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Abstract

This chapter contributes to the ongoing discussion on the integration of AI and security
in the scope of intrusion detection. The focus is set on detection of network attacks
through traffic analysis. We provide an outline of machine learning empowered solutions
with a special emphasis on open-world detection. By analyzing research trends and
key challenges of integrating machine learning techniques in open dynamic network
environments, we reflect on the prospects for a reliable, practical, and secure adoption
of open-world network intrusion detection.

1 Introduction

Intrusion detection is an integral part of securing information systems. Detection tools
stem from the early realization of the computer security community that full and provable
protection of an ICT infrastructure is practically infeasible, if not impossible. Attempts
to compromise the system can emerge from within the infrastructure as well as from its
adversarial environment. An intrusion detection system (IDS) therefore aims at detecting
exploitation attempts and active misuse by internal and external attackers.

Continuous monitoring of the system and accurate detection of malicious behavior
constitute the first step of the incident response process. For this fundamental step, an
IDS performs acquisition of relevant data streams that describe operation of the system
and its internal and external communication. Through an in-depth real-time analysis of
these monitored data, an IDS searches for any signs of a potential misuse of the system.
If such evidence is detected with high enough confidence, an alert is raised which is
then propagated to security analysts for further investigation.

In essence, an IDS is responsible for intelligent automated decision making that
can, depending on the correctness of those decisions, either safeguard or disrupt normal
operation of the whole system. Reliable intrusion detection is indispensable, but despite
the world-wide efforts of the last 40 years, IDSs regularly generate false alarms, at times
fail to prevent intrusions, and thus end up jeopardizing system and data security with
extremely high recovery costs. A vast amount of research and development has gone
into creating dedicated tools and algorithms in order to bring intelligent and reliable
intrusion detection into reality. Among the possible solutions, artificial intelligence (AI)
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has always been a compelling component for automated knowledge retrieval that aids
in efficient detection of ever-changing attacks, with a varying level of complexity and
involvement. Especially in light of recent advances in the machine learning and deep
learning domains, the solution space is evolving so rapidly that it has become challenging
to keep track of major changes.

With this chapter, we aim to revisit the foundations of machine learning based
network intrusion detection and, in light of recent advances in the field, discuss the
intrinsic factors that continue to pose a challenge for research. First, in Section 2, we
introduce the domain and its core concepts. After reviewing the problem statement and
the threat model of a network-based IDS, we move on to outlining the principal machine
learning techniques and their underlying assumptions in Section 3. Last but not least, in
Section 4, we analyze open challenges, specifically in relation to the usage of machine
learning for open-world detection on network traffic. As these challenges were revealed
through a long and potent line of research, an important question remains as to how
adequately or completely they have been addressed thus far.

2 Network Intrusion Detection

Malicious attempts to invade an ICT infrastructure must be detected and localized while
in progress. This objective implies performing real-time analysis of continuous streams
of data from various sources and locations in search for indicators of compromise.
Traditionally, the process of intrusion detection has been split between network-based
(NIDS) and host-based (HIDS) systems, that serve complementary purposes by moni-
toring malicious activities at different levels. HIDS runs on internal nodes, carrying the
ability to closely monitor their individual behavior. It primarily relies on host-specific
data sources, such as system and kernel-level activity traces, application logs, files and
documents. Maintaining a fine-grained access to individual hosts’ activity enables HIDS
to precisely localize misuse, specifically active malware.

Naturally, however, the holy grail of intrusion detection is to recognize threats as
early as possible before the system gets compromised. Since the most common way for
intruders to enter an infrastructure is through the network, a NIDS – being placed at the
edge of the network – analyses inbound and outbound network traffic and thus acts as the
first line of defense. As opposed to the host-based level of monitoring, a network-based
approach gives a more expansive view over the network, allowing for an early detection
of attacks that target multiple hosts at once. Today, NIDSs can be also freely deployed
within the perimeter, enabling them to detect internal network attacks.

AI algorithms are ubiquitously used across all possible data sources and points of
IDS deployment. For the purpose of a more contained discussion, this chapter focuses
on one particularly prominent and highly representative application of ML in network
security – open-world network intrusion detection. Specifically, we discuss ML-based
NIDS research and explore network traffic as the primary data source for detection.
NIDSs can detect attacks either through misuse detection, i.e. matching observed traffic
to a known malicious traffic signature, or through anomaly detection, i.e. comparing
traffic to a previously established benign baseline. A ML-enabled NIDS employs a wide
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range of learning algorithms for both approaches, and in this chapter we highlight traffic
anomaly detection with ML as a particularly challenging but promising line of research.

2.1 Network threats

Before diving into particular detection algorithms, it is important to establish a threat
model underwhich aNIDS operates. Cyberthreats targeted by aNIDS are either executed
over a network, or communicate with external parties over a network. A NIDS mirrors
the entire network traffic that is permitted by a firewall, being able to distinguish attacks
across the OSI stack, from Layer 2 (Data Link) potentially all the way up to Layer 7
(Application). Very broadly, these threats can be categorized into passive and active
attacks.

Passive attacks do not involve any meaningful interaction with nodes in a target
network and do not alter any data. Instead, the purpose is to probe the system – obtain
useful information which can be efficiently collected through, for instance, network
scanning or port scanning. Network scanning allows to detect accessible nodes, while
probing open ports allows to identify services running on these nodes, exposing their
vulnerabilities. As such, a passive attack does not leave any traces in the system and is
by itself a preparatory step before a more aggressive intervention. Detecting a passive
attack in real-time gives a defender an opportunity to proactively identify an adversary
and prevent their intrusion.

The types of active attacks, however, vary greatly. These are the network attacks
that aim at compromising integrity, confidentiality and availability of target systems.
The most basic way to penetrate the network would be by brute forcing credentials of a
legitimate user, which is characterized by an overwhelming series of unsuccessful logins
rather noticeable in the inbound network traffic. More advanced attackers penetrate a
protected network by carefully exploiting vulnerabilities found in its perimeter and thus
gaining unauthorized, potentially privileged access to the system in a more stealthy
manner. These can be misconfigurations or vulnerabilities in firmware of entry-level
network devices, or web and software vulnerabilities of publicly accessible hosts, such
as buffer overflows, cross-site scripting (XSS) and SQL injections. Similar to brute
force attacks, these exploits can also be launched over the network, carried in incoming
network packets’ payloads. However, due to traffic encryption and a number of other
considerations to be discussed further, malicious payloads even of well-known exploits
are not guaranteed to be detected.

Apart from penetration attacks, another large family of network threats is denial of
service (DoS) attacks, which aim at disrupting normal functioning of target hosts and
deny their availability to legitimate users. This goal can be achieved through flooding
the victim node or resource with superfluous requests in an attempt to overload both
the network bandwidth and the system, possibly also targeting its IDS. There are many
variations of a DoS attack, including SYN flooding, ICMP flooding, smurf and others,
which differ in mechanics and final effects. A distributed DoS attack (DDoS) is launched
from numerous sources at once, often automated by a whole network of compromised
computers – bots. Today, botnets are seen as the largest network security threat and
remain one of the key research topics in intrusion detection. Bots become disguised as
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legitimate actors through infecting privately owned systems. Their automated illegiti-
mate activities can have various malicious impact, ranging from spam and click fraud
campaigns to identity theft, DoS attacks and malware infections. Remote command-
and-control (C&C) servers send instructions to the compromised cluster of computers
and receive back reports and leaked information. Even though botnets generate a lot
of communication, detecting them through traffic analysis or other means is a serious
challenge for any type of IDS, as bots continue to evolve and find better disguises.

While botnets are rather stealthy and can cause extremely damaging consequences,
there is an attack class that surpasses others in evasiveness, sophistication and severity
– advanced persistent threats (APTs). These threats are human-driven attacks targeted
against a specific infrastructure and aimed at gaining an ongoing access for a long period
of time in order to exfiltrate sensitive valuable data – this could be, for instance, intel-
lectual property of organizations, trade secrets, or customer information. It is especially
difficult to detect an APT at the moment of perimeter penetration or privilege escala-
tion, since advanced attackers may use unknown exploits or social engineering tricks to
infiltrate an infrastructure. Afterwards, an APT only infects a few chosen hosts to get
closer to valuable resources of the network, effectively staying under the radar. They
rarely contact remote C&C servers, and when they do, they use encryption or obfusca-
tion techniques, complicating traffic analysis by a NIDS. However, the data exfiltration
process – an inevitable goal of an APT – may be well observable in outbound network
traffic, which grants a crucial defensive role to a NIDS.

2.2 Network traffic monitoring

Network traffic became a universal data source for intrusion detection thanks to stan-
dardization and ubiquity of network protocols, which makes NIDSs adaptable to a wide
range of platforms and applications. A NIDS collects and inspects network traffic in
different modes, mostly either on a packet level or on a flow level. These approaches to
traffic monitoring differ in informational content and practicality, and selecting one, or
a combination, depends on the environment and the threat model for a NIDS.

Packet-level inspection. Capturing traffic from the network by a NIDS for moni-
toring and analysis purposes is achieved with promiscuous access to copies of network
packets, and therefore without interference in communication. Full packet captures are
usually made in the pcap file format, a widely used and portable format for packet
inspection. Pcap files can be processed with Deep Packet Inspection (DPI), which per-
forms both packet header and payload analysis. DPI can provide extensive information
about communication, exposing malicious payloads to a NIDS. One of the earliest IDS
tools that performs application-level DPI is Snort [1], an open-source signature-based
detector. Snort matches observed packets with known malicious patterns using regular
expressions (e.g., for a linux web server, a pattern could be an HTTP request containing
‘etc/passwd’). A more recent open-source NIDS called Suricata [2] improves scalability
of Snort [3]. Such signature-based NIDS strongly rely on a rich database of malicious
payloads. For anomaly-based NIDS, one prominent example is the Bro tool [4]. Bro
constructs benign baseline profiles for an application’s usage based on predefined policy
scripts and flags deviations from these profiles. For instance, it was shown to effectively
detect web attacks, such as reflected XSS injection and SQL injection, by inspecting
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strings in the HTTP-request parameters [5]. With access to payloads, these attacks are
straightforwardly detected due to presence of unusual characters in the request body.

Despite all these advantages, processing full packet captures comes with some
considerable practical issues. The sheer volume of packets in modern high speed com-
munication networks is overwhelming, making DPI inefficient or even infeasible in
real-time. Moreover, storing full captures for further network forensics is a highly lim-
ited resource. Captures of very large packets are often incomplete or even limited to
header information, largely omitting the most informative parts. And finally, two funda-
mental limitations to performing DPI are (i) invasion of privacy through accessing and
storing benign packets’ content, and (ii) traffic encryption. Packet-level inspection on
TLS-encrypted traffic can be realized through man-in-the-middle solutions that decrypt
and re-encrypt payloads, thereby violating end-to-end security guarantees, which can
be both unsafe and computationally intensive for a particular environment. An ongoing
line of research explores DPI over encrypted traffic through matching encrypted tokens
with encrypted rules [6,7]. Currently this approach requires computationally intensive
setup phases for every network connection, and, without the aid of decryption, supports
only a limited number of IDS rules.

In view of the above circumstances – high data rates, computationally demanding
processing, privacy and encryption concerns – DPI for intrusion detection is arguably
becoming increasingly obsolete in modern environments. Nevertheless, there exist nu-
merous network intrusion detection datasets with full packet captures, as packet-level
analysis has proven to be highly beneficial for research purposes.

Flow-level inspection. Rather than inspecting and storing all individual incoming
and outgoing packets, a NIDS may group relevant packets together in a flow and collect
their aggregated information on a flow level. Traffic flows are commonly defined as
bidirectional packet streams between two hosts that correspond to one complete network
connection. Namely, each flow is constructed as a series of packets collected over a pre-
defined period of time (normally over one network connection) that share a five-tuple:
source and destination IP addresses, source and destination ports, and a protocol. Flow-
level information is aggregated across all the packets belonging to one flow – typically
this includes packet header counts, arrival times, and counts of certain header attributes.
These traffic flowmeta-data provide a high-level description of communication between
source and destination hosts which can be very telling about its benign or malicious
nature [8].As a result, flow-based inspection does not take into account traffic content, but
instead reveals informative high-level communication patterns, while greatly reducing
the size of data to be analyzed.

Packet counts are recorded when packets cross network router interfaces.Most often,
flow data aggregation is performed through Netflow[9] – a network monitoring protocol
that is well integrated in modern network environments. Since Netflow counters are
mostly generated directly on the network equipment, performance of the networkmay be
affected. The overhead can be limited by performing traffic aggregation at the hardware
level or even by decoupling traffic routing and flow computation by passively copying
traffic data, similar to the case of packet inspection. As opposed to the packet-level
inspection, which mostly provides signature-based analysis, an advantage of flow-based
inspection is that it supports anomaly detection approach, as we describe in Section3.
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Furthermore, network aggregates are applicable in the context of end-to-end encryption
or privacy constraints of a particular environment, because they omit packet payloads
from analysis. This property facilitates public availability of real traffic data aggregated
in the form of flows, which is extremely valuable for open network intrusion detection
research. A NIDS can also implement a hybrid approach that combines DPI and traffic
flow analysis in a number of variations, mostly relying on the flow-based analysis
complemented with an occasional payload inspection of suspicious traces.

3 A data analysis approach

Monitored traffic traces – in the form of full captures or aggregated flows – are analyzed
to find indicators of potential attacks. In the early days, review of monitored activities
for intrusion detection was performed manually by security analysts or system admin-
istrators. They used to devise and manually adjust rules and heuristics that would help
to find harmful packets and identify suspicious behavior. The volume and increasing
complexity of monitored data has long deemed any such manual efforts insufficient and
prompted the community to introduce automation. Already in the 1990s, progress in AI
research enabled investigation of ML techniques3 in application to intrusion detection.
The power of data analysis is in interpreting large amounts of data and automatically
discovering new relevant knowledge – a highly valuable capability in the ever-growing
and ever-changing security landscape.

A ML-based IDS employs a data-driven approach to intrusion detection – it uses
machine learning methods to autonomously learn characteristic rules and patterns from
previously observed data. For the case of network intrusion detection, the abundance of
network traffic data creates an opportunity to apply data-driven techniques. AML-based
NIDS configured for misuse detection can detect variants of known attacks by finding
patterns sufficiently similar to previously seen malicious traffic. On the other hand, a
ML-based NIDS that performs anomaly detection can model ‘normal’ behavior of the
system by learning from benign network traffic, and catches anomalous patterns that
deviate significantly from the baseline. In the context of high non-stationarity and strong
heterogeneity of network traffic, another strength ofML is its ability to dynamically adapt
to changes in the network when exposed to new data.

The prolific use of AI cannot be merely attributed to impressive automation capa-
bilities of ML algorithms, but also heavily relies on expert involvement. In order to
benefit from the advantages offered by ML, the designer of a ML-based NIDS applies
their domain expertise to create an appropriate learning system. First and foremost, an
in-depth understanding of the network environment and the threat model are required in
the data representation phase that converts monitored traffic data into a suitable format
for ML. ApplyingMLmethods directly to raw monitoring data, such as full pcap files, is
not only hardly computationally feasible, but also does not usually yield useful results.
The reason is that the numerous values in their original form are not equally relevant to
the learning problem, which is especially true for data of such complex structure and

3Machine learning is defined as a subfield of AI that focuses on data-driven modeling of
concepts, while deep learning is a subfield of machine learning that uses a particular family of
techniques – artificial neural networks with representation learning.
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overwhelming volume as network traffic. Therefore, an IDS designer leverages expert
knowledge to find a compact representation of raw traffic which conveys characteristics
that are most relevant to the task of misuse or anomaly detection. This step is known
as feature extraction – a transformation that converts high-dimensional input data into
low-dimensional features that capture its underlying structure. As a result, information-
rich raw data is represented as a feature vector that is appropriate for training and testing
a ML model. Today there exist two major general approaches to extracting features: (i)
feature engineering – hand-crafting most informative features with the use of practical
experience and intuition about the problem, and (ii) feature learning – automated feature
extraction with the use of learning algorithms. While the former has traditionally played
a predominant role, the latter is receiving increasing attention lately in light of recent
progress in deep learning (DL) research.

Feature engineering & selection. The quality of features constructed from input
data is one of the most influential factors that define the effectiveness of a ML algorithm.
The resulting feature vectors are expected to be compact and most informative, and for
manually extracted features, each dimension of the vectors usually has clear interpretable
semantics. A common choice of features is a statistical description of data, such as
distributions of attributes or groups of attributes. For a NIDS, the most widespread
input data format is traffic flow data, and the latest versions of NetFlow already compute
very basic statistical features of traffic flows on-the-fly, including bytes per packet and
packets per flow. A lot of research and engineering effort has gone into finding the
most meaningful and optimal statistical flow features. Most approaches extract simple
aggregated features, e.g., average packet lengths, the variance in payload size, bytes
transmitted per second, maximum packet inter-arrival time, the proportion of TCP flags,
and more. Despite the simplicity, statistical features turn out to be highly informative
of the nature of a particular network connection, as they are quite effective in revealing
traffic anomalies and particular known malicious patterns. For instance, a DoS attack
is characterized by sending many packets in one direction within a short time period,
makingflow statisticswell-suited for detection. The recent examples of datasetswith flow
statistics are CICIDS2017 and CSE-CIC-IDS2018 [10]. The latter is an enhanced and
expanded version that goes beyond one-flow statistics: CSE-CIC-IDS2018 introduces
aggregated measurements in relation to other observed flows that could be relevant
to a particular flow, e.g., number of recent connections from the same source. Such
information derived acrossmultiple flows is highly instrumental, e.g., in detecting attacks
executed overmultiple connections, i.e. fromdifferent sources or againstmultiple victims
in the network. Probe attacks, DDoS attacks and bot communication are the obvious
examples, where one flow in isolation might appear completely harmless, while the
overall behavior is more indicative.

Temporal statistical features aim to solve the problem of a narrow one-flow view
by aggregating traffic information over time across multiple flows, thereby respecting
temporal dependencies between them. One of the latest examples is temporal statistics
introduced by Mirsky et al. [11].

The resulting set of extracted features is often further optimized through automatic
feature selection in order to discard redundant or irrelevant features and reduce di-
mensionality of data. Machine learning models may benefit in both effectiveness and
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efficiency from compact but sufficient representations of data. For different approaches
to composing and reducing the feature set, we refer the reader to the corresponding
surveys [12,13].

Feature learning. As ML approaches struggle with high-dimensional inputs, deep
neural networks have recently been embraced for feature learning and dimensionality
reduction. DL approaches are able to automatically extract discriminative internal rep-
resentations of the input through a series of non-linear transformations. Several studies
in the literature applied deep belief networks for misuse and anomaly detection in order
to obviate manual engineering of traffic flow features [14,15,16,17]. As a result, auto-
matically learned representations have proven to be more robust to irrelevant deviations
in data and thus contributed to higher generalizability of ML models to earlier unseen
patterns. The immediate drawback of automatically learned abstract features is that they
do not provide clear semantics and are hardly interpretable. This calls for additional
methods to verify what the DL-based feature extractor has learned and to explain the
model’s decisions.

3.1 Machine learning for NIDS

Good quality features directly impact performance of a learning algorithm.When select-
ing an appropriate machine learning model, it is crucial to understand how to leverage
the properties of the features and relationship between them. For instance, streaming
data represented as a time series consists of temporal features, which are best interpreted
with a model capable of recognizing temporal dependencies. The choice of a learning
algorithm, however, starts with defining a concrete ML problem statement that most ac-
curately represents the task of intrusion detection, be it misuse- or anomaly-based. This
encapsulates at the very least such influential factors as (i) expected input and output of
the system, (ii) assumption about the knowledge of all existing data categories, and (iii)
availability of annotated training data.

Input and output. The expected input implies the data representation, i.e. the
types and dimensionality of extracted and selected features. The expected output of the
model is a design choice of how to present the inferred information about the event for
further analysis and response. In general, for a given test instance, the output can be a
label: malicious vs. benign or anomaly vs. benign. For anomaly detection in particular,
it can also be an anomaly score that indicates significance of the detected anomaly for
further investigation. Optionally, the model can also provide its confidence score for
each decision made.

Closed-world and open-world assumptions. The assumption about the knowledge
of all data categories is what largely drives the choice between misuse and anomaly
detection in the first place. A misuse detector is typically deployed under a closed-world
assumption, which implies that all possible data categories, i.e. types of intrusions, have
been seen at the training stage of the model. A common closed-world NIDS employs a
ML classifier that learns to recognize a traffic instance as benign or belonging to one or
another attack class, thus performing intrusion recognition. Closed-world detection has
been thoroughly researched in the network security domain, and has been traditionally
favored by industry due to predictability and high detection rates. However, in operation,
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such amodel can only detect knownmalicious behaviors and assumes that no unexpected
attack type may appear.

In reality, a network environment operates under a much more challenging threat
model that includes known attacks, new variants of known attacks and completely novel,
earlier unseen cyber-threats, comprising an open world of possibilities (hence the title
of this chapter). In order to enable open-world detection, a ML problem statement has
to change from standard classification to either open-world recognition [18] (also called
open-set recognition/classification), or anomaly detection [19] (also called outlier detec-
tion). An open-world classifier performs its originally intended task, but also leverages
additional mechanisms to be able to identify novel patterns as instances that cannot be
confidently classified as one of the learned attack types. Anomaly detection algorithms,
however, are inherently open-world: as was explained earlier, anomaly detection exclu-
sively relies on knowledge of benign data (normal, background traffic), and flags any
sufficiently deviant pattern as a potential intrusion attempt of unknown nature. There-
fore, in operation, an anomaly-based NIDS is an open-world detector as it targets both
known and unknown attacks, although it can similarly use patterns of earlier seen attacks
for model evaluation at the design stage. The main drawback of anomaly detection is its
dependence on the notion of ‘normality’ – a pattern that deviates from normal data for
benign reasons is also flagged as potentially malicious, usually causing a high number
of false alerts. Further in Section 4, we zoom in on the challenges of traffic anomaly
detection.

There are many studies in the literature that join anomaly detection with misuse
detection in an attempt to combine the strengths of both paradigms: improve the detection
rate and minimize the rate of false alerts. In fact, commercial platforms very rarely use
anomaly detection in isolation, but rather adopt the hybrid approach [20]. The mismatch
between the promises of anomaly detection and its actual adoption in industry is what
demands a more explicit academic focus on anomaly-based IDS research.

Supervised and unsupervised learning. Another fundamental distinction between
ML approaches relates to availability of annotated/labeled data. Supervised ML, such
as classification, is a learning mode that relies on labeled training data. Namely, a
classifier requires a significant number of representative labeled training examples from
all the considered classes. Therefore, a classifier-based misuse detector works with
a continuously updated database of known malicious patterns that need to be well
represented in training data for a NIDS. Acquiring labeledmalicious data is expensive, as
it requires either manual investigation by network experts, or development of automated
labeling algorithms, which essentially create a chicken and egg problem. Moreover,
supervised learning is in general highly sensitive to class imbalance in data, demanding
equal representation of every class. Otherwise, a classifier trained with imbalanced data
becomes biased towards the majority class and largely ignores instances belonging to the
minority class of interest. Since in network environments benign traffic is predominant,
the benign class outweighs malicious traffic classes in labeled training data, causing a
much lower representation of attacks. This undermines the sole purpose of intrusion
detection, since the most interesting and inherently rare intrusions become overlooked.
The issue can be addressed by using specialized techniques to increase importance of the
minority attack classes [21]. Another solution is attack simulation performed to generate
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more malicious traffic for training under an assumption of its representativeness of real
intrusions. However, for simulated benchmark datasets, the class imbalance problem is
not unheard of, either.

Unsupervised ML paradigm obviates the need for labeled data altogether. A general
example is clustering, which performs exploratory data analysis to draw inferences
and find hidden patterns and correlations in unlabeled data. Clusters are automatically
formedwith the use of a similaritymeasure between instances. Unsupervised approaches
generally do not assume any a priori knowledge on the data distribution and labels, which
corresponds to a realistic NIDS scenario. In practice, though, semi-supervised anomaly
detection is often applicable under the assumption of availability of labeled normal
data. As the shortage of malicious labeled traffic is the main issue, both supervised and
semi-supervised approaches pose the biggest interest for NIDS research.

While supervised NIDS approaches are widely utilized and thoroughly studied
in the literature, they either violate the open-world context of network security, or
extensively rely on manual data labeling, or both. In recent years, unsupervised and
semi-supervised techniques in application to NIDS are gaining more traction; however,
the research is largely ongoing. The community have composed a number of excellent
surveys on the topic that provide detailed taxonomies and analyses of existing ML-
based approaches to NIDS. For the closed-world misuse detection research, we refer the
reader to the corresponding expansive literature that surveys supervised classification
methods [22,23]. Further in our discussion, we elaborate on the open-world NIDS
research, specifically, unsupervised or semi-supervised anomaly-based ML paradigms,
which we believe deserve more attention in the field of network security. Hence, our aim
is to complement the existing surveys [24,25,26,27], which provide in-depth analyses of
individual techniques, with a broad overview of the current solution space and the key
remaining challenges.

3.2 Anomaly detection for open-world NIDS

An anomaly is commonly defined as a rare pattern that does not conform to expected
behavior. In machine learning, an anomaly is detected as an outlier with respect to the
region representing normal data. In intrusion detection, different types of anomalies are
typically mapped to different types of malicious behavior:

1. Point anomalies – individual data observations that lie outside of the normal be-
havioral boundaries (relative to the rest of the data). For instance, sophisticated
network exploits that aim to gain unauthorized access or escalate privileges, such
as buffer overflow attacks or web attacks, can be carefully deployed through one
packet payload, or one traffic flow. Simple probing attacks, launched through mal-
formed packets, incomplete connections or with incorrect combinations of header
attributes, also form a point anomaly.

2. Contextual anomalies – individual data observations that are anomalous in a given
context. One example of a contextual anomaly are stealthy probing attack [28],
where each individual packet and the whole connection may correspond to normal
traffic. However, given the context of systematic information collection without
meaningful interaction, the connection becomes anomalous. Some botnet traffic
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can also arguably be considered a contextual anomaly: while communication with
the C&C server can by itself form a benign connection, its timestamp may point to
suspicious behavior.

3. Collective anomalies –multiple data observations occurring together that differ from
normal behavior. The key here is the collective occurrence of those observations, as
each single instance is not anomalous by itself. A common example is a DoS attack,
where only one connection is legitimate, but the abundance of similar connections
becomes anomalous as they overwhelm the target system. Another example is
the brute force network attacks, where a single incorrect log-in attempt is not yet
suspicious, but a sequence of frequent attempts makes them collectively anomalous.

For anomaly-based network intrusion detection to be effective, the following assumptions
have to hold:

– Benign data assumption – there exists a region with well-defined boundaries that
encompasses all the normal traffic data.

– Clean training data (for semi-supervised approaches) – benign training data ac-
quired by collecting live background traffic is attack-free.

– All attacks are rare and anomalous – traffic generated by malicious actions related
to network intrusions deviates sufficiently from the normal traffic and will only
constitute a small fraction of monitored data.

– All anomalies are malicious – whenever a deviant pattern is observed, it presents
evidence of a potential intrusion.

– Attacks are universal – given correct modeling of normal data, all types of attacks
are detected equally well.

Naturally, the extent to which these properties can be safely assumed differs from
one environment to another and strongly depends on the threat model of a NIDS. For
instance, it is already clear that a system tailed to detection of one of the three types
of anomalies is not a universal detector for all attack types. We elaborate more on the
implications of these assumptions in the next section.

Major anomaly detection techniques explored in application to intrusion detection
can be grouped in four categories.

Statistical approaches. Statistical anomaly-detection works based on the principles
of the statistical theory to model the distinction between normal and anomalous. A
common solution for anomaly-based NIDS is Principle Component Analysis (PCA) –
a dimensionality reduction approach that projects high-dimensional data onto a normal
and anomalous subspace. PCA does not assume any statistical distribution and is known
for low computational complexity. Lakhina et al. explored the use of PCA on network
traffic [29]; however, further studies revealed sensitivity of PCA to such aspects as the
level of traffic aggregation and small noises in the normal subspace [30], which the
state-of-the-art solutions aim to overcome [31,32].

Clustering approaches. Clustering groups unlabeled traffic based on a chosen sim-
ilarity metric, e.g. a Euclidean distance, and flag outliers as potential intrusions. Plenty
of clustering algorithms have been applied to NIDS. More recent works utilize k-means
with optimizations [33], Gaussian mixture model [34], incremental grid clustering [35]
and novel affinity propagation clustering [36]. The advantages of clustering usually are
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stable performance and a possibility of incremental updates. On the other hand, clus-
tering is not intrinsically optimized for anomaly detection, can be time-consuming and
heavily depends on distance measures and tuning.

One-class classification. A semi-supervised adaptation of classification is called
one-class classification, as it only utilizes negative examples in training, i.e. benign
data. A data instance that falls outside of the learned class, depending on the chosen
threshold, is considered anomalous. One-class Naive Bayes [37] and one-class Support
Vector Machine (SVM) [20] are recent examples of traditional ML approaches used for
anomaly-based NIDS. While we already discussed deep learning approaches for feature
learning and dimensionality reduction, deep neural networks are also being employed
as sole anomaly detectors. Deep belief networks [38], variational autoencoders [39] and
ensembles of light-weight shallow autoencoders [11] have been successfully used for
anomaly detection on network data, demonstrating good generalization abilities and self-
adaptive nature of neural networks. A lingering issue of DL-based anomaly detectors
is that by themselves, they are not optimized for anomaly detection, therefore selecting
appropriate thresholds and tuning the architecture is challenging.

Time-series forecasting. Forecasting is a semi-supervised predictive ano- maly
detection approach specifically tailed for sequential inputs (including data with high
seasonality), as they are capable of detecting temporal anomalies in complex scenar-
ios [40]. The idea is to perform rolling predictions based on observed normal data and
compare them with new observations. Strong deviation from predictions thus indicates
an anomaly. While there exist numerous advanced time-series modeling and forecasting
techniques, from traditional exponential smoothing [41] to more modern ones such as
recurrent neural networks [42], their application to network traffic anomaly detection
has thus far been limited. This approach does not only heavily rely on unpolluted training
benign data and clear observable trends, but also struggles with high-dimensionality and
categorical inputs. In light of remarkable performance by recurrent neural networks in
anomaly detection on multi-dimensional time-series, we expect new forecasting NIDS
approaches to appear in near future.

In the remainder of this chapter, we give a fresh look on the state of open-world
NIDS research in terms of main challenges and recent contributions.

4 Challenges and advances in open-world NIDS research

Machine learning algorithms, and anomaly detection in particular, have gained a lot
of attention in network intrusion detection research because of its compelling potential
in detecting novel attacks. A decade ago, the community brought into the spotlight
the intrinsic challenges of open-world network intrusion detection [43,44,25,24]. It
turned out that most of the conducted research explored ML-based IDS solutions under
numerous unrealistic assumptions. In reality, with these wishful assumptions dropped,
the effectiveness of ML-based solutions in detecting novel and known attacks falls
way down below the estimated performance. In the context of a NIDS, ML algorithms
are tasked with search for the unknown, while costs for mistakes in a security-critical
environment are painfully high. A fundamental questionwas raised as to how appropriate
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ML algorithms are to such defensive applications, and which guarantees they can give
for operation in sensitive environments.

Since then, the security domain grew significantly, with attacks becoming more
sophisticated and resourceful. A wide spectrum of cutting-edge machine learning tech-
niques, including deep learning and big data analytics, have been proposed for a variety
of applications. New benchmark NIDS datasets have been jointly developed and evalu-
ated. In general, today we observe a closer collaboration between the AI and the security
community. In light of the new developments, we revisit the primary conceptual issues
of ML-based NIDS.

4.1 Original premise of anomaly detection

The underlying assumptions of machine learning underpin open-world ML-based NIDS
solutions. To enable the full potential of ML, these assumptions have to align with
domain-specific characteristics, which in the case of securing dynamic and modern
network environments is not a trivial question. For anomaly detection specifically,
the community is actively attempting to address some of the following fundamental
questions:

Can normal data be modeled?Most of the studies attempt to model benign traffic;
however, not all benign behaviors follow a common distribution. It is overwhelmingly
hard to completely capture the notion of ‘normality’, so the safest assumption to make is
that the model cannot describe all the possible benign instances. Hence, false alerts and
missed attacks are unavoidable, and adjustment to novel benign patterns is necessary,
which we discuss further in the section.

Is it possible to acquire clean training data? The current consensus is that normal
traffic collected in a live environment is never attack-free without additional (manual)
sanitization.

Are attacks rare? Certain illegitimate activities in the network (e.g., scanning)
have become so common that they comprise a large fraction of background traffic [45].
Durumeric et al. [46] revealed that DDoS cannot be considered anomalous in most net-
works. However, even though large-scale attacks are not rare, these are not of the biggest
interest for detection. More sophisticated intrusions such as APTs are still manifested in
rare events.

Are attacks anomalous?The answer directly relates to the vague definition of traffic
‘normality’. Due to the noisy and highly varied nature of traffic, attack features may in
practice appear as variations of benign traffic. Iglesias et al. [47] have recently conducted
an analytical study to assess the ‘outlierness’ of malicious traffic. They confirmed that
network attacks have higher global distance-based outlierness averages; however, attack
and normal traffic distributions strongly overlap. One can choose the feature space
that maximizes the separation of benign and malicious traffic, which indicates that
understanding the nature of target anomalies in a certain scenario is instrumental for
anomaly detection. Another known issue is that attackers may attempt to make traffic
features indistinguishable from normal traffic. We elaborate on the associated risks
further in the section.

Are attacks universal and equally detectable? Taking everything into account,
there is little ground in assuming that different types of intrusions can be detected in
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one common manner. Moreover, the very definition of what is malicious differs across
environments. Indeed, we observe the trend of developing NIDSs tailored to specific
threat models. This includes, e.g., works that focus on botnet detection [48,49], DDoS
detection [50], and especially APT detection [51], where data exfiltration through the
network can be a target anomaly. It is quite unlikely that such targeted detectors generalize
to other types of intrusions, but perhaps that should not be the initial goal. We advocate
for deeper insight in target malicious activities even for open-world anomaly detectors,
in order to adopt the most suitable strategies.

Is a detected anomaly an attack? Nowadays, it is commonly acknowledged that
an anomaly detected by a NIDS is most probably a false alert. Even correctly detected
anomalies are not always malicious: sometimes, deviations happen due to noise, changes
in the underlying infrastructure or changes in the benign data distribution. Therefore,
additional processing is required to investigate the issue, as monitoring and detection is
just the earliest stage in the complex process of incident management. Additional analy-
sis, attack correlation and response planning is a prerogative of Security Information and
Event Management (SIEM) platforms [52]. While researchers have mainly focused on
developing effective solutions for detection, studies on automatic intrusion response are
still limited. The main challenge is in providing an accurate and informative description
of the detected anomaly, including interpretation of the ML model’s decision to raise
an alert.

4.2 High error rates & performance estimation

Among the main problems with adoption of anomaly detection in mainstream security
systems, a high false positive rate (FPR) is an immediate candidate. For an enterprise
IDS, manual investigation and interpretation of alerts consumes expensive analyst time.
Given the large volumes of processed data and a low base rate of attacks of interest,
even a very small fraction of false alerts generated by a nearly-perfect model yields
an unacceptably large absolute number, effectively rendering a NIDS unusable in the
operational setting. This issue of base rate fallacy was raised two decades ago [53],
and is seen today as an inevitable pitfall of open-world detection: precision of an IDS
will always be determined by both the base rate of different attacks and the FPR.
Regretfully, however, we lack historical statistics for the base rates of attacks in real
computer infrastructures, and measuring them reliably is still considered beyond present
capabilities [54].

As the tolerance for errors in the application domain is critically low, researchers
started advocating for placing more emphasis on constraining the FPR while preserving
high detection rates [44]. Since then, more studies have targeted this specific problem.
We observe that the solution space can be mainly branched into five complemen-
tary directions: (i) further developing more precise learning algorithms to lower the
FPR [26,27]; (ii) post-processing alerts with the use of context or prior knowledge in the
system [55], in order to aid in manual diagnostics and potentially understand the nature
of an anomaly; (iii) employing a hybrid approach by combining anomaly detectors with
misuse detectors [56], which cannot detect novel attacks but are considered less prone to
mispredictions. (iv) tuning model parameters and detection thresholds in order to obtain
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optimal trade-offs in success rates and false alerts [57]; (v) modeling a realistic network
environment in a structured manner to correctly estimate the FPR.

While the first four objectives are gradually unfolding in present research, the last
one is fundamental and largely remains an open question. It relates to the inherent dif-
ficulties with evaluating an open-world detector, which started being actively discussed
more than ten years ago [43,24,44] and still hold today. With more progress in this
direction, future NIDS studies should adopt an appropriate evaluation methodology and
correct metrics that correspond to an actual operational usage of the target system. This
requirement encapsulates such a crucial issue as validating and testing the model on
data that resembles real-world ratios of benign vs. attack data – which again relates to
the base rate fallacy. Without satisfying these goals, performance numbers and errors
rates achieved in lab conditions will remain hardly reliable or comparable. The issue
is especially pronounced for unsupervised methods, which learn from distributions and
spaces drawn from the observed data. Note that even modern benchmark datasets are not
said to be representative of an actual ratio of normal and attack traffic, therefore they are
most often not directly applicable for (unsupervised) open-world evaluation schemes.
We detail on the representativeness of existing datasets further below.

All in all, the research on decreasing the FPR while preserving performance in
a general NIDS setting is still unfolding. Despite some studies emphasizing the post-
processing stage of predictions, there is generally not enough investigation beingmade on
the nature of false alerts, while most of the works solely focus on increasing the detection
rates instead. Even though anomaly detectors with manageable error rates are allegedly
becomingmorewidely adopted in industry, these solutions are often designed for specific
scenarios and their internals are rarely publicly available [24,26,58], preventing direct
comparison. The field appears to be in the urgent need of a common comprehensive
methodology for estimating and comparing performance and error rates of an open-world
NIDS.

4.3 Representative datasets & ground truth

In IDS research, evaluation on benchmark datasets primarily serves a two-fold purpose:
(i) real-world performance estimation of a particular algorithm, and (ii) consistent com-
parison between different approaches. In this respect, quality of data has a decisive
influence on valid outcome of both objectives. Several critical studies have shown that
many benchmark datasets do not adequately represent the real problem of network intru-
sion detection, discrediting performance numbers achieved in laboratory conditions. As
a response, over the last 10 years the community has collectively devised the criteria that
reliable research traffic data should meet [25,59,60,61,62], which encapsulate the fol-
lowing dataset properties: (i) realistic w.r.t. real production environments; (ii) valid w.r.t.
completeness of traces; (iii) labeled; (iv) correctly labeled w.r.t. benign training data for
anomaly-detection; (v) highly variant and diverse w.r.t. used services, protocols, benign
behaviors and attacks; (vi) correctly implemented w.r.t. real attack scenarios; (vii) easily
updatable with new services and attacks; (viii) reproducible for periodical updates and
performance comparisons; (ix) shareable/non-sensitive; (x) well-documented. Despite
this recently achieved consensus and clarity in guidelines, a lot of fundamental limita-
tions of the task hamper both creation and publication of a corresponding proper dataset.
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Consequentially, many researchers have kept using the existing suboptimal datasets for
the sake of comparison with prior work. Nevertheless, the research community is mak-
ing tangible progress in this direction by exploring both possibilities to contribute a
new dataset: (i) generate synthetic traffic, and (ii) collect real traffic in a production
environment.

Generation of synthetic datasets provides the luxury of a controlled environment,
clean labels and no privacy concerns. The main challenge, however, is in simulation
of realistic background traffic, lately attempted through statistically modeling user be-
havior [60,63]. Even though creators of modern synthetic datasets strive to satisfy the
requirements and minimize occurrence of simulation artifacts, a practice of evaluating a
novel IDS on a synthetic dataset solely, however, is often criticized as insufficient. While
it can be reasonable to compare different frameworks on synthetic data, evaluation on
diverse network traffic collected in a live environment over a lengthy period of time is
becoming the desired norm in NIDS research. Real traffic, on the other hand, should
be stripped of confidential data, carefully labeled and rigorously sanitized in order to
meet the established criteria. Several studies contributed approaches to sanitization of
traffic [64,65,66,67] in order to not only label embedded attacks and benign traces, but
also to pre-select the most representative instances. Automated sanitization uses such
methods as entropy analysis and signature-based attack labeling, which may result in
erroneous ground-truth. Manual sanitization hardly scales and is prone to human bias,
which threatens reliability and representativeness of the dataset, respectively. However,
manual supervision in labeling seems unavoidable when it comes to zero-day network
attacks.

All in all, it is unclear whether a perfectly sanitized real traffic-based dataset can be
obtained. Hence, learning algorithms that are robust to the inevitably occurring noise
in labels would give a strong advantage from the operational point of view. Promising
examples for anomaly detection on imperfectly labeled traffic include, e.g., robust PCA
algorithms [68,69] and a convex combination of anomaly detectors’ outputs [70].

Another suggestion for creation of an open, real NIDS dataset was voiced by Gates
et al. [43], who promoted a community-based approach. One prominent example is the
MAWILab dataset [71] – a public repository for automated labeling and performance
estimation that has since been continuously updated and collectively labeled with the use
of state-of-the-art anomaly detectors. While anomaly detection solutions on these data
are still scarce [72], we believe that such collective efforts establish a strong foundation
for open-world detection research.

4.4 Concept drift

In dynamic environments, events undergo gradual and abrupt changes over time, which
cause a shift in data distribution known as the concept drift [73]. When developing data-
driven real-time defensive solutions such as ML-based IDSs, it is crucial to account for
concept drift, otherwise the model’s performance is unpredictably and heavily impacted.
For an anomaly detector, this implies the need to track drift in the data in order to
continuously adjust to the new definition of normal behavior, instead of erroneously
flagging these changes as anomalies. A direct way to re-adapt the system accordingly is to
re-train the model on new data, as is strongly recommended in the literature [44,24,74].



Open-World Network Intrusion Detection 17

In anomaly detection literature, the problem of detecting newly emerging patterns is
referred to as novelty detection, when previously unobserved detected patterns in data
are incorporated into the normal model. In time-series analysis, a similar idea is defined
as change point detection [75] that aims to detect points in a time-series from which
the data distribution changes. Conventional approaches often suggested for ML-based
defenses aim to detect concept drift by recognizing model’s performance degradation on
streaming data and identifying an appropriate moment for a model update. Naturally, the
crucial trade-off emerges between the detection delay and the detection quality. Some
families of ML algorithms such as neural networks can adapt through a continuous
retraining mechanism known as online/incremental learning, exemplified by a DL-
based IDS that analyzes log data [76]. By incorporating the most recent changes in
system logs into the DNN model, a DL-based IDS can adjust to the newly emerging
patterns in a timely manner. Incremental learning can also be applied for traditional ML
algorithms, albeit with high computational complexity. For instance, Rassam et al. [77]
utilize an adaptive principal component classifier-based anomaly detector that tracks
dynamic normal changes in real sensor data. However, effectiveness and practicality
of incremental learning or re-training for an anomaly IDS on network traffic – non-
stationary streaming data – largely remain unexplored. Raza et al. [78] developed a
theoretical approach that addresses detection of covariate shifts in generic non-stationary
environments and can potentially aid in IDS concept drift. One promising approach to an
autonomic anomaly NIDS was proposed by Wang et al. [36], who use novel clustering
algorithms to label new data and dynamically adapt to normal behavior. They show
efficacy of their algorithm on a private dataset of real HTTP traffic streams. Zhang et
al. [79] employ a competing approach specifically tailored to high-dimensional streaming
data. To account for concept drift, they perform adaptive subspace analysis that fully
relies on human feedback to prune away irrelevant subspaces of anomalies. As this novel
algorithm is only evaluated on the KDD’99 dataset, its generalizability to real traffic and
scalability to live environments are unknown. Dong et al. [80] developed a batch-based
adaptation approach that utilizes an SVM classifier and incorporates human feedback to
determine when re-training is necessary. Their evaluation is limited to malicious web
requests, and they use a public dataset with HTTP traffic.

Currently, a thorough investigation of concept drift detection and adaptation tech-
niques for open-worldNIDSs is pending, and the lack of public representative benchmark
datasets that contain labeled shifts in traffic has been one of the largest roadblocks. A
notable recent contribution is the UGR’16 dataset [81] – real anonymized Netflow data
for adaptive NIDS research that includes long-term traffic evolution and periodicity.

4.5 Real-time detection

In the era of growing risk and severity of cyber-attacks, an effective NIDS is expected
to detect potential threats immediately as they occur in the network. An ideal real-time
detector processes and analyzes a continuous stream of data in its natural sequential
form and makes immediate decisions online [82]. Anomaly detection is regarded as
indispensable in early open-world detection of novel, unusual behaviors, and yet the
existing approaches are not effective enough in real-time detection [26] and still largely
resort to offline analysis, or batch processing at best, allowing some intrusions to go
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unnoticed for days. In the meantime, the bar for real-time processing capabilities is only
increasing: not only does the internet traffic double each year, but in addition to that, the
growth of the Internet of Things (IoT), sensors, smart cities, mobile clouds, autonomous
vehicles, and other emerging technologies has unleashed enormous amounts of generated
network data. Cisco has reported [83] that by 2022, the omnipresent non-PC devices are
estimated to drive 81% of global internet traffic, opening the gate for more large-scale
network attacks against small connected devices. The network data of today is already
characterized by huge volume, velocity, variety and veracity, fulfilling the definition of
big data. Traditional ML-enabled NIDS have not been developed to handle big data, but
largely aimed at enhancing learning algorithms, which mostly results in increasing the
computational complexity and processing time [26,22,27], further hindering real-time
analysis.

As the demand for uninterrupted security monitoring raises higher by day, novel
solutions are required to facilitate large-scale, real-time detection. Hoplaros et al. [84]
explored data summarization techniques that mine patterns in summaries of network
traffic to approximate final decisions and improve efficiency of detection. Since this
approach effectively allows to cut offline detection runtimes, the authors propose to
develop stream data summarization and distributed summarization methods for online
detection. The downside is that complex summarization on big data contributes to
opacity of model predictions, while threat analysis benefits from more granularity and
transparency in decision-making.

Collaborative intrusion detection systems that employ several distributed monitors
for collection and analysis of traffic pose an alternative to the bottleneck stand-alone
anomaly detectors. A collaborative NIDS is considered to be much more efficient in
analysis of numerous data streams traversing through large networks and IT ecosystems.
Vasilomanolakis et al. [85] provide a taxonomy and a detailed survey on the topic,
including possible topologies and threat models for a collaborative NIDS. Zarpelao et
al. [86] presented a survey of stand-alone and collaborative IDS solutions specifically
for IoT infrastructures. Crucially, most of the modern NIDS research on large-scale
networks, IoT in particular, does not provide enough details for reproducibility and
use private specifically chosen testbeds or simulation tools. Moreover, the internal
mechanisms of existing commercial products are also hardly available. All in all, a
thorough investigation on public data with a standardized evaluation strategy is required
to assess effectiveness of a collaborative NIDS in real-time detection of sophisticated
attacks in modern network environments.

Suthaharan et al. [87] were among the first to highlight the challenging big data
properties associated with network monitoring for security. They advocated incorporat-
ing known big data frameworks, e.g. Hadoop [88], into aML-based NIDS framework, in
order to combine big data processing tailored to real-time analytics with supervised ML
classifiers and representation-learning techniques. This integration requires to rethink
implementations of ML algorithms in general and introduce parallelization by either
dividing data into separately processed subsets, or dividing a ML algorithm into concur-
rently performed steps. Later on, the discussion was extended to anomaly-based NIDS in
order to enable real-time open-world detection on large streaming data [89,90,11,91,72].
Recently, Habeeb et al. [58] have thoroughly reviewed real-time network anomaly de-
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tection algorithms and discussed the aspects and challenges of their application to big
network traffic data. Despite the promise of big data frameworkswidely deployed in other
domains, in network security we still observe a premature state of big data processing
capabilities. Efficient model and parameter selection, automation of data filtering and
curation, dynamic resource allocation, reduction of power and memory consumption
are only a few associated future research directions. With these enhancements, advance
anomaly detection in combination with modern big data tools should be adequate to
handle large-scale real-time detection, feature extraction and selection, labeling, and
model retraining.

4.6 Adversarial robustness

Attackers have always had great incentives and tools to evade detection by a NIDS.
Knowing the blind spots of the detector, an adaptive attacker chooses the optimal
strategy that fools a NIDS into thinking their traffic is legitimate. Misuse-based detectors
that inspect traffic on the packet level are traditionally evaded through such means as
encryption, obfuscation and packet fragmentation, whichmake sure thatmalicious traffic
does not match a known signature. A general anomaly-based detector is vulnerable to
mimicry attacks, which modify malicious traffic in such a way that it corresponds to
normal traffic patterns [92,93]. Besides, any type of a NIDS is susceptible to various
DoS attacks, which can overload the detector with meaningless connections to create
a bottleneck, so that the actual malicious connection comes through unnoticed. The
security analysis of novel NIDS solutions with respect to adaptive attackers is regarded
as a crucial research angle.

In the last decade, more attention was brought specifically to evasion of ML-enabled
NIDS. When placing a ML model at the core of a defensive system, one will always in-
voluntarily introduce a new attack vector of undetermined severity. Adversarial machine
learning is a set of techniques that exploit specific vulnerabilities of ML algorithms in
order to trigger an incorrect output. Corona et al. [94] describe a general adaptive threat
model for a NIDS and review studies of one particular category of adversarial ML –
poisoning attacks. Automatic adaptability of ML to changes in normal traffic allows
attackers to poisons the model’s decision boundary by inserting adversarial noise in
benign traffic that is consequently used for training. Kloft and Laskov [95] explored
poisoning attacks against centroid anomaly detection and confirmed its effectiveness
on feature vectors representing real HTTP traffic. The second type of adversarial ML
attacks is evasion, where a malicious adversarial example evades detection by intro-
ducing carefully crafted minor perturbations in the network communication. Apruzzese
and Colajanni have recently demonstrated the effectiveness of evasion on a closed-world
botnet classifier [96]. They generated adversarial examples on Netflow features of real
botnet traffic [97].

Crucially, the prevailing majority of existing works make unrealistic assumptions
about attacker capabilities, including direct access to the extracted features and knowl-
edge of training data. Adversarial examples constructed in the feature space still have to
be mapped back to the problem space – actual network traffic – on-the-fly, as that is the
level of attacker’s access [98]. The existing NIDS research does not explicitly investigate
the practical feasibility and effectiveness of adversarial ML strategies in the context of
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real-world constraints. As the impact of adversarial learning in the operational scenario
of a NIDS is still unknown, hardening detectors against adversarial perturbations or
incorporating additional defenses are currently not considered strongly motivated.

5 Conclusion

Machine learning for network intrusion detection is an extremely intriguing and potent
research direction, which – despite its strong theoretical base – is still lacking devoted
attention in defensive security. Today, the community acknowledges the non-stationarity
and adversarial nature of security applications, promoting thoughtful and realistic eval-
uation of effective and adaptable ML-based defenses. We had to face the hard truths
about domain-specific properties and limitations of ML in open dynamic environments.
While we cannot create a silver-bullet solution to network intrusion detection, we can
deepen our understanding of the underlying issues and provide fundamentally sound
ML techniques for NIDS.

In this chapter, we reviewed the wide spectrum of impressive research efforts in the
area of anomaly-basedNIDS and highlighted themain challenges that should become the
focus of the future research. Our analysis encompasses the domainmisalignmentwith the
original assumptions of anomaly detection, high error rates, the problem of performance
estimation and comparison, availability of realistic datasets and reliable ground truth,
adaptability to concept drift, feasibility of real-time detection, and adversarial impact.
From our discussion, it is evident that there is no clear-cut separation between various
challenges or desired properties of open-world detection systems.

We hope that the future research will reason about network intrusion detection in
a more principled way that considers all important aspects in conjunction and allows
to systematically assess how they affect each other. To achieve that, we encourage the
community to collectively devise appropriate ML methodologies to develop and evalu-
ate realistic open-world network intrusion detectors in different environments and threat
models. As this is a tough task for the years to come, we need to scale research by com-
posing benchmarking scenarios under a common set of assumptions to fairly compare
novel methods. To this end, open realistic datasets and open-source implementations are
of the highest priority.
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