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One of the main problems in computational physics is predicting the low-energy behavior of many-body
quantum systems. The computational complexity of this problem, however, is relatively poorly understood. A
recent major progress in this direction has been the no low-energy trivial states (NLTS) theorem; it gives a family
of qubit Hamiltonians whose low-energy states cannot be reached by shallow quantum circuits. In this work we
provide a fermionic counterpart to this theorem, constructing local fermionic Hamiltonians with no low-energy
trivial states. Distinct from the qubit case, we define trivial states via finite-depth fermionic quantum circuits. We
further strengthen the result, allowing free access to (generally, deep) Gaussian fermionic circuits into our notion
of a trivial state. The desired fermionic Hamiltonian can be constructed using any qubit Hamiltonian which has
the NLTS property via well-spread distributions over bitstrings. We also define a fermionic analog of quantum
probabilistically checkable proofs (PCPs) and explore the relation of fermionic PCP class with the qubit version.

DOI: 10.1103/PhysRevA.109.052431

I. INTRODUCTION

In the analysis of complex many-body quantum systems,
computational tools play a central role. One of the main
applications for such methods is finding the properties of low-
energy states of the system. From the theoretical viewpoint,
a crucial question about low-energy state finding is to rig-
orously understand its computational complexity. It includes
constructing no-go theorems which limit the possibility of
solving this problem in polynomial time, either on a clas-
sical or a quantum computer. For instance, it was shown
that for many interesting classes of Hamiltonians estimat-
ing the ground-state energy is QMA-hard [1–5] (QMA is
the class of computational problems that are hard to solve,
but easy to verify, on a quantum computer, akin to NP in
classical complexity). Going beyond the ground-state search,
a broader computational physics problem is finding a state
with excitation energy density lower than a fixed constant.
This more general problem is critical for applications, which
are ultimately more concerned with the properties of low-
temperature states or dynamics of low-energy excitations,
rather than the ground state itself. At the same time, the
computational task of preparing low-energy states is less un-
derstood mathematically.

It was conjectured in Ref. [6] that there exist local and
sparse qubit Hamiltonians with the so-called ‘no low-energy
trivial states” (NLTS) property. In particular, for such a
Hamiltonian, states below certain energy threshold cannot
be prepared in a shallow quantum circuit. This conjecture
was recently proven by Anshu, Breuckmann, and Nirkhe

*Corresponding author: yaroslav@cwi.nl

in Ref. [17]; they demonstrate that a family of Hamiltoni-
ans based on recently established good quantum low-density
parity-check (LDPC) codes [7] has the desired property.
While the low-energy states of this family of Hamiltonians are
nontrivial, their ground state can be efficiently prepared by a
Clifford circuit. This means that these Hamiltonians fall short
of being genuinely “complex.” Hence it is natural to extend
the definition of “nontrivial” beyond super-constant-depth cir-
cuits to climb up the complexity ladder, see Refs. [8–11].

Here we consider the complexity of low-energy state
preparation for fermionic, rather than qubit Hamiltonians.
Fermionic Hamiltonians describe the majority of quantum
systems of practical interest, namely, interacting electrons in
materials and chemical compounds. These systems are among
the prime targets for quantum simulation using both classical
and quantum computers. From complexity theory perspective,
optimization relative to fermionic Hamiltonians is interesting
when it differs from qubit Hamiltonian complexity and when
qubit arguments are not directly applicable. While most atten-
tion in the quantum complexity literature is devoted to qubit
systems, fermions have come more into focus in recent years,
see, e.g., Refs. [12–16].

We answer the question posed in Ref. [14] in the af-
firmative: Do there exist fermionic Hamiltonians without
low-energy trivial states? Our result (Theorem 1) directly
builds on the conclusions of Ref. [17]. We use a notion of
trivial states defined via shallow fermionic quantum circuits.
Moreover, we extend this notion by allowing insertion of any
fermionic Gaussian operations, as long as they access up to
O(n) ancillary modes. Such states maintain their classical
simulability and can be viewed as a generalization of Gaussian
states or Slater determinants. The circuits in the resulting
“trivial” family in general have depth O(n), underscoring
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the additional complexity of the low-energy states of our
Hamiltonians as compared to the standard NLTS framework.
In addition to the this main result (our extended fermionic
counterpart to the NLTS theorem) we consider the closely
related quantum PCP conjecture in complexity theory. We
give the definition of the fermionic quantum PCP class and
discuss its subtle relation with the qubit counterpart (Sec. V).
Finally, we solve an open problem in qubit representations
of sparse fermionic Hamiltonians, finding a way to remove
nonlocal stabilizer constraints in the commonly used superfast
encoding (Appendix B). The paper is organized as follows.
In Sec. II we provide some useful definitions, in particular,
we give two different notions of trivial fermionic circuits. In
Sec. III we introduce the key tools from Ref. [17] and in
Sec. IV we prove our main Theorem. We end the paper by
discussing sparse fermion-to-qubit mappings (Sec. VI) and
what lies beyond (Sec. VII).

II. PRELIMINARIES AND DEFINITIONS

A system of n fermionic modes can be described by 2n
Majorana fermion operators ci (i ∈ [2n]) which obey c2

i = I,
∀i �= j cic j = −c jci, ci = c†

i , Tr(ci ) = 0. Any fermionic state
on this system is given by a Hermitian positive semidefinite
ρ � 0 with Tr(ρ) = 1 which can be expressed as an even
polynomial in the Majorana fermion operators.

We define Hermitian operators CK as ordered products of
the operators ck:

CK = i|K|(|K|−1)/2ck1 ck2 · · · ck|K| , (1)

with K = (k1 < k2 < . . . < k|K|). The class of Gaussian
fermionic states is a subclass of fermionic states which are
efficiently describable. Gaussian circuits preserve this class of
states, and hence are efficiently classically simulatable. For
more background on Gaussian states and Gaussian circuits,
also called fermionic linear optics, we refer the reader to, e.g.,
Refs. [14,15,18–20].

Consider preparing a fermionic state ρ on n modes using
m ancillary modes (with Majorana operators ck , k ∈ [2(n +
m)]\[2n]). Starting from a pure initial Gaussian state σG, one
may use a fermionic circuit U which is generally decompos-
able into gates which use quartic or quadratic interactions
between O(1) fermionic operators [18], i.e.,

ρ = Tr[2(n+m)]\[2n](UσGU †). (2)

We now introduce two slightly different notions of nontrivial
fermionic circuit depth. Our definition will make use of the
notion of Gaussian circuits, namely, circuits consisting of
unitaries of the form exp(−ω ck1 ck2 ) (here, ω is a real number).
We note that any Gaussian unitary on n fermionic modes can
be written as a �(n)-deep circuit [21] of such unitaries. The
definition is as follows.

Definition 1. We say that a fermionic circuit U has depth
T , if it is given by

U = WT WT −1 · · ·W1, (3)

with each Wt of the form

Wt =
∏

K :|K|∈{2,4}
exp

(
iω(t )

K CK
)
, (4)

where ω
(t )
K are real numbers and the product runs over

nonoverlapping sets K ⊂ [2n]. Furthermore, we say that U
is a depth T circuit with free access to Gaussian operations,
if it is given by

U = GT WT GT −1 · · ·W2G1W1, (5)

where Gt are arbitrary Gaussian circuits.
Note we take a fixed choice of operators cs in Eq. (4).

Allowing the use of an arbitrary basis of fermionic operators
{ck} in each layer of Wt would allow more expressive unitaries
U . However, we do not consider this model separately since it
is subsumed by free access to Gaussian operations in Eq. (5).

Here is another useful (standard) definition.
Definition 2. (Local sparse n-qubit (or n-fermion). Hamilt-

onian). H = ∑m
i=1 Hi is a local sparse n-qubit (or n-fermion)

Hamiltonian when the maximum number of Pauli operators
(or Majorana operators) in each term Hi is O(1) (local) and the
maximum number of terms involving any qubit (or Majorana
operator) is O(1). The smallest eigenvalue of H is denoted as
λ(H ).

Throughout this article, we will be considering Hamilto-
nians which are sparse, local, positive semidefinite and have
terms bounded by one in operator norm unless explicitly said
otherwise.

III. NLTS HAMILTONIANS AND WELL-SPREAD
DISTRIBUTIONS

It was proven in Ref. [17] that there exist qubit Hamiltoni-
ans with the following NLTS property.

Definition 3. A local sparse n-qubit Hamiltonian H � 0
has the NLTS property with parameter ε, if any family of n-
qubit states ρn with energy Tr(ρnH ) < εn requires a quantum
circuit, which uses an arbitrary number of ancilla qubits, of
depth at least T = �(log n).

A way to obtain NLTS Hamiltonians passes through the
notion of well-spread quantum states, which are states that,
when measured in a “trivial” basis, have certain statistical
properties. We now define well-spreadness both for qubits and
fermions; the fermionic definition will play a key role in our
result.

Definition 4. Consider an n-qubit POVM πR(s), defined as

πR(s) = R†
n∏

j=1

1 + (−1)s j Z j

2
R, (6)

where s is the outcome bitstring s = (s1, . . . , sn) ∈ {0, 1}n and
R is a tensor product of single-qubit unitaries. Given an n-
qubit state ρ, define a probability distribution over s ∈ {0, 1}n,

pR,ρ (s) = Tr[πR(s)ρ]. (7)

Definition 5. Consider a POVM with 2n Majorana fermion
operators

πG(s) = G†
n∏

j=1

I + (−1)s j c2 j−1c2 j

2
G, (8)

where G is a Gaussian unitary and s is the outcome bitstring. A
state ρ on n fermionic modes yields a probability distribution
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over s ∈ {0, 1}n,

pG,ρ (s) = Tr[πG(s)ρ]. (9)

Definition 6. A qubit (or fermionic) state ρ is said to be
(μ, L)-spread if there exists a unitary R (or G) as defined
above, and two sets of bitstrings S1 and S2 ⊂ {0, 1}n such that
p(s) ≡ pR,ρ (s) [or, pG,ρ (s)] obeys∑

s∈S1

p(s) � μ,
∑
s∈S2

p(s) � μ, and min
s1,2∈S1,2

|s1 − s2| = L,

(10)

with Hamming distance |.|. An n-qubit (n-fermion) Hamil-
tonian H is referred to as having well-spread low-energy
states, if there exists a constant ε such that any ρ with energy
tr(ρH ) < εn is (μ, L)-spread for μ = �(1) and L = �(n).

The authors of Ref. [17] gave a quantum LDPC (CSS) code
construction of an n-qubit Hamiltonian H with well-spread
low-energy states. This property implies that H is NLTS (Fact
4 in Ref. [17]).

IV. FERMIONIC NLTS HAMILTONIANS

We show that qubit Hamiltonians with well-spread low-
energy states (by Definition 6) can be used to construct
fermionic local Hamiltonians without trivial low-energy
states. Terminology related to the fermionic circuits was in-
troduced in Definition 1.

Theorem 1. For even n, consider an n-qubit H (q) with
well-spread states below energy εn. Construct a 3n/2-fermion
Hamiltonian H with Majorana operators {cx, j, cy, j, cz, j} j∈[n],
by replacing the Pauli operators in H (q) using

Xj �→ icy, jcz, j, Yj �→ icx, jcz, j, Zj �→ icx, jcy, j . (11)

The resulting Hamiltonian H has two fermionic NLTS prop-
erties. In particular, for an arbitrary 3n/2-fermion state ρ such
that Tr(ρH ) < εn, the following holds.

(1) Using arbitrary Gaussian initialization and an arbitrary
number of ancillas, any fermionic circuit that prepares ρ has
depth T = �(log n).

(2) Using a fermionic circuit with free access to Gaussian
operations and at most m = O(n) ancillary fermionic modes,
any circuit that prepares ρ has depth T = �(log n).

Before proceeding to the proof, we would like to briefly
discuss the above result. The restriction on the access to
ancillary modes given access to Gaussian operations, which
we see in Theorem 1.2, may be of fundamental origin. On
the one hand, ancillary non-Gaussian states in combination
with Gaussian operations allow the injection of non-Gaussian
gates [22]. On the other hand, this procedure also requires a
capacity for adaptive measurements, which is not included
in our scenario. We leave as an open question whether the
particular upper bound m = O(n) is optimal, or if it can be
improved using other proof techniques.

Our constructed Hamiltonian H has the same spectrum
as H (q), with an additional 2n/2-fold degeneracy. As will be
clear from the proof, the degeneracy does not affect the well-
spread-ness property. The key point is that the mapping we use
preserves the locality of H (unlike, say, a direct mapping of n
qubits onto n fermions via the inverse Jordan-Wigner transfor-
mation). We believe that a similar result can be achieved with

the local embedding of n qubits into 4n Majorana operators,
as introduced by Ref. [23], or a mapping used in Ref. [24].

Proof. The Hamiltonian H constructed using Eq. (11) can
be understood as an image of H (q) ⊗ I(f) under the unitary
“qubit assimilation” mapping (Lemma 4 in Appendix A).
Here I(f) acts on auxiliary n/2 fermionic modes.

We now show that ρ is [�(1),�(n)]-spread. Then we use
this fact to the lower bound the circuit complexity of ρ.

For the state ρ, construct ρ (qf) on n qubits and n/2 fermions
by applying inverse qubit assimilation to ρ [replacements
listed in Eq. (A8)]. Next, trace out the n/2-fermion sector
from ρ (qf) and thus obtain an n-qubit state ρ (q). Observe

Tr(ρ (q)H (q) ) = Tr(ρ (qf)H (q) ⊗ I(f) ) = Tr(ρH ) < εn. (12)

By definition of H (q), this implies that ρ (q) is [�(1),�(n)]-
spread. By Definition 6, there exists a product of single-qubit
rotations R, a POVM {πR(s)}s∈{0,1}n , and two sets of bitstrings
S1,2 ⊂ {0, 1}n such that pR(s) = Tr[ρ (q)πR(s)] obeys∑

s∈S1,2

pR(s) = �(1), min
s1,2∈S1,2

|s1 − s2| = �(n). (13)

Considering a general R rotating Zj to Xj sin θ j cos φ j +
sin θ j sin φ jYj + cos θ jZ j for each qubit, we write it as

R =
n∏

j=1

exp

(
iθ j

2
(sin φ jXj − cos φ jYj )

)
. (14)

By qubit assimilation (Lemma 4), Xj, Yj, and Zj are mapped,
respectively, onto ic j,zc j,y, ic j,xc j,z, and ic j,xc j,y for j ∈ [n].
Therefore, R is mapped onto

G =
∏

j

exp

(
θ j

2
(−c j,zc j,y sin φ j + c j,xc j,z cos φ j )

)
. (15)

Relabeling c j,y → c2 j−1, c j,x → c2 j , and c j,z → c2n+ j , define
a positive operator-valued measure (POVM)

πG(s̃) = G†

⎛
⎝3n/2∏

j=1

I + (−1)s̃ j ic2 j−1c2 j

2

⎞
⎠G, (16)

where s̃ ∈ {0, 1}3n/2. We adopted the notation πG(s̃) from
Definition 5, since the unitary G is Gaussian. We see that qubit
assimilation maps πR(s) onto

G†

⎛
⎝ n∏

j=1

I + (−1)s j ic2 j−1c2 j

2

⎞
⎠G

=
∑

s̃ j=±1,
j∈(n+1,...,3n/2)

G†

⎛
⎝3n/2∏

j=1

I + (−1)s̃ j ic2 j−1c2 j

2

⎞
⎠G

∣∣
s̃ j=s j , j∈[n]

=
∑

s̃ j=±1,
j∈(n+1,...,3n/2)

πG(s̃)
∣∣
s̃ j=s j , j∈[n]. (17)

Note that in Eq. (17) bits s j for j ∈ (1, . . . , n) came from
the pre-image πR(s), while s j for j ∈ (n + 1, . . . , 3n/2)
are the newly introduced dummy variables. Applying the
constructed POVM πG(s), we find that the 3n/2-fermion
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state ρ is [�(1),�(n)]-spread by Definition 6. Indeed, us-
ing S1,2 from Eq. (13) we can directly construct two sets
of bitstrings S̃1,2 ≡ {(s1, . . . , sn, s′

1, . . . , s′
n/2) | s ∈ S1,2, s′ ∈

{0, 1}n/2} ⊂ {0, 1}3n/2, such that pG(s) = Tr[ρπG(s)] obeys∑
s̃∈S̃1,2

pG(s̃) =
∑

s∈S1,2

pR(s) = �(1),

min
s̃1,2∈S̃1,2

|s̃1 − s̃2| = min
s1,2∈S1,2

|s1 − s2| = �(n). (18)

Consider constructing ρ with a depth-T fermion circuit
with free access to Gaussian operations, using m = O(n) an-
cillary modes. To prove that T = �(log n) depth is required,
we employ [�(1),�(n)]-spreadness of ρ and Lemma 1 stated
below. This directly yields T = �(log n).

Finally, consider producing ρ in a depth T fermionic
circuit U [see Eqs. (2) and (3)], starting from an arbitrary
Gaussian initialization σG. Since the output state ρ is obtained
as a marginal of UσGU † on Majorana operators [3n], we are
not concerned with the action of U on the entire system of
Majorana operators [3n + 2m]. Without changing ρ, U can
be replaced with U ′: its backward light cone stemming from
[3n]. This backward light cone will be supported on at most
3n × 4T Majoranas, because each gate in Wt [Eq. (4)] involves
at most three Majoranas in addition to each one from the light
cone at layer t + 1. An arbitrary number 2m of ancillary Ma-
joranas can still be non-trivially involved in the initialization
state σG. However, one can replace this state with its marginal
ρG on 3n × 4T Majoranas supporting U ′, without changing ρ.
In turn, being a mixed Gaussian state on 3n × 4T Majoranas,
ρG can be purified back onto O(n4T ) fermions.

Therefore, any 3n/2-fermionic state prepared using a
depth-T fermionic circuit, arbitrary Gaussian initialization,
and arbitrary m ancillary fermionic modes, can be pre-
pared in the same setting with 3n/2 + m reduced to O(n4T ).

Employing a next Lemma 1 and [�(1),�(n)] spreadness of
ρ once again, we obtain T = �(log n), finalizing the proof of
the Theorem. �

Lemma 1. Consider a (μ, L)-spread l-fermion state ρ. Any
fermionic circuit using m ancillary fermionic modes and free
access to Gaussian operations that produces ρ must be of
depth at least

T = 1

2
log3

(
L2

1600(l + m) ln(1/μ)

)
. (19)

Proof. The following parallels the proof of Fact 4 from
Ref. [17]. The key additional observation is that Gaussian cir-
cuits, however, deep, do not change the locality of fermionic
operators. Consider preparing ρ as

ρ = Tr[2(m+l )]\[2l](UσGU †), (20)

with a fermionic circuit U and the pure Gaussian starting
state

σG = 1

2l+m

l+m∏
k=1

(I + ic2 j−1c2 j ). (21)

Consider the operator Q = 1
(l+m)

∑l+m
j=1

1
2 (I − ic2 j−1c2 j ).

The spectrum of Q is [0, 1/(l + m), 2/(l + m), . . . , 1], with
the nondegenerate ground state ρG. The Hamiltonian UQU †

has the same spectrum as Q and has UσGU † as the ground
state; we now prove that this Hamiltonian is also 2 × 3T -
local, where T is the depth of U . Indeed, (i) any Gaussian
circuit Gt in U [cf. Eq. (5)] does not change the locality of a
fermionic operator CK ′ in UQU †, while (ii) every layer Wt of
a non-Gaussian circuit can increase the weight of CK ′ at most
by a factor of 3. To show point (i), consider the two options
for a transformation of any Majorana monomial CK ′ with an
elementary Gaussian operation

e−iwk1 ,k2 ck1 ck2 CK ′eiwk1 ,k2 ck1 ck2 =
{

CK ′[cos(2wk1,k2 ) + i sin(2wk1,k2 ) ck1 ck2 ] if {CK ′, ck1 ck2} = 0,

CK ′ if [CK ′, ck1 ck2 ] = 0.
(22)

In the first option, k1 or k2 must belong to K ′ and therefore
CK ′ck1 ck2 has the same weight as CK ′ . The second option
trivially conserves locality. To show point (ii), consider the
transformation similar to Eq. (22), using an elementary gate
exp(iwK CK ) with |K| = 4; this transformation can only add
weight 2 to CK ′ , and only if {CK ′ ,CK} = 0. Since Wt only
contains nonoverlapping generators CK , there will be at most
|K ′| generators such that {CK ′ ,CK} = 0. Therefore, a transfor-
mation of CK ′ with Wt will produce operators with a weight of
at most |K ′| + 2|K ′| = 3|K ′|.

We now use a matrix polynomial approximation P(UQU †)
to the ground state of degree f (concretely, the polynomial
construction in Refs. [25–27]) such that

‖ |ψ 〉〈ψ | − P(UQU †)‖∞ � exp

(
− f 2

100(l + m)

)
. (23)

As UQU † is 2 × 3T -local, P(UQU †) is 2 f 3T -local.
Fixing f = L

4·3T , we obtain P(UQU †) that is L/2-

local. The right-hand side of Eq. (23) then becomes
exp(− L2

1600(l+m)·32T ).
Next, from ρ being [�(1),�(n)]-spread there exists a

Gaussian G and S1, S2 ⊂ {0, 1}l with mins1,2∈S1,2 |s1 − s2| � L
such that ∥∥∥∥∥

∑
s1,2∈S1,2

πG(s1) |ψ 〉〈ψ |πG(s2)

∥∥∥∥∥
∞

� μ. (24)

On the other hand, from the L/2 locality of P(UQU †) it
follows that∥∥∥∥∥

∑
s1,2∈S1,2

πG(s1)P(UQU †)πG(s2)

∥∥∥∥∥
∞

= 0, (25)

since πG(s1)C πG(s2) = 0 for any |s1 − s2| � L and L/2-
local C. The later condition is true since the Gaussian
transformation G conserves the locality of operator C, and
because this condition manifestly holds for the case G = I.
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Collecting Eqs. (23) to (25), we arrive at

exp

(
− L2

1600(l + m)32T

)
� μ, (26)

which amounts to the claimed lower bound on T . �

V. QUBIT PCP VERSUS FERMIONIC PCP

The quantum PCP complexity class (QPCP) was defined
in, e.g., Ref. [28]. The quantum PCP conjecture [29] asks
whether QPCP[q = O(1)] is equal to QMA, where q = O(1)
is the number of qubits of the proof which are checked. Here
we introduce a new class FermPCP[q = O(1)] which accesses
q fermionic modes of a (fermionic) proof and argue that this
class could be larger than QPCP[q = O(1)] due to the limita-
tions of fermion-to-qubit mappings.

In the definitions below we do not make explicit reference
to the number of random bits of the verifier: it is sufficient
if this is at most poly(log n) when the number of qubits (or
fermionic modes) that the verifier accesses is q = O(1) or
q = O(log n) which is what we will use in this section. In
addition, we allow the verifier to simulate randomness in the
quantum circuit by having [poly(n)] ancillary qubits. We start
by reproducing the definition of QPCP.

Definition 7. (QPCP) A promise problem L = Lyes ∪
Lno ∈ QPCP[q] if there exists a quantum polynomial verifier
and a polynomial p(.) with the following properties. The
verifier receives as input a classical string x and a p(x)-qubit
density matrix ρ. The verifier randomly picks q qubits out of
p(x) according to some scheme using her random bits, and
then runs a polynomial-sized quantum circuit V (x, ρ), which
can use poly(n) ancillary qubits, and the circuit V accesses
only the chosen q qubits as inputs. The accept or reject output
of V is obtained by a measurement in the Z basis of one
of the ancilla qubits. Then L ∈ QPCP[q] when the following
conditions apply.

(1) If x ∈ L, ∃ρ such that Prob[V (x, ρ) accepts] � 2/3.
(2) If x �∈ L, ∀ρ, Prob[V (x, ρ) accepts] � 1/3.
Here is the definition of the analogous fermionic class.
Definition 8. (FermPCP) A promise problem L = Lyes ∪

Lno ∈ FermPCP[q] if there exists a quantum polynomial
fermionic verifier and a polynomial p(.) with the following
properties. The verifier receives as input a classical string x
and a p(x)-fermionic state ρ f . The verifier randomly picks
q fermionic modes (i.e., 2q operators) out of p(x) accord-
ing to some scheme using her random bits, and then runs
a polynomial-sized quantum circuit V (x, ρ f ), possibly using
poly(n) ancillary qubits, and the circuit V accesses only the
chosen q fermionic modes as inputs. The accept or reject
output of V is obtained by a measurement in the Z basis of one
of the ancilla qubits. Then L ∈ QPCP[q], when the following
holds.

(1) If x ∈ Lyes, ∃ρ f such that Prob[V (x, ρ f ) accepts] �
2/3.

(2) If x ∈ Lno, ∀ρ f , Prob[V (x, ρ f ) accepts] � 1/3.
We note that the fermionic verifier and its access to a

fermionic proof could be mapped to a qubit verifier and its
proof by a standard fermion-to-qubit mapping such as the
Jordan-Wigner transformation, but such a mapping clearly
does not preserve the limited access structure of QPCP. Before

we prove two statements about the relations between these
classes, let us review what problem is complete for these
classes and define the local Hamiltonian density problem.

Definition 9 ((Fermionic) Local Hamiltonian density
problem (LHD)). Let H = 1

m

∑m
i=1 Hi be a local n-qubit (or

n-fermion) Hamiltonian with Hi � 0, ||Hi|| = O(1). Either
λ(H ) � a or λ(H ) � b, for constants a > 0, b > 0 and
a constant ε = b − a > 0. The qubit (or fermionic) local
Hamiltonian density (LHD) problem is to decide which is the
case.

It is known that LHD ∈ QPCP[q = O(1)] by the proof of
Ref. [4] and identical arguments can be made to show that
fermionic LHD ∈ FermPCP[q = O(1)]. The idea is that the
expectation value of any (fermionic) Hamiltonian term Hi can
be estimated using qubit ancillas. Here, one considers a spec-
tral decomposition of Hi = ∑

j w j,iσ j,i with 1 � ω j,i � 0, and
one defines a unitary which uses an additional ancilla qubit in
the state |0〉 and maps

σ j,i ⊗ |0 〉 〈0 | → σ j,i ⊗ (
√

w j,i |0 〉 + √
1 − w j,i |1 〉)

× (
√

w j,i 〈0 | + √
1 − w j,i 〈1 |) (27)

(see Ref. [4]). The desired expectation can be estimated by
estimating the probability of obtaining the outcome “1” when
the qubit is measured.

The opposite, namely, that qubit LHD is hard (and
thus complete) for QPCP[O(1)], was informally proven in
Ref. [29]. For completeness, we prove it here and we extend
it to a fermionic version as follows.

Proposition 1. The qubit LHD problem is QPCP[O(1)]-
hard by a polynomial-time quantum reduction. Similarly,
the fermionic LHD problem is FermPCP[O(1)]-hard by a
polynomial-time quantum reduction.

Proof. We show that any QPCP[O(1)] proof system can
be mapped onto a LHD problem. The verifier uses O(log n)
bits to draw from some probability distribution pi and each
i corresponds to picking a certain subset of q qubits and the
number of such sets is m = poly(n). Let the acceptance qubit
be labeled ancilla qubit number 1. The probability for ac-
ceptance paccept = ∑

i pi pi
accept with pi

accept = 1
2 [1 + Tr(Oiρ)]

where Oi is a traceless q-qubit observable acting only non-
trivially on the chosen q qubits of ρ. Then we construct H
as H = 1

m

∑
i Hi with Hi = 1

2 pi(I − Oi ), obeying ||Hi|| � 1
and Hi � 0. Hence, if x ∈ Lyes, there exists a ρ such that
λ(H ) � 1

3 . When x ∈ Lno, we have ∀ρ, λ(H ) � 2
3 . To con-

struct Oi, one needs to run the verifier’s quantum circuit where
we replace the q = O(1) input qubits by all possible eigen-
states of the Pauli operators on q qubits and apply process
tomography on the superoperator Si(ρ) = Tranc. but 1Viρ ⊗
|00 . . . 0〉〈00 . . . 0|V †

i , where |00 . . . 0〉 is the initial state of all
ancillary qubits and Vi is the circuit V using the Pauli qubit
operators in the chosen subset i. Using process tomography
one constructs the q to q + 1-qubit TPCP map Si,1 and thus
S†

i () [with negligible error 1/poly(n)], and applies it to Z1 to
construct Oi, i.e., Oi = S†

i (Z1).

1Note that it is q to q + 1 since one ancilla qubit is fixed as |0〉 on
input but is needed/used as acceptance output qubit.
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In the fermionic case, all goes through similarly. Let ancilla
qubit 1 be the acceptance qubit. The verifier measures Z1 =
±1 or pi

accept = 1
2 [1 + Tr(Z1Viρ ⊗ |00 . . .〉〈00 . . . 0|V †

i )] =
1
2 (1 + Tr(Z1Si(ρ)) = 1

2 (1 + Tr(Oiρ)). Here Vi only uses
those fermionic modes in the chosen subset i and the state
|00 . . . 0〉 of all ancillary qubits. To construct Si which maps
q fermion modes to q fermions and 1 ancilla qubit, we can
construct its corresponding Choi-Jamiolkowski state [19]. Let
ci[1], . . . , ci[2q] be the chosen set i of Majorana operators and
take an additional set of reference operators cr,1, . . . , cr,2q,
then ρChoi = Si[ 1

22q 

2q
j=1(I + ici[ j]cr, j )]. From ρChoi, a set of

O(1) Kraus operators Ak,i, which can be expressed as even
polynomials in the Majorana operators ci[1], . . . , ci[2q] and
single ancilla qubit Paulis, can be obtained [19], and hence
Oi can be constructed and thus H can be constructed via a
quantum reduction.

We note that the qubit LHD problem is not clearly hard
for the class FermPCP[O(1)]. In the following Lemmas we
establish some relations between QPCP and FermPCP. �

Lemma 2. QPCP[O(1)] ⊆ FermPCP[O(1)].
Proof. Let L ∈ QPCP[O(1)], and so we seek to construct

a fermionic proof system for L. First, if p(x) is odd, add an
extra qubit in |0〉 to the proof so that p(x) is even. In addition,
without loss of generality we assume that q, the number of
access qubits is even. We use the unitary qubit-assimilation
mapping M of Lemma 4 in Appendix A to map the k = p(x)-
qubit state ρ onto a state ρ f on 3k Majorana operators (3k/2
fermionic modes), that is, if we expand the witness state ρ

in terms of Pauli Xj, Zj and we replace those by Eqs. (A1)
and (A2). Similarly, each occurrence of Xj or Zj where j is
one of the chosen input qubits in the circuit of the verifier
is replaced using Eqs. (A1) and (A2). The ancillary qubits
remain as is. From the qubit proof, the verifier selects q qubits,
and this thus corresponds to selecting 3q Majorana operators
[3q/2 = O(1) fermionic modes]. Thus we can map the qubit
proof for x ∈ Lyes directly onto a fermionic proof and the
acceptance probability is the same. Note that the additional
fermionic Hilbert space in Lemma 4 is simply not used in this
conversion.

When x ∈ Lno, the verifier proceeds identically using
the mapping M, but the prover may provide an arbitrary
fermionic state ρ f of 3k/2 fermionic modes as input, not
obeying the mapping M. So we need to argue that this state
can always be mapped to some qubit state ρq, such that if the
fermionic verifier is fooled in accepting by this state, then
so will the qubit verifier with input ρq, which was excluded
by definition. The state ρ f will be an even polynomial in
the operators cy, j, cz, j , and cx, j . Using the c̃ j operators in
Eq. (A3), these operators can be mapped to qubit Pauli opera-
tors Xj, Zj , and c̃ j , hence obtaining a state ρq f . Then we take
ρ̃q = Tr f (ρq f ), the partial trace over the fermionic system to
get a n-qubit state ρq (effectively this means omitting any term
which involves the operators c̃ j). Note that since the fermionic
verifier uses M the fermionic gates and final measurement of
the fermionic verifier never use the operators c̃ j and hence
tracing out has no effect on the action of the verifier and the
selection of 3q/2 fermionic modes corresponds precisely to
the selection qubits of q qubits in ρq. Thus if ρ f would lead
the fermionic verifier V to accept with probability >1/3, then

the qubit verifier would accept with probability >1/3 on the
state ρq, in contradiction with the qubit proof system. �

Lemma 3. FermPCP[O(1)] ⊆ QPCP[O(log n)].
Proof. Let L ∈ FermPCP, and so we seek to construct a

qubit proof system for L. Using the Bravyi-Kitaev transfor-
mation [18], we map the k = p(n)-fermionic mode state ρ f

onto a k-qubit state and the chosen 2q Majorana operators c j

are replaced by products of O{log[p(n)]} single-qubit Pauli
operators, hence requiring access to O(log n) qubits. Thus we
can map the fermionic qubit proof for x ∈ Lyes directly onto a
qubit proof, albeit with logarithmic access. When x ∈ Lno, the
prover may provide an arbitrary k-qubit state ρq as input, not
necessarily obeying the Bravyi-Kitaev transformation, while
the verifier applies the circuit obtained through the mapping.
Applying the inverse of the Bravyi-Kitaev transformation to
the state ρq leads to fermionic state ρ f of k fermionic modes.
If the qubit verifier accepted on ρq with probability >1/3, then
applying the inverse would have lead to the fermionic verifier
accepting with probability >1/3, which was excluded.

Note that the qubit (or fermionic) LHD problem which
is complete for QPCP[O(1)] (or FermPCP[(O(1)]) is
not necessarily sparse. Previous results (Theorem 13 in
Ref. [30]) give a polynomial-time classical algorithm for
the dense qubit case, so that problem certainly cannot
be QMA hard. It is an open question whether the dense
fermionic LHD problem can be QMA-hard. Finally, whether
FermPCP[O(1)] = QPCP[(O(1)] is an open question, which
relates to (1) whether the sparse fermionic LHD problem is
FermPCP[O(1)] hard (note that Proposition 1 merely shows
that the general fermionic LHD problem is hard), and (2) the
existence of fermion-to-qubit mappings for sparse fermionic
interactions which do not introduce non-local constraints. The
latter topic is discussed in Sec. VI below. �

VI. LOCAL FERMION-TO-QUBIT MAPPINGS

In Theorem 1 we constructed fermionic NLTS Hamilto-
nians from qubit Hamiltonians with well-spread low-energy
states. An interesting open question is to consider the re-
verse construction. This question and the question of whether
FermPCP[O(1)] = QPCP[(O(1)] are both related to the lo-
cality of fermion-to-qubit mappings. It is known that one
cannot map all O(1)-local Majorana operators to qubit
operators of weight less than �[log(n)] (see, e.g., the argu-
ment in Ref. [15]), i.e., the Bravyi-Kitaev construction used
in lemma 3 has the optimal scaling in n. It must be noted
though that for sparse fermionic Hamiltonians there exists the
Bravyi-Kitaev (BK) superfast encoding [18], which unitarily
maps local fermionic Hamiltonians terms onto O(1)-local
qubit interactions. However, this mapping is only valid in
a subspace specified by a set of nonlocal stabilizer gener-
ators. When mapping a fermionic NLTS Hamiltonian to a
qubit NLTS Hamiltonian, these generators would have to be
included in the qubit Hamiltonian. In general these genera-
tors are not O(1)-local, nor would the resulting Hamiltonian
necessarily be sparse. Adapting the BK superfast encoding
to avoid these two properties is the topic of active research
in quantum simulation (see Ref. [31] and references therein).
In Appendix B we describe a construction that achieves both
of these objectives, i.e., it encodes a sparse local fermionic
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Hamiltonian into a sparse local qubit Hamiltonian, through
an adaptation of the BK superfast encoding. However, it re-
quires �(n2) qubits to encode n fermionic modes, making it
useless when constructing NLTS Hamiltonians. This leaves
open the problem of finding a way to encode an n-mode sparse
O(1)-local fermionic Hamiltonian into an O(n)-qubit sparse
O(1)-local qubit Hamiltonian. Given our repeated failures at
finding such a construction we believe there might be some
fundamental obstruction.

VII. CONCLUSION

In this paper we constructed fermionic Hamiltonians with-
out trivial low-energy states. This rigorously restricts the
power of shallow and Gaussian quantum circuits to produce
low-energy states of a general fermionic Hamiltonian, even
when it is O(1) local and sparse. From a practical perspec-
tive, our result places a limit on classical or quantum (in
particular, NISQ) simulation of such states. Of further interest
would be extending our construction to particle conserving
nonstabilizer Hamiltonians. Ultimately, for fermionic NLTS
Hamiltonians to be genuinely realistic, all participating in-
teractions need to be reduced to those of Coulomb type.
Developing numerical tools to diagnose the fermionic NLTS
property in a general Hamiltonian (for instance, by detecting
well-spreadness) is another direction of practical interest. On
the more mathematical side of complexity theory, it is inter-
esting to develop fermion-to-qubit mappings without nonlocal
stabilizer constraints, as discussed in Sec. VI. This would
provide a one-to-one mapping between qubit and fermionic
NLTS Hamiltonians and allow to show equivalence between
complexity classes FermPCP[O(1)] and QPCP[O(1)]. Fi-
nally, if FermPCP[O(1)] is strictly larger than QPCP[O(1)],
pursuing a fermionic PCP theorem may be a fruitful endeavor.
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APPENDIX A: QUBIT ASSIMILATION MAPPING

We detail the mapping used in Theorem 1. See Ref. [13]
for an earlier use of this mapping.

Lemma 4. For even n, consider the Hilbert space H(q−f)

of n qubits (with Paulis Xj , Yj , and Zj for j ∈ [n]) and n/2
fermions [operators c̃ j for j ∈ [n])], and the Hilbert space
H(f) of 3n/2 fermions (cx, j, cy, j, cz, j for j ∈ [n]). There is a
unitary map from H(qf) to H(f), defined by its action on the

generating operators

Xj �→ icy, jcz, j, (A1)

Zj �→ icx, jcy, j, (A2)

c̃ j �→ icx, jcy, jcz, j . (A3)

Proof. Consider the bases of Hermitian operators in H(f)

and H(qf),

P (f)(s = {sα, j, α ∈ {x, y, z}}) = i
|s|(|s|−1)

2

∏
j

c
sx, j

x, j c
sy, j

y, j c
sz, j

z, j ,

(A4)

P (qf)
(
sx = {

sx
j

}
, sz = {

sz
j

}
, sc = {

sc
j

})
= isx ·sz+ |sc |(|sc |−1)

2

∏
j

X
sx

j

j Z
sz

j

j c̃
sc

j

j . (A5)

Both H(q−f) and H(f) are isomorphic to the 3n/2-qubit Hilbert
space (denote it as H(q)) via the Jordan-Wigner transforma-
tion. Under this isomorphism, the Pauli basis of Hermitian
operators in H(q) is equivalent to the Hermitian bases in
Eqs. (A4) and (A5). Sets {cx, j, cy, j, cz, j} and {Xj, Zj, c̃ j}
are two alternative sets of generators of the Pauli group, i.e.,
independent Pauli strings in H(q). The mapping (denote it
as M) between these generators defines the mapping on the
whole Pauli group

M

⎛
⎝∏

j

X
sx

j

j Z
sz

j

j c̃
sc

j

j

⎞
⎠ =

∏
j

M
(
X

sx
j

j

)
M

(
Z

sz
j

j

)
M

(
c̃

sc
j

j

)
. (A6)

Observe that for two elements PA and PB of the Pauli group
defined in terms of {Xj, Zj, c̃ j} as in Eq. (A5), the map M
has the property

M(PA)M(PB) = M(PAPB). (A7)

This property follows from Eq. (A6) and the fact that M(Xj ),
M(Zj ), and M(c̃ j ) mutually commute or anticommute in the
same way as Xj , Zj , and c̃ j (among themselves and across
different j). The property in Eq. (A7) implies that the unitary
map claimed in the Lemma exists, defined as a Clifford trans-
formation on H(q) [32]. �

Since the map of Lemma 4 is unitary, it admits an inverse
from H(f) to H(qf), which acts on the fermionic operators as

cx, j �→ Xjc̃ j, cy, j �→ −Yjc̃ j, cz, j �→ Zjc̃ j . (A8)

A curious observation (which we do not use in this work)
is that the mapping of H (f) onto H (qf) using Eq. (A8) can
be repeated until all fermions are replaced with qubits. This
repetition procedure can be done in a variety of ways, each
giving a full fermion-to-qubit mapping. In the worst case, the
scaling features of the resulting mapping resemble those of
Bravyi-Kitaev transformation [18]. In practical applications,
one may pick a variation of the procedure which leads to the
best locality for the resulting qubit Hamiltonian.

APPENDIX B: SPARSE AND LOCAL
SUPERFAST ENCODING

The Bravyi-Kitaev superfast encoding is a method for map-
ping sparse and local fermionic Hamiltonians to sparse and
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FIG. 1. (a) Illustration of the stacking process described in the proof of lemma 5 with a graph on five vertices. The blue edges are the new
edges added in between copies of the graph. (b) Illustration of the sewing process in the proof of lemma 5. A single large cycle is shown inside
a graph, as well as its sewn-up version. The blue edges are again added in the process.

local qubit Hamiltonians (up to the enforcement of certain
stabilizer constraints). Here we give a version of this encoding
which makes sure these stabilizer constraints are themselves
local and sparse. Briefly, the BK encoding proceeds as fol-
lows. Given an n-fermion Hamiltonian H we construct a graph
G with n vertices (one for each fermionic mode) and place an
edge if a term in the Hamiltonian involves both modes. More
precisely, one can define vertex and edge operators as

Vi = c2i−1c2i, i ∈ V (G) = [n], (B1)

Ei, j = c2ic2 j, (i, j) ∈ E (G). (B2)

The Hamiltonian H can then be recovered as an element of
the “graph algebra” generated by the above operators. We can
represent this graph algebra on qubits by placing a qubit on
each edge of the graph and defining a map B taking the E and
V operators to Pauli operators which are local with respect to
the graph G (see, e.g., Ref. [33] for an explicit description).
However, the graph algebra comes with the nontrivial con-
straint that the product of the edge operators Ei, j along any
cycle of G is equal to the identity, as is clear from Eq. (B2).
For B to be a proper algebra homomorphism we must thus
restrict its image to the subspace where this is true also for the
operators B(Ei, j ). It turns out these constraints all commute
and thus form a stabilizer group generated by the products
along a cycle basis of G.

The interesting question is whether these stabilizer gen-
erators can be made sparse and local. This corresponds to
choosing a cycle basis for the graph G that contains only
cycles of constant length, and where each edge only partici-
pates in a constant number of basis cycles. It is clear that there
are graphs of bounded degree for which no such basis exists.
Consider, for instance, the family of n-vertex bounded-degree
expander graphs given in [34], which have girth �[log(n)],
and hence have no cycles of constant length. Moreover the
total length of any basis must then be �[n log(n)] which, from
a pigeonhole argument, means that there is at least one edge
that is present in �[log(n)] basis cycles.

Here we give a construction that solves both of these prob-
lems, by constructing from the graph G a larger graph Ĝ that
has a cycle basis of short cycles that use every edge only a con-
stant number of times, and has G as an induced subgraph. Note

that this means that the graph algebra of G is a subalgebra of
the graph algebra of Ĝ (by considering a subset of the genera-
tors), and hence this provides a valid mapping of the original
fermionic Hamiltonian to a qubit Hamiltonian. The downside
of this construction is that the graph Ĝ is of size �(n2), which
makes it difficult to use it for NLTS-style arguments where the
scale of the system (n versus n2) is important. However, the
construction might be of use in quantum simulation, and as a
starting point for more sophisticated constructions with better
parameters.

Lemma 5. Consider a bounded-degree connected graph G
on n vertices. There exists a (polynomial time construable)
connected graph Ĝ on O(n2) vertices with G as an induced
subgraph that has a cycle basis consisting of cycles of length
at most 4 which uses no edge in Ĝ more than 4 times.

Proof. We will explicitly construct Ĝ. First, compute a
minimum length cycle basis C for G [for instance through
Horton’s algorithm, which takes O(n4) time]. Since G has
bounded degree and is connected, the cycle basis has E (Ĝ) −
V (Ĝ) + 1 = O(n) elements. Order the cycles in C in some
arbitrary way. We now construct the graph Ĝ as follows. For
each element of C we make a copy of the graph G. We take
these graph copies and “stack” them on top of each other,
connecting each vertex in a graph copy to the corresponding
vertex in the copies directly above and below [see Fig. 1(a) for
an illustration]. This creates E (G)(|C| − 1) “vertical” cycles
of length 4. It is easy to see that the vertical cycles form an
independent set since every cycle contains an edge that is not
used by any other vertical cycle. Furthermore, the set of cycles
C is still an independent set in Ĝ. Furthermore, the union of
these two sets is also independent. This union is in fact a
basis for Ĝ, which one can see (by direct calculation) that the
dimension of the cycle space of Ĝ [i.e., E (Ĝ) − V (Ĝ) + 1]
precisely matches the number of vertical cycles plus the di-
mension of the cycle space of G.

Continuing our construction, consider for each cycle in the
set C the associated copy of G. In this copy, “sew” up the cycle
by adding edges across the cycle, in the manner illustrated
in Fig. 1(b). For each cycle c in C this creates a number of
cycles of length 3 or 4. Note that we add �|c|/2� edges to Ĝ.
Since the total cycle length of a minimum length cycle basis
is O[n log(n)] [[35], Theorem 4.4], we end up adding at most
O[n log(n)] edges. This completes the construction of Ĝ. Note

052431-8



FERMIONIC HAMILTONIANS WITHOUT TRIVIAL … PHYSICAL REVIEW A 109, 052431 (2024)

also that the degree of Ĝ is at most three higher than the degree
of G.

We now propose the following basis for the cycle space
of the graph Ĝ. We take all vertical cycles, and all the short
cycles created by the sewing procedure for each cycle in C.
And by our earlier argument the union of the vertical cycles
and the cycle basis of G was a basis for Ĝ before the sewing
procedure. Since the sewing procedure adds an independent
cycle for each edge it adds, the resulting set is a basis for Ĝ.

Clearly every cycle in this set is of length no longer than
4. Moreover, every edge is used at most a bounded number
of times by each basis cycle. For the vertical edges it is clear
that their number of uses is bounded by the degree of G (as
they only participate in “vertical” cycles), and the edges in
each copy of the graph participate only in the 3 and 4 cycles
making up the sewed cycle for that copy, as well as at most
two vertical cycles. Hence the number of uses of each edge in
the basis is also bounded. �
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