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Abstract
Safety is critical to broadening the real-world use of reinforcement learning. Modeling 
the safety aspects using a safety-cost signal separate from the reward and bounding the 
expected safety-cost is becoming standard practice, since it avoids the problem of finding a 
good balance between safety and performance. However, it can be risky to set constraints 
only on the expectation neglecting the tail of the distribution, which might have prohibi-
tively large values. In this paper, we propose a method called Worst-Case Soft Actor Critic 
for safe RL that approximates the distribution of accumulated safety-costs to achieve risk 
control. More specifically, a certain level of conditional Value-at-Risk from the distribution 
is regarded as a safety constraint, which guides the change of adaptive safety weights to 
achieve a trade-off between reward and safety. As a result, we can compute policies whose 
worst-case performance satisfies the constraints. We investigate two ways to estimate the 
safety-cost distribution, namely a Gaussian approximation and a quantile regression algo-
rithm. On the one hand, the Gaussian approximation is simple and easy to implement, 
but may underestimate the safety cost, on the other hand, the quantile regression leads to 
a more conservative behavior. The empirical analysis shows that the quantile regression 
method achieves excellent results in complex safety-constrained environments, showing 
good risk control.

1 Introduction

In traditional reinforcement learning (RL) problems (Sutton & Barto, 2018), agents 
can explore environments to learn optimal policies without safety concerns. However, 
unsafe interactions with environments are unacceptable in many safety-critical prob-
lems, for instance, an autonomous robot should never break equipment or harm humans. 
Even though RL agents can be trained in simulators, there are many real-world problems 
without simulators of sufficient fidelity. Constructing safe RL algorithms for dangerous 
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environments is challenging because of the trial-and-error nature of RL (Pecka & Svo-
boda, 2014). In general, safety is still an open problem that hinders the wider applica-
tion of RL (García & Fernández, 2015).

Ray et  al. (2019) propose to make constrained optimization the main formalism of 
safe RL, where the reward function and cost function (related to safety) are distinct. 
This framework tries to mitigate the problem of designing a single reward function that 
needs to carefully select a trade-off between safety and performance, which is prob-
lematic in most instances (Roy et al., 2021). Then, the objective is changed to select a 
policy with maximum expected return among the policies that have a bounded expected 
cost-return. The issue with this approach is that the cost of individual episodes might 
exceed the given bound with a high probability, in particular we might observe some 
episodes with arbitrarily high costs. For safety-critical problems, it can be hazardous to 
use the expected cost-return as safety evaluation. Instead, better alternatives for safety-
constrained RL are algorithms that compute policies based on varying risk require-
ments, specialized to risk-neutral or risk-averse behavior (Duan et al., 2020; Ma et al., 
2020).

We propose a new criterion for risk-averse constrained RL, where we focus on the upper 
tail of the cost distribution, represented by the conditional Value-at-Risk (CVaR; Rockafel-
lar & Uryasev, 2000). With the new formalism, we design the Worst-Case Soft Actor Critic 
(WCSAC) algorithm that uses a separate safety critic to estimate the distribution of accu-
mulated cost to achieve risk control. In this way, policies can be optimized given different 
levels of CVaR, which determine the degree of risk aversion from a safety perspective. In 
addition, we use a Lagrangian formulation to constrain the risk during training.

We focus on off-policy algorithms since they require fewer samples to optimize a pol-
icy by using experiences from past policies, which can reduce the probability of perform-
ing unsafe interactions with the environment (Achiam et al., 2017; Schulman et al., 2015, 
2017). Soft actor critic (SAC; Haarnoja et al., 2018a, b) is an off-policy method built on the 
actor critic framework, which encourages agents to explore by including a policy’s entropy 
as a part of the reward. SAC-Lagrangian (Ha et al., 2020) combines SAC with Lagrangian 
methods to address safety-constrained RL with local constraints, i.e., constraints are set for 
each timestep instead of each episode. The SAC-Lagrangian can be easily generalized to 
constrain the expected cost-return, but it is not apt to handle the risk-averse setting.

To find a risk-averse policy, we investigate two safety critics that estimate the full cost-
return distribution, which we can use to infer the CVaR cost-return as mentioned before. 
Namely, we investigate a Gaussian approximation and quantile regression (Dabney et al., 
2018a). On the one hand, the Gaussian approximation is simple and easy to implement, 
but may underestimate the safety cost, on the other hand, the quantile regression leads to a 
more conservative behavior. Figure 1 shows a comparison of the three safety critic archi-
tectures. With the development in distributional RL, WCSAC is also possible to be further 
improved by directly deploying some new techniques in distribution-approximating.

Experimental analysis shows that by setting the level of risk control, our two WCSAC 
algorithms can both attain stronger adaptability (compared to expectation-based baselines) 
when facing RL problems with higher safety requirements. The two WCSAC algorithms 
can achieve safe behavior in environments with a Gaussian cost-return. Compared to the 
Gaussian approximation, the WCSAC with quantile regression has better performance in 
environments with non-Gaussian cost-return distribution, and shows better risk control in 
complex safety-constrained environments.

The main contributions of this article can be summarized as follows: 
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1. We propose a new criterion for risk-averse constrained RL to achieve risk control in 
safety critical problems.

2. We design an off-policy algorithm for risk-averse constrained RL, namely the WCSAC.
3. We show the versatility of WCSAC by using two methods to approximate the cost-return 

distribution.
4. We investigate the safety of these algorithms in environments with Gaussian and non-

Gaussian cost-return distributions.

The above items 1 and 2 were partially covered in our previous work (Yang et al., 2021). 
We also improved the exposition of the core ideas of the paper. Taken as a whole, this 
paper demonstrates that the WCSAC algorithm is able to learn safe policies in a range 
of environments. In doing so, it highlights the value of using risk-averse metrics in RL 
algorithms.

2  Background

In this section, we formulate constrained RL problems, present algorithms used to solve 
them, and investigate how to estimate the distribution of long-term rewards/costs.

2.1  Constrained Markov decision processes

We formulate the safe RL problem as a Constrained Markov Decision Process 
(CMDP; Altman, 1999, Borkar, 2005), defined by a tuple (S,A,P, r, c, d,T , �) : where 
S is the state space and A is the action space. In a constrained RL an agent inter-
acts with a CMDP, without knowledge about the transition, reward, and cost functions 
( P ∶ S ×A × S → [0, 1], r ∶ S ×A → [rmin, rmax], and c ∶ S ×A → [cmin, cmax] ). Each 

Fig. 1  Overview of the safety critics. The traditional safety critic only estimates the average of the cost-
return distribution QC , while the critics of the WCSAC algorithms keep track of the full distribution, and 
estimate the CVaR for the safety constraints. The first assumes the distribution is Gaussian and the second 
uses the IQN algorithm for quantile regression
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episode begins in a random state s0 ∼ � ∶ S → [0, 1] . At each timestep t of an episode, the 
agent observes the current state st ∈ S , and takes an action at ∈ A . Then, it observes a 
reward r(st, at) , a cost c(st, at) , and the next state st+1 ∼ P(⋅ ∣ st, at) . This process is repeated 
until some terminal condition is met, such as reaching the time horizon T. The behav-
ior of the agent is defined by a policy � ∶ S ×A → [0, 1] . This way, a policy � induces 
a distribution over full trajectories T� = (s0, a0, s1,⋯) where s0 ∼ � , at ∼ �(⋅ ∣ st) , and 
st+1 ∼ P(⋅ ∣ st, at).

In a CMDP there are two random variables of interest, the return Zr
�
=
∑T

t=0
r(st, at) and 

the cost-return Zc
�
=
∑T

t=0
c(st, at) that are, respectively, the sum of rewards and the sum of 

costs obtained in a trajectory following a fixed policy �.

Definition 1 (Safety based on Expected Value) A policy � is safe if its expected cost-return 
remains below a safety threshold d:

Over the episodes, the agent must learn a safe policy � that maximizes the expected 
return for each episode:

For a complex and long-horizon problem ( T ≫ 1 ), it is common to introduce a discount 
factor � ∈ (0.0, 1.0) to make the problem tractable, since it allows the agent to compute 
a single stationary value function, instead of indexing it by the time step. Henceforth, 
we consider the discounted return and discounted cost-return, accumulated discounted 
rewards and costs, respectively, from (s, a) as

We will refer to the cost-return Zc
�
(s, a) as C whenever � , s and a are clear from the context. 

So, we have Qr
�
(s, a) = �[Zr

�
(s, a)] , and Qc

�
(s, a) = �[Zc

�
(s, a)] = �[C].

2.2  SAC‑lagrangian

When the agent knows nothing about the environment, the safety constraint cannot be 
strictly fulfilled during exploration. During the early steps of learning, we still hope to 
encourage exploration to learn more about the environment. But the policy’s entropy must 
be carefully balanced with the safety constraint, and the policy must be allowed to con-
verge to a relatively deterministic policy, which reduces risks in terms of (safety-related) 
cost. SAC-based methods with entropy constraints and adaptive entropy weights are candi-
dates to meet these conditions. In this section, we describe the SAC-Lagrangian (SAC-Lag; 
Ha et al., 2020), a method designed for maximum entropy RL with safety constraints.

�
[
Zc
�

]
≤ d

(1)max
�

�
[
Zr
�

]
s.t. �

[
Zc
�

]
≤ d.

(2)

Zr
�
(s, a) =

∞∑
t=0

� tr(st, at) ∣ s0 = s, a0 = a, and

Zc
�
(s, a) =

∞∑
t=0

� tc(st, at) ∣ s0 = s, a0 = a.
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Notice that we have a global constraint on the cost-return (over trajectories) and a local 
constraint on the policy entropy (for each time step).

In general, SAC-Lag is a SAC-based method that has two critics, where we use the 
reward critic to estimate the expected return (possibly with entropy) to promote reward dur-
ing learning, while the safety critic estimates the cost-return to encourage safety. In SAC-
Lag, the constrained optimization problems are solved by Lagrangian methods (Bertsekas, 
1982). To manage a trade-off between exploration, reward, and safety, adaptive entropy and 
safety weights (Lagrange-multipliers) � and � are introduced to the constrained optimiza-
tion (1):

where f (�) = �s0∼�,a0∼�(⋅∣s0)

[
Zr
�
(s0, a0)

]
 , e(�) = �(st ,at)∼T�

[
log(�(at ∣ st))

]
+ h , and 

g(�) = �s0∼�,a0∼�(⋅∣s0)

[
Zc
�
(s0, a0)

]
− d . h is the minimum entropy, and d is the discounted 

approximation of d, see Appendix A for details. The above max-min optimization problem 
is solved by gradient ascent on � , and descent on � and �.

Ha et al. (2020) developed SAC-Lag for local constraints, which means that the safety 
cost is constrained at each timestep. However, it can be easily generalized to constrain the 
expected cost-return.1 In this paper, we use J to denote loss functions, and � to denote neu-
ral network parameters. Similar to the formulation used by Haarnoja et al. (2018b), we can 
get the actor loss:

where the entropy weight � (Lagrange multiplier) manages the stochasticity of the pol-
icy � and also determines the relative importance of the entropy term compared to rewards 
and costs. D is the replay buffer and �� indicates the parameters of the policy � . Finally, 
let �� and �� be the parameters learned for the safety and exploration weight such that 
� = sof tplus(��) and � = sof tplus(��) , where

 We can learn � and � by minimizing the loss functions:

(3)
max
�

�
[
Zr
�

]

s.t. �[Zc
�
] ≤ d and �

(st ,at)∼T�

[
− log(�t(at ∣ st))

]
≥ h ∀t.

min
�≥0

min
�≥0

max
�

G(�, �,�) ≐ f (�) − �e(�) − �g(�),

(4)J�(��) = �
st∼D,at∼�

[� log�(at ∣ st) − Qr
�
(st, at) + �Qc

�
(st, at)],

sof tplus(x) = log(exp(x) + 1).

(5)

Js(��) = �

st ∼ �

at ∼ �

[
�(d − Qc

�
(st, at))

]
, and

Je(��) = �

st ∼ D

at ∼ �

[
−�(log(�(at ∣ st)) + h

)
].

1 A similar approach has been used in the code available at https:// github. com/ openai/ safety- start er- agents.

https://github.com/openai/safety-starter-agents
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So the corresponding weight will be adjusted if the constraints are violated, that is, if we 
estimate that the current policy is unsafe or if it does not have enough entropy.

2.3  Distributional RL based on quantile regression

So far, we considered only the expected value of the return and the cost return. In this sec-
tion we describe how we can estimate the full distribution of these random variables. Later, 
we will discuss how to use the tails of the cost-return to compute safer policies.

Distributional RL provides a means to estimate the return distribution instead of only 
modeling expected values (Bellemare et  al., 2017; Dabney et  al., 2018a, b; Yang et  al., 
2019). So it is natural to apply distributional RL in risk-averse domains. Even in traditional 
RL problems, distributional RL algorithms show better sample efficiency and ultimate per-
formance compared to the standard expectation-based approach, but the state-of-the-art 
techniques have not been applied to safety-constrained RL with separate reward and safety 
signals.

Quantile regression, one of the main techniques in distributional RL, is widely used to 
estimate the return distribution, which has been combined with DQN (Mnih et al., 2015) 
to generate distributional variants such as QR-DQN (Dabney et al., 2018b), IQN (Dabney 
et al., 2018a), and FQF (Yang et al., 2019). In these methods, the difference between the 
distributions is measured by 1-Wasserstein distance:

where u and v are random variables (e.g., the return or cost-return), and F is the cumula-
tive distribution function (CDF). In these methods, we learn the inverse CDF of the return 
distribution, i.e., mapping quantile fraction � ∈ [0, 1] to the corresponding quantile func-
tion value Z�,2 which can be expressed as Z� = F−1

Z
(�) . QR-DQN, IQN, and FQF differ 

in how to generate the quantile fractions during training. Compared to fixing the quantile 
fractions (QR-DQN) and random sampling (IQN), we can theoretically better approximate 
the real distribution by using a proposal network (FQF) that generates appropriate quan-
tile fractions for each state-action pair. However, IQN has been found to perform better in 
experiments and has fewer parameters to tune in complex environments (Ma et al., 2020). 
The quantile values of IQN are learned based on the Huber quantile regression loss (Huber, 
1964):

where � is the threshold to make the loss within an interval [−�, �] quadratic but a reg-
ular quantile loss if outside the interval. Based on the distributional Bellman operator 
(Morimura et al., 2010; Sobel, 1982; Tamar et al., 2016)

(6)W1(u, v) ≐
�

1

0

|F−1
u
(�) − F−1

v
(�)|d� ,

(7)

𝜌𝜅
𝜏
(𝛿ij) = |𝜏 − �{𝛿ij < 0}|L𝜅(𝛿ij)

𝜅
, where L𝜅(𝛿ij) =

{
1

2
𝛿2
ij
, if |𝛿ij ≤ 𝜅|

𝜅(|𝛿ij − 1

2
𝜅|), otherwise

,

(8)B�Z(s, a) ≐ r(s, a) + �Z(s�, a�),

2 In this section, Z stands for the return Zr
�
(s, a) , but this method can easily be adapted to estimate the cost-

return distribution.
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we can get the TD error �ij between the quantile values at quantile fractions �i and �′
j
 , i.e.,

where (s, a, r, a�) is sampled from the replay buffer D , and �(s) = argmaxa∈A Qr(s, a) . We 
can approximate Qr(s, a) using K i.i.d. samples of �̃ ∼ U([0, 1]):

It is important to note that � , �′ , and �̃  are sampled from continuous and independent dis-
tributions in IQN. �′ is for the TD target (average quantile values at several �′ ), and � is the 
given quantile we aim to estimate.

3  Risk‑averse constrained RL

Traditional expectation-based safe RL methods maximize the return under the prem-
ise that the expected cost-return remains below the safety threshold d. In this way, RL 
agents are not aware of the potential risks because of the randomness in cost-return, 
which is generated by the stochastic policy and the dynamics of the environment. In 
expectation-based cases, if a safe policy has higher returns and higher variance in safety 
costs, it will be preferred over another safe policy with lower returns and lower variance 
in safety costs. In safety-critical domains, the optimal policies are expected to be more 
robust, i.e., to have a lower risk of hazardous events even for stochastic or heavy-tailed 
cost-return.

In Fig. 2, the x-axis depicts the cost-return C (Eq. 2). The y-axis depicts the density of 
its probability distribution. The expectation-based algorithm focuses on the average per-
formance in safety when optimizing policies. Thus, � , Qc

�
 , and the shape of the cost-return 

distribution p�(C ∣ s, a) will be changed during the training process until Qc
�
 (blue line) is 

shifted to the left side of the boundary (red line). After that, there is still a strong likelihood 
that the constraint value d is exceeded. For a policy � , Qc

�
 can only be used as the evalua-

tion of average performance in safety, however, in safety-critical domains, the worst-case 
performance in safety is preferred over the average performance. Therefore, we replace the 
expected value with the Conditional Value-at-Risk (CVaR; Rockafellar & Uryasev, 2000), 
using the upper � of the distribution to assess the safety of a policy. In the right panel of 
Fig. 2, we set the constraint on CVaR. Thus we optimize policies that will move the tail-
end of p�(C ∣ s, a) (blue line) to the left side of the boundary d (red line).

Definition 2 (Risk level.) A positive scalar � ∈ (0, 1] is used to define the risk level in 
WCSAC. A WCSAC with smaller � ( � → 0 ) is expected to be more pessimistic and risk-
averse. Conversely, a larger value of � leads to a less risk-averse behavior, with � = 1 cor-
responding to the risk-neutral case.

Considering the probability distribution of cost-returns p�(C) induced by the aleato-
ric uncertainty of the environment and the policy � , we model the safety-constrained RL 
problem in a more risk-averse way than the traditional formulation (1). We focus on the 
�-percentile F−1

C
(1 − �) , where FC is the CDF of p�(C ∣ s, a) , so we can get the CVaR:

(9)�ij = r(s, a) + �Z
��
j (s�,�(s�)) − Z�i (s, a),

Qr(s, a) ≐
1

K

K∑
k=1

Z �̃k (s, a).
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The following definition gives us a new constraint to learn risk-averse policies, which dif-
fers from the traditional constraint (1).

Definition 3 (Safety based on CVaR) Given the risk level � , a policy � is safe if it satisfies 
Γ�(st, at, �) ≤ d ∀t , where (st, at) ∼ T� and s0 ∼ �.

Now we can generalize the framework from Sect. 2.2, using maximum entropy RL 
with the above risk-sensitive safety constraints. That is, the optimal policy in a con-
strained RL problem might be stochastic therefore it is reasonable to seek a policy with 
some entropy (Eq. 3). So, the policy is optimized to satisfy

With (11) it is possible to solve safe RL problems using the Soft Actor Critic (SAC; Haar-
noja et al., 2018a) framework, maintaining a minimum expected entropy (Haarnoja et al., 
2018b).

(10)Γ�(s, a, �) ≐ CVaR�
�
(C) = �

p�
[C ∣ C ≥ F−1

C
(1 − �)].

(11)
max
�

�
[
Zr
�

]

s.t. CVaR�
�
(C) ≤ d and �

(st ,at)∼T�

[
− log(�t(at ∣ st))

]
≥ h ∀t.

Fig. 2  In the average case (left panel), the policies are optimized to ensure Qc (blue line) is moved to the left 
side of the fixed boundary d (red line). In the worst case (right panel), we optimize policies to ensure the 
CVaR� (blue line) measure on the left side of the fixed boundary d (red line) (Color figure online)
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4  Worst‑case soft actor critic

To solve the risk-averse constrained RL problem (11), we design the Worst-Case Soft Actor 
Critic (WCSAC) algorithm. WCSAC generalizes SAC-Lag (Sect. 2.2), because SAC-Lag can 
be regarded as WCSAC with � = 1 , such that Γ�(s, a, 1) = Qc

�
(s, a) (10). In this section, we 

start by describing a safety critic that assumes the cost-return distribution is Gaussian, then 
we show how to handle the case where the cost-return distribution is not Gaussian using a 
quantile regression approach. Finally, we show how to optimize the actor with the new safety 
critics and present an overview of the full algorithm.

4.1  Gaussian safety critic

In this section, we present how to obtain a Gaussian approximation of the safety critic. We will 
refer to the WCSAC with a Gaussian safety critic as WCSAC-GS in the following parts of the 
paper.

4.1.1  Gaussian approximation

WCSAC-GS uses a separate Gaussian safety critic (parallel to the reward critic for the return) 
to estimate the distribution of C instead of computing a point estimate of the expected cost-
return, as the SAC-Lag algorithm. To obtain the cost-return distribution, p�(C ∣ s, a) is 
approximated with a Gaussian, i.e.,

where Vc
�
(s, a) = �p� [C

2 ∣ s, a] − (Qc
�
(s, a))2 is the variance of the cost-return.

Given the Gaussian approximation, the CVaR measure is easily computed (Khokhlov, 
2016; Tang et al., 2020). At each iteration, Qc

�
(s, a) and Vc

�
(s, a) can be estimated. Thus, the 

new safety measure for risk level � is computed by

where �(⋅) and Φ(⋅) denote the probability distribution function (PDF) and the cumulative 
distribution function (CDF) of the standard normal distribution (Khokhlov, 2016).

WCSAC-GS learns the mean and variance of p�(C) , as shown in Fig. 1. To estimate Qc
�
 , 

we can use the standard Bellman function:

The projection equation for estimating Vc
�
(s, a) is:

(12)Zc
�
(s, a) ∼ N(Qc

�
(s, a),Vc

�
(s, a)),

(13)Γ�(s, a, �) ≐ Qc
�
(s, a) + �−1�(Φ−1(�))

√
Vc
�
(s, a),

(14)Qc
�
(s, a) = c(s, a) + �

∑
s�∈S

p(s� ∣ s, a)
∑
a�∈A

�(a� ∣ s�)Qc
�
(s�, a�).
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We refer the reader to Tang et al. (2020) for the proof of (15).

4.1.2  Gaussian safety critic learning

WCSAC-GS uses two neural networks parameterized by ��
C
 and ��

C
 , respectively, to esti-

mate the safety critic, i.e.,

In order to learn the safety critic, the distance between value distributions is measured by 
the 2-Wasserstein distance (Bellemare et  al., 2017; Olkin & Pukelsheim, 1982): 
W2(u, v) ≐

(
∫

1

0
|F−1

u
(�) − F−1

v
(�)|2d�

)1∕2

 , where u ∼ N(Q1,V1) , v ∼ N(Q2,V2) . 
WCSAC-GS uses the simplified 2-Wasserstein distance (Tang et al., 2020) to estimate the 
safety critic loss:

The 2-Wasserstein distance can be computed as the Temporal Difference (TD) error based 
on the projection Eqs. (14) and (15) to update the safety critic, i.e., WCSAC-GS minimizes 
the following values:

where J�
C
(�

�

C
) is the loss function of Qc

�
�

C

 , and J�
C
(��

C
) is the loss function of Vc

��
C

 . So,

where Q
c

�
�

C

(st, at) is the TD target from (14), and

where V
c

��
C

(st, at) is the TD target from (15).
Unfortunately, this Gaussian approximation can be coarse in many domains. In the next 

section, we will investigate methods that provide precise estimates of the return distribu-
tion, which later we apply to estimate the cost-return distribution.

(15)

Vc
�
(s, a) = c(s, a)2 − Qc
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4.2  Safety critic with quantile regression

Although the Gaussian approximation leverages distributional information to attain more 
risk-averse policies, only an additional variance is estimated compared to regular con-
strained RL methods. This means the information of the experiences collected are only 
used to a limited extent. Thus, the Gaussian approximation does not possess the general 
advantages of distributional RL algorithms.

Besides, it is not always appropriate to approximate the cost-return by a Gaussian distri-
bution, as shown in Fig. 3, since the contribution from the tail of the cost distribution might 
be underestimated. In this case, the agent might converge to an unsafe policy, according to 
(11). In this section, we present a distributional safety critic modeled by IQN, as illustrated 
on Fig. 1, which provides a more precise estimate of the upper tail part of the distribution. 
Henceforth, we refer to WCSAC with a safety critic modeled by IQN as WCSAC-IQN.

4.2.1  Estimating safety critic with IQN

We propose the implicit quantile network to model the cost-return distribution (safety-
IQN), regarded as the safety critic of the SAC method. Safety-IQN maps the samples from 
a base distribution (usually � ∼ U([0, 1]) ) to the corresponding quantile values of the cost-
return distribution. In theory, by adjusting the capacity of the neural network, safety-IQN 
can fit the cost-return distribution with arbitrary precision, which is essential for safety-
critical problems.

We denote F−1
C
(�) as the quantile function for the cost-return C and, for clarity of expo-

sition, we define C� = F−1
C
(�) . We use �C to parameterize the safety-IQN. The approxima-

tion is implemented as Ĉ𝜏 (s, a) ← fIQN(s, a, 𝜏 ∣ 𝜃C), which also takes the quantile fraction � 
as the input of the model, so that it uses the neural network to fit the entire continuous dis-
tribution. When training fIQN , two quantile fraction samples �, �� ∼ U([0, 1]) at time step t 
are used to get the sampled TD error:

Following (7), we can get the loss function for safety-IQN, i.e.,

where

(20)��,�
�

t
= ct + �C�� (st+1, at+1) − C� (st, at).

(21)JC(�C) = �
(st ,at ,ct ,st+1)∼D

IC(st, at, ct, st+1 ∣ �C),

Fig. 3  Unreliability of Gaussian 
approximation. The top curve 
depicts the true cost distribu-
tion, while the bottom curve 
depicts the estimated Gaussian 
distribution, based on the correct 
mean and standard deviation. In 
this case, the (1 − �)-quantile 
and corresponding CVaR are 
underestimated
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In (22): (a) indicates that the total loss of all the target quantiles �i, i = 1,⋯ ,N is com-
puted at once, and applies the distributional Bellman operator B (Bellemare et al., 2017), 
(b) expands the Bellman operator, taking an action for the next state sampled from the cur-
rent policy at+1 ∼ �(⋅ ∣ st+1) , (c) introduces �j to estimate the TD target, and (d) uses (20). 
We point out that for the estimation of quantiles, the quantile loss is replaced by the Huber 
loss to ease training, as in the regular IQN method (Dabney et al., 2018a). However, this 
may lead to a bias in the safety distribution (Rowland et  al., 2019), especially for larger 
values of � . The imputation approach proposed in the work by Rowland et al. (2019) can 
be combined with the proposed method to reduce this bias. Investigation of the extent of 
the bias and the efficacy of the correction in risk-averse RL is a subject for future research.

4.2.2  CVaR safety measure based on sample mean

Since we base our estimate of the distribution of cost-return on a quantile-parameterized 
approximation, we approximate the CVaR based on the expectation over the values of the 
quantile � as Γ�(s, a, �) ≐ �

�∼U([1−�,1])

[
C�
�
(s, a)

]
. This allows us to estimate Γ�(s, a, �) at 

each update step using K i.i.d. samples of �̃ ∼ U([1 − �, 1]):

While the Gaussian approximation leverages a closed-form approach to estimate the CVaR, 
which is inherently limited by the Gaussian assumption, our method efficiently estimates 
the CVaR using a sampling approach. This can attain higher accuracy due to the quan-
tile regression framework. We also highlight that this method still estimates the full dis-
tribution, sampling �, �′ from U([0, 1]) to compute the safety critic loss. We use (23) only 
when estimating the CVaR to compute the Lagrangian safety loss Js . In the next section, 
we describe how the actor uses the estimates of the CVaR described so far.

4.3  Worst‑case actor

For a certain risk level � , we optimize the policy � until it satisfies the safety cri-
terion Γ�(st, at, �) ≤ d ∀t according to Definition  3. In the policy improvement 
step, we update the policy towards the exponential of the new policy evaluation 
X�
�,�

(s, a) = Qr
�
(s, a) − �Γ�(s, a, �) , based on the balance between safety and performance. 
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This particular choice of update can be guaranteed to result in an improved policy in terms 
of this new evaluation (Haarnoja et al., 2018a). The role of safety changes over the training 
process. As the policy becomes safe, the influence of the safety term wanes, then the return 
optimization will play a greater role in our formulation.

Since in practice we prefer tractable policies, we will additionally restrict the policy to 
some set of policies Π , which can correspond, for example, to a parameterized family of 
distributions such as Gaussians. To account for the constraint that � ∈ Π , we project the 
improved policy into the desired set of policies. In principle, we could choose any projec-
tion, but it turns out to be convenient to use the information projection defined in terms of 
the KL divergence (Dabney et al., 2018b; Kullback & Leibler, 1951). Similar to the work 
by Haarnoja et al. (2018b), for each state st , we try to minimize the following KL diver-
gence to update the policy:

where Ξ�(st) is the partition function to normalize the distribution. � and � are the adaptive 
entropy and safety weights, respectively. A loss function can be constructed by averaging 
the KL divergence over all states in the sample buffer and approximating the KL diver-
gence using a single sampled action, resulting in

Ξ�(st) has no influence on updating � , thus it can be omitted. The resulting actor loss is

The main difference to Eq. 4 is that we replace the expected cost by the CVaR estimate.
We update the reward critic Qr and entropy weight � in the same way as the SAC 

method. The reward critic (including a bonus for the policy entropy) is trained to minimize

where Qr is parameterized by �R , and at+1 ∼ �(⋅ ∣ st+1) . Based on the new safety measure, 
the safety weight � can be learned by minimizing the loss function:
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so � will be decreased if d ≥ Γ�(s, a, �) , otherwise � will be increased to emphasize safety 
more. The main difference to how SAC-Lag optimizes its safety weight, is the use of the 
CVaR estimate, in opposite to the mean estimate (5). We note that in (28), we sample from 
the replay buffer D , whereas (2) suggests that the constraint applies to the initial state dis-
tribution. This replacement is certainly valid in the strongly discounted regime, or when 
episodes are very long. In this case, each visited state can be considered an initial state 
for the cost calculation. Although the replay buffer may initially be strongly off-policy, 
this deviation reduces over time. Moreover, this replacement also turns out to work well in 
practice when these conditions do not apply.

Figure 4 shows a general overview of the proposed algorithm, indicating the relations 
between safety, reward, and policy components. The arrows depict the relations between all 
terms in the method, i.e., the element at the beginning of an arrow influences the element at 
its end. We may notice that the safety and reward terms only influence each other through 
the policy.

4.4  Complete algorithm

The complete algorithm WCSAC is presented in Algorithm 1, where we list the input of 
the algorithm and all initialization objects in lines 0-2. Under a certain safety requirement 
� , we input ⟨d, h⟩ for the constraints. With the WCSAC-IQN, we also need the hyperparam-
eters ⟨N,N′⟩ for updating the safety-IQN, K for computing the new safety measure Γ� . For 
the environment steps (lines 4-7), we sample actions from the policy to attain experience 
for the replay buffer D , which allows us to get batches for updating all parameters at each 
gradient descent step (lines 8-21). After line 22, we list all the optimized parameters of the 
algorithm.

In standard maximum entropy RL, the entropy of the policy is expected to be as large as 
possible. However, relatively deterministic policies are preferred over stochastic policies in 
safe exploration, even though it is essential to encourage exploration during the early steps 

(28)
Js(��) = �

s ∼ D

a ∼ �

[
�(d − Γ�(s, a, �))

]
,

Fig. 4  WCSAC ’s structure. The elements are grouped by function: Safety, Reward, and Policy
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of learning. In SAC, the entropy of the policy is constrained to ensure that the final optimal 
policy is more robust (Haarnoja et al., 2018b). Therefore, for safety-critical domains, it is 
preferred to set a relatively low minimum requirement h for the entropy, or omit this con-
straint altogether.

With the Gaussian safety critic, we use two separate neural networks to estimate the 
mean function and variance function respectively. The size of each network can be smaller 
than using one network to estimate the mean function and variance together, so it does not 
add more parameters to be trained. In addition, it is much easier to compare the distribu-
tional safety critic of WCSAC-GS to the regular safety critic of SAC-Lag, which can be 
seen as an ablation of WCSAC-GS. As to the neural network structure of safety-IQN, we 
use the same function as in IQN for return (Dabney et al., 2018a), i.e., a DQN-like network 
with an additional embedding for the quantile fraction �.

For the reward critic, to avoid overestimation and reduce the positive bias during the 
policy improvement process, we also learn two soft Q-functions independently, which 
are parameterized by �R1 and �R2 . The minimum Q-function is used in each gradient step. 
We leverage target networks (parameterized by �R and �C ) to achieve stable updating, a 
common technique used in DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015). 
Specifically, the parameters of target networks (including safety critic and reward critic) 
are updated by moving averages (lines 19-20), where hyperparameter � ∈ [0, 1] is used to 
reduce fluctuations.

When selecting the learning rate for the neural networks ( �R , �C , �� , �� , and �� ) which 
are used to minimize the corresponding loss functions ( JR , JC , J� , J� , and J� ), we usually 
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make �� larger than the others to enhance the safety constraint. A relatively low learning 
rate for the safety weight does not converge fast enough to improve the safety of the actor’s 
policy, but the practical learning rate should be set according to the environment. Typi-
cally, the disparity between �� and the remaining learning rates ( �R , �C , �� , and �� ) will be 
more pronounced in more complex and safety-critical environments.

5  Empirical analysis

In this section, we evaluate our methods WCSAC-GS and WCSAC-IQN on the tasks with 
different difficulties, i.e., two SpyGame environments and Safety Gym benchmark  (Ray 
et al., 2019). This section has three goals: (i) test the hypothesis that WCSAC can achieve 
good risk control in an environment with a Gaussian cost-return distribution; (ii) test the 
hypothesis that WCSAC can find a safe policy on environments with a non-Gaussian cost-
return distribution when equipped with an appropriate estimate of the distribution; and (iii) 
evaluate the performance of the proposed method in highly-complex environments.

5.1  SpyGame environments

To test whether the two WCSAC algorithms can achieve safe behavior in environments 
with a Gaussian cost-return, and whether WCSAC-IQN indeed has better performance 
in environments with non-Gaussian cost-return distribution, we designed two SpyGame 
environments: Spy-Unimodal and Spy-Bimodal. For any policy, Spy-Unimodal leads to 
a unimodal cost-return distribution (approximately Gaussian), while Spy-Bimodal has a 
bimodal cost-return distribution (non-Gaussian). The SpyGame is a toy model, meant to 
give rise to unimodal (approximately Gaussian) and bimodal cost distributions. For this 
model, we consider an agency that trains spies to go on covert missions. On each mission, 
the spy gets a random amount of useful information (the reward) and leaves some traces 
(the cost). If too many clues to the spy’s identity are left across missions, the spy is likely 
to get discovered. In order to control the risk of discovery, a safety constraint is imple-
mented on cumulative cost. For each mission, the spy has a choice of low-risk, low-reward 
and high-risk, high-reward approaches, parameterized by the action a ∈ [0, 1] . For a choice 
of a, random rewards and costs are drawn from uniform distributions as follows (Fig. 5):

Two variants of the game are implemented in the SpyEnv environment, which are named 
Spy-Unimodal and Spy-Bimodal according to the shape of their cost distributions.3 

Spy-Unimodal: Each spy executes 100 missions until retirement. The aim is to max-
imise expected reward subject to a cost constraint (in expectation or CVaR). The cumula-
tive costs are a linear sum of a large number of independent random variables, so they are 
approximately normally distributed.

(29)r(a) ∼ U(−0.25 + a, 0.75 + a + 0.5a2)

(30)c(a) ∼ U(0.5a, 1.5a).

3 The code of SpyEnv will be made available online.
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Spy-Bimodal: In this variant, spies face early retirement if they do not gain sufficiently 
useful information. After 5 missions, a stopping criterion is evaluated that terminates the 
game unless the average reward per mission exceeds 0.15. This results in a significant frac-
tion of spies retiring early, which is reflected in a bimodal cost distribution.

We set the safety thresholds d = 25 for Spy-Unimodal, and d = 15 for Spy-Bimodal. 
We use WCSAC-GS and WCSAC-IQN with risk-neutral and risk-averse constraints (cost-
CVaR-� ) to solve both variations of the SpyGame. Each algorithm uses small neural net-
works (2 layers with 16 units) and trains for 30000 steps. After training, we run each of the 
final policies for 10000 episodes to evaluate the cost-returns of our algorithms.

5.1.1  Cost‑return distribution evaluation

In Fig. 6, we compare the two algorithms with risk-neutral ( � = 1 ) and risk-averse ( � = 0.1 ) 
constraints on both versions of the SpyGame. We report the distribution of cost-returns. 
This gives a clear overview of the full cost-return distribution, allowing us to evaluate the 
frequency the safety constraint is violated. We also report the metric used as safety con-
straints to verify when each agent can reach the designated safety requirements.

At the top of Fig.  6 (risk-neutral case), we can see that the two WCSAC algorithms 
approximately attain a constraint-satisfying expected cost-return in both environments, and 
the realised values are very close. So, in the average case, WCSAC-GS and WCSAC-IQN 
have similar performance independently of the underlying distribution.

At the bottom of Fig. 6 (risk-averse case), first we notice that in the Spy-Unimodal envi-
ronment (Gaussian) both WCSAC algorithms attain a cost-CVaR-0.1 below the threshold. 
We can also notice that WCSAC-IQN is closer to the bound showing a slightly better con-
trol over the cost-CVaR-0.1. On Spy-Bimodal (non-Gaussian), WCSAC-GS is unable to 
satisfy the safety constraint, attaining a cost-CVaR-0.1 larger than the bound. This indi-
cates that the Gaussian approximation cannot control the risk level in this domain.

Fig. 5  The PDF and CDF of the reward and cost functions under different actions
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Overall, comparing the top and bottom plots in Fig. 6, we can see that both WCSAC 
algorithms can attain a more risk-averse behavior by setting the risk level � to be a small 
value, reducing significantly the probability that a trajectory violates the safety constraints.

5.1.2  Varying level of safety constraint

To get a better overview of when the safety constraints are violated or not, we consider the 
same environment setting different risk level constraints. In Fig. 7, the x-axis depicts the 

Fig. 6  Cost-return distribution in Spy-Unimodal (left) and Spy-Bimodal (right) considering risk-neutral 
constraints with CVaR-1.0 (top) and risk-averse constraints with CVaR-0.1 (bottom). Dashed lines show the 
imposed safety threshold d and solid lines the realised values for each method

Fig. 7  Performance of WCSAC-GS and WCSAC-IQN in terms of different risk levels. The error bars are 
the standard deviation over 5 runs. Dashed lines show the imposed safety threshold d 
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risk level � , under which the agents are trained. The y-axis depicts the corresponding cost-
CVaR-� (Fig. 7 top) and expected return (Fig. 7 bottom) generated by the final policies and 
the standard deviation over 5 repetitions.

At the bottom of Fig. 7, we can see that, in the more risk-averse settings (lower value of 
� ), WCSAC-GS and WCSAC-IQN will both have lower expected returns. In general, the 
changes in the cost-CVaR-� and expected return under different risk levels show the same 
trend, i.e., a larger cost-CVaR-� corresponds to a larger expected return at the risk level �.

When we have a unimodal cost-return distribution (left panel of Fig.  7), we can see 
that the WCSAC algorithms attain safe performance with different risk levels � . But when 
we have higher safety requirements, both WCSAC algorithms generate a greater variance, 
and the distance between the corresponding cost-CVaR-� and the safety bound d becomes 
larger. Compared to WCSAC-IQN, WCSAC-GS is more over-conservative with lower �.

In the right panel of Fig.  7, we show the results with a bimodal cost-return distribu-
tion, where a Gaussian approximation can underestimate the CVaR, as we have seen in the 
previous section. In this case, WCSAC-IQN is safe in all different � , and WCSAC-GS can 
also obtain safe performance for values closer to the risk-neutral constraint ( � ∈ [0.7, 1.0] ). 
However, WCSAC-GS starts to become increasingly unsafe for lower values of � (more 
risk-averse constraints).

No matter in the unimodal or bimodal cases, both WCSAC algorithms approach the 
safety boundary better with higher � (more risk-neutral). But we have a greater deviation 
with lower � , especially in the bimodal case. Even with WCSAC-IQN, our safety per-
formance is becoming more pessimistic when we decrease � . Based on the experimen-
tal results in the work by (Théate et al., 2021), it appears to be the case that the quantile 
regression methods may result in more approximation errors for higher-order moments 
compared to the first-order moment.

5.2  SafetyGym environments

Next, we evaluate our method in three domains from the Safety Gym benchmark suite (Ray 
et al., 2019), where a robot navigates in a 2D map to reach target positions while trying to 
avoid dangerous areas, with different complexity levels (Fig. 8). The first one is StaticEnv 
with one fixed hazard and one fixed goal, but the initial position of the Point agent is ran-
domly generated at the beginning of each episode. The second is PointGoal (Safexp-
PointGoal1-v0 in Safety Gym) with one Point agent, several hazards, and one vase. 

(a) (b) (c)

Fig. 8  Robot navigation environments. The three environments differ in complexity, i.e., the action space, 
the type of the obstacles, and the task. The Point or Car agent should avoid Hazards (dangerous areas), 
Vases (fragile objects), and Gremlins (moving objects) in the above environments, then move to the Goal 
position or press the Goal Button
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The third and more complex environment is CarButton (Safexp-CarButton1-v0 in 
Safety Gym) where a Car robot (higher dimensional action space than Point) is navigating 
to press a goal button while trying to avoid hazards and moving gremlins, and not press-
ing any of the wrong buttons. These tasks are particularly complex due to the observation 
space, instead of observing its location, the agent has a lidar that indicates the distance to 
other objects. All experiments are performed with 10 random seeds. In all environments, 
c = 1 if an unsafe interaction happens, otherwise c = 0 . We use the original reward signal 
in Safety Gym, i.e., the absolute distance towards the goal plus a constant for finishing the 
task, e.g., press the goal button.

We evaluate four versions of the WCSAC: GS-1.0 (WCSAC-GS with � = 1.0 ), GS-0.5 
(WCSAC-GS with � = 0.5 ), IQN-1.0 (WCSAC-IQN with � = 1.0 ), and IQN-0.5 (WCSAC-
IQN with � = 0.5 ). For comparison, we used SAC (Haarnoja et al., 2018b), CPO (Achiam 
et al., 2017), and PPO-Lagrangian (PPO-Lag Ray et al., 2019; Schulman et al., 2017) as 
baselines. In this experiment, we use the discount factor � = 0.99 and � = 1 for the Huber 
loss in WCSAC-IQN. The safety thresholds are set to be d = 8 for StaticEnv, and d = 25 
for PointGoal and CarButton. We train each agent for 50 epochs in StaticEnv, and for 150 
epochs in PointGoal and CarButton. The epoch length is 30000 environment steps, and the 
maximal episodic length is 1000 environment steps.4

To evaluate the performance of the algorithms, we use the following metrics: CVaR-0.5 
of the cost-return (cost-CVaR-0.5), expected cost (AverageEpCost), and expected reward 
(AverageEpRet). Table 1 shows the performance of the policies returned by the algorithms 
after training. We use 1000 episodes (100 runs for each random seed) to evaluate the final 
policy of each method; the expected cost and expected return are estimated by the average 
of all runs, while the cost-CVaR-0.5 is estimated by the average of the worst 500 runs. In 
Fig. 9, we visualize the distribution by plotting the PDF and CDF histograms of sampled 
episodic costs in PointGoal and CarButton. Finally, Fig. 10 shows the behavior of the algo-
rithms during training. We provide a collection of videos of the execution of the final poli-
cies on the following webpage: https:// sites. google. com/ view/ wcsac.

Table 1  Performance of policies after training in terms of expected return (ER), expected cost-return (EC), 
and cost-CVaR-0.5 (C0.5)

The metric of the safety constraint used by each agent are in bold

Env StaticEnv ( d = 8) PointGoal ( d = 25) CarButton ( d = 25)

ER EC C0.5 ER EC C0.5 ER EC C0.5

SAC 0.87 18.53 19.11 28.85 62.77 71.59 21.36 201.06 247.13
CPO -0.63 9.25 14.71 21.48 42.99 50.39 3.62 80.16 116.31
PPO-Lag -0.76 6.31 8.93 17.81 24.47 30.11 0.45 26.18 35.09
GS-1.0 0.75 8.04 13.42 23.08 40.39 61.19 11.45 65.03 80.86
IQN-1.0 0.46 7.83 9.61 15.46 23.41 28.74 1.40 24.02 32.34
GS-0.5 0.66 6.16 7.30 19.50 37.23 38.29 7.06 58.51 62.97
IQN-0.5 0.40 5.10 7.18 9.23 20.80 22.60 0.64 15.95 20.13

4 The code of WCSAC will be made available online.

https://sites.google.com/view/wcsac
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5.2.1  Final behavior

We start our analysis by considering the behavior of the final policy. In Table 1, we can see 
that only IQN-1.0 and IQN-0.5 can be considered safe, because they satisfy the cost con-
straint with which they trained in all environments. In particular, only IQN-0.5 satisfies the 
risk-averse threshold on cost-CVaR-0.5, demonstrating its suitability for risk-averse agents. 
PPO-Lag has competitive safety performance in all the environments, but fails to achieve a 
high return in StaticEnv and CarButton. Compared to the safe RL methods (CPO, PPO-
Lag, and WCSAC), SAC has an excellent performance in expected return, but, naturally 
it does not satisfy the safety constraint, this shows that a safe agent must find a tradeoff 
between safety and performance. Although the final policies of the remaining algorithms 
CPO, GS-1.0 (SAC-Lag), and GS-0.5 may show better expected returns, these methods are 
not safe in PointGoal and CarButton.

In Fig.  9, we can observe that the distributions in PointGoal and CarButton are 
not Gaussian, which justifies the use of a quantile regression algorithm and the safe 

(a) (b)

Fig. 9  Cost-return distributions in PointGoal and CarButton (based on the same data as Table 1). The x-axis 
depicts the cost-return, while the y-axis depicts the binned probability density and the cumulative density 
functions. The gray dashed line indicates the safety threshold

(a) (b) (c)

Fig. 10  Performance of the algorithms during training in terms of mean (solid lines) and ±1 standard devia-
tion (shaded area) of the runs within an epoch. The black dashed lines indicate the safety thresholds



 Machine Learning

1 3

behavior of the WCSAC-IQN algorithms in these more complex environments. Com-
pared to GS-1.0, GS-0.5, and IQN-1.0, the distribution of IQN-0.5 displays a smaller 
range of costs, most of which are within the safety bound. Although the policies from 
GS-0.5 still generate some unsafe trajectories, the likelihood is much lower.

5.2.2  Behavior during training

Figure  10 shows the behavior of the agents during training. The top row shows the 
expected return, while the bottom row shows the expected cost-return.

We can see that all safe RL methods manage to make some safety improvement, 
while SAC has better and stable performance in average episodic return obviously 
across all the environments since it ignores the safety constraints.

In StaticEnv (Fig. 10a), we notice that all safe RL algorithms converge toward the 
optimal policy. However, compared to the off-policy WCSAC, the on-policy baselines 
CPO and PPO-Lag take more time to do so. When we look closely, we notice that CPO 
and GS-1.0 exceed slightly the cost bound at the end of the training, while PPO-Lag, 
GS-0.5, and IQN-1.0 end slightly below the cost bound. In particular, we highlight that 
IQN-0.5 achieves a lower expected cost without sacrificing much performance in terms 
of return.

In PointGoal  (Fig.  10b), we see a different behavior: only the PPO-Lag and 
WCSAC-IQN algorithms manage to find a satisfactory policy. Although WCSAC-GS 
and CPO manage to find policies with high returns, they fail to achieve safe behavior.

Finally, in the most complex environment, CarButton  (Fig.  10c), we see that the 
cost constraints severely limit the ability to find high-reward policies: PPO-Lag, IQN-
1.0, and IQN-0.5 manage to find safe policies, however, they cannot improve signifi-
cantly in terms of return; GS-1.0 and GS-0.5 also approach a safe policy and manage 
to get some improvements in terms of return; and CPO does not find a safe policy 
whilst simultaneously struggling to improve returns.

As to the unsafe performance of CPO in PointGoal and CarButton, the approxima-
tion errors in CPO may prevent it from fully satisfying constraints in these environ-
ments, which are harder than ones where CPO has previously been tested. PPO-Lag 
has competitive performance in safety, but it converges slowly compared to the off-
policy baselines. This phenomenon is even more obvious in relatively simple Stati-
cEnv. For WCSAC-GS in the relatively more complex environments PointGoal and 
CarButton (Fig.  10b and c), we can see that the return and cost-return of WCSAC-
GS start to stabilize near a certain value, instead of making continuous improvements 
until satisfying the constraint. However, in Fig.  12 (Appendix B), the safety weights 
of GS-1.0 and GS-0.5 quickly converge to a small value. It appears to be the case that 
the algorithm mistakenly takes the policy as safe, which means we get a convergent 
safety approximation (CVaR or expectation) that is below the safety threshold, but the 
safety of the policy is not truly reflected. Then, the algorithm stops making any pro-
gress in safety. Compared to the Gaussian approximation, the safety weights of IQN-
1.0 and IQN-0.5 have drastic changes at the beginning of training (Fig B12b and Bc), 
but they finally converge to a safe policy according to the training process in Fig. 10. 
We hypothesize that WCSAC-IQN benefits from the quantile regression to enhance 
exploration and avoid overfitting. That may also explain why distributional RL can 
converge to a better policy than traditional RL (Dabney et al., 2018a). 
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5.2.3  Trajectory analysis

Finally, we execute a trajectory analysis for each algorithm in StaticEnv, see Fig. 11. Spe-
cifically, we will compare SAC, CPO, PPO-Lag, WCSAC with different risk levels in 
safety, i.e., � = 0.1 (highly risk-averse), � = 0.5 , � = 0.9 , and � = 1.0 (risk-neutral).

The behavior of the SAC agent is presented in Fig. 11a, the agent chooses the shortest 
path to reach the target directly since the safety constraint is not considered.

We also consider the training process of GS-1.0 at different stages.5 At the beginning of 
learning (Fig. 11d), it is possible that the agent cannot get out of the hazard, and gets stuck 
before arriving at the goal area. We can observe the number of constraint violations being 
reduced over time (Fig. 11e and f).

The final policies from CPO, PPO-Lag, GS-1.0, GS-0.9, IQN-1.0, and IQN-0.9 perform 
better than before, but still prefer to take a risk within the budget to get a larger return 
(Fig 11f, b, g, j and k). Conversely, the agents GS-0.5 and IQN-0.5 are more risk-averse 
(Fig 11h and l). Finally, in Fig 11i and m, we can see that the agents GS-0.1 and IQN-0.1 
prefer to avoid the hazardous area more strictly given its risk level setting.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 11  Trajectory analysis. c–e show the trajectories generated by policies from GS-1.0 (SAC-Lag) at the 
beginning, middle stage and end of training respectively. a, b, and f–l show the final trajectories from SAC, 
CPO, PPO-Lag, and WCSAC separately

5 Other methods show similar behavior during training.
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Overall, we observe that with a higher risk level � (around 1.0), WCSAC can attain risk-
neutral performance similar to expectation-based methods. Both WCSAC algorithms can 
become more risk-averse by setting lower risk level �.

6  Related work

Risk-averse methods have commonly been used in RL problems with a single signal 
(reward or cost). Although CVaR in the context of IQN was used in the work by Dabney 
et al. (2018a) (with only a reward signal) to get risk-sensitive policies, the implementation 
is significantly different from ours. We deploy IQN in the safety-constrained RL problems 
(with separate reward and cost signals) with continuous action spaces, instead of problems 
with a discrete action space.

Based on the work by Bellemare et al. (2017), Keramati et al. (2020) propose to perform 
strategic exploration to quickly obtain the optimal risk-averse policy. Following Dabney 
et al. (2018a), Urpí et al. (2021) propose a new actor critic method to optimize a risk-averse 
criterion in terms of return, where only samples previously collected by safe policies are 
available for training. Although their paper provides the off-policy algorithm version, it is 
not clear how the exploration-exploitation tradeoff is handled, while we explicitly define a 
SAC-based method with an entropy-related mechanism for exploration. Chow et al. (2017) 
propose efficient RL algorithms for risk-constrained MDPs, but their goal is to minimize 
an expected cumulative cost while keeping the cost CVaR below a given threshold, instead 
of maintaining reward and cost signals independently. To some extent, the way they update 
the Lagrange multiplier inspired our use of adaptive safety weights. However, in the real 
world, safe RL problems typically involve multiple objectives, some of which may be con-
tradictory, like collision avoidance and speed on an autonomous driving task (Kamran 
et  al., 2020). Therefore, the setting with an explicit safety signal can be more practical 
(Dulac-Arnold et al., 2021).

The safe RL setting with separate reward and cost signals has also been studied in sev-
eral works (Achiam et  al., 2017; Bharadhwaj et  al., 2021; Liu et  al., 2020; Yang et  al., 
2020). Specifically, Achiam et  al. (2017); Liu et  al. (2020); Yang et  al. (2020) propose 
a series of on-policy constrained policy optimization methods with trust-region property, 
where the worst case performance is bounded at each update. However, they do not present 
a clear risk aversion mechanism for the intrinsic uncertainty, captured by the distribution 
over the cost-return. In addition, on-policy methods (with worse sample efficiency com-
pared to off-policy methods) are usually not favored in safe RL domains. Under a similar 
problem setting, Bharadhwaj et al. (2021) work on a conservative estimate of the expected 
cost-return (Kumar et al., 2020) for each candidate state-action tuple, which is used in both 
safe-exploration and policy updates. With the conservative safety estimate, their proposed 
method can learn effective policies while reducing the rate of catastrophic failures. How-
ever, they only focus on the parametric uncertainty over the value estimate instead of the 
intrinsic uncertainty. On the other hand, their paper focuses on catastrophic events, which 
is a binary signal. While our paper considers safety according to the accumulated cost in a 
trajectory. Overall, our approach gives more freedom to the designer of the system to indi-
cate which behaviors are more or less desirable.

Finally, we did not find state-of-the-art distributional RL techniques had been used in 
safety-constrained RL with separate reward and safety signals prior to our work.
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7  Conclusion

In this paper, we propose an actor critic method, WCSAC , to achieve control of risks 
for safety-constrained RL problems. We employ a Gaussian distribution or an implicit 
quantile network as the safety critic to overcome considerable risks caused by the ran-
domness in cost-return. The experiments show that both WCSAC-GS and WCSAC-IQN 
can attain better risk control compared to expectation-based methods. In complex envi-
ronments, WCSAC-GS does not show improvements in safety, where the safety weight 
is not updated fast enough to truly reflect the current policy. However, WCSAC-IQN 
has a strong performance with the benefits from IQN, which provides a stronger safety 
signal than the one from the Gaussian approximation. The novel use of IQN for safety 
constraints can potentially be extended to other safe RL methods.

7.1  Limitations

Without any knowledge about the environment, it is hard to strictly fulfill the safety 
constraint during exploration. Thus, our algorithm still focus more on the performance 
of the final policy. While our method has good risk control for the safety-constrained RL 
problems, one limitation is that we cannot ensure a safe training process. Also, although 
our method shows good performance in practice, our work has not established theoreti-
cal proofs of convergence.

7.2  Future work

In safety-critical problems, the sample efficiency and adaptation to new tasks are both 
particularly crucial, so off-policy RL and meta-RL are natural approaches to solve safe-
RL problems. We will further explore meta-RL with safe exploration tasks in the future 
(Finn et al., 2017; Rakelly et al., 2019). Another direction is to leverage the epistemic 
uncertainty about the safety dynamics to ensure safety also during training (Simão et al., 
2021; Yang et al., 2022; Zheng & Ratliff, 2020).

Appendix A Approximate safety constraint

A discounted version of d is defined as d = [(1 − �T )d]∕[(1 − �)Tmax] , where we assume 
equal cost accumulated at each step, and Tmax is the maximum length of the episode. 
The assumption is not strictly correct, since we do not have equal cost at each step of 
a real episode, and often no costs are incurred early in the episode. However, since our 
algorithm optimizes the discounted infinite horizon from each state-action pair in the 
replay buffer, we should be approximately correct here.
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Appendix B Safety weights

We present the change of adaptive safety weights � in WCSAC (GS-1.0, GS-0.5, IQN-
1.0, and IQN-0.5) during training in Fig. 12, where a small stable weight means that the 
constraint is approximately satisfied. In StaticEnv (Fig. 12a), we can see that the safety 
weights in the four WCSAC algorithms change similarly, which accord with the con-
vergence process of cost-return in Fig. 10a. In PointGoal and CarButton (Fig. 12b and 
c), compared to IQN-1.0 and IQN-0.5, the safety weights of GS-1.0 and GS-0.5 quickly 
converge to a small value, but they fail to obtain a constraint-satisfying policy from the 
results in Fig.  10b and c. Although the safety weights of IQN-1.0 and IQN-0.5 have 
drastic changes at the beginning of training (Fig. 12b and c), they finally converge to a 
safe policy, according to the training process in Fig. 10.
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