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The Role of the Working Fluid
and Nonideal Thermodynamic
Effects on Performance
of Gas-Lubricated Bearings
Small-scale turbomachinery operating at high rotational speed is a key technology for
increasing the power density of energy and propulsion systems. A notable example is the
turbine of an organic Rankine cycle turbogenerator for thermal recuperation from prime
engines and industrial processes. Such systems typically operate with organic compounds
characterized by complex molecular structures to allow the design of efficient fluid
machinery and flexibility in matching the heat source and sink temperature profiles. Gas-
lubricated bearings are considered advantageous compared to traditional oil-lubricated
rolling element bearings for supporting the turbine rotor, enabling greater machine
compactness and reduced complexity, and avoiding contamination of the working fluid. In
certain operating conditions, however, the lubricant of the gas bearing is in thermodynamic
states near the saturated vapor line or in the vicinity of the fluid critical point, whereby
nonideal effects are relevant andmay affect bearing performance. This work investigates the
physics of thin film flows in gas bearings operating with fluids made by complex molecules.
The influence of nonideal thermodynamic effects on gas bearing performance is discussed by
analysis of the fluid bulk modulus. Reduced values of the nondimensional bulk modulus near
the critical point or saturated vapor line decrease bearing performance. The main
parameter characterizing the influence of molecular complexity on bearing performance is
shown to be the acentric factor. For complex fluids with large acentric factors, the impact of
nonideal thermodynamic effects on nondimensional bearing load capacity and rotor-
dynamic characteristics is less pronounced. [DOI: 10.1115/1.4066822]

Keywords: gas bearings, nonideal thermodynamic effects, high-speed turbomachinery

1 Introduction

Small-scale turbomachinery operating at high rotational speeds is
an enabling technology for the high-power density propulsion and
power systems of the future [1]. Machines with tip diameters on the
order of 30mm and rotor speeds up to 200 krpm have been
considered for a variety of applications [2]. Examples of such
applications include small turbochargers [3], cryogenic coolers
using an inverseBrayton cycle [4], fuel cell airmanagement systems
[5], and microgas turbines. More recently, high-speed centrifugal
compressors have been investigated for both domestic [6] and
airborne [7] heat pump applications, whereas radial-inflow turbines
are considered for high-power density thermal energy conversion
systems based on the supercritical CO2 Brayton cycle [8] or the
organic Rankine cycle [1].
The requirements of compactness and high efficiency dictate the

adoption of gas bearings in high-speed turbomachinery. This type of
bearings can support high-speed rotors with lowmaintenance and at
reduced friction loss [9]. Furthermore, the use of the process fluid as

a lubricant in the gas bearing allows the elimination of the oil
lubrication system, thereby avoiding the contamination of the
working fluid and reducing the overall system weight and
complexity. Gas bearings rely on the relative motion between the
rotating shaft and the static bearing components to generate a
lubricating film. The amount of load that the bearing can carry
therefore depends on fluid properties such as the pressure and
viscosity. When applied in turbomachines operating with dense
vapors or supercritical flows, compressibility and nonideal thermo-
dynamic effects can largely affect the bearing performance.
A dense vapor is a fluid in thermodynamic states near the

saturated vapor line or near the critical point, whereby the
compressibility number Z< 1 [10]. Such states are characterized
by nonideal thermodynamic effects in which molecular interactions
are non-negligible. Giuffr�e et al. [11] recently demonstrated the
design optimization of a twin-stage high-speed compressor for an
electrically driven vapor compression cycle. The effects of working
fluid and nonideal thermodynamic effects were taken into account in
the design procedure by the isentropic pressure–volume exponent.
Furthermore, Giuffr�e and Pini [12] presented design guidelines for
axial turbines operating with nonideal compressible flows. Molec-
ularly complex fluids with low speed of sound lead to supersonic
flows in the nozzles of such turbines, which strongly affects fluid

Turbo Expo, June 24–28, 2024. GT2024.
1Corresponding author.
Manuscript received September 16, 2024; final manuscript received October 2,

2024; published online December 11, 2024. Editor: Jerzy T. Sawicki.

Journal of Engineering for Gas Turbines and Power JUNE 2025, Vol. 147 / 061015-1
CopyrightVC 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/gasturbinespow

er/article-pdf/147/6/061015/7415395/gtp_147_06_061015.pdf by Bibliotheek Tu D
elft user on 27 January 2025

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4066822&domain=pdf&date_stamp=2024-12-11


dynamic losses. Tosto et al. [13] took a fundamental approach to
study how loss mechanisms in internal flows are influenced by both
the fluid molecular complexity and the nonideal thermodynamic
effects.
Most of the available scientific literature on gas foil bearings

considers cases in which air at sea-level conditions is utilized as
lubricant. NASA performed an extensive experimental campaign
[9] to show the feasibility of supporting high-speed rotors using gas
foil bearings lubricated with air. Measured data were used to derive
approximate relations for bearing load capacity [14] as well as
linearized rotordynamic coefficients [15]. Heshmat et al. [16]
presented a modeling technique for bump-type gas foil journal
bearings in which the compliant bump strip layer was modeled as an
elastic structure. Recent works investigated the performance of
hydrodynamic bearings lubricatedwith dense vapors. Bruckner [17]
experimentally investigated the windage losses in gas foil bearings
operating at high pressure. Losses associated with inertia effects
were shown to increase significantly at elevated pressures. Conboy
[18] numerically investigated the performance of gas foil thrust
bearings applied in a S-CO2 closed-Brayton cycle laboratory setup
of Sandia National Laboratories. The developed numerical model
was coupled to a thermodynamic software program [19] to compute
the thermophysical fluid properties. Kim [20] presented a high-level
three-dimensional thermohydrodynamic model of a radial foil
bearing including turbulence and nonideal thermodynamic effects.
In spite of the increasing body of literature, there have been only a
few fundamental studies aimed at elucidating the significance of
nonideal thermodynamic effects and molecular complexity on the
physical behavior of thin film flows in gas bearings.
Guenat and Schiffmann [21] investigated the impact of nonideal

thermodynamic effects on gas bearing performance. In their work, a
numerical study was performed indicating how the nondimensional
load capacity and bearing stability are affected by the thermody-
namic state of the fluid. The nondimensional bulk modulus was
identified as the main thermophysical parameter affecting the
density distribution in the gas film. Results were presented for gas
bearings lubricated with various refrigerant fluids. However, the
relation between the nondimensional bulkmodulus and the nonideal
thermodynamic effects was not explicitly addressed. Furthermore,
the influence of the fluidmolecular structure on bearing performance
is not yet fully understood. These aspects are investigated in this
work. A physical interpretation of the nondimensional bulkmodulus
in the context of flows in a nonideal thermodynamic state is
presented. Furthermore, the influence of molecular complexity on
the nondimensional bearing load capacity and rotor-dynamic
characteristics is elucidated using an analysis based on scaling
principles and a cubic equation of state.
The article is structured as follows. Section 2 presents the

compressible Reynolds equation which is solved numerically using
a finite difference method. The perturbation method used to obtain
the linearized rotor-dynamic stiffness and damping coefficients is
also presented. The outlinedmethods are used to calculate results for
both rigid bearings and gas foil bearings. In Sec. 3, the influence of
nonideal thermodynamic effects and molecular complexity on
bearing performance is discussed. Finally, the main conclusions
drawn from this study are outlined in Sec. 4.

2 Methodology

Both rigid journal bearings and gas foil journal bearings are
modeled. The compressible Reynolds equation governing the
density distribution within the thin film is presented. A simple
elastic model is utilized to account for the bump foil deflections in
gas foil bearings. The nondimensional load capacity and critical
mass are introduced as the bearing performance parameters used to
analyze the influence of nonideal thermodynamic effects and
molecular complexity.

2.1 Flow Modeling. The thin film flow separating the rotating
shaft from the top foil is modeled using the Reynolds equation. The

Reynolds equation was first derived in 1886 by Osborne Reynolds
for incompressible flow from the equations of conservation of mass
and momentum [22]. Chien et al. [23] present a derivation of the
steady Reynolds equation for two-dimensional compressible flows
of high-pressure gasses. The derivation can be extended to include
unsteady effects and three-dimensional flows, leading to the
compressible Reynolds Eq. (1) as used in this work
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Some of the nomenclature related to the bearing geometry is
shown in Fig. 1. The spatial coordinates in the circumferential and
axial directions are normalized by the shaft radius, whereas the film
thickness is normalized using the nominal bearing clearance. The
nondimensional bearing compressibility number or bearing speed
number is written as

K ¼ 6lrefXR
2

prefc20
(2)

The bearing compressibility number is defined in terms of the
rotor speed, the thermodynamic state of the fluid in the bearing
compartment, and the bearing geometry. The Poiseuille-like terms
on the left-hand side of Eq. (1) represent the effect of pressure
gradients on the flow in the circumferential and axial directions.
These diffusive effects tend to attenuate the density gradients and are
more pronounced for low compressibility numbers K. For increas-
ing compressibility numbers, the first right-hand side term of Eq. (1)
becomes relevant. This Couette-like term denotes the effect of
viscous stresses dragging the fluid into an aerodynamic wedge,
thereby causing regions of increased density (and pressure) near the
location of minimum film thickness. In this work, the compressi-
bility number will be used as an independent parameter for
analyzing bearing performance.
Traditionally, most literature on gas bearings deals with air-

lubricated bearings at low pressure, characterized by laminar thin
films and thermodynamic state properties calculated with the ideal
gas law. In high-pressure lubrication flows, however, the local
Reynolds number can reach levels where instabilities arise in the
laminar thin film leading to flow transition and turbulence. Although
the physics of transition and turbulence is not well represented by a
Reynolds-type equation, it has become common practice to account
for turbulence effects by means of empirical correction factors.
These turbulence correction factors (Gx and Gz) arise in the
Poiseuille flow terms of the Reynolds Eq. (1). Several theoretical
approaches have been proposed to derive expressions for the

Fig. 1 Schematic figure showing a rigid journal bearing
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semi-empirical correction factors [24–26]. In the model of Constan-
tinescu, the semi-empirical correction factors Gx and Gz are written as

Gx ¼ 1þ ax
12

Rebx
� �

Gz ¼ 1þ az
12

Rebz
� � (3)

with the empirical constants ax¼ 0.0136, bx¼ 0.90, az¼ 0.0043,
andbz¼ 0.96. It should be noted, however, that the different theories
mentioned here all lead to the same qualitative behavior of the
turbulence correction factors as a function of the local Reynolds
number.

2.2 Thermophysical Property Models. The compressible
Reynolds Eq. (1) constitutes a second-order nonlinear partial
differential equation for the nondimensional density field defined
as �q ¼ q=qref . The subscript ref refers to some representative
thermodynamic reference state, typically corresponding to the state
of the fluid surrounding the bearing. Apart from the density, the
thermophysical properties appearing in the Reynolds equation are
the normalized dynamic viscosity �l ¼ l=lref and the nondimen-
sional bulk modulus �b ¼ b=pref . The bulk modulus of the fluid is
defined as the inverse of the isothermal compressibility and is given
as

b ¼ q
@p

@q

���
T

(4)

The fluid dynamic performance of turbomachinery components
operating with working fluids in nonideal thermodynamic states is
often characterized [10] in terms of the specific heat ratio c and the
generalized pressure–volume exponent cPv. The latter is used in
place of c to describe isentropic flows in which nonideal
thermodynamic effects are of interest such that

p

q

� �cPv
¼ const (5)

Differentiation of the above relation yields [13] the following
relation between the isothermal compressibility or nondimensional
bulk modulus of the fluid and the parameters c and cPv:

cPv ¼
q
p

@p

@q

���
s
¼ c

q
p

@p

@q

���
T
¼ bc

p
¼ �bc (6)

The value of the nondimensional bulkmodulus is therefore related to
the level of nonideality of the fluid state. In thermodynamics, the
fluid compressibility factor Z is often used as a measure of the
nonideality of a gas. The compressibility factor is defined such that

p ¼ ZqRT (7)

From the definitions of Z, the following relation can be derived
between the nondimensional bulk modulus and the compressibility
factor:

�b ¼ 1þ qr
Z

@Z

@qr

���
T

(8)

From Eq. (8), both the nondimensional bulk modulus and the
compressibility factor are one for ideal gasses. The qualitative
behavior of both parameters can be explained based on the
intermolecular potential. As the pressure of a gas is increased, the
distance between molecules decreases, and the intermolecular
forces become more significant. In particular, attractive forces
between molecules start to dominate. This causes both Z and �b to
drop below one. At large pressures, the volume of the molecules
becomes non-negligible with respect to the molar volume of the

fluid. At low molar volumes, this causes the repulsive forces
between molecules to becomemore significant. When the attractive
and repulsive forces are balanced, the compressibility factor Z
reaches a minimum and the nondimensional bulk modulus rises
above �b ¼ 1. Upon further increase of the density, both the bulk
modulus and compressibility factor increase. Contours of the
nondimensional bulk modulus are plotted on the reduced T–s
thermodynamic plane in Fig. 2 for siloxane MM. The plot shows a
strong reduction of the nondimensional bulk modulus in the vicinity
of the critical point. In the limit of the critical point, the bulkmodulus
reaches a value of zero. For very high pressures in the supercritical
domain, values larger than one are attained. In this region,
sometimes considered the “liquid-like” part of the supercritical
domain, the fluid behaves increasingly like an incompressible
medium. For an ideal gas, the bulk modulus reduces to the pressure
and �b is equal to one

�bref �
qref
pref

@p

@q

���
T
¼ qref

pref
RTref ¼ 1 for an ideal gas (9)

The nondimensional bulk modulus and dynamic viscosity both
depend on the thermodynamic state of the fluid. Traditionally, the
thin film flows in gas (foil) bearings have been modeled under the
assumption of isothermal flow. The bulk modulus and viscosity are
therefore evaluated as a function of the local density and the
reference temperature, i.e., �bðq, TrefÞ and �lðq, TrefÞ. The nonlinear
Reynolds equation is solved iteratively, and the thermophysical
properties are updated after each iteration using the density
distribution in the film.
For ideal gas lubrication, the dynamic viscosity is typically

evaluated using Sutherland’s law and only depends on the
temperature. Furthermore, for isothermal flow, the nondimensional
bulkmodulus reduces to the nondimensional density. This allows for
a straightforward solution of the Reynolds equation without the
necessity of coupling the solver to an external software program for
the calculation of thermophysical fluid properties.
In this work, the thermodynamic properties of dense vapors and

supercritical fluids are computed using equation-of-state models of
varying complexity. The Peng–Robinson cubic equation of state is
used to derive theoretical insight. The limited number of parameters
involved in the cubic equation of state allows for identifying the
most relevant fluid properties relating the molecular complexity to
the bearing performance. More complex Helmholtz free energy-
based multiparameter equations of state are used to confirm the
results. Correlations are used to model the variation of the dynamic
viscosity with temperature and density. The implementation of both

Fig. 2 Considered operating conditions shown on the reduced
T–s thermodynamic plane of siloxane MM along with contours of
the nondimensional bulk modulus �b. Plot generated using
NICEPROP [27].
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the equations of state and the correlations for the dynamic viscosity
is done using the COOLPROP [28] and REFPROP [19] software programs.

2.3 Foil Modeling. For gas foil bearings, the increased
pressures in the gas film lead to a net force on the top and bump
foil structure. The bump foil is a compliant structure thatwill deform
elastically under the action of such forces, resulting in a change in
the local film thickness. The foil deflections are accounted for using
a simple elasticmodel. In themodel, a linear relation is used between
the bump foil deflections wd and the pressure. The method is well
established in literature (e.g., Refs. [16] and [29]) and is not repeated
here. It is noted that more accurate models for the bump and top foil
deflections exist in literature (e.g., Ref. [30]). The aim of the current
work, however, is to investigate the fundamental nonideal
thermodynamic effects in the fluid film. For simplicity, the analysis
is carried out using this linear elastic model.
Accounting for the structural deflections, the steady-state

nondimensional film thickness can be written as

�h0 ¼ 1� � cosð�x� wÞ þ Sd�p0 (10)

where the structural compliance factor [29] is defined as

S ¼ Pref

c0Kf
(11)

2.4 Perturbation Method. The unsteady Reynolds Eq. (1)
allows for predicting the time-varying reaction forces exerted by the
fluid film on the rotor shaft. The equation can be coupled to the
nonlinear rotor-dynamic equations of motion in order to model
the evolution of the rotor orbits in time. In this work, however, only
the potential onset of bearing instabilities is considered and not the
evolution of the unstable rotor motions. Therefore, a perturbation
method is applied where a small harmonic motion is introduced
around the equilibrium rotor position. The perturbation in the rotor
position will introduce a perturbation in the pressure field and the
structural deflections of the bump foils, which can eventually lead to
instabilities. The perturbed film thickness including the harmonic
motions and perturbed foil deflections is written as

�h ¼ �h0 � �1X cos �xð Þeicex�t � �1Y sin �xð Þeicex�t

þ S

1þ icSð Þ d�p1X�1X þ d�p1Y�1Yð Þeicex�t (12)

The subscript 0 indicates parameter values at the rotor steady-
state equilibrium position, whereas the subscript 1 indicates the
perturbations from the steady-state. The rotor motion in X- and
Y-directions refers to the inertial axes as shown in Fig. 1. The
parameter cex is defined as the excitation frequency normalized
using the shaft rotational speed X. The perturbation in the film
thickness will result in a perturbation in the density field as well as
the ratio of the bulk modulus to dynamic viscosity appearing in the
Reynolds equation

�q ¼ �q0 þ �1X�q1Xe
icex�t þ �1Y�q1Ye

icex�t (13)

�b
�l
¼ �jTe ¼ �jTe0 þ �1X

@�jTe
@�q

� �
0

�q1Xe
icex�t

þ �1Y
@�jTe
@�q

� �
0

�q1Ye
icex�t (14)

where the effective bulk modulus �jTe is defined following the work
of Chien et al. [23] as the ratio of the bulk modulus to dynamic
viscosity. It is used here only as a short-hand notation. The partial
derivative of the effective bulk modulus to density at constant
temperature is written using the chain rule

@jTe
@q

���
T
¼ jTe

q
þ q
l
@2p

@q2

���
T
� jTe

l
@l
@q

���
T

(15)

Finally, the turbulence correction factors are a function of the
local Reynolds number and therefore of the density, film thickness,
and viscosity. The perturbed turbulence correction factors can be
obtained in a similar way by application of the chain rule.
The perturbed quantities can be substituted into the unsteady

Reynolds Eq. (1). The zeroth- and first-order terms can be grouped
and separated leading to the zeroth-order or steady-state Reynolds
equation (for �q0) and two first-order or perturbed Reynolds
equations (for �q1X and �q1Y). The equations are presented in the
Appendix. The equations are discretized using a finite difference
method. The nonlinear steady-state equation is solved iteratively.
The thermodynamic properties and bump foil deflections are
updated after every iteration. The first-order equations can be
solved straightforwardly, once the steady-state solution is obtained.
For both the steady-state and the perturbed Reynolds equations, a
periodic boundary condition is applied in the circumferential
direction. Dirichlet boundary conditions are applied in the axial
direction, imposing the ambient (steady-state) density with zero
perturbation at the sides of the bearing.

2.5 Bearing Performance Parameters. Once the steady-state
and perturbed density fields are obtained, the pressure field is
computed as a function of the density field and the reference
temperature. The components of the nondimensional load capacity
are computed as

Wa ¼ �
ðL=D
�L=D

ð2p
0

�pHad�xd�z (16)

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

x þW2
y

q
(17)

The nondimensional dynamic bearing impedances can be
obtained by integration of the nondimensional perturbed pressure
field in a similar way

kab þ cexcab ¼ �
ðL=D
�L=D

ð2p
0

�p1bHad�xd�z (18)

where a and b take the values X or Y and HX ¼ cosð�xÞ and
HY ¼ sinð�xÞ.
The bearing impedances consist of the stiffness and damping

coefficients, which are used in a linearized rotor-dynamic model.
The critical mass is obtained by finding the whirl frequency
canceling the equivalent damping as presented, for example, by
Guenat and Schiffmann [21]. The procedure is not repeated here.
The nondimensional critical mass is finally defined as

�mcr ¼ mcrX
2c0

R2pref
(19)

3 Results

3.1 Effect of Fluid Molecular Complexity. The effects of the
fluid molecular complexity on bearing performance are inves-
tigated. Table 1 summarizes the compounds considered in the
current analysis along with the relevant properties.
The bearing performance of a rigid journal bearing is numerically

investigated for the various compounds. For the purpose of the
analysis, a laminar flow regime is assumed by setting the turbulence
correction factors to a value of one. The nondimensional load
capacity and critical mass are plotted as a function of the
compressibility number K in Fig. 3. The bearing eccentricity ratio
is fixed at � ¼ 0:4. Results are obtained using the Peng–Robinson
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cubic equation of state for a reduced pressure of Pr ¼ 0:8 and a
reduced temperature of Tr ¼ 1:0 and Tr ¼ 1:1. At the critical
temperature (Tr ¼ 1:0), both the nondimensional load capacity and
the nondimensional critical mass are identical for all the considered
fluids as indicated by the dotted lines. For a reduced temperature
other than the critical temperature (e.g., Tr ¼ 1:1), the load capacity
and critical mass vary significantly between the different com-
pounds. This difference between working fluids is more significant
for increased values of the compressibility number K.
The effect ofmolecular complexity on the bearing performance is

explained as follows. The law of corresponding states of van der
Waals indicates that different fluids at the same reduced pressure and
temperature exhibit similar volumetric behavior and have approx-
imately the same compressibility factors. The results in Fig. 3 are
generated using the Peng–Robinson equation of state, although the
same conclusions can be drawn using the Soave–Redlich–Kwong
(SRK) equation. For the case of the Peng–Robinson (and SRK)
cubic equation of state, the deviation of the compressibility factor
betweenworking fluids is determined solely by the acentric factor of
the fluid [31]. The acentric factor is defined in terms of the reduced
vapor pressure at a reduced temperature of Tr ¼ 0:7 as

x ¼ �1� log10ðPvp,rÞTr¼0:7 (20)

It should be noted that the results shown in Fig. 3 are not affected
by local variations of the dynamic viscosity in the thin film. At the
considered reduced pressure level, the dynamic viscosity does not
vary significantly with pressure at constant temperature. Referring
to the compressible Reynolds Eq. (1), this leaves the nondimen-
sional bulk modulus as the main parameter introducing fluid
dependence to the density distribution. To understand how
molecular complexity affects bearing performance, the relation
between the nondimensional bulk modulus, the compressibility
factor Z, and the acentric factor x should thus be considered.
The behavior of the compressibility factor and the nondimen-

sional bulk modulus is plotted in Fig. 4 as a function of the reduced

pressure for the considered compounds. Results are again obtained
using the Peng–Robinson equation at a reduced temperature of Tr ¼
1:0 and Tr ¼ 1:1. A characteristic of the Peng–Robinson (and SRK)
equation of state is that the compressibility factor becomes
independent of the fluid at the critical temperature as indicated by
the dotted line. At temperatures other than the critical temperature,
the compressibility factor varies between working fluids as a
function of the acentric factor. Moreover, Eq. (8) directly relates the
nondimensional bulk modulus to the compressibility factor and the
reduced mass density. This indicates that, within the limits of
validity of the considered cubic equations of state, the nondimen-
sional bulk modulus is a function of reduced temperature and
pressure and varies between working fluids only as a function of the
acentric factor. This observation is in agreement with the plots of �b
in Fig. 4.
Equations of state like the van der Waals and Redlich–Kwong

model neglect any anisotropic molecular interactions [32]. The
acentric factor was used by Soave as an additional parameter
supplementing the Redlich–Kwong equation of state to account for
the effects of polarity and nonspherical shapes of themolecules [31].
In general, fluids with more complex molecules tend to have larger
values of the acentric factor. A measure for the molecular
complexity of a fluid [10] is the number of active degrees-of-
freedom N, defined as

N ¼ 2

d1 Tcð Þ ¼
2cv1 Tcð Þ

R
(21)

in which the ideal gas isochoric specific heat is evaluated at the
critical temperature. The acentric factor is plotted versus the number
of active degrees-of-freedom in Fig. 5 for the considered fluids.
Fluids with larger molecular complexity tend to have a higher
acentric factor at least for fluids belonging to the same class (e.g.,
hydrofluorocarbons, hydrocarbons, and siloxanes).
The current discussion suggests that both the nondimensional

load capacity and criticalmass are affected by the acentric factor and
thus the molecular complexity of the fluid. In the limit of an ideal
gas, however, the nondimensional bulk modulus reduces to a
constant value of �bref ¼ 1 as shown by Eq. (9). Therefore, the
molecular complexity of the fluid only affects the bearing
performance of dense vapors or supercritical fluids where nonideal
thermodynamic effects are significant. Furthermore, the increased
molecular complexity of a fluid seems to reduce the impact of
nonideal thermodynamic effects on bearing performance.
To confirm the observations obtained using the Peng–Robinson

equation, the analysis is repeated utilizing the more complex
Helmholtz-based multiparameter equations of state models avail-
able in Ref. [19]. The resulting nondimensional load capacity is

Table 1 Fluid properties of some selected fluids

Fluid Tc ðKÞ Pc ðbarÞ qc ðkg=m3Þ x Molar mass ðg=molÞ

Helium 5.2 2.3 69.6 �0.384 4.00
Hydrogen 33.1 13.0 31.3 �0.219 2.02
Nitrogen 126.2 34.0 313.3 0.037 28.01
Toluene 591.8 41.3 292.0 0.266 92.14
MM 518.7 19.3 268.4 0.418 162.38
MDM 565.4 14.4 268.2 0.524 236.53
MD2M 599.4 11.4 268.4 0.635 310.69

Fig. 3 Nondimensional load capacity �W and critical mass �mcr at Tr51:1 for various fluids computed using the
Peng–Robinson cubic equation of state. The dotted line represents results for Tr51:0. (a) �W and (b) �mcr.
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shown in Fig. 6. In general, the results confirm the dependence of the
bearing performance on the acentric factor for increased bearing
speed numbers. For siloxane MM and MDM, however, similar
values are obtained for the nondimensional load capacity even
though both compounds have different values ofx. The differences
in bearing performance between different lubricant fluids are

therefore not solely related to the acentric factor. However, the
results obtained using the multiparameter equations of state seem to
confirm the discussed qualitative observations. Similar conclusions
can be drawn by plotting the nondimensional critical mass, which
has been omitted for brevity.

3.2 Effect of Nonideal Thermodynamic Properties. The
numerical model is used to study the influence of nonideal
thermodynamic effects on the performance of rigid journal bearings
operating with siloxaneMM in different thermodynamic states. The
considered thermodynamic conditions alongwith the corresponding
nondimensional parameters characterizing the nonideal thermody-
namic effects are reported in Table 2. The operating points are also
shown on the reduced T–s thermodynamic plane for siloxaneMM in
Fig. 2 along with contours of the nondimensional bulk modulus �b.
The operating points are chosen sufficiently far from the
thermodynamic critical point such that the compressible Reynolds
Eq. (1) remains valid [23]. The values of the nondimensional load
capacity and critical mass obtained at the given thermodynamic
conditions are compared to those for MM in ideal gas conditions.
Figure 7(a) shows the variation of the nondimensional load

capacity with K, for the four considered thermodynamic states. At
low compressibility numbers, the influence of the thermodynamic
state is negligible. As the compressibility number increases, the
bearings operating with the working fluid at Pr ¼ 0:8 and Pr ¼ 0:5
showa lower load capacity compared to the operationwithMMin an
ideal gas state. This observation is in agreementwith the conclusions
drawn by Guenat and Schiffmann [21]. Conversely, the nondimen-
sional load capacity significantly increases at the supercritical
pressure Pr ¼ 2:2.
The influence of the different thermodynamic states is explained

using Fig. 8. The figure displays the circumferential distribution
of the nondimensional density and pressure at midspan of the
bearing for the different operating conditions. An eccentricity ratio

Fig. 4 Compressibility factor Z and nondimensional bulk modulus �b at Tr51:0 for various fluids computed using
the Peng–Robinson cubic equation of state. The dotted line represents results for Tr51:0. (a) Compressibility
factor, Z. (b) Nondimensional bulk modulus, �b.

Fig. 5 Acentric factor as a measure of molecular complexity
plotted versus the number of active degrees-of-freedom (N)

Fig. 6 Nondimensional load capacity �W at Tr51:1 for various
fluids computed using multiparameter equations of state [19]

Table 2 Thermodynamic reference states considered for ana-
lyzing the influence of nonideal thermodynamic effects on
bearing performance

Parameter Point 1 Point 2 Point 3

Tr 1.1 1.1 1.1
Pr 0.5 0.8 2.2
Z 0.864 0.775 0.423
�b 0.857 0.760 1.068
c 1.050 1.082 1.358
cPv 0.900 0.822 1.451
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of � ¼ 0:6 and a compressibility number of K ¼ 3:0 are used to
generate the plots. From observation of the compressible Reynolds
Eq. (1), it is apparent that a reduced nondimensional bulk modulus
decreases the significance of the diffusive terms on the left-hand side
of the equation. This is reflected in Fig. 8(a), which shows a stronger
increase in the nondimensional density for �b < 1 as compared to
thermodynamic states in which �b � 1. The corresponding non-
dimensional pressure distribution is shown in Fig. 8(b). In contrast to
the density, a stronger increase in the pressure is observed for
increasing values of the nondimensional bulk modulus. This in turn
leads to increased values of the nondimensional load capacity. For
increased values of �b, a relatively small increase in density can cause
a strong increase in pressure. The bulkmodulus can therefore also be
interpreted as a measure of the stiffness of the fluid at a particular
thermodynamic state. For example, liquids tend to have a relatively
large stiffness compared to fluids in nonideal states near the critical
point or saturated vapor line.
The nondimensional critical mass is plotted as a function of the

compressibility number in Fig. 7(b) for the different thermodynamic
conditions. Similar trends are observed as compared to those
obtained for the nondimensional load capacity. Significant devia-
tions only occur at high values of the compressibility number.
In particular, the critical mass is reduced when the working fluid is
in nonideal states for which cPv < c or for which �b < 1. The
results are in agreement with those presented by Guenat and
Schiffmann [21].

3.3 Gas Foil Bearings Stiffness and Damping Coefficients.
The influence of working fluid and nonideal thermodynamic effects
on gas foil bearing stiffness and damping coefficients is finally
considered. Nondimensional stiffness and damping coefficients are
plotted as a function of the nondimensional excitation frequency in
Fig. 9. Results are obtained for a gas foil bearingwith an axial width-
to-diameter ratio of L=D ¼ 1 and a bump foil structural compliance
ratio of S¼ 0.5. The bearing operates at a compressibility number of
K ¼ 1:0 and an equilibrium eccentricity of � ¼ 0:8. Finally, the
structural loss factor is set to cS ¼ 0.
Lubrication using hydrogen and siloxane MM is considered as

these fluids have significantly different values for the acentric factor.
The reference thermodynamic state of both fluids corresponds to a
reduced pressure and temperature of Pr ¼ 0:94 and Tr ¼ 1:1 for
which �b < 1. Results are compared to a bearing in which the
lubricant behaves as an ideal gas. Figure 9 shows an increase in the
direct stiffness components (kxx and kyy) with excitation frequency.
The cross-coupled stiffness component kxy tends to decrease with
excitation frequency. The kyx component increases until the
synchronous frequency (cex ¼ 1) and decreases at higher frequen-
cies. Both the direct and cross-coupled damping coefficients shown
in Fig. 9 tend to decrease at high excitation frequencies. These
observations are in agreement with results presented by San Andr�es
and Kim [29].
Comparing the different bearing operating conditions, the figures

show that both the direct and cross-coupled stiffness and damping

Fig. 7 Nondimensional loadcapacity �W andcriticalmass �mcr as a functionof compressibility number at �50:4 for
siloxane MM at various thermodynamic conditions: (a) �W and (b) �mcr

Fig. 8 Polar plots of the nondimensional density and pressure around the circumference of
the bearing at midspan. Gray circles indicate isodensity or isopressure lines. (a) Nondimen-
sional density and (b) nondimensional pressure.
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coefficients decrease in magnitude due to the nonideal thermody-
namic effects. This corroborates the interpretation of the bulk
modulus as a measure of fluid stiffness. Furthermore, referring to
Fig. 7(b), the net result is a decreased bearing stability as indicated
by the reduced critical mass. The effect is more pronounced for
hydrogen as compared to MM. This shows the reduced influence of
nonideal thermodynamic effects for working fluids made by more
complex molecules in correspondence with the discussion in
Sec. 3.1.

4 Conclusion

The influence of nonideal thermodynamic effects and molecular
complexity of the working fluid on the performance of gas bearings
has been investigated. In particular, the nondimensional load
capacity and critical mass of rigid journal bearings and the stiffness
and damping coefficients of gas foil bearings have been considered.
The analysis was performed using equations of state of varying
complexity. The following conclusions can be drawn from this
work.

(1) The influence of nonideal thermodynamic effects on gas
bearing performance can be understood by analysis of the
nondimensional bulk modulus. The nondimensional bulk
modulus is directly related to the reduced density and the
compressibility factor. Reduced values of the nondimen-
sional bulk modulus near the thermodynamic critical point or
saturated vapor line decrease bearing performance.

(2) Themain parameter characterizing the influence ofmolecular
complexity on gas bearing performance is shown to be the
acentric factor. For complex fluidswith large acentric factors,
the impact of nonideal thermodynamic effects on nondimen-
sional bearing load capacity and rotor-dynamic characteris-
tics is less pronounced.
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Nomenclature

Roman Letters

c ¼ nondimensional damping coefficient
c0 ¼ nominal bearing clearance (m)

Gx,z ¼ turbulence correction factors
h ¼ film thickness (m)
k ¼ nondimensional stiffness coefficient
L ¼ bearing width (m)
m ¼ rotor mass (kg)
p ¼ pressure (Pa)
R ¼ bearing radius (m)
S ¼ structural compliance ratio
T ¼ temperature (K)
W ¼ load capacity (N)
wd ¼ bump foil deflection (m)
x ¼ circumferential spatial coordinate (m)
X ¼ coordinate in the inertial frame (m)
Y ¼ coordinate in the inertial frame (m)
z ¼ axial spatial coordinate (m)
Z ¼ thermodynamic compressibility factor

Greek Symbols

b ¼ bulk modulus (Pa)
c ¼ specific heat ratio

cex ¼ ratio of excitation frequency to rotor speed
cPv ¼ generalized isentropic pressure–volume exponent
cS ¼ structural loss factor

Fig. 9 Nondimensional stiffness anddamping coefficients: (a) direct stiffness, (b) kxy, (c) kyx, (d) direct damping, (e) cxy, and (f) cyx
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� ¼ eccentricity ratio
K ¼ bearing compressibility number
l ¼ dynamic viscosity (kg m�1 s�1)
q ¼ fluid density (kg m�3)
w ¼ attitude angle (rad)
X ¼ rotor speed (rad/s)

Superscripts and Subscripts

r ¼ reduced thermodynamic property
ref ¼ reference value
0 ¼ steady-state value

1X ¼ perturbed quantity due to shaft motion in X-direction
1Y ¼ perturbed quantity due to shaft motion in Y-direction
ð��Þ ¼ nondimensional parameter

Dimensionless Groups

Re ¼ Reynolds number

Appendix: Perturbed Reynolds Equation

The perturbed quantities as presented in Sec. 2 are substituted into
the unsteady Reynolds Eq. (1). Zeroth- and first-order terms in the
density can be grouped and separated to obtain a set of second-order
differential equations. The zeroth-order terms govern the steady-
state density field as
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The perturbed Reynolds equation for q1X and q1Y accounting for
the effect of bump foil deflections is written as
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where a ¼ X and HX ¼ cosð�xÞ for �q1X and a ¼ Y and HY ¼ sinð�xÞ
for �q1Y . Finally, d�p1a represents the axially averaged perturbation in
the pressure in response to a journal displacement.
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