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Abstract

In order to track the speed profile, a case study using a linear quadratic regulator (LQR) is
addressed in this paper. A time-invariant nonlinear train motion model is constructed. To apply
LQR, the quadratic term of the aerodynamic drag and the rolling mechanical resistance is linearized.
Gradient resistance, curve resistance, and other environmental disturbance are not considered in
this paper. An LQR algorithm with constraints is proposed to track a given reference speed profile.
Maximum error and cumulative error are used in the evaluation of the tracking performance. The
tracking results in plots, parameters tuning, and performance analysis are shown. The results
show that the proposed LQR algorithm is able to track the given 1200 seconds speed profile,
the cumulative error can be controlled within 4.7478m/s, and the maximum absolute error is
0.90839m/s. The output of the control variable u is also given.

1 Introduction

The railway industry has been a crucial mode of transportation for many years, serving millions
of passengers and transporting large quantities of goods. With the increasing demands for higher
efficiency, safety, and reliability, Automated Train Operation (ATO) may be a potential solution for
satisfying the growing demand through increasing frequency and without building new lines and tracks.

ATO aims to improve the efficiency and reduce the energy consumption of railway traffic operations
by automatically generating and following the reference speed profile that consists of a combination
of driving regimes accelerating, coasting, cruising, and braking commands. This not only benefits
the public transport service level including punctuality, reliability, and parking precisely but also will
essentially be the backbone of a climate-compatible European transport system catering to the policy
of a major reduction in pollution and carbon emissions from the European Union.

It is believed that, initially, the driver has to cautiously operate the control handle of the train. The
next level of train operation involves manually following a speed profile, which is generated by matching
with the schedule satisfying a certain punctuality level. The reasonable speed limits are determined by
the European Train Control System (ETCS). At this level, reliability and punctuality can be improved
by following an optimal speed profile. While ATO allows the machine to automatically follow the
optimal speed profile, which can result in a smaller buffer time and bandwidth, and predictability,
therefore leading to a higher frequency and capacity for public service.

According to TNO (Poulus et al. (2018)), from GoA2 onwards, ATO is able to optimize capacity
utilization by taking over braking and acceleration. As a result, trains with ATO can follow the curve
of one another more closely for shorter headways which allows for more trains on the same amount of
rail infrastructure. In the UK, Thameslink with ATO proposes to drive 24 trains per hour which are
70% more seats through the city center of London. Thameslink also shows that ATO can minimize
energy consumption by coasting before braking to save energy. Alstom’s simulation tests show that
energy can be reduced by 15% on intercity lines, and 45% on regional trains. There are other benefits
such as reducing operational costs, operational flexibility, potential safety improvement, punctuality
improvement, and service level improvement.

This paper mainly focuses on reference speed profile tracking in ATO using the Linear Quadratic
Regulator algorithm. The paper structure is as follows. Section 2 presents the literature review
of algorithms for speed profile tracking and the justification for the research gap. Section 3 shows
the mathematical formulation of the train motion. Section 4 describes the general LQR and shows
the constraints and calculations in LQR for the train speed profile tracking. Section 5 carries out the
implementation using Matlab, gives a demonstration and case study, and discusses the reference speed
profile, parameters, and evaluation of performance. Future research directions and the conclusion is
presented in section 6.

2 Literature review

As discussed in the introduction, ATO has so many benefits, in terms of how to achieve speed profile
tracking, several algorithms have been developed in recent years. These are model predictive control
Moaveni et al. (2020), iterative learning control Sun et al. (2011), adaptive iterative learning control Ji
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et al. (2015) Li et al. (2021) Sun et al. (2012), finite-iteration adaptive ILC(Iterative Learning Control)
Yu et al. (2022), neural network Claviere et al. (2019), deep neural network Li et al. (2017), adaptive
controller based on neural network and PID control Pu et al. (2020), RMP(Robust Model Predictive)
anti-slip controller based on the LMI (Linear Matrix Inequality) Molavi and Rashidi Fathabadi (2022),
fuzzy logic control Zhu et al. (2020) Moaveni et al. (2022), Multi-Modal Fuzzy PID (MM-FPID) control
Yang et al. (2017), PID control Xu et al. (2019), adaptive terminal sliding mode controller (ATSMC)
Wang et al. (2020) and etc.

This paper is interested in how to successfully track the speed profile smoothly and control the
error at a certain level to improve performance. Linear Quadratic Regulator (LQR) is a suitable
algorithm to linearize the quadratic terms in a nonlinear train motion model. Therefore, this paper
aims to use the LQR algorithm to track the given reference speed profile. One of the key points is
linearizing the nonlinear term of aerodynamic drag and rolling mechanical resistances, another key
point is fine-tuning the cost function weights. The research is executed using Matlab. The literature
review of LQR algorithm is discussed in the following.

Gruber and Bayoumi (1982) designed an LQR controller to optimize the in-train forces and/or
speed deviation from the reference speed. The paper gave weights matrices Q and R for throttling
and braking representatively.

Ahmed and Bayoumi (1983) designed a controller that achieves asymptotic tracking of a given
velocity profile and minimizes a quadratic performance index subject to physical and practical con-
straints for freight trains. The multivariable proportional + integral controller was built using the
standard linear quadratic regulator theory.

Chou and Xia (2007) employed an LQR controller to minimize the in-train force, fuel consumption,
and traveling time. The cost function weight R determined the fuel consumption as well as brake
usage while Q was to penalize the in-train forces experienced by the couplers as well as the traveling
speed tracking of the whole train. This paper showed the tracking results of the open-loop controller,
the closed-loop controller with generic tuning parameters, the closed-loop controller optimized for
velocity tracking, the closed-loop controller optimized for in-train force, and the closed-loop controller
optimized for energy usage.

Ide et al. (2013) showed an observer-based LQR in order to stabilize the system and solve the
reference tracking problem. In the paper, the controller gain Kc is evaluated using LQR while the
weighting matrices were chosen with the purpose of ensuring a fast response of the first state.

Tian et al. (2021) developed a linear quadratic Gaussian (LQG) optimal control which is used for
trajectory tracking in order to achieve the optimal output of the system while anti-disturbance. The
LQG control combined linear quadratic regulator (LQR) and Kalman filter to improve the robustness
of the formation system.

As was mentioned above, LQR is popular when dealing with nonlinear train motion models.
However, most of the existing research focuses on the overall tracking, there is a research gap in
studying how the different parameters affect the detail performance for different regimes of the speed
profile. It is almost certain that no existing research gives specific cost function weights in LQR for
the coasting regime in the train speed profile tracking research. The LQR controller in Chou and Xia
(2007) is referred to in the paper. One of the differences is this paper only considers penalizing the
in-train force and the speed. Another difference is this paper is using a time scale for the tracking
problem while in Chou and Xia (2007) was using a distance scale. Another difference is, in this paper,
the speed profile is divided into different regimes of acceleration, cruising, coasting, and braking. The
reason why dividing the speed profile is the coasting regime has different characteristics from other
regimes, and dividing is easier to study the difference.

3 Train motion model

The section below describes the train motion model, in which the train is represented as a single
mass point and its longitudinal motion can be described using Newton’s equation. We consider the
train can output any continuous value within limits, the formulation of train motion is:
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mv̇(t) = U(t)−R(v)− g(s) (1)

Let v be the speed of the train, m the total mass, and s is the location. R(v) is the aerodynamic
drag and the rolling mechanical resistances which are represented by the Davis formula (2), g(s) the
gradient and curve resistance which is considered as zero. The traction force minus braking force is
considered as the single input U(t).

R(v) = m(r0 + r1v + r2v
2) (2)

To bring the U(t) and R(v) to the same magnitude, let both of them be divided by m:

r(v) = R(v)/m = r0 + r1v + r2v
2 (3)

u(t) = U(t)/m (4)

Thus, the equation (1) can be rewrite into:

v̇(t) = u(t)− (r0 + r1v + r2v
2) (5)

3.1 Constraints

In the reality, the control variable u(t) is constrained by physical limits, due to the fact that we
could not have infinite traction power or infinite braking power. bMax is the maximum braking force,
uMax is the maximum tractive force and pMax is the maximum power.

bMax ≤ u(t) ≤ min{pMax

v
, uMax} (6)

Variable Notation unit
Mass m kg
Velocity v m/s
Time t s
Traction force - braking force U(t) N
Control variable u(t) m/s2

Aerodynamic drag and rolling mechanical resistances R(v) N
Aerodynamic drag and rolling mechanical resistances
divided by mass

r(v) m/s2

Resistance parameters r0, r1, r2 N
location s m
Gradient and curve resistance g(s) N
Maximum braking force bMax m/s2

Maximum power pMax W

Table 1: Table of notation for train motion model

The units of variables can be found in the notation table (1). The next section describes the LQR
algorithm.

4 Linear Quadratic Regulator (LQR)

In the following pages, I will present the general LQR algorithm for a closed-loop single-input
system, and the applied LQR for speed profile tracking. The latter consists of the description of a
single-input, single-output nonlinear system, cost function, the choosing of the equilibrium point, and
the general calculation of A, B C, and D matrices.
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4.1 General Linear Quadratic Regulator

A general linear quadratic regulator selects the closed-loop eigenvalue by optimizing a cost function.
Given a single-input linear system (Åström and Murray (2021)):

dx

dt
= Ax+Bu (7)

y = Cx+Du (8)

Attempting to minimize the quadratic cost function:

J =

∫ ∞

0
(xTQxx+ uTQuu) dt (9)

where Qx and Qu are the weight matrices. We assume Qx > 0, Qu > 0 to guarantee that a solution
exists. Qx and Qu are chosen using the knowledge of the system. The cost function indicates the
trade-off between the rate of convergence of the solution and the cost of control. The solution to the
LQR is given by a linear control law of the form:

u = −Q−1
u BTPx (10)

where P satisfies the algebraic Riccati equation (Åström and Murray (2021)):

PA+ATP − PBQ−1
u BTP +Qx = 0 (11)

In the next section, the application of LQR for train speed profile tracking is shown.

4.2 Linear Quadratic Regulator for speed profile tracking

The block diagram (figure 1) shows a control system of the train. Let v be the speed of the train
and vr be the reference speed which in our case is given. The difference between v(m/s) and vr(m/s)
is shown as error w. The controller receives the signal v and vr and generates a control signal that is
sent to an actuator that controls the throttle position. The aerodynamic drag and rolling mechanical
resistances are represented by the Davis formula R(v). The gradient and curve resistance g(s) is
simplified as zero in this paper.

The train motion model (5) is a quadratic dynamical system of the first order. The state variable
is velocity v, while u(t) is the control variable. The quadratic term is r(v). We assume that all
parameters are static.

Figure 1: Block diagram of a cruise control system for a train

In this paper, consider a single-input, single-output nonlinear system:

dv

dt
= f(v, u) = u− (r0 + r1v + r2v

2) (12)

y = h(v, u) (13)
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The cost function:

J =

∫ ∞

0
(vTQv + uTRu) dt (14)

Q and R are the cost function weights, Q indicates the convergence rate of v while R indicates
the cost of control u. With an equilibrium point at v = ve, u = ue. For the local behavior around the
equilibrium point (ve, ue), we suppose that v−ve and u−ue are small so that nonlinear perturbations
around this equilibrium point can be ignored compared with the lower order linear terms. We define
a new set of state variables w = v − ve, z = u − ue, x = y − ve. These variables are all close to zero
when near the equilibrium point. Formally, the Jacobian linearization (Åström and Murray (2021))
of the nonlinear system (12, 13) is:

dw

dt
= Aw +Bz (15)

x = Cw +Dz (16)

where

A =
∂f

∂v

∣∣∣∣
(ve,ue)

, B =
∂f

∂u

∣∣∣∣
(ve,ue)

, C =
∂h

∂v

∣∣∣∣
(ve,ue)

, D =
∂h

∂u

∣∣∣∣
(ve,ue)

(17)

The system (15,16) approximates the original system (12, 13) when near the equilibrium point
about which the system was linearized.

The tracking problem can be categorized into acceleration, cruising and braking, and coasting
regimes. For the acceleration regime, the system attempts to speed up to a speed limit using a
comfortable acceleration rate. For the cruising regime, the system attempts to maintain a constant
velocity in the presence of the aerodynamic drag and rolling mechanical resistances in the track. The
controller compensates for these unknowns by measuring the speed of the train and adjusting the
throttle appropriately. For the coasting regime, the control variable u(t) is set to zero, which means
the aerodynamic drag and rolling mechanical resistances contribute as the braking force.

When the train is cruising, the acceleration rate is zero, where v̇ = 0, and the equilibrium velocity
is the cruise speed. While the acceleration regime and the braking regime are similar to the cruising
regime. When choosing the equilibrium speed ve, it is the value of the end of each regime in the speed
profile. The equilibrium ue is calculated with given m, r0, r1, r2, ve:

ue − r0 − r1ve − r2ve
2 = 0 (18)

ue = r0 + r1ve + r2ve
2 (19)

With the known equilibrium point (ve, ue) and equation (5), the A, B, C, and D matrices can be
calculated:

A =
∂f

∂v

∣∣∣∣
(ve,ue)

= −r1 − 2r2ve (20)

B =
∂f

∂u

∣∣∣∣
(ve,ue)

= 1 (21)

C =
∂y

∂v

∣∣∣∣
(ve,ue)

= 1 (22)

D =
∂y

∂u

∣∣∣∣
(ve,ue)

= 0 (23)

Therefore,
dw

dt
= Aw +Bz = [−r1 − 2r2ve]w + [1]z (24)

x = Cw +Dz = [1]w + [0]z (25)

The procedure is suitable for the acceleration, cruising, and braking regimes by setting the different
original velocities and different ve. Except for the coasting regime, the ue need to be zero.
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5 Case study

The following part of this paper moves on describe a tracking demonstration, the given reference
speed profile, and parameters tuning in greater detail.

5.1 Demonstration

(a) Time-Error with linearization (b) Time-v with linearization (c) Time-v without linearization

(d) Time-difference (e) Time-u(t) (f) Time-u(t), pMax/v, bMax

Figure 2: Demonstration, time scale

As a demonstration, LQR is applied to a cruising problem. With tuning the cost function weights Q
and R, the acceleration rate should be limited within the range from −0.5m/s2 to 0.6m/s2 considering
the comfortable level of the public service.

The origin speed is defined as v0 and the reference speed is defined as ve. We take an example of
v0 = 9.72m/s(35km/h) which needs to converge to ve = 11.11m/s(40km/h). In figure (2), the results
of error, speed, acceleration rate, and T − u are shown. Figure (2a) indicates the speed difference
between the reference speed and the current speed, which is defined as an error. It takes about 20
seconds to reduce the error from −1.38888m/s to zero. Figure (2b) shows the speed with linearization
converged from 9.72m/s to 11.11m/s within 20 seconds. While in figure (2c), the smash red line
indicates the speed without linearization, and the blue line indicates the speed with linearization. As
shown, the smash red line and the blue line almost coincide. In figure (2d), the speed difference between
linearization and without linearization is below 0.000031, therefore, we conclude that linearizing the
quadratic part has a good performance in this demonstration. Figure (2e) shows the control variable
u(t) along the time scale, which decreases from 0.45m/s2 to a value near zero within 20 seconds. The
value near zero is r(v), which indicates the aerodynamic drag and rolling mechanical resistance. When
the train is cruising, let u(t) = r(v) to keep the v̇ = 0. In figure (2f), the bMax and min{pMax

v , uMax}
are the lowbound and upbound of the control variable u(t), in the demonstration, the output control
variable is within the bound, otherwise we need to constraint the u(t) within the physical bound.

5.2 Reference Speed profile

Section 5.1 shows a demonstration of a single cruising segment, while in the following section,
a 1200-second reference time speed profile (figure (3)) is tracked using the algorithm. The track
characteristics, train characteristics, and speed limits are shown in the following table (2).

The reference speed profile starts at v0 = 0m/s and accelerates to 11.11m/s (40km/h), then
cruising till 36.9668s. And then performs the second acceleration to 22.22m/s (80km/h), cruising
till 76.2248s, and begins the third acceleration to 35.83m/s (129km/h). After cruising to 272.202s,
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Train characteristics Notation Value unit
Mass m 391000 kg
Rotating Mass Factor 1.06
Aerodynamic drag and rolling mechanical resistances parameter r0 2711.3 N
Aerodynamic drag and rolling mechanical resistances parameter r1 43.43 Ns/m
Aerodynamic drag and rolling mechanical resistances parameter r2 7.82 Ns2/m2

Train length L 162 m
Maximum braking force bMax 0.5 m/s2

Maximum power pMax 2157000 W
Maximum u uMax 219000 N
Track characteristics
Time period t 1200 s
Location s 35000 m
Speed
Original speed v0 0 m/s
The first speed limit ve40 11.11 m/s
The second speed limit ve80 22.22 m/s
The third speed limit ve129 35.83 m/s
The fourth speed limit ve120 33.32 m/s
The speed after the second coasting ve77 21.57 m/s

Table 2: Track characteristics, train characteristics, speed limits

it starts coasting to 33.32m/s (120km/h) and then cruising at 33.32m/s (120km/h) until 374.305s.
Then it accelerates to 35.83m/s (129km/h) again, cruising till 603.676s, starts coasting to 21.57m/s
(77.652km/h) and finally braking to v = 0m/s. The whole procedure is divided into 8 segments,
processed, and combined together later. The vertical lines in figure (3) indicate the 8 segments.

Figure 3: Reference Speed Profile

When executing the algorithm with Matlab, the speed
at the end of each segment will be set as the equilibrium
point for each segment, for example, in the first accelera-
tion regime, ve = 11.11m/s and ue = r0 + r1ve + r2v2e will
be set as the equilibrium for the first regime tracking pro-
cess. For the coasting regimes, ue = 0 is applied. With the
equilibrium point, the A, B, C, and D matrices can be cal-
culated, and the controller gain is obtained. Note that, the
control variable needs to follow the constraints in equation
(6).

5.3 Performance and parameters tuning

Before proceeding to examine the parameters, it is im-
portant to state that there are 4 tunable parameters in this
paper which are the cost function weights Q1, Q2, R1, R2.

Considering the difference between the coasting regime and the others, Q1, R1 are set for acceleration,
cruising, and braking regimes, while Q2, R2 are set for coasting regimes. The Q1, Q2 indicate the cost
function weights for speed v, while the R1, R2 indicate the cost function weights for control variable
u. In the rough tuning stage, generally speaking, the smaller value of Q the smoother the tracking,
while in terms of R, the larger value of R, the smoother the tracking.

Moving on now to consider the evaluation of the tracking performance, the maximum error, and
the cumulative error are used. The error indicates the difference between the tracking blue line and
the reference speed profile smash red line. It is very intuitive that the smaller the error, the better
the tracking performance. In this paper, one of the goals is to have reasonably small errors.
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5.3.1 Base case tracking

In the base case (see figure (4a)), the smash red line indicates the given reference speed profile,
note that the speed limits are shown in the table (2). The blue line shows the tracking results with all
cost function weights Q1, Q2, R1, R2 equal to 1. The linearized speed fits the reference speed profile
successfully. Zoom in the figure (4a), the result is close to the reference speed profile, which can be
proved that the maximum absolute error of the base case is 0.21617m/s, and the cumulative error is
0.9784m/s (figure (4c)). In figure (4b), the u(t) is limited in the upbound of min{pMax/v, uMax}
(the smash blue line indicates pMax) and the lowbound of bMax (the smash yellow line). The control
output shows that the u is equal to 0 from 272.202s to 344.305s and 603.676s to 1153.98s, which are
the two coasting regimes in the speed profile, which conforms to the previous setting.

Having discussed the parameters, evaluation, and base case, the following section will focus on
tuning Q1, Q2, R1, R2 separately and give an optimal combination of Q,R.

(a) Base case tracking (b) Base case: time-u(t) (c) Base case: time-error

Figure 4: Base case tracking

5.3.2 Q1

Q1 indicates the weight for v in the acceleration, cruising, and braking regime. According to
the definition, we can speculate that the larger the Q1, the more aggressive the tracking. As one of
the goals of this paper is to have smooth tracking considering the human sensation of acceleration,
the tuning starts from Q1 = 1 and gradually decreases by powers of 10. Figure (5) shows that the
smaller value of Q1, the smoother tracking, and the larger the error, which verifies the conjecture in
the previous discussion. For Q1 = 0.1, R1, Q2, R2 equal to 1, the maximum error is −0.6431m/s,
and the cumulative error is 2.9315m/s. For Q1 = 0.01, R1, Q2, R2 equal to 1, the maximum error
is −2.0297m/s, and the cumulative error is 17.6345m/s. For Q1 = 0.05, R1, Q2, R2 equal to 1, the
maximum error is −0.9084m/s, and the cumulative error is 4.7478m/s. The time-u plot is shown in
figure (5e). Although the control variable u does not have a severe change with tuning Q1, there is still
a small difference, which is the larger value of Q1, the sharper the change of u. In reality, the reaction
time of a machine to give traction force is limited, this can be studied later to find out the optimal
value of parameter Q1. In figure (5c), the tracking is too slow that could not reach the speed limit
of 11.11m/s and 22.22m/s within the time limits, though the tracking is very smooth. Considering
the trade-off between smooth tracking and errors, Q1=0.05 is chosen as the relatively optimal value
without considering the reaction time in reality.

5.3.3 R1

Regarding R1, which indicates the penalty for u in the acceleration, cruising, and braking regime.
Tuning starts from R1 = 1 and gradually increases by powers of 10. Figure (6) shows that the larger
value of R1, the smoother tracking, and the larger the error, which verifies the conjecture in the
definition of R1. With the Q1, Q2, R2 equal to 1, for R1 = 10, the maximum error is −0.6431m/s,
and the cumulative error is 2.9315m/s; for R1 = 100, the maximum error is −2.0297m/s, and the
cumulative error is 17.6345m/s; for R1 = 20, the maximum error is −0.9084m/s, and the cumulative
error is 4.7478m/s. This is almost the same result as tuning Q1. Thus, there exists matching pairs
of Q1, R1 that have the same effect on the tracking results. Next, the superimposed effect needs to
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(a) Detail-1, Q1=1 (b) Detail-2, Q1=0.1 (c) Detail-3, Q1=0.01

(d) Detail-4, Q1=0.05 (e) Time-u(t) (f) Time-error tuning Q1

Figure 5: Performance with tuning Q1

be studied. Figure (7e) shows the smaller the R1, the sharper the change in u. Although we want
the machine reacts as fast as possible in the ideal case, we still need to consider the real reaction time
limit. Considering the trade-off between smooth tracking and errors, R1 = 20 is chosen as the optimal
value regarding Q1, Q2, R2 equal to 1 without considering the machine reaction time in reality.

(a) Detail-1, R1=1 (b) Detail-2, R1=10 (c) Detail-3, R1=100

(d) Detail-4, R1=20 (e) Time-u(t) (f) Time-error tuning R1

Figure 6: Performance with tuning R1

Next, assuming that Q1 is equal to 0.05 and Q2, R2 equal to 1 to find out the superimposed effect
of Q1, R1 pair, figure (7) shows the maximum error and cumulative error for R1 tuning from 20 to
1. With R1 equal to 20, the cumulative error is 58.5404m/s; with R1 equal to 10, the cumulative
error is 32.0845m/s; while with R1 equal to 5, the cumulative error is 17.6345m/s. The performance
of Q1 = 0.05, R1 = 1, Q2 = 1, R2 = 1 and Q1 = 1, R1 = 20, Q2 = 1, R2 = 1 are the same, however,
on the contrary, there is no better additive effect of Q1 = 0.05, R1 = 20, Q2 = 1, R2 = 1. A likely
explanation is over-smoothing. Figure (7a) shows the R1 equal to 20 has relatively smoother tracking,
however, it may be not true that the smoother the better. There is a trade-off between smooth tracking
and errors. It could be an interesting research gap in studying the optimal smooth degree or giving
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(a) Detail-1, R1=20 with Q1=0.05 (b) Detail-2, R1=10 with Q1=0.05 (c) Detail-3, R1=5 with Q1=0.05

(d) Detail-4, R1=1 with Q1=0.05 (e) Time-u,tuning R1 with Q1=0.05 (f) Time-error tuning R1 with Q1=0.05

Figure 7: Performance with tuning R1 with Q1=0.05

weights for the smooth degree of tracking and weights for the error. Regarding the goal of minimizing
the error as possible in this paper, R1 equal to 1 is chosen with Q1=0.05 as the relatively optimal
value.

5.3.4 Q2

Regarding Q2, which indicates the weight for v in the coasting regime. The conjecture is the larger
the Q2, the more aggressive the tracking in the coasting regime. Tuning starts from Q2 = 1, and
tuning gradually decreases by powers of 100. In figures (8a - 8d), the differences between the speed
profile and the coasting tracking are smaller than 0.001. Figure (8f and 8h) shows the errors of Q2 =
1, Q2 = 0.01, Q2 = 0.0001 with Q1, R1, R2 equal to 1 and with Q1 = 0.05, R1 = 1 representatively.
Note that the maximum error does not happen in the coasting regime, thus it can not evaluate the
performance of coasting. It may be an interesting potential research to develop different variables for
the evaluation of coasting regimes. The results show that the error curves almost completely coincide,
which indicates that the change in Q2 almost does not affect the performance. This is different from
the conjecture. A possible explanation could be after setting ue = 0 for the coasting regime (figure
(8g) shows the result), the tracking is very close to the speed profile, thus there is not much room for
adjustment. Therefore, Q2=1 is chosen.
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(a) Detail-1, Q2=0.01 with Q1=1,
R1=1, R2=1

(b) Detail-2, Q2=0.0001 with Q1=1,
R1=1, R2=1

(c) Detail-3, Q2=0.01 with Q1=0.05,
R1=1

(d) Detail-4, Q2=0.0001 with
Q1=0.05, R1=1

(e) Time-u(t), tuning Q2 with Q1=1,
R1=1 (f) Time-error, tuning Q2 with Q1=1, R1=1, R2=1

(g) Time-u(t), tuning Q2 with
Q1=0.05, R1=1 (h) Time-error, tuning Q2 with with Q1=0.05, R1=1

Figure 8: Performance with tuning Q2: Maximum error and Cumulative error

5.3.5 R2

In the coasting regime, the ue is set to zero. R2 indicates the penalty for u when coasting, which
could lead to a result that the larger the better. Figure (9) shows the results of tuning R2 from
R2 = 1, R2 = 100, R2 = 10000 with Q1, R1, Q2 equal to 1 and with Q1 = 0.05, R1 = 1, Q2 = 1.
The results indicate that the change in R2 almost does not affect the performance which is the same
conclusion as tuning Q2. Thus, R2=1 is chosen.
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(a) Time-u(t), tuning R2 with
Q1=0.05, R1=1, Q2=1 (b) Time-error, tuning R2 with Q1=1, R1=1, Q2=1

(c) Time-error, tuning R2 with with Q1=0.05, R1=1,
Q2=1

Figure 9: Performance with tuning R2: Maximum error and Cumulative error

5.3.6 Optimal Result

With Q1 = 0.05, Q2 = 1, R1 = 1, R2 = 1, the relatively optimal result without considering machine
reaction time and smooth degree shown in figure (10). The maximum error is −0.90839m/s, and the
cumulative error is 4.7478m/s. Figure (10b) shows the control variable u along with time.

(a) Optimal tracking (b) Optimal tracking: Time-u (c) Optimal tracking: Time-error

Figure 10: Optimal Result with Q1=0.05, Q2=1, R1=1, R2=1

6 Conclusion

Most of the results in this paper are reasonable and speculative. Using the proposed LQR algo-
rithm, it is intuitive and relatively easy to get a relatively nice result in train speed profile tracking for
regimes of acceleration, cruising, coasting, and barking without considering gradient resistance, curve
resistance, and other environmental disturbance. The relatively optimal result has a cumulative error
of 4.7478m/s and a maximum error of −0.90839m/s which is acceptable.

As discussed in the case study, the definition of a smooth degree of tracking and the optimal
parameters considering the limits of machine reaction time could be studied further. The obvious
conflict is the trade-off between smooth tracking and tracking error. It is also interesting to develop
other evaluation variables for the coasting regime.
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