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Abstract  
FPSOs are nowadays a common practice in the production of oil at sea. These ship-type offshore 

units, however, cannot have regular dry-docking as they have to be on field sometimes even for 

their entire lifetime. This is the reason why structural monitoring systems may play an important 

role in the safety of these units. The structural degradation mechanisms which affect FPSOs are 

two: fatigue and corrosion. The MONITAS JIP was started in 2005 in order to deal with fatigue. 

One of the goal of this JIP was the development of a monitoring system able to  continuously 

calculate the fatigue lifetime consumption of the FPSO using some measured loads. However, 

these extensive measurements can be used for other purposes as well. In this work, the strength 

reassessment of a corroded FPSO tank has been addressed. For this purpose, thickness 

measurements coming from the inspections and the loads measured by the MONITAS system 

have been combined in a new probability-based model, which is able to calculate the probability 

of failure for the inspected structure. Both the thickness measurements and the MONITAS data 

have to be properly processed before entering the structural reliability model. Different failure 

criteria (yielding, elasto-plastic buckling, brittle fracture) have been identified, and for any of 

them a closed-form limit state function has been written down. To write down the limit state 

functions, analytical models (simple beam theory, classical plate theory, large deflection 

analysis, membrane stress-based method and others) and empirical formulae (Johnson-Ostenfeld 

formula) have been used. The result is a reassessment tool which – if properly combined with a 

corrosion prediction model - can be used by FPSO operators in order to avoid unnecessary 

maintenance of a corroded plate, to optimize repair intervention or to justify extra-maintenance. 

The present work contains also a case study with sensitivity analysis and some ideas for further 

developments.  For the case study, the Monte Carlo simulation method was used to run the 

reliability analysis. 
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List of symbols 
Few symbols have more than one meaning. When these symbols will be used in the text, the 

actual meaning will be always specified (even when it is already quite clear from the context),  

so to avoid any ambiguity.  

   in a truncated random variable, one of the two truncation values or one of the two dimension 

of a plate (not necessarily the longest/shortest one) or in fracture mechanics, half-length of the 

crack. 

         location parameter Gumbel distribution 

          shape parameter Weibull distribution 

   in a truncated random variable, one of the two truncation values or stiffeners spacing or one of 

the two dimension of a plate (not necessarily the longest/shortest one) 

      effective breadth or effective width (see paragraph 4.2) 

    stiffener flange width 

         scale parameter Gumbel distribution 

          scale parameter Weibull distribution 

   ratio between    over    or in an orthotropic plate analysis, correction        

        coefficient of variation (i.e. ratio of the standard deviation to the mean) 

    thickness loss for long term corrosion 

   corroded thickness multiplicator factor 

        corroded thickness multiplicator factor for the plating 

             corroded thickness multiplicator factor for stiffeners 

      limit state function 

  : stiffener web height 

   shape parameter gamma distribution or buckling coefficient 

   stiffener length 

   buckling half-wave numbers in the x direction 

   total number of observations or buckling half-wave numbers in the y direction 
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    in the Monte Carlo simulation, number of failures 

    number of stiffeners or total number of samples in the Monte Carlo simulation 

   significance level (Kolmogorov-Smirnov test) 

   lateral pressure 

  : equivalent line pressure 

   standard deviation of the observed material 

    time 

        corroded thickness 

     stiffener flange gross thickness 

     plate gross thickness 

     stiffener web gross thickness 

   section modulus or plate/stiffeners lateral deflection 

   horizontal section modulus 

   coordinate of the plastic neutral axis  

    mean value of the observed material 

    in calculating of the plastic section modulus, coordinate of the local centroid of one of the 

two area 

     Kolmogorov-Smirnov test quantity 

   in calculating of the plastic section modulus, coordinate of the local centroid of one of the two 

area 

   amplitude of the lateral deflection 

     cross sectional area of the stiffener without the attached plate 

   width of the orthotropic plate 

    modelling uncertainties for the random variable   

   capacity of the structure 

    block coefficient 
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   flexural rigidity of the plate 

       flexural rigidity of the porthotropic late in the x/y direction 

   elasticity modulus 

       elasticity modulus of the orthotropic plate in the x/y direction  

   stress function 

       cumulative distribution function 

  
      empirical cumulative distribution function 

     elastic shear modulus of the orthotropic plate 

   effective torsional rigidity of the orthotropic plate 

   moment of inertia 

      mass moment of inertia using the effective width 

   stress intensity factor 

    in fracture mechanics, stress intensity factor for mode I 

    critical fracture toughness 

   loads acting on the structure or likelihood function or stiffened/unstiffened plate length 

    : maximum bending moment 

   : plastic bending moment 

       axial load in the x/y direction 

  : probability of failure 

 : correlation matrix 

 : shear force 

 : standard normal distributed uncorrelated variable 

 : uniform distributed uncorrelated variable 

 : random variable 

       : plastic section modulus at the end/middle of the beam 
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  : section modulus of the stiffener with attached plate 

   plate-slenderness coefficient or reliability index 

   Euler-Mascheroni constant 

       normal strain in the x/y direction 

   scale parameter gamma distribution 

   inverse scale parameter of the exponential distribution 

   mean 

             
: mean value corroded thickness of stiffener flange 

            
: mean value corroded thickness of the plating 

          
: mean value corroded thickness of stiffener web 

   Poisson’s ratio 

       Poisson’s ratio of the orthotropic plate in the x/y direction 

   correlation coefficient 

          : correlation coefficient between the corroded thickness of the plating and the corroded 

thickness of the stiffener web 

             : correlation coefficient between the corroded thickness of the plating and the 

corroded thickness of the stiffener flange 

           : correlation coefficient between the corroded thickness of the stiffener flange and the 

corroded thickness of the stiffener web 

   standard deviation or in fracture mechanics, remote stress. 

    applied stress 

    elastic buckling strength 

  
   elastic buckling strength of the stiffener web 

     equivalent (Von Mises) stress 

    reference yield stress (in the Johnson-Ostenfeld formula) 
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     in fracture mechanism, stress acting on a plate element at a distance   from crack tip and at 

angle   from crack plane (see chapter 4, fig. 20) 

    stress induced by an axial load       

       permissible stress 

    ultimate strength 

  
   ultimate strength of the stiffener bracuse of lateral-torsional buckling or tripping 

  
   ultimate strength of the stiffener because of web buckling 

       stress in the x/y direction 

         in a stiffened panel, stresses in the x direction at the corners of the plate 

         : average stress in the x/y direction 

     ultimate strength in the x direction 

   
   ultimate strength of the plating between stiffeners 

         in a stiffened panel, stresses in the y direction at the corners of the plate 

    yielding stress 

     equivalent yielding stress (if shear stress would be considered) 

      equivalent yielding stress (if the stiffeners and the plate have different yielding stress) 

     yielding stress plate 

     yielding stress stiffener 

    lifetime of the coating  

    transition time  

     shear stress 

      gamma function 

 : standard normal cumulative distribution function 
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List of abbreviations 
AHMS: Advisory Hull Monitoring System 
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CDF: Cumulative Distribution Function 

C.O.V.: Coefficient of variance 

CS: Class society 

DNV: Det Norske Veritas (international class societies) 
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1 
Introduction 

In the recent years, improvements in the sensor technology, data acquisition, data 

communication, GPS and data storage,  led to the development of more and more sophisticated 

structural monitoring systems for offshore structures. These systems can be used to rationally 

extend the lifetime of the monitored structure, to prevent failures, to improve the Inspection, 

Repair & Maintenance (IRM) plan, to get useful knowledge for future designs and, in case of 

structural failure, can be used  as “black box” in a post-event analysis. 

The present work introduces a new way to estimate the structural reliability of a corroded FPSO, 

combining thickness measurements coming from inspections and loads measured by an already 

operative fatigue monitoring system, the Advisory Hull Monitoring System MONITAS. 

1.1. FPSO degradation mechanisms  
Ship-type offshore units are nowadays a common practice in the production and storage of oil at 

sea. They are usually preferred to other kinds of production facilities for the simplicity of the 

installation procedures and for their storage capacity (which does not make necessary the 

installation of a pipeline infrastructure). They can be either new-built structures, or converted 

tankers. In August 2012, 156 FPSO were operative worldwide ([1]). 

FPSOs are endowed with a processing equipment to separate crude oil, water and gas. Treated 

oil is then transferred to cargo tanks in the ship’s hull, while gas is either used as fuel on-board or 

re-injected into the reservoir or exported to shore via pipeline. The stored oil is then transferred 

to a shuttle tanker, which brings it to refineries.  
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Figure 1 - FPSO 

Due to the fact that FPSOs have to be for years at the same location (sometimes even for its 

whole lifetime) without regular dry-docking, a good structural monitoring system plays an 

important role in their safety. In particular, it becomes critical to monitor the vessel with respect 

to its main two structural degradation mechanisms: fatigue and corrosion.  

 

Figure 2 - FPSO hull degradation mechanisms 

The former is the phenomenon by which a crack may originate and propagate in the structure 

under the action of a cyclic load. FPSO designers are always very concerned with fatigue, as the 

magnitude of uncertainties, in both the fatigue resistance and fatigue loads, is very high 

(Kaminski, [2]). This is one of the reason why the MONITAS JIP was set up by MARIN 

together with other international companies. This system is able to predict the fatigue lifetime of 

the unit, to compare it with the design estimated lifetime, and also to explain “why” the first one 

is different from the second.  

On the other hand, the way by which the effects of corrosions are taken into account by designers 

is through some extra thickness to add to the structural elements as corrosion allowance. The 

corrosion allowances are typically in the range of 0.5-2.0 millimeters, depending on the 

importance of the structural element and on the environment that it is facing.  
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1.2 MONITAS systems  
The MONITAS system is a fatigue monitoring system which is able to monitor some loads 

acting on the structure, and to use them to recalculate the fatigue lifetime consumption, using the 

same fatigue tool used in the design. The factors which are monitored by the MONITAS system 

and which are used to recalculate the fatigue lifetime consumption are given below: 

 

1. draft; 

2. wave height and peak period, for both wind-sea and swell; 

3. 6 DOF motions of the vessel and accelerations; 

4. FPSO orientation; 

5. relative wave height. 

 

The MONITAS is then able to compare the design lifetime consumption with the new calculated 

lifetime consumption. Furthermore, MONITAS is also able to say “why” there is such a 

difference. In order to do that, it calculates the fatigue lifetime consumption using the measured 

data for all input parameter’s except one, where it keeps the design assumed value. This 

procedure is iterated for all input parameters. In this way we are able to say which of the 

“wrong” assumption made during the design has a major influence on the difference between 

design lifetime consumption and calculated design consumption. 

 

Besides that, also stresses (in location free of stress concentration and preferably caused by one 

dominant mechanism) are recorded by some strain gauges. These stresses are then processed 

(rainflow counting) in order to transform them into a simple set of stress ranges. Fatigue lifetime 

consumption is then calculated one more time using these stress cycles as a input. A comparison 

between this new lifetime consumption (“measured lifetime consumption”) and the calculated 

lifetime consumption is giving us feedback on the precision of the fatigue design tool. 

To sum up, in the MONITAS system we compare the followings: 

1. the “design fatigue”: lifetime consumption calculated using design assumed value; 

2. the “calculated fatigue”: lifetime consumption calculated using measured loads; 

3. the “measured fatigue”: lifetime consumption calculated from measurements of strain 

cycles. 

An example of a MONITAS output is given in figure 3.  
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Figure 3 - MONITAS output 

1.3 Goal of the master thesis and project set up 
The current practice to check the structural reliability of a corroded FPSO is based on the 

comparison between the average of the measured thicknesses of a corroded plate and a certain 

threshold value (net thickness, or net thickness plus a percentage of the corrosion allowance). 

There are then quite large margins of improvements in the reassessment of a corroded FPSO, and 

this is indeed the procedure which this thesis is going to improve.  

An improvement of this reassessment can be done by using: 

1. the MONITAS data for loads; 

2. a probability distribution of thicknesses for each plate rather than the average value; 

3. a probability-based approach. 

In other words, the goal of this Master Thesis is to find a way to evaluate the strength of a 

corroded FPSO using the real thicknesses, coming from inspections, and the real loads, coming 

from the MONITAS monitoring system. These two sets of data – after having been properly 

processed – will constitute the input to a structural reliability analysis, the output of which will 

be a new safety index (see figure 4). The data processing will focus on the estimation of the 

statistical properties (mean value, standard deviation and type of probability distribution) of the 

measured or monitored data.  
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Figure 4 - Thesis flow scheme 

Some of the advantages of this new approach are quite evident, namely: 

1) less uncertainties in loads, thanks to the MONITAS monitored loads; 

2) less uncertainties in the capacity of the structure, thanks to the real thickness 

measurements coming from inspections; 

3) probability-based approach, which will tell us not only “if” the structure is safe but also 

“how” safe it is; 

4) more rational approach, since we are using the real capacity and real loads of the 

structure to actually recalculate the ultimate strength. 

In the following paragraphs more information will be given on the corrosion effects, the 

inspection procedure and the failure criteria considered. Furthermore some of the main 

assumptions will be introduced and justified. 
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1.4 Corrosion 
On a FPSO we usually have two main corrosion mechanisms: general and pitting corrosion.  

  

Figure 5 – General corrosion (left) and pitting corrosion (right)  in steel 

The former occurs when we have corrosion distributed over an entire surface or a big fraction of 

it, the latter is a very localized corrosion phenomenon. Often we have a coexistence of both.  

In this work we will focus just on the general corrosion. Pitting is also important, but usually it 

does not affect the in-plane stress distribution, due to its very localized nature. Moreover,  a plate 

with aggressive pitting corrosion will generally be soon replaced, as it is a plate with high 

probability of crack initiation. Furthermore, for mild and low alloy steels corrosion usually 

approximates a near-uniform loss (Melchers, [3]). 

It has been shown that the material properties themselves, such as elastic moduli and yield 

strength are not influenced by the corrosion of the adjacent material (Melchers, [3]). Therefore it 

is reasonable to consider the effect of uniform corrosion on the strength of the structure just 

through the reduction of the actual thicknesses. 

1.5 Inspections 
In general, two kinds of inspections are carried out on FPSOs: the ones for Classification 

Societies, and the ones for the operator/ship-owner which are usually based on the RBI plan. The 

rules from Classification Societies ask for a 5 years cycle of inspection ([4]). The locations for 

thickness measurements are based on rules from tankers. Any inspections carried out involves 

thicknesses of the plate, of the stiffener web and of the stiffener flange. In the present work, 

thickness measurements coming from a standard inspection report will be used in the case study. 

However, in the final chapter, some small modifications to the inspection procedure are 

suggested, in order to increase the precision of the reassessment tool.  
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Figure 6 - Thickness measurements 

It is important to point out that in this work no prediction in time of the corrosion waste thickness 

is made. Furthermore the analysis will only focus on the parts of the vessel which have been 

directly inspected and of which we know some measured thicknesses. However we should keep 

in mind that when inspections are carried out according to the RBI plan, the tank to examine is 

chosen in such a way that this tank is supposed to be the most likely to corrosion damage. There 

are plans for the future to incorporate in this strength analysis also a corrosion prediction model 

and a way to infer the corroded thicknesses for those tanks which have not been directly 

inspected as well. A more detailed discussion on the possible future developments of the current 

work is given in chapter 8.  

1.6 Structure to analyze 
Ships and structures are composed of many structural elements, that may be classified as follows 

( [8]): 

1. hull girder; 

2. primary structures; 

3. stiffened panels; 

4. unstiffened plates; 

5. structural details. 
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In our strength reassessment it was decided to focus only on stiffened plates and unstiffened 

panels (see fig. 7), neglecting any hull girder reassessment. The reason for such a choice is that it 

is much more likely to have severe corrosion just on one plate or stiffener rather than on all 

plates and stiffeners on the same cross section.  

 

Figure 7 – Stiffened panel, basic structural elements 

Figures 8 is giving the structural hierarchy valid for any kind of vessel (terminology is specific 

for offshore structures): the plating is supported by secondary stiffeners (longitudinals), which in 

turn are supported by primary stiffeners (web frames, girders). Primary stiffeners support 

themselves. Tertiary stiffeners are used to strengthen locally the primary stiffeners. 

  

Figure 8 - Structural hierarchy in a ship 

Hull structures of FPSOs experiences structural failures typically seen in trading tankers. The 

areas of an oil tanker which are more prone to corrosion damage are then ([4]): 

 structure in the ballast tanks; 
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 under-deck areas in cargo oil tanks; 

 inner bottom (bottom of cargo tanks). 

However, in the reassessment procedure we should consider the availability of the thicknesses 

measurements. They not always are made at the locations listed above. 

The location for thickness measurements are chosen on both the Class Regulation and on the 

RBI plan. Reasonably, both standards will give more attention to the structures more prone to 

corrosion damage. Therefore at the moment thickness measurements are carried out, we can 

already assume that a choice of the most critical areas to be checked has been made, and thus a 

degree of conservativeness has already been included.  

During inspections, a (either ballast or cargo oil) tank is emptied, and the thicknesses of the 

following structures are examined: 

 side plate; 

 transverse bulkheads; 

 longitudinal bulkheads; 

 bottom plate; 

 deck plate. 

Hence, a model and a strength criteria for all this structures is needed. 

However in this model this has been done only for the deck, but it can be easily extended to the 

other structures. 

1.7 Loads 
All the loads acting on the deck structure of a FPSO are: 

 in plane stress due to vertical bending moment; 

 in plane stress due to horizontal bending moment; 

 topsides loads; 

 green water lateral pressure (static pressure + dynamic pressure + impact pressure); 

 horizontal shear force;      

 lateral internal pressure (static pressure + dynamic pressure + impact pressure). 

The lateral pressure due to its small magnitude can be reasonably neglected. Also the topsides 

loads, which usually are concentrated loads, have not been considered. FPSO topsides are 

generally supported by some stools which are welded to the deck. It is a good design practice to 

locate these stool over some bulkheads, girders or web frames. Finally, the horizontal shear force 

has also been disregarded due to its small magnitude (especially in turret moored FPSO). 
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Figure 9 - Topsides connection with the deck 

Moreover, during the design stage, the  structure has been checked with respect to more than one 

design condition (installation, transportation, operation). In our case, we are only interested in 

the operation phase. Therefore we can neglect the data monitored during the transportation and 

installation phase. This will also improve further our reassessment procedure (that is: we will not 

only use some measured loads instead of design loads, but we are also using the measured loads 

relative to the only design condition we are interested in).  

1.8 Failure criteria 
It was decided to check the deck structures with respect to: 

1) first yielding; 

2) gross yielding; 

3) buckling; 

4) fracture.  

A limit state function, with the capacity C expressed as a function of the thickness random 

variable, and the loads   as a function of the MONITAS monitored loads, has been set up for 

each of the above limit states in the form: 

                                                                                                                                                              

    capacity of the structure 

  : loads acting on the structure 

To derive the limit state functions it was decided to use analytical models from literature (simple 

beam theory, large deflection analysis, linear fracture mechanics and other). Many of the 

equations have been taken from the ALPS/ULSAP theory (Analysis of Large Plated 
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Structures/Ultimate Limit State Assessment Program) developed by professor J. K. Paik ([7]), 

which allows to write down failure functions in a closed-form expression.  

1.9 Reliability analysis 
In general, there are four different levels of reliability analysis: 

1) Level I (first-moment methods): characteristic values of the random variables are used, 

together with some safety factors covering the uncertainties. 

2) Level II (second-moment method): the various random variables are presented by their 

mean value and standard deviation.  

3) Level III (full probabilistic): these procedures utilize the complete probability distribution 

functions of all random variables, which are then combined into an overall probability of 

failure.  

4) Level IV: these procedures are similar to level III but they combine both even probability 

of failure and the associated benefits and costs. 

A full probabilistic (level III) method has chosen. In particular, for the case study, a Monte Carlo 

simulation method was used. The first order reliability method (FORM) and the second order 

reliability method (SORM) were not considered due to the complexity of the limit state functions 

(some of which are not even differentiable). 

1.10 Summary of main assumptions 
It has been chosen to sum up in the following lists all the main assumptions which have been 

introduced and justified in this first chapter: 

1) pitting - and other form of corrosion different from the uniform corrosion - will not be 

considered; 

2) we will only consider the corroded thickness as it is now, with no corrosion 

prediction; 

3) the reassessment will only focus on the analyzed structure during inspections; 

4) no global hull-girder reassessment; 

5) only operational condition (no transportation, no installation) will be considered. 

1.11 Structure of this report 
Chapter 2 will describe the way the thickness measurements coming from the inspection of a real 

FPSO have been processed in order to derive their statistical properties. 

In chapter 3 a general methodology to derive loads for our structural reliability analysis starting 

from the MONITAS monitored parameter are given. In this chapter the way to model 

uncertainties is also explained. 



 

29 
 

In chapter 4 the limit state functions for all the identified failure criteria will be derived. It is 

important to underline the general character of chapters 3 and 4, as they will not only focus on 

the specific deck case. 

In chapter 5 and 6 the theory described in chapter 3 and 4 will be applied to the specific  FPSO 

deck situation. A case study is also introduced in chapter 6.  

In chapter 7 the results on the case study are given. 

Finally, chapter 8 presents some conclusions and recommendations for future developments. 
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2 
Thickness measurements processing 

A real inspection report, with thickness measurements, of  a  generic FPSO has been analyzed. 

The structure inspected is an oil storage tank. The vessel was built almost 30 years before as a 

tanker, and it has been installed as an FPSO 9 years earlier the inspection. This thickness 

measurements analysis is divided in two parts.  

The first one is more generic: its goal is to gain some knowledge about the corrosion effects in 

FPSOs, trying to find an answer to the following questions: 

1) For side shell and bulkheads, do we see a certain trend of the corroded thickness along 

the height? 

2) Is the corroded thickness the same for the web, the flange and eventually also the plates, 

for a given structure? 

3) Is the corroded thickness the same for those structure experiencing exactly the same 

corrosion environment on both sides  (for example, the transverse web frames)? 

We must point out that these answers have been derived analyzing only one inspection report, 

relatively to one tank of one FPSO in one specific year of its lifetime. This must never be 

forgotten when analyzing the results, which therefore have only a partial validity.  

The second part is more specific: once all these questions have been answered, some probability 

density functions have been estimated for the deck plates and stiffeners . The results of this 

chapter will be one of the input for the reliability analysis introduced in chapter 6.  

Between the first and the second part some statistical concepts which are needed to understand 

the way the probability distribution functions have been derived are introduced.  

The analysis has been carried out using MATLAB as numerical tool. 

No distinction is made between a one-side corroded plate and a two-sides corroded plate. In the 

estimation of the statistical properties of the thickness measurements, it was decided not to 

consider all measurements, but to disregard the measurements which gave a zero or negative 

corrosion  (a negative corrosion  is possible since any new steel plate has always some points 

with actual thickness higher than the nominal thickness). This choice was made as considering 
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all the measurements together could led to too optimistic results, since there may be some inter-

stiffeners plating with an average corroded thickness higher than the average corroded thickness 

calculated over the whole panel  (see also paragraph  8.2.1.). 

2.1 Mean corroded thickness for the different structures 
First of all, let us give a look at the following table, which contains a global summary of the 

mean corroded thickness in the whole tank. The tank is an oil cargo tank, located on the 

starboard side, storing processed oil. The ship has neither double bottom nor double side.  

Table 1 - Mean values of the corroded thicknesses 

 Plate 
Stiffener 

web 

Stiffener 

flange 

Stiffener 

(web + flange) 

Whole 

structure 

 [mm] [mm] [mm] [mm] [mm] 

Deck 0.36 0.11 - 0.11 (0.27) 

Side shell 0.75 0.99 1.52 1.26 (1.00) 

Longitudinal bulkhead 0.96 0.91 1.46 1.18 (1.07) 

Transverse web frame 

number 1 
1.31 - - - (1.31) 

Transverse bulkhead 

number 1 
0.68 0.43 0.47 0.46 0.53 

Transverse bulkhead 

number 2 
0.83 0.95 0.74 0.82 0.82 

Transverse web frame 

number 2 
0.71 - - - (0.70) 

Bottom 0.52 0.34 0.49 0.72 (0.48) 

 

In this table some values have been written in brackets as they are the average between structural 

elements which do not face the same environment (e.g. a deck longitudinal is in contact with oil 

on both side, while deck plate is in contact with oil only on one side) and thus they are not very 

meaningful.  

As expected, we have quite a large variability of the mean corroded thickness in the whole tank. 

Each of the above value is the average among, at least, 50 thickness measurements. Therefore, it 

is unlikely that their differences are simply due to the randomness of the corroded thickness 

variable itself, but are clearly due to the different environment with whom each structure is in 

contact with.  

The deck plates, the side shell plates, the bottom plates, the longitudinal bulkhead plates and the 

plates of the transverse bulkheads are experiencing different environments on the outer surface. 

Hence it is logic to expect – for any of them – a different value of the mean corroded thickness. 

And this is actually what we observe from the table above.  
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We also know that processed oil is less aggressive than seawater (this is not the case for fresh oil, 

which contains some considerable reactive elements). However, we see that the longitudinal 

bulkhead and the transverse bulkhead number 1 have both experienced a quite severe corrosion, 

more than the deck, the bottom, the side shell and the transverse bulkhead number 2. The reason 

for that is that the surfaces exposed to oil are not coated in the inspected FPSO, and both the 

longitudinal bulkhead and the transverse bulkhead number 1 have both sides in contact with oil. 

This is of course not true for the deck, the side, and the bottom but also for the transverse 

bulkhead number 2, which is between an oil tank and a ballast tank.  

Webs and flanges of the stiffeners are all exposed - on both sides - to oil, therefore we would 

expect for all of them similar values of the mean corroded thickness.  However, this is not 

always the case. Moreover it is surprising the difference in the mean corroded thickness between 

the web and the flange of the same stiffener, which sometimes is quite large. A possible 

explanation for this may be the accumulation of residual oil, dirty water or dust on the stiffeners 

(for example, on the top surface of a web of a side longitudinals or on top of a flange of a bottom 

stiffener), which therefore creates some microenvironment with different corrosion rate.  

The big differences in the mean corroded thicknesses are suggesting us to consider each structure 

separately. Furthermore, for a more precise analysis, also the corroded thicknesses of the 

stiffeners and the attached plates must be treated separately. Analogously this need to be done for 

the web and flange of stiffeners.  

2.2 Corrosion trend as a function of the position on the vertical axis 
For the vertical panels (bulkheads, web frame and side shell) it is reasonable to expect different 

corrosion rate along the height. For example, a side shell plate would probably have an higher 

corrosion close to the waterline rather than at its lowest part (corrosion is generally more severe 

in the splash zone, [8]).  
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To investigate this effect let us plot the mean corroded thicknesses as a function of the position. 

In the figures from 2 to 5, each dot is the average between 8 or 10 different measurements made 

on a single unstiffened plate (each blue portion in figure 1). On the horizontal axis the location 

(from the lowest to the highest) of the unstiffened plate with respect to the structure height is 

plotted (each horizontal stiffener is numbered, from down to the top; the values on the horizontal 

axis are the numbers of the horizontal stiffener attached to lower side of the inspected 

unstiffened plate). 

 
Figure 1 - Example of measurement location on a FPSO bulkhead 
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Figure 2 – Corroded thickness trend on the longitudinal bulkhead 

 

Figure 3 – Corroded thickness trend on the side shell 
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Figure 4 – Corroded thickness trend on the transverse bulkhead number 1 

 

Figure 5 – Corroded thickness trend on the transverse bulkhead number 2 
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From the figures above we see that: 

 for the longitudinal bulkheads the corrosion rate is higher at the bottom, and decreases 

going upwards; 

 for the transverse bulkhead number 1 we see the opposite behavior; 

 for the transverse bulkhead number 2 and the side shell we don’t see any particular trend 

of the corrosion rates along the height of the structure. 

Therefore it is quite hard to make any conclusion based on this results, as we do not see a 

common trend in all structures, and sometimes we even see opposite trends. If a (re)assessment 

of one of these vertical structure was needed, then the best choice – on the base of these 

observations – would be to group and process all the measurements relative to that structure 

together.  

In order to make some definitive conclusions more inspection reports, possibly from more tanks, 

more units and more ocean areas must be analyzed. Since this analysis is focusing on the deck, 

this has not been done. For the deck case, it was chosen to group and process all the plate 

corroded thickness measurements together. However, in order to include a degree of 

conservativeness, only the measurements which actually showed some corrosion have been 

considered. This means that all measurements giving a zero corroded thickness have been 

disregarded. 

This last hypothesis is also needed to take into account the fact that such a large structure like the 

deck may not have a corrosion rate equivalent all over its surface, and therefore “grouping all the 

measurements together” may led sometimes to too optimistic results. Hence, an extra degree of 

conservativeness is needed, and it was chosen to apply it for the considered case by neglecting 

the zero corroded thickness measurements.  

2.3 Probability and statistics theoretical background 

2.3.1 Truncated distribution 

A truncated distribution is a conditional distribution that results from restricting the domain of 

some other probability distribution. We need to use truncated distributions for the corroded 

thickness as of course we cannot generate corroded thicknesses higher than the initial gross 

thickness. Furthermore, since all measurements which gave a zero (or negative) corroded 

thickness have not been considered, a lower truncation is also needed. This lower truncation does 

not occur at               but, due to ”rounding up” reason, at                

The table 2 is giving the truncations for the corroded thickness distribution functions used in the 

case study which will be introduced in chapter 5.   ,    and    are the gross thicknesses of the 

plate, the stiffener’s web and stiffener’s flange, respectively.  
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Table 2 - Truncations in the corroded thickness distribution functions  used in the case study 

 Lower truncation Higher truncation 

 [mm] [mm] 

Plate 0.05    

Web 0.05    

Flange 0.05    

 

A truncated probability distribution function is defined as: 

                  
    

           
                                                                                           

Where: 

      
                
                        

                                                                                                                      

and       is the corresponding Cumulative Distribution Function (CDF) of the non-truncated 

distribution. Note that the truncated distribution has been created by not only “cutting” the 

original non-truncated pdf, but also scaling it, so to keep the value of the integral     
 

 
      

equal to 1. 

The CDF of the truncated distribution can be found through integration: 

        
    

           
   

 

  

 
 

           
        

 

  

 
 

           
        

 

 

 
 

           
        

 

 

 
           

           
                                                  

It is important to underline that a truncated distribution is defined by two more parameters, 

besides the usual scale and shape factor (or, in some cases, the standard deviation and the mean, 

with the exception of the exponential distribution which is defined by only one parameter). 

These two parameters are the truncations   and  . A 4 parameters dependent distribution is a 

more flexible distribution than a 2 parameters distribution, and therefore should fits better to the 

empirical one.  

2.3.2 Methods for estimating parameters and distributions 
There are different methods to estimate the parameters of a distribution. In our case we will use 

two of them: 

1. the method of moments; 

2. the maximum likelihood estimation (MLE). 



 

38 
 

The method of moments assumes that the parameters of the assumed distributions are the same 

than the parameters of the empirical distribution. The mean value and standard deviations of the 

observations are first calculated, and then converted to the desired parameters of the theoretical 

distributions.  Sometimes (e.g. for the normal distribution) the parameters of the distribution are 

the mean and the standard deviation themselves, and thus no conversion is needed. This is the 

easiest method, but not always the more efficient.  

The maximum likelihood estimation calculates the parameters by maximizing a so-called 

likelihood function        . The likelihood function expresses the likelihood of a set of 

parameters,    given the observed outcomes   , which is equal to the probability of those 

observed outcomes, given those parameters values  . That is: 

                          

 

   

   

Often, the log-likelihood function              is used rather than the simple likelihood function, 

as the obtained analytical expression of the log-likelihood function is usually simpler. Very often 

the estimator computed with the MLE are more efficient than the one derived using the method 

of moments. 

In our analysis, we will check the quality of fitting (with the methods explained in paragraphs 

from 2.3.5 to 2.3.8) of the following assumed theoretical distributions: 

1) truncated exponential distribution; 

2) truncated lognormal distribution; 

3) truncated gamma distribution; 

4) truncated normal distribution; 

5) truncated Gumbel distribution. 

2.3.3 Method of moments for the considered distribution type 

With this method, at first the mean    and standard deviation   of the observed material are 

calculated: 

   
   

 
   

 
                                                                                                                                                      

   
 

   
         

 

   

 

 
 

                                                                                                                           

Then, starting from the above, the parameters of the assumed distribution (which here are also 

called estimators) are calculated.   
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The truncated exponential distributions is a 3 dependent parameter distribution. The first two 

(lower truncation and higher truncation) have been already determined. The last one is the rate 

parameter  : 

  
 

  
                                                                                                                                                                 

The truncated lognormal distribution is a 4 dependent parameter distributions. The last two 

unknown parameters are the mean value and standard deviation of the associated normal 

distribution: 

      
   

       
                                                                                                                                       

        
 

  
 

 

                                                                                                                                        

The truncated gamma distribution is a 4 dependent parameter distributions. The last two 

unknown parameters are the shape parameter   and the scale parameter   of the associated 

normal distribution: 

  
   

  
                                                                                                                                                               

  
  

  
                                                                                                                                                              

The truncated normal distribution is the simplest case, since its last two unknown parameters are 

exactly the mean and standard deviation: 

                                                                                                                                                                    

                                                                                                                                                                   

Finally, for the Gumbel distribution, we have that the last two unknown parameters are the scale 

parameter         and the location parameter        : 

           
   

  
                                                                                                                                     

        
   

  
                                                                                                                                              

Where   is the Euler-Mascheroni constant: 
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2.3.4 Method of the maximum likelihood for the considered distribution type 
A likelihood function (or a log-likelihood function) need to be written for any of the 5 truncated 

distributions listed in paragraph 2.3.2.  

The exponential truncated distribution is given by the following: 

            
     

         
                  

                                              

                                                                                   

For the exponential truncated distributions, the maximum likelihood estimator exists if ([3]): 

     
   

 
 

Then, if (2.15) is true, the MLE estimator of an exponential truncated distribution is the root of 

the equation ([3]): 

 

 
                         

  
      

The above nonlinear equation has been solved numerical by MATLAB using the command 

“fsolve”. The algorithm used is the trust-region dogleg algorithm. This is a variant of the Powell 

dogleg method described in [4].  

The truncated lognormal distribution is: 

             

 
 
 

 
 

 

     
     

            

    

 
     

         

   
  

 
     

         

   
 
                  

                                                                                                

                           

The log-likelihood function of the truncated lognormal distribution is: 
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The truncated gamma distribution is: 

             

 
 
 

 
 

 
               

 
 
 

 
    

    
 
   

 
    

    
 
  

                  

                                                                             

                                              

The log-likelihood function of the truncated gamma distribution is: 
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The truncated normal distribution is: 

             

 
 
 

 
 

 

    
     

      

    

 
     

   

   
  

 
     

   

   
 
                  

                                                                             

                                              

The log-likelihood function of the truncated normal distribution is: 

        

 

    
     

       

    

 
     

   

   
  

 
     

   

   
 

 

   

 

        
 

 
    

   

   
  

 

 
    

   

   
  

  

 
 

    
 
 

      
       

   

 

   

  

                
 

 
    

   

   
  

 

 
    

   

   
  

  

     
 

    
 
 

           
       

   

 

   

   

           

 
      

 

 
    

   

   
  

 

 
    

   

   
       

 

    
  

 

 
 

       

   

 

   

             

The truncated Gumbel distribution is: 

                        

 

 
 
 

 
 

 
 

      
         

 
      

         
 

   

           
         

 
                 

         
 

     
              

                                                                                                                                                

                     

The log-likelihood function of the truncated Gumbel distribution is: 
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The log-likelihood functions (2.18), (2.20), (2.22) and (2.24) have been maximized by means of 

the MATLAB command “fminsearch”. The algorithm used is the Nedler-Mead simple algorithm 

([5]). 

2.3.5 Kolmogorov-Smirnov test 
The Kolmogorov-Smirnov test (KV test) is a way to check the goodness of fitting an empirical 

distribution with a theoretical assumed distribution. First of all, the following test quantity has to 

be calculated: 
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    index of the observations, after that all of them have been properly sorted, from lowest 

to highest value 

    total number of observations 

        theoretical assumed distribution 

It is good to note that (2.25) is actually giving an indication of the maximum difference between 

the assumed distribution and the empirical one.  

This quantity has to be lower than a threshold value, otherwise the assumed distribution must be 

dismissed. If the parameters of the distribution       have been estimated from the same 

statistical material with which the distribution is compared (which is the case here), and if 

    , then: 

            
 

    
                                                                                                                                    

    number of parameters 

    parameter function of   and the significance level   

In a intuitive way, although not very rigorous, the significance level can be defined as the 

probability that the experimental results have been caused by purely statistical accident. In our 

case a significance level of 5% has been chosen.  

In annex A the table for the            as a function of   and   is given. 

2.3.6 Least squares method 
First of all, an empirical distribution need to be calculated. The literature proposes different way 

to calculate the CDF of an empirical set of data, namely: 

      
 

 
                                                                                                                                                       

      
 

   
                                                                                                                                               

      
     

 
                                                                                                                                             

  is the index of the observed value, after that they all have been properly sorted from the lowest 

to the highest,   is the total number of empirical values. 

The empirical CDF estimated with (2.27) has showed to have better statistical properties than the 

other two ([2], p. 270) and therefore this is the formula which has been chosen.  
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Then, the sum of squares error (SS) is calculated: 

                         
             

 
 

   

                                                                               

   
      empirical distribution 

        assumed theoretical distribution 

Of course the distribution giving the least squares error is, according to this method, giving the 

best fit.  

Often, it was decided to use a weighed sum of squares errors, in order to give more importance to 

the tails of the distributions, which is of course the parts in which we are more interested in: 

                            
             

 
 

   

                                                                       

2.3.7 Linearization of the cumulative distribution function 
In order to visualize graphically the efficiency of the estimator, sometimes it may be convenient 

to linearize the CDF. To do that, a relationship like (2.31) has to be found. 

     
   

 
                                                                                                                                         

  and   are two parameters (first one is a “location parameter”, the second a “scale parameter). 

In this way the linearized empirical CDF       – as it will be clear in the following examples – 

can be expressed as a function of the empirical original distribution,   
       

For the truncated exponential distribution: 

      
            

           
                                                                                                                        

                                    
  

                                                                     

                     
                  

  

                                                                          

For the truncated lognormal distribution: 
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The (2.35) will look linear if we use a logarithmic scale on the horizontal axis. 

For the truncated gamma distribution: 

      
         

 
          

           
                                                                                                      

         
 

 
    is the lower gamma incomplete function. Sometimes there is some ambiguity 

about its definition. Hence here I will report the definition used in this report, which is the same 

used by the MATLAB software: 

         
 

 
    

 

    
          

   

 

                                                                                           

Where      is the gamma function. 

Then: 

                                       
 

 
                                                            

         
                                                                                                                        

The (2.39) will look linear if we plot             
 

 
    on the horizontal axis.  

For the truncated normal distribution: 

      

 
  

 
     

   

   
       

           
                                                                                                          

                                            
   

   
                                              

                   
                                                                                         

For the truncated Gumbel distribution: 
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As we will see in paragraph 2.4 the plots of the linearized versions of the empirical and assumed 

distributions can give some useful indications on the overall quality of fitting. It must be 

underlined the word “overall” as they cannot give any information on the local quality of fitting 

(e. g. in the tales of the distributions). This is due to the different scale on the vertical axis, that 

is, if we calculate two differences in the linearized CDF between the assumed distribution and 

the empirical one: 

                   

                   

with:         and      , then it does not automatically follow that: 

       
                     

              

Hence, attention must be used when reading this graphs (especially when comparing two 

different types of distributions; they work much better when comparing the same type of 

distribution – e.g. the lognormal – but with different estimators – i.e. the method of moments 

estimators and the maximum likelihood estimators). 

2.3.8 Quantile-quantile plot 
Another graphical method to evaluate how close an assumed distribution is to an empirical one 

are the quantile-quantile plots (q-q plot). These plots are also useful to compare two or more 

distributions.  

Quantiles are values taken at regular intervals from the inverse of the cumulative distribution 

function of a random variable. A q-q plot is then a plot in which: 

- the quantiles of the assumed theoretical distributions are plotted on the horizontal axis;  

- the quantiles of the empirical distributions are plotted on the vertical axis. 

Each dot of a q-q plot represents then a value of the CDF (e.g. 30%) whose x-coordinate is the 

inverse of it according to the assumed theoretical distributions (that is, the value with a 

probability of non-exceedance equal to 30% according to the assumed theoretical distributions), 

and the y-coordinate is the inverse of it according to the observed samples (that is, the value with 

a probability of non exceedance equal to 30% according to the empirical data). Obviously, the 

closer each dot will be to the bisector of the quadrant, the closer to the empirical distribution the 

assumed distribution is. 

2.4 Results of the distribution estimation 
In this paragraph, all the statistical concepts introduced in paragraph 2.3 (method of moments, 

MLE method, KS test, q-q plot, weighed and non weighed least squares error, linearized CDF) 
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will be used to evaluate which truncated distributions fits better to the data coming from the 

inspections. Much attention has been given to this part, as the results of a reliability analysis 

strongly depends on the quality of the assumed distributions for the input data. 

This procedure has been repeated three times: for the deck plate, the web deck longitudinals and 

the flange deck longitudinals. Indeed, the FPSO used for the case study run as a part of this 

Master Thesis (see chapter 6) has L-profile stiffeners attached to the deck. However, since it was 

not possible to get thickness measurements from this monitored unit, for the case study it was 

chosen to use thickness measurements coming from another FPSO, and assume that they are the 

same also for the MONITAS monitored FPSO used in the case study. 

The problem is that the inspected FPSO from which thickness measurements comes from has flat 

bar stiffeners on the deck (thus with no flange). Hence, it was assumed that the corroded 

thickness data for the web longitudinals are valid also for the flange longitudinals. This does not 

mean that the corroded thickness distributions for the web and the flange will be the same, as the 

truncation values   and   are different (since the gross thicknesses for the flange and the web are 

not equal)! 

2.4.1 Deck plate 
The first two parameters of the distributions are the two truncation values   and  , which are 

already known: 

          

           

We will start with giving the results of the KS test (table 3) and the least squares method (table 

4). 

Table 3 - Kolmogorov-Smirnov test for the deck plate corroded thicknesses 

 Method of moments MLE 

 y y threshold y y threshold 

Exponential truncated distribution 0.095 0.178 0.106 0.178 

Lognormal truncated distribution 0.170 0.179 0.109 0.179 

Gamma truncated distribution 0.112 0.179 0.098 0.179 

Normal truncated distribution 0.210 0.179 0.156 0.179 

Gumbel truncated distribution 0.145 0.179 0.096 0.179 
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Table 4 - Least squares method for deck plate corroded thicknesses 

 Method of moments MLE 

 SS SS 

Exponential truncated distribution 0.042 0.033 

Lognormal truncated distribution 0.063 0.043 

Gamma truncated distribution 0.038 0.032 

Normal truncated distribution 0.241 0.112 

Gumbel truncated distribution 0.081 0.031 

 

The MLE is almost always giving better approximation than the method of moments (and this 

one will be a constant throughout this report, as expected).   

The KS test is giving particularly good results for the gamma truncated distribution and the 

Gumbel truncated distribution (provided that the parameters are estimated with the MLE 

method). The sum of squares method is also giving very good results for these two distributions, 

but it is also giving analogous good results for the exponential truncated distribution (still  with 

MLE parameter). 

The weighed sum of squares method has been implemented using (2.48), and the results of this 

method are listed in table 5.  

                                                                   
 

      

 

   

                        

Table 5 – Weighed least squares method for deck plate corroded thicknesses 

 Method of moments MLE 

 Weighed SS Weighed SS 

Exponential truncated distribution 0.037 0.023 

Lognormal truncated distribution 0.020 0.020 

Gamma truncated distribution 0.018 0.016 

Normal truncated distribution 0.149 0.070 

Gumbel truncated distribution 0.041 0.016 

 

One more time, the gamma and the Gumbel truncated distributions (with MLE parameters) are 

giving the best results (although the differences between all the considered distributions are 

generally small, with the only exception of the normal truncated distributions which is very far 

from the empirical one).  The lognormal and the exponential distribution are also giving quite 

precise approximations.  

The results gained so far are also confirmed by the following figures.  In figures 6 to 10 the 

linearized empirical and assumed distributions  are plotted. We don’t see very large disagreement 
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between the two, with the only exceptions of the normal distribution, as expected. For all of them 

we can see the better performance of the maximum likelihood estimators compared to the 

method of moments estimator. 

 

Figure 6 – Linearized exponential CDF  for the deck plate corroded thickness: method of moments (left) and MLE (right) 

 

Figure 7 - Linearized lognormal CDF (MLE) for the deck plate corroded thickness: method of moments (left) and MLE 

(right) 
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Figure 8 - Linearized normal CDF (MLE) for the deck plate corroded thickness: method of moments (left) and MLE 

(right) 

 

Figure 7 - Linearized gamma CDF (MLE) for the deck plate corroded thickness: method of moments (left) and MLE 

(right) 

 

Figure 8 - Linearized Gumbel CDF (MLE) for the deck plate corroded thickness: method of moments (left) and MLE 

(right) 
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Since more than one distributions is giving a satisfactory approximation (and this was possible 

thanks to the high number of samples; for the web and the flange we will see that this will be no 

longer the case), it was decided to choose the one which is giving the best results in the very 

extreme tail of the distributions (since our strength reassessment is an ultimate state analysis, 

thus we are more concerned with the extreme events). We can clearly see from figure 11 that the 

lognormal and exponential distributions are very close to the empirical distributions. 

 

Figure 9 - Comparisons of the empirical CDF with the assumed ones for the deck plate corroded thicknesses 

 

Finally, the q-q plot is showing extremely good results in the very extreme tail of the empirical 

distribution for the exponential distribution (and, to a less extent, for the lognormal distribution). 
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Figure 10 – q-q plot for the deck plate corroded thicknesses 

To sum up: 

- the KS test is suggesting us to use the gamma and Gumbel distributions;  

- the SS method is giving the same good results for the gamma, the Gumbel and the 

exponential distribution; 

- the weighed method is giving very good results for the gamma and the Gumbel, and 

good results for the lognormal and the exponential; 

- comparison of the different assumed CDFs with the empirical one is telling us that the 

exponential and the lognormal distribution are the closest to the empirical distribution in 

the extreme upper tail of the empirical distribution; 

- the q-q plot is confirming what it has been seen with the comparison of the different 

assumed CDFs in figure 11, but it is also underlining that the exponential distribution 

has a slightly better performance than the lognormal distribution in the extreme tail of the 

distribution. 

Finally, the exponential distribution (with MLE estimator) was chosen (figure 13), with the 

following parameter: 

                      

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

theoretical quantiles

e
m

p
ir
ic

a
l 
q

u
a

n
ti
le

s

 

 

Exponential

Lognormal

Gamma

Gumbel



 

54 
 

 

Figure 11 - Exponential truncated probability distribution function for the deck plate corroded thickness 

2.4.2 Web deck longitudinals 
The first two parameters of the distributions are the two truncation values   and  , which are 

already known: 

          

           

In tables 6 and 7 there are the results of the KS test and SS method respectively, for the web deck 

longitudinals. 

Table 6 - Kolmogorov-Smirnov test for the web deck longitudinals corroded thicknesses 

 Method of moments MLE 

 y y threshold Y y threshold 

Exponential truncated distribution 0.242 0.225 0.144 0.225 

Lognormal truncated distribution 0.290 0.228 0.287 0.228 

Gamma truncated distribution 0.285 0.228 0.270 0.228 

Normal truncated distribution 0.339 0.228 0.285 0.228 

Gumbel truncated distribution 0.301 0.228 0.276 0.228 
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Table 7 - Least squares method for the web deck longitudinals corroded thicknesses 

 Method of moments MLE 

 SS SS 

Exponential truncated distribution 0.134 0.037 

Lognormal truncated distribution 0.101 0.095 

Gamma truncated distribution 0.110 0.095 

Normal truncated distribution 0.183 0.124 

Gumbel truncated distribution 0.119 0.095 

 

According to the KS test, all the distributions but one must be disregarded. The only good one is 

the truncated exponential distribution with the MLE estimator. The SS method is giving 

consistent results with the KS test.  

If we look at the comparison between the different CDFs (figure 14) we clearly see the better 

performance of the exponential truncated distribution compared to the other.  

 

Figure 12 - Comparisons of the empirical CDF with the assumed ones for the web deck longitudinals corroded thicknesses 

However, it may seem that the exponential distribution in the very upper extreme of the 

distribution is not the best approximation (as it is confirmed by the q-q plot, fig. 15).  
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Figure 13 - q-q plot for the web deck longitudinals corroded thicknesses 

The q-q plot may seems inconsistent with the weighed sum of squares method (tab. 8), which is 

– one more time – giving the lower error in the case of a truncated exponential distribution with 

MLE. This is only an apparent inconsistency, since the weighed SS method is still influenced by 

the very bad behavior of the non-exponential distribution in the lower and middle part of the 

distribution. 

Table 8 –  Weighed least squares method for the web deck longitudinals corroded thicknesses 

 Method of moments MLE 

 Weighed SS Weighed SS 

Exponential truncated distribution 0.026 0.006 

Lognormal truncated distribution 0.012 0.011 

Gamma truncated distribution 0.014 0.012 

Normal truncated distribution 0.025 0.017 

Gumbel truncated distribution 0.015 0.011 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

theoretical quantiles

e
m

p
ir
ic

a
l 
q

u
a

n
ti
le

s

 

 

Exponential

Lognormal

Gamma

Gumbel



 

57 
 

Finally the truncated exponential distribution with the following MLE estimator was chosen: 

                      

 

Figure 14 - Exponential truncated probability distribution function for the web deck longitudinals corroded thicknesses 

2.4.3 Flange deck longitudinals  
The first two parameters of the distributions are the two truncation values   and  , which are 

already known: 

          

           

As already said before, the thickness measurements for the flange are not available. Hence, the 

corroded thicknesses for the web have been used, assuming they would be the same. The results 

for the flange will not be shown, as they are exactly the same than the one for the web. This 

conclusion may seem extremely obvious: on one hand this is right, but on the other we should 

underline that the parameter   is not the same for the web and the flange. This might have led to 

some small differences in the results between the web and the flange, but it did not.  
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2.4.3 Summary of the results 
In conclusion, the following random variables will be used as input data for the case study. 

Table 9 – Results of the corroded thickness processing 

Variable Distribution type  

Corroded thickness of the deck plate              

Corroded thickness of the deck longitudinal’s web              

Corroded thickness of the deck longitudinal’s flange              
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3 
Modelling looad variables 

In this chapter, the general methodology to determine the loads to use in our structural reliability 

reassessment, and the way to model uncertainties (both load uncertainties and strength 

uncertainties), are introduced.  

For the monitored loads it was possible to model the statistical uncertainties starting from the 

measurements. For the non-monitored loads, some literature research has been done.  

Actually, a lot of material has been found in the literature about the quantification of the 

statistical characteristics of the random variables involved in ship design. Indeed, this is a hot 

topic in the marine/offshore engineering, as the description of the statistical properties of the 

random variables significantly affects the result of a reliability-based structural analysis.  

However, not many material exists for FPSOs and ship-shaped offshore structures, and therefore 

many times it has been assumed that the validity of the probabilistic properties of the random 

variables for traditional ships still holds for FPSOs.  

Finally, some methods to combine loads and stresses are explained.  

It is important to underline the general validity of the content of this chapter, which – together 

with chapter 4 – is giving all the methodology behind the structural reassessment of corroded 

FPSOs. The application to a specific case study of the things described in these two chapters will 

be treated in chapters 5 and 6.  

In annex B there is a summary of all the random variables, and the way to model them, which 

will be used in the FPSO strength reassessment.  

3.1 MONITAS monitored data 
First of all, let’s summarize all the monitored data which are available from a ship endowed with 

the advisory hull monitoring system, in order to have an overview of the available monitored 

data. 

1. Load conditions: draft and ullage of all tanks (cargo tanks, ballast tanks, etc.); 
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2. Waves:  any 6 hours the significant wave height and peak period, for both windsea and 

swell, are recorded in two different scatter diagrams (one for wave and one for swell). 

Moreover, also the main direction (for both swell and sea) and the probability of 

occurrence of swell and swell together with sea are recorded. The peak period, the 

significant wave height and main direction will allow the calculation of a wave spectra 

(which is also recorded); 

3. 6 DOF motions of the vessel (in particular first order wave-induced accelerations; the 

second order wave drift force’s contribution to inertia force is negligible); 

4. FPSO orientation; 

5. Relative wave height; 

6. Stresses (in location free of stress concentration and caused by one dominant 

mechanism), measured by two different type of sensors (normal strain gauges and long 

base strain gauges); 

7. Wind speed and direction; 

8. Current. 

3.2 Long term distribution for wave induced loads 
In general, we can distinguish two different ways to derive a long term distribution from a 

numerical samples of measured data. 

The first one is to consider all the numerical measured values together, and to process them by 

finding a suitable pdf which best describes their distribution. This is the easiest way: it requires a 

direct monitoring of the parameters of interest, and not also of the sea states. 

The second method is what it is usually considered during the design of a new vessel, that is: for 

each sea state (wave spectra), get at first a response spectra, then a short term probability 

distribution. Finally the long term distribution is obtained by a “weighed sum” of the short term 

distributions, considering the probability of occurrence of each sea state and of each wave 

direction. This process requires the monitoring of the sea states and the wave main direction.  

Eventually, the response spectra can also be obtained by considering the measured response 

spectra (for example, in the case of stresses). 

In both cases a sufficiently long monitoring period (at least one year to take into account the 

seasonal variation) has to be considered.  

The first approach will be used in the current thesis. It is assumed that after a “sufficiently long” 

monitored period, the updated statistical properties of the loads derived from the monitored data 

will stabilize themselves.  

3.3 Modelling uncertainties for traditional cargo ships 
According to Nikolaidis and Kaplan ([2]) , the uncertainties of any generic random variables can 

be divided into: 
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1) statistical uncertainties, that arise simply from the randomness of the variable itself; 

2) modelling uncertainties, that arise from all the assumptions, simplifications, 

approximations necessarily involved in any engineering process. 

Hence, any random variable can be expressed as: 

                                                                                                                                                     

Where: 

    is the design value of the variable; 

    accounts for the statistical uncertainties; 

     accounts for the modelling uncertainties; 

   and     are random variables as well.  

This uncertainties classification has been used throughout the current project.  

3.3.1 Statistical uncertainties 

In our case,   : 

 for the monitored parameters, it is  already incorporated in the random variables   we 

will consider, since we will start directly from the measurements of a random variables 

rather than from its design value.  

 for the non-monitored parameters, it is a distinct random variables which multiplies the 

assumed deterministic value. 

A quick overview of the way statistical uncertainties are currently modelled during the structural 

reliability analysis of a traditional vessels is now given here: 

 Several studies have showed the stochastic nature of the SWBM. It has also been 

demonstrated that the coefficient of variation c.o.v. for the SWBM is usually higher for 

tankers (and hence FPSOs) rather than for containerships ([10]). In particular, from the 

results of studies carried out by Guedes Soares ([3]) and Guedes Soares and Dias ([4]), it 

can be concluded that the still-water bending moment can be approximated by a normal 

distribution for traditional cargo ships. 

 Static sea pressure can be considered a deterministic value, since the draught is usually a 

well monitored parameter, as it cannot exceed the freeboard draught ([1]).  

 Errors in the level of filling of tanks are generally small, and thus also them are 

considered deterministic values ([1]).  

 In the same way, stiffeners’ lengths and stiffeners’ spacing (and, in general, all 

constructional parameters) can be taken as deterministic value ([1]). 

 The static cargo pressure is usually assumed to be normal distributed for commercial 

vessel, with a coefficient of variance of 0,05 for liquid cargoes, which is the case for a 

FPSO.  
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 The extreme wave-induced loads (wave sea pressure, wave cargo pressure and wave 

induced bending moments) are best fitted by a Gumbel distribution, as proposed by 

Faulkner ([5]).  

 The material properties (yield stress, Young’s modulus and others) are also usually taken 

as normal or lognormal distributed, but with a c.o.v. quite small (between 0,06 and 0,1) 

([12]).  

Table 1 – Usual way to model statistical uncertainties for traditional vessels 

Variable 
Probability density 

function 

Vertical static bending moment Normal distribution 

Vertical wave bending moment Gumbel distribution 

Horizontal wave bending moment Gumbel distribution 

Load cargo dynamic pressure Gumbel distribution 

Load cargo static pressure Normal distribution 

Sea water dynamic pressure Gumbel distribution 

Sea water static pressure Normal distribution 

Material properties (yield stress, fracture toughness, Young modulus) 
Normal or lognormal 

distribution 

Level of filling of tanks Deterministic value 

Geometric dimension (stiffener length/spacing, main hull dimensions, 

design thickness) 
Deterministic value 

 

3.3.2 Modelling uncertainties  

Some of the uncertainties which     has to take into account are: 

 approximations made in the fitting of the empirical distribution with a continuous 

probability distributions function, especially in the tales (i.e. at the extremes) of the pdf, 

where there is obviously a lack of data since we are dealing with rare events; 

 application of the simple beam theory for stiffeners; 

 applications of the different plate theories for plates; 

 approximations in modelling of the failure mechanism; 

 approximations due to the structural idealization (beam model, plate model, boundary 

conditions); 

 human error; 

 fabrication tolerances; 

 differences resulting from use of different reliability analysis methods. 

Analogously to what has been done before for the statistical uncertainties, the following presents 

a short summary of the way modelling uncertainties are currently usually modelled. 

 Modelling errors for the static loads (SWBM,  static cargo loads and static pressure) are 

generally neglected ([1]). 
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 For both the VWBM and wave-induced local loads, an average value equal to unity and a 

c.o.v. between 0,1 and 0,15 can be assumed for the coefficient    , which will be taken as 

normally distributed ([1]). The same coefficients will be also used for the HWBM. 

 The load combination factors introduce new statistical uncertainties, which are usually 

taken as normally distributed ([1]).  

 

We should underline one more time that this way of modelling the modelling uncertainties refers 

to traditional commercial vessel, and therefore the extension of the validity of these coefficients 

to our FPSO reassessment procedure must be discussed and eventually justified.  

Table 2 – Usual way to model modelling uncertainties for traditional vessels 

Modelling errors’ variables 
Mean 

value  
c.o.v. 

Probability density 

function 

Vertical static bending moment - - - 

Vertical wave bending moment 1 
0.1-

0.15 
Normal 

Horizontal wave bending moment 1 
0.1-

0.15 
Normal 

Load cargo dynamic pressure 1 
0.1-

0.15 
Normal 

Load cargo static pressure - - - 

Sea water static pressure - - - 

Sea water wave pressure 1 
0.1-

0.15 
Normal 

Loads combination factors local static pressure and wave 

induced pressure 
1 0.15 Normal 

Loads combination factors SWBM and VWBM 1 0.15 Normal 

Loads combination factors HWBM and VWBM 0.9 0.15 Normal 

Loads combination factors local load induced stress and 

hull girder induced stress 
1 0.15 Normal 

 

However, an important consideration needs to be done for the monitored loads. All these 

modelling uncertainties coefficients are valid for the  design phase. They have all been estimated 

to “correct” all the mistakes which are made by assuming a certain deterministic design value. 

However, the reason we monitor loads is actually to reduce the modelling uncertainties. 

Therefore, it is a non-sense to use the modelling uncertainties coefficients, which are supposed to 

be used for the design of a new vessel, also to multiply the monitored random variables. In other 

words, we have now some knowledge which during the design of the unit we did not have, and if 

we use the modelling uncertainties coefficients that are intended for the design of a new vessel, 

we “throw away” a portion of the extra knowledge gained. 
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On the other hand, we still cannot set to zero the modelling uncertainties. Therefore it was 

chosen to keep using the same modelling coefficients, but it must be pointed out the paradox in 

using these coefficients.  

Finally, there are also some modelling uncertainties related to the methods adopted to derive the 

failure functions. In chapter 4 a large number of models (simple beam theory, classical plate 

theory, large deflection analysis, and others) have been used to write down the limit state 

functions. However, these models are not the only one. For each failure modes, different 

equivalent methods, either analytical or empirical or numerical, which can give similar but 

different results, exist. In the present work these uncertainties have not been modelled. However, 

in chapter 4 the validity of the analytical methods used for the computation of the ultimate 

strengths is shown through a comparison with a non-linear finite element model.  

3.4 Loads combination 
In any ship structural assessment there are some loads which need to be combined. In our case, 

the loads to combine are: 

1. SWBM and VWBM (and the corresponding induced stress); 

2. HWBM and VWBM (and the corresponding induced stress); 

3. The local static pressure and local wave induced pressure  (and the corresponding 

induced stress); 

4. The local load induced stress and the hull girder induced stress. 

It must be pointed out a fundamental difference between the distribution of static loads and wave 

induced loads: in a reliability analysis the distributions for wave induced loads are extreme value 

distributions, while the distributions for the static loads are not. It is evident then the extremes 

values of wave induced loads may not occur at the same time. Hence, we should consider a way 

to combine these wave induced loads, in order not to make our assessment too conservative. 

To combine the a static load and a wave-induced load two different methods have been used and 

compared in this thesis. 

The first one is the Square Root of Sum of Squares (SRSS) method. If              is a linear 

combination of independent loads, then the maximum combined loads using the SRSS method 

is: 

             
    

 

                                                                                                                                 

The second one is the Turkstra’s rule. If                  is a linear combination of 

independent loads, then the maximum combined loads using this method is: 
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For the static loads and wave induced loads it is more likely that the maximum loads will occur 

simultaneously, thus a more conservative combination method will be used, which is the peak 

coincidence method: 

               

 

                                                                                                                                    

This method can also be used to combine a local load induced stress with an hull-girder induced 

stress. 

Both the peak coincidence method and the SRSS method are deterministic methods. However, in 

literature it is also possible to find stochastic methods to combine the SWBM and HWBM (Ferry 

Borges and Castenheta, [7] and Moan and Jiao, [8]). In 1984 Guedes Soares ([9]) demonstrated 

that stochastic methods provide exact solutions for combining still-water and wave-induced 

bending moments. However, they have not been used in the current master thesis, but it is 

important to point it out for eventual further improvements of the FPSO reassessment procedure 

3.5 Loads identification for FPSOs endowed with AHMS 
On the base of all the considerations made before, let us see the way each load can be derived 

and modeled for the specific FPSO case. In annex B it is possible to find a summary of this 

paragraph.  

3.5.1 Still water bending moment 
The vertical static bending moment can be written as: 

    
                                                                                                                                     

   , the modelling uncertainties, have been neglected, analogously to the usual practice for 

traditional vessels. The statistical uncertainties will be modeled by processing all the SWBM 

values recorded by the on-board computer.  

The statistical nature of the still water bending moment is due to the different load conditions in 

which an FPSO may be during its lifetime. This variability is further increased by the utilization 

of on-board computer load programmes, which give more freedom to the operator during the 

loading procedure. These software can calculate the SWBM distribution for any load condition, 

and - as long as the maximum load is within the specified allowable limit – the operator is free to 

load the ship in any way he prefers.  

As already said before,    for traditional commercial vessels has usually been modelled as a 

normal distributed random variable. However, in 1988 - based on 453 actual still water load 

condition recorded during the first two operational years of an FPSO (with typical duration of 

each load condition varying from several hours to one day), Moan and Jiao ([11]) found that the 
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SWBM was best fitted by a Rayleigh distribution in sagging and exponential distribution in 

hogging.  

An important distinction between the time domain representations of the SWBMs for 

commercial oil tanker and FPSO must be pointed out. For a tanker the SWBM time history looks 

more like a rectangular pulse process: 

 

Figure 1 – SWBM time trace in a traditional tanker 

The probability distribution function is then estimated by considering each load condition 

independently, without looking at the duration of each load condition (which is also a random 

variable).  

For FPSO the SWBM time history will look more like a saw tooth wave (every two/three weeks 

the FPSO is offloaded, and offloading operation will take about one/two days).  

 

 

 

Figure 2 – SWBM time trace in an FPSO 

Hence, in this case a uniform distribution is expected.  

3.5.2 Vertical wave bending moment 
On the deck of a ship endowed with the MONITAS system, there are 4 long base strain gauges 

(usually located on two different cross section), which are used to measure the wave bending 

moments induced strains (and thus stresses). If we know the section modulus of the FPSO, it is 

possible to compute the VWBM from the strain measurement. Then, we can fit the extremes 

distribution, to find its probability distribution (usually this is a Gumbel distribution).  
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However, we will have the results for just two sections. We can extend the determination of the 

VWBM to the whole hull girder length by considering the design VWBM distribution over the 

hull girder length (for different heading angles, if the FPSO is a spread moored FPSO), and 

scaling it by a factor which was obtained by comparing the design VWBM and the measured 

VWBM in the two cross section with gauges (one different factor for any heading angle). We 

assume then that the ratio between measured VWBM and design-predicted VWBM is the same 

along the whole hull girder length. The scaling factors have to be calculated comparing the 

measured VWBM and the design VWBM with an equal probability of occurrence. Generally the 

characteristic value computed during the design (with a strip theory or diffraction code) or the 

characteristic value used in a rule-based design have a probability of occurrence in the whole 

ship lifetime of     . 

A sufficiently long monitoring period needs to be taken, for sure no less than one year (typically 

in one year we have       load cycles) to take into account the seasonal variations.  

The modelling uncertainties in the current tanker design practice are modelled with a normal 

distribution with average value equal to 1 and c.o.v. between 0,1 and 0,15. In our case it was 

chosen to use the less conservative of these two values (thus c.o.v. equal to 0,1), since – as we 

are using some monitored stress on the deck – it is reasonable to expect a less uncertain VWBM.  

3.5.3 Horizontal wave bending moment 
The long base strain gauge can be used also for the determination of the HWBM, by a 

comparison of the PS and SB gauges. This is possible under the assumption that the vertical 

neutral axis will lie in the central plane of the unit. This hypothesis is absolutely valid for turret 

moored FPSO, but may not be valid for unit with a lot of risers attached to one of its sides. 

The modelling uncertainties will be modeled in the same way as it was done for the VWBM 

(normal distribution with mean 1 and c.o.v. 0,1). 

3.5.4 Static sea pressure 
If we know the draft, then the hydrostatic sea pressure can be calculated without adding extra 

uncertainties. Therefore the hydrostatic sea pressure will be a random variable, whose 

distribution will be the same of the draft.  

3.5.5 Dynamic sea pressure on the side 
In the MONITAS system there are no pressure sensors on the sides of the vessel. However the 

wave pressure on the sides of the vessel can be indirectly measured from the relative wave 

elevation. The pressure above the wave is zero. The pressure beneath the wave trough is 

calculated according to the linear wave theory: 

                                                                                                                        

   is the density of water 

      is the (monitored) relative wave amplitude  
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   is the vertical position 

      is the still water line vertical position 

   is the wave number 

The modelling uncertainties will be modeled – according to table 2 – with a normal distribution 

with an average 1 and a c.o.v. of 0,1. 

3.5.6 Cargo/ballast static pressure 
There is no modelling uncertainty related to the static cargo/ballast pressure. There is, however, a 

statistical uncertainty related, for example, to a density variation of the liquid cargo/ballast or to 

tank ullage variation. This can be modeled with a coefficient with a normal distribution, an 

average value equal to 1, and a c.o.v. of 0,05 ([1]). The nominal value of the cargo/ballast static 

pressure is, of course, the design value. 

3.5.7 Cargo/ballast dynamic pressure 
Moreover, we need to model the cargo and ballast dynamic pressure. This includes: 

 the inertia pressure; 

 the sloshing impact pressure. 

Due to its complexity, the sloshing impact pressure will be assumed to be a deterministic 

(design) value. 

The inertia pressure can be expressed as a function of the monitored accelerations.  

Indeed, the inertia pressure is a function of the liquid density too, which is also a random 

variable. If we assume that the cargo/ballast static pressure uncertainties are only due to the 

density variations, then we can model the statistical uncertainties of the density in the same way 

as the cargo/ballast static pressure, that is with a normal distribution with a c.o.v. of 0,05. 

Since the cargo/ballast inertia loads are still wave-induced loads, the modelling uncertainties will 

be modeled in the same way as for the wave sea pressure on the side. 

3.5.8 Load combination factor 
As already said, three different load combination methods will be used. The peak coincidence 

method is assuming that the peaks of the two loads occur simultaneously; the SSRS method is 

assuming that the peak coincidence method of the two loads occur with a phase shift of 90 

degrees; the Turkstra’s rule is combining the mean value of a load component with the extreme 

value of the other load component. Each of these three load combination methods introduces 

new modelling uncertainties.  

Reference [17] is giving some modelling uncertainties (table 3) for different load combination 

methods. They have been derived for the particular case of the combination of the VWBM with 

the slamming-induced vertical bending moment. There is a shortage of data related to this topic, 

therefore we will assume that they are still valid for all the types of load combination (and, in 
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particular, for the load combination between the VWBM and the HWBM, which is the only one 

needed in the case study – see  chapter 6).  

Table 3 – Modelling uncertainties for load combination methods 

Modelling uncertainties Bias c.o.v. 

Peak coincidence 0.72 0.11 

SRSS 1.01 0.12 

Turkstra 1.17 0.11 

 

3.5.9 Material properties and constructional parameters 
The material properties we are interested in, are: 

- Yield stress; 

- Fracture toughness; 

- Young modulus; 

- Poisson’s ratio; 

The source of statistical uncertainties for these values is the material non-homogeneity, the 

presence of defects, etc.. The modelling uncertainties are due, for example, to the different 

conditions (for example of temperature) in which the measurement tests have been made, or to 

measurement error. 

The constructional (geometric) parameters we are interested in are: 

- Main hull dimensions; 

- Stiffener length; 

- Stiffener spacing; 

- Thickness (design gross thickness, thus no corroded yet). 

The continuous improvement of the methods of construction and implementation of quality 

control procedure in shipyards and steel works has made uncertainties in the main dimensions of 

the hull and thicknesses more and more negligible. Therefore uncertainties for constructional 

parameters can be assumed to be zero.  

With regards to the statistical uncertainties of the mechanical properties, more detailed study 

revealed that: 

 The Poisson ratio is generally considered to be a deterministic value; 

 With regards to the yielding strength, Mansour et al. ([13]) in 1984 conducted several 

tests on different steels. They recommended the lognormal distribution for both ordinary 

and higher strength steels. Hess et al. ([12]), on the basis of the same data used by 

Mansour in 1984, suggested to use an average bias of 1,11 and average c.o.v. of 0,068 for 

ordinary steel, and an average bias of 1,22 and average c.o.v. of 0,089 for high strength 
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steel. Moreover more recent tests have showed that a Weibull distribution or a Gumbel 

distribution are all equally valid choice for describing the yield strength of steel. 

However, we will use the lognormal distribution. We should keep in mind that also the 

steel thickness (besides the steel type) has an influence on the yield strength distribution; 

however this influence, which Hess ([12]) proved to be small, has been neglected. 

 Hess et al. ([12]), on the basis of several studies, concluded that a either normal or 

lognormal distribution can be used for the Elastic Modulus distribution. For both ordinary 

steel and high strength steel they recommended to use a mean bias of 1,024 and a c.o.v. 

of 0,0179. 

 Limited studies related to the ultimate strength of steels are available. Hess et al. ([12]), 

on the basis of the few studies available, suggested to use a normal distribution with a 

bias of 1,046 and a c.o.v. of 0,0477. 

 With regards to the stress intensity factor, if the linear fracture mechanics is used, and if 

only the mode I for crack propagation is considered, the SCF is       , where   

(remote stress) is the sum of the applied stress and the residual stress, and it is a random 

variable.   is the half-length of the crack. The applied stress can be calculated directly 

from the load measurements  (SWBM, VWBM, HWBM and lateral pressures), and the 

residual stress can be assumed to be half of the yielding stress (thus it is also a random 

variable). The crack length is also a random variable, but due to the lack of literature it 

will be considered a deterministic value. In particular, according to DNV ([16]) the value 

of      mm has been used. This represent the zero probability in the probability crack 

detection curve, that is smaller cracks cannot be detected.   

 Analogously to what has been done for the crack length, the critical fracture toughness 

   will be considered as a deterministic value as well. It is a property of the material, and 

it is possible to compute it using specific tables once the steel grade is known.  

As already said before, Nikolaidis and Kaplan (1991, [2]), on the basis of some FEM 

calculations they performed, concluded that a normal distribution with an average value of 1 and 

a c.o.v. between 0,1 and 0,15 can be used to model the modelling uncertainties of the strength 

capability. A c.o.v. value of 0,125 will be considered here.  

3.5.10 Corroded thickness 
The corroded thickness distribution will be estimated in each situation, based on the thickness 

measurements. 

Besides the statistical uncertainties, in the corroded thickness random variable there are also 

some modelling uncertainties, in particular due to errors in fitting the histograms with a 

continuous probability distribution, or error measurements. However, since in chapter 2 the 

thickness measurements processing was made in a conservative way, by not considering the zero 

corroded thicknesses, these uncertainties have not been modelled.  
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4 
Limit state functions 

In this chapter, some failure modes and failure criteria are introduced. For any of them a failure 

function (or limit state function, LSF) is given.   

4.1 Introduction 
Any limit state functions has been written as: 

                                                                                                                                     

The above equation is actually only valid if the capacity C and the demand D are independent 

random variables, but this is indeed the case for any of the examined cases.  

The structural elements in ships can be categorized as follows: 

1. hull girder; 

2. primary structure (transverse web frames, longitudinals girders, etc.); 

3. stiffened panels; 

4. unstiffened plate; 

5. structural details. 

In this master thesis, attention is given to stiffened panels and unstiffened plates. For any of these 

two structural elements, some limit states (i.e. some failure modes) have been identified. They 

have been further divided into two categories: 

 Serviceability limit state (SLS), involving deterioration of less vital functions under 

normal service loads; 

 Ultimate limit state (ULS), leading under extreme loads to the collapse of the structure. 

Both the stiffened panels and the unstiffened plate will be considered as single independent 

components.  

All the initial deflections and residual stresses will be neglected.  
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4.1.1 Sign convention and reference system 
The vessel has the horizontal longitudinal x-axis pointed forward, the vertical z-axis pointed 

upwards, the transverse y-axis pointed to the portside (right turning axis system).  

 

Figure 1 – Reference system 

The hogging bending moment is taken as positive, and the sagging bending moment as negative. 

The positive vertical shear is the upwards shear on the forward surface of a hull girder chunk.  

 

Figure 2 – Sign convention for vertical bending moment and vertical shear 

Analogously, the positive horizontal bending moment and positive horizontal shear are:  

 

Figure 3 – Sign convention for horizontal bending moment and horizontal shear 

The compressive normal stress are assumed to be negative, the tensile normal stress positive. 

4.2 Effective width and effective breadth 
Even though sometimes the expressions “effective width” and “effective breadth” are used as 

synonyms, they do not mean the same thing. 
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 We talk of “effective breadth” when lateral pressure is the dominant load components 

causing lateral deflection. Thus we are still in the elastic regime (no buckling caused by 

the axial components). Here the reduction of the plate breadth is due to the need to take 

into account the effect of the shear lag (and so the fact that the plating is not taking the 

same magnitude of normal stress along its breadth). 

 We talk of “effective width” when the plate deflections is mainly due to the axial 

compressive loads (thus, we are in the post buckling regime). Here the necessity to 

reduce the plate width is due to the lower ability of a buckled plate to absorb loads. There 

are actually more than one method to deal with a buckled plate, and the effective width is 

only one of them. In the effective width method, the buckled plate is modelled as a flat 

plate, but with a reduced plate breadth and eventually also a reduced effective length.  

It would be convenient to use the same effective breadth formulae which have been used for the 

original design of the FPSO. If they are not available, a Class Society formula may be used. A 

very simple design rules, used by ABS and other Class Societies, is to use an effective width 

which is the minimum between the stiffener spacing or the 1/3 of the stiffener span: 

           
 

 
                                                                                                                                          

    stiffeners spacing 

    panel length 

In 1975 Faulkner ([3]) has proposed a formula to calculate the effective width of a plate 

subjected to axial compressive loads in the x direction. The formula is: 

      
                              
  

 
 

  

                    

                                                                                                                 

Where: 

           and      for simply supported plates 

                 and         for clamped plates 

   
 

  
 

  

 
 is the plate slenderness coefficient 

4.3 Unstiffened plate limit state functions 
The limit state functions of unstiffened plates refer to the failure of the plating between 

longitudinals, under the assumption that the strength of the secondary stiffeners (e. g. 

longitudinals) is sufficient to prevent their collapse prior to that of the unstiffened plate. 

The limit states identified are: 

 Serviceability limit states: 
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- First yielding of the panel   

- Formation of plastic hinges 

 Ultimate limit states: 

- Elasto-plastic buckling  

- Fracture  

In order to help the reader, table 1 is giving a summary of all these failure modes, together with 

the analytical theory used for the derivation of the LSFs and the reference paragraph.  

Table 1 – Failure modes for unstiffened plates 

Failure mode Model Paragraph 

First yielding  Classical plate theory 4.3.1 

Formation of 

plastic hinges 
Classic plate theory and elasto-perfectly plastic material 4.3.2 

Elasto-plastic 

buckling 

Analytical method (Large deflection analysis combined with the 

membrane stress-based method)/Empirical method (Johnson Ostenfeld 

formula method) 

4.3.3 

Fracture Linear fracture mechanics 4.5 

 

Actually the elasto-plastic buckling is not a real “ultimate failure”, since ultimate failure of the  

plating almost never occurs (unless we have a fatigue or brittle fracture) because the stiffeners 

usually have a much lower load capacity than the plating. When the plate deflections became 

very large, there does arise some restraints against pull-in, and hence the plate gradually becomes 

a fully plastic membrane, for which the rupture load is enormous ([18]).  

For the serviceability limit state analysis of the panel, the small-delflection theory has been used, 

since in FPSO usually we are dealing with sturdy plates, that is plate with a small     ratio 

(slenderness coefficient    
     

      ). For this kind of plate the relative deflection     

(  is the lateral deflection of the plate) will be generally small ([18]). This is the same reason 

why elastic buckling has not been taken into account. 

For the yielding limit state the classical plate theory has been used (see 4.3.1), for the formation 

of hinges the elasto-plastic theory (see 4.3.2), for the elasto-plastic buckling the large deflection 

analysis combined with the membrane stress-based method (see 4.3.3) and finally for the fracture 

limit state the linear fracture mechanics (see 4.5) . 

Furthermore, in the small deflections elasto-plastic theory it is possible to base the failure criteria 

both on stress/bending moment (formation of one or more plastic hinges) and on deflections 

(formation of a permanent set). It was chosen the first criteria, since, as we said, deflections are 

usually small for sturdy plates and do not represent a problem. 

4.3.1 Yielding of unstiffened plates  
Four different load conditions will be considered here: 
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1. laterally loaded panel; 

2. laterally loaded panel with axial (compressive or tensile) load in the longer direction; 

3. laterally loaded panel with axial (compressive or tensile) load in the shorter direction; 

4. laterally loaded panel with axial (compressive or tensile) loads in both directions. 

Let’s consider an infinitely long plates with lateral uniform load. The edges parallel to the y axis 

are the longer ones. The classical plate theory will be used. The behaviour of this unstiffened 

plates loaded laterally can be described by: 

 
   

   
                                                                                                                                                          

Where: 

   
   

 

        
 is the flexural rigidity 

   is the Poisson’s ratio,       

   is the Young’s modulus  

    is the plate thickness 

An infinitely long plate is usually a good approximation for ship unstiffened plates, which often 

have one of the edges much longer than the other one. For plates with aspect ratio lower than 3, a 

different governing equation (to take into account the bending stresses in both directions), and 

thus a different solution, need to be used. 

The maximum bending moment, per unit length, occurring on the longer sides (and thus inducing 

the highest bending stress in the x direction) is given by: 

 Clamped edges:  

     
   

  
                                                                                                                                       

 Simply supported edges:   

     
   

 
                                                                                                                                       

The maximum bending stress is: 

   
     

  
                                                                                                                                                     

The last formula is valid for both clamped plates and simply supported plate, but the location 

where the highest stress occurs is different (for a simply supported plate it is in the centre, for a 

clamped plate is at the edges).  

Differently from beams, if we have a bending stress   , we have in this case also a transverse 

stress        (fig. 4). 
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Figure 4 -  Infinitely long plate in bending  

For a laterally loaded panel, the limit state function is simply (we are using the Von Mises 

criterion): 

                                                                                                                                                        

The equivalent stress, if we neglect the shear stress, is: 

   
  

 

 
     

     
             

   
 

 
    

       
      

     
                   

Hence: 

               
     

  
 

                                                                                             

(Please, note the difference between    – stress in the   direction – and    – yielding  stress!) 

If, besides the lateral load, we have also an axial load   , then the governing equation is: 

 
   

   
   

   

   
                                                                                                                                     

We can apply the superposition principle (and we can since we are still in the linear elastic 

regimes): 
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Analogously a similar limit state function can be derived if the axial load is in the x direction or 

in the x and y direction simultaneously. In the x direction: 

                 
   

  
  

  

   
 

 

   
   

  
  

 

  
   

  
  

  

   
   

   

  
                      

In both directions: 

           

      
   

  
  

  

   
 

 

   
   

  
  

  

   
 

 

  
   

  
  

  

   
   

   

  
  

  

   
                             

It must be pointed out that an implicit assumption behind this limit state functions is that we are 

in the small deformation regime. This means that the maximum deflection is lower than the 

thickness of the plate. This is of course no more valid if the axial load, in combination with the 

lateral load, will cause the plate to buckle. This situation will be treated in paragraph 4.3.3, with 

the help of the large deformation theory. 

Furthermore, if    , the stiffener spacing   need to be replaced by the effective breadth     .  

4.3.2 Plastic hinges formation in unstiffened plates 
Eight different load conditions will be considered here: 

1. simply supported laterally loaded panel; 

2. simply supported laterally loaded panel with axial (compressive or tensile) load in the 

longer direction; 

3. simply supported laterally loaded panel with axial (compressive or tensile)  load in the 

shorter direction; 

4. simply supported laterally loaded panel with axial (compressive or tensile)  loads in both 

directions; 

5. clamped laterally loaded panel; 

6. clamped laterally loaded panel with axial (compressive or tensile) load in the longer 

direction; 

7. clamped laterally loaded panel with axial (compressive or tensile)  load in the shorter 

direction; 

8. clamped laterally loaded panel with axial (compressive or tensile) loads in both 

directions. 

If yielding starts to occur, the panel has still some residual capacity to absorb loads before the 

formation of one plastic hinge (for a simply supported panel) or of three plastic hinges (for a 

clamped panel) will terminate. However, as we are assuming that the failure of an unstiffened 

plate is always prior to that one of the surrounding stiffeners, the formation of plastic hinges in 
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the unstiffened plate is to consider a serviceability limit states, as it just affect the efficiency of 

structural elements, but it will not cause the overall failure of the structure.  

The theory applied is based on an idealized “elastic-perfectly plastic” stress-strain curve (fig. 5). 

This means that we have a definite yield point above which we have the switch from the elastic 

to the plastic deformation (which is usually the case for steel) and we are ignoring the strain-

hardening of the material (thus our model is a conservative one). 

 

Figure 5 – Elasto-perfecty plastic material 

For a infinitely long panels with simply supported edges, with a lateral uniform pressure, the 

maximum bending moment (per unit length) is given by: 

     
   

 
                                                                                                                                                   

The limit state function is then: 

              
   

 
                                                                                                                            

Where: 

     
  
 

 
 is the plastic section modulus in the middle of the panel 

       is given by the Von Mises criteria: 

  
  

 

 
        

     
                

         
         

        
  

      
           

In (4.18) we decided to neglect the shear stress. 

Hence: 
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If we have also an axial load in the longer direction, then the limit state function is still the 

(4.17), but the allowable stress is different: 

              
   

 
                                                                                                                            

Where: 

     
  
 

 
  is the plastic section modulus in the middle of the panel 

       is given by the Von Mises criteria (neglecting the shear stress): 

  
        

                              
 
 

       
        

                 
    

            

       
        

         
                      

  

       
                           

    

    is the stress induced by the axial load in the longer direction 

Hence: 

     
                           

    
     

      
                           

    
          

         

 
              

       
      

     
     

      
       

     
      

   

         

 
                

     
         

         
 

Thus: 

         

 
 
 

 
  

                
     

         

         
 

 
                

     
         

         
 
 
 
 

 
 

                                                    

If the argument of the square root is lower than 0, this means that: 

  
  

 

 
  

                
                                                                                                              

If the axial load is acting in the x direction (shorter one), then: 
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The plastic bending moment     is computed in this way (see fig. 6): 

 At first, the axial load is assumed to be carried by a central portion (whose width is   ) 

of the cross section of the plate, such that: 

            

 The plastic bending moment is then given by the two extreme portions of the stress 

distribution: 

    
       

 

 
           

 
      

 
  

Hence: 

    

    
  

     
 

 
        

  

     
 

   
  

     

 
                                                          

Finally: 

     

    
  

     
 

 
  

  

     
 

   
  

     

 
        

   

 
                                                         

 

Figure 6 – Computation of the plastic bending moment 

Where       is (4.18) if we have only the lateral load and axial load in the x direction, and 

(4.20) if besides the lateral load and axial load in the x direction we have also the axial load in 

the y direction. 

For a clamped panel laterally loaded (with no axial loads), we have at first the formation of two 

plastic hinges at the ends (i.e. on the longer sides of the panel) when the applied pressure is such 

that the bending moment at the ends equals the plastic bending moment: 

   

  
          

Then, if the pressure increase further, we can have the formation of a plastic hinge in the centre 

of the plate. The bending moment (per unit length) in the centre of a clamped plate is: 
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                is the reaction moment at the ends of the plate (i.e. on the long edge) 

Hence: 

                                        
   

 

                
   

 
                                                                                           

If we have a clamped beam with only lateral loads: 

         
  
 

 
                                                                                                                               

       
  

         
                                                                                                                           

If, we have a clamped beam with axial load in the transverse direction: 

         
    

  
     

 

 
  

  

     
 

   
  

     

 
                                                                           

       
  

         
                                                                                                                           

If we have a clamped beam with an axial load in the longitudinal direction: 

         
  
 

 
                                                                                                                               

       

     
                

     
         

         
   

                
     

         

         
                           

If we have a clamped beam with an axial load in both directions: 

         
    

  
     

 

 
  

  

     
 

   
  

     

 
                                                                           

       
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4.3.3 Ultimate collapse of unstiffened plates 
The ultimate collapse of an unstiffened plate will occur when we have elasto-plastic buckling. 

There are several analytical models proposed to calculate the ultimate strength of plates: 

 the Johnson-Ostenfeld formula method; 

 the rigid-plastic theory method; 

 the elastic large deflection analysis combined with the membrane stress-based method. 

The first and the third methods will be used. The first one is an empirical method, acting on the 

conservative side. The third one is an analytical method.  

Large deflection analysis combined with the membrane stress -based method 

In this method it is assumed that the plate at first buckles in the elastic regimes , and then it keeps 

to carry some loads before it reaches plasticity at some critical locations. The two events (elastic 

buckling and yielding) are here – for modelling purposes - considered separately as if one 

follows the other. In the reality, for FPSO unstiffened plates, it is not possible to distinguish the 

two events, as the buckling of an unstiffened plates often happens directly in the plastic regimes 

(stocky plate).  

  is the length of the plate in the   (not necessarily the longer/shorter one) direction and   is the 

length of the plate in the   direction. The residual stresses and the initial imperfections are 

neglected. 

In general, the steps to perform an elastic-large deflection analysis are the followings (Paik, [13]) 

: 

1) at first, assume a deflection of the plate with unknown amplitude; 

2) then, substitute it into the compatibility equations in order to get the stress function  : 

   

   
  

   

      
 

   

   
    

   

    
 

 

 
   

   

   

   
                                                                    

3) substitute   into the equilibrium equation: 

  
   

   
  

   

      
 

   

   
     

   

   

   

   
  

   

    

   

    
 

   

   

   

   
 

 

  
                         

4) apply the Galerkin method to solve the equilibrium equation. At the end of the integration 

we will get a third-order equation with regard to the unknown amplitude: 

   
     

                                                                                                                 

5) once the deflection has been determined, the membrane stresses inside the plate at the 

mid-thickness can be obtained from equations: 
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6) finally, to find the ultimate strength, the so called membrane stress-based method will be 

applied.  

The membrane stress-based method assumes that ultimate collapse will occur when the most 

stressed boundary locations yield because the plate can no longer keep the boundaries straight, 

thus resulting in a rapid increase in lateral deflection.  

There are three possible locations for initial yield. For any location, a different equivalent Von 

Mises stress can be computed. The ultimate strength will be then the lowest of the three 

equivalent stresses: 

1) Plasticity at the corners: 

           
                  

                                                                            

 

Figure 7 – Membrane stress-based method: plasticity at the corners 

2) Plasticity at the longitudinal midedges: 

           
                  

                                                                              

 

Figure 8 - Membrane stress-based method: plasticity at the longitudinal midedges 

3) Plasticity at the transverse midedges: 
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Figure 9 - Membrane stress-based method: plasticity at the transverse midedges 

Thus: 

                                                                                                                                                      

Where: 

                                                                                                                                                     

                                                                                                                                                     

                                                                                                                                                     

The unstiffened plate will be modeled as a simply supported panel. Indeed an unstiffened panel 

is neither clamped nor simply supported, as it is actually a simple supported plate with partially 

rotation-restrained edges. For the sake of simplicity we will not consider now the effects of the 

rotational restraints, thus acting in the more conservative way.  

As usual, we will consider different load cases: lateral pressure loads, combined biaxial loads 

and lateral pressure with combined biaxial loads. 

Let’s start with the case of an unstiffened plate with lateral pressure loads. In this case the lateral 

deflection can be approximated as follows (one half-wave in both directions): 

       
   

 
     

   

 
                                                                                                                          

Following the steps described above, we get to the following: 

   
     

           

Where: 
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Once the third-order equation has been solved, and the unknown amplitude   has been found, we 

can calculate the membrane stresses using the (4.37), (4.38) and (4.39). Results are: 

       
     

   
                                                                                                                                        

      
     

   
                                                                                                                                             

       
     

   
                                                                                                                                        

      
     

   
                                                                                                                                             

Shear stresses have been neglected. 

For the combined biaxial loads case, the assumed deflection is: 

         
   

 
     

   

 
                                                                                                                  

  and   are the buckling half-wave numbers in the   and   direction, respectively. In the shorter 

direction, the buckling half-wave number must be taken as 1. In the longer direction, assuming 

     , then     and   must be taken such that ([12]): 

1) when      and      are both non-zero compressive (negative): 

 
  

   
 
   

 

  

   
 
  

 
 
      

   
 
   

 

      

   
 
  

                                                                                               

  
     

    
 

2) When      is tensile (positive) or zero, no matter what value of     : 

                                                                                                                                                    

3) When      is compressive and      is tensile or zero: 

 

 
                                                                                                                                      

Then: 
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It follows that: 

      
  

  
                                                                                                                                                

Note that    in (4.64) is always positive.    may be positive or negative, and thus        may 

return us a either real or imaginary number. If     , it follows from (4.62) that: 

   

 
       

   

 
        

   

  
 

    

  
  

  

  
 

  

  
 

 

                                                               

However, (4.65) is the elastic buckling safety criteria for an unstiffened plate under biaxial loads 

([14]). This means that, if     , the elastic buckling is not reached, and thus     is 0. The 

ultimate failure of the plate is then reached when we have yielding in one of the locations of 

figures 7, 8 and 9. The (4.64) can then be modified as follows: 

           
  

  
                                                                                                                                 

Once     has been found, the maximum and minimum membrane stresses inside the plates are: 
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Finally the most complicated case of biaxial loads and lateral pressure must be considered. In 

this case a great number of deflection components should be considered. For the sake of 

simplicity, the non linear membrane stresses inside the plate is approximated as the sum of the 

stresses arising from the two previous cases.    

However, the amplitude     of the deflection arising from the biaxial load must be computed 

using the following    coefficient rather than       

    
    

    
                                                                                                                                                

Johnson-Ostenfeld formula method 

The Johnson-Ostenfeld formula is an empirical formula often used in the maritime engineer 

practice. It gives a good indication of the ultimate strength, albeit somewhat on the conservative 

side ([1]). The ultimate strength is estimated as: 

    

                                            

     
  

   
                      

                                                                                               

    is the elastic buckling stress, calculated using the proper boundary conditions; 

    is the reference yield stress;       for compressive stress and       
  

   
 for 

shear stress. 

In using (4.72) the sign of the compressive stress is taken as positive.  

The elastic buckling stress, for a simply supported plate under uniaxial compression in the x 

direction is: 

    
   

        
 
 

 
 

 

                                                                                                                             

Where   is the buckling coefficient: 

   
  

 
 

 

  
 

 

                                                                                                                                         

  is the buckling half wave numbers in the loading direction. It is determined as the lowest 

integer satisfying the following: 

 

 
                                                                                                                                                    

While, under biaxial compression, if the loading ratio between    and    is kept constant, che 

buckling stress of the plate can be obtained as follows: 
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Where         and:  

                                                                                                                                                              

  is the buckling half-wave numbers in the loading direction. It is determined as the lowest 

integer satisfying the following: 

 
  

   
 
   

 

  

    
 
  

 
 
      

   
 
   

 

      

   
 
  

                                                                                                             

If we have also lateral pressure, then the elastic buckling strengths calculated with (4.73) and 

(4.76) need to be multiplied times a correction coefficient: 

      
 

   
 
   

   
  

   

                                                                                                              

Analogously, the elastic buckling strength in the y direction (4.77) has to be augmented by the 

following correction factor: 

      
 

   
 
 

 
 

    

 
   

   
  

   

                                                                                              

4.4 Stiffened panel limit state functions 
The limit state functions of stiffened panels refer to the failure of secondary stiffeners 

(longitudinals) under the assumption that the strength of the primary supporting structure is 

sufficient to prevent its collapse prior to that of secondary stiffeners. 

The limit states identified are ([15]): 

 Serviceability limit states: 

- First yielding of stiffener (paragraph 4.4.1) 

 Ultimate limit states (paragraph 4.4.3): 

- Formation of plastic hinges (paragraph 4.4.2) 

- Overall collapse of the plating and stiffeners as a unit, mode I (paragraph 4.4.4) 

- Yielding along the plate-stiffener intersection, mode II (paragraph 4.4.5) 

- Beam-column type collapse, mode III (paragraph 4.4.6) 

- Local buckling of the stiffener web, mode IV (paragraph 4.4.7) 

- Flexural-torsional buckling of the stiffeners, mode V(paragraph 4.4.8) 

- Fracture (paragraph 4.5) 
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In order to help the reader, table 2 is giving a summary of all these failure modes, together with 

the analytical theory used for the derivation of the LSFs and the reference paragraph.  

Table 2 – Failure modes for stiffened panels 

Failure mode Model Paragraph 

First yielding Simple beam theory 4.4.1 

Formation of plastic 

hinges 
Simple beam theory and elasto-perfectly plastic material 4.4.2 

Mode I: overall collapse of 

the plating and stiffeners 

as a unit 

Large deflection analysis combined with the membrane 

stress-based method, using the orthotropic plate model 
4.4.4 

Mode II: yielding along 

the plate-stiffener 

intersection 

Large deflection analysis combined with the membrane 

stress-based method, using the isotropic plate model 
4.4.5 

Mode III: beam-column 

type collapse 
Johnson Ostenfeld formula method 4.4.6 

Mode IV: local buckling of 

the stiffener web 

Analytical method (Large deflection analysis combined with 

the membrane stress-based method)/Empirical method 

(Johnson Ostenfeld formula method) 

4.4.7 

Mode V: flexural-torsional 

buckling of the stiffeners 

Analytical method (Large deflection analysis combined with 

the membrane stress-based method)/Empirical method 

(Johnson Ostenfeld formula method) 

4.4.8 

Fracture Linear fracture mechanics 4.5 

4.4.1 First yielding of stiffeners 
In an axially and laterally loaded stiffeners, we can distinguish: 

 a normal stress induced by the bending of the stiffener; 

 a normal stress induced by the axial load. 

Hence the failure criteria is: 

               

Where: 

    
 

      
 

   is the axial force 

    is the cross sectional area of the stiffener without the attached plate 

    is the plate thickness 

   is the stiffener spacing 

          
    

  
 

      
    

 
 for a simply supported stiffener,      

    

  
 for a fixed stiffener 

    is the section modulus of the stiffener with attached plate 

   is the lateral pressure applied on the stiffener 
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   is the stiffener span 

Thus the limit state functions, for a simply supported and for a clamped stiffener, respectively 

are: 

        
    

   
 

 

      
                                                                                                                   

    

    
    

    
 

 

      
                                                                                                                            

In the presence of shear stress, Von Mises criterion should be used: 

   
         

Hence: 

  
            

  
    

      

          
 

  
 

 

                                                                                                                           

    is called equivalent yield stress. However, we are neglecting the shear stress, as we can 

reasonably assume that it is very close to zero in the plate or in the stiffener flange, which are the 

two locations where the maximum bending stress occurs.  

If needed, in the calculation of the stiffener section modulus, the width of the attached plate can 

be replaced by the effective breadth (assuming it will be constant along the length of the 

stiffener). 

4.4.2 Plastic hinge formation in stiffeners  

Four different load conditions will be considered here: 

1. Simply supported laterally loaded stiffener 

2. Simply supported laterally loaded stiffener with axial (compressive or tensile) load  

3. Clamped laterally loaded stiffener 

4. Clamped laterally loaded stiffener with axial (compressive or tensile) load  

The ultimate moment that the cross section of a beam in bending can take occurs when the entire 

cross section is yielded in compression or tension. This correspond to the formation of a plastic 

hinge. Analogously to what has been done for plates, the elasto-perfectly plastic material model 

will be used.  
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The ultimate collapse of a fixed stiffener under uniform lateral loads occurs when we have the 

formation of three plastic hinges, two at the ends and one at mid-span. 

 

Figure 10 – Fixed beam with uniforn lateral pressur 

For a uniformly and laterally loaded beam with fixed boundary conditions (fig. 10), the shear and 

moment bending moment are given by: 

     
     

 
 

     

  
                                                                                                                        

            
    

 
                                                                                                                         

Where: 

    and    are the shear reaction forces 

    and    are the end bending moments 

The bending moment at the mid length is: 

  
 

 
     

   

 
 

    

 
  

Since            : 

  
 

 
     

    

 
 

    

 
    

    

 
                                                                                             

The ultimate or plastic moment is: 

          

Where: 

     is the plastic section modulus in the middle of the beam 

Hence our limit state function is: 
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And, because at the collapse the reaction moments is equal to the plastic moment (in a fixed-

fixed beam, the formation of the plastic hinge at the tips is earlier than that one at mid-span), i.e. 

            : 

  
 

 
     

    

 
        

    

 
       

Thus: 

                 
    

 
                                                                                                                 

The plastic section moduli are calculated in this way: 

 First, the plastic neutral axis is found. The plastic neutral axis is the axis that split the 

cross section such that the (absolute value of) the compression force from the area in 

compressions equals the (absolute value of) the tension force from the area in tension. In 

our case, since steel has the same yielding stress for both compression and tension, it is 

sufficient to find the axis that splits the cross section in two equal areas. 

 Then, the plastic section modulus is given by the sum of the areas of the cross section on 

each side of the plastic neutral axis multiplied by the distance from the local centroids of 

the two areas of the plastic neutral axis.  

Usually the plastic neutral axis falls inside the plate (fig. 11, where   is the coordinate of the 

plastic neutral axis and    of the local centroid of area             ). 

 

Figure 11 – Plastic neutral axis in a T-profile stiffener 

                     

  
             

  
                                                                                                                       

Hence: 
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   is the centre of the cross section of area             : 

   
       

 
   

      

             
  
  

            
                                                                  

Actually, at the ends we should take into account the shear stress as well, which will cause a 

“reduction” of the web area. Coherently with what we have done before, we neglected them. 

For a simply supported beam we have ultimate collapse if the bending moment at the central 

moment reaches the plastic moment, i.e.: 

           
    

 
                                                                                                                                  

Where the plastic section modulus is given by (4.89).  

For laterally and axially loaded stiffeners, the derivation of the ultimate limit state function gets a 

little bit more complicated. The ultimate collapse (for a clamped beam) occurs still when we 

have the formation of three elastic hinges (two at the ends and one at mid-span). However, in this 

case part of the cross section must be given over to carry the axial load and so it is not available 

to carry the moment. Then the plastic neutral axis will not divide the cross section into two equal 

areas.  

Analogously to what has been done before, the limit state function can be written, for a simply 

supported beam, with lateral load and axial compression, as: 

           
    

 
                                                                                                                                  

And, for a clamped beam: 

                  
    

 
                                                                                                               

In so doing we are neglecting the shear stresses.  

Furthermore, for the laterally loaded stiffener with axial compressive load, the effective breadth 

has to be used. This “effective breadth”  in this case is neither the “effective breadth” due to the 

shear lag effect (as we are no more in the elastic proportional regimes), neither the “effective 

width” (4.3) proposed by Faulkner in 1975 (as we are not yet in the post buckling regimes). 

Indeed, the effective width to be used in this case is to take into account the plastic deformation 

of the interframe unstiffened plate, which is likely to have occurred prior to the ultimate failure 



 

96 
 

of the surrounding stiffeners. In 1993 Godo and Guedes Soares ([5]) extended the validity of the 

Faulkner formula by defining a generalized slenderness of plating: 

   
 

  
 

     

 
                                                                                                                                              

Where: 

       
                              
  

  
 

  

  
                   

                                                                                                 

           and      for simply supported plates 

                 and         for clamped plates 

       
      

       
   

Hence, if we manipulate the last equations, we get: 

      

 
 

      
          

    
 
                   

  
        

   

 
 

 
 

                             

Once we know       we can calculate consequently    and     with (4.94) and (4.95). 

For a simply supported or clamped stiffener with lateral and axial load the plastic section 

modulus is: 

 

Figure 12 – Computation of the plastic section modulus 
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Where      and   are the solutions to the following system: 

                                                                                                                                                      

                                                                                                            

   
       

 
   

 
 

     

         
                                                                                                                     

4.4.3 Elasto-plastic buckling of stiffened panels 
According to Paik and Thayamballi ([12]), there are six different ultimate collapse modes for a 

stiffened panel. The ultimate strength of a stiffened panel is then the smallest value among the 

computed ultimate strengths for each of the collapse mode. Collapse mode VI is gross yielding, 

which has already been considered in 4.4.2. 

The other 5 collapse modes are: 

1. Collapse mode I: overall collapse of the plating and stiffeners as a unit. Overall buckling 

often occurs under an elastic regime. This collapse mode typically occurs when the 

stiffeners are relatively weak compared with the plating.  

 

Figure 13 – Collapse mode I 

2. Collapse mode  II: yielding along the plate-stiffener intersection. This modes assumes 

that the plating collapses first. It typically occurs under biaxial compressive loads. 
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Figure 14 – Collapse mode II 

3. Collapse mode III: beam-column type collapse. This collapse modes typically occurs 

when the stiffeners are neither too strong nor too weak compared to the plating.  

 

Figure 15 – Collapse mode III 

4. Collapse mode IV: local buckling of the stiffener web. This collapse mode occurs when 

the height to thickness ratio of the stiffener web is large. 

 

Figure 56 – Collapse mode IV 

5. Collapse mode V: flexural-torsional buckling of the stiffeners. This collapse mode occurs 

when the stiffener flange is of a type that is unable to remain straight. This flexural-

torsional buckling phenomenon is also called tripping. 
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Figure 67 – Collapse mode V 

In the following, we will always consider   as the longitudinal direction, which is also parallel to 

the stiffeners.  

4.4.4 Collapse mode I for a stiffened panels: overall collapse of the plating and 

stiffeners as a unit 
When a stiffened panel reaches its ultimate strength by mode I, it can be reasonably modelled as 

an orthotropic plate. We will neglect the initial imperfections and residual stresses (actually 

residual stresses in a panel with numerous stiffeners effectively cancel each other). We will 

model the stiffened panel as a simply supported one, and apply the large deflection analysis in a 

similar way to what has been done for an unstiffened panel in paragraph 4.3.3. The only 

difference is that now we are dealing with an orthotropic plate rather than an isotropic one.   

The equilibrium and compatibility equation for an orthotropic plate with lateral pressure are the 

followings: 

  

   

   
   

   

      
   

   

   
    

   

   

   

   
  

   

    

   

    
 

   

   

   

   
 

 

  
                                

 

  

   

   
  

 

   
 

   

  
 

   

      
 

 

  

   

   
   

   

    
 

 

 
   

   

   

   
                                                       

Where: 

   is the stress function 

        
    

   
  is the elastic modulus of the orthotropic plate in the   direction  

      is the elastic modulus of the orthotropic plate in the   direction 

   is the width of the plate 

    is the initial thickness of the plate (eventually, this is an average thickness if the plate 

has a variable thickness) 

    is the number of stiffeners 

              
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    
   

 

          
 

    
 

      
 

  

 
 is the flexural rigidity of the orthotropic plate in the   

direction 

    
   

          
 is the flexural rigidity of the orthotropic plate in the   direction 

   
 

 
           

     
 

 
  is the effective torsional rigidity of the orthotropic plate 

     
     

          
 is the elastic shear modulus of the orthotropic plate 

   
    

 

  
      

  

 
 

  

 
    

 

 
    

 

  
      

  

 
    

  

 
    

 

 

    
                                   

             
 

   is the stiffeners spacing 

      
   

 

  
     

  
  

 
  

 
 
  

  
 

 

   

 is the Poisson’s ratio of the orthotropic plate in the   direction 

    
  

  
   is the Poisson’s ratio of the orthotropic plate in the   direction 

   is a correction that can approximately taken as   
 

    
 where   is the Poisson’s ratio 

for an isotropic plate 

Once we have the deflections and the stress function, the membrane stresses can be determined: 

   
   

   
 

   

      

 
   

   
   

   

   
                                                                                                        

   
   

   
 

   

      

 
   

   
   

   

   
                                                                                                        

  is the axis in the plate thickness direction, and     is the mid-thickness coordinate. 

Using this formulae, it is possible to calculate the ultimate strength in a way very similar as it 

was done for an unstiffened plate. That is: 

1) presume a deflection; 

2) substitute it into the compatibility equation to find the stress function (4.102); 

3) substitute the stress function into the equilibrium equation(4.101)  and apply the Galerkin 

method; 

4) solve the third order equation to find the amplitude of the deflection; 

5) find the membrane stresses; 

6) apply the membrane stress-based method and the Von Mises criteria in order to find the 

ultimate strength.  
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It must be pointed out that the plates and the stiffeners may be made of different steel, thus they 

may have different yielding stress. In this case, we should define an equivalent yield stress, as 

follows: 

     
                       

                 
                                                                                                  

Five different load conditions will be analysed: 

1. axial compressive load in stiffener direction; 

2. axial load in stiffener direction and lateral pressure; 

3. axial compressive load perpendicular to stiffener direction; 

4. axial load perpendicular to stiffener direction and lateral pressure 

5. only lateral pressure. 

For a plate subjected to only axial longitudinal compressive load, the amplitude of the deflection 

can be determined by solving the following third order equation: 

   
        

   
  

  
 
   

  

  
 

   

  
                                                                                                                          

   
   

 
     

  

  
 
   

  

  
 

    

  
 

   

  
                                                                                 

Where   (buckling half-wave numbers) must be the minimum integer that satisfies the following 

condition: 

 

 
  

  

  
        

 

                                                                                                                               

  is the length of the plate in the   direction. The average stresses, for the collapse mode I, are 

(see fig. 18): 
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Figure 78 – Orthotropic plate 

Once we know  , we can find the membrane stresses as follows: 

           
       

 

   
                                                                                                                     

           
       

 

   
                                                                                                                      

       
      

   
                                                                                                                                     

       
      

   
                                                                                                                                     

The panel will collapse when anyone of the following three failure functions is negative: 
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For a plate with combined axial load (either compressive or tensile) and lateral pressure, the third 

order equation looks like: 

   
     

           

   
  

  
 
   

  

  
 

   

  
                                                                                                                          

                                                                                                                                                                 

   
   

 
     

  

  
 
   

  

  
 

    

  
 

   

  
                                                                                 

    
    

    
                                                                                                                                              

The half-wave number   is the same as before for compressive axial load, and is equal to  1 for 

tensile axial load. The maximum and minimum membrane stresses are still the same as for the 

case with no lateral pressure (from (4.111) to (4.114)). 

Let’s consider now the case for transverse compressive load. Here the third order equation is: 

   
        

   
  

  
 
   

  
 

     

  
                                                                                                                           

   
   

 
     

  

  
 
   

  
 

    

  
 

     

  
                                                                                    

The maximum and minimum membrane stresses are: 

       
     

 

   
                                                                                                                                     

      
     

 

   
                                                                                                                                          

           
        

   
                                                                                                                      

           
        

   
                                                                                                                       

And the buckling half-wave number n is the minimum integer that satisfies the following 

condition: 
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If, besides the transverse axial load, we have also the lateral pressure, then: 

   
     

           

   
  

  
 
   

  
 

     

  
                                                                                                                           

                                                                                                                                                                 

   
   

 
     

  

  
 
   

  
 

    

  
 

     

  
                                                                                    

    
    

    
                                                                                                                                              

Finally, if we have a stiffened panel with only lateral pressure, then: 

                                                                                                                                                          

                                                                                                                                                      

And: 
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4.4.5 Collapse mode II for stiffened panels: yielding along the plate-stiffener 

intersection 
Collapse mode II is solely associated with the plating between the stiffeners, and specifically 

with the most highly stressed plating. Then, we do not need to consider the equivalent yield 

stress, but the plate yield stress. We will neglect the initial imperfections and residual stresses  

and we will model the stiffened panel as a simply supported one.  

A stiffened panel reaches ultimate strength by collapse mode II if the most highly stressed 

plating between the stiffeners has plasticity at the corners. Indeed, this is a sub-case of the 

ultimate limite state for unstiffened panel (paragraph 4.3.3). In that occasion, three different 

equivalent stress have been considered (plasticity at the corners, plasticity at the short mid-edges 

and plasticity at the long mid-edgese). 

In our case the equivalent stress is given only by (4.40) (plasticity at the corners) and thus the 

limit state function is: 

               
                  

                                                                                   

4.4.6 Collapse mode III for stiffened panels: beam-column type collapse 
Collapse mode III occurs when the most highly stressed stiffener, together with the attached 

plating, collapses as a beam-column. There are three methods to calculate the ultimate strength 

of stiffened panel under axial compression: 

1. the Johnson-Ostenfeld formula method; 

2. the Perry-Robertson formula method; 

3. the Paik-Thayamballi empirical formula method. 

The Johnson-Ostenfeld formula method  will be used. For a beam under axial compression the 

ultimate strength is then given by: 

    

                                                   

       
    

   
                        

                                                                                   

    is the elastic buckling stress; 

In using (4.72) the sign of the compressive stress is taken as positive.  

The elastic buckling stress, for a simply supported plate under uniaxial compression in the x 

direction is: 
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Where: 

     
      

 

  
           

  
 

 
 

 
  

   
  

            
  

 
 

 

 
    

 

  

            
  

 
    

 

                                                                                         

   
         

                                  

                
                                                     

      is the mass moment of inertia of the beam-plate cross section calculated using the effective 

width      given by (4.3). 

4.4.7 Collapse mode IV for stiffened panels: local buckling of the stiffener web 
The stiffened panel reaches ultimate strength by collapse mode IV if the most highly stressed 

stiffener together with its attached plate collapses by buckling of the stiffener web. As usual, we 

will consider the plate as a simply supported plate, and we will neglect the initial distortion and 

the residual stresses. The ultimate strength of the panel for collapse mode IV is computed as the 

sum of the ultimate plate strength and stiffener web buckling strength, as follows ([1]): 

    
   

       
            

             
                                                                                                        

    
  is the ultimate strength of the plating between the stiffeners 

   
  is the ultimate strength of the stiffener because of web buckling 

Hence: 

              
   

       
            

             
                                                                   

The ultimate strength    
  can be computed using the elastic large deformation analysis and the 

membrane based stress method, with     and       : 
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For the meaning of     and     see fig. 18. 

Where: 

 

 
                                                                                                                                                  

The amplitude   of the deflection can be calculated by solving the third order equation: 

   
     

           

   
   

  
 
   

  
 

 

  
                                                                                                                               

                                                                                                                                                                 

   
   

 
     

   

  

  

  
 
  

 
 

 

  
 

 

                                                                                               

    
    

    
                                                                                                                                               

Then: 

   
     

 
  
 

  
       

                  
 

      
                  

  

      
                  

 

 
  
 

  
 

                                                                                  

This case can also be generalized for the case with no lateral pressure, by imposing    . 

Alternatively, the Jonshon-Ostenfeld formula        can also be used for    
 . 

The Johnson-Ostenfeld formula can be also used for the ultimate strength of the stiffener because 

of web buckling: 
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The elastic buckling stress is: 

  
     

   

        
 
  
  

 
 

                                                                                                                 

Where, for T-section stiffeners ([12]): 
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 is the torsion constant of the attached effective plating 
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 is the torsion constant of the stiffener flange 
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      (only for simply supported plates) 
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For flat-bar stiffeners,    is calculated by taking     . 

For the combined transverse axial load and lateral pressure, the reliability index is the same as 

for collapse mode III under the same loading conditions. 

4.4.8 Collapse mode V: flexural-torsional buckling of the stiffeners 
The stiffened panel reaches ultimate strength by collapse mode V if the most highly stressed 

stiffener together with its attached plate collapses by flexural-torsional buckling or tripping. As 

usual, we will consider the plate as a simply supported plate, and we will neglect the initial 

distortion and the residual stress. The ultimate strength of the panel     is calculated as the sum 

of the ultimate plate strength and stiffener flexural-torsional buckling strength ([1]): 

    
   

       
            

             
                                                                                                         

    
  is the ultimate strength of the plating between the stiffeners 

   
  is the ultimate strength of the stiffener because of lateral-torsional buckling or tripping 

Hence: 

              
   

       
            

             
                                                                     

Let’s start to consider the case with combined longitudinal axial load and lateral pressure. 

The ultimate strength    
  can be calculated in the same way as it has been done for the collapse 

mode IV. 

The ultimate strength of the stiffener because of lateral-torsional buckling is calculated with the 

Johnson-Ostenfeld formula: 
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The elastic flexural buckling strength is a function of the types of stiffeners ([12]). 

For a flat bar stiffeners, the elastic flexural buckling strength is equal to the elastic web stiffener 

buckling strength: 

  
    

                                                                                                                                                         

For symmetric T-stiffeners: 
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                            (only for simply supported plates) 

For asymmetric stiffeners: 

  
        

        
 
      

       

   
                                                                                                 

Where: 

                         
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      (only for simply supported plates) 

For the combined transverse axial load and lateral pressure, the reliability index is the same as 

for collapse modes III and IV under the same loading conditions. 

Since the ultimate strength for collapse mode IV and V is the same for a plate stiffened with flat 

bars under combined longitudinal axial load and lateral pressure, then collapse mode IV and V 

can be treated together under all load conditions if the stiffeners used are flat bars. 
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4.5 Fracture mechanics 
Although unlikely, brittle fracture may also be an eventual failure ([17]). The model adopted to 

write down the failure function is the simplest one, i.e. the one following the linear fracture 

mechanics approach. This means that the applied stresses are low, so that the plastic zone is 

small compared to the size of the crack.  

There are three different modes in which a crack in a solid is categorized: 

 Mode I, opening mode: the displacement of the cracked surfaces are perpendicular to the 

plane of crack; 

 Mode II, sliding mode: the displacement of the cracked surfaces is in the plane of the 

crack and perpendicular to the leading edge of the crack; 

 Mode III, tearing mode: caused by out-of-plane shear. 

 

Figure 19 – Crack propagation modes 

The mode I is usually the most important and hence only this one will be considered. For an 

infinite plate subjected to uniform tension, the in-plane crack tip stress is expressed as follows: 

    
 

    
                                                                                                                                              

    is the stress acting on a plate element at a distance   from crack tip and at an angle   from 

crack plane (see fig. 20).  
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Figure 20 – Stresses close to a crack  

  is the stress intensity factor, which for mode I is: 

                                                                                                                                                           

  is the remote stress and   is the half-length of the crack. 

  is given by the sum of the applied stress (which is a random variable) and the residual stress. If 

we assume the residual stress to be half of the yielding stress, then the residual stress is a random 

variable as well.  

                                                                                                                                   

Brittle fracture will occur when the   value exceeds a certain critical value   , which is called 

critical fracture toughness, which is also a random variable. Hence: 

                                                                                                                           

There is a critical value of    for different materials, which corresponds to the energy balance 

criterion being met.  

4.6 ALPS-ULSAP validation 
All the methods (both empirical and analytical), used in this chapter for the calculation of the 

ultimate strength of stiffened and unstiffened plates, have been taken from the ALPS-ULPS 

theory, developed by professor Paik in 2003. The great advantage of this theory is the extremely 

short computational time, compared to the nonlinear finite element method. The formulae have 

been validated by Paik himself through a comparison with the nonlinear finite element method. 

A good agreement was found through a wide range of panel dimensions and different loading 

conditions ([16]). 

In this paragraph not all the results of the validation study will be presented, but only the ones 

relevant for the case study which will be introduced in chapter 6. In particular, we are interested 
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in the ultimate strength of unstiffened plates and panels stiffened with L bars, under a 

longitudinal compressive load.  

Figure 21 is showing the ultimate strength of an unstiffened plate with thickness          (in 

the case study, the plate is       thick) under biaxial load. If we look at the value 

corresponding to         we see that the ultimate strength     calculated with the ALPS-

ULSAP theory is very close to the FEM solution. 

 

Figure 21 – Comparison ultimate strength of unstiffened plate between ALPS-ULSAP and nonlinear FEM  

Figure 22 is showing the ultimate strength of a stiffened panel with L bars, as a function of the 

slenderness ration. The dimension of the stiffeners are 383x100x12/17 mm. In the case study, the 

stiffener dimensions are 312x100x10/16 mm and the slenderness ratio 1,7. If we look at the 

results corresponding to this particular slendernees ratio, a very good agreement between ALPS-

ULSAP and FEM is found. 
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Figure 22 – Comparison ultimate strength of stiffened plate with L bars between ALPS-ULSAP and nonlinear FEM  

4.7 Conclusion and recommendations 
In this chapter, analytical equations for all the possible failure modes have been written down. 

This was a quite extensive operation, which required the utilization of different theories and 

models. Several simplifications were then necessary for the sake of simplicity.  

Hence a compact list of the main assumptions is then provided here, in order to get a clear 

understanding of the validity and limitations of the limit state functions, and also to identify 

margins for eventual further improvements. 

First of all, plate imperfections (residual stresses and initial distortion) have always been 

neglected when non-empirical formulae have been adopted. This may led to too optimistic 

results, and therefore it must be taken in mind when analyzing the result. The shear stresses have 

also been neglected, even if their non-inclusion may give less optimistic results than the non-

inclusion of plate imperfections.  

Another important aspect which has been not treated properly are the boundary conditions. Most 

of the time a simply supported plate has been assumed. However, this may consistently 

underestimate the ultimate strength, since the actual boundary conditions should be those ones of 

a simple support with rotational restraint. The consequences of such an hypothesis must be 

considered when reading the results. 

References 
[1] Dominique Beghin, Bureau Veritas, “Reliability-based structural design”, Ship structural 

analysis and design (chapter 5), SNAME 2010 



 

116 
 

[2] E. Nikolaidis, P. Kaplan, “Uncertainties in stress analysis of marine structures”, SNAME 

structural Inspection, maintenance and monitoring symposium (SSC Report-35), 1991 

[3] D. Faulkner, “A review of effective plating for use in the analysis of stiffened plating in 

bending and compression”, Journal of ship research (Vol. 19), 1975 

[4] P. H. Miller, J.W. Stettler, “Ship structures, notes for an undergraduate course”, Naval 

architecture program, US Naval Academy, Annapolis, 2009 

[5] J. M. Gordo, C. Guedes Soares, “Approximate load shortening curves for stiffened plates 

under uni-axial compression”, Conference on integrity of offshore structures, Glasgow, 1993 

[6] A. E. Mansour, A. K. Thayamballi, “Probability based ship design; loads and load 

combinations”, Ship structure committee (Report SSC-373), Washington DC, 1994 

[7] J. Ferry-Borges, M. Castenheta, “Structural safety”, Lisbon: laboratoria nacional de 

engenhera civil, 1971 

[8] T. Moan, G. Jiao, “Characteristic still water load effect for production ships”, Report MK/R 

104/88, Trondheim: the Norwegian institute of technology, 1988 

[9] C. Guedes Soares, “Probabilistic models for load effects in ship structures”, Report UR-84-

38, Trondheim: department of marine technology, Norwegian institute of technology, 1984 

[10] A. E. Mansour, “Extreme loads and load combinations”, Journal of ship research (vol. 39), 

1995 

[11] Y. Okumoto, Y. Takeda, M. Mano, T. Okada, “Design of ship hull structures, A practical 

guide for engineers”, Springer, 2009 

[12] J. K. Paik, A. K. Thayamballi, “Ultimate limit state design of steel-plated structures”, 2003 

[13] J. K. Paik, “Large deflection behaviour and ultimate strength of plates”, Ship structural 

analysis and design (chapter 13), SNAME 2010 

[14] J. K. Paik, “Elastic buckling of plates”, Ship structural analysis and design (chapter 12), 

SNAME 2010 

[15] J. K. Paik, “Large deflection behaviour and ultimate strength of stiffened panels”, Ship 

structural analysis and design (chapter 15), SNAME 2010 

[16] J. Paik, “Ultimate Strength of Plates and Stiffened Panels”, Presentation given at the LRET 

Research Collegium, Southampton, 11 July – 2 September 2011 

[17] O. Huges, H. G. Payer, “Loads, Structural Response, Limit States and Optimization”, Ship 

Structural Analysis and Design (chapter 2), SNAME, 2010 



 

117 
 

[18] O. Huges., J. B. Caldwell, “Plate bending”, Ship structural analysis and design (chapter 9), 

SNAME 2010 

 

  



 

118 
 

5 
Monitored data processing 

In this chapter, with a procedure similar to that one explained in chapter 2 for thicknesses, the 

loads data from MONITAS are processed in order to find which probability distribution function 

fits better the observations. 

In paragraph 5.2 some probability and statistics formulae which are needed in the following 

paragraphs are derived. Results are presented and explained in parapgraph from 5.3 to 5.5. In 

paragraph 5.6 the correlation between load variables is studied. 

5.1 The loads 
Since the lateral pressure, for the deck, has been neglected, all the loads acting on the structure 

are the hull girder bending moments, that is: SWBM, VWBM and HWBM.  

For the SWBM, 868 daily measurements have been recorded by the load master, and properly 

processed.  

The HWBM and VWBM have been obtained by means of two long base strain gauges (LBSG) 

located on the deck, symmetrically with respect to the central plane of the unit. A LBSG is a 

gauge whose 2 meters length overcomes the effects of local stress conditions. In this way we 

monitor only the longitudinal and horizontal bending moment induced stresses.  
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Figure 1 - A long base strain gauge  

Furthermore the sampling rate is      , which means that all frequency lower than        are 

filtered out. Since for FPSO the local vibration modes (like the vibration of the deck plating 

between two stiffeners) are typically in the range between 10 Hz and 50 Hz, and the primary 

vibration modes (like bottom vibrations between two transverse bulkheads) are typicallu in the 

range between 5 Hz and 20 Hz, this gives a further reason why local induced stresses are not 

included in the LBSG measurements. 

The strength reassessment has been conducted over an ordinary section of the monitored FPSO, 

assumed to be located at the same cross section of the two LBSGs. 

5.2 Probability and statistics theoretical background 
The loads have been processed using the same procedure as the one applied to thickness 

measurements in chapter 2.  The distributions considered here are non truncated, hence different 

sets of formulae for the maximum likelihood estimators and the linearized CDF are needed. This 

paragraph explains how these formulae have been derived. 

5.2.1 Maximum likelihood estimation 
For the SWBM the normal, the uniform and the Gumbel distributions have been considered. For 

the wave induced bending moments the exponential, the lognormal, the gamma, the normal, the 

Gumbel and the Weibull have been selected as assumed theoretical distribution. For any of these 

distributions, the maximum likelihood estimator have been found as follows. 

The exponential distribution is a 1-parameter dependent  distribution: 

                                                                                                                                                     

The likelihood function is: 
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Its derivative is: 
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Then the maximum likelihood estimator for the exponential distribution is: 

  
 

  
                                                                                                                                                                 

which is exactly the same as the method of moments estimator.  

The uniform distribution is a two-parameters dependent function: 

      
 

   
              

                               

                                                                                                                

The likelihood function is: 

        
 

   
 

 

   

 
 

   
 

 

                                                                                                 

The likelihood function is maximized when        is minimized, keeping that      

     . Then: 

                                                                                                                                                              

                                                                                                                                                              

The Gumbel distribution is a 2-parameters dependent distribution: 
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The maximum likelihood estimators for the Gumbel distribution are found by finding the 

numerical solution of the following equations ([1]): 

                               
  

       
  

 

   
                                                                 

  

         
         

  

       
   

   

       
  

       
   

   

                                                                                                 

The normal distribution is a two parameters-dependent distribution.  

     
 

    
     

      

   
                                                                                                                 

The maxim likelihood estimators of the mean and the variance are [2]: 

                                                                                                                                                                    

   
 

 
        

 

   

                                                                                                                                   

Note that (5.13) does not mean that     as the standard deviation of the samples has been 

calculated using the (5.14), slightly different from the (5.13): 

   
 

   
         

 

   

                                                                                                                            

The gamma distribution is also characterized by a shape parameter and a scale parameter: 

     
 

      
         

 

 
                                                                                                                 

To find them, an iterative procedure, as the one proposed in [3] has been used. The log-

likelihood function for the gamma distribution is: 

                                                                                       

The maximum of        is found by the following iterative procedure: 
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As initial value the method of moments estimators have been used. The function 

                 is called “digamma function” and it is often indicated with the letter 

         

For the lognormal distribution (5.19) the maximum likelihood estimation of the two parameters  

  and   ([4]) is similar as for the normal distribution: 

     
 

    
     

         

   
                                                                                                           

  
      

 
   

 
                                                                                                                                              

   
 

 
           

 

   

                                                                                                                             

Finally, the Weibull distribution is also a 2-parameters dependent distribution: 

     
        

        
 

 

        
 

          

      
 

        
 

        

                                                       

Its two parameters are found solving numerically the followings [5]: 

   
         

        

   
         

     
 

 

        
 

 

 
      

 

   

                                                                                  

          
   

         
   

 
 

 
        

                                                                                                          

5.2.2 Linearization of the cumulative distribution function 
Sometimes the linearization of the cumulative distribution function may be useful to compare 

graphically  the efficiency of the estimators (see par. 2.3.7).  

For the exponential distribution the linearization has been done as follows: 
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For the uniform distribution: 

      
   

   
                                                                                                                                               

     
   

   
                                                                                                                                                 

         
                                                                                                                                                    

For the Gumbel distribution: 

                
         

       
                                                                                                     

                     
         

       
                                                                                           

                  
                                                                                                                           

For the normal distribution: 

      
 

 
 

 

 
    

   

   
                                                                                                                           

                       
   

   
                                                                                                

                  
                                                                                                                      

For the gamma distributions: 

               
 

 
                                                                                                                          

              
 

 
                                                                                                                            

         
                                                                                                                                                    

The (5.38) will look linear if we plot             
 

 
    on the horizontal axis.  

For the lognormal distributions: 
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For the Weibull distributions: 

              
 

        
                                                                                                            

                  
 

         
 

        
                                                                                        

                
      

 
                                                                                                                  

5.3 The SWBM 
In figures 2, 3 and 4 the SWBM daily values have been plotted, together with the draft and the 

trim. The time trace of the SWBM has been divided into three figures for the only purpose to 

make the graphs more readable. The positive moments are the hogging moments.  

First of all, we notice that the SWBM is not actually having a regular “saw-tooth” path, which is 

what we expected to see from an FPSO. At a quick look, the SWBM time trace looks very 

irregular and with no apparent logic behind.  

However, if we look it more carefully, we see that the draft is actually having a “saw-tooth” path 

and that at each drop of the draft a rapid increase of the SWBM is occurring. We also see that, at 

each loading-offloading cycle, the trend of the SWBM is – although irregular – decreasing.  The 

irregular behavior of the trim is giving us the explanation why the SWBM trend is irregular as 

well. 

The flat curve at the beginning is due to the fact that at that time the FPSO was not operative yet. 
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Figure 215 – SWBM part 1 

 

Figure 3 – SWBM part 2 
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Figure 4  – SWBM part 3 

All these data have been then properly processed. 

First of all, only the operational condition has been considered (thus the measurements in the 

first days giving us a constant SWBM have been disregarded).  

Then, all the statistical concept introduced in chapter 2 and paragraph 5.3 for the estimation of a 

continuous distribution starting from some observed values are then applied here in an analogous 

way to what has already been done for thicknesses.  

The assumed probability distribution functions are:  

1. The normal distribution 

2. The uniform distribution 

3. The Gumbel distribution 

The normal distribution has been selected since it is usually the way the SWBM is modeled for 

commercial vessel. The uniform distribution has been selected because this is what we would 

expect to see from a regular “saw-tooth” time trace path of the SWBM, as it is often the case for 

FPSOs. The Gumbel distribution is the usual way the VWBM is modeled in commercial vessels. 

All the SWBM values have been considered together, with no distinction between  hogging and 

sagging.  
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Table 1 and table 2 are giving the results of the Kolmogorv-Smirnov test and the sum of squares 

method.  

Table 1 – Kolmogorov-Smirnov test for the SWBM 

 Method of moments MLE 

 y y threshold y y threshold 

Normal distribution 0.0430 0.0418 0.0431 0.0418 

Uniform distribution 0.0484 0.0418 0.1651 0.0418 

Gumbel distribution 0.1005 0.0418 0.0798 0.0418 

 

Table 2 – Least squares method for the SWBM 

 Method of moments MLE 

 SS SS 

Normal distribution 0.408 0.411 

Uniform distribution 0.492 8.271 

Gumbel distribution 2.982 1.640 

 

Both methods are saying that the normal distribution with the method of moments estimator  is 

the best distribution.  

Due to the high number of samples, it is more likely here that the method of moments estimators 

perform better than the maximum likelihood estimators. This is particularly true for the uniform 

distribution (fig. 6). 

  

Figure 5 – Linearized normal CDF for the SWBM: method of moments estimator (left) and MLE estimators (right) 
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Figure 616 – Linearized uniform CDF for the SWBM: method of moments estimator (left) and MLE estimators (right) 

  

Figure 717 – Linearized Gumbel CDF for the SWBM: method of moments estimator (left) and MLE estimators (right) 

The weighed SS method (tab. 3) is giving a slightly better result for the uniform distribution 

(with method of moments estimators) rather than for the normal distribution. 

Table 3 – Weighed least squares method for the SWBM 

 Method of moments MLE 

 SS SS 

Normal distribution 380 382 

Uniform distribution 351 4 878 

Gumbel distribution 2 349 1 389 
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extreme moments, i.e. the values in which we are more interested in!). This is also true (but to a 

less extent) for the extreme positive SWBM. Thus opting for the uniform distribution would 

return us too optimistic results. This is the reason why it was chosen to use the normal 

distribution. 

 

Figure 818 – Comparison between empirical CDF and assumed CDFs 

 

Figure 9 - q-q plot for the SWBM 
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Finally, the normal distribution with the following parameters (method of moments estimators) 

has been chosen: 

           

           

 

Figure 10 - Probability distribution function for the SWBM 

5.4 The VWBM 
For both the VWBM and the HWBM, 12 months of measurements have been considered (in 
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With a LBSG it is actually only possible to measure the stress ranges (thus they are quite suitable 

for a fatigue assessment). We are not able to read the absolute values of stresses, as we should 

know the strain on the deck at the moment of the installation of the LBSGs.  

In our case it was decided to shift the time history of the VWBM so to have a mean value equal 

to 0. Generally this hypothesis is acceptable for unit with a large block coefficient. Our 

monitored FPSO has a block coefficient of        . 

For the VWBM hogging and sagging have been considered separately. However, due to the 

hypothesis of zero mean value, they are symmetric to each other. Thus we will here present the 

processing procedure only for the hogging case. The obtained results are also valid for the 

(absolute value of) the sagging VWBM. 

First of all the local extreme value have been found with MATLAB (see figure 8).  

 

Figure 11 – VWBM time trace [MN*m] 
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Table 4 and 5 are giving the results for the KV test and the least squares method. 

Table 4 – Kolmogorov-Smirnov test for the VWBM 

 Method of moments MLE 

 y y threshold y y threshold 

Exponential distribution 0.108 0.000784 0.108 0.000784 

Lognormal distribution 0.0596 0.000784 0.0716 0.000784 

Gamma distribution 0.0340 0.000784 0.0370 0.000784 

Normal distribution 0.124 0.000784 0.124 0.000784 

Gumbel distribution 0.0743 0.000784 0.049 0.000784 

Weibull distribution 0.0448 0.000784 0.0293 0.000784 

 

Table 5 - Least squares method for the VWBM 

 Method of moments MLE 

 SS SS 

Exponential distribution 11 542 11 542 

Lognormal distribution 2 149 5 650 

Gamma distribution 1 057 1 236 

Normal distribution 1 917 1 917 

Gumbel distribution 4 586  2 842 

Weibull distribution 1 898 1 127 

 

In this case it is more common to have cases where the method of moments is giving better 

estimators than the MLE. This is due to the very high number of samples (for the VWBM we 

have more than 3 millions value), which is also the reason why the threshold y value is very low.  

Anyway, both method agrees on the gamma distribution (with method of moments estimator). 

This may be surprising, as we would have expected a Gumbel or Weibull distribution, which is 

usually the way VWBM is modeled for commercial vessel.  

If we plot the linearized CDFs (figures 12 to 17) it may seem that, besides the gamma 

distribution (which fits quite good to the empirical distribution), also the exponential distribution 

is apparently giving good results. However this is not confirmed by the Kolmogorov-Smirnov  

and the sum of squares methods. We should not forget that this is due to the fact that linearized 

CDF graphs must be read carefully, as the scale on the vertical axis is not constant (see par. 

2.3.7). This is particularly true for the exponential distribution, where the actual    

   
            (that is, the actual difference between empirical CDF and theoretical assumed 

CDF) corresponding to a constant                   (that is, the difference between 

linearized empirical CDF and linearized theoretical assumed CDF) is growing exponentially with 

 . 
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Figure 12 – Linearized exponential CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 

  

Figure 13 – Linearized lognormal CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 
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Figure 14 – Linearized gamma CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 

  

Figure 15 – Linearized normal CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 
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Figure 16 – Linearized Gumbel CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 

 

Figure 17 – Linearized Weibull CDFs for the VWBM: with method of moments estimator (left) and MLE estimators 

(right) 

Table 6 is giving the weighed SS method. One more time, the gamma distribution with the 

method of moments estimator is the best fit.  

Table 6 – Weighed least squares method for the VWBM 

 Method of moments MLE 

 SS SS 
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3
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3
 

Lognormal distribution 197*10
3
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3
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3
 155*10

3
 

Normal distribution 3 419*10
3
 3419*10
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3
 495*10

3
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3
 201*10

3
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Finally, figure 18 is giving the q-q plot for some of the assumed distributions. In reading this 

graph we should take into account that 99.6% of the considered value are below 1000 MN*m, 

and thus the (weighed and non weighed) least squares method is strongly influenced by the 

values in the region            . We can clearly see that the gamma distribution is the 

one which stays closer to the empirical in the range            . 

 

Figure 198 – q-q plot for the VWBM 
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In the end, the gamma distribution with the method of moments estimator was chosen: 

       

        

 

Figure 19 - Probability distribution function for the VWBM 

5.5 The HWBM 
Tables 7 and  8 summarize the results for the Kolmogorov-Smirnov test and the sum of squares 

test. 

Table 7 – Kolmogorov-Smirnov test for the HWBM 

 Method of moments MLE 

 y y threshold y y threshold 

Exponential distribution 0.146 0.000657 0.146 0.000657 

Lognormal distribution 0.0734 0.000657 0.0964 0.000657 

Gamma distribution 0.0231 0.000657 0.0510 0.000657 

Normal distribution 0.0859 0.000657 0.0859 0.000657 

Gumbel distribution 0.0317 0.000657 0.0208 0.000657 

Weibull distribution 0.0255 0.000657 0.0261 0.000657 
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Table 8 – Least squares method for the HWBM 

 Method of moments MLE 

 SS SS 

Exponential distribution 26 965 26 965 

Lognormal distribution 4 481 12 214 

Gamma distribution 513 2 986 

Normal distribution 10 521 10 521 

Gumbel distribution 397 454 

Weibull distribution 746 758 

  

Similarly to the VWBM case, also here the method of moments estimators often perform better 

than the maximum likelihood estimators, as it is also confirmed in figures 20 to 25.  

In particular, both the KS test and the sum of squares method suggested us to use one of the 

followings: gamma distribution (with method of moments estimators), Gumbel distribution (with 

either method of moments or maximum likelihood estimators) and Weibull distribution (with 

either method of moments or maximum likelihood estimators).   

  

Figure 20 – Linearized exponential CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 
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Figure 21 – Linearized lognormal CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 

  

Figure 22 – Linearized gamma CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 
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Figure 23 – Linearized normal CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 

  

Figure 24 – Linearized Gumbel CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 
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Figure 25 – Linearized Weibull CDFs for the HWBM: with method of moments estimator (left) and MLE estimators 

(right) 

The weighed sum of squares test (tab. 9) is giving one more time analogous results: the gamma 

(with method of moments estimators), the Gumbel (with method of moments estimator) and the 

Weibull (with maximum likelihood estimators) distributions are the distributions which seems 

the closest to the empirical distribution, especially in the tale of the distribution. Hence, let us 

plot these three distributions together in a q-q plot (fig. 26) to compare them. 

Table 9 – Weighed least squares method for the HWBM 

 Method of moments MLE 

 SS SS 

Exponential distribution 812*10
3
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3
 

Lognormal distribution 137*10
3
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3
 

Gamma distribution 15*10
3
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3
 

Normal distribution 482*10
3
 482*10

3
 

Gumbel distribution 15*10
3
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3
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3
 29*10

3
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Figure 26 – q-q plot for the HWBM 

Finally, the gamma distribution with method of moments estimator was chosen, as it is clearly 

the one which is closer to the empirical distribution in the tale of the distribution, as we can see 

in fig. 26. 

      

       

 

Figure 26 – Probability density function for the HWBM 
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5.6 Correlation between loads 
In this last paragraph the correlation between the loads random variable is analyzed. In 

particular, the following types of correlation need to be studied: 

 correlation  between SWBM and VBWM; 

 correlation between VWBM and HWBM. 

SWBM is due to the hydrostatic pressure and gravity loads. VWBM is a wave induced bending 

moment. Thus they are due to two completely different applied loads. However, they both are 

related to some common parameters, like the mass distribution and the draft. Still, the 

combination between these two load effects seems to be negligible ([6]). 

The VWBM and HWBM are both wave induced ending moments, thus we would expect for 

them a strict positive correlation. In fig. 27 the VWBM and HWBM values occurring at the same 

instant have been plotted. Four different period of the year have been considered. Apparently 

there is no correlation between the two.  

 

 

Figure 27 – Correlation between HWBM and VWBM 
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Furthermore, the correlation coefficient has been calculated for two months (June ’08 and 

November ’07). In both cases we have an almost zero correlation coefficient: 

             

               

One of the reason for this is that there is a phase shift between the VWBM and HWBM, thus it is 

unlikely that their peaks occur simultaneously in time.  

Moreover, it was decided to analyze also the extreme events correlation, since we are interested 

in the occurrence of the extreme events. To do that, it was decided to proceed as follows: 

1) the absolute values (around 25 millions measurements) of the VWBM  have been sorted 

from the lowest to the highest; 

2) the HWBM values have also been sorted in such a way that         and         

are the values which have been recorded at the same instant in time; 

3) the correlation coefficient have been calculated; then, the first million of measurements is 

deleted, and the correlation coefficient calculated again. This procedure is repeated until 

all the measurements have been deleted. 

The results are plotted in fig. 28. On the horizontal axis the “cut-off VWBM” has been plotted. 

This is because deleting the lowest million of measurements means to delete all the values of the 

VWBM (and the corresponding HWBM values occurring at the same instant in time) below a 

certain value.  

What we observe in fig 28 is the following: 

1) at first, the more extreme events we have, the more the correlation coefficient becomes 

negative. This is because the FPSO tends to align in the main wave direction. Thus we 

have a VWBM which is wave-induced, and an HWBM which is swell-induced.  

2) when we have very extreme events, the correlation coefficient becomes “less negative”. 

A possible reason for that may be the fact that here the sea is very rough, thus we may 

have high waves coming from more than one direction. Thus both load effects, VWBM 

and HWBM, are here wave-induced.  

However we should underline that: 

 in all cases the correlation coefficient is very small; 

 in all cases the correlation coefficient is negative: a negative correlation coefficient 

between loads is actually a positive things.  

Thus we decided to disregard the correlation between HWBM and VWBM, because it is very 

small and because in so doing we are acting on the conservative side.  
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Figure 28 – Correlation coefficient between VWBM and HWBM as a function of the extreme events 

5.7 Summary of the results 
In conclusion, the following random variables will be used as input data for the case study.  

Table 10 – Results of the loads processing 

Variable Distribution type  

SWBM                            

VWBM hogging                     

VWBM sagging (absolute value)                     

HWBM                   

 

The VWBM and HWBM distributions have been obtained processing one year of monitored 

data. The SWBM has been obtained considering 868 daily measurements. No correlation 

between loads variable will be modeled.  
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6 
Reliability analysis 

In chapter 2 it has been shown how to get a continuous probability distribution function from a 

set of thickness measurements. In a similar way, in chapter 5 some FPSO monitored parameters 

have been processed in order to get the statistical properties of some loads (SWBM, VWBM and 

HWBM) acting on the FPSO. In chapter 4 different failure modes have been identified and 

“converted” into closed-form equations.  

In this chapter, all pieces are collected together. A case study is introduced, and all the findings 

of chapters 2, 4 and 5 are applied in order to run a full-probabilistic structural analysis.  

6.1 The vessels 
For this case study, two different FPSOs have been used. 

The first one is a unit of which we know the thickness measurements for one tank. The unit was 

built almost 30 years before the inspection as a tanker, and it has been converted to a FPSO after 

21 years of sailing. 

The second FPSO is a unit which has been monitored for 3 years in the Sable field, off the coasts 

of South Africa. This is a relatively harsh environment, and thus interesting for  extreme loads.  

In order to avoid confusion, in this chapter we will call the first FPSO “inspected FPSO” and the 

second unit “monitored FPSO”. Therefore we will reassess an “imaginary FPSO” with 

monitored data from the monitored FPSO and corroded thickness from the inspected FPSO. The 

geometry and initial thicknesses have been taken from the monitored FPSO, and are listed in 

table 1.  
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Table 1 – Geometrical and construcional parameters of the monitored FPSO 

Parameter Value  

Length 230 m 

Breadth moulded 42 m 

Displacement 120 000 tons 

Block coefficient 0.82 

Stiffener spacing 840 mm 

Web spacing  4800 mm 

Deck plate thickness 17 mm 

Stiffener web height 312 mm 

Stiffener web thickness 10 mm 

Stiffener flange width 125 mm 

Stiffener flange thickness 16 mm 

 

The thickness measurements processed in chapter 2 have been taken from the inspected FPSO, 

while the loads analyzed in chapter 5 comes from the monitored FPSO.  

All the input data for the MCS, coming from the previous chaptes, are summarized in table 2. 

Table 2 – Results of the thicknesses and loads processing 

Variable Distribution type  

Corroded thickness of the deck plate                        

Corroded thickness of the deck longitudinal’s web                        

Corroded thickness of the deck longitudinal’s 

flange 
                       

SWBM                            

VWBM hogging                     

VWBM sagging (absolute value)                     

HWBM                   

 

However, the monitored FPSO has some L-section deck longitudinals, while the inspected FPSO 

has flat bars attached to the deck. So the results in table 2 for the flange have been obtained 

assuming that the measurements samples for the web is still valid for the flange. This is usually 

not true, as we have seen in table 1 from chapter 2. We cannot say if this is an optimistic or 

conservative hypothesis. On one hand table 1 from chapter 2 is showing that most of the time the 

flange corroded thickness is higher than the web corroded thickness (which may led us to think it 

is an optimistic assumption). On the other hand,  the orientation of stiffeners for the bulkheads 

and side shell is different: residual oil, dust or dirty water may tend to accumulate on the web of 

the bulkheads/side shell stiffeners and on the flange of deck/bottom stiffeners. This will 

influence the corrosion rate, and thus we cannot easily apply the findings for the side 

shell/bulkheads stiffeners to deck longitudinals. 
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6.2 Monte-Carlo simulation 
Due to the complexity of many failure functions (some of which are not even differentiable), the 

Monte Carlo simulation is the most suitable method to perform a reliability analysis, thanks to its 

simplicity. The numerical software used to run the MCS is MATLAB.  

The principle behind MCS is the following: several sets of input variables    are generated, 

taking into account the type of probability distribution and the statistical  properties of each input 

variable. Then the values of the LSF       are calculated. The probability of failure is then: 

   
  

  
                                                                                                                                                             

where: 

    is the number of failures, that is the number of       which fall in the failure area 

        ; 

    is the total number of samples. 

However, since the wave loads have been monitored over a period of just one year, with this 

procedure we are able to get only the 1 year probability of failure. For the probability of failure 

in N years ([2]): 

   
         

 
                                                                                                                                      

The (6.2) is assuming that the probability of failure is the same every year, that is: 

 the SWBM distribution is the same for every year: this hypothesis may be acceptable, 

even if there are some cases where the operator may decide to significantly 

increase/decrease the production; 

 the VWBM and HWBM is the same for every year, which is also a reasonable 

assumption; 

 the corroded thickness is the same every year, which is clearly not true. This last 

simplification can only be adjusted if a corrosion prediction model is available. 

If a corrosion prediction model is available (see paragraph 6.5), then the (6.2) turns to the (6.3). 

   
                     

 

   

                                                                                                                 

where   is the number of years and      is the yearly probability of failure, which is function of 

the corroded thickness         measured (or predicted) at the i-th year.  
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According to DNV ([1]),  the required number of simulations should be of an order of magnitude 

       in order to estimate the failure probability    with good confidence. This means that for 

a         at least     samples are needed (and thus very long computational time).  

6.2.1 Generation of random variable for the Monte-Carlo simulation 
The MATLAB version used in this work is not endowed with the Statistics Toolbox. This means 

that it is not possible to automatically generate, for example, a normal or lognormal distributed 

variable. It is only possible to generate uniform distributed uncorrelated random variables, and 

then it is required to transform them to the desired ones.  

If the desired variable has a cumulative distribution function      , and if   are the uniform 

generated random variables, then we can have the desired sample of   applying the 

transformation (6.4) ([2]). 

    
                                                                                                                                                           

On the other hand, if variables are correlated, then we need at first to transform them to 

uncorrelated standard normal variables, using (6.5) ([2]): 

                                                                                                                                                             

Then, for the transformation of   into correlated random variables    the so-called Gaussian 

copula model is used. Tre transformation to apply is the (6.6) ([2]): 

    
                                                                                                                                                   

Where    is the results of the lower Cholesky decomposition of the correlation matrix    :  

                                                                                                                                                          

Note that the correlation coefficients between random variables   are different (although not 

very different, [2]) from the correlation coefficient between random variables  . Therefore it is 

also required to transform the (known) matrix     to    . Reference [3] explains how to do that. 

Annex C is giving in detail all the equations adopted for the generation of the random variable 

used in the Monte Carlo simulation, and thus the application of (6.4), (6.5) and (6.6) to the 

specific case study. 

Figure 1 is summarizing all the steps to get the desired sample of random variables starting from 

a sample of uniform uncorrelated variables. 
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Figure 1 – Generation of random variables 

6.3 Correlation between random variables 
In general, we can distinguish the following kinds of correlation: 

 between yielding stress of stiffeners and yielding stress of plates; 

 between the corroded thicknesses of the plate and the stiffeners; 

 between the HWBM and the VWBM; 

 between the SWBM and the VWBM. 

Often, the steel used for stiffeners and the one used for plates come from two different steel 

mills. Thus it was decided not to include this type of correlation in the analysis.  

On the other hand, it is reasonable to expect an high positive correlation between the corroded 

thicknesses of the plate, the stiffener web and the stiffener flange.  For example, if the 

environment is aggressive, then it is aggressive for all these three structural elements. Therefore, 

it has conservatively assumed a full correlation (     ) between each pairs of these three 

random variables. 

Finally, it was decided not to include the correlation between loads (SWBM-VWBM and 

VWBM-HWBM), for the motivations already given in paragraph 5.6.  
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6.4 Load cases 
In the case study a reassessment of a FPSO deck structure under global-hull girder induced loads 

is made. Conservatively, the boundary conditions assumed throughout the whole analysis are 

simply supports.  

3 different load combination methods have been used (peak coincidence method, SRSS method 

and Turkstra rule), and two different loading case (hogging and sagging), for a total number of 6 

load cases. 

Since we have no lateral pressure, the stress distribution over the cross section of the (stiffened 

or unstiffened) plate is constant (in the prebuckling phase). This means that the first yielding and 

gross yielding limit states are indeed the same failure mode. Thus the failure mode due to gross 

yielding (or “plastic hinges formations”) will not be considered.  

We expect to have a minimum probability of failure in the order of     . This means that, 

according to DNV,     iterations are needed. The computational time for such an high number 

of iterations may be very long (approximately 10 hours). This is a significant problem, especially 

for the sensitivity analysis. Therefore, only for the sensitivity analysis, it was chosen to increase 

the loads, so to have higher probability of failures, and hence a lower number of necessary 

iterations. In particular, the wave loads (VWBM and HWBM) have been increased by a factor of 

3 (both the mean value and the standard deviation), so to use “only”     iterations.  

Then, the MCS has also been run once with the real input loads of table 2. 

6.5 Corrosion prediction model 
In literature, there exist several corrosion prediction models for ships, even though their validity 

is limited. They can be essentially categorized in two groups: some of them are fully empirical, 

which means they are constructed trying to fit a certain set of empirical measurements, while 

others use selected first principles and then apply them to the data ([6]).  

The problem of the first group is that – due to the high number of variables affecting the 

corrosion rate – their validity is limited to a very specific situation (e.g. a specific ocean area, a 

specific vessel, a specific location of the vessel, and so on). The problem of the second group is 

that they need to be calibrated for the specific situation, as they all have some parameters which 

must be tuned when some empirical data are collected. 

The second approach is to be preferred, however – for our case study – we do not have enough 

empirical data relative to inspections to the same structure in different periods in time. This is the 

reason why, as it has already been said in chapter 1, no corrosion prediction model is included in 

this work. 

However, it has been found in the literature a paper ([5]) where a theoretical corrosion prediction 

model has been adjusted to a specific FPSO situation. Just to show the methodology, this model 
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has been assumed to be valid also for our case study, and a time-dependent reliability analysis 

has been run (results are listed in chapter 7).  

The corrosion prediction model is the non-linear one proposed in 1999 by Soares and Garbatov 

([4], fig. 2): 

          

                                                           

          
    

  
                

                                                                                  

   time [years] 

        corroded thickness 

     lifetime of the coating  

     thickness loss for long term corrosion 

    
  

   
  transition time  

    angle defined by OA and OB in fig. 2 

In fig. 2 we can distinguish three stages. In the first stage (whose duration is   ) the metallic 

surface protection works effectively and there is no corrosion. The second stage begins when the 

protection or coating is damaged and corrosion starts reducing the plating thickness. The third 

stage corresponds to a stop of corrosion process when the corrosion rate tends to zero. The 

oxidized material produced does not allow contact between surface plating and corrosive 

environment anymore.  

 

Figure 2 – Non-linear corrosion prediction model ([4]) 
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Fig. 3 presents the thickness of a bottom plate in a cargo tank of a real FPSO ([5]). These data 

have been obtained through combining the Soares and Garbatov non-linear model with the 

empirical Bayesian inference.   

           

           

   
   

       
            

 

Figure 3 – Results of the corrosion model ([5]) 

The data refers to only one side of the plate.            is then quite a large corroded 

thickness (if we assume that on the other side of the plate the surface is experiencing the same 

corrosion, then we would have       loss of thicknessin 25 years!). However, it must be 

underlined that the bottom panel analyzed in [5] has been intentionally selected as the one which 

has experienced the greatest corrosion. 

In the time-dependent reliability analysis, the corrosion prediction model from figure 25 will be 

assumed valid also for the deck plate of the monitored FPSO. For the stiffeners, it will be scaled 

down by a certain factor, so to keep the ratios between the corrosion of the stiffener web/flange 

and the corrosion of the plating the same as they were found for the inspected FPSO in chapter 2.  

In chapter 5, loads measurements from a whole year have been processed in order to derive the 

statistical properties of the wave loads. In the time-dependent reliability analysis, we are 

assuming that these statistical properties are the same every year. If the reassessment tool is 

going to be implemented on a real FPSO, this assumption cannot be considered valid: a longer 
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monitoring period is needed, so that the statistical properties of the wave loads would stabilize 

themselves.  
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7 
Results and sensitivity analysis 

This chapter presents the results of the Monte Carlo simulations. 

It is split in two parts: at first the influence of many parameters on the probability of failure is 

studied (paragraph 7.1). As anticipated in chapter 6, for the trend analysis the wave loads, both 

mean value and standard deviation, have been increased by a factor of 3, in order to have higher 

probabilities of failure (and so lower iterations, hence lower computational time).   

Then, the MCS has been run also once using the real loads (paragraph 7.2) and a comparison of 

these results with some target reliability indices is made.  

All the probabilities of failure are yearly probability of failures. In the sensitivity analysis it was 

chosen – with only one excpetion – to plot the probabilities of failure rather than the reliability 

indices   as – from an engineering point of view – they are easier to comprehend. On the other 

hand, the reliability index is preferred when a comparison with some target reliabilities is made, 

since rules generally recommend a target reliability index rather than a target probability of 

failure. 

In order to make this chapter more readable, in the sensitivity analysis only the graphs are 

plotted, and all the tables with the numerical values have been moved to annex D, unless they are 

really necessary to understand the results. All graphs – unless otherwise specified – have the 

logarithmic scale on the vertical axis. 

7.1 Sensitivity analysis 

7.1.1 Analytical method vs. Jonshon-Ostenfeld formula 
In chapter 4 two different models have been described for the ultimate limit strength calculation 

of both stiffened and unstiffened plates: an analytical method (large deflection analysis combined 

with the membrane stress-based method) and the Jonshon-Ostenfeld formula method. The latter 

is an empirical method which works good although sometimes it may be too conservative. The 

first one is a more “sophisticated” method which tries to solve the compatibility and equilibrium 

equations for (stiffened or unstiffened) plates.  
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The problem of the large deflection analysis is that many simplifications have been made in 

order to make the problem easier. In particular, all the initial imperfections (residual stress and 

initial deformations) have been disregarded. This may led to too optimistic results. 

In order to compare these two methods, the probability of failure of an unstiffened plate under 

longitudinal compressive load has been calculated as a function of the initial plate thickness   . 

Results are plotted in figure 1, together with the probability of failure using the elastic buckling 

strength. 

In this paragraph the peak coincidence method has been used to combine wave loads, and the 

correlation coefficients between the corroded thicknesses of the plate, the stiffener web and the 

stiffener flange have all been set equal to 1. The number of samples in the MCS is    . 

From figure 1 we notice that the elastic buckling strength and the Johnson-Ostenfeld formula are 

giving the same results for thin plate (as expected), but they are diverging for stockier plate. For 

thick plate the elastic buckling strength is giving totally unreliable results.  

We also notice that the large deflection analysis curve looks like the Jonshon-Ostenfeld formula 

curve “shifted down” by a certain factor. This is in agreement with what was expected. However, 

it is possible to note that actually the influence of the initial imperfections on the ultimate 

strength is quite big, as the two curves are indeed very distant between each other. This means 

that, whenever is possible, the Johnson Ostenfeld formula need to be used for the ultimate 

strength computation, as the non-inclusion of the initial imperfections in the analytical method is 

an extremely optimistic assumptions. 

 

Figure 1 – Ultimate probability of failure of an unstiffened plate as a function of the initial gross plate thickness 
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The conclusions drawn here for an unstiffened plate can also be extended to the five failure 

modes of a stiffened panel. For istance, the ultimate strength of a stiffened panel due to failure 

mode I is calculated in the same way as that one of an unstiffened plate, with the only difference 

that the isotropic plate model is replaced by an orthotropic plate model. Analogously the ultimate 

strength due to failure mode IV is a combination of the ultimate strength of the unstiffened plate 

between longitudinals and the ultimate strength of the stiffener web. Similar considerations can 

also be made for the other failure modes.  

7.1.2 Effects of the initial corroded thickness on the structural reliability 
In this sensitivity analysis, the mean values of the corroded thicknesses have been all multiplied 

times a factor  : 

            
             

          
             

             
             

Then, the probabilities of failure have been calculated as a function of this factor   in order to 

see the effects of the initial corroded thickness on the reliability. Only the failure modes which 

are actually function of the thickness are considered here (i.e. the ULS of stiffened panel and 

unstiffened plate; no yielding and no fracture).  

In this paragraph the results using the Turkstra’s rule to combine loads are shown. In annex D the 

results are also given for the other load combination methods. The correlation coefficients 

between the corroded thicknesses of plate, stiffener web and stiffener flange have all been set 

equal to 1. The number of samples in the MCS is    .  

Results are plotted in figures 2 and 3, for stiffened panel and unstiffened plate, respectively. 

Figures 2 is giving the probability of failure for both the analytical method and the Johnson 

Ostenfeld formula. It is interesting to see that the probabilityof failure is actually constant for low 

value of  , before starting growing. This is because for low value of the corroded thickness the 

corrosion allowance is being consumed. The corrosion allowance is added during the design of 

the unit as a margin with respect to corrosion, thus it is not intended to increase the ultimate 

strength of the panel.  
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Figure 2 - Ultimate probability of failure of an unstiffened plate as a function of the initial corroded thickness 

Figure 3 is giving the results for the stiffened panel. All failure modes for a stiffened panel are 

plotted together. The models adopted to calculate the ultimate strengths of each failure mode are: 

 Mode I, overall collapse: analytical method 

 Mode II, yielding along the plate-stiffener intersection: analytical method 

 Mode III, beam-column type collapse: Johnson-Ostenfeld formula 

 Mode IV, local buckling of the stiffener web: Johnson-Ostenfeld formula 

 Mode V, flexural-torsional buckling of the stiffeners: Johnson-Ostenfeld formula 

For mode I and mode II it was not possible to use a Johnson-Ostenfeld formula (or an equivalent 

empirical formula) as it does not exist. It may be not very consistent to plot together failure 

probabilities calculated with different models. However, it must be pointed that: 

 Failure mode 1 is the typical collapse pattern when the stiffeners are relatively weak 

compared to the plate; in this case, they buckle together with plating, and the overall 

buckling remains elastic ([1]). This is not expected to be our case, as (see table 1) the 

stiffeners are not that weak compared to the plating (e.g. stiffener’s flange is 16 mm, deck 

plate thickness 17 mm). Furthermore, an elastic buckling collapse is something which is 

also not expected in a FPSO, whose structural elements are in general all quite stocky. 

 Failure mode 2 occurs when the panel is predominantly subjected to biaxial compressive 

loads ([1]), which is also not our case. 
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Table 1 – Initial dimensions of stiffeners and attached plate 

Parameter Value  

Stiffener spacing 840 mm 

Deck plate thickness 17 mm 

Stiffener web height 312 mm 

Stiffener web thickness 10 mm 

Stiffener flange width 125 mm 

Stiffener flange thickness 16 mm 

 

In fig. 3 we see that failure modes IV is the most critical one. Failure mode IV typically arise 

when the ratio of stiffener web height to stiffener web thickness is too large. In this case study, 

the stiffener web dimensions are               , and thus we are not surprised by this result. 

We also notice that the blue line – the one giving the lowest probabilities of failure – is also the 

least smooth curve. This is due to the relatively low number of samples (10
7
), which – for that 

particular curve – should have been higher to have even more reliable results.  

 

Figure 3 - Ultimate probability of failure of a stiffened panel as a function of the initial corroded thickness 

Again, we see a constant trend of the probabilities of failure for small losses of thicknesses 

(which correspond to the corrosion allowance consumption). However, we note that mode I and 

mode III are always constant. Failure mode III is the beam-column type collapse; its ultimate 

strength is proportional to the elastic buckling strength, which is given by (4.145). 
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From (4.145) we see that the elastic buckling strength is proportional to the ratio between the 

moment of inertia of the cross section (with attached plate) about the neutral axis and the area of 

the whole cross section.  

   
    

      
                                                                                                                                                 

If       is increasing, then both the numerator and the denominator of (7.1) are going down, but 

they are going down with a similar speed (see tab. 2). The reason for that is due to the large web 

height, which makes the moment of inertia less sensitive to the thickness.  

Table 2 – Moment of inertia and cross sectional area of the stiffened panel as a function of f 

f Ieff  As+b*tp Ratio 

 [mm
4
] [mm

2
] [mm

2
] 

0 2.44E+08 1.94E+04 1.26E+04 

0.5 2.42E+08 1.91E+04 1.27E+04 

1 2.42E+08 1.88E+04 1.28E+04 

1.5 2.37E+08 1.86E+04 1.28E+04 

2 2.34E+08 1.83E+04 1.28E+04 

2.5 2.30E+08 1.80E+04 1.28E+04 

3 2.27E+08 1.77E+04 1.28E+04 

3.5 2.22E+08 1.74E+04 1.28E+04 

4 2.21E+08 1.71E+04 1.29E+04 

4.5 2.18E+08 1.69E+04 1.30E+04 

5 2.15E+08 1.66E+04 1.30E+04 

5.5 2.13E+08 1.63E+04 1.31E+04 

6 2.09E+08 1.60E+04 1.31E+04 

 

Failure mode I is the overall buckling of the stiffened panel. Like mode III, the ultimate strength 

for this failure mode is particularly influenced by the geometry of the cross section (in particular 

the stiffener web height) rather than by the thicknesses. 

As a matter of fact, in figure 4 the probability of failure due to mode I and III is calculated as a 

function of the web height. These probability of failures are compared with the probability of 

failure due to mode IV (local buckling of the stiffener web) and V (flexural-torsional buckling of 

the stiffeners). Mode II (yielding along the plate-stiffener intersection) is not relevant as it is only 

related to the plating between longitudinals. 
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Figure 4 - Ultimate probability of failure of a stiffened panel as a function of the stiffener web height 

We clearly see that Mode I and Mode III are much more sensitive to the stiffener web height 

than mode IV and V. This statement explains why in figure 3 the probabilities of failure due to 

mode I and mode III were constant.  

On the other hand, we may actually be surprised by the fact that mode IV and mode V are very 

little influenced by the stiffener web height. 

The reason for that is to be found in the formulae used for the calculations of the ultimate 

strengths: the (4.148) for mode IV and (4.163) for mode V. 

   
   

   
       

            

             
                                                                                                        

   
  

   
       

            

             
                                                                                                         

   
   is calculated as a combination of the ultimate strength of the plating between the stiffeners 

   
  and the ultimate strength of the stiffener because of web buckling   

 . However, we see that 

the first quantity is multiplied times the cross sectional area of the plating    , while the second 

times the cross sectional area of the stiffener            Since the cross sectional area of the 

plating is much larger than that one of the stiffener, the ultimate strength due to mode IV is much 

close to   
  than    

 . 

The same consideration is valid also for mode V, where – in this case – we have a combination 

between    
  and he ultimate strength of the stiffener because of lateral-torsional buckling   
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7.1.3 Effects of the load combinations method on the structural reliability 
In this paragraph the effects on the reliability of each of the three load combination methods, 

used to combine the VWBM and the HWBM, is studied. Table 3 is summarizing the results. It 

was chosen to use the reliability index rather than the probability of failure, just to make the table 

more readable.  

Table 3 – Effects of the load combination method on the structural reliability 

 Peak coincidence SRSS Turkstra 

 β β β 

Yielding hogging unst. plate 4.48 4.02 3.76 

Yielding hogging stiff. panel 4.54 4.05 3.78 

Yielding sagging unst. plate 4.99 4.49 4.14 

Yielding sagging stiff. panel 5.07 4.51 4.16 

Fracture 3.84 3.47 3.23 

ULS unst. plate 4.65 3.97 3.64 

ULS stiff. plate mode I 5.20 4.45 4.17 

ULS stiff. plate mode II 5.15 4.44 4.13 

ULS stiff. plate mode III 5.08 4.36 4.05 

ULS stiff. plate mode IV 4.46 4.02 3.71 

ULS stiff. plate mode V 4.58 4.10 3.79 

 

Results may seem surprising, since in table 3 the peak coincidence method (i.e. the most 

conservative one) is giving the highest reliability. The reason for that is due to the modelling 

uncertainties (table 4) which have been used for each load combination method (see chapter 3). 

Table 4 – Modelling uncertainties for load combination methods 

Modelling uncertainties Bias c.o.v. 

Peak coincidence 0.72 0.11 

SRSS 1.01 0.12 

Turkstra 1.17 0.11 

 

Table 4 shows that the bias for the peak coincidence method is lower than 1, which means that 

the conservativity of this load combination method has already been considered, and this is the 

reason why table 3 is giving those apparently weird results. 

Furthermore, we should not forget that the modelling uncertainties from table 4 have been 

derived for the load combination between the VWBM and the slamming-induced vertical 

bending moment. The assumption that they are still valid for the load combination of the VWBM 

and the HWBM has not been verified. Looking at the results from table 3, this assumption seems 

not to be valid, as we would have expected a lower differences between the reliability indices 

calculated with different load combination methods. 
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The reliability index has also been calculated once (only for the hogging case) without including 

the modelling uncertainties. Results are given in table 5.  

Table 5 – Effects of the load combination method on the structural reliability 

 Peak coincidence SRSS Turkstra 

 β β β 

Yielding hogging unst. plate 4.03 4.06 4.03 

Yielding hogging stiff. panel 4.05 4.09 4.06 

Fracture 3.46 3.49 3.45 

 

Table 5 is showing that – without modelling uncertainties – the influence of the load 

combination method on the results is very limited. This is actually not surprising, because we are 

combining two loads (VWBM and HWBM) with very different magnitudes (VWBM is much 

larger than HWBM; the FPSO is a turret moored FPSO). Therefore we can conclude that actually 

all the differences in table 3 between the reliability indices calculated with different load 

combination methods are mainly due by the different modelling uncertainties, rather than by the 

load combination method itself. 

More investigations on this topic are needed. So far we are only able to conclude that a strong 

influence on the results is given by the way the modelling uncertainties are modelled for each of 

the three load combination methods considered in this work.  

7.1.4 Corrosion of the plate vs. Corrosion of the stiffeners  
Paragraph 7.1.2 showed the effects of the initial corroded thickness on the reliability. There, the 

mean value of the corroded thickness of the plate, the stiffener web and the stiffener flange have 

all been multiplied times a factor  , which was varied from 0 to 6.  

In this paragraph, the factor   has been varied once only for the plating and once only for the 

stiffener. In this way we are able to see the effects on the reliability of the corrosion of each 

single structural element.  

Figure 5 is giving the results for the corrosion of the plate (the Turkstra’s rule to combine loads 

has been used; the correlation coefficients between the corroded thicknesses of plate, the 

stiffener web and the stiffener flange have all been set equal to 1; the number of samples 

generated was    ). This figure is very similar to figure 3 (where no difference was made 

between the corrosion of the plate and the corrosion of the stiffeners).  
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Figure 5 - Ultimate probability of failure of a stiffened panel as a function of the corrosion of the plate 

Figure 6 is giving the results for the corrosion of the stiffeners. This time we see that the 

probabilities of failure of all limit states are almost constant with  . 

 

Figure 6 - Ultimate probability of failure of a stiffened panel as a function of the corrosion of the stiffeners 

The reasons for these results are  the following: 
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1. Mode I (overall collapse) and mode III (beam-column type collapse) are not influenced 

by the corrosion at all, as already explained (the ultimate strength for these failure modes 

is mainly a function of the geometry of the stiffener); 

2. Mode II (yielding along the plate-stiffener intersection) is, by definition, only related to 

the plating between stiffeners; 

3. Mode IV (local buckling of the stiffener web) and mode V (flexural-torsional buckling of 

the stiffeners) are influenced by the corrosion of the stiffener, but to a very little extent 

(in paragraph 7.1.2 it was shown that the ultimate strength for these failure modes is 

mainly a function of the ultimate strength of the plating between the stiffeners). 

Furthermore, we should underline that no lateral pressure is applied to the assessed deck. It is 

likely to expect an higher influence of the corrosion of the stiffeners on the reliability if a lateral 

pressure is acting on one side of the stiffened panel.  

7.1.5 Effects of the correlation coefficients on the structural reliability 
In paragraph 6.3 the correlation between the corroded thicknesses (of the plate, of the stiffener 

web and of the stiffener flange) was discussed. There it was decided to assume a full correlation 

(   ). Since this assumption may be too conservative, here the effect of the correlation 

coefficients on the results is studied. The correlation coefficients have been varied from 0 to 1 (it 

has been assumed that the three correlation coefficients           ,               and             

have always the same value). 

Results are given in figure 7 (the Turkstra’s rule to combine loads was used; the number of 

samples generated was    ). 

 

Figure 7 - Ultimate probability of failure of a stiffened panel as a function of the correlation coefficient 
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We can conclude that the correlation coefficients between corroded thicknesses have no effect at 

all on the results. The explanation for this has already been given in the previous paragraph: the 

probability of failure, for all ultimate failure modes, is basically sensitive only to either the 

corrosion of the plating or the geometry of the cross-section. 

In this sensitivity analysis it has been assumed always a positive correlation (     ). Since 

the structural elements are all – at least on one surface – in contact with the same environment, 

this seems to be the most logic assumption. However, a negative correlation may still be 

possible. For example, the web and the flange of the longitudinals have a different orientation: 

one is vertical, one is horizontal. This means that it is likely to have accumulation of dust or 

residual oil on one of the two elements (in our case – deck reassessment – on the flange), while 

the other one (the web) will obviously be more clean. This may have some effects on the 

corrosion of the two elements (e.g. the residual oil may act as a coating for the flange). 

Anyway, since it has been showed that all failure modes are mainly sensitive to either the plating 

thickness or the geometry of the cross-section, it does not make sens to continue the sensitivity 

analysis also for negative values of the correlation coefficients (since we expect that we will get 

a constant trend).  

7.1.6 Time-dependent reliability analysis 
In chapter 6 a corrosion prediction model for the bottom plate of an FPSO oil cargo tank has 

been taken from the literature. If we assume that this corrosion prediction model is still valid for 

the deck of the monitored FPSO which has been used for our case study, we can use it to run a 

time-dependent reliability analysis. The results are shown here. The goal of this paragraph is 

only for illustration purposes,: it only shows the potentiality of the tool which has been 

developed, since the assumption on the validity of the corrosion prediction model is not 

confirmed. 

The time-dependent reliability analysis has been performed running indipendent MCSs, one per 

each time step. The mean values of the corroded thicknesses have been calculated every year 

using the (6.8). Actually also the standard deviation of the corroded thicknesses should be 

changed, since we know that it tends to increase with the passage of time ([2]). However, this 

will come automatically, since the distributions adopted for the corroded thicknesses are the 

truncated exponential distributions (that is, the same adopted for the corroded thicknesses of the 

inspected FPSO of the case study) which, by definition, have the standard deviation equal to the 

mean value (and it has been assumed that the corroded thicknesses are exponentially distributed 

at any time step). 

Results are given in figure 8. On the same figure it has been reported also:  

 the time where – according to the corrosion prediction model – the corrosion allowance 

of 2 mm will be all consumed. The real value of the corrosion allowance  for the 

monitored FPSO is actually unknown. The reported value of 2 mm has been taken from 

the DNV ([3]; values for the “tank region” and “within 1.5 m below weather deck”); 
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 two target probabilities of failure for stiffened and unstiffened plate. These target 

probability of failure are based on the review of proposals made by various regulatory 

bodies and analysis of results of reliability analysis performed for the last 30 years ([4]). 

Looking at figure 8, the advantages of using such a reassessment tool are evident: 

1. unnecessary maintance can be avoided; 

2. it can be predicted when a maintenance intervention will be necessary, so that the repair 

intervention can be properly planned; 

3. life-extensions of the existing unit can be justified.  

 

 

 

Figure 8 – Time-dependent reliability analysis 
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can be used to give a first idea. In paragraph 8.2.2 a way to derive some target reliability indices 

suitable for the reassessment of a corroded FPSO is briefly introduced.  

Results are listed in table 6. For each failure mode and each load combination method , the 

obtained reliability level is beyond the target level. All these reliability indices have been 

calculated considering the real loads and the real thicknesses, thus a quite large number of 

samples was generated (6*10
8
). They are all annual target reliability indices. For the ULS of 

stiffened panel we have only one value since the lowest reliability level among the 5 failure 

modes has been considered. Analogously, for the yielding limit states, the lowest reliability 

indices between the hogging and sagging condition have been reported.  

Table 6 – Comparison with some target reliability levels 

 Peak coincidence SRSS Turkstra Target reliability 

 β β β β 

Yielding unstiff. plate 4.93 4.90 4.92 3.7 

Yielding stiff. panel 5.00 4.96 4.99 4.1 

ULS unstiff. plate 4.41 4.40 4.39 2.0 

ULS stiff. panel 4.44 4.46 4..54 2.5 

Fracture 4.23 4.24 4.12 4.1 

 

In table 6 we notice that the reliability indices are higher for the yielding limit states than for the 

ultimate limit states, especially for the target reliability levels. The reason for that is to be found 

in the criteria which classification societies traditionally used for the design of new vessels. The 

initial yield criterion, for many years, it has been the main criterion used in the classification 

society. Consequently, in an effort to avoid the other failures, they deliberately required very 

high safety coefficients for the yielding failure ([4]). 

It is also possible to see that the reliability indices for the stiffened panel are always larger than 

for the unstiffened plate. This is consistent with the structural hierarchy introduced in chapter 1.  

Finally, we notice that the differences between the three load combination methods is very small 

(even if modelling uncertainties from table 4 have been included). This is because the real loads 

have been used, and so the wave induced loads have not been multiplied times 3, as it was done 

in all the other paragraphs of this chapter. 
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8 
Conclusions and recommendations 

This last chapter of the thesis is divided into two main paragraphs.  

In the first one some conclusions on the work done are drawn. In the second one  some 

guidelines and recommendations for eventual future devolpments are given. 

8.1 Main findings 
In this thesis a way to reassess the strength of a corroded FPSO, using a probability-based 

approach, has been proposed. In particular, the model is able to check inspected unstiffened 

plates and stiffened panels. If properly combined with a corrosion prediction model, this tool can 

be used to avoid unnecessary maintainance or to justify some extra maintainance.  

The reassessment procedure has been applied to evaluate the strength of the deck of a real FPSO. 

The thickness measurements processing showed that the best way to model the corroded 

thicknesses distribution for the FPSO deck was by using a truncated exponential distribution (for 

both the plating and the stiffeners). For the loads, it was found out that the gamma distribution 

and the normal distribution give the best approximation of the empirical distributions for the 

wave-induced bending moments and the still water bending moment, respectively. No 

correlation was seen  between the HWBM and the VWBM. 

The sensitivity analysis showed that – for the considered load condition – the reliability of the 

structure is much more sensitive to the corrosion of the plating rather than to the corrosion of the 

stiffeners. 

Furthermore, the model is also able to predict the most likely failure mode. For example, during 

the case study it was found that the most likely failure mode for the deck of the inspected FPSO 

is the one induced by the web buckling of the stiffeners. On the other hand, some failure modes 

showed no sensitivity to the corrosion of both the plating and the stiffenerse. This type of 

knowledge can be used to optimize the maintainace intervention.  

It was also found that the analytical model proposed for the calculation of the ultimate strength 

(large deflection analysis with membrane stress-based method) is giving unreliable results if a 
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proper way to model and include the initial imperfections (initial deflection and residual stresses) 

is not adopted. Alternatively, the empirical Johnson-Ostenfeld formula can be used. 

Finally, results also showed a great sensitivity of the results to the way the modelling 

uncertainties for the load combinations methods are modelled. 

8.2 Future developments 
This last paragraph is further divided into three sub-paragraphs.  

In the first one  the “weak points” of the proposed reassessment model are given, and some 

methods to correct them are introduced. In the second sub-paragraph it is explained what still 

needs to be done in order to implement the reassessment model and to make the reassessment 

tool fully operative. Finally, some ideas to use the model in a different way (that is, from a 

“research point of view” rather than for practical purposes) are written down.   

8.2.1 Further improvements 
During this work, many assumptions were necessary. Most of them are quite acceptable, some of 

them are not. Here a list of the least reasonable assumptions, which requires further 

investigation, is given. 

1. Modelling uncertainties: in chapter 3 it has been shown how the modelling uncertainties 

have been modelled for all the random variables of interest. For all of them a literature 

research was carried out and – since there is not a lot of material about FPSO – most of 

the time the modelling uncertainties for commercial vessels (preferably for oil tankers) 

have been assumed to be valid also for FPSOs. This assumption seems to be quite 

reasonable. However, we should mention that these modelling uncertainties are supposed 

to be used during the design of a new vessel. The point is that we have at the momen of 

the reassessment some extra data which are not available during the design of a new 

vessel: the MONITAS monitored loads. Therefore the actual modelling uncertainties are 

surely lower than the values which have been used. On the other hand these modelling 

uncertainties are not zero. Hence, a new – less conservative – possible way to model 

these type of uncertainties should eventually be studied. 

 

2. Load combination methods: results from chapter 7 showed a great sensitivity of the 

reliability indices to the way the modelling uncertainties were modelled for any of the 

three load combination methods. The problem is that we are using three deterministic 

methods to combine loads in a stochastic approach. This does not necessarily produce 

bad results, provided that the modelling uncertainties are properly modelled. 

Alternatively, probabilistic methods to combine loads can be used (e.g. Ferry-Borges and 

Castenheta [1] and Moan and Jiao [2] methods). In 1984 Guedes Soares demonstrated 

that stochastic methods provide exact solutions for combining still-water and wave-

induced bending moments [3]. 
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3. Initial imperfections: the ALPS/ULSAP theory from professor Paik has been used to 

write down the failure functions for the ultimate limit states. This is an analytical theory 

which allows to write down the failure functions in a closed-form expression. This is a 

great advantage if these limit state functions have to be used in a stochastic approach. 

However, they require a proper way to model the initial imperfections, which is 

something that has not been done in the present study, but which needs to be done in the 

future. 

 

4. Grouping thickness measurements: in chapter 2 – when thickness measurements from a 

real FPSO have been processed – all the measurements which gave         were not 

considered (a negative corroded thickness is possible since there are always some points 

on a new plate which have an actual thickness higher than the nominal thickness). The 

reason for this choice was that considering all measurements from a plate (or from a 

stiffener web or from a stiffener flange) all together may led to optimistic results, since 

not all the locations on a plate experience the same corrosion. Indeed, there are always 

some parts of a plate with a corrosion more severe than the average one. Disregarding  

the measurements which gave         is giving some conservativity to the proposed 

reassessment procedure, but it does not guarantee both that the results will be 

conservative and – if it will be conservative – that it will not be too conservative. A way 

to solve this problem is given in the following paragraph.  

8.2.2 Implementation of the reassessment procedure  
In order to make this reassessment method ready to be implemented on a real FPSO, some extra 

work has to be done.  

1. For an FPSO stiffened panel, the most general loading case is a combination of: 

longitudinal stress, transverse stress, shear stress and lateral pressure. Equations given in 

chapter 4 always neglect the shear stress. For the case study of chapter 6 (deck plate with 

longitudinal axial load) this was not a problem but if those equations pretend to be used 

also for other load cases than this assumptions is no more valid. 

 

2. Since the final purpose of this tool is  – from an operator point of view – avoiding 

superfluous maintenance, this reassessment procedure should be able to convince Class 

Socities about its validity. Therefore it is necessary to get approval from Class Socities, in 

particular with respect to:  

- the way a probability distribution is obtained from a set of measured data; 

- the way the loads are calculated from the MONITAS data;  

- the way the modelling uncertainties are modelled; 

- the theory used to write down the limit state functions. 

Furthermore, it must be underlined that this analysis only focuses on ultimate strength. 

For CSs, accidental limit state will also be of importance.  
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3. The results of a reliability analysis are strongly sensitive to the way the input random 

variables are modelled (i.e. to the probability distributions used to model the 

uncertainties). Of course, the more data are available, the more precise the fitting of the 

empirical data with a probability distribution function will be. In chapter 2, during the 

thickness processing, some difficulties have been encountered in modelling the statistical 

uncertainties of the corroded thickness for the stiffeners, due to a limited number of 

measurements. If this reassessment tool is going to be implemented on a real FPSO, then 

it is recommended that a “large enough” number of measurements is taken.  The amount 

of measurements to be taken needs to be discussed with an FPSO operator/surveyor, 

since it has to be a compromise between the necessity of making the structural 

reassessment as precise as possible, and the necessity of making the inspections not too 

difficult and/or too long. A possible solution may be: first, a visual inspection of the 

stiffened panel is made. Some plates and stiffeners which showed the most severe 

corrosion are selected. Then thickness measurements are carried out: for the non-selected 

plates/stiffeners, in the traditional way; for the selected stiffeners and plates, the number 

of measurements is increased. In this way we are also able to solve the problem from 

point 4, paragraph 8.2.1 (about grouping thickness measurements). Indeed, in this way, it 

is possible to consider all the measurements but only from the selected stiffeners/plates. 

In so doing, we can guarantee the efficiency of the estimation of the probability 

distribution (since for the selected structural elements the number of thickness 

measurements carried out is “large enough”), and at the same time be sure that we are not 

acting on the optimistic side, since the selected elements have been properly chosen as 

the most corroded ones.  

 

4. Some target reliability indices need to be identified. A possible way to do that is to use as 

inputs the deterministic rule-based corrosion allowance, for the corroded thickness, and 

the rule-based loads, and to calculate the reliability indices using the procedure described 

in the present study. 

 

5. An efficient corrosion prediction model for FPSO still does not exist. In the literature 

there exist several corrosion prediction models, but their validity for FPSO needs to be 

verified by a comparison with some measured thicknesses. Due to the high number of 

variables affecting the corrosion rate, a large amount of inspection reports (preferably 

relative to different tanks of the same unit, differents units from the same ocean area, and 

different ocean areas) has to be analyzed. It is not possible to guarantee that one of the 

existing corrosion prediction model will fit the empirical data in a satisfactory manner, 

and therefore there may be the necessity to set up a completely new corrosion prediction 

model. The eventuality of tuning different models for different units/tanks should also be 

taken in onsideration.  
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8.2.3 Utilization of the model for research purposes 
The great advantage of the MONITAS system is its capability to also say why the calculated 

fatigue lifetime is different from the design-predicted fatigue lifetime. This is done calculating 

the fatigue lifetime several times, replacing each time one input variable with the design-

predicted variable, to see the effects that the assumed value of the input component has on the 

results. Furthermore, in order to study the effcts of the fatigue tool itself on the calculated fatigue 

damage, the calculated fatigue lifetime is compared with the so-called measured fatigue lifetime, 

which is computed directly from the stresses measured by some strain gauges.   

The same philosophy can be applied also to the present structural reliability analysis. In 

particular, we can distinguish three components which combined together are able to calculate 

the reliability of the corroded structure (see figure 1): the thickness measurements, the monitored 

loads and the limit state functions.  

 

Figure 1 – Probability-based structural reassessment of a corroded FPSO 

If we replace any of the three components (pink boxes in figure 1) with the design-predicted 

value, and if we compare the new obtained probability of failure with the “original” probability 

of failure, it is possible to investigate: 

 the influence of the design-assumed extreme loads on the reliability; 

 the influence of the corrosion allowance on the reliability; 

 the influence of the class societies formulae for the dimensioning of stiffened and 

unstiffend plates on the reliability. 

Another interesting topic of research may be the coupling between the two degradation 

mechanisms for FPSO which have been described at the very beginning of the present thesis: 

fatigue and corrosion. In particular, it would be interesting to include the effects of the corrosion 

on the calculated stresses (that is, on the fatigue loads). Let us consider, for instance, a strain 

gauge located on the side shell close to the neutral axis (which is a typical location for a strain 

gauge in the MONITAS system). The deformation in that area is dominated by one dominant 

load mechanism (lateral pressure). If a corrosion prediction model have been validated, and if a 

comparison between the mean stresses in the plate and the corrosios loss of thickness in the plate 

is made over a sufficiently long period, it should be noted a similar trend between these two 
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variables. Indeed, the stresses in the plate are expected to grow with the reduction of the 

thickness (note that we are talking about local load-induced stresses!). If this analogy is found, 

then the precision of the calculated fatigue lifetime can be further increased if the prediction of 

the stresses in the future takes into account the thickness reduction due to corrosion. 

Therefore, the present study – besides providing FPSO operators with an useful tool to evaluate 

the structural reliability of their corroded unit – can also be seen as a starting point for many 

research topics.  
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9 
Annex A 

9.1 Kolmogorov-Smirnov tables 
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10 
Annex B 

10.1 Statistical uncertainties for FPSO with AHMS 

Random variable 
Mean 

value  
c.o.v. Distribution Source 

Yield strength, ordinary 

steel 

Bias 

1.11 
0.068 Lognormal Design value 

Yield strength, high 

strength steel 

Bias 

1.22 
0.089 Lognormal Design value 

Poisson’s ratio - - Deterministic Nominal value for steel 0.3 

Elastic modulus 
Bias 

1.024 
0.0179 

Normal or 

lognormal 
Nominal value for steel 210 GPa 

Crack length for the SCF - - Deterministic Rules 

Critical stress intensity 

factor 
- - Deterministic Rules  

Main dimensions and 

constructional 

parameters 

- - Deterministic Design values 

SWBM - - 
To be 

determined 
Load master 

VWBM - - 
To be 

determined 
MONITAS LBSG 

HWBM - - 
To be 

determined 
MONITAS LBSG  

Static sea pressure - - 
To be 

determined 
MIONITAS: draft times    

Static cargo/ballast 

pressure 
Bias 1 0.05 Normal Design value 

Dynamic sea pressure on 

sides 
- - 

To be 

determined 

MONITAS data for the relative wave 

height 

Inertia cargo/ballast 

loads 
- - 

To be 

determined 

MONITAS accelerations (for the 

density use a normal distribution, with 

bias 1 and c.o.v. 0.05) 

Sloshing impact pressure - - Deterministic Design value  

Corroded thicknesses - - 
To be 

determined 
Inspections 
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10.2 Modelling uncertainties for FPSO with AHMS 
Random variable Mean value  c.o.v. Distribution 

SWBM Neglected 

Static sea pressure Neglected 

Static cargo pressure Neglected 

Load combination - Peak coincidence method 0.72 0.11 Normal  

Load combination - SRSS 1.01 0.12 Normal 

Load combination - Turkstra 1.17 0.11 Normal 

Dynamic sea pressure on the side 1 0.1 Normal 

Dynamic cargo/ballast loads 1 0.1 Normal 
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11 
Annex C 

11.1 Generation of uncorrelated random variables 
If   is a generated sample of uniform uncorrelated random variables, then to generate a non-

uniform distributed sample of random variables  , the transformation to apply is ([1]): 

    
      

Where    is the cumulative distributin function for the random variables  . 

If   is a lognormal distributed random variable (such as, for example, the yielding stress), then: 

      
 

 
 

 

 
    

      

   
                                                                                                                   

and : 

                                                                                                                              

where   and   are the mean value and standard deviation of the associated normal distribution, 

respectively. 

If   is a normal distributed random variable (such as, for example, the SWBM), then: 

      
 

 
 

 

 
    

   

   
                                                                                                                         

and : 

                                                                                                                                        

where   and   are the mean value and standard deviation, respectively. 

If   is a gamma distributed random variable (such as, for example, the VWBM), then: 
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and : 

                                                                                                                                         

         
 

 
    is the lower gamma incomplete function, whose definition is given by (2.39). 

  is the shape parameter and   the scale parameter of the gamma distribution. 

11.2 Generation of correlated random variables 
The corroded thicknesses are correlated truncated-exponentially distributed random variables. To 

generate them, at first we  need to generate a set of uncorrelated standard-normally distributed 

variables   from a set of uniformly distributed random variables   ([1]).This is done by the 

(12.7). 

                                                                                                                                               

To generate correlated non-uniformly distributed random variables  , the following 

transformation has to be applied ([1]): 

    
                                                                                                                                                  

   is given by the (lower) Cholesky decomposition of the correlation matrix     ([1]): 

                                                                                                                                                        

If   are truncated random variables, then the (12.8) becomes the (12.10): 

    
                                                                                                                    

where   and   are the truncation values.       is the non-truncated exponential CDF: 

                                                                                                                                            

Hence: 

   
 

 
                                                                                    

The elements of the     are not the same of      That is, the correlation coefficients between 

the standard normally-distributed random variables are not the same of the truncated 

exponentially-distributed random variables (although they are always quite close, [1]). 

The correlation coefficients      
 can be expressed as a function of      

 using the following 

([2]), which is only valid if both    and    are both exponentially distributed: 
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12 
Annex D 

12.1 Results  

12.1.1  Analytical method vs. Jonshon-Ostenfeld formula 

 Analytical method Jonshon-Ostenfeld Elastic buckling 

tp [mm] Pf Pf Pf 

10 2.89E-04 6.80E-03 6.80E-03 

12 8.86E-05 8.82E-04 8.46E-04 

14 1.84E-05 1.62E-04 8.30E-05 

16 5.80E-06 5.62E-05 7.80E-06 

18 4.50E-06 2.94E-05 2.00E-07 

20 3.60E-06 1.87E-05 0 (*)  

Number of samples: 10
7
 

(*) The elastic buckling strength for such a stocky plate is meaningless 

12.1.2 Effects of the initial corroded thickness on the structural reliability 

 ULS unstiffened plate – Peak coincidence method 

 Analytical method Jonshon-Ostenfeld 

f Pf Pf 

0 8.00E-08 (*) 1.80E-06 

0.5 1.10E-07 (*) 2.10E-06 

1 1.30E-07 (*) 1.70E-06 

1.5 1.50E-07 (*) 4.90E-06 

2 5.00E-07 (*) 4.05E-05 

2.5 1.00E-06 2.00E-04 

3 3.10E-06 6.40E-04 

3.5 4.70E-06 1.51E-03 

4 9.70E-06 2.80E-03 

4.5 1.20E-05 4.57E-03 

5 1.73E-05 6.69E-03 

5.5 2.06E-05 9.12E-03 
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6 2.84E-05 1.19E-02 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel - Peak coincidence method 

 Mode I Mode II Mode III 
Mode IV 

 (**) 

Mode IV 

 (***) 

Mode V  

(**) 

Mode V 

 (***) 

f Pf Pf Pf Pf Pf Pf Pf 

0 
8.00E-08 

(*) 

8.00E-08 

(*) 

1.50E-07 

(*) 
7.20E-07 (*) 2.80E-06 

2.40E-07 

(*) 
1.70E-06 

0.5 
7.00E-08 

(*) 

1.10E-07 

(*) 

1.90E-07 

(*) 
6.30E-07 (*) 4.40E-06 

1.90E-07 

(*) 
2.80E-06 

1 
1.00E-07 

(*) 

1.30E-07 

(*) 

1.90E-07 

(*) 
8.80E-07 (*) 4.10E-06 

3.00E-07 

(*) 
2.30E-06 

1.5 
1.30E-07 

(*) 

1.40E-07 

(*) 

2.00E-07 

(*) 
1.22E-06 (*) 5.30E-06 

4.40E-07 

(*) 
3.00E-06 

2 
1.00E-07 

(*) 

2.10E-07 

(*) 

1.60E-07 

(*) 
2.23E-06 (*) 1.12E-05 

6.70E-07 

(*) 
3.00E-06 

2.5 
7.00E-08 

(*) 

2.60E-07 

(*) 

1.80E-07 

(*) 
4.60E-06 3.28E-05 8.00E-07 9.70E-06 

3 
1.10E-07 

(*) 

4.00E-07 

(*) 

2.00E-07 

(*) 
1.03E-05 6.51E-05 1.80E-06 1.28E-05 

3.5 
8.00E-08 

(*) 

4.60E-07 

(*) 

1.50E-07 

(*) 
1.40E-05 1.12E-04 2.40E-06 1.66E-05 

4 
1.00E-07 

(*) 

6.40E-07 

(*) 

1.70E-07 

(*) 
2.21E-05 1.87E-04 3.70E-06 2.42E-05 

4.5 
1.20E-07 

(*) 

1.02E-06 

(*) 

2.00E-07 

(*) 
3.10E-05 2.87E-04 5.00E-06 3.31E-05 

5 
1.20E-07 

(*) 

1.26E-06 

(*) 

1.80E-07 

(*) 
4.68E-05 3.92E-04 5.20E-06 3.99E-05 

5.5 
8.00E-08 

(*) 

1.62E-06 

(*) 

1.90E-07 

(*) 
5.36E-05 5.13E-04 5.10E-06 4.93E-05 

6 
8.00E-08 

(*) 

2.15E-06 

(*) 

1.90E-07 

(*) 
6.94E-05 6.51E-04 6.40E-06 5.34E-05 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

(**) Analytical method 

(***) Jonshon-Ostenfeld formula method 

 

 ULS unstiffened plate – SRSS 

 Analytical method Jonshon-Ostenfeld 

f Pf Pf 

0 2.50E-06 2.67E-05 

0.5 3.60E-06 2.95E-05 

1 4.50E-06 3.60E-05 

1.5 3.20E-06 4.39E-05 
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2 8.60E-06 1.15E-04 

2.5 1.15E-05 3.66E-04 

3 2.00E-05 9.81E-04 

3.5 3.36E-05 2.11E-03 

4 5.37E-05 3.76E-03 

4.5 8.18E-05 6.03E-03 

5 1.15E-04 8.58E-03 

5.5 1.40E-04 1.15E-02 

6 1.78E-04 1.48E-02 

Number of samples: 10
7
  

 

 ULS stiffened panel - SRSS 

 Mode I Mode II Mode III 
Mode IV 

(*) 
Mode IV (**) Mode V (*) 

Mode V 

(**) 

f Pf Pf Pf Pf Pf Pf Pf 

0 2.40E-06 2.50E-06 3.60E-06 6.70E-06 1.96E-05 2.60E-06 1.53E-05 

0.5 3.00E-06 3.60E-06 5.50E-06 7.80E-06 2.22E-05 2.70E-06 1.73E-05 

1 4.20E-06 4.40E-06 6.40E-06 9.20E-06 2.88E-05 4.60E-06 2.10E-05 

1.5 2.20E-06 2.90E-06 3.80E-06 8.50E-06 2.34E-05 3.40E-06 1.63E-05 

2 3.90E-06 5.80E-06 6.70E-06 2.04E-05 4.20E-05 1.04E-05 2.70E-05 

2.5 2.70E-06 5.40E-06 4.80E-06 3.37E-05 6.81E-05 1.50E-05 3.18E-05 

3 2.50E-06 6.30E-06 4.40E-06 5.82E-05 1.16E-04 2.21E-05 3.99E-05 

3.5 2.20E-06 9.20E-06 5.30E-06 8.82E-05 2.01E-04 2.70E-05 5.21E-05 

4 2.60E-06 1.11E-05 5.00E-06 1.24E-04 3.01E-04 3.57E-05 6.23E-05 

4.5 2.50E-06 1.45E-05 4.20E-06 1.66E-04 4.33E-04 4.20E-05 7.53E-05 

5 2.90E-06 2.02E-05 4.80E-06 2.19E-04 5.95E-04 5.47E-05 9.41E-05 

5.5 2.60E-06 2.39E-05 4.80E-06 2.59E-04 7.52E-04 5.64E-05 1.08E-04 

6 2.00E-06 2.87E-05 4.70E-06 3.15E-04 9.70E-04 6.33E-05 1.27E-04 

Number of samples: 10
7
  

(*) Analytical method  

(**) Jonshon-Ostenfeld formula method 

 

 ULS unstiffened plate – Turkstra’s rule 

 Analytical method Jonshon-Ostenfeld 

f Pf Pf 

0 1.58E-05 1.12E-04 

0.5 1.72E-05 1.15E-04 

1 1.83E-05 1.34E-04 

1.5 2.21E-05 1.61E-04 

2 2.88E-05 2.98E-04 

2.5 4.58E-05 7.48E-04 

3 7.61E-05 1.76E-03 

3.5 1.14E-04 3.58E-03 
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4 1.63E-04 6.20E-03 

4.5 2.24E-04 9.57E-03 

5 2.88E-04 1.36E-02 

5.5 3.61E-04 1.80E-02 

6 4.38E-04 2.27E-02 

Number of samples: 10
7
  

 

 ULS stiffened panel – Turkstra’s rule 

 Mode I Mode II Mode III Mode IV (*) Mode IV (**) Mode V (*) Mode V (**) 

f Pf Pf Pf Pf Pf Pf Pf 

0 1.35E-05 1.58E-05 2.57E-05 3.32E-05 7.70E-05 1.67E-05 6.23E-05 

0.5 1.45E-05 1.72E-05 2.51E-05 3.38E-05 7.83E-05 1.64E-05 6.08E-05 

1 1.50E-05 1.79E-05 2.61E-05 3.89E-05 9.25E-05 1.74E-05 7.49E-05 

1.5 1.58E-05 1.92E-05 2.62E-05 4.42E-05 9.59E-05 2.52E-05 7.54E-05 

2 1.51E-05 2.17E-05 2.39E-05 6.62E-05 1.21E-04 3.54E-05 8.68E-05 

2.5 1.32E-05 2.40E-05 2.44E-05 1.11E-04 1.73E-04 5.39E-05 1.08E-04 

3 1.59E-05 3.34E-05 2.63E-05 1.73E-04 2.47E-04 7.81E-05 1.25E-04 

3.5 1.57E-05 4.37E-05 2.78E-05 2.55E-04 3.47E-04 1.03E-04 1.46E-04 

4 1.66E-05 5.01E-05 2.57E-05 3.43E-04 4.83E-04 1.26E-04 1.71E-04 

4.5 1.31E-05 6.04E-05 2.52E-05 4.35E-04 6.57E-04 1.48E-04 2.04E-04 

5 1.29E-05 7.34E-05 2.60E-05 5.22E-04 8.37E-04 1.65E-04 2.23E-04 

5.5 1.62E-05 8.89E-05 2.63E-05 6.26E-04 1.03E-03 1.83E-04 2.58E-04 

6 1.57E-05 9.70E-05 2.88E-05 7.46E-04 1.28E-03 2.14E-04 2.90E-04 

Number of samples: 10
7
 (unless otherwise specified) 

 (*) Analytical method  

(**) Jonshon-Ostenfeld formula method 

 

 ULS stiffened panel – Turkstra’s rule 

 Mode I Mode III Mode IV Mode V 

hw Pf Pf Pf Pf 

0 % 1.03E-02 6.23E-01 1.42E-04 1.42E-04 

10 % 4.30E-03 3.82E-01 1.30E-04 1.30E-04 

20 % 8.09E-04 4.31E-02 1.21E-04 1.21E-04 

30 % 7.44E-05 2.86E-03 1.16E-04 1.15E-04 

40 % 1.50E-05 3.31E-04 1.19E-04 1.17E-04 

50 % 1.62E-05 1.17E-04 1.18E-04 1.13E-04 

60 % 1.62E-05 6.27E-05 1.09E-04 1.02E-04 

70 % 1.35E-05 4.11E-05 1.09E-04 9.70E-05 

80 % 1.45E-05 3.44E-05 1.11E-04 9.40E-05 

90 % 1.59E-05 2.76E-05 1.11E-04 8.70E-05 

100 % 1.51E-05 2.39E-05 1.10E-04 8.68E-05 

Number of samples: 10
7
 (unless otherwise specified) 
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12.1.3 Effects of the load combinations method on the structural reliability 

 Peak coincidence SRSS Turkstra 

 Pf Pf Pf 

Hogging unst. plate 3.69E-06 2.85E-05 8.54E-05 

Hogging stiff. panel 2.86E-06 2.55E-05 7.76E-05 

Sagging unst. plate 3.00E-07 3.60E-06 1.72E-05 

Sagging stiff. panel 2.00E-07 3.30E-06 1.62E-05 

Fracture 6.17E-05 2.64E-04 6.21E-04 

Number of samples: 10
8
 

 

 ULS unstiffened plate – Anlytical method 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 8,00E-08 (*) 2,50E-06 1,58E-05 

0.5 1,10E-07 (*) 3,60E-06 1,72E-05 

1 1,30E-07 (*) 4,50E-06 1,83E-05 

1.5 1,50E-07 (*) 3,20E-06 2,21E-05 

2 5,00E-07 (*) 8,60E-06 2,88E-05 

2.5 1,00E-06 1,15E-05 4,58E-05 

3 3,10E-06 2,00E-05 7,61E-05 

3.5 4,70E-06 3,36E-05 1,14E-04 

4 9,70E-06 5,37E-05 1,63E-04 

4.5 1,20E-05 8,18E-05 2,24E-04 

5 1,73E-05 1,15E-04 2,88E-04 

5.5 2,06E-05 1,40E-04 3,61E-04 

6 2,84E-05 1,78E-04 4,38E-04 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS unstiffened plate – Johnson Ostenfeld 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 1,80E-06 2,67E-05 1,12E-04 

0.5 2,10E-06 2,95E-05 1,15E-04 

1 1,70E-06 3,60E-05 1,34E-04 

1.5 4,90E-06 4,39E-05 1,61E-04 

2 4,05E-05 1,15E-04 2,98E-04 

2.5 2,00E-04 3,66E-04 7,48E-04 

3 6,40E-04 9,81E-04 1,76E-03 

3.5 1,51E-03 2,11E-03 3,58E-03 

4 2,80E-03 3,76E-03 6,20E-03 

4.5 4,57E-03 6,03E-03 9,57E-03 

5 6,69E-03 8,58E-03 1,36E-02 
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5.5 9,12E-03 1,15E-02 1,80E-02 

6 1,19E-02 1,48E-02 2,27E-02 

Number of samples: 10
7
  

 

 ULS stiffened panel – Mode I 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 8,00E-08 (*) 2,40E-06 1,35E-05 

0.5 7,00E-08 (*) 3,00E-06 1,45E-05 

1 1,00E-07 (*)  4,20E-06 1,50E-05 

1.5 1,30E-07 (*) 2,20E-06 1,58E-05 

2 1,00E-07 (*) 3,90E-06 1,51E-05 

2.5 7,00E-08 (*) 2,70E-06 1,32E-05 

3 1,10E-07 (*) 2,50E-06 1,59E-05 

3.5 8,00E-08 (*) 2,20E-06 1,57E-05 

4 1,00E-07 (*) 2,60E-06 1,66E-05 

4.5 1,20E-07 (*) 2,50E-06 1,31E-05 

5 1,20E-07 (*) 2,90E-06 1,29E-05 

5.5 8,00E-08 (*) 2,60E-06 1,62E-05 

6 8,00E-08 (*) 2,00E-06 1,57E-05 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel – Mode II 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 8,00E-08 (*) 2,50E-06 1,58E-05 

0.5 1,10E-07 (*) 3,60E-06 1,72E-05 

1 1,30E-07 (*) 4,40E-06 1,79E-05 

1.5 1,40E-07 (*) 2,90E-06 1,92E-05 

2 2,10E-07 (*) 5,80E-06 2,17E-05 

2.5 2,60E-07 (*) 5,40E-06 2,40E-05 

3 4,00E-07 (*) 6,30E-06 3,34E-05 

3.5 4,60E-07 (*) 9,20E-06 4,37E-05 

4 6,40E-07 (*) 1,11E-05 5,01E-05 

4.5 1,02E-06 (*) 1,45E-05 6,04E-05 

5 1,26E-06 (*) 2,02E-05 7,34E-05 

5.5 1,62E-06 (*) 2,39E-05 8,89E-05 

6 2,15E-06 (*) 2,87E-05 9,70E-05 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel – Mode III 
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 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 1,50E-07 (*) 3,60E-06 2,57E-05 

0.5 1,90E-07 (*) 5,50E-06 2,51E-05 

1 1,90E-07 (*) 6,40E-06 2,61E-05 

1.5 2,00E-07 (*) 3,80E-06 2,62E-05 

2 1,60E-07 (*) 6,70E-06 2,39E-05 

2.5 1,80E-07 (*) 4,80E-06 2,44E-05 

3 2,00E-07 (*) 4,40E-06 2,63E-05 

3.5 1,50E-07 (*) 5,30E-06 2,78E-05 

4 1,70E-07 (*) 5,00E-06 2,57E-05 

4.5 2,00E-07 (*) 4,20E-06 2,52E-05 

5 1,80E-07 (*) 4,80E-06 2,60E-05 

5.5 1,90E-07 (*) 4,80E-06 2,63E-05 

6 1,90E-07 (*) 4,70E-06 2,88E-05 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel – Mode IV – Analytical method 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 7,20E-07 (*) 6,70E-06 3,32E-05 

0.5 6,30E-07 (*) 7,80E-06 3,38E-05 

1 8,80E-07 (*) 9,20E-06 3,89E-05 

1.5 1,22E-06 (*) 8,50E-06 4,42E-05 

2 2,23E-06 (*) 2,04E-05 6,62E-05 

2.5 4,60E-06 3,37E-05 1,11E-04 

3 1,03E-05 5,82E-05 1,73E-04 

3.5 1,40E-05 8,82E-05 2,55E-04 

4 2,21E-05 1,24E-04 3,43E-04 

4.5 3,10E-05 1,66E-04 4,35E-04 

5 4,68E-05 2,19E-04 5,22E-04 

5.5 5,36E-05 2,59E-04 6,26E-04 

6 6,94E-05 3,15E-04 7,46E-04 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel – Mode IV – Johnson Ostenfeld 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 2,80E-06 1,96E-05 7,70E-05 

0.5 4,40E-06 2,22E-05 7,83E-05 

1 4,10E-06 2,88E-05 9,25E-05 
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1.5 5,30E-06 2,34E-05 9,59E-05 

2 1,12E-05 4,20E-05 1,21E-04 

2.5 3,28E-05 6,81E-05 1,73E-04 

3 6,51E-05 1,16E-04 2,47E-04 

3.5 1,12E-04 2,01E-04 3,47E-04 

4 1,87E-04 3,01E-04 4,83E-04 

4.5 2,87E-04 4,33E-04 6,57E-04 

5 3,92E-04 5,95E-04 8,37E-04 

5.5 5,13E-04 7,52E-04 1,03E-03 

6 6,51E-04 9,70E-04 1,28E-03 

Number of samples: 10
7
  

 

 ULS stiffened panel – Mode V – Analytical method 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 2,40E-07 (*) 2,60E-06 1,67E-05 

0.5 1,90E-07 (*) 2,70E-06 1,64E-05 

1 3,00E-07 (*) 4,60E-06 1,74E-05 

1.5 4,40E-07 (*) 3,40E-06 2,52E-05 

2 6,70E-07 (*) 1,04E-05 3,54E-05 

2.5 8,00E-07 1,50E-05 5,39E-05 

3 1,80E-06 2,21E-05 7,81E-05 

3.5 2,40E-06 2,70E-05 1,03E-04 

4 3,70E-06 3,57E-05 1,26E-04 

4.5 5,00E-06 4,20E-05 1,48E-04 

5 5,20E-06 5,47E-05 1,65E-04 

5.5 5,10E-06 5,64E-05 1,83E-04 

6 6,40E-06 6,33E-05 2,14E-04 

Number of samples: 10
7
 (unless otherwise specified) 

(*) For these probabilities of failure the number of samples has been increased to 10
8  

 

 ULS stiffened panel – Mode V – Johnson Ostenfeld 

 Peak coincidence SRSS Turkstra 

f Pf Pf Pf 

0 1,70E-06 1,53E-05 6,23E-05 

0.5 2,80E-06 1,73E-05 6,08E-05 

1 2,30E-06 2,10E-05 7,49E-05 

1.5 3,00E-06 1,63E-05 7,54E-05 

2 3,00E-06 2,70E-05 8,68E-05 

2.5 9,70E-06 3,18E-05 1,08E-04 

3 1,28E-05 3,99E-05 1,25E-04 

3.5 1,66E-05 5,21E-05 1,46E-04 

4 2,42E-05 6,23E-05 1,71E-04 
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4.5 3,31E-05 7,53E-05 2,04E-04 

5 3,99E-05 9,41E-05 2,23E-04 

5.5 4,93E-05 1,08E-04 2,58E-04 

6 5,34E-05 1,27E-04 2,90E-04 

Number of samples: 10
7
  

12.1.4 Corrosion of the plate vs. Corrosion of the stiffeners 

 Corrosion of the plate 

 ULS unst. plate Mode I Mode II Mode III Mode IV (*) Mode V (*) 

f Pf Pf Pf Pf Pf Pf 

0 1.12E-04 1.68E-05 1.79E-05 2.74E-05 8.00E-05 6.62E-05 

1 1.33E-04 1.38E-05 1.58E-05 2.40E-05 8.97E-05 7.19E-05 

2 2.99E-04 1.40E-05 1.95E-05 2.22E-05 1.13E-04 8.09E-05 

3 1.76E-03 1.58E-05 3.24E-05 2.55E-05 1.97E-04 1.11E-04 

4 6.18E-03 1.38E-05 5.04E-05 2.53E-05 3.39E-04 1.52E-04 

5 1.35E-02 1.71E-05 7.85E-05 2.74E-05 4.93E-04 2.02E-04 

6 2.27E-02 1.36E-05 8.94E-05 2.34E-05 6.27E-04 2.19E-04 

Number of samples: 10
7
  

Turkstra’s rule to combine loads 

(*) Jonshon-Ostenfeld formula method 

 

 Corrosion of the stiffeners 

 ULS unst. plate Mode I Mode II Mode III Mode IV (*) Mode V (*) 

f Pf Pf Pf Pf Pf Pf 

0 1.35E-04 1.56E-05 1.80E-05 2.76E-05 8.91E-05 7.02E-05 

1 1.27E-04 1.25E-05 1.56E-05 2.33E-05 8.82E-05 6.73E-05 

2 1.34E-04 1.65E-05 1.82E-05 2.66E-05 8.82E-05 6.73E-05 

3 1.28E-04 1.34E-05 1.62E-05 2.37E-05 8.85E-05 6.77E-05 

4 1.33E-04 1.55E-05 1.73E-05 2.69E-05 9.12E-05 7.28E-05 

5 1.34E-04 1.46E-05 1.75E-05 2.67E-05 9.46E-05 7.51E-05 

6 1.36E-04 1.59E-05 1.83E-05 2.73E-05 1.02E-04 7.75E-05 

Number of samples: 10
7
  

Turkstra’s rule to combine loads 

(*) Jonshon-Ostenfeld formula method 

12.1.5 Effects of the correlation coefficients on the structural reliability 

 ULS stiffened and unstiffened plates 

 ULS unst. plate Mode I Mode II Mode III Mode IV (*) Mode V (*) 

f Pf Pf Pf Pf Pf Pf 

0 2.98E-04 1.68E-05 2.17E-05 2.72E-05 1.15E-04 8.79E-05 

0.33 3.03E-04 1.38E-05 2.03E-05 2.39E-05 1.17E-04 8.79E-05 

0.66 2.99E-04 1.38E-05 1.95E-05 2.23E-05 1.15E-04 8.16E-05 

1 2.92E-04 1.56E-05 2.24E-05 2.60E-05 1.18E-04 8.29E-05 
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Number of samples: 10
7
  

Turkstra’s rule to combine loads 

(*) Jonshon-Ostenfeld formula method 

12.1.6 Time-dependent reliability analysis 

 ULS stiffened and unstiffened plates 

   

ULS 

unsifft. 

plate 

Mode I Mode II Mode III 
Mode IV 

(*) 

Mode V 

(*) 

Year 
tcorr 

plate  

tcorr 

stiffeners 
Pf Pf Pf Pf Pf Pf 

0 0.000 0.000 1.12E-04 1.35E-05 1.58E-05 2.57E-05 7.70E-05 6.23E-05 

2 0.000 0.000 1.12E-04 1.35E-05 1.58E-05 2.57E-05 7.70E-05 6.23E-05 

4 0.000 0.000 1.12E-04 1.35E-05 1.58E-05 2.57E-05 7.70E-05 6.23E-05 

6 0.000 0.000 1.12E-04 1.35E-05 1.58E-05 2.57E-05 7.70E-05 6.23E-05 

8 1.088 0.226 2.20E-04 1.68E-05 2.09E-05 2.72E-05 1.07E-04 8.44E-05 

10 2.050 0.426 3.05E-03 1.38E-05 3.64E-05 2.39E-05 3.22E-04 1.44E-04 

12 2.356 0.490 5.46E-03 1.38E-05 4.47E-05 2.19E-05 4.36E-04 1.60E-04 

14 2.454 0.510 6.42E-03 1.58E-05 4.90E-05 2.58E-05 4.82E-04 1.71E-04 

16 2.485 0.517 6.76E-03 1.38E-05 5.21E-05 2.53E-05 5.11E-04 1.77E-04 

18 2.495 0.519 6.84E-03 1.69E-05 5.64E-05 2.79E-05 5.21E-04 1.90E-04 

20 2.499 0.520 6.89E-03 1.38E-05 4.68E-05 2.41E-05 5.03E-04 1.71E-04 

22 2.500 0.520 6.92E-03 1.48E-05 5.34E-05 2.72E-05 5.15E-04 1.82E-04 

Number of samples: 10
7
  

Turkstra’s rule to combine loads 

Corroded thicknesses in mm 

(*) Jonshon-Ostenfeld formula method 

12.1.7 Comparison with some target reliability indices 

 Peak coincidence SRSS Turkstra 

 Pf Pf  Pf  

Yielding unstiff. plate – Hogging 4.20E-07 4.76E-07 4.22E-07 

Yielding unstiff. plate – Sagging  1.29E-07 1.01E-07 1.56E-08 

Yielding stiff. panel – Hogging 2.87E-07 3.51E-07 3.09E-07 

Yielding stiff. panel – Sagging 9.44E-08 8.22E-08 6.67E-09 

ULS unstiff. Plate (*) 5.15E-06 5.45E-06 5.64E-06 

ULS stiff. panel – Mode I 0 0 6.67E-09 

ULS stiff. panel – Mode II 0 0 1.89E-08 

ULS stiff. panel – Mode III (*) 0 0 2.86E-06 

ULS stiff. panel – Mode IV (*) 4.46E-06 4.08E-06 2.86E-06 

ULS stiff. panel – Mode V (*) 2.86E-06 2.62E-06 1.60E-06 

Fracture 1.16E-05  1.14E-05 1.87E-5 

Number of samples: 3*10
8
  

 (*) Jonshon-Ostenfeld formula method 
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