_{\nu }, f_{\chi }\}\}$


$f_{\chi }$


$x_pz_p$


$y_pz_p$


\begin {equation}\label {eq_windforce} \tau _w= \begin {bmatrix}X_W \\ Y_W \\ N_W \end {bmatrix} = \frac {1}{2}P_aV_{r}^2 \begin {bmatrix} -c_x \text {cos}(\gamma _{r})A_{F}\\ c_y \text {sin}(\gamma _{r})A_{L}\\ c_n \text {sin}(2\gamma _{r})A_{L}L_{oa} \end {bmatrix},\end {equation}


\begin {equation}\begin {aligned} V_{r}&=\sqrt {u_{r}^2+v_{r}^2}\\ \gamma _{r}&=-\text {atan2}(v_{r},u_{r}). \end {aligned} \label {Xeqn50}\end {equation}


$P_a$


$V_{r}$


$\gamma _{r}$


$c_x,c_y$


$c_n$


$A_{F}, A_{L}$


$L_{\text {oa}}$


$u_{r}$


$v_{r}$


$V_{r}$


$x_p$


$y_p$


\begin {equation}\begin {aligned} u_{r} &= u-V \text {cos}(\beta _{V}-\psi )\\ v_{r} &= v-V \text {sin}(\beta _{V}-\psi ). \end {aligned} \label {Xeqn51}\end {equation}


$V\in \mathbb {R}$


$\beta _{V} \in \mathbb {R}$


$c_x, c_y,$


$c_n$


$\tau _H = \begin {bmatrix}X_H& Y_H& N_H \end {bmatrix}^T$


$\tau _d$


\begin {equation}\begin {aligned} X_{H}& = 0.5\rho L_{\text {oa}}TU^{2}X'_{H} \\ Y_{H}& = 0.5\rho L_{\text {oa}}TU^{2}Y'_{H} \\ N_{H}& = 0.5\rho L_{\text {oa}}^{2}TU^{2}N'_{H}, \\ \end {aligned} \label {Xeqn52}\end {equation}


$\rho $


$U$


$T$


$X'_{H}$


$Y'_{H}$


$N'_{H}$


\begin {equation}\begin {aligned} X'_{H} =& - R_{0}'\cos ^{2}\beta _{m} + X'_{\beta \beta }\beta _{m}^{2} + X'_{\beta r}\beta _{m}r' + X'_{rr}{r'^{2}} \\& + X'_{\beta \beta \beta \beta }\beta _{m}^{4} \\ Y'_{H} =& Y'_{\beta }\beta _{m} + Y'_{r}r' + Y'_{\beta \beta \beta }\beta _{m}^{3} + Y'_{\beta \beta r}\beta _{m}^{2}r' + Y'_{\beta rr}\beta _{m}{r'^{2}} \\& + Y'_{rrr}{r'^{3}} \\ N'_{H} = & N'_{\beta }\beta _{m} + N'_{r}r' + N'_{\beta \beta \beta }\beta _{m}^{3}+ N'_{\beta \beta r}\beta _{m}^{2}r' + N'_{\beta rr}\beta _{m}{r'^{2}} \\ & + N'_{rrr}{r'^{3}}, \\ \end {aligned} \label {Xeqn53}\end {equation}


$X'_{\beta \beta }, X'_{\beta r}, \ldots , N'_{rrr}$


$\beta _{m}$


$r'$


$rL_{\text {oa}}/U$


$R'_{0}$


\begin {equation}\begin {aligned} R'_{0} &= \frac {R_{\text {Sh}}}{\left ( 0.5 \rho L_{\text {oa}} T U^{2} \right )} \\ R_{\text {Sh}} &= 0.5\rho S_{W}U^{2}\left ( C_{F}\ \left ( 1 +\left ( k + \bar {k} \right ) \right ) + C_{W} \right ), \\ \end {aligned} \label {Xeqn54}\end {equation}


$S_W$


$C_F$


$C_W$


$k$


$\bar {k}$


$\mathcal {M}^{(1)}$


$|\varepsilon _{z H}^{(1)}|$


\begin {equation}\label {eq:errorbound1} \begin {aligned} |\varepsilon _{z H}^{(1)}|\leq & \begin {bmatrix} |e^{-K_1t}| & \mathbf {0} \cr \mathbf {0} & |e^{-K_2t}| \end {bmatrix}\begin {bmatrix} |\varepsilon _{z H}^{(1,1)}(0)|\\ |\varepsilon _{z H}^{(1,2)}(0)| \\ |\varepsilon _{z H}^{(1,3)}(0)| \end {bmatrix} \\ & + \int _{0}^{t} \biggl ( \begin {bmatrix} | e^{-K_1(t-\mathfrak {t})}| & \mathbf {0} \cr \mathbf {0} & | e^{-K_2(t-\mathfrak {t})}| \end {bmatrix} \left [\begin {matrix} |\tilde {\gamma }_{1H}^{(1)}(\mathfrak {t})| \\ |\tilde {\gamma }_{2H}^{(1)}(\mathfrak {t})|+ |\Delta (\eta , \nu )|+ \end {matrix}\right .\\ & \left .\begin {matrix} \\|-K_2R^{T}(\hat {\psi }^{(1)}_H (\mathfrak {t}))n_\eta |+|-K_2(R^T(\hat {\psi }^{(1)}_H (\mathfrak {t}))\eta (\mathfrak {t})-\nu (\mathfrak {t}))| \end {matrix}\right ] \\ & + \begin {bmatrix} |-K_1 e^{-K_1(t-\mathfrak {t})}| & \mathbf {0} \cr \mathbf {0} & |-K_2 e^{-K_2(t-\mathfrak {t})}| \end {bmatrix} \begin {bmatrix} |n_\eta | \\ \mathbf {0} \end {bmatrix} \biggr ) d \mathfrak {t}. \end {aligned}\end {equation}


$\begin {bmatrix}|\varepsilon _{z H}^{(1,1)}(0)|\\ |\varepsilon _{z H}^{(1,2)}(0)| & |\varepsilon _{z H}^{(1,3)}(0)| \end {bmatrix}^T$


$\begin {bmatrix} \bar {p}^{(1)} & \bar {\psi }^{(1)} & \bar {\nu }^{(1)} \end {bmatrix}^T=\bar {z}^{(1)T},$


$\begin {bmatrix} |e^{-K_1t}|& \mathbf {0}\cr \mathbf {0} & |e^{-K_2t}| \end {bmatrix} \leq \rho ^{(1)}e^{-\xi ^{(1)}t} = \Phi ^{(1)}(t),$


$\begin {bmatrix} |-K_1e^{-K_1t}| & \mathbf {0} \cr \mathbf {0} & |-K_2e^{-K_2t}| \end {bmatrix} \leq \rho _d^{(1)}e^{-\xi _d^{(1)}t} ,$


$|n_\eta |\leq \begin {bmatrix} \bar {n}_z^{(1,1)} & \bar {n}_z^{(1,2)}\end {bmatrix}^T,$


$|\tilde {\gamma }^{(1)}_{1H}| = \\ |R(\psi )\nu -R(\hat {\psi }_H^{(1)})\hat {\nu }_H^{(1)}|\leq \lambda _{\gamma _1^{(1)}} \begin {bmatrix}|\varepsilon _{z H}^{(1,1)}|&|\varepsilon _{z H}^{(1,2)}|\end {bmatrix}^T,$


$|\tilde {\gamma }^{(1)}_{2H}|=|f(\nu ,\tau )-f(\hat {\nu }_H^{(1)},\tau )| \leq \lambda _{\gamma _2^{(1)}}|\varepsilon _{z H}^{(1,3)}|,\\ |\Delta (\eta , \nu )| = \tilde {\tau }_d \leq \bar {\tilde {\tau }}_d,$


$|-K_2R^T(\hat {\psi }^{(1)}_H)n_\eta |\leq \begin {bmatrix} k_{21}(\bar {n}_{z_1}^{(1,1)}+\bar {n}_{z_2}^{(1,1)})\\ k_{22}(\bar {n}_{z_1}^{(1,1)}+\bar {n}_{z_2}^{(1,1)})\\ k_{23}(\bar {n}_{z}^{(1,2)}) \end {bmatrix}=\bar {\tilde {n}}_\eta ,$


$|-K_2(R^T(\hat {\psi }^{(1)}_H)\eta -\nu )| \leq (\tilde {\eta }-\tilde {\nu }),$


$|-K_2 R^{T}(\hat {\psi }_H)\eta |\leq $


$\begin {bmatrix} k_{21}(\bar {x}_p+\bar {y}_p)& k_{22}(\bar {x}_p+\bar {y}_p) & k_{23}(\bar {\psi })\end {bmatrix}^T= \tilde {\eta },$


$|K_2\nu | \in \big [\tilde {\nu }, \tilde {\nu }\big ],$


$\eta \in \big [\underline {\eta }, \bar {\eta }\big ] \in \big [\begin {bmatrix} \underline {x} & \underline {y} & \underline {\psi } \end {bmatrix}^T, \begin {bmatrix} \bar {x} & \bar {y} & \bar {\psi } \end {bmatrix}^T \big ],$


$\lambda _{\gamma _1^{(1)}}, \lambda _{\gamma _2^{(1)}}$


$\varepsilon ^{(1)}_{zH}$


\begin {equation}\label {eq:stateestbound1} \begin {aligned} |\varepsilon ^{(1)}_{zH}| \leq & \Phi ^{(1)}(t)\begin {bmatrix} \bar {p}^{(1)} \\ \bar {\psi }^{(1)}\\ \bar {\nu }^{(1)} \end {bmatrix} + \int _{0}^{t} \Biggl ( \rho _d^{(1)} e^{-\xi _d^{(1)}(t-\mathfrak {t})} \begin {bmatrix}\bar {n}_z^{(1,1)}\\ \bar {n}_z^{(1,2)}\\ \mathbf {0} \end {bmatrix}\\ &+ \Phi ^{(1)}(t-\mathfrak {t}) \begin {bmatrix}\lambda _{\gamma _1^{(1)}} |\varepsilon ^{(1,1)}_{z H}(\mathfrak {t}) |\\ \lambda _{\gamma _1^{(1)}} |\varepsilon ^{(1,2)}_{z H}(\mathfrak {t}) |\\ \lambda _{\gamma _2^{(1)}} |\varepsilon ^{(1,3)}_{z H}(\mathfrak {t}) |+\bar {\tilde {\tau }}_d+ \bar {\tilde {n}}_\eta +(\tilde {\eta }-\tilde {\nu })\end {bmatrix} \Biggr ) d \mathfrak {t}. \end {aligned}\end {equation}


$j-$


$(j \in \{1,2\})$


$\mathcal {S}^{(1)}$


\begin {equation}\label {eq:athres1} \begin {aligned} \bar {\varepsilon }_{y_z}^{(1,j)}(t)=&E^{(1,j)}(t)+\rho ^{(1,j)}\Lambda _1 \int _{0}^{t} Z^{(1,j)}(\mathfrak {t})e^{-\xi ^{(1,j)}(t-\mathfrak {t})} d\mathfrak {t} \\ & +\bar {n}_{z}^{(1,j)}, \end {aligned}\end {equation}


\begin {equation}\label {eq:athres11} \begin {aligned} &E^{(1)}(t)=\rho ^{(1)} e^{-\xi ^{(1)}t} \bar {z}^{(1)}+\frac {\rho _{d}^{(1)}\bar {n}_z^{(1)}}{\xi ^{(1)}_{d}} (1-e^{-\xi _{d}^{(1)}t}) \\ &\qquad \quad +\int _{0}^{t} \rho ^{(1)} e^{-\xi ^{(1)}(t-\mathfrak {t})}\begin {bmatrix} \mathbf {0} \cr \bar {\tilde {\tau }}_d+ \bar {\tilde {n}}_\eta +(\tilde {\eta }-\tilde {\nu }) \end {bmatrix} d\mathfrak {t}\\ &Z^{(1)} (t) = E^{(1)}(t)+\rho ^{(1)}\Lambda _1\int _{0}^{t} E^{(1)}(\mathfrak {t})e^{(\rho ^{(1)} \Lambda _1-\xi ^{(1)})(t-\mathfrak {t})}d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(2)}$


$|\varepsilon ^{(2)}_{zH}|$


\begin {equation}\label {eq:stateestbound2} \begin {aligned} |\varepsilon ^{(2)}_{zH}|\leq & \Phi ^{(2)}(t)\begin {bmatrix} \bar {\psi }^{(2)} \\ \bar {\nu }^{(2)} \end {bmatrix} +\int _{0}^{t} \biggl ( \Phi ^{(2)}(t-\mathfrak {t}) \\ & \begin {bmatrix} \lambda _{\gamma _1^{(2)}}|\varepsilon ^{(2,1)}_{z H}(\mathfrak {t})| \\ \lambda _{\gamma _2^{(2)}}|\varepsilon ^{(2,2)}_{z H}(\mathfrak {t})|+\bar {\tilde {\tau }}_d \end {bmatrix} +\rho _d^{(2)} e^{-\xi _d^{(2)}(t-\mathfrak {t})} \begin {bmatrix} \bar {n}_z^{(2,1)} \\ \bar {n}_z^{(2,2 )} \end {bmatrix} \biggr ) d \mathfrak {t} , \end {aligned}\end {equation}


$\begin {bmatrix}|\varepsilon ^{(2,1)}_{zH} (0)| & |\varepsilon ^{(2,2)}_{zH} (0)| \end {bmatrix}^T=\begin {bmatrix} \bar {\psi }^{(2)} & \bar {\nu }^{(2)} \end {bmatrix}^T = \bar {z}^{(2)T} ,$


$\begin {bmatrix} |e^{-k_3t}| & \mathbf {0} \cr \mathbf {0} & |e^{-K_4t}|\end {bmatrix} \leq \rho ^{(2)}e^{-\xi ^{(2)}t}=\Phi ^{(2)}(t),$


$\begin {bmatrix} |-k_3e^{-k_3t}| & \mathbf {0} \cr \mathbf {0} & |-K_4e^{-K_4t}| \end {bmatrix} \leq \rho _d^{(2)}e^{-\xi _d^{(2)}t} ,$


$\begin {bmatrix} |n_z^{(2,1)}|& |n_z^{(2,2)}| \end {bmatrix}^T \leq \begin {bmatrix} \bar {n}_z^{(2,1)} &\bar {n}_z^{(2,2)} \end {bmatrix}^T,$


$|r-\hat {r}^{(2)}_H| =|\tilde {\gamma }^{(2)}_{1H}| \leq \lambda _{\gamma _1^{(2)}} |\varepsilon _{z H}^{(2,1)}|, |f(\nu ,\tau )-f(\hat {\nu }_H^{(2)},\tau )|= |\tilde {\gamma }^{(2)}_{2H}|\leq \lambda _{\gamma _2^{(2)}}|\varepsilon _{z H}^{(2,2)}|, |\Delta (\eta , \nu )| = \tilde {\tau }_d \leq \bar {\tilde {\tau }}_d ,$


$\lambda _{\gamma _1^{(2)}}$


$\lambda _{\gamma _2^{(2)}}$


$\rho ^{(I,j)},$


$\xi ^{(I,j)},$


$\rho _{d}^{(I,j)},$


$\xi _{d}^{(I,j)}$


$|e^{-K_p t}|\leq \rho ^{(I)}e^{-\xi ^{(I)}t}$


$\xi ^{(I)}>\Lambda _I \rho ^{(I)},$


$p \in \{1,\dots ,4\}$


$\Lambda _1= \lambda _{\gamma _1^{(1)}},$


$\Lambda _2=\begin {bmatrix} \lambda _{\gamma _1^{(2)}} & \mathbf {0} \cr \mathbf {0} & \lambda _{\gamma _2^{(2)}}+\lambda _{\bar {\tilde {\tau }}_{d}} \end {bmatrix}$


$\mathcal {S}^{(2)}$


$j-$


$(j \in \{1,2\})$


\begin {equation}\label {eq:athres2} \begin {aligned} \bar {\varepsilon }_{y_z}^{(2,j)}(t)=&E^{(2,j)}(t)+\rho ^{(2,j)}\Lambda _2^{(j)} \int _{0}^{t} Z^{(2,j)}(\mathfrak {t})e^{-\xi ^{(2,j)}(t-\mathfrak {t})} d\mathfrak {t} \\ & +\bar {n}_{z}^{(2,j)}, \end {aligned}\end {equation}


\begin {equation}\label {eq:athres21} \begin {aligned} &E^{(2)}(t)=\rho ^{(2)} e^{-\xi ^{(2)}t} \bar {z}^{(2)}+\frac {\rho _{d}^{(2)}\bar {n}_z^{(2)}}{\xi ^{(2)}_{d}} (1-e^{-\xi _{d}^{(2)}t}) \\ &\qquad \quad +\int _{0}^{t} \rho ^{(2)} e^{-\xi ^{(2)}(t-\mathfrak {t})}\begin {bmatrix} 0 \\ \bar {\tilde {\tau }}_d \end {bmatrix} d\mathfrak {t} \\ &Z^{(2)} (t) = E^{(2)}(t)+\rho ^{(2)}\Lambda _2 \int _{0}^{t} E^{(2)}(\mathfrak {t})e^{(\rho ^{(2)} \Lambda _2-\xi ^{(2)})(t-\mathfrak {t})}d\mathfrak {t}. \end {aligned}\end {equation}


$\mathcal {M}^{(3)}$


${\varepsilon }_{z H}^{(3,1)}$


\begin {equation}\begin {aligned} |\varepsilon _{z H}^{(3,1)}| \leq & \Phi ^{(3,1)}(t)\bar {\psi }^{(3,1)} \\ & +\int _{0}^{t} \left ( \Phi ^{(3,1)}(t-\mathfrak {t}) \Lambda _\gamma ^{(3,1)} + \rho _d^{(3,1)}e^{-\xi _d^{(3,1)}(t-\mathfrak {t})}\bar {n}_z^{(3,1)} \right )d\mathfrak {t}, \end {aligned} \label {Xeqn62}\end {equation}


$|\varepsilon _{z H}^{(3,1)}(0)| = \bar {\psi }^{(3,1)} = \bar {z}^{(3,1)}$


$|e^{-k_5t}|\leq \rho ^{(3,1)}e^{-\xi ^{(3,1)}t} = \Phi ^{(3,1)}(t)$


$|-k_5e^{-k_5t}|\leq \rho _d^{(3,1)}e^{-\xi _d^{(3,1)}t}$


$\Lambda _\gamma ^{(3,1)} = \lambda _{\gamma _1^{(3)}}+|\frac {1}{a_2}|\lambda _{\gamma _3^{(3)}}+\frac {|a_1|}{|a_2|}\lambda _{\gamma _2^{(3)}}-\frac {|b_1||b_2|}{|a_2|}\bar {\bar {\delta }}_p-\frac {|b_1|}{|a_2|}\bar {\delta }_p-\frac {|b_3||b_4|}{|a_2|}\bar {\bar {\delta }}_s-\frac {|b_3|}{|a_2|}\bar {\delta }_s$


$|n_z^{(3,1)}| \leq \bar {n}_z^{(3,1)}$


$\lambda _{\gamma _1^{(3)}}, \lambda _{\gamma _2^{(3)}},$


$\lambda _{\gamma _3^{(3)}}$


$\psi $


$r$


$\dot {r}$


$(\bar {\delta }_p, \bar {\delta }_s)$


$(\bar {\bar {\delta }}_p, \bar {\bar {\delta }}_s)$


\begin {equation}\label {eq:athres3} \begin {aligned} &\bar {\varepsilon }_{y_z}^{(3,1)}(t)= \rho ^{(3,1)}e^{-\xi ^{(3,1)}t} \bar {z}^{(3,1)} + \rho ^{(3,1)}\Lambda _\gamma ^{(3,1)} \\ &\int _{0}^{t} e^{-\xi ^{(3,1)}(t-\mathfrak {t})} d\mathfrak {t} - \frac {\rho _d^{(3,1)} \bar {n}_{z}^{(3,1)}}{\xi _d^{(3,1)}}(1-e^{-\xi _d^{(3,1)} t})+\bar {n}_{z}^{(3,1)}. \end {aligned}\end {equation}


$\mathcal {M}^{(4)}$


$|\varepsilon _{z H}^{(4,1)}|$


\begin {equation}\label {eq:error4} \begin {aligned} |\varepsilon _{z H}^{(4,1)}| \leq & \Phi ^{(4,1)}(t)\bar {p}^{(4,1)} \\ & +\int _{0}^{t} \left ( \Phi ^{(4,1)}(t-\mathfrak {t}) \Lambda _\gamma ^{(4,1)} - \rho _d^{(4,1)}e^{-\xi _d^{(4,1)}(t-\mathfrak {t})}\bar {n}_z^{(4,1)} \right )d\mathfrak {t}, \end {aligned}\end {equation}


$|\varepsilon _{z H}^{(4,1)}(0)| = \bar {p}^{(4,1)} = \bar {z}^{(4,1)}$


$|e^{-K_6t}|\leq \rho ^{(4,1)}e^{-\xi ^{(4,1)}t} = \Phi ^{(4,1)}(t)$


$|-K_6e^{-K_6t}|\leq \rho _d^{(4,1)}e^{-\xi _d^{(4,1)}t}$


$\Lambda _\gamma ^{(4,1)}=\begin {bmatrix} 2(\bar {u}+\bar {v})+ \bar {n}_u+ \bar {n}_v\\ 2(\bar {u}+\bar {v})+ \bar {n}_u+ \bar {n}_v \end {bmatrix}$


$z^{(4,2)}\leq \begin {bmatrix} \bar {u} & \bar {v} & \bar {r} \end {bmatrix}^T$


$\bar {n}_z^{(4,2)}=\begin {bmatrix} \bar {n}_u & \bar {n}_v & \bar {n}_r \end {bmatrix}^T$


$|n_z^{(4,1)}| \leq \bar {n}_z^{(4,1)}$


\begin {equation}\label {eq:athres4} \begin {aligned} &\bar {\varepsilon }_{y_z}^{(4,1)}(t)= \rho ^{(4,1)}e^{-\xi ^{(4,1)}t} \bar {z}^{(4,1)} + \rho ^{(4,1)}\Lambda _\gamma ^{(4,1)} \\ &\int _{0}^{t} e^{-\xi ^{(4,1)}(t-\mathfrak {t})} d\mathfrak {t} - \frac {\rho _d^{(4,1)} \bar {n}_{z}^{(4,1)}}{\xi _d^{(4,1)}}(1-e^{-\xi _d^{(4,1)} t})+\bar {n}_{z}^{(4,1)}. \end {aligned}\end {equation}
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degrades due to obstacles such as buildings, bridges, or mountains that 
hinder satellite connectivity, but there is no physical breakdown. GNSS 
multipath effects can also introduce bias and significantly reduce mea-
surement accuracy (Zidan et al., 2021). Various methods have been pro-
posed in the literature to mitigate these issues; see, for example, Closas 
et al. (2009), Groves (2011). Additionally, signal spoofing and jamming, 
which are categorised as cyberattacks, pose serious safety risks. For ex-
ample, a malicious agent might intercept and manipulate GNSS data, 
jeopardising the system’s nominal operation. On the other hand, per-
manent faults may result from physical issues such as short circuits in 
sensor circuitry, Ethernet failure, or sensor wear and tear.

Current literature on fault diagnosis of marine navigation systems 
primarily employs model-based fault detection and isolation (FDI) 
schemes, which involve designing observers to generate residual signals 
indicative of potential faults. Many of these works propose approaches 
for diagnosing faults impacting the actuators; see, for example, Bene-
tazzo et al. (2015), Bhagavathi et al. (2023), Cristofaro and Johansen 
(2014), Lin et al. (2018), Park and Yoo (2016), Song and He (2023), 
Tsolakis et al. (2024), Wang et al. (2020), Zhou et al. (2019). Wang 
et al. (2020) proposed an online fault estimator for ASVs affected by 
unknown faults and disturbances. The estimator can achieve finite-time 
tracking error convergence in the presence of actuator bias and partial 
loss of effectiveness faults. Park and Yoo (2016) proposed a robust fault 
detection observer and an adaptive fault accommodation scheme for sat-
urated actuator faults affecting underactuated surface vessels. Cristofaro 
and Johansen (2014) presented an actuator and effector FDI and control 
reconfiguration scheme for overactuated systems by using unknown in-
put observers. The proposed scheme is further verified by a case study 
on an overactuated vessel. In Tsolakis et al. (2024), an active isolation 
approach is proposed for an overactuated vessel with thruster faults, 
which can integrate with a traffic rule-compliant trajectory optimisa-
tion algorithm. Bhagavathi et al. (2023) proposed a digital twin-driven 
scheme for detecting and estimating faults in the vessel’s propellers us-
ing an adaptive extended Kalman filter. Zhou et al. (2019) proposed an 
actuator fault diagnosis observer and a fault-tolerant controller for ASVs 
in a network environment with delays, packet dropouts and packet dis-
ordering. In Benetazzo et al. (2015), Lin et al. (2018), the problem of 
thruster fault diagnosis for the dynamic positioning (DP) of vessels is 
addressed following the parity space and observer-based approaches.

In addition to actuator fault diagnosis, addressing the sensor FDI 
problem is equally crucial, given the extensive number of sensors re-
quired for perception, situational awareness and state estimation. Fur-
thermore, the harsh marine environment, characterised by conditions 
such as salt spray and high moisture levels, can accelerate sensor degra-
dation (Liu et al., 2016). Some sensor FDI approaches, including those 
proposed by Blanke (2006), Rogne et al. (2014, 2015), and Asfihani 
et al. (2024), rely on simple kinematic models. Blanke (2006) proposed 
a structural analysis method that uses analytical redundancy relations 
(ARRs) to diagnose sensor faults and provide fault tolerance via sensor 
data fusion. Rogne et al. (2014, 2015) presented a sensor FDI scheme 
that relies on multiple nonlinear observers for vessels performing DP 
tasks. However, the aforementioned schemes do not account for the im-
pact of external disturbances acting on the vessel. These factors can have 
a significant impact on diagnosis performance, leading to false alarms. 
Asfihani et al. (2024) proposed an adaptive Kalman filter-based method 
for sensor fault detection and estimation. The fault estimation, however, 
fails in some cases when the states linked to the sensor fault are not per-
sistently excited.

On the other hand, sensor FDI schemes employing detailed dynam-
ical models of the vessel have also been proposed (Wang et al., 2024; 
Zhang et al., 2021a,b). Zhang et al. (2021a) proposed an adaptive parti-
cle filter to ensure the robust navigation of unmanned vessels affected by 
faults in the navigational sensors and the propeller. A switching-mode 
hidden Markov model is used to describe the vessel model affected by 
possible fault modes. However, this approach lacks a theoretical ver-
ification of the estimation and diagnosis performance. In Zhang et al. 

(2021b), a nonlinear observer is proposed for sensor fault estimation in 
conjunction with a fault-tolerant model reference reinforcement learn-
ing control method that ensures stable tracking for ASVs affected by 
a sensor fault. A limitation of the proposed scheme is that it assumes 
the occurrence of a single fault. In Wang et al. (2024), an active fault-
tolerant control scheme for ASVs is proposed for simultaneous sensor 
and actuator faults. The proposed method utilises a modified extended 
state observer and an adaptive output feedback control strategy, focus-
ing on position-heading sensor faults. However, faults are modelled as 
a multiplicative factor with known bounds, limiting their scope of ap-
plication.

External disturbances, such as winds, waves, and currents, can 
greatly impact vessel navigation, and their effects can lead to erroneous 
diagnostic results if not considered. In ports and inland waterways, wind 
forces are among the dominant external forces (Kepaptsoglou et al., 
2015). Likewise, the vessel’s motion and manoeuvrability are highly sen-
sitive to water depth, which can vary in inland waterways and canals 
(Dhyani et al., 2025; Liu et al., 2015). Depth limitations impact the ves-
sel’s behaviour in various ways: they are perceptible in medium-deep 
water, highly significant in shallow water, and dominant in extremely 
shallow water (Vantorre et al., 2017). These factors, however, are ne-
glected in existing model-based fault diagnosis schemes. Another key 
aspect that varies across vessels is the configuration of actuators and 
onboard sensors, which determines the dynamical model employed for 
residual generation in model-based FDI schemes.

In Dhyani et al. (2024a), the authors addressed these limitations by 
proposing a multiple-sensor FDI scheme for ASVs’ navigational sensors. 
In the current article, the scheme is further extended, with the following 
key modifications:

1. Additional residuals are proposed for improved fault detectability, 
specifically, the residuals in the monitoring modules 3 and 4.

2. Through sensitivity analysis, the weak sensitivities of the faults to the 
residuals are identified. Consequently, an updated Fault Signature 
Matrix (FSM) is designed for improved fault isolability.

Overall, the main contributions of this work can be summarised as 
follows:

1. The design of the multiple-sensor FDI scheme for ASVs, as detailed in 
Section 3. While the FDI scheme in Dhyani et al. (2024a) focused on 
multiple residual generation based on the vessel’s nonlinear dynam-
ics, this work further extends the bank of residuals to enable fault 
diagnosis for a broad range of vessel characteristics. This is achieved 
by designing the residuals based on varying modelling complexity of 
the ASV, including a kinematic constraints model and a 3-degrees-of-
freedom (DOF) hydrodynamic model (Section 2.1). Existing research 
on sensor FDI for ASVs based on detailed kinetic models is limited.

2. Adaptive thresholds are derived for bounding the generated residu-
als (Appendix B). Unlike fault detection schemes based on a constant 
threshold, adaptive thresholds are robust against noise and external 
disturbances affecting a vessel, ensuring that no false alarms occur. 
The influence of external disturbances, such as wind forces, shallow-
water effects, and sensor noise, is also considered in the vessel mod-
elling, as well as in the computation of the adaptive thresholds to 
improve sensor fault detectability (Appendix A). To the best of the 
authors’ knowledge, these disturbances are not considered in the cur-
rent FDI literature.

3. A fault signature matrix (FSM) is formulated by employing a combi-
natorial logic which is supported by model-based sensitivity analysis 
(Sections 3.3, 3.4). The resulting decision logic enables the isolation 
of multiple sensor faults.

The rest of the paper is structured as follows: In Section 2, the mod-
elling of the vessel’s maneuvering dynamics is presented. In Section 3, 
the design of the proposed sensor FDI scheme is detailed. In Section 4, 
the proposed scheme is verified through simulation studies involving 
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two vessel types: a pusher-barge inland vessel model with a propeller-
rudder configuration and a catamaran-type ferry equipped with azimuth 
thrusters. Sensor FDI for these two vessels, which have different avail-
able models, sensors, and actuator configurations, is performed by util-
ising an appropriate selection of residuals. Finally, the conclusions and 
future research directions are reported in Section 5 of the paper. For the 
sake of notational convenience, the time variable 𝑡 is omitted from all 
equations in this work, unless necessary, to avoid ambiguity. Further, 
all observer gains are assumed to be strictly positive/positive-definite 
to ensure convergence of the estimation errors.

2. Modelling for sensor fault diagnosis

Vessels are typically equipped with multiple redundant sensors for 
localisation and state estimation, complemented by processing meth-
ods to derive specific vessel states. Table 1 summarises the commonly 
used sensors for vessel navigation, with the respective data processing 
methods and the obtained parameters. A GNSS sensor determines the 
vessel’s position 𝑝 = [

𝑥𝑝 𝑦𝑝
]𝑇 , whereas the IMU, typically comprising 

an accelerometer, gyroscope/rate sensor, etc., provides the velocities 
(𝜈 ∈ ℝ3). A gyrocompass measures the vessel’s heading angle (𝜓), and 
may be complemented by a magnetic compass. In some smaller vessels, 
a gyrocompass is replaced by a dual-antenna GNSS setup, as it allows 
for a sufficiently accurate heading angle estimation at a cheaper cost 
(Gade, 2016). The aforementioned parameters are obtained from the 
raw sensor outputs using sensor fusion and estimation methods, such 
as Kalman filtering, which form part of navigation devices like an in-
ertial navigation system (INS) or the attitude heading reference system 
(AHRS). Further, a Doppler velocity log (DVL) and a speed log (or elec-
tromagnetic log) measure the vessel’s speed through water (or ground) 
by utilising the Doppler effect and electromagnetic induction princi-
ples, respectively. The automatic identification system (AIS) integrates 
a GNSS antenna and provides the vessel’s position, speed and course in-
formation, in addition to its other functions. GNSS-IMU sensor systems 
are ideal for vessel localisation due to their small size, low cost, and low 
energy consumption (Liu et al., 2016).

The sensor’s outputs can be described by

𝑆pos ∶ 𝑦pos = 𝑝 + 𝑛𝑝 + 𝑓𝑝
𝑆𝜓 ∶ 𝑦𝜓 = 𝜓 + 𝑛𝜓 + 𝑓𝜓
𝑆𝜈 ∶ 𝑦𝜈 = 𝜈 + 𝑛𝜈 + 𝑓𝜈
𝑆𝜒 ∶ 𝑦𝜒 = 𝜒 + 𝑛𝜒 + 𝑓𝜒 ,

(1)

where, 𝑦pos ∈ ℝ2, 𝑦𝜓 ∈ ℝ, 𝑦𝜈 ∈ ℝ3 and 𝑦𝜒 ∈ ℝ correspond to the position 
𝑝, heading angle 𝜓 , velocities 𝜈, and the course angle 𝜒 , respectively. 
The vectors 𝑛 and 𝑓 represent the noise and fault(s) affecting these mea-
surements.

In this work, permanent, persistent faults are considered. A sensor 
fault 𝑓𝑧 occurring at a time instant 𝑇𝑓𝑧  is modelled according to Reppa 
et al. (2016). Furthermore, the characteristics of a fault, defined by the 
fault function, the time of occurrence, and the evolution rate, are all 
treated as unknown in the design of the proposed scheme.

The objective of this work is to design a multiple-sensor FDI scheme 
for ASVs, accounting for the impact of external disturbances, sensor 
noise, and variations in sensor and actuator configurations.

2.1. Vessel maneuvering models

Vessel manoeuvring models can vary significantly in terms of com-
plexity for a specific application. The availability of an accurate ma-
noeuvring model with hydrodynamic characteristics is the foundation 
for model-based FDI. This section explores various models that can be 
used for generating residuals for FDI using the available sensor measure-
ments and actuator/thrust information.

Fig. 1. The coordinate system of an ASV with the North-East-Down reference 
frame (𝑜0 − NED) and the body-fixed reference frame (𝑜 − 𝑥𝑏𝑦𝑏𝑧𝑏) (the 𝐷- and 
𝑧𝑏-axes are not shown). (𝑥𝑝, 𝑦𝑝) are the coordinates of the vessel’s position in the 
𝑜0 frame. 𝑢, 𝑣 and 𝜓 are the surge and sway velocities and the heading angle, 
respectively.

2.1.1. Kinematic model
A vessel in motion satisfies kinematic constraints, which can provide 

information about the vessel’s position and its heading, and have ap-
plications in target tracking (Tahk & Speyer, 1990) and path-following 
Fossen (2022). The kinematic constraints describe the relation of the 
vessel’s velocities in the NED frame with its heading angle by
𝑥̇𝑝 = 𝑢cos(𝜓) − 𝑣sin(𝜓)

𝑦̇𝑝 = 𝑢sin(𝜓) + 𝑣cos(𝜓).
(2)

In the amplitude-phase form, the above equations can be expressed as
𝑥̇𝑝 = 𝑈cos(𝜓 + 𝛽𝑐 )

𝑦̇𝑝 = 𝑈sin(𝜓 + 𝛽𝑐 ),
(3)

where 𝑈 =
√

𝑢2 + 𝑣2 is the speed in the horizontal plane and 𝛽𝑐 is the 
crab angle. The course angle 𝜒 can be determined by filtering the po-
sition measurements, such as by employing a Kalman filter (Fossen, 
2022), due to the relation

𝜒 = tan−1
( 𝑦̇𝑝
𝑥̇𝑝

)

. (4)

Similarly, the crab angle 𝛽𝑐 can be calculated using the surge and sway 
velocities as
𝛽𝑐 = tan−1

(𝑣
𝑢

)

. (5)

Finally, the heading angle can be expressed as
𝜓 = 𝜒 − 𝛽𝑐 . (6)

Remark 1.  It must be noted that the heading angle estimated using 
Equation (6) is accurate only for a moving vessel. This is because the 
horizontal crab angle formula (5) is numerically ill-conditioned for small 
values of surge and sway velocities. To address this issue, a numerically 
stable implementation is required, where crab angle calculations are 
discarded at low speeds.

2.1.2. 3-DOF maneuvering model
For many applications, the motion in a horizontal plane can be ap-

proximated by the following 3-DOF hydrodynamic model (see Fig. 1):
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Table 1 
Typically used sensors on vessels for localisation and state estimation, along with their corresponding measurements and the monitored parameters. These param-
eters are obtained post-processing using data processing methods as summarised below.
 Sensor Measured Parameter(s) Data Processing Methods Monitored Parameter(s) for Navigation
 GNSS Position (latitude, longitude, altitude) Kalman Filtering, Low-pass Filtering, 

Sensor Fusion (e.g. with IMU)
Position in NED frame (𝑥𝑝 , 𝑦𝑝)

 Dual-Antenna GNSS Heading Kalman Filtering, Sensor Fusion (e.g., 
with IMU)

Vessel heading (𝜓)

 IMU (accelerometer, gyroscope) Linear accelerations and angular rates Kalman Filtering, Sensor Fusion Velocities in body frame (𝑢, 𝑣, 𝑟)
 Gyrocompass Heading (true north reference) Low-pass Filtering Vessel heading (𝜓)
 Magnetic Compass Heading (magnetic north reference) Low-pass Filtering, Sensor Fusion (e.g. 

with gyrocompass)
Vessel heading (𝜓)

 Doppler Velocity Log (DVL) Velocity through water or over ground in 
surge, sway directions

Kalman Filtering, Sensor Fusion (e.g. with 
GNSS)

Translational velocities in body frame 
(𝑢, 𝑣)

 Speed Log Speed through water along the 
longitudinal axis (surge)

Low-pass Filtering, Sensor Fusion Surge velocity in body frame (𝑢)

 AIS (Automatic Identification System) Own vessel’s speed over ground (SOG), 
course over ground (COG) and position (if 
integrated with onboard GNSS)

Low-pass Filtering, Sensor Fusion Speed over ground (𝑈), course over 
ground (𝜒) and position in NED frame 
(𝑥𝑝 , 𝑦𝑝)

[

𝜂̇
𝜈̇

]

=
[

𝑅(𝜓)𝜈
𝑓 (𝜈, 𝜏)

]

+
[

𝟎
Δ(𝜂, 𝜈)

]

, (7)

where 𝜂 = [

𝑥𝑝 𝑦𝑝 𝜓
]𝑇  is the generalised coordinate vector in the 

North-East-Down (NED) frame, and 𝜈 = [

𝑢 𝑣 𝑟
]𝑇  is the generalised 

velocity vector in the body-fixed frame, with 𝑢, 𝑣 denoting the linear 
velocities in surge and sway, and 𝑟 denoting the angular velocity (yaw 
rate). The variable 𝜏 = [

𝜏𝑢 𝜏𝑣 𝜏𝑟
]𝑇  represents the controlled input 

force vector. The term 𝑅(𝜓) represents the rotation matrix, described as 

𝑅(𝜓) =
⎡

⎢

⎢

⎣

cos(𝜓) −sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

⎤

⎥

⎥

⎦

. (8)

Further, 𝑓 (𝜈, 𝜏),Δ(𝜂, 𝜈) ∈ ℝ3 comprise the known and unknown nonlin-
ear terms, respectively, described in two ways:

• In the Abkowitz model (Abkowitz, 1980; Fossen, 2011) it is
𝑓 (𝜈, 𝜏) =𝑀−1(−𝐶(𝜈)𝜈 −𝐷(𝜈)𝜈 + 𝜏)

Δ(𝜂, 𝜈) =𝑀−1𝜏𝑑 ,
(9)

where 𝜏𝑑 ∈ ℝ3 represents the added force vector, which models the 
impact of unknown forces acting on the vessel due to various external 
factors such as wind, currents and forces from the towing system 
(Du et al., 2021; Fossen & Strand, 1999). The term 𝑀 represents the 
inertia matrix, which, under the assumption that the ship is port-
starboard symmetric, can be described as 

𝑀 =
⎡

⎢

⎢

⎣

𝑚 +𝑋𝑢̇ 0 0
0 𝑚 − 𝑌𝑣̇ 𝑚𝑥𝐺 − 𝑌𝑟̇
0 𝑚𝑥𝐺 −𝑁𝑣̇ 𝐼𝑧𝑝 −𝑁𝑟̇

⎤

⎥

⎥

⎦

. (10)

Here 𝑚 is the vessel’s mass, 𝐼𝑧𝑝  is the moment of inertia about the 𝑧𝑝−
axis, and, 𝑋𝑢̇, 𝑌𝑣̇, 𝑌𝑟̇, 𝑁𝑣̇ and 𝑁𝑟̇ are hydrodynamic parameters that 
account for the added mass. Further, 𝑥𝐺 represents the x-coordinate 
of the vessel’s centre of gravity. The terms 𝐶(𝜈), 𝐷(𝜈) are the Coriolis-
centripetal and damping matrices given by equations (11) and (12), 
respectively.

𝐶(𝜈) =
⎡

⎢

⎢

⎣

0 0 −𝑚(𝑥𝐺𝑟 + 𝑣) + 𝑌𝑣̇𝑣 + 𝑌𝑟̇𝑟
0 0 𝑚𝑢 −𝑋𝑢̇𝑢

𝑚(𝑥𝐺𝑟 + 𝑣) − 𝑌𝑣̇𝑣 − 𝑌𝑟̇𝑟 −𝑚𝑢 +𝑋𝑢̇𝑢 0

⎤

⎥

⎥

⎦

(11)

𝐷(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑋𝑢 −𝑋|𝑢|𝑢|𝑢|
−𝑋𝑢𝑢𝑢|𝑢2|

0 0

0 −𝑌𝑣 − 𝑌|𝑣|𝑣|𝑣|
−𝑌

|𝑟|𝑣|𝑟|
−𝑌𝑟 − 𝑌|𝑣|𝑟|𝑣|

−𝑌
|𝑟|𝑟|𝑟|

0 −𝑁𝑣 −𝑁|𝑣|𝑣|𝑣|
−𝑁

|𝑟|𝑣|𝑟|
−𝑁𝑟 −𝑁|𝑣|𝑟|𝑣|

−𝑁
|𝑟|𝑟|𝑟|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

Here, 𝑋𝑢, 𝑋|𝑢|𝑢, 𝑋𝑢𝑢𝑢, 𝑌𝑣, 𝑌|𝑣|𝑣, 𝑌|𝑟|𝑣, 𝑌𝑟, 𝑌|𝑣|𝑟, 𝑌|𝑟|𝑟, 𝑁𝑣, 𝑁|𝑣|𝑣, 𝑁|𝑟|𝑣, 
𝑁𝑟, 𝑁|𝑣|𝑟 and 𝑁|𝑟|𝑟, are the hydrodynamic parameters that account 
for the damping forces within the second-order modulus model rep-
resentation (Fedyaevsky & Sobolev, 1964; Skjetne et al., 2004).

• In the Maneuvering Modeling Group (MMG) model, Ogawa et al. 
(1977), Yasukawa and Yoshimura (2015) it is

𝑓 (𝜈, 𝜏) =𝑀 ′−1(−𝐷′(𝜈) + 𝜏)

Δ(𝜂, 𝜈) =𝑀 ′−1𝜏𝑑 .
(13)

Here, the matrices 𝑀 ′ and 𝐷′(𝜈) are given as

𝑀 ′ =
⎡

⎢

⎢

⎣

(𝑚 + 𝑚𝑥) 0 0
0 (𝑚 + 𝑚𝑦) −𝑥𝐺𝑚𝑦
0 𝑥𝐺𝑚 (𝐼𝑧𝑝 + 𝐽𝑧𝑝 )

⎤

⎥

⎥

⎦

𝐷′(𝜈) =
⎡

⎢

⎢

⎣

−(𝑚 + 𝑚𝑦)𝑣𝑟 + 𝑥𝐺𝑚𝑦𝑟2

(𝑚 + 𝑚𝑥)𝑢𝑟
𝑥𝐺𝑚𝑢𝑟

⎤

⎥

⎥

⎦

,

(14)

where, 𝑚𝑥, 𝑚𝑦 are the added masses in the 𝑥𝑝 - and 𝑦𝑝 - directions and 
𝐽𝑧𝑝  is the added moment of inertia for yaw motion. The assumption 
of port-starboard symmetry is applied again to obtain the matrix 𝑀 ′

in this form.

Unlike the Abkowitz model in (9), where the hydrodynamic forces 
and moments are aggregated into the damping and Coriolis matrices
(11),(12), in the MMG model, the hydrodynamic forces are decomposed 
into individual terms arising from the hull, propeller, and rudder. This 
approach is often more suitable for assessing the impact of these differ-
ent components on the vessel’s maneuverability. However, it is based on 
the assumption that the vessel has a conventional propeller and rudder 
configuration.

The vessel’s actuation system is directly responsible for controlling 
its maneuvering motion. Therefore, its dynamics and configuration must 
be accurately modelled to simulate realistic vessel behaviour. For a twin 
azimuth-thruster configuration, the controlled input force vector can be 
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Fig. 2. Proposed architecture of the sensor fault detection and isolation scheme.

defined as Marley et al. (2023)

𝜏 =
⎡

⎢

⎢

⎣

𝜏𝑢
𝜏𝑣
𝜏𝑟

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑋pr,1 +𝑋pr,2
𝑌pr,1 + 𝑌pr,2
𝑁pr,1 +𝑁pr,2

⎤

⎥

⎥

⎦

, (15)

where, 𝑋pr,𝑤, 𝑌pr,𝑤 and 𝑁pr,𝑤 are the generalised force components for 
each thruster, with 𝑤 ∈ {1, 2}. For the rudder-propeller configuration, 
the controlled input force vector is given by

𝜏 =
⎡

⎢

⎢

⎣

𝜏1
𝜏2
𝜏3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑋𝑃 +𝑋𝑅
𝑌𝑅
𝑁𝑅

⎤

⎥

⎥

⎦

, (16)

where, 𝑋𝑅 represents the forward force, 𝑌𝑅 the lateral force, and 𝑁𝑅
the yaw moment component due to the rudder. Further, 𝑋𝑃  represents 
the forward force component from the ship’s propeller.

2.1.3. Steering model
The steering or KT model, attributed to Nomoto et al. (1957), is a 

popular linear modelling approach that can sufficiently capture the turn-
ing and course-keeping behaviour of the vessel. It is a 1-DOF model that 
assumes constant surge and sway velocities; therefore, it is not a com-
plete replacement of the aforementioned 3-DOF hydrodynamic models. 
This work focuses on its second-order form, a common variant that sup-
ports overshooting behaviour and offers higher accuracy compared to 
the first-order form. For an azimuth-type twin-thruster configuration, it 
can be described by
𝑟̈ + 𝑎1 𝑟̇ + 𝑎2𝑟 = 𝑏1(𝑏2 ̇𝛿𝑝 + 𝛿𝑝) + 𝑏3(𝑏4𝛿𝑠 + 𝛿𝑠)

𝜓̇ = 𝑟, 𝑢̇ = 0, 𝑣̇ = 0,
(17)

where 𝛿𝑝 and 𝛿𝑠 are the thruster angles for the port and starboard sides, 
and 𝑎(.), 𝑏(.) represent the parameters related to yaw rate and thruster 
angles, respectively. These parameters can be determined using the ves-
sel’s operational data from free-running tests involving zigzag and/or 
turning circle maneuvers.

3. Sensor fault detection and isolation scheme

In this section, the design of the proposed multiple-sensor FDI 
scheme is discussed in detail. Firstly, to enable the isolation of multi-
ple sensor faults, the considered sensors are decomposed into 𝑁 sensor 

sets  (𝐼), 𝐼 = 1,… , 𝑁 (Reppa et al., 2016). A monitoring module (𝐼) is 
employed, composed of an observer to estimate the measurements corre-
sponding to each sensor set. Further, every monitoring module contains 
a set of analytical redundancy relations (ARRs) that detect the occur-
rence of faults. Designing monitoring modules for the isolation of mul-
tiple faulty sensors is particularly challenging, as it requires that each 
monitoring module be selectively sensitive to a subset of possible sen-
sor faults. This can introduce challenges in the observer design due to a 
potential loss of observability. To overcome this issue and enhance isola-
bility, the sensor sets are designed to be overlapping, i.e., some sensors 
belong to more than one sensor set.

As shown in Fig. 2, the monitoring module (𝐼) comprises observers 
denoted by (𝐼), which are used to generate the residuals. A residual 
is a signal that describes the difference between observed system be-
haviour (using sensors) and the expected one (using observers). Within 
each module, the ARRs are computed and subsequently, the decisions 
d(𝐼), which are binary vectors representing the fault detection results. 
Adaptive thresholds are derived to compute the ARRs while accounting 
for sensor noise, as well as external factors described in Appendix A. Fi-
nally, the decisions obtained based on the satisfaction or violation of the 
ARRs are provided to the aggregator module , which computes the set 
of possibly occurring (multiple) fault(s) 𝑠, thereby isolating the faulty 
sensor(s).

In this work, the decomposition of sensors is performed such that 
𝑁 = 4. The resulting sensor sets are defined by
 (1) = { (1,1), (1,2)} = {𝑆pos, 𝑆𝜓}

 (2) = { (2,1), (2,2)} = {𝑆𝜓 , 𝑆𝜈}

 (3) = { (3,1)} = {𝑆𝜓}

 (4) = { (4,1)} = {𝑆pos, 𝑆𝜈}.

(18)

This decomposition facilitates designing observers that are selectively 
sensitive to sensor faults, as shown in the subsequent sections. The cor-
responding monitoring modules are given by (1) −(4), respectively, 
and are responsible for (a) GNSS and gyrocompass, (b) gyrocompass 
and IMU, (c) gyrocompass only, and (d) GNSS sensors only. While the 
monitoring modules (1) −(3) employ observers based on both the 
sensor measurements and controlled inputs (generalised forces/thruster 
angles) for residual generation, the observer in module (4) utilises only 
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the sensor measurements. Depending on the sensor setup, a sensor set 
and the corresponding monitoring module may be discarded, or addi-
tional monitoring modules may be integrated for residual generation. 
For example, using an available, more “reliable” redundant sensor can 
help improve fault isolability (Rogne et al., 2014; Zhang et al., 2024b).

3.1. Observer design

This subsection details the design of a bank of Luenberger-type ob-
servers for performing sensor FDI. The design enables structured sensi-
tivity against the set of possible faults. Firstly, the monitoring module 
(1) is considered for monitoring the GNSS and gyrocompass sensors, 
having the observer dynamics given by

(1) ∶
̇̂𝜂(1) =𝑅(𝜓̂ (1))𝜈̂(1) +𝐾1𝜂̃

(1)

̇̂𝜈(1) =𝑓 (𝜈̂(1), 𝜏) +𝐾2𝑅
𝑇 (𝜓̂ (1))𝜂̃(1),

(19)

where, 𝜂̂(1), 𝜈̂(1) and 𝜓̂ (1) denote the estimations of 𝜂 = [

𝑝 𝜓
]𝑇 , 𝜈 and 

𝜓 , respectively, and 𝜂̃(1) = 𝑦𝜂 − 𝜂̂(1), where 𝑦𝜂 =
[

𝑦pos 𝑦𝜓
]𝑇 . The term 

𝑓 (𝜈̂(1), 𝜏) is given by Equation (9) or (13), according to the selected mod-
elling approach. The observer gains 𝐾1 and 𝐾2 ∈ ℝ3×3 are positive di-
agonal matrices.

The monitoring module (2), designed for the gyrocompass and 
IMU, comprises the observer (2), given by

(2) ∶
̇̂𝜓 (2) =𝑟̂(2) + 𝑘3𝜓̃ (2)

̇̂𝜈(2) =𝑓 (𝜈̂(2), 𝜏) +𝐾4𝜈̃
(2),

(20)

where, 𝜓̃ (2) = 𝑦𝜓 − 𝜓̂ (2) and 𝜈̃(2) = 𝑦𝜈 − 𝜈̂(2) are the output estimation er-
rors for 𝜓 and 𝜈, respectively. Here, 𝑘3 ∈ ℝ, and 𝐾4 ∈ ℝ3×3 is a diagonal 
gain matrix.
Remark 2. Note that the observers (1) and (2) are independent of the 
sensor measurements 𝑦𝜈 and 𝑦pos, respectively. As a result, the residuals 
computed in the monitoring modules (1) and (2) are structurally 
sensitive only to a desired subset of faults.

The monitoring module (3) is based on a linear observer (3), which 
is derived from the second-order steering model given by (17). The ob-
server dynamics are given as

(3) ∶

⎡

⎢

⎢

⎣

̇̂𝜓 (3)

̈̂𝜓 (3)

⃛̂𝜓 (3)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 1 0
0 0 1
0 −𝑎2 −𝑎1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜓̂ (3)

𝑟̂(3)
̇̂𝑟(3)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
𝑏1 𝑏1𝑏2 𝑏3 𝑏3𝑏4

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝑝
̇𝛿𝑝
𝛿𝑠
𝛿𝑠

⎤

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑘5
0
0

⎤

⎥

⎥

⎦

𝜓̃ (3)

(21)

where 𝜓̃ (3) = 𝑦𝜓 − 𝜓̂ (3) is the output estimation error for 𝜓 , 𝑎(.) and 𝑏(.)
are the identified parameters of the steering model, and 𝑘5 ∈ ℝ is the 
observer gain. Note that unlike the observers (1) and (2), (3) takes 
the thruster angles and their derivatives as inputs, represented by 𝜘 =
[

𝛿𝑝 ̇𝛿𝑝 𝛿𝑠 𝛿𝑠
]𝑇 .

Remark 3.  For the rudder-propeller configuration, the observer (3)

can be given by

(3) ∶

⎡

⎢

⎢

⎣

̇̂𝜓 (3)

̈̂𝜓 (3)

⃛̂𝜓 (3)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0
0 0 1
0 − 1

𝑇1𝑇2
− 𝑇1+𝑇2

𝑇1𝑇2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜓̂ (3)

𝑟̂(3)
̇̂𝑟(3)

⎤

⎥

⎥

⎦

+

𝐾
𝑇1𝑇2

⎡

⎢

⎢

⎣

0 0
0 0
1 𝑇3

⎤

⎥

⎥

⎦

[

𝛿
𝛿̇

]

+
⎡

⎢

⎢

⎣

𝑘5
0
0

⎤

⎥

⎥

⎦

𝜓̃ (3),

(22)

and the input of the monitoring module (3) becomes 𝜘 =
[

𝛿 𝛿̇
]𝑇 . 

Here, the terms 𝑇1, 𝑇2, and 𝑇3 denote the time constants, and 𝐾 denotes 
the gain factor. 

Finally, the monitoring module (4) is designed using only GNSS 
(or AIS) and IMU measurements. Firstly, the vessel’s heading angle is 
calculated as a function of its course and crab angles, and it is given by

𝑦𝜓 = 𝑦𝜒 − tan−1
(

𝑦𝑣
𝑦𝑢

)

, (23)

where 𝑦𝑢, 𝑦𝑣 are the surge and sway velocity measurements and 𝑦𝜒  is 
the course angle measurement provided by the GNSS or the AIS. Using 
the heading angle measurement (𝑦𝜓 ), and the velocity measurements 
(𝑦𝑢, 𝑦𝑣), the observer dynamics (4) can be described by

(4) ∶
̇̂𝑥(4)𝑝 =𝑦𝑢 cos(𝑦𝜓 ) − 𝑦𝑣 sin(𝑦𝜓 ) + 𝑘61𝑥̃(4)𝑝
̇̂𝑦(4)𝑝 =𝑦𝑢 sin(𝑦𝜓 ) + 𝑦𝑣 cos(𝑦𝜓 ) + 𝑘62𝑦̃(4)𝑝 ,

(24)

where, 𝑥̃(4)𝑝 = 𝑦𝑥𝑝 − 𝑥̂
(4)
𝑝 , 𝑦̃(4)𝑝 = 𝑦𝑦𝑝 − 𝑦̂

(4)
𝑝 , with 𝑦𝑥𝑝  and 𝑦𝑦𝑝  denoting the 

position measurements, and 𝑘61, 𝑘62 ∈ ℝ.

3.2. Residual generator design

Using the observers defined in the previous subsection, the resid-
uals are generated, and their corresponding adaptive thresholds are 
computed within the respective monitoring modules. Let us define 
𝑧(𝐼), 𝐼 = 1,… , 4, to be vectors consisting of the vessel states such that 
𝑧(1) =

[

𝑝 𝜓 𝜈
]𝑇 , 𝑧(2) = [

𝜓 𝜈
]𝑇 , 𝑧(3) = 𝜓 and 𝑧(4) = [

𝑝 𝜈
]𝑇  . The 

residual vector 𝜀(𝐼)𝑦𝑧 ∈ ℝ𝑁𝐼  is defined by
𝜀(𝐼)𝑦𝑧 = 𝑦(𝐼)𝑧 − 𝑧̂(𝐼), (25)

where, 𝑦(𝐼)𝑧  and 𝑧̂(𝐼) represent the measurements and estimations of the 
vectors 𝑧(𝐼) in the 𝐼−th monitoring module, respectively. The superscript 
{.}(𝑗) will be used to signify that the residual corresponds to the 𝑗−th 
sensor, 𝑗 ∈ {1,… , 𝑚𝐼}, where 𝑚𝐼  denotes the no. of sensors in the 𝐼−th 
sensor set. In this work, 𝑚𝐼 = 2, for the sensor sets  (1), (2), and 𝑚𝐼 = 1, 
for the sensor sets  (3) and  (4), respectively. The corresponding residual 
vectors are given by

𝜀(1)𝑦𝑧 =

[

𝜀(1,1)𝑦𝑧
𝜀(1,2)𝑦𝑧

]

=
[

𝑦pos
𝑦𝜓

]

−
[

𝑧̂(1,1)

𝑧̂(1,2)

]

𝜀(2)𝑦𝑧 =

[

𝜀(2,1)𝑦𝑧
𝜀(2,2)𝑦𝑧

]

=
[

𝑦𝜓
𝑦𝜈

]

−
[

𝑧̂(2,1)

𝑧̂(2,2)

]

𝜀(3)𝑦𝑧 = 𝜀(3,1)𝑦𝑧
= 𝑦𝜓 − 𝑧̂(3,1)

𝜀(4)𝑦𝑧 = 𝜀(4,1)𝑦𝑧
= 𝑦pos − 𝑧̂(4,1),

(26)

where [𝑧̂(1,1) 𝑧̂(1,2)
]𝑇 =

[

𝑝̂ 𝜓̂
]𝑇 , [𝑧̂(2,1) 𝑧̂(2,2)

]𝑇 =
[

𝜓̂ 𝜈̂
]𝑇 , 𝑧̂(3,1) =

𝜓̂ and 𝑧̂(4,1) = 𝑝̂ are generated by the observers (1),…, (4), respectively. 
Under healthy conditions (absence of faults), the residual components 
𝜀(𝐼,𝑗)𝑦𝑧𝐻

 are described by

𝜀(𝐼,𝑗)𝑦𝑧𝐻
= 𝑦𝑧𝑗𝐻 − 𝑧̂(𝐼,𝑗)𝐻 , (27)

with 𝑦𝑧𝑗𝐻  denoting the healthy sensor measurement of the state 𝑧(𝐼,𝑗). 
The 𝑗−th adaptive threshold is defined by 𝜀̄(𝐼,𝑗)𝑦𝑧 , for 𝐼 ∈ {1,… , 4} and 
𝑗 ∈ {1,… , 𝑚𝐼}, respectively. Under healthy conditions, it is denoted by 
𝜀̄(𝐼,𝑗)𝑦𝑧𝐻

 and must be computed such that

|𝜀(𝐼,𝑗)𝑦𝑧𝐻
| ≤ 𝜀̄(𝐼,𝑗)𝑦𝑧𝐻

. (28)

The following design criteria are adopted to compute the adaptive 
thresholds 𝜀̄(𝐼,𝑗)𝑦𝑧  and subsequently, the ARRs:

1. The thresholds must be robust to uncertainties, thereby ensuring that 
no false alarms occur, i.e., if  (𝐼) is not affected by faults, then the 
corresponding set of ARRs must always be satisfied.

2. The ARRs must be structurally sensitive to the occurrence of one or 
more sensor faults, i.e., if at any time instant 𝑡, the set of ARRs is not 
satisfied, then the occurrence of at least one sensor fault in  (𝐼) must 
be guaranteed.
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To compute adaptive thresholds that satisfy these criteria, firstly, 𝜀(𝐼,𝑗)𝑦𝑧𝐻
can be expressed in terms of the state estimation error under healthy 
conditions 𝜀(𝐼,𝑗)𝑧𝐻  as

𝜀(𝐼,𝑗)𝑦𝑧𝐻
= 𝜀(𝐼,𝑗)𝑧𝐻 + 𝑛(𝐼,𝑗)𝑧 , (29)

with, 𝜀(𝐼,𝑗)𝑧𝐻 = 𝑧(𝐼,𝑗) − 𝑧̂(𝐼,𝑗)𝐻 . Under healthy conditions, the following as-
sumptions regarding the vessel dynamics and sensor noise are consid-
ered:

Assumption 1. The input force 𝜏 remains bounded before and after 
the occurrence of multiple sensor faults, i.e., there exist some compact 
stability region 𝜏 ⊂ ℝ3 such that 𝜏 ∈ 𝜏 , for all 𝑡 ≥ 0.

Assumption 2. The unknown noise affecting the 𝑗−th sensor (𝑛(𝐼,𝑗)𝑧 ) is 
uniformly bounded, i.e., |𝑛(𝐼,𝑗)𝑧𝑘 | ≤ 𝑛̄(𝐼,𝑗)𝑧𝑘 , for all 𝑘 elements of 𝑛(𝐼,𝑗)𝑧 , with 
𝑛̄(𝐼,𝑗)𝑧𝑘  representing a known bound.
These assumptions represent realistic system behaviour under healthy 
conditions while ensuring the convergence of the residual signals. As a 
result, the magnitudes of the residual components are bounded by
[

|𝜀(1,1)𝑦𝑧𝐻
|

|𝜀(1,2)𝑦𝑧𝐻
|

]

≤

[

|𝜀(1,1)𝑧𝐻 |

|𝜀(1,2)𝑧𝐻 |

]

+

[

𝑛̄(1,1)𝑧
𝑛̄(1,2)𝑧

]

[

|𝜀(2,1)𝑦𝑧𝐻
|

|𝜀(2,2)𝑦𝑧𝐻
|

]

≤

[

|𝜀(2,1)𝑧𝐻 |

|𝜀(2,2)𝑧𝐻 |

]

+

[

𝑛̄(2,1)𝑧
𝑛̄(2,2)𝑧

]

|𝜀(3,1)𝑦𝑧𝐻
| ≤ |𝜀(3,1)𝑧𝐻 | + 𝑛̄(3,1)𝑧

|𝜀(4,1)𝑦𝑧𝐻
| ≤ |𝜀(4,1)𝑧𝐻 | + 𝑛̄(4,1)𝑧 ,

(30)

where |𝜀(𝐼,𝑗)𝑧𝐻 | are the estimation error magnitudes for the states in the 
vectors 𝑧(𝐼), respectively.

Further, the dynamics governing the state estimation error of the 
observer (1) can be described by

𝜀̇(1)𝑧𝐻 =

⎡

⎢

⎢

⎢

⎣

𝜀̇(1,1)𝑧𝐻
𝜀̇(1,2)𝑧𝐻
𝜀̇(1,3)𝑧𝐻

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝐾11 𝟎 𝟎
𝟎 −𝑘12 𝟎
𝟎 𝟎 −𝐾2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜀(1,1)𝑧𝐻
𝜀(1,2)𝑧𝐻
𝜀(1,3)𝑧𝐻

⎤

⎥

⎥

⎥

⎦

+

[

𝛾̃ (1)1𝐻
𝛾̃ (1)2𝐻

]

+
[

𝟎
Δ(𝜂, 𝜈) +𝐾2𝜈

]

+
⎡

⎢

⎢

⎣

−𝐾11 𝟎 𝟎
𝟎 −𝑘12 𝟎
𝟎 𝟎 −𝐾2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑛(1,1)𝑧
𝑛(1,2)𝑧

𝑅𝑇 (𝜓̂ (1)
𝐻 )𝑦𝜂

⎤

⎥

⎥

⎥

⎦

,

(31)

where ̃𝛾 (1)1𝐻 = 𝑅(𝜓)𝜈 − 𝑅(𝜓̂ (1)
𝐻 )𝜈̂(1)𝐻 , ̃𝛾 (1)2𝐻 = 𝑓 (𝜈, 𝜏) − 𝑓 (𝜈̂(1)𝐻 , 𝜏), and 𝟎 denotes 

a matrix/vector of zeroes, having a suitable dimension. Solving (31) 
results in

𝜀(1)𝑧𝐻 =

⎡

⎢

⎢

⎢

⎣

𝜀(1,1)𝑧𝐻
𝜀(1,2)𝑧𝐻
𝜀(1,3)𝑧𝐻

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑒−𝐾11𝑡 𝟎 𝟎
𝟎 𝑒−𝑘12𝑡 𝟎
𝟎 𝟎 𝑒−𝐾2𝑡

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜀(1,1)𝑧𝐻 (0)
𝜀(1,2)𝑧𝐻 (0)
𝜀(1,3)𝑧𝐻 (0)

⎤

⎥

⎥

⎥

⎦

+ ∫

𝑡

0

[

𝑒−𝐾1(𝑡−𝔱) 𝟎
𝟎 𝑒−𝐾2(𝑡−𝔱)

](

[

𝛾̃ (1)1𝐻 (𝔱)
𝛾̃ (1)2𝐻 (𝔱) + Δ(𝜂, 𝜈)

]

+

[

−𝐾1𝑛𝜂
−𝐾2𝑅𝑇 (𝜓̂

(1)
𝐻 (𝔱))𝑛𝜂 +𝐾2(𝜈(𝔱) − 𝑅𝑇 (𝜓̂

(1)
𝐻 (𝔱))𝜂(𝔱))

]

)

𝑑𝔱,

(32)

where 𝐾1 = diag(
[

𝐾11 𝑘12
]

), 𝑛𝜂 =
[

𝑛(1,1)𝑧 𝑛(1,2)𝑧

]𝑇
. Using the above 

equation and the relation in (29), the residuals in 𝜀(1)𝑦𝑧  under healthy 
conditions can be expressed by
[

𝜀(1,1)𝑦𝑧𝐻
𝜀(1,2)𝑦𝑧𝐻

]

= 𝑒−𝐾1𝑡

[

𝜀(1,1)𝑧𝐻 (0)
𝜀(1,2)𝑧𝐻 (0)

]

+

[

𝑛(1,1)𝑧
𝑛(1,2)𝑧

]

+ ∫

𝑡

0
𝑒−𝐾1(𝑡−𝔱)

(

𝛾̃ (1)1𝐻 (𝔱) −𝐾1𝑛𝜂
)

𝑑𝔱.

(33)

In addition to the Assumptions 1 and 2, the following assumption 
regarding the uncertainties is considered:

Assumption 3. The unknown added force vector 𝜏𝑑 is uniformly 
bounded, i.e., |𝜏𝑑𝑖 | ≤ 𝜏𝑑𝑖 , with 𝑖 ∈ {1, 2, 3} representing the elements of 
the vector and 𝜏𝑑𝑖  representing a known bound.
Assumption 3 provides a bound to distinguish the uncertain-
ties from the faults and holds practically for a vessel operat-
ing within specified operational conditions (wind limits, sea state, 
speed range, etc.). Under this assumption, bounds on the magni-
tudes of the state estimation errors are derived, as detailed in the
Appendix B.

For the observer (2), the state estimation error dynamics are given 
by

𝜀̇(2)𝑧𝐻 =

[

𝜀̇(2,1)𝑧𝐻
𝜀̇(2,2)𝑧𝐻

]

=
[

−𝑘3 𝟎
𝟎 −𝐾4

]

[

𝜀(2,1)𝑧𝐻
𝜀(2,2)𝑧𝐻

]

+

[

𝛾̃ (2)1𝐻
𝛾̃ (2)2𝐻 + Δ(𝜂, 𝜈)

]

+
[

−𝑘3 𝟎
𝟎 −𝐾4

]

[

𝑛(2,1)𝑧
𝑛(2,2)𝑧

]

,

(34)

where 𝛾̃ (2)1𝐻 = 𝑟 − 𝑟̂𝐻 , and 𝛾̃ (2)2𝐻 = 𝑓 (𝜈, 𝜏) − 𝑓 (𝜈̂(2)𝐻 , 𝜏). The resulting residu-
als in 𝜀(2)𝑦𝑧  under healthy conditions can be expressed by
[

𝜀(2,1)𝑦𝑧𝐻
𝜀(2,2)𝑦𝑧𝐻

]

=
[

𝑒−𝑘3𝑡 𝟎
𝟎 𝑒−𝐾4𝑡

]

[

𝜀(2,1)𝑧𝐻 (0)
𝜀(2,2)𝑧𝐻 (0)

]

+

[

𝑛(2,1)𝑧
𝑛(2,2)𝑧

]

+ ∫

𝑡

0

[

𝑒−𝑘3(𝑡−𝔱) 𝟎
𝟎 𝑒−𝐾4(𝑡−𝔱)

]

(

[

𝛾̃ (2)1𝐻 (𝔱) − 𝑘3𝑛
(2,1)
𝑧

𝛾̃ (2)2𝐻 (𝔱) + Δ(𝜂, 𝜈) −𝐾4𝑛
(2,2)
𝑧

]

)

𝑑𝔱.

(35)

Next, the adaptive threshold corresponding to the residual in (3) is 
derived. The state estimation error for the observer (3) can be described 
under healthy conditions by

𝜀̇(3,1)𝑧𝐻 = − 𝑘5𝜀
(3,1)
𝑧𝐻 + 𝜓̇𝐻 + 1

𝑎2
⃛̂𝜓 (3) +

𝑎1
𝑎2
̈̂𝜓 (3)

−
𝑏1
𝑎2

(𝑏2 ̇𝛿𝑝 + 𝛿𝑝) −
𝑏3
𝑎2

(𝑏4𝛿𝑠 + 𝛿𝑠) − 𝑘5𝑛(3,1)𝑧 .
(36)

The resulting residual under healthy conditions (𝜀(3,1)𝑦𝑧𝐻
) is expressed by

𝜀(3,1)𝑦𝑧𝐻
=𝑒−𝑘5𝑡𝜀(3,1)𝑧𝐻 (0) + 𝑛(3,1)𝑧 + ∫

𝑡

0
𝑒−𝑘5(𝑡−𝔱)

(

𝜓̇𝐻

+ 1
𝑎2
⃛̂𝜓 (3) +

𝑎1
𝑎2
̈̂𝜓 (3) −

𝑏1
𝑎2

(𝑏2 ̇𝛿𝑝 + 𝛿𝑝) −
𝑏3
𝑎2

(𝑏4𝛿𝑠 + 𝛿𝑠) − 𝑘5𝑛(3,1)𝑧

)

𝑑𝔱.

(37)

Finally, for the observer (4), the state estimation error dynamics 
under healthy conditions can be described by

𝜀̇(4,1)𝑧𝐻 = −𝐾6𝜀
(4,1)
𝑧𝐻

+

[

𝑢(cos𝜓 − cos𝑦(4)𝜓 ) + 𝑣(−sin𝜓 + sin𝑦(4)𝜓 )
𝑢(sin𝜓 − sin𝑦(4)𝜓 ) + 𝑣(cos𝜓 − cos𝑦(4)𝜓 )

]

+

[

−cos𝑦(4)𝜓 sin𝑦(4)𝜓 0
−sin𝑦(4)𝜓 −cos𝑦(4)𝜓 0

]

𝑛(4,2)𝑧 −𝐾6𝑛
(4,1)
𝑧 ,

(38)

where 𝐾6 = diag(
[

𝑘61 𝑘62
]

) and 𝑛(4,2)𝑧 = 𝑛𝜈 . The resulting residual un-
der healthy conditions (𝜀(4,1)𝑦𝑧𝐻

) is expressed by

𝜀(4,1)𝑦𝑧𝐻
= 𝑒−𝐾6𝑡𝜀(4,1)𝑧𝐻 (0) + ∫

𝑡

0
𝑒−𝐾6(𝑡−𝔱)

([

cos𝜓 − sin𝜓
sin𝜓 cos𝜓

][

𝑢
𝑣

]

−
[

cos 𝑦𝜓 − sin 𝑦𝜓
sin 𝑦𝜓 cos 𝑦𝜓

][

𝑦𝑢
𝑦𝑣

]

−𝐾6𝑛
(4,1)
𝑧

)

𝑑𝔱.

(39)
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Fig. 3. Simulation results from Example 1 with the magnitude of residual signals (blue curve), the corresponding adaptive thresholds (green curve), and the decisions 
(dashed red curve) for the corresponding monitoring modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

3.3. Combinatorial fault decision logic

In this subsection, the design of a combinatorial fault decision logic 
that enables the isolation of multiple sensor faults is presented. Firstly, 
the aggregator module receives a decision on the fault detection from 
the various monitoring modules based on a set of ARRs composed of 
residuals and adaptive thresholds. Specifically, for the monitoring mod-
ule (𝐼), the set of ARRs  (𝐼)

𝑦𝑧  is defined for detecting faults in the sensor 
set  (𝐼), as
 (𝐼)
𝑦𝑧

=
⋃

𝑗
 (𝐼,𝑗)
𝑦𝑧

, (40)

where, for 𝐼 ∈ {1,… , 4}, the 𝑗−th ARR  (𝐼,𝑗)
𝑦𝑧  is given by

 (1,𝑗)
𝑦𝑧

∶ |𝜀(𝐼,𝑗)𝑦𝑧
(𝑡)| − 𝜀̄(𝐼,𝑗)𝑦𝑧

(𝑡) ≤ 0, 𝑗 ∈ {1,… , 𝑚𝐼}. (41)

As per the design criterion (2), a violation of the 𝑗−th ARR implies the 
occurrence of at least one sensor fault in the corresponding sensor set 
 (𝐼). Define 𝑇 (𝐼,𝑗)

𝐷  to be the first instance of violation of the 𝑗−th ARR 
 (𝐼,𝑗)
𝑦𝑧  in (𝐼), i.e.,

𝑇 (𝐼,𝑗)
𝐷 =

{

min{𝑡 ∈ ℝ+ ∶ |𝜀(𝐼,𝑗)𝑦𝑧 (𝑡)| > 𝜀̄(𝐼,𝑗)𝑦𝑧 (𝑡)}, ¬ (𝐼,𝑗)
𝑦𝑧

∞, otherwise.
(42)

Specifically, 𝑇 (𝐼,𝑗)
𝐷  indicates the first instance of fault detection in the 

corresponding sensor within  (𝐼). The output of the monitoring mod-

ule (𝐼) is the 𝐼−th decision 𝐝(𝐼)(𝑡) = [

𝐝(𝐼,1)(𝑡), … , 𝐝(𝐼,𝑚𝐼 )(𝑡)
]𝑇 ,

where,

𝐝(𝐼,𝑗)(𝑡) =
{

0,  if 𝑡 < 𝑇 (𝐼,𝑗)
𝐷

1,  otherwise . (43)

Under the exoneration assumption (Reppa et al., 2013) which con-
siders that  (𝐼) is functioning properly before the time instant 𝑇 (𝐼)

𝐹𝐷, 
𝐝(𝐼)(𝑡) = 𝟎 implies that no fault has occurred in the sensor set 𝑆(𝐼). Upon 
receiving the decisions 𝐝(𝐼)(𝑡) from each monitoring module in the ag-
gregator module , an aggregated decision vector 𝐝(𝑡) is formed by com-
bining these individual decisions, i.e.,
𝐝(𝑡) = vcat(𝐝(𝐼)(𝑡)), (44)

where vcat() represents a vertical concatenation function.
Remark 4.  Unlike in some multi-level FDI schemes (e.g., see Reppa 
et al., 2013), instead of aggregating the individual sensor fault deci-
sions 𝐝(𝐼,𝑗)(𝑡) into a boolean function, the aggregated decision vector 
𝐝(𝑡) composed of 𝐝(𝐼,𝑗)(𝑡) is directly used for consistency checking. Since 
each sensor set may have multiple sensors, such a combinatorial logic 
can isolate multiple sensor faults, as shown later. 

The aggregator module includes the FSM, comprising zeros, ones or 
an ‘*’ as its elements. Fault isolation involves conducting a consistency 
test between 𝐝(𝑡) and the FSM, represented by 𝐹 . The matrix 𝐹  consists 
of a maximum of 𝑙 rows, 𝑙 = ∑

𝐼 𝑚𝐼 , with each row corresponding to 
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Table 2 
Sensor fault signature matrix (FSM) for the designed ARRs.

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

 (1,1)
𝑦𝑧

 1  *  0  0  1  1  1  *  *  0  1  1  *  1  1
 (1,2)
𝑦𝑧

 0  1  0  0  1  0  0  1  1  0  1  1  1  0  1
 (2,1)
𝑦𝑧

 0  1  1  0  1  1  0  1  1  1  1  1  1  1  1
 (2,2)
𝑦𝑧

 0  0  1  0  0  1  0  1  0  1  1  0  1  1  1
 (3,1)
𝑦𝑧

 0  1  0  0  1  0  0  1  1  0  1  1  1  0  1
 (4,1)
𝑦𝑧

 1  0  *  *  1  1  1  *  *  *  1  1  *  1  1

Fig. 4. The Waterbus 2907 vessel (Courtesy: Damen Shipyards).

the 𝑗−th ARR  (𝐼,𝑗)
𝑦𝑧 . Further, 𝐹  consists of 𝑁𝑐 = 2𝔰 − 1 columns, with 

𝔰 representing the total no. of monitored sensors. Each column 𝐹𝑞 , 𝑞 ∈
{1,… , 𝑁𝑐}, represents a theoretical sensor fault pattern. An entry 𝐹𝑝𝑞 =
1 (where 𝑝 ∈ {1,… , 𝑙}) indicates that at least one sensor fault within the 
combination 𝑐𝑞  is responsible for the violation of the ARR 

(𝐼,𝑗)
𝑦𝑧 , thereby 

impacting  (𝐼). An entry 𝐹𝑝𝑞 =‘*’  is used instead of ‘1’  to distinguish a 
possible violation due to the weak sensitivity of the ARR  (𝐼,𝑗)

𝑦𝑧  to a sensor 
fault included in 𝑐𝑞 . Otherwise, 𝐹𝑝𝑞 is taken to be zero. The observed 
fault pattern in 𝐝(𝑡) is considered consistent with a theoretical pattern 
𝐹𝑞 when 𝐝𝑝(𝑡) = 𝐹𝑝𝑞 for all 𝑝 ∈ {1,… , 𝑙}.

The final diagnostic output, denoted as the diagnosis set 𝑠(𝑡), is 
obtained from the aggregator module and includes all possible fault 
combinations 𝑐𝑞  that pass the consistency test. It is important to note 
that, as the elements of 𝐝(𝑡) can fluctuate over time, the cardinality 
of the diagnosis set may also change. This allows the diagnosis set 
to reflect the evolving fault conditions as the system operates. Given 
the assumption that the faults are permanent, the cardinality can only
increase.

Remark 5.  The selection of monitoring modules in the proposed FDI 
scheme should be based on the sensors that are to be monitored. Ac-
cordingly, the observer design, adaptive thresholds computation and the 
FSM must be updated to accommodate the new sensor configuration and 
additional model uncertainties. 

3.4. Sensitivity analysis

While the structural sensitivity to sensor faults can be directly 
inferred from the residual expressions, it may be difficult to in-
fer the weak sensitivity. A sensitivity analysis is subsequently per-
formed to realise the smaller impacts of the faults on the residu-
als (and subsequently the ARRs). For the sensors considered in this 
work, the following sensor fault/fault combinations are possible: 𝑐1 =
{𝑓𝑝}, 𝑐2 = {𝑓𝜓}, 𝑐3 = {𝑓𝜈}, 𝑐4 = {𝑓𝜒}, 𝑐5 = {𝑓𝑝, 𝑓𝜓}, 𝑐6 = {𝑓𝑝, 𝑓𝜈}, 
𝑐7 = {𝑓𝑝, 𝑓𝜒}, 𝑐8 = {𝑓𝜓 , 𝑓𝜈}, 𝑐9 = {𝑓𝜓 , 𝑓𝜒}, 𝑐10 = {𝑓𝜈 , 𝑓𝜒}, 𝑐11 =
{𝑓𝑝, 𝑓𝜓 , 𝑓𝜈}, 𝑐12 = {𝑓𝑝, 𝑓𝜓 , 𝑓𝜒}, 𝑐13 = {𝑓𝜓 , 𝑓𝜈 , 𝑓𝜒}, 𝑐14 = {𝑓𝜈 , 𝑓𝜒 , 𝑓𝑝}, 
and 𝑐15 = {𝑓𝑝, 𝑓𝜓 , 𝑓𝜈 , 𝑓𝜒}. A Jacobian block matrix is computed for the 
residuals derived in Section 3 3.2. w.r.t. single faults (𝑓𝑝, 𝑓𝜓 , 𝑓𝜈 and 𝑓𝜒 ), 

and is given by
∇𝜀𝑦𝑧 (𝑓𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜀(1,1)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(1,1)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(1,1)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(1,1)𝑦𝑧 (𝑓𝜒 )
𝜕𝜀(1,2)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(1,2)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(1,2)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(1,2)𝑦𝑧 (𝑓𝜒 )
𝜕𝜀(2,1)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(2,1)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(2,1)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(2,1)𝑦𝑧 (𝑓𝜒 )
𝜕𝜀(2,2)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(2,2)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(2,2)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(2,2)𝑦𝑧 (𝑓𝜒 )
𝜕𝜀(3,1)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(3,1)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(3,1)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(3,1)𝑦𝑧 (𝑓𝜒 )
𝜕𝜀(4,1)𝑦𝑧 (𝑓𝑝) 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜓 ) 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜒 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(45)

Here, each block of the matrix represents the partial derivative of the 
corresponding residual vector elements with respect to a sensor fault. 
Computing the Jacobian matrix results in

∇𝜀𝑦𝑧 (𝑓𝑧) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟏 𝜕𝜀(1,1)𝑦𝑧 (𝑓𝜓 ) 𝟎 𝟎
0 1 0 0
0 1 1 0
𝟎 𝟎 𝟏 𝟎
0 1 0 0
𝟏 𝟎 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜈 ) 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜒 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
(46)

where 𝟏, 𝟎 represent an all-ones matrix and a null matrix of appropriate 
dimensions, respectively. The ones and zeros confirm or refute the ex-
istence of a structural relationship, respectively, whereas the following 
weak sensitivities are also observed:

• 𝜕𝜀(1,1)𝑦𝑧 (𝑓𝜓 ): A fault in the heading angle measurement enters the resid-
ual 𝜀(1,1)𝑦𝑧  directly through the heading angle estimate 𝜓̂ (1) and indi-
rectly through the velocity vector estimate 𝜈̂(1), resulting in a Jaco-
bian given by
⎡

⎢

⎢

⎣

𝑢̂(1) sin 𝜓̂ (1)+𝑣̂(1) cos 𝜓̂ (1)

|𝑟̂(1)|

(

𝑘231 + 𝑘122
)

𝑢̂(1) cos 𝜓̂ (1)−𝑣̂(1) sin 𝜓̂ (1)

|𝑟̂(1)|

(

𝑘233 + 𝑘124
)

⎤

⎥

⎥

⎦

, (47)

where, 𝑘12, 𝑘23 ∈ ℝ are observer gains such that 𝐾1 =
diag(

[

𝐾11 𝑘12
]

) and 𝐾2 = diag(
[

𝑘21 𝑘22 𝑘23
]

). Further, 
1, 2, 3 and 4 represent polynomial functions of the observer’s 
states 𝑢̂(1), 𝑣̂(1) and 𝑟̂(1). By tuning the gains 𝑘12, 𝑘23, a balance be-
tween the fault sensitivity of the residual and observer convergence 
rate can be achieved. Specifically, the gains should be selected high 
enough to ensure fast convergence of the estimation errors but not 
amplify the propagation of the heading angle fault into the position 
residual.

• 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜈 ): The Jacobian elements are given by
⎡

⎢

⎢

⎣

−cos(𝑦𝜒 ) cos
(

tan−1
(

𝑦𝑣
𝑦𝑢

))

−cos(𝑦𝜒 ) sin
(

tan−1
(

𝑦𝑣
𝑦𝑢

))

0

− sin(𝑦𝜒 ) cos
(

tan−1
(

𝑦𝑣
𝑦𝑢

))

− sin(𝑦𝜒 ) sin
(

tan−1
(

𝑦𝑣
𝑦𝑢

))

0

⎤

⎥

⎥

⎦

.

It can be observed that each element is bounded in the range of 
[−1, 1], and is independent of the observer’s gains. This prevents an 
arbitrarily large variation in the residual’s value due to a fault in the 
velocity measurements.
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Fig. 5. Simulation results from Example 2 of the residual signals (blue curve), the corresponding adaptive thresholds (green curve), and the decisions (dashed red 
curve) for the corresponding monitoring modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

• 𝜕𝜀(4,1)𝑦𝑧 (𝑓𝜒 ): The Jacobian elements are given by
[

𝑈𝑦 sin (𝑦𝜒 )
−𝑈𝑦 cos (𝑦𝜒 )

]

, (48)

where 𝑈𝑦 =
√

𝑦2𝑢 + 𝑦2𝑣. The weak sensitivity of 𝜀(4,1)𝑦𝑧  to faults in course 
angle measurements is attributed to the faults appearing in the do-
main of sine and cosine functions, which return values in a small 
range [−1, 1]. When multiplied by the ship’s measured speed 𝑈𝑦, a 
bounded sensitivity in the [−𝑈𝑦, 𝑈𝑦] range is obtained. Therefore, the 
sensitivities are small at low speeds, however, it is non-negligible at 
higher speeds.

Based on the above sensitivity analysis results, the FSM for the 
ARRs designed in this work is determined and is given in Table 2. 
The weak sensitivity of an ARR to sensor fault(s) is denoted by a
‘*’  symbol.

4. Simulation results

The proposed FDI scheme is further verified in this section using 
simulation examples that involve two different vessel types: a pusher-
barge inland vessel and a catamaran-type ferry.

4.1. Example 1: TPQR pusher-barge system

This section presents simulation results for an 11BP pusher-barge 
system as studied in Koh and Yasukawa (2012). The vessel has full-
scale dimensions and is modified to have a twin-propeller and quad 
rudder (TPQR) actuator configuration for improved maneuverability. 
Its MMG model parameters, including the hydrodynamic coefficients, 
are provided in Koh and Yasukawa (2012), Zhang et al. (2024a).

The vessel is simulated to follow a predefined path in an inland 
waterway, emulating the practical conditions in a canal with medium-
shallow water. Wind conditions are modelled with a velocity of 𝑉 = 17

Table 3 
Parameters for designing the adaptive thresh-
olds for each residual.
   Example 1
  Parameters  Values 
 𝜌(1,1) , 𝜌(1,2), 𝜌(2,1) , 𝜌(1,1)𝑑 , 𝜌(1,2)𝑑 , 𝜌(2,1)𝑑  0.01  
 𝜉(1,1) , 𝜉(1,2) , 𝜉(2,1) , 𝜉(1,1)𝑑 , 𝜉(1,2)𝑑 , 𝜉(2,1)𝑑  0.3  
 𝜌(2,2) , 𝜌(2,2)𝑑 0.0001  
 𝜉(2,2) , 𝜉(2,2)𝑑 45  

 Example 2
  Parameters  Values 
 𝜌(1,1), 𝜌(2,2)  1  
 𝜌(1,1)𝑑 , 𝜌(2,2)𝑑  10  
 𝜌(2,2)𝑑

a*  5  
 𝜉(1,1)  1  
 𝜉(1,1)𝑑  9  
 𝜉(2,2) , 𝜉(2,2)𝑑  5  
 𝜌(4,1)  0.01  
 𝜌(4,1)𝑑  1  
 𝜉(4,1)  0.3  
 𝜉(4,1)𝑑  0.9  
a Corresponding to yaw-rate measurement.

m/s, corresponding to a value of 7 in the Beaufort scale, and at an angle 
of 𝛽𝑉 = 45◦, coming from the southwest direction. Additionally, the total 
forward resistance, including the effects of shallow water, is modelled 
by considering a water depth-to-draft ratio of 1.5. Therefore, the magni-
tude of the unknown force vector 𝜏𝑑 is equal to |𝜏𝑑 | = (|𝜏𝑤| + |𝜏𝐻 |) ≤ 𝜏𝑑 . 
Three sensors, namely the GNSS, gyrocompass and IMU, are considered 
on the vessel. Each sensor is assumed to be corrupted by Gaussian white 
noise having an amplitude within 3% of the mean absolute value of the 
noiseless sensor measurement.

For residual generation, the sensor sets  (1) and  (2) are con-
sidered, with  (1) containing the GNSS and gyrocompass and  (2)
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Fig. 6. Visualisation of the fault functions and the resulting measurements corresponding to Examples 1 and 2.

containing the gyrocompass and IMU. Two monitoring modules 
(𝐼), 𝐼 ∈ {1, 2}, are subsequently designed, based on the measurements 
obtained from the corresponding sensor sets, the input force vector, 
and using ARRs as given by Equation (41). The fault detection ob-
server gain matrices 𝐾1, 𝐾2, 𝐾4 are taken to be equal to a diagonal ma-
trix diag([100, 100, 100

]

), and 𝑘3 is equal to 100. Further, the de-

sign parameters for the adaptive thresholds in each monitoring mod-
ule are given in Table 3. The theoretical fault signatures used in the 
aggregator module are provided in Table 4, where, 𝑐1 = {𝑓𝑝}, 𝑐2 =
{𝑓𝜓}, 𝑐3 = {𝑓𝜈}, 𝑐4 = {𝑓𝑝, 𝑓𝜓}, 𝑐5 = {𝑓𝑝, 𝑓𝜈}, 𝑐6 = {𝑓𝜓 , 𝑓𝜈} and 𝑐7 =
{𝑓𝑝, 𝑓𝜓 , 𝑓𝜈}. An edge case is observed when the aggregated decision 
vector 𝐝(𝑡) = [

0 1 1 1
]𝑇  is obtained. The resulting diagnosis set 
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Table 4 
Example 1 - Sensor fault signature matrix for the ag-
gregator .

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

 (1,1)
𝑦𝑧

 1  *  0  1  1  *  1
 (1,2)
𝑦𝑧

 0  1  0  1  0  1  1
 (2,1)
𝑦𝑧

 0  1  1  1  1  1  1
 (2,2)
𝑦𝑧

 0  0  1  0  1  1  1

is equal to 𝑠(𝑡) = {𝑐6 ,𝑐7}, implying that the faults 𝑓𝜓 , 𝑓𝜈 have oc-
curred, and that the fault 𝑓𝑝 may or may not have occurred. This ambigu-
ity is eliminated when 𝐝(𝑡) = [

1 1 1 1
]𝑇 , leading to 𝑠(𝑡) = 𝑐7 , 

thereby isolating all the occurred faults.
A fault scenario is simulated to further verify the proposed FDI 

method. The simulation is carried out for a total duration of 670 s. Per-
manent faults in the gyrocompass and GNSS sensors are considered to 
have occurred at 𝑇𝑓𝜓 = 200 secs and 𝑇𝑓𝑝 = 500 secs, respectively. The 
respective fault functions are given by
𝑓𝜓 = 𝔲(𝑡 − 𝑇𝑓𝜓 )(𝔞𝑓𝜓 + (1 − 𝑒−(𝑡−𝑇𝑓𝜓 ))) (49)

𝑓𝑝 = 𝔲(𝑡 − 𝑇𝑓𝑝 )(𝔞𝑓𝑝 + sin(0.45𝑡)), (50)

where 𝔲(𝑡) denotes a unit step function, and 𝔞𝑓𝜓 , 𝔞𝑓𝑝  are fault amplitudes 
ranging between 1 − 2 times the mean absolute values of the noiseless 
sensor measurement. The time plots of the fault functions and the re-
spective sensor measurements (under healthy and faulty conditions) are 
shown in Figs. 6(a) and 6(c), respectively. The resulting residual signals 
and the corresponding adaptive thresholds for the 𝑗𝑡ℎ sensor monitored 
by (𝐼) are plotted under (𝐼,𝑗) in Fig. 3. As shown, the residuals corre-
sponding to the gyrocompass (in (1,2) and (2,1)), the residuals corre-
sponding to the GNSS (in (1,1)) exceed the respective thresholds. The 
fault detection time, which is expressed by (42), is equal to 𝑇 (1,1)

𝐷 = 500.1
secs, 𝑇 (1,2)

𝐷 = 200 secs and 𝑇 (2,1)
𝐷 = 200.1 secs, respectively.

For 𝑡 < 200 secs, the aggregated decision vector 𝐝(𝑡)’s elements 
remain zero, and the diagnosis set corresponds to a null set. For 
200 ≤ 𝑡 < 500 secs, the occurrence of the first fault is detected by 
the residual exceeding the adaptive threshold, resulting in 𝐝(𝑡) =
[

0 1 1 0
]𝑇 . For 𝑡 ≥ 500 secs, the second fault is detected, leading 

to 𝐝(𝑡) = [

1 1 1 0
]

. At the end of the simulation, a consistency 
test is performed by comparing the observed pattern 𝐝(𝑡) to the theo-
retical patterns 𝑐𝑞 , which results in a diagnosis set 𝑠(𝑡) = {𝑐2 ,𝑐4} =
{{𝑓𝜓}, {𝑓𝑝, 𝑓𝜓}}, thereby isolating the faulty sensors.

4.2. Example 2: Damen Waterbus 2907 shuttle

In this section, an example of a catamaran-type passenger ferry 
is considered to showcase and verify the design of the proposed FDI 
scheme. The vessel, namely, the Waterbus 2907, is a fully electric water 
shuttle designed by Damen Shipyards (Damen Shipyards Group, 2025), 
equipped with two azimuth thrusters and two bow thrusters (see Fig. 4). 
The vessel’s maneuvering model is identified using logged data, which 
includes sensor measurements from onboard GNSS/INS and the propul-
sion system in various maneuvers performed on the Merwede River. The 
dynamical model of the vessel and the actuation forces can be expressed 
using equations (7), (9), and (15), respectively, and its main parameters 
are mentioned in Table 5. For this example, the unknown added force 
vector is modelled as 𝜏𝑑 = 𝜏𝑤, and the wind conditions are considered 
the same as in Example 1.

The vessel is equipped with an IMU and uses dual GNSS anten-
nas instead of a gyrocompass for heading angle estimation. The fault 
combinations are given as 𝑐1 = {𝑓𝑝}, 𝑐2 = {𝑓𝜈}, 𝑐3 = {𝑓𝜒}, 𝑐4 =
{𝑓𝑝, 𝑓𝜈}, 𝑐5 = {𝑓𝑝, 𝑓𝜒}, 𝑐6 = {𝑓𝜈 , 𝑓𝜒}, and 𝑐7 = {𝑓𝑝, 𝑓𝜈 , 𝑓𝜒}. Further-
more, three residuals are considered, resulting in a fault signature ma-
trix as shown in Table 6. The observer gain matrices are given by the 
diagonal matrices 𝐾1 = diag(

[

10 10
]

), 𝐾4 = diag(
[

10 5 5
]

), and 

Table 5 
Main parameters of the Damen waterbus 2907 shuttle.
 Parameter  Description  Value  Unit
𝐿oa  Overall length  28.65  m
𝑏  Beam  7.50  m
𝑚  Mass  45000  kg
𝑥𝑅  Thruster’s x-coordinate -12  m
𝑦𝑅  Thruster’s y-coordinate ± 3.175  m

Table 6 
Example 2 - Sensor fault signature matrix for the ag-
gregator .

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

 (1,1)
𝑦𝑧

 1  0  0  1  1  0  1
 (2,2)
𝑦𝑧

 0  1  0  1  0  1  1
 (4,1)
𝑦𝑧

 1  *  *  1  1  *  1

𝐾6 = diag(
[

2 10
]

), respectively. The design parameters for the adap-
tive thresholds are given in Table 3.

The vessel is simulated to perform various maneuvers, including zig-
zag and turning, for a duration of 310 secs. A sensor disconnection fault 
is considered, which causes new sensor measurements to be lost, with 
static measurements received in their place. Such a fault can occur due 
to an Ethernet failure and can be difficult to distinguish from a station-
ary or stopping vessel Conejo et al. (2025). In this example, a sensor 
disconnection fault affecting the velocity measurements is simulated at 
time 𝑇𝑓𝜈 = 150 secs, with the fault evolution function given by

𝑓𝜈 (𝑡) = 0if 𝑡 < 𝑇𝑓𝜈
𝜈(𝑇𝑓𝜈 ) − 𝜈(𝑡)if 𝑡 ≥ 𝑇𝑓𝜈 .

(51)

Fig. 6(b) shows the time plot of the above fault function. Its impact 
on the sensor measurements is visualised in Fig. 6(d). The obtained 
diagnosis results, including the residual signals, adaptive thresholds, 
and decisions, are shown in Fig. 5. The fault detection time, which 
is equal to the instance of violation of the ARR  (2,2)

𝑦𝑧 , is given by 
𝑇 (2,2)
𝐷 = 163 secs and results in an aggregated decision vector equal to 

𝐝(𝑡) =
[

0 1 0
]𝑇 . Ultimately, the outcome of the consistency test is 

a diagnosis set 𝑠(𝑡) = {𝑐2 ,𝑐6} = {{𝑓𝜈}, {𝑓𝜈 , 𝑓𝜒}}, which leads to the 
isolation of the faulty IMU sensor. Therefore, the faulty IMU sensor is 
isolated, whereas a possible fault 𝑓𝜒  is indicated.

5. Conclusions and future research

This paper presents an observer-based FDI scheme for diagnosing 
multiple faults in the navigational sensors of an ASV. The proposed 
scheme effectively addresses challenges associated with modelling com-
plexities, variations in sensor and actuator configurations, and environ-
mental disturbances impacting the ASV. By employing a bank of mon-
itoring modules with structurally sensitive residuals tailored to differ-
ent vessel dynamics and sensor measurement models, the scheme can 
diagnose multiple sensor faults. Furthermore, an aggregator module is 
designed, which is equipped with a combinatorial fault decision logic, 
enabling the isolation of faulty sensors. Adaptive thresholds are also de-
rived for residual bounding, which helps eliminate false positives and 
improve diagnostic reliability. Extensive simulations with two different 
vessel types and sensor setups verify the effectiveness of the proposed 
scheme, demonstrating that the faults can be isolated across various sce-
narios.

For future research, observer design incorporating adaptive approx-
imation of environmental disturbances is proposed to further enhance 
fault detectability. In addition, various fault signature matrices are pro-
posed to account for factors such as the sequence of fault occurrences, 
signs of residual violation, and sensitivities, for improved fault isolation. 
Validation of the proposed FDI scheme in open sea conditions under 
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waves and tidal currents is also a crucial step towards practical deploy-
ment and is also proposed for future work.
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Appendix A. External forces and moments

In this work, two types of external/environmental forces and mo-
ments acting on the vessel are considered: 1) forces due to wind and 
2) hydrodynamic forces acting on the vessel’s hull, including the forces 
due to the shallow-water effect.

A.1. Wind forces

The effect of wind forces acting on the vessel can be modelled by 
using the following expression, under the assumption that the ship is 
symmetrical about the 𝑥𝑝𝑧𝑝 and 𝑦𝑝𝑧𝑝 planes (Fossen, 2011)

𝜏𝑤 =
⎡

⎢

⎢

⎣

𝑋𝑊
𝑌𝑊
𝑁𝑊

⎤

⎥

⎥

⎦

= 1
2
𝑃𝑎𝑉

2
𝑟

⎡

⎢

⎢

⎣

−𝑐𝑥cos(𝛾𝑟)𝐴𝐹
𝑐𝑦sin(𝛾𝑟)𝐴𝐿

𝑐𝑛sin(2𝛾𝑟)𝐴𝐿𝐿𝑜𝑎

⎤

⎥

⎥

⎦

, (A.1)

where

𝑉𝑟 =
√

𝑢2𝑟 + 𝑣2𝑟

𝛾𝑟 = −atan2(𝑣𝑟, 𝑢𝑟).
(A.2)

Here, atan2 is a 2-argument inverse tangent function. The notation 𝑃𝑎
denotes the air density; 𝑉𝑟 is the relative wind speed; 𝛾𝑟 the relative 
wind angle of attack; 𝑐𝑥, 𝑐𝑦 and 𝑐𝑛 the wind coefficients for the horizon-
tal plane motions; 𝐴𝐹 , 𝐴𝐿 the frontal and lateral projected areas of the 
vessel above the water, respectively; 𝐿oa the overall length of the ves-
sel. 𝑢𝑟 and 𝑣𝑟 are the relative velocity components of 𝑉𝑟 in the 𝑥𝑝 and 𝑦𝑝
directions, such that
𝑢𝑟 = 𝑢 − 𝑉 cos(𝛽𝑉 − 𝜓)

𝑣𝑟 = 𝑣 − 𝑉 sin(𝛽𝑉 − 𝜓).
(A.3)

The wind speed 𝑉 ∈ ℝ and direction 𝛽𝑉 ∈ ℝ can be measured in real-
time by an anemometer and a weather vane, respectively. Furthermore, 
the coefficients 𝑐𝑥, 𝑐𝑦, and 𝑐𝑛 can be empirically calculated (Fossen, 
2011). In this work, the wind forces acting on the vessel are treated 
as unknown.

A.2. Hull forces

While the Abkowitz model (Equation (9)) considers the hydrody-
namic forces and moments acting on the vessel’s hull as part of the 
known nonlinear dynamics, in this work, these forces are considered 
unknown for the MMG model. The vector 𝜏𝐻 =

[

𝑋𝐻 𝑌𝐻 𝑁𝐻
]𝑇  rep-

resents these forces and moments and forms a part of the unknown force 
vector 𝜏𝑑 for Equation (13). For inland waterway vessels, this includes 
the resistance due to the shallow-water effect, which is a predominant 

factor impacting the vessel’s motion. The generalised hydrodynamic 
forces acting on the vessel hull are formulated as:
𝑋𝐻 = 0.5𝜌𝐿oa𝑇𝑈2𝑋′

𝐻

𝑌𝐻 = 0.5𝜌𝐿oa𝑇𝑈2𝑌 ′
𝐻

𝑁𝐻 = 0.5𝜌𝐿2
oa𝑇𝑈

2𝑁 ′
𝐻 ,

(A.4)

where 𝜌 is defined as the density of freshwater, 𝑈 is the vessel’s speed, 
and 𝑇  is the vessel’s draught. 𝑋′

𝐻 , 𝑌 ′
𝐻  and 𝑁 ′

𝐻  are dimensionless quan-
tities given by
𝑋′
𝐻 = − 𝑅′

0 cos
2 𝛽𝑚 +𝑋′

𝛽𝛽𝛽
2
𝑚 +𝑋′

𝛽𝑟𝛽𝑚𝑟
′ +𝑋′

𝑟𝑟𝑟
′2

+𝑋′
𝛽𝛽𝛽𝛽𝛽

4
𝑚

𝑌 ′
𝐻 =𝑌 ′

𝛽𝛽𝑚 + 𝑌 ′
𝑟 𝑟

′ + 𝑌 ′
𝛽𝛽𝛽𝛽

3
𝑚 + 𝑌 ′

𝛽𝛽𝑟𝛽
2
𝑚𝑟

′ + 𝑌 ′
𝛽𝑟𝑟𝛽𝑚𝑟

′2

+ 𝑌 ′
𝑟𝑟𝑟𝑟

′3

𝑁 ′
𝐻 =𝑁 ′

𝛽𝛽𝑚 +𝑁 ′
𝑟𝑟

′ +𝑁 ′
𝛽𝛽𝛽𝛽

3
𝑚 +𝑁 ′

𝛽𝛽𝑟𝛽
2
𝑚𝑟

′ +𝑁 ′
𝛽𝑟𝑟𝛽𝑚𝑟

′2

+𝑁 ′
𝑟𝑟𝑟𝑟

′3,

(A.5)

where 𝑋′
𝛽𝛽 , 𝑋

′
𝛽𝑟,… , 𝑁 ′

𝑟𝑟𝑟 are the hydrodynamic derivatives in the MMG 
modelling approach, 𝛽𝑚 is the midship drift angle, and 𝑟′ is the non-
dimensional yaw rate which is equal to 𝑟𝐿oa∕𝑈 . The expression for the 
resistance coefficient, 𝑅′

0, modified to include the impact of shallow wa-
ter effect on the vessel, is given by Zhang et al. (2025):

𝑅′
0 =

𝑅Sh
(

0.5𝜌𝐿oa𝑇𝑈2
)

𝑅Sh = 0.5𝜌𝑆𝑊 𝑈2(𝐶𝐹
(

1 +
(

𝑘 + 𝑘̄
))

+ 𝐶𝑊
)

,
(A.6)

where, 𝑆𝑊  represents the ship’s wetted surface area; 𝐶𝐹 , 𝐶𝑊  are the 
frictional resistance and the wave-making resistance coefficients, 𝑘 is the 
ship’s form factor in deep water and ̄𝑘 is the additional viscous resistance 
in shallow water.

Appendix B. Adaptive thresholds computation

B.1. Monitoring module (1)

A bound on |𝜀(1)𝑧𝐻 | satisfies the inequality

|𝜀(1)𝑧𝐻 | ≤
[

|𝑒−𝐾1𝑡
| 𝟎

𝟎 |𝑒−𝐾2𝑡
|

]

⎡

⎢

⎢

⎢

⎣

|𝜀(1,1)𝑧𝐻 (0)|
|𝜀(1,2)𝑧𝐻 (0)|
|𝜀(1,3)𝑧𝐻 (0)|

⎤

⎥

⎥

⎥

⎦

+ ∫

𝑡

0

([

|𝑒−𝐾1(𝑡−𝔱)
| 𝟎

𝟎 |𝑒−𝐾2(𝑡−𝔱)
|

]

[

|𝛾̃ (1)1𝐻 (𝔱)|
|𝛾̃ (1)2𝐻 (𝔱)| + |Δ(𝜂, 𝜈)|+

| −𝐾2𝑅𝑇 (𝜓̂
(1)
𝐻 (𝔱))𝑛𝜂| + | −𝐾2(𝑅𝑇 (𝜓̂

(1)
𝐻 (𝔱))𝜂(𝔱) − 𝜈(𝔱))|

]

+
[

| −𝐾1𝑒−𝐾1(𝑡−𝔱)
| 𝟎

𝟎 | −𝐾2𝑒−𝐾2(𝑡−𝔱)
|

][

|𝑛𝜂|
𝟎

])

𝑑𝔱.

(B.1)

Based on the Assumption 3, a bound on each term constituting the 
inequality (B.1) is determined and is given by

1.

[

|𝜀(1,1)𝑧𝐻 (0)|
|𝜀(1,2)𝑧𝐻 (0)| |𝜀(1,3)𝑧𝐻 (0)|

]𝑇

=

[

𝑝̄(1) 𝜓̄ (1) 𝜈̄(1)
]𝑇 = 𝑧̄(1)𝑇 ,

2.
[

|𝑒−𝐾1𝑡
| 𝟎

𝟎 |𝑒−𝐾2𝑡
|

]

≤ 𝜌(1)𝑒−𝜉(1)𝑡 = Φ(1)(𝑡),

3.
[

| −𝐾1𝑒−𝐾1𝑡
| 𝟎

𝟎 | −𝐾2𝑒−𝐾2𝑡
|

]

≤ 𝜌(1)𝑑 𝑒
−𝜉(1)𝑑 𝑡,

4. |𝑛𝜂| ≤
[

𝑛̄(1,1)𝑧 𝑛̄(1,2)𝑧

]𝑇
,

5. |𝛾̃ (1)1𝐻 | =

|𝑅(𝜓)𝜈 − 𝑅(𝜓̂ (1)
𝐻 )𝜈̂(1)𝐻 | ≤ 𝜆𝛾(1)1

[

|𝜀(1,1)𝑧𝐻 | |𝜀(1,2)𝑧𝐻 |

]𝑇
,
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|𝛾̃ (1)2𝐻 | = |𝑓 (𝜈, 𝜏) − 𝑓 (𝜈̂(1)𝐻 , 𝜏)| ≤ 𝜆𝛾(1)2
|𝜀(1,3)𝑧𝐻 |,

|Δ(𝜂, 𝜈)| = 𝜏𝑑 ≤ ̄̃𝜏𝑑 , and,

6. | −𝐾2𝑅𝑇 (𝜓̂
(1)
𝐻 )𝑛𝜂| ≤

⎡

⎢

⎢

⎢

⎣

𝑘21(𝑛̄
(1,1)
𝑧1 + 𝑛̄(1,1)𝑧2 )

𝑘22(𝑛̄
(1,1)
𝑧1 + 𝑛̄(1,1)𝑧2 )
𝑘23(𝑛̄

(1,2)
𝑧 )

⎤

⎥

⎥

⎥

⎦

= ̄̃𝑛𝜂 ,

| −𝐾2(𝑅𝑇 (𝜓̂
(1)
𝐻 )𝜂 − 𝜈)| ≤ (𝜂̃ − 𝜈̃), with,

| −𝐾2𝑅𝑇 (𝜓̂𝐻 )𝜂| ≤
[

𝑘21(𝑥̄𝑝 + 𝑦̄𝑝) 𝑘22(𝑥̄𝑝 + 𝑦̄𝑝) 𝑘23(𝜓̄)
]𝑇 = 𝜂̃,

|𝐾2𝜈| ∈
[

𝜈̃, 𝜈̃
]

, 𝜂 ∈
[

𝜂, 𝜂̄
]

∈
[

[

𝑥 𝑦 𝜓
]𝑇
,
[

𝑥̄ 𝑦̄ 𝜓̄
]𝑇 ],

and where, 𝜆𝛾(1)1
, 𝜆𝛾(1)2

 are the respective Lipschitz constants. Upon sub-
stituting the above equations into (B.1), the state estimation error under 
healthy conditions 𝜀(1)𝑧𝐻  satisfies

|𝜀(1)𝑧𝐻 | ≤Φ(1)(𝑡)
⎡

⎢

⎢

⎣

𝑝̄(1)

𝜓̄ (1)

𝜈̄(1)

⎤

⎥

⎥

⎦

+ ∫

𝑡

0

(

𝜌(1)𝑑 𝑒
−𝜉(1)𝑑 (𝑡−𝔱)

⎡

⎢

⎢

⎣

𝑛̄(1,1)𝑧
𝑛̄(1,2)𝑧
𝟎

⎤

⎥

⎥

⎦

+ Φ(1)(𝑡 − 𝔱)

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝛾(1)1
|𝜀(1,1)𝑧𝐻 (𝔱)|

𝜆𝛾(1)1
|𝜀(1,2)𝑧𝐻 (𝔱)|

𝜆𝛾(1)2
|𝜀(1,3)𝑧𝐻 (𝔱)| + ̄̃𝜏𝑑 + ̄̃𝑛𝜂 + (𝜂̃ − 𝜈̃)

⎤

⎥

⎥

⎥

⎥

⎦

)

𝑑𝔱.

(B.2)

Applying the Bellman-Gronwall lemma to Equation (B.2) and by us-
ing the relation in (30), the 𝑗−th component of the adaptive threshold 
(𝑗 ∈ {1, 2}) for the sensor faults in  (1) can be expressed as Reppa et al. 
(2016)

𝜀̄(1,𝑗)𝑦𝑧
(𝑡) =𝐸(1,𝑗)(𝑡) + 𝜌(1,𝑗)Λ1 ∫

𝑡

0
𝑍(1,𝑗)(𝔱)𝑒−𝜉

(1,𝑗)(𝑡−𝔱)𝑑𝔱

+ 𝑛̄(1,𝑗)𝑧 ,
(B.3)

where

𝐸(1)(𝑡) = 𝜌(1)𝑒−𝜉
(1)𝑡𝑧̄(1) +

𝜌(1)𝑑 𝑛̄
(1)
𝑧

𝜉(1)𝑑
(1 − 𝑒−𝜉

(1)
𝑑 𝑡)

+ ∫

𝑡

0
𝜌(1)𝑒−𝜉

(1)(𝑡−𝔱)
[

𝟎
̄̃𝜏𝑑 + ̄̃𝑛𝜂 + (𝜂̃ − 𝜈̃)

]

𝑑𝔱

𝑍(1)(𝑡) = 𝐸(1)(𝑡) + 𝜌(1)Λ1 ∫

𝑡

0
𝐸(1)(𝔱)𝑒(𝜌

(1)Λ1−𝜉(1))(𝑡−𝔱)𝑑𝔱.

(B.4)

B.2. Monitoring module (2)

Similar to Equation (B.2), a bound on the magnitude of the state 
estimation error under healthy conditions |𝜀(2)𝑧𝐻 | is computed and is given 
by

|𝜀(2)𝑧𝐻 | ≤Φ(2)(𝑡)
[

𝜓̄ (2)

𝜈̄(2)

]

+ ∫

𝑡

0

(

Φ(2)(𝑡 − 𝔱)

⎡

⎢

⎢

⎣

𝜆𝛾(2)1
|𝜀(2,1)𝑧𝐻 (𝔱)|

𝜆𝛾(2)2
|𝜀(2,2)𝑧𝐻 (𝔱)| + ̄̃𝜏𝑑

⎤

⎥

⎥

⎦

+ 𝜌(2)𝑑 𝑒
−𝜉(2)𝑑 (𝑡−𝔱)

[

𝑛̄(2,1)𝑧
𝑛̄(2,2)𝑧

]

)

𝑑𝔱,
(B.5)

where,

1.
[

|𝜀(2,1)𝑧𝐻 (0)| |𝜀(2,2)𝑧𝐻 (0)|
]𝑇

=
[

𝜓̄ (2) 𝜈̄(2)
]𝑇 = 𝑧̄(2)𝑇 ,

2.
[

|𝑒−𝑘3𝑡| 𝟎
𝟎 |𝑒−𝐾4𝑡

|

]

≤ 𝜌(2)𝑒−𝜉(2)𝑡 = Φ(2)(𝑡),

3.
[

| − 𝑘3𝑒−𝑘3𝑡| 𝟎
𝟎 | −𝐾4𝑒−𝐾4𝑡

|

]

≤ 𝜌(2)𝑑 𝑒
−𝜉(2)𝑑 𝑡,

4.
[

|𝑛(2,1)𝑧 | |𝑛(2,2)𝑧 |

]𝑇
≤
[

𝑛̄(2,1)𝑧 𝑛̄(2,2)𝑧

]𝑇
,

5. |𝑟 − 𝑟̂(2)𝐻 | = |𝛾̃ (2)1𝐻 | ≤ 𝜆𝛾(2)1
|𝜀(2,1)𝑧𝐻 |, |𝑓 (𝜈, 𝜏) − 𝑓 (𝜈̂(2)𝐻 , 𝜏)| = |𝛾̃ (2)2𝐻 | ≤

𝜆𝛾(2)2
|𝜀(2,2)𝑧𝐻 |, |Δ(𝜂, 𝜈)| = 𝜏𝑑 ≤ ̄̃𝜏𝑑 ,

where, 𝜆𝛾(2)1
 and 𝜆𝛾(2)2

 are the respective Lipschitz constants. Further, 
let us define 𝜌(𝐼,𝑗), 𝜉(𝐼,𝑗), 𝜌(𝐼,𝑗)𝑑 , 𝜉(𝐼,𝑗)𝑑  as positive constants satisfy-
ing |𝑒−𝐾𝑝𝑡| ≤ 𝜌(𝐼)𝑒−𝜉(𝐼)𝑡 and 𝜉(𝐼) > Λ𝐼𝜌(𝐼), 𝑝 ∈ {1,… , 4}; Λ1 = 𝜆𝛾(1)1

, Λ2 =

⎡

⎢

⎢

⎣

𝜆𝛾(2)1
𝟎

𝟎 𝜆𝛾(2)2
+ 𝜆 ̄̃𝜏𝑑

⎤

⎥

⎥

⎦

.

Applying the Bellman-Gronwall lemma to Equation (B.5) and by us-
ing the relation in (30), for the faults occurring in the sensor set  (2), 
the 𝑗−th adaptive threshold (𝑗 ∈ {1, 2}) is expressed as

𝜀̄(2,𝑗)𝑦𝑧
(𝑡) =𝐸(2,𝑗)(𝑡) + 𝜌(2,𝑗)Λ(𝑗)

2 ∫

𝑡

0
𝑍(2,𝑗)(𝔱)𝑒−𝜉

(2,𝑗)(𝑡−𝔱)𝑑𝔱

+ 𝑛̄(2,𝑗)𝑧 ,
(B.6)

where

𝐸(2)(𝑡) = 𝜌(2)𝑒−𝜉
(2)𝑡𝑧̄(2) +

𝜌(2)𝑑 𝑛̄
(2)
𝑧

𝜉(2)𝑑
(1 − 𝑒−𝜉

(2)
𝑑 𝑡)

+ ∫

𝑡

0
𝜌(2)𝑒−𝜉

(2)(𝑡−𝔱)
[

0
̄̃𝜏𝑑

]

𝑑𝔱

𝑍(2)(𝑡) = 𝐸(2)(𝑡) + 𝜌(2)Λ2 ∫

𝑡

0
𝐸(2)(𝔱)𝑒(𝜌

(2)Λ2−𝜉(2))(𝑡−𝔱)𝑑𝔱.

(B.7)

B.3. Monitoring module (3)

An upper bound on the magnitude of 𝜀(3,1)𝑧𝐻  is computed as

|𝜀(3,1)𝑧𝐻 | ≤Φ(3,1)(𝑡)𝜓̄ (3,1)

+ ∫

𝑡

0

(

Φ(3,1)(𝑡 − 𝔱)Λ(3,1)
𝛾 + 𝜌(3,1)𝑑 𝑒−𝜉

(3,1)
𝑑 (𝑡−𝔱)𝑛̄(3,1)𝑧

)

𝑑𝔱,
(B.8)

where,

1. |𝜀(3,1)𝑧𝐻 (0)| = 𝜓̄ (3,1) = 𝑧̄(3,1),
2. |𝑒−𝑘5𝑡| ≤ 𝜌(3,1)𝑒−𝜉(3,1)𝑡 = Φ(3,1)(𝑡),
3. | − 𝑘5𝑒−𝑘5𝑡| ≤ 𝜌(3,1)𝑑 𝑒−𝜉

(3,1)
𝑑 𝑡,

4. Λ(3,1)
𝛾 = 𝜆𝛾(3)1

+ |

1
𝑎2
|𝜆𝛾(3)3

+ |𝑎1|
|𝑎2|

𝜆𝛾(3)2
− |𝑏1||𝑏2|

|𝑎2|
̄̄𝛿𝑝 −

|𝑏1|
|𝑎2|

𝛿𝑝 −
|𝑏3||𝑏4|
|𝑎2|

̄̄𝛿𝑠 −
|𝑏3|
|𝑎2|

𝛿𝑠,

5. |𝑛(3,1)𝑧 | ≤ 𝑛̄(3,1)𝑧 ,

and 𝜆𝛾(3)1
, 𝜆𝛾(3)2

, and 𝜆𝛾(3)3
 are the Lipschitz constants corresponding to 𝜓 , 𝑟

and 𝑟̇, respectively; (𝛿𝑝, 𝛿𝑠) and ( ̄̄𝛿𝑝, ̄̄𝛿𝑠) are the upper limits on the respec-
tive thruster angles and their angular rates, respectively. The resulting 
adaptive threshold can be expressed by

𝜀̄(3,1)𝑦𝑧
(𝑡) = 𝜌(3,1)𝑒−𝜉

(3,1)𝑡𝑧̄(3,1) + 𝜌(3,1)Λ(3,1)
𝛾

∫

𝑡

0
𝑒−𝜉

(3,1)(𝑡−𝔱)𝑑𝔱 −
𝜌(3,1)𝑑 𝑛̄(3,1)𝑧

𝜉(3,1)𝑑

(1 − 𝑒−𝜉
(3,1)
𝑑 𝑡) + 𝑛̄(3,1)𝑧 .

(B.9)

B.4. Monitoring module (4)

A bounded magnitude of the state estimation error under healthy 
conditions, |𝜀(4,1)𝑧𝐻 |, can be described by

|𝜀(4,1)𝑧𝐻 | ≤Φ(4,1)(𝑡)𝑝̄(4,1)

+ ∫

𝑡

0

(

Φ(4,1)(𝑡 − 𝔱)Λ(4,1)
𝛾 − 𝜌(4,1)𝑑 𝑒−𝜉

(4,1)
𝑑 (𝑡−𝔱)𝑛̄(4,1)𝑧

)

𝑑𝔱,
(B.10)

where,

1. |𝜀(4,1)𝑧𝐻 (0)| = 𝑝̄(4,1) = 𝑧̄(4,1),
2. |𝑒−𝐾6𝑡

| ≤ 𝜌(4,1)𝑒−𝜉(4,1)𝑡 = Φ(4,1)(𝑡),
3. | −𝐾6𝑒−𝐾6𝑡

| ≤ 𝜌(4,1)𝑑 𝑒−𝜉
(4,1)
𝑑 𝑡,
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4. Λ(4,1)
𝛾 =

[

2(𝑢̄ + 𝑣̄) + 𝑛̄𝑢 + 𝑛̄𝑣
2(𝑢̄ + 𝑣̄) + 𝑛̄𝑢 + 𝑛̄𝑣

]

, such that

𝑧(4,2) ≤
[

𝑢̄ 𝑣̄ 𝑟̄
]𝑇  and 𝑛̄(4,2)𝑧 =

[

𝑛̄𝑢 𝑛̄𝑣 𝑛̄𝑟
]𝑇 ,

5. |𝑛(4,1)𝑧 | ≤ 𝑛̄(4,1)𝑧 .

Based on these computed bounds, the adaptive threshold can be ex-
pressed by
𝜀̄(4,1)𝑦𝑧

(𝑡) = 𝜌(4,1)𝑒−𝜉
(4,1)𝑡𝑧̄(4,1) + 𝜌(4,1)Λ(4,1)

𝛾

∫

𝑡

0
𝑒−𝜉

(4,1)(𝑡−𝔱)𝑑𝔱 −
𝜌(4,1)𝑑 𝑛̄(4,1)𝑧

𝜉(4,1)𝑑

(1 − 𝑒−𝜉
(4,1)
𝑑 𝑡) + 𝑛̄(4,1)𝑧 .

(B.11)
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