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Abstract

Indoor localization provides for a much researched subject, as the complexity and size
of many public buildings require extensive and properly designed methods to facilitate
location specific processes. Indoor localization entails finding a qualitative description
of the occupied area. One that is human interpretable, rather than a quantitative posi-
tion in Euclidean space. In other words, the context of an indoor environment has to be
understood, such that a position can be transcended to a meaningful location.

A space is defined as a mathematical structure with relational properties, to which all
its members adhere. As a subset of space in general, topological space is a structure de-
scribing the relationships between (parts of) objects that do not change under continuous
transformation. This also defines metric space, as a set with a global distance function,
where distances and angles between all of its elements are defined. Indoor space can than
be interpreted as a structure bounded by physical or functional elements, enabling hu-
man activities. It should entail the geometric place an actor is in, the topological structure
that place is a part of, and the semantics giving the place meaning.

Many indoor positioning methods have been developed, which can provide an actor
with a relative geometric place. Most preferred are positioning systems not relying on a
contingent system, which can be performed using a hybrid fusion of sensors embedded
into a mobile device. Such a system found to perform sufficiently is VI-SLAM, simulta-
neously building a geometric place and tracking each pose and heading relatively. Its
output can be formed as a mesh model, in which a viewshed of the indoor environment
is built.

From a mesh model, a topological structure can be derived in the form of its dual
graph. Now to finalize this representation of indoor space which can be captured using
a mobile device, it has to be enriched with a meaningful context. These semantics are
generally stored in BIM models, as a building representation based on AEC best practices.
Thus to transcend the position retrieved using SLAM to a location, is has to be matched
with a BIM model, so that the appertaining semantics can be connected.

The method proposed in this research provides for a possibility to perform graph-
based indoor localization, by extracting a graph from both input sources and comparing
them, in order to find a match. However different in nature and structure, both input
sources can be converted to a graph of similar calibre, such that they can be tested for
a match. All operations performed on the graphs are derived from spectral graph the-
ory. The graph simplification and analysis is performing using the eigen spectrum of the
graph Laplacian, and the match is performed by remapping the spectral graphs into a
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vector sub space using the eigen spectrum of the data covariance matrix.
After a match between both graphs is found, the current position of the actor within

the mesh model can be translated to the room found in the graph. This room is now
connected to a room within the reference graph, for which the semantics are stored in the
BIM. Returning these to the actor, a location description is formed.
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1 | Introduction

The release of Tango technology by Google provoked the interest of many, as it provided
opportunities for making indoor navigation widely attainable, as well as easily available
to the public. Tango technology was launched in 2014 as a platform for mobile 3D track-
ing and perception (Google, 2017a).

During Google’s 2015 I/O presentation, a lively picture for the necessity of Tango
technology was painted by Johnny Lee (Lee, 2015): "One of the core beliefs and ideas
behind this project is the fact that, when we place our mobile phones on a table, they
do not actually understand the things that are around them. They do not understand
the extents of the table, or the room that they are in." From this stance rises the aim of
the project: to develop "the hardware and software technologies to help everything and
everyone understand precisely where they are."

This sense of space is to be reached "using computer vision to give devices the ability
to understand their position relative to the world around them" (Google, 2017b). The
Lead Product Manager for Tango, Larry Yang, has stated: "We think that computer vision
to mobile devices is an inevitability. We’re trying to get ahead of that curve a little bit by
creating the software development platform that integrates the motion tracking and the
depth sensing to be able to create these interesting experiences" (Eddy, 2015).

Furthermore, Tango technology was released accompanied by an open call for de-
velopers to create applications that "explore physical space around the user, including
precise navigation (FIGURE 1.1) without GPS, windows into virtual 3D worlds, measure-
ment and scanning of spaces, and games that know where they are in the room what’s
around them" (Google, 2017b).

In order to showcase what Tango technology envisioned for indoor navigation, three
museum experiences were created for Tango enabled devices (FIGURE 1.2). The museums
lend Tango phones to visitors, with which they could navigate through specifically de-

FIGURE 1.1: Envisioned navigation functionality for Tango Technology. (Google, 2017a)
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FIGURE 1.2: Example of an AR museum navigation application in the Museu National d'Art de
Catalunya in Barcelona. (Retrieved from http://blog.guidigo.com/blog/

guidigo-presents-the-first-project-tango-app-capable-of-3d-indoor-geolocation/).

signed expositions. The applications existed of a limited set of Augmented Reality (AR)
overlays of pre-set routes, visualisations and additional information.

Though this is an example of indoor navigation on a commercially available hand-
held device, the applications used are specifically designed for the exposition in ques-
tion. The navigation markers were presented as a direct product of exploration, when
in fact they are predefined as AR elements connected to a set of 2D landmarks found by
image matching. A more comprehensive navigation solution would create an active data
connection between what data the visual system can capture and additional stored infor-
mation about the location. Using Indoor Mapping and Modelling (IMM) best practices the
model containing this information can be, at least partially, created using visual systems.
However, this process requires human involvement to account for the interpretation of
input data. Thus, a navigation model cannot be directly extracted from environment ex-
ploration (FIGURE 1.3), as it requires the construction of a context to navigate through. It
is this context which transcends a position into a meaningful location, which can provide
an actor with sufficient information for navigation.

The Tango project was discontinued in August of 2017, due to commercial reasons,
and replaced by the new ARCore (Google, n.d.). With this new project, the focus was re-
shifted to pure AR functionality on mobile devices (Matney, 2017). The motion tracking

FIGURE 1.3: Misalignment in the conceptual framework of the generation of a navigation model
between Tango aims, based on mobile robotics, and IMM common practices.
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methods applied were redefined as executing Concurrent Odometry and Mapping (COM)
in stead of Simultaneous Localization and Mapping (SLAM), or entailing the exploration
part of robot navigation (FIGURE 3.3).

Nonetheless, the notion of reaching an understanding of space using technologies
available on a mobile device remains interesting. A plethora of Location Based Ser-
vice (LBS), safety monitoring, surveying and other applications can be imagined, and
navigation through a museum exposition would only be the tip of the iceberg. If a digital
interpretation of the captured elements can be generated, a certain degree of understand-
ing of space can be reached.

1.1 | Problem De�nition

Indoor localization is a much researched subject (Xiao, Zhou, Yi, & Ni, 2016; Yassin et al.,
2016; Zafari, Gkelias, & Leung, 2017; Zlatanova et al., 2013), as the complexity and size
of many public buildings require extensive and properly designed methods to facilitate
location specific processes (Lemmens, 2013; Mautz, 2012; Zlatanova, Liu, Sithole, Zhao,
& Mortari, 2014). The methods created for such services outdoor cannot be translated
directly, new definitions of each component need to be defined (Mautz, 2012). A proper
localization process requires positioning into a semantically rich model of the physical
environment, or the simultaneous generation of both (Fuentes-Pacheco, Ruiz-Ascencio,
& Rendón-Mancha, 2012; Lemmens, 2013). In other words, the context of an indoor envi-
ronment has to be understood, such that a position can be transcended to a meaningful
location.

The target user for such a process would be any actor executing any type of task inside
a public building, thus an indoor localization system should be made easily attainable
to anyone. As the use of smartphones is widespread, the capabilities of such devices
lend themselves for outdoor localization as well, and many LBS are specifically aimed at
smartphones, ideally such a system would be designed in order to function on a mobile
device.

Thus, a mobile indoor positioning system should be applied, along with the avail-
ability of a contextual 3D building model to position the actor in, so that the combined
information defines the actors location. Part of the positioning system could be expected to
function autonomously, though the application of a contingent system greatly increases
positioning accuracy (Lemmens, 2013; Mautz, 2012; Yassin et al., 2016). A hybrid could
be composed, which would not require the instalment of a new network, and which can
function using the sensors typically built into a smartphone. An autonomously operating
process deemed sufficient for indoor positioning is found in SLAM, especially when based
on the integration of several different sensors (Fuentes-Pacheco et al., 2012; Zlatanova et
al., 2013). If an actors’ position can be integrated into a contextual map of indoor space,
the location can be determined. Such a map should be comprised of geometry, topology
and semantics (Isikdag et al., 2013). The geometry then represents the physical bound-
aries of indoor space, while the topology describes the connectedness and nearness of the
elements that form these boundaries. Semantics may represent the functional boundaries
of indoor space, as well as the context that transcends a position into a location.
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FIGURE 1.4: A conceptual depiction of the general solution proposed to performing indoor
localization. By matching the geometries of a polygonal mesh created on-the-�y and the same

element in a BIM model, an indoor location can be generated.

An autonomous SLAM process can output a polygonal mesh created on-the-fly as a
model of indoor space, containing its geometry and topology. The output model is used
as a map in which an actor can be positioned. Semantics describing building geometry
and topology are generally stored in a Building Information Model (BIM). The generation
of a real-time position of the actor operating the hand-held device into the semantically
rich map would generate active indoor localization.

The main objective of the research would then be to align a scan of an indoor environ-
ment, created on-the-fly, with a contextually rich model of the building that contains this
indoor environment. The actor capturing the scan would then be able to retrieve all se-
mantic information available about the environment itself and the objects it contains. An
overview of this connection between the available input, generated to create the desired
output can be found in FIGURE 1.4.

1.2 | Research Objectives

The aim of this research is to explore possibilities of performing indoor localization using
a mobile device. More specifically, the aim is to develop a method to teach a mobile de-
vice to understand its surroundings. This is to be reached by capturing the context and
all of its relevant meaning, in order to transcend data to information. As the relevance
of information is application dependent (Afyouni, Ray, & Claramunt, 2012), it should be
grouped and retrievable by a single marker, i.e.to find a location would be to find the
an id connected to information about the room an actor is in. Therefore, an established
standard should be used to store contextual information, so that each application can be
type-focused and be built upon the same principles. Then, the accessibility of contextual
information while on location enables a wide range of possible applications. The main
objective on a data level would then be to generate this single marker as a representation
of the connection between an indoor environment and an information source describing
its context. A method to perform this process is proposed, which is built on best practices
and underlying principles, taken from an interdisciplinary viewpoint. Sub-goals are de-
fined in order to create a foundation for this method, and each sub-goal is translated into
a sub-question guiding the research.
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1.2.1 | Understanding of Space

The subject is inspired by the underlying ambitions of Google’s project Tango (PAGE 1),
specifically the notion that computer vision on mobile devices can potentially reach an
understanding of space. In order to define what this understanding should entail, a the-
oretical inquiry is taken on the definition of space, its composition, and its context. A
conclusion is drawn as to what kind of data can represent indoor space such that it may
provide a basis for indoor localization.

1.2.2 | Indoor Positioning using a Mobile Device

The location of an actor is determined by his position, enriched with semantic informa-
tion. Thus, a mobile device performing indoor localization should be capable of finding
its indoor position, and allow for a transcendence of said position to a location using
contextual information. Many of the indoor positioning systems that have been imple-
mented thus far are contingent systems, usually depending on a specifically installed
infrastructure (Lemmens, 2013; Mautz, 2012; Yassin et al., 2016). These techniques would
only become commercially interesting if they can provide the consumer with an afford-
able and easily attainable solution, as currently owning a smartphone is the only require-
ment to utilize outdoor positioning techniques (Mautz, 2012; The Economist, 2012). Thus,
in order to make indoor localization easily attainable and available to the public, it should
be based on a well operating indoor positioning system. The system should be efficient
in both processing speed and memory usage, as it should function on a mobile device
in real-time. As the application of SLAM in robotics provides a solution basis for indoor
positioning (Zlatanova et al., 2013), its functionality is explored theoretically as well as
experimentally.

1.2.3 | Transcending a Position to a Location

Indoor localization entails understanding of the environment an actor is situated in, and
decisions an actor makes can be advised using this information. Thus, a model used
for localization should be able to provide an actor with semantic information about sur-
rounding elements, and to update which information is displayed according to the ac-
tors’ movement. This research includes a proposal for a way in which such an active
connection can be made. The principles behind the connection are based on the defini-
tion of indoor space and the functionality of real-time indoor positioning using SLAM, as
their culmination provides for a location. Thus, data characteristics that define indoor
space should be aligned, in order to match the data itself. The way in which the data can
be matched depends on the meaning behind each element, the structure in which it is
placed, and what characteristics are necessary in order to generate an appropriate match.
Furthermore, a positive outcome of a match should result in a localization output, as the
placement of the actor into the digital representation of the indoor environment. This
can be done either by returning semantic information to the user, or by registering the
captured data of the environment into the reference model, or both.
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1.3 | Problem Statement

The starting point of this research is the mesh model resulting from performing Visual
Inertial Simultaneous Localization and Mapping (VI-SLAM) on a hand held device. As
much research is available on analysing geometric structures in order to gain an under-
standing of the indoor space it represents, the first approach was aimed at matching the
geometries of the mesh and reference models.

A first interpretation was to filter out objects that could be translated into BIM ele-
ments, as often used in the creation of such models representing an as-built state (Volk
et al., 2014). Examples of extracting doors and walls from mesh models or point clouds
are Xiong, Adan, Akinci, and Huber (2013) and Thomson and Boehm (2015), where these
elements are found and directly translated into the output geometry type. Díaz-Vilariño,
Conde, Lagüela, and Lorenzo (2015), Hong et al. (2015), Khoshelham and Díaz-Vilariño
(2014) and Zeibak-Shini, Sacks, Ma, and Filin (2016) use the planar and regular compo-
sition of many building structures in order to extract walls and floors. Many of these
methods begin with semi-automatic registration of input data. However useful while
post-processing, an approach where data registration is not automated would not pro-
vide for a sufficient basis for indoor localization on a hand-held device, preferably exe-
cutable on-the-fly.

Díaz-Vilariño, Khoshelham, Martínez-Sánchez, and Arias (2015) use the intrinsic prop-
erties of a point cloud to determine its interior envelope, thus finding the direction of the
three main axes in the data. Based on these vectors, a rotation matrix can be built in order
to align the data to a new set of main axes. Finding these parameters would automate
model registration. Then, extracting building elements from the dataset would result in
finding geometry that can be matched with the reference model.

Inquiry of the data captured for this research proves that the model is based on
gravity-aware scanning. In other words, the normal vectors of the mesh pointing up-
wards should and do represent the floor (FIGURE 5.6). Furthermore, the general direction
of normal vectors anchored on each wall corresponds. However, finding the interior
envelope of the data based on clusters in normal directions does not lead to a rotation
matrix useful for registration to the world origin. This due to the fact that the model does
not entail the full enclosure of the indoor environment it represents. Realistically, neither
would any model captured using a hand-held device, due to actor handling and the lim-
ited FOV. However, if the model cannot be registered, its geometry cannot be aligned and
matched with reference geometry. Perhaps machine learning algorithms used to register
large sets of images would be capable of performing this action.

When handling the geometry of mesh models, a large factor is maintaining its topo-
logical integrity (Botsch et al., 2010). As the topological structure behind the geometry
holds a lot of important properties about the shapes captured, it should be maintained
through analysis and deformation. Though mesh handling common in computer graph-
ics, model building in IMM often entails handling pointclouds and even extracting these
from mesh models. This semi structured data type has proven sufficient for segmenta-
tion and extraction of building elements to build reference models. Furthermore, these
data points are easier to handle than the complex structures of mesh models. However,
already embedded topological information is again lost when performing these analyses.
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FIGURE 1.5: 3D scatterplot of normal vector directions for the mesh model in figure 5.4. The
colours represent the clusters found using k-means, the black dots their cluster centres. The clusters
are not distinct enough to use as a basis for a rotation matrix describing the data's exterior envelope.

A manner in which easy to handle data points can be used without losing the intrinsic
topological information of a dataset, is by extracting the dual graph of a mesh model.
The graph structure itself represents the composition of the model as well as many other
intrinsic properties, while geometric placement can be kept as an attribute (FIGURE 5.7).
Furthermore, no matter how different representations of an indoor environment may
be, the underlying structures should be the same, or at least similar, as the underlying
structure is that of the indoor environment itself.

The problem of transcending a position to a location becomes one of comparing the
structure of a set of captured positions to the structure of a reference location. From a data
perspective, a mesh model captured using a mobile device represents a set of positions,
while the added semantics transcends the geometry and topology of a BIM model to a
location. Extracting a graph to represent the underlying structure from both models and
matching these, would then provide for a means to perform indoor localization.

FIGURE 1.6: Segmentation of a point cloud extracted from the mesh model in figure 5.4.
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1.4 | Research Questions

The main question to be answered is defined as follows:

IN WHAT WAY CAN GRAPH-BASED INDOOR LOCALIZATION BE PERFORMED USING A MO-
BILE DEVICE, BY COMBINING SLAM AND A BIM MODEL?

The problem is broken down into a theoretical and a practical partition, where theoretical
research is executed in order to outline how data can define an indoor location. The local-
ization process is then interpreted as a data-matching problem, connecting the output of
real-time SLAM on a mobile device to a reference BIM model. According to the sub-goals,
the problem can be broken down into the following sub questions:

• WHAT CHARACTERISTICS OF INDOOR SPACE NEED TO BE UNDERSTOOD IN ORDER

TO LOCALIZE AN ACTOR?

• IN WHAT WAY CAN PERFORMING VI-SLAM A MOBILE DEVICE BE UTILIZED AS A

BASIS FOR INDOOR LOCALIZATION?

• IN WHAT WAY CAN A GRAPH MODEL OF AN INDOOR ENVIRONMENT BE ENRICHED

WITH SEMANTIC INFORMATION FROM A BIM?

1.5 | Research Scope

The research focuses at facilitating indoor localization, by defining the process as a data
matching problem. From this point of view stem the following assumptions and problem
perimeters:

• Localization is interpreted as positioning into a contextually rich map, containing
geometry, topology, and semantics (§ 2.2.2).

• The SLAM process is assumed to be capable of performing the positioning, and only
its output as a polygonal mesh is taken into account. Improvements on SLAM or
VI-SLAM as well as known issues in the process are out of scope.

• The output of the SLAM process contains a current position and trajectory of the
user, as points in R3 set over time. These points are stored relative to each point
describing the mesh model. As such, SLAM is assumed to perform a positioning
process. The method is devised to transcend this set of positions into a location, so
that the current position can be mapped to a location. Thus, finding and tracking a
position using SLAM is left out of scope.

• The main source for the contextually rich map is a BIM model, as a data standard
increasingly used to represent indoor environments. The model is assumed to rep-
resent the as-built state, and to be modelled according to IFC requirements. The use

8



of any other type of reference model, or a comparison between types of models are
out of scope.

• Any drawback to the sensors embedded into the mobile device is left out of scope.
Environmental conditions have influenced the quality of captured data and are
mentioned the experiment in appendix Appendix B, but the incorporation of vi-
sual systems is expected to provide sufficient information (Fuentes-Pacheco et al.,
2012). Furthermore, human actor handling generally makes a system quite error
prone. Provided the data collection is based on sensor fusion and the algorithms
used to stitch the output of several sources together are sufficiently robust, the error
range arising from human actor handling can be minimized (Girard et al., 2011).

• The geometric context of an indoor environment is defined by the shape of a room,
which can be generalized to the shape of its floor. How representation of a floor
and its surrounding walls could be extracted from a polygonal mesh is discussed
in this research.

• The mesh created is assumed to represent a (set of) room(s) on a single level. The
influence of height differences on the quality of the scan as made with the available
hard- and software is discussed in Appendix B.

• The floor library is assumed to be stored as ifcSlab standard case, which consists
of a polyline describing the footprint of the floor, extrusion depth and direction,
coordinates defining placement inside the BIM model, a unique id, and relevant
semantic information (§ 4.3). A similar assumption is made about the storage of the
walls extracted from the reference model.

• Matching the geometric position of an actor to the geometry of the model, allows
for the actor to retrieve the correct semantics, as they are attached to the correct ge-
ometry in the model. Therefore, positioning an actor into the model is performed by
comparing the geometry the actor captures of his environment to a library of match
candidates. The generation of a representative library containing valid geometries
is out of scope.

• The match itself is based on spectral graph theory. A comparison of graph matching
techniques or the optimization of the process are left out of scope. Some elements
which may influence the performance are mentioned.

The overall process that results in a mesh as result of performing VI-SLAM is defined by
the fields described in the THEORETICAL FRAMEWORK (FIGURE 1.7). Appurtenant de-
velopments are out of scope of this research, though highly influential to the quality of
the output. A more pertinent question is why a polygonal mesh as its output is a useful
representation of indoor space, and what that means to the conceptual understanding of
indoor localization. From this definition stems the approach to match permanent charac-
teristics of indoor space. The creation of the mesh is handled at a data level, accompanied
by the translation of what such a match would mean in the description of the indoor en-
vironment.
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FIGURE 1.7: Euler diagram of �elds that apply to the theoretical framework of this research.

1.6 | Research Relevance

The main problem to be solved is to design an indoor localization process that can be
made available on mobile devices. This is done by placing captured data inside a refer-
ence model as to position the capturing device. The information encapsulated into the
reference model can then provide for location information, by retrieving the correct se-
mantics. By displaying the information retrieved from the reference model, the method
can help an actor understand their surroundings. Then a navigation path can be derived
from the reference model and the heading can be determined using the Inertial Measure-
ment Unit (IMU) of the mobile device. The SLAM techniques used to built a model for
localization can be used to update said model in order to trace a reliable trajectory.

In designing this process, the core problem to solve is how to connect an actors current
position with the appertaining location in the reference model. For solving this problem,
a 3D representation of the indoor environment containing a set of positions relative to
each other is available, as well as a 3D building model containing building elements, con-
nectedness of elements and semantic information for each element. The desired output
is the actors current position relative to building model, so that the relation to building
elements is known and relevant semantic information can be retrieved. A solution is de-
vised by aligning position model to semantic model by comparing the floor of the former
to the set of floors embedded in the latter. As such, indoor localization is interpreted as a
data matching problem. In other words, both input sources are analysed and adapted to
a data format in which all information relevant for making a correct match is available.
A choice is made to solve this problem from a graph point-of-view, as this allows for effi-
cient and intuitive computation. Furthermore, a plethora of purely geometric approaches
is already available. In stead of adding to possible geometric solutions, this research aims
at exploring whether a different type of approach would be possible for retrieving pass-
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able results. Looking at the indoor localization problem from a non-geometric standpoint
may just result in insights necessary to further improve methods existing thus far.

The research entails the measurement and representation of indoor space as a struc-
ture embedding geometry, topology and semantics. The representation is assembled
from point clouds and trajectory, together building a polygonal mesh. Correct inter-
pretation of this geometric data results in a floor as the representation of indoor space,
which can be compared to a reference set. The registration of the floor into the connected
reference set builds a context, resulting in geometric information describing the indoor
environment as a place with meaning.

This process entails the representation of 3D objects in indoor space, as well as their
assembly. This information is then interpreted and reshaped , for efficient use in plan-
ning activities. The design of the full process adds to research & development in the field
of indoor localisation, as it is based on a new combination of techniques. All of this ac-
cording to what the field of Geomatics contains according to General Assembly of the
International Federation of Surveyors (FIG) (Lemmens, 2011, p13). As for the MSc Ge-
omatics course, data capture using Sensing Technologies is involved, as well as storage
and analysis according to Geographic Information System (GIS) and 3D Modelling the-
ory. Furthermore, the larger process is designed according to Location Awareness theory.
Lastly, the execution is done using Python Programming.

Zlatanova et al. (2013) created an overview of problems to be solved in the field of
IMM (FIGURE 1.8). All mentioned subjects from the Acquisition and Sensors category
are of strong influence on the quality and interpretation of the data, though out of scope.
The method designed aims at Discovering the context of space in a way that is useful
for all research fields involved (see FIGURE 1.7). This ties in to the challenge Zlatanova
et al. (2013) present as "to discover the context of environments automatically so that the
devices used for acquisition and modelling become universal." Furthermore, the match-
ing of a mesh model with a BIM overlaps with Integration with GIS/BIM. As concluded
in this research, the differences in interpretation of what a space is strongly affect the
possibilities of integration.

FIGURE 1.8: Overview of existing problems in IMM (Zlatanova et al., 2013).
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To extract a graph from a model created on-the-fly and to connect it with a reference
model containing semantic information allows for a plethora of possible applications.
Some examples:

• Performing indoor localization.

• Performing indoor navigation based on the extracted graph.

• Enable accurate and specific LBS.

• Enrich Ambient Assistent Living (AAL) systems with location information.

• Enable medical applications such as patient and equipment localization.

• Enable up-to-date location information for rescue services in case of an emergency.

• Enrich BIM with furniture.

• Monitor changes in buildings compared to the designed state or the updated stated
stored in BIM.

• Update existing BIM to an as-built state.

• Enable further data collection for construction and facility management according
to the precise location within the building (quantitative).

• Enable further information collection for construction and facility management ac-
cording to the precise location within the building (qualitative).

• Provide a more robust skeleton to built AR applications on, e.g. games, interactive
experiences, retail augmentation, navigation.

1.7 | Research Design

As defined in the PROBLEM DEFINITION, the possibilities of performing indoor local-
ization in real-time on a mobile device are explored in both a theoretical and practical
sense (FIGURE 1.9). The theoretical research is aimed at defining what characterizes in-
door space, and results in a TERMINOLOGY definition of all related concepts, from an
interdisciplinary viewpoint. If the defining characteristics of the context of indoor space
are known in terms of concept and data types, data structures to support indoor local-
ization can be identified. The THEORETICAL FRAMEWORK outlines concepts defining the
full process, from which theoretical and practical output can be derived. The analysis of
such a framework can lead to new insights in development, especially when a culmina-
tion of adjacent though often separately active research fields is required. Often, answers
to problems in one field could be found in another, if only a mutual understanding of
the problem definition can be reached. Contributions to be made to the discussion of
theoretical concepts and thus the further development of a scientific field can be found
in theory-oriented research (Verschuren & Doorewaard, 2010). Such a qualitative design
is best served in an iterative manner, where concepts are examined in case studies. The
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FIGURE 1.9: Research Design for exploring the possibilities of performing real-time indoor localization
on a mobile device.

principles underlying this process are evaluated theoretically as well as practically. The
core of the research is then aimed at the development of a METHODOLOGY for enabling
indoor localization by providing data alignment. IMPLEMENTATION & RESULTS of the
method simulation and principle evaluation are described and results are evaluated. Fi-
nally, CONCLUSIONS can be drawn and recommendation for further development of the
full system are made.
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2 | Terminology

This chapter introduces the main concepts concerning the presented research, and makes
discernments in the meaning of terms in different fields. On the one hand, a single con-
cept may be represented by diverging terms across disciplines, and on the other hand
similar terminology may represent completely different concepts. Mathematics lays a
common ground, a solid basis upon which many other theories can be built. As this field
contains the most universal language as well, its terminology is taken as reference.

2.1 | Space

Intuitively, we may perceive space as what cannot be seen or touched, as what is left
when every other instance around is defined. The term space has become an abstraction
of everything outside of the boundaries of everything else. Ekholm and Fridqvist (2000)
state that the general interpretation of a space is "an empty volume, enclosed in some
respect - materially or experientially". Merriam-Webster (2019) defines space as "a limited
extent in one, two or three dimensions", which can also be referred to as a volume.

In mathematics and philosophy, space has become what defines the boundaries of
everything embedded within. A definition more fitting to this description would be
"the unlimited expanse in which everything is located" (Wolfram|Alpha, 2019b) or "a
boundless three-dimensional extent in which objects and events occur and have relative
position and direction" (Merriam-Webster, 2019). A space represents a structure, often a
set with relational properties, to which all its members adhere, or "a set of mathematical
entities with a set of axioms of geometric character" (Merriam-Webster, 2019).

The characteristics of a type of space provide the context in which objects can be ex-
amined and represented. A type of space may inherit all the characteristics of a parent
space, thus adding further restrictions to embedded elements. Thus, a space often repre-
sents a grid in which a world can be represented. Each volumetric partition of said grid
not occupied by any element can intuitively be perceived as free space.

The space that completely envelops mathematical objects is called ambient space
(Wolfram|Alpha, 2019a). This distinction is made since objects can also be isolated from
ambient space, so that its intrinsic characteristics can be examined. The type of ambient
space determines the shape and representation of an object.
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FIGURE 2.1: Graph G and its dual G∗ (Weisstein, 2019a).

2.1.1 | Topological Space

Topology describes the relationships between (parts of) objects, that do not change under
continuous deformation (Huisman & de By, 2009). As these relations are intrinsic, and
thus invariant of ambient space, topology studies the construction of an object, rather
than its shape. It can be used to "abstract the inherent connectivity of objects while ignor-
ing their detailed form" (Weisstein, 2019c). A Topological Space is devoid of geometric
structure, so that the relations and characteristics of objects can be examined qualitatively.
The topology T on set X then defines topological space (X, T). Mapping an object into
an ambient space may change its geometrical properties, but its topological properties
remain.

The topology on set X, which contains a collection of open subsets {t}where t ∈ T as
well as empty subsets φ, is defined such that the intersection as well as the union of any
number of subsets is still open and part of T (Cromley, 1989; Edelsbrunner & Harer, 2010;
Weisstein, 2019c). In a more geometric definition, at least one neighbourhood N can be
defined for each point x ∈ X (Worboys & Duckham, 2004). The intersection of any two
neighbourhoods of x is in itself another neighbourhood of x.

2.1.1.1 Network Space

The topology of a set can be simplified to a graph structure G, embedded in a Net-
work Space that defines the topological connectedness between its members using an
unordered set of node pairs. A Graph G = (N ,L) is a set of nodes pairwise connected
by links which abstractly represent the connectivity between elements (Cromley, 1989;
Nourian, 2018; Worboys & Duckham, 2004). The type of data represented by a graph
is ambiguous and it does not need an ambient embedding. The dual G∗ of a graph can
be constructed by translating k-dimensional features to n− k-dimensional features in Rn

(Nourian, 2016; Weisstein, 2019a). For example, a 2D face in R2 is mapped to its dual
0D node, and connected to another node only of the concurring faces are adjacent (FIG-
URE 2.1).

The dimensionality of a geometric graph structure is also called the topological di-
mension, and this combinatorial topology can be expressed by the Euler characteristic χ
(EQUATION 2.1), using the number of faces F , edges E and vertices V (Edelsbrunner &
Harer, 2010). If two objects generalize to the same value of χ, while taking into account
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the number of boundaries and holes i.e. geni, they are homeomorphic, meaning they
would generalize to the same exact shape under topological transformation (Nourian,
2018).

χ = V − E +F (2.1)

2.1.1.2 Manifold

A Manifold can be seen as a topological space, which locally resembles Euclidean space
(Edelsbrunner & Harer, 2010; Rowland, 2019). Each point m of an n-dimensional mani-
fold M has an open neighbourhood N that is homeomorphic to an open neighbourhood
in En. Such a subset U of M can be charted to En using a reversible coordinate transfor-
mation function ϕ, and a collection of charts can fully represent a manifold. The chart is
then defined by ordered pair (U, ϕ). Lower dimension orientable manifolds can be fully
represented in Rn space through a finite triangulation, and may be imposed with a metric
for quantitative analysis.

2.1.2 | Metric Space

Metric Space is "a set with a global distance function, that for every two of the set’s
points gives the distance between them as non-negative real number" (Weisstein, 2019b),
or the structure in which distances between all members can be defined (Worboys &
Duckham, 2004). A metric, as ordered pair (S, d) can be imposed on a set S of arbitrary
type, by defining how a shortest distance d between two members can be calculated. A
structure is a complete metric when this shortest distance between two points is defined
by a straight line, i.e. d(s, t) = |t − s|, s, t ∈ Rn. Metric space has a natural topology
based on the notion of proximity, as for each point a set of nearest neighbours can be
found based on distance, and such a neighbourhood forms an open set (Munch, 2017;
Worboys & Duckham, 2004).

2.1.2.1 Euclidean Space

The complete metric set of which all members are directly related in terms of distance and
angle, is called the Euclidean Space En (Worboys & Duckham, 2004). It contains all n-
tuples of real numbers (Stover & Weisstein, 2019) and provides for an intuitive abstraction
of physical space without a specific origin. It defines the structure of the real vector space
Rn of the same dimension1.

When modelling 3D Euclidean space by real coordinates using f : E3 → R3, each
point is defined an ordered set of three coordinates p = (X, Y, Z)T, related to an arbitrar-
ily defined origin (Huisman & de By, 2009). Each point can be related to each other point
directly, using angle and distance.

1https://math.stackexchange.com/questions/831048/difference-between-euclidean-space-and

-vector-space
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FIGURE 2.2: Hierarchy of coordinate transformations in R2 and R3 according to how many
characteristics are preserved (Szeliski, 2010).

2.1.3 | Coordinate Mapping

Members of a space can be indexed using coordinates, by imposing a coordinate frame
upon the structure. Each object can then be defined by coordinates, of which the ordering
depends on the characteristics of the specific space. Each spatial property can then be
accessed by sets of real numbers (Huisman & de By, 2009; Worboys & Duckham, 2004).

Coordinate systems can be used to map members of one type of space to another,
using coordinate transformations (FIGURE 2.2). The type of transformation necessary
fully depends on the characteristics of the objects to be mapped, and the type of relation
that needs to be preserved (Marel, 2016; Szeliski, 2010; Worboys & Duckham, 2004). For
each transformation, a function f can be built that maps set S to image T, so that each
member of the original set relates to exactly one member of the created set, as f : S→ T.

2.1.3.1 Real Coordinate Space

Real Coordinate Space Rn then is a set of vectors, which represent all quantities that can
be placed along a line. The coordinate of this value is denoted as a single real number in
1D-space, R1. By expanding this continuous 1D field to a second dimension, the coordi-
nates of each value in this 2D space R2 consist of an ordered pair of real numbers, and so
on. A real coordinate space is per definition metric, as each coordinate value measures
the distance between a point and the systems’ main axes.

2.1.3.2 Cartesian System

The position of an object in Euclidean space can be represented in a Cartesian Coordinate
System, which represents a regular rectangular grid to map the earth (Barile, 2019; Huis-
man & de By, 2009). Though in essence its origin is arbitrary, it is most commonly chosen
at the centre of the earth (geocentric), at a point on the surface of the earth (topocentric),
or at the heart of a sensor (Marel, 2016).

Each position in a Cartesian system can be represented by the Cartesian product, i.e. a
3D position is described by an ordered set of three real numbers R3 = R×R×R. Such a
system is uniquely defined by a a rotation matrix R(ΩX, ΩY, ΩZ) and a translation vector
t = (tX, tY, tZ)

T.
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2.1.4 | Indoor Space

In order to design a method to teach a mobile device to understand the space around it, a
clear definition of that space is necessary, in terms of concepts and data types. A plethora
of definitions is available, however rarely useful in multidisciplinary work.

Often, a space is defined in terms of either place, boundaries or function. For example,
Huisman and de By (2009) describe a geographic space as a place that has a position on
the face of the earth. In the OGC CityGML standard, indoor space is inside one or multiple
buildings, bounded by architectural components (Lee et al., 2016). The IFC standard (ISO
16739) mentions enclosure of an area, as well as the fact that a specific function can be exe-
cuted in a space. This space is bounded either by a functional transition, or a geometrical
border.

However, mathematically speaking, a space is a structure that defines the charac-
teristics and representation of everything inside that space (§ 2.1). Thus a space is not
determined by how it is bounded, but by how it defines what is inside. A single type of
space representation does not exclude the possibility of mapping an object into another.
The physical world may be represented in several dimensions of ambient space, as to
capture its complexity.

Thus, Ekholm and Fridqvist (2000) set out to form a definition of space as a property
applicable to Architecture, Engineering & Construction (AEC). They acknowledge that
the concept of space has received the dual interpretation described before, leading to
discrepancies in designing automated processes encompassing space. They limit their
conclusion to a construction entity space, as "an aspectual unit based on a spatial view
on the construction entity". Zlatanova et al. (2014) further mention that interpretations of
indoor spaces become far more complex, and define indoor spaces as artificial constructs,
designed and developed for human activities.

Forming a definition encompassing the conceptual and mathematical complexity of
indoor space would lead to it defining every instance of influence to its meaning, embed-
ding everything inside. The restriction indoor does define a boundary, not to the space,
but to the elements of the physical world which may be embedded into indoor space.

A full representation of this indoor space would allow an actor to execute activities as
positioning, localization and navigation (§ 2.2.2), which would require geometric, topo-
logical and semantic information (Isikdag et al., 2013). The complex indoor space can
thus be modelled threefold (FIGURE 2.3): the geometric place can be modelled in Eu-
clidean space (§ 2.1.2), with positions (X, Y, Z)T ∈ R3. The connectivity and boundaries
can be modelled in topological space (§ 2.1.1) as a primal 2-manifold surface S and its
dual graph G∗. The function of each element can be modelled in semantic space, as a
set of characteristics embedded as attributes of each element. As such, a space can be
occupied by elements, compliant to the rules of the structure. The inherent organization
has a great influence on how a representation of indoor space can be built, and on how it
relates to the physical world. Understanding these implications by mathematically defin-
ing the type of models at hand, can aid in understanding how encountered problems can
be solved.
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FIGURE 2.3: Interrelated models required for indoor positioning, localization and navigation. Above
the primal representation required in its subsequent space, below each dual model. Based on Isikdag

et al. (2013).

2.2 | Mapping Indoor Space

A context is the structure that describes how data is collected, stored, interpreted and
used (Worboys & Duckham, 2004). Collection results in data, as measured numerical
values that represent an object of study, or different entities of interest (Munch, 2017;
Worboys & Duckham, 2004). Embedding elements of said data into a context results in
a translation to information (Worboys & Duckham, 2004). A starting point is often a
viewshed, as a map of all points visible from a location (Worboys & Duckham, 2004).

2.2.1 | Mapping the Physical Environment

A physical environment can be simplified into a model, in which each object embedded
into the environment is represented by data points. A geometric representation of these
objects results in a map of the environment.

The formal representation of an object as dictated by its ambient space is found in
geometry (Worboys & Duckham, 2004). Thus an object is placed in a structure, which
arranges elements and their relationships (Huisman & de By, 2009; Marel, 2016). The
type of structure objects are placed in depends on the embedding type of space, and
determines nomenclature of elements (TABLE 2.1). Physical objects are mostly placed
into Euclidean space, and can be simplified to piecewise linear geometrical objects. Ab-
stract generalisation of said objects can be made using differential geometry, which can
be transformed into a topological structure. Algebraic topology decomposes the local
object structure, which can be further abstracted using Graph Theory. As such, an indoor
environment can be modelled directly using geometry and topology.

Elements of a structure can be indexed, by imposing a coordinate system upon it
(Worboys & Duckham, 2004). The physical environment is most often represented in
Euclidean space, upon which a geometric system can be imposed, which continually de-
fines the distance between the full extent of an element and the system origin (Botsch et
al., 2010; Huisman & de By, 2009; Marel, 2016). Similarly, Geodesic or Spherical coordi-
nates are used to map spherical space, as the angle of rotation of an element with respect
to the system origin (Huisman & de By, 2009; Marel, 2016). A coordinate transformation
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can be executed in order to chart elements of spherical space to Euclidean space, and vice
versa. Similarly, a 2-manifold surface can be charted to parametric space, by transform-
ing the surface coordinates (Botsch et al., 2010). The mathematical similarity is seen in the
assumption that a 2-manifold can be represented in R, as can a spherical object, while lo-
cally resembling 2D Euclidean space. Thus, the representation of a physical environment
can be placed into a physical context, as well as simplified in order represent information
of interest only.

The interpretation of geometric objects is executed by attaching semantics, or to study
its meaning Merriam-Webster (2019). The definition of a meaning diverges strongly per
field, according to the boundary conditions for object definition. In IMM, semantics is
meaning given to objects, as a clear definition of building elements as well as their prop-
erties and functional states, and as usage of spaces (Isikdag et al., 2013).

2.2.2 | Positioning, Localization & Navigation

If data consists of numerical values and context translates it to information, such a tran-
scendence can be made in indoor applications specifically as well. Pure positioning en-
tails finding a point or area occupied by a physical object or person (Groves, 2013; Mautz,
2012). This term is most used as to find a position p = (X, Y, Z)T ∈ R3, relative to
the systems’ origin. Contrasting to the quantitative position, a location entails finding a
qualitative description of the occupied area (Groves, 2013). Providing semantic context
for a position would then allow an actor to find a location with a specific meaning, or
to perform localization. It requires topological correctness of sensors used to determine
the underlying position, and precise accuracy of is generally of less importance (Mautz,
2012). Based on either position or location, an actor can execute navigation, as determin-
ing heading and velocity of the current trajectory, and being guided along an optimal
path to the destination (Groves, 2013; Mautz, 2012).

N-D EUCLIDEAN PIECEWISE LINEAR DIFFERENTIAL ALGEBRAIC GRAPH

GEOMETRY GEOMETRY GEOMETRY TOPOLOGY THEORY

0D Point Point Point Vertex Node
1D Line Line-Segment Curve Edge Link
2D Plane Polygon Surface Face Cycle
3D Hyper-Plane Polyhedron Solid Body Clique

TABLE 2.1: Terminology for object members in several geometrical and topological �elds, according
to the dimensionality of the represented object. Based on Nourian (2018).
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FIGURE 2.4: Di�erences between positioning, localization and navigation for indoor situations.
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3 | Theoretical Framework

The following chapter describes the theoretical framework underlying real-time indoor
localization on a mobile device. IMM is introduced as a multidisciplinary field (§ 3.1),
which aims at aligning common practices from adjacent fields in order to solve problems
in the complex indoor environment. As such, extensive research into indoor positioning
methods (§ 3.1.2) has led to a solution from mobile robotics and computational geometry,
SLAM (§ 3.2). Similarly, using computer vision, this practice has expanded to performing
VI-SLAM as a method to perform the process as autonomously as possible (§ 3.3). As the
process requires the storage of both position of elements and nearness, it is common to
save its geometry as well as its topology, e.g. in a polygonal mesh (§ 3.4). The topological
structure can be analysed using spectral graph theory (§ 3.5). The relations between the
mentioned fields are visualized in FIGURE 1.7.

3.1 | Indoor Mapping and Modelling (IMM)

Indoor Mapping and Modelling (IMM), in itself a multidisciplinary field, has benefited
from technological advancements in many disciplines, e.g. sensor development, com-
puter vision, robot navigation and 3D visualization (Zlatanova et al., 2013). While pri-
marily developed as providing tools for professionals, mainly in the AEC sector, a grow-
ing commercial interest in location based information has instigated an expansion upon
the field, as to create IMM models, such that they can become widely attainable and avail-
able (Worboys, 2011). IMM requirements are now widened to incorporate facility man-
agement applications as well, though most requirements and uncertainties applying to
existing buildings have not been considered yet (Volk et al., 2014). However, the increas-
ing use of applications requiring indoor models in new buildings instigates a call for
applicability in existing buildings as well. The adoption of these requirements in IMM for
existing buildings implies a large set of use cases.

A solid manner of representing the indoor environment is found in BIM, as a means of
representing geometry, topology and semantics, along with the possibility to connect ad-
ditional required information to relevant elements (Hichri, Stefani, Luca, & Veron, 2013;
Isikdag et al., 2013; Zlatanova et al., 2013). The incorporation of these interrelated infor-
mation layers results in a rich model fit for many indoor applications (FIGURE 2.3). The
primal layers should be directly stored and allow for retrieval and supply of information
as well as visualization. The dual layers may be extracted for efficient computation and
provide information on geometrical, topological and semantic relations.
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FIGURE 3.1: General breakdown structure of an IFC model (Borrmann et al., 2017).

3.1.1 | Building Information Model (BIM)

BIM was created to represent both form and function of a building, stored as geometry
and semantics, to provide for an information resource in all processes describing the life
cycle of a building (BuildingSMART, 2016). It is built upon the open standard IFC (ISO
16739), which allows for encoding and transporting necessary data and information.

The Industry Foundation Classes (IFC) was instigated as an initiative to facilitate in-
teroperability in the building sector, as to speak the same language industry wide. The
standard allowed the AEC sector to digitally define building and infrastructure elements
as rich objects, accompanied by semantics and further informational attributes. The in-
tegration of many standards and definitions has lead to a plethora of incorporated at-
tributes, and the possibility to simultaneously store an object under different types of
definitions. In an effort to prevent incomplete models, set of elements was defined as
integral.

The overall structure of the data model is divided into spatial and functional defini-
tions (FIGURE 3.1), where each component is represented by its geometry and semantics,
and the type class of objects it belongs to. A type of spatial structure relevant to IMM is
the class ifcBuilding, a required instance of the ifcProject. Central elements are then
required to be stored as ifcBuildingElements, which contains a set of central elements to
bound indoor space (§ C.1). The empty volumes in between may be defined as ifcSpace,
representing a function imposed within a single or multiple rooms.

As such, the definition of geometric representation of building elements attributed
with semantics builds a rich 3D model for IMM. Furthermore, a certain degree of close-
ness of elements may be extracted from the natural topology of the 3D Euclidean space
the geometry is mapped in (§ 2.1.2). For many objects the placement is defined as rela-
tive to a related object, and some attributes are available for direct storage of topological
information as well, as part of the class ifcRelationship.

Most available BIM models represent buildings in an as-planned state, as the model
was generated as part of the design process (Ptrucean et al., 2015; Volk et al., 2014).
However, a growing interest in as-built models requires extensive research into efficient
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FIGURE 3.2: Classi�cation of BIM creation processes (Volk et al., 2014).

and precise modelling of existing buildings, directly requiring further development of
IMM methods. Much research is taken into more and more automated scan-to-BIM pro-
cesses, e.g. (Armeni et al., 2016; Ochmann, Vock, Wessel, & Klein, 2016; Thomson &
Boehm, 2015; Zeibak-Shini et al., 2016). However, little research is taken into updating
existing models, though integral to the use of the model throughout the building life-
cycle (FIGURE 3.2).

As part of the envisioned technical applications for BIM, the localization of building
elements remains a problem to be solved (Costin, Pradhananga, & Teizer, 2012; Volk et
al., 2014; Zhou, Ding, Wang, Truijens, & Luo, 2015). Current research leans toward the
adoption of pure positioning methods like RFID, and manually finding relative coordi-
nates within the model.

3.1.2 | Indoor Positioning Methods

Having outdoor positioning working smoothly, indoor positioning started as an exten-
sion thereupon, using similar systems (Yassin et al., 2016). The Global Navigation Satel-
lite System (GNSS) radio waves used in outdoor positioning cannot penetrate walls, and
thus are rendered useless in indoor environments. The principle of Radio Frequency
Identification (RFID) positioning should be adoptable, using radio waves from terrestrial
access networks, e.g.cell towers. Though the principal has proven to work for close-range
positioning, accuracy remains low and significant errors still arise (Mautz, 2012; Yassin
et al., 2016). The great length of radio waves makes it difficult to achieve accuracy on
an indoor level. In an attempt to resolve these issues, systems combining different radio
signal positioning methods have been designed. However, the need for accurate time
synchronization in these systems leads to costly constructions, and are therefore not fit
for consumer use.

Indoor positioning methods have thus been expanded beyond using radio waves,
towards other types of sensor networks, e.g. Global System for Mobile Communica-
tions (GSM), Universal Mobile Telecommunication System (UMTS), or wireless commu-
nication using Long Term Evolution (LTE) on a long range, and Bluetooth or Wireless
Local Area Network (WLAN) on a short range. Though a much higher accuracy can be
reached using these networks, they cannot always be available everywhere. Further-
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more, the specific installation of an indoor positioning network can again be costly, and
therefore not viable as a broadly implemented system. In order to circumvent additional
investments, these systems could be based on existing sensor networks. However, the
accuracy of systems designed for maximum coverage in stead of indoor positioning is
not sufficient either, especially for floor identification (Bot, Braaksma, Braggaar, Ligtvoet,
& Staats, 2016; Mautz, 2012).

As opposed to relying on contingent systems, a device can utilize its built-in Micro
Electro Mechanical Systems (MEMS) to perform relative positioning autonomously (Lem-
mens, 2013; Yassin et al., 2016). Such inertial systems have proven to be capable of return-
ing accurate results. However, in consumer applications low-cost MEMS are used, again
deteriorating the reliability of the output. Though many noise reducing algorithms are
available, the regained accuracy is not deemed sufficient for indoor positioning.

Promising solutions are found in the hybrid fusion of different sensors, e.g. IMU and
cameras (Mautz, 2012). Especially on (sub)room level, required accuracy for indoor ap-
plications can be reached by utilization of Red-Green-Blue-Depth (RGB-D) imagery .

Theoretically, the hybridization of autonomous and contingent systems would result
in a most optimal solution, though Mautz (2012) state that reliance on context information
from a 3D building model would mean no network is necessary to reach the same level
of accuracy and coverage.

3.2 | Simultaneous Localization and Mapping (SLAM)

In the field of mobile robotics, SLAM is executed in order to perform navigation by po-
sitioning a robot in real-time, while building a context around it. Simultaneous Local-
ization and Mapping (SLAM) encompasses the realisation that localization and mapping
operations are best executed simultaneously, as both enhance the quality of the other
(Fuentes-Pacheco et al., 2012). It must be noted that the definition of localization in mo-
bile robotics is devoid of context, thus entails a positioning process (§ 2.2.2) and will
further be referenced as such.

The SLAM process requires the robot to track its position xk relative to former posi-
tions, the heading vk chosen from each position, and the relative position mi of each
landmark in sight (Bailey & Durrant-Whyte, 2006). The position and heading at a certain
moment in time comprise the pose (xk, vk) of the robot. The set of these vectors form a
geometric map and trajectory in E3 space. Each collected landmark is an edge or cor-
ner point easily detectable by a camera from every angle, as it strongly contrasts with its
environment (Fuentes-Pacheco et al., 2012). Indoor, door and window frames as well as
floor edges generally fit this purpose.

3.2.1 | Robot Navigation

Robot navigation is comprised of different categories (FIGURE 3.3), all of which contribute
to an accurate and usable representation of the real world (Stachniss, 2009). Mapping is
the combination of gathered data describing the surroundings, integrated into a useful
representation for real-time positioning and navigation. Localization is then pose estima-
tion, relative to a map or data model. Using only the map collected in real-time, this pro-
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FIGURE 3.3: Concepts of robot navigation (Stachniss, 2009).

cess entails positioning (§ 2.2.2). Path planning entails the determination of free space and
the navigation through it. Different combinations of these tasks have been researched,
in order to solve the robot navigation problem. The culmination of all three is called
Simultaneous Planning, Localization and Mapping (SPLAM). At the end of this process, a
robot is expected to have built a full map of the environment, as well as have determined
its pose inside it and being capable of navigating through it.

3.2.2 | Computer Vision

The science of computer vision entails attempts to create systems as capable of imag-
ing and interpreting an environment as human vision (Szeliski, 2010). However, the
computer is generally left with insufficient contextual information for recovering the un-
knowns in environment interpretation. What is to be interpreted is usually so complex,
researchers are still aiming to reach the depth of knowledge necessary to understand each
aspect of our every day environment (Zlatanova et al., 2013).

Computer vision has proven to successfully recreate geometric information, enriched
with attributes that can be gathered using light (Szeliski, 2010). Generally, Red-Green-
Blue Imaging (RGB) cameras are used to capture e.g. colour and illumination, but the
additional use of Infra Red (IR) in RGB-D cameras has increased the range of collectible
information. However, perception of what is captured remains a seemingly impossible
task. Promise may lie in a combined system, where more complex steps in information
interpretation are left to humans, after the computer has analysed all it can, using the
limited amount of contextual information it can gather.

3.2.3 | Visual Inertial Simultaneous Localization and Mapping (VI-SLAM)

Much research has gone into the improvement of SLAM systems, by using different types
of data sources in order to obtain more accurate results (Fuentes-Pacheco et al., 2012).
Over time, a tendency has arisen towards vision based systems, as these are capable
of obtaining the widest range of information using a single type of sensor. Cameras
can perform object detection and recognition, as well as obtain information about range
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and the appearance of the environment. Furthermore, they are attainable, affordable,
lightweight, portable, low on power consumption and intuitively appealing (Riisgaard
& Blas, 2004).

In order to improve visual SLAM systems, the output can be enhanced using Visual-
Inertial Odometry (VIO). This visual-inertial approach was created to increase accuracy
and robustness of the system. Further enrichment to VI-SLAM can be provided by stereo
configurations, which provide easy and accurate calculation possibilities for the 3D posi-
tions of detected landmarks, through triangulation.

A core step in VI-SLAM is the detection of keyframes, as a captured image or video
frame containing a sufficient amount of landmarks and different enough from the former
(Fuentes-Pacheco et al., 2012). They are used to efficiently estimate the pose of the sensor
and to reduce information redundancy.

Still, visual systems are fairly error prone. Fuentes-Pacheco et al. (2012) have listed
known issues in visual systems, as much of the research takes many of these issues for
granted due to the heavy weight of the benefits. A first setback is the limited range of
visual systems, rendering VI-SLAM for external and large scale environments too great a
challenge in many cases. As visual systems depend on feature detection, environments
with too many or too little salient features become difficult to handle. Visual repetition
in an environment causes mismatches, resulting in sudden displacement in the map, or
erroneous corrections to it. A dynamic environment causes the VI-SLAM algorithm to reg-
ister too little known features to perform accurately, which leads to unpredictable errors.
Purely from a sensor point of view, erratic movements and occlusion of the camera lead
to errors as well. The movement of the camera is expected to be smooth and consistent,
which can be controlled when the camera is carried by a robot. To some extent, the issues
arising from human sensor handling can be solved using keyframes and actor training.

As concluded in § 3.1.2, providing a hybrid and integrated solution incorporating
the input from several sensors would increase the performance of a positioning sys-
tem (Groves, 2013). From a taxonomy of positioning methods perspective (FIGURE 3.4),
VI-SLAM does incorporate as much information that can be drawn from environmental
features as possible.

3.2.4 | Related Work

Some interesting recent developments in the field of SLAM have been published by Dos
Santos et al. (2016); Gálvez-López, Salas, Tardós, and Montiel (2016); Lopez-Antequera,
Petkov, and Gonzalez-Jimenez (2016); Moteki, Yamaguchi, Karasudani, and Yoshitake
(2016); Sattler, Weyand, Leibe, and Kobbelt (2012).

3.3 | Performing VI-SLAM on a mobile device

As explained in § 3.2, the process for performing indoor positioning with VI-SLAM entails
utilizing a devices’ visual system (§ 3.3.1) and IMU (§ 3.3.2) in order to simultaneously
perform mapping (§ 3.3.3) and positioning (§ 3.3.4) tasks. The following explores how
such a process would be executed, to determine how its functionality can be examined.
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FIGURE 3.4: Taxonomy of positioning principles (Groves, 2013).

3.3.1 | RGB-D Cameras

In the capture of close range environments, passive stereo vision has been accumulated
into best practices for a long time, despite the inability of these systems to capture diffi-
cult scenes, containing few features or reflective surfaces. Not considering lighting con-
ditions, cameras are capable of gathering sufficient information to geometrically model
the environment (Szeliski, 2010). Other well known problems may result in measurement
errors, e.g. sudden movement of the sensor. Errors caused by actors could be limited, by
applying direct training, through remarks that the actor should scan sharp edges from
different angles and preferably with a rotated camera also, as to increase the accuracy of
landmark detection (Zafari et al., 2017).

Konolige (2010) has proven that the combination of structured light patterns and
stereo vision is capable of handling challenging scenes. The same problem has also been
addressed using time-of-flight systems by Henry, Krainin, Herbst, Ren, and Fox (2010a).
The culmination of different environment capturing approaches can be provided in RGB-D
cameras, which are often turned into active sensors by the incorporation of an IR emit-
ter. The images captured by these cameras store depth values per pixel, in addition to
the colour. The depth then defines the distance between the image plane and the ob-
ject a pixel represents. From these 2.5D images, a frame-by-frame point cloud is created
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FIGURE 3.5: A frame by frame point cloud created using a VI-SLAM process.

(FIGURE 3.5), which is stitched together by the SLAM algorithm used.
Another drawback to vision-based systems is the limited Field of View (FOV) cam-

eras generally provide. This problem might be solved by the integration of a fisheye
camera, in order to capture a broader partition of the scene, also providing for stereo vi-
sion. However, image distortion is much stronger in this type of camera, requiring solid
and active camera calibration (Remondino & El-Hakim, 2006). Access to the camera’s
intrinsic parameters allows for a useful evaluation of suitability for the performance of
VI-SLAM. Calculations to relate the captured image to the real world can be made us-
ing EQUATION 3.1, according to the intrinsics K in FIGURE 3.6. It further includes focal
lengths ( fx, fy), preferably in pixels, and image skewness s.

K =

 fx s x0
0 fy y0
0 0 1

 (3.1)

Most accurate results will stem from applying sensor fusion (Fuentes-Pacheco et al.,
2012; Mautz, 2012; Rebolj, Pucko, Babic, Bizjak, & Mongus, 2017; Yassin et al., 2016; Zafari
et al., 2017), where the interpolated depth value then represents the most accurate depth
for a single pixel. However, the integration of all of these high quality sensors may result
in a hefty and costly solution for consumer grade devices. Concessions could be made
by including sensors of less quality, or by utilizing e.g. either stereo vision or depth sens-
ing. The growing attention for visual systems in home entertainment and gaming has
pushed the development of these devices towards high quality gear for consumer grade
prices (Huang et al., 2017).

29



FIGURE 3.6: Intrinsic camera parameters, with principal point or optical centre (x0, y0) as the
translation from the actual image plane origin, cs. The projection centre or nodal point

Oc = (XC, YC, ZC) marks the camera coordinate frame origin, accompanied by the camera constant
C as distance between the principal point and the projection centre, and (sx, sy) are pixel spacings

(Szeliski, 2010).

3.3.2 | Trajectory Tracking

Endres et al. (2012) state that in order to smoothly execute SLAM using RGB-D, the camera
trajectory should be estimated concurrently to the creation of a 3D model. The estimated
pose graph then increases the quality of the model created, an implementation that works
well on devices not including an integrated IMU. The estimation of a trajectory is part of
the SLAM process according to Bailey and Durrant-Whyte (2006), as the current pose and
heading are constantly stored (§ 3.2). Thus, the trajectory and the model of the environ-
ment can be updated an corrected simultaneously, as a way to improve the accuracy of
the process.

The keyframes captured by a visual system can be used as an input to computing a
trajectory, using the cameras extrinsic parameter matrix [R|t] (FIGURE 3.7). These param-
eters lie at the basis of the coordinate transformation applied to relate the image to real
world coordinates (FIGURE 2.2), and can be used to perform position calculations based
on methods in photogrammetry (Lemmens, 2011), using EQUATION 3.2.

[R|t] =

 R00 R10 R20 | tX
R01 R11 R21 | tY
R02 R02 R22 | tZ

 (3.2)

A more reliable trajectory is composed of tracking of positions over time by all in-
corporated sensors (Mautz, 2012). Then, gross errors, e.g. sudden movement, can be
accounted for. By comparing both trajectories, or at least the points a trajectory contains,
drift correction can be applied. On the small scale it corrects misalignment between con-
current point cloud frames (FIGURE 3.5), stitching them together as precisely as possible.
On the larger scale, drift in the trajectory itself can be corrected when a sufficient amount
of landmarks is recognized that should be placed at different position than currently ap-
parent from the trajectory (FIGURE 3.8).
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FIGURE 3.7: Extrinsic camera perimeters, with real-world coordinates of object P = (X, Y, Z),
real-world coordinates of the camera projection centre O = (Xw, Yw, Zw) and Euler rotations around

the projection centre (ω, ϕ, κ) (Lemmens, 2011). The Euclidean di�erence between P and O is
transformation vector t = (tX , tY, tZ)

T and the rotations can be generalized to rotation matrix R.

3.3.3 | Mapping

As explained in § 3.2, the SLAM process positions an actor while simultaneously building
a map around it. Bailey and Durrant-Whyte (2006) present this map as containing time
ordered sets of vehicle positions xi, control points ui, environment landmarks mn and
landmark observations zi. Many different algorithms have been developed in order to
build a reliable map and trajectory from these observation sets. In the field of mobile
robotics, such a purely geometric map may provide sufficient information. However, for
a coherent representation of indoor space, more information is needed (§ 2.1.4).

So far in 3D IMM, the topological information is extracted from 2D floor plans and
assumes that rooms are empty. However, a 2D plan layering approach is very prone to
errors (Zlatanova et al., 2014). Many plans are not up to date, or represent the designed
structure rather than the current state. An effort could be made to update floor plans to
an as-built state, though this effort would not solve the problems at hand. A more viable
solution would be to fully create 3D models of the indoor environment. This is generally
done by capturing a point cloud of the environment, from which its geometry can be
extracted. The model can then be used to extract topological information from.

Another method would be to build a topological structure simultaneously to the geo-
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FIGURE 3.8: Large scale drift correction applied to improve the quality of the output model. Here,
the stored trajectory is shown (blue), which is corrected to the actual trajectory (green) after

recognizing a landmark placed earlier in the loop (Google, 2017b)

.

metrical one. This would require an integrated process, continuously updating both the
geometry and the topology. The algorithms performing a SLAM process could be utilized
to build this topological structure alongside the geometry, therefore enriching the created
map to an information model. Such a model could be stored as a polygonal mesh (§ 3.4),
and be created and updated on-the-fly (FIGURE 3.9).

The captured data is prepared for mesh storage, by applying constant transforma-
tions. Successive point cloud frames are stitched together, as images (Szeliski, 2010).
First, the correspondence between each frame is sought, as a matching of features ap-
parent in both keyframes compared. Second, the transformation parameters describing
positional differences are determined (§ 2.1.3), as the difference in extrinsic parameters
from both frames. Third, transformations are applied in order to align the frames. Most
often this is done using bundle adjustment, as the extrinsic parameters for a large collec-
tion of datasets is adjusted simultaneously. Fourth, the aligned frames are composited.
The transformation generalizes to f : p → p′, where in the least the intrinsics K and
extrinsics [R|t] are applied.

In essence, the rotation is described as a set of Euler rotations. These axis-angle ro-
tations are sensitive to the order of execution, and thus unstable (Szeliski, 2010). A gen-
eral axis-angle description may be much more useful, as EQUATION 3.3, using rotation θ
around axis e and identity matrix I. However, the outcome may be ambiguous. A most
stable rotation representation would be a quaternion q = (x, y, z, w), describing rotations
on the unit sphere ||q|| = 1, where each member of the quaternion describes an axis
relation (FIGURE 3.10).

Rn = I + sinθ × n + (1− cosθ)× n2 (3.3)

3.3.4 | Positioning

While executing the SLAM process, a current position is constantly updated according
to the built map, continuously updating the trajectory. If executed autonomously the
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FIGURE 3.9: Polygonal mesh of the scene in figure 3.5, created on-the-�y.

process functions as dead reckoning (FIGURE 3.11), where further movement from the
trajectories origin results in ever increasing errors (Groves, 2013; Mautz, 2012). In order
to correct this, a place recognition method should be implemented, in order to correct the
current position, and thus the trajectory accordingly.

In SLAM, large scale loop closure is performed in order to account for drift in position
tracking (FIGURE 3.8), where correspondence is sought between image (keyframes) and
map (landmarks) (Williams et al., 2009). The environment is scanned, its features are
compared to the data already stored, and if a match reliable enough occurs the position
of the sensor is compared to the positions of the matched features. If a drift above a
certain threshold is found, it can be corrected for in the algorithm. Thus a place, as a
collection of objects in an environment, can be recognized by computing correspondence
in storage of said objects.

3.4 | Triangular Meshes

A triangular mesh is a discrete model of topological space, containing a data structure to
store both the geometrical and the topological component of a surface.

3.4.1 | Surface Representation

In geometry processing a surface most often represents an orientable continuous 2-manifold
(§ 2.1.1) describing the boundary of a 3D solid (Botsch et al., 2010). Boundary δS of solid
S then defines the difference between inside and outside. For digital representation and
processing purposes, the 2-manifold is mapped from topological space (X, T) into R3. As
the mapping operation is executed as a coordinate transformation, the resulting represen-
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FIGURE 3.10: Unit sphere ||q|| = 1 ∈ R4, which describes R3 rotations, using parameters
q = (qx, qy, qz, qw) (Szeliski, 2010).

tation can only be an approximation of the actual surface. Depending on the application,
surfaces can be approximated in an implicit or a parametric manner.

Implicitly, such a surface S is defined by the zero-set of function F, so that every 3D
point x on the surface becomes part of the boundary manifold embedding a solid shape
(EQUATION 3.4). However, the surface may be disconnected. Implicit representation can
be handled piecewise by dividing the space encapsulating the surface, most commonly
as tetrahedrals or hexahedrals (i.e. voxels).

F : R3 → R S = {x ∈ R3 | F(x) = 0} (3.4)

The parametric charts of a 2-manifold can be defined by a vector-valued function f,
and is composed of ideally connected 2D differential forms Ω (EQUATION 3.5). In essence,
Ω symbolizes the local resemblance of E2 in the 2-manifold, but is often generalized to
larger portions for data size reduction. The shape can be processed efficiently by handling
members of Ω separately, which are commonly defined as triangles or quadrangles.

f : Ω→ S Ω ⊂ R2, S = f(Ω) ⊂ R3 (3.5)

3.4.2 | Mesh Representation

Botsch et al. (2010) define a polygonal mesh as a piecewise linear surface representation,
which consists of a topological and a geometric component. In its essence it is a parametric
surface representation. A 2-manifold surface as topological structure can properly be em-
bedded into E3 if it is orientable, thus representing the boundary of one or more volumes
(Edelsbrunner & Harer, 2010). For a mesh to represent a 2-manifold surface, each edge
should be incident to only one or two faces, and the faces incident to a vertex should
form a closed or open fan (Nourian, 2018).

The topological component consists of vertices V , faces F and sometimes edges E ,
which together define the structure of meshM as a simplical complex. Each embedded
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FIGURE 3.11: Error accumulation in autonomous real-time positioning process. Green represents the
real trajectory taken through a hallway. The accumulated error over time is denoted by the blue

circles, generalizing to a possible trajectory in yellow.

simplex ∆2 can be defined by three vertices, three edges and a single face. Each edge is an
element of two combined ordered vertices, and each face an element of three combined
ordered vertices. The topological component ofM is denoted in EQUATION 3.6.

V = {v1, ..., vV}
E = {e1, ..., eE}, ei ∈ V × V
F = { f1, ..., fF}, fi ∈ V × V × V

(3.6)

The topological structure of a mesh can be mapped to R3 by assigning coordinate
values to each vertex, as in EQUATION 3.7. Now, each vertex vi ∈ V is associated with a
position pi ∈ R3 by mapping all vertices V to points P, as the geometrical part of the mesh

P = {p1, ..., pi}, pi := p(vi) =

X(vi)
Y(vi)
Z(vi)

 ∈ R3 (3.7)

3.4.3 | Mesh Processing

The generation and processing of surfaces as triangular meshes follows a well established
pipeline (FIGURE 3.12), constructed to generate the most optimal visualization possible
(Botsch et al., 2010). Here, input data is used to generate a mesh, in which errors are
detectable. The type of input data dictates some typical artefacts which require repair,
and for each type topological errors and inconsistencies should be removed, in order to
generate a proper 2-manifold surface. Surface quality is improved by these repairing op-
erations, as smoothing and fairing operations would. Analysis of the quality in this stage
predicts necessity and application of such operations, which handle noise as well. Then,
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FIGURE 3.12: Flowchart of geometry processing pipeline, based on Botsch et al. (2010).

a parametrization can be created on the mesh, as mapping the manifold into a R3 coor-
dinate system and charting the full extent into E2. Its output may serve many functions,
i.e. appearance-preserving simplification. To simplify a mesh is to reduce its complexity
without diminishing the quality of the output. As such, computational complexity of fur-
ther operations is reduced. Then, the quality of non-topological properties is improved
by remeshing algorithms, after which it can be freely modified according to application
specific requirements.

Many of these operations rely on finding the rate of change within the mesh itself,
as to divide a mesh where adjoining triangles behave very differently, and smoothen it
where adjoining triangles are defined in a strongly similar matter (Botsch et al., 2010).
In other words, the intrinsic tendency of partitions of the surface to change direction
dictates the interpretation of (the quality of) the surface. The places in the mesh to clean,
smoothen, cut, simplify or remesh are found using the Laplacian operator ∆. It is defined
as the divergence of the gradient of a surface, i.e. ∆ = ∇2 = ∇ · ∇.

3.5 | Spectral Graph Theory

Spectral graph theory is based on the notion that the structural properties of graphs can
be intuitively examined using the eigenvectors and eigenvalues of matrices based on
such a graph Chung (1996); Luxburg (2007); Nourian, Rezvani, Sariyildiz, and van der
Hoeven (2016); Spielman (2007). The combinatorial information which can be extracted
gives a direct analogy between manifold geometry and graphs (Chung, 1996). It provides
efficient and relatively simple solutions to complex clustering and analysis problems,
often faster than their direct counterparts.

Given an unweighted graph G(N,L) with nodes N and links L, adjacency informa-
tion can be written in matrix form Ai,j as EQUATION 3.8. The degree Di,j of such a graph
is the diagonal matrix representing the number of adjacent nodes di for each node ni.

Ai,j =

{
1 i f (i, j) ∈ L
0 otherwise (3.8)

Even more graph properties can be extracted from the Laplacian Li,j, which is found
by Li,j = Di,j −Ai,j and defined as EQUATION 3.9. This Laplacian operator L behaves as
the Laplacian ∆ would on a mesh surface (§ 3.4.3). Its spectrum of eigenvalues 0 = λ1 ≤
λ2 ≤ · · · ≤ λn allow for a simplification as Lx = λx, corresponding with eigenvectors
x1, . . . , xn. The eigenvector of a system is the vector that remains unchanged under linear
transformation, only scaled by its corresponding eigenvalue. In other words, multiplying
matrix L by eigenvector x yields the same result as scaling the eigenvector by its eigen-
value λ. The smallest eigenvalue defined as λ1 = 0 applies no linear transformation and
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thus corresponds to an eigenvector x1 = 1 of all ones. The number of eigenvalues which
return λi = 0 furthermore corresponds with the number of connected components in the
graph.

Li,j =


di i f i = j
−1 i f (i, j) ∈ L

0 otherwise
(3.9)

3.5.1 | Spectral Graph Embedding

A spectral embedding of a graph can be given by assigning eigenvectors as coordinate
scalers to node i, e.g. placing it at point (x2(i), x3(i)). The eigenvectors are used to draw
an almost always planar embedding, uniquely representing the underlying structure of
the graph (Luxburg, 2007; Nourian, 2016; Spielman, 2007). The exact result however can
be influenced by the choice of matrix on which the eigenvectors are based.

Spectral graph embedding is realized by fixing some nodes to the corners of a convex
polygon, which requires the rest to be placed at the average position of its neighbours.
The choice for nodes to fix is rather random, and a different choice would only result in
a rotated version of the same embedding, as the scaling applied by the eigenvector is in-
variant to rotation in itself (Spielman, 2007). As such, the spectral embedding of similarly
shaped graphs will return similarly, though perhaps rotated. The larger the eigenvectors
used for this embedding, the further the nodes will appear from their neighbours.

3.5.2 | Spectral Clustering

The second smallest eigenvalue, λ2, provides for a particularly interesting interpretation
of a graph. The graph is only connected if λ2 ≥ 0, and the further from zero, the stronger
the graph is connected. Its corresponding eigenvector x2, the Fiedler vector, gives infor-
mation about connectivity (Chung, 1996; Luxburg, 2007; Spielman, 2007). The sign of its
values may be interpreted as a division of the data into parts according to its sparsest cut,
or the cut for which the least edges are broken. A cut between disjoint sets A, B ⊂ N
where the similarity between a pair of nodes (i, j) is defined as sij can be stated as EQUA-
TION 3.10. Alternatively, the weight wij of a link may be used. The quality of such a cut
is defined by the number of edges to break, which optimizes to as few as possible. Such
cuts may be utilized for clustering a graph.

cut(A, B) = ∑
i∈A,j∈B

sij (3.10)

A threshold t can always be found such that the set of edges in a cluster S = {i :
x2 ≤ t} is most optimally connected. A common solution is to find the median cut as
nle f t < 0 < nright, meaning to find the largest gap between values of x2 within the graph
(Spielman, 2007). A clustering algorithm can be constructed which optimizes the cuts to
be made, in order to divide a graph into clusters (Luxburg, 2007). The type of Laplacian
used at the basis of cut definition determines the exact results of the clustering algorithm.
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FIGURE 3.13: An example of three isomorphic graphs (Read & Corneil, 1977).

Alternatively, a spectral embedding of graph nodes may be used as input for a clus-
tering algorithm. The spectral properties of the graph then determine the placement of
each node as data point. Within this placement clusters can be determined, based on
which the original dataset can be divided. The embedding chosen as well as the type of
clustering algorithm applied then determine the results.

3.5.3 | Graph Isomorphism

Isomorphism of two objects is defined as "having the same form" or structural properties
(Weisstein, n.d.-a). If graph G and graph H contain the same number of vertices con-
nected in the same way, they are said to be isomorphic, i.e. G ∼= H (Weisstein, n.d.-b). H
then forms a one-to-one mapping of G, such that adjacency is preserved (Read & Corneil,
1977). Isomorphism is independent of embedding (FIGURE 3.13), thus purely representa-
tive of the underlying structure of compared graphs.

The complexity of solving graph isomorphism is theoretically unsolved, though many
practical applications have been developed (Dawar & Khan, 2018). The theoretical anal-
ysis of Read and Corneil (1977) concludes that the type of graph to be compared highly
determines what type of algorithm would be best suited to solve graph isomorphism.

3.5.4 | Graph Matching

Graph matching entails finding correspondence between two given graphs, where the
underlying structures are at least highly similar (Conte, Foggia, Sansone, & Vento, 2004).
Testing isomorphism is an example of finding an exact match. Using real data, exact
matching is often too rigid, due to e.g. noise or processing steps. By relaxing some of the
constrains to matching graphs, inexact matches can be retrieved.

Spectral graph matching then forms a basis to find structural correspondence between
graphs (Conte et al., 2004; Spielman, 2007). As the spectral map of a graph is indepen-
dent of vertex ordering, using eigenvectors limits the extent in variation. Basically, if the
eigenvalues of G andH are different, the graphs are different. However, graph attributes
cannot be incorporated in this method.
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4 | Methodology

Performing indoor localization on a mobile device is interpreted as a data matching prob-
lem, where a scan of an environment is compared to a reference model (§ 1.1). The scan
is the result of a SLAM process (§ 3.2), and its execution results in a mesh created on-the-
fly (§ 3.3). It is referenced to a BIM (§ 3.1.1), in order to find the current position relative
to the contextual model. This relation determines the semantics describing the current
environment, transcending a position into a location (FIGURE 1.4).

The input represents a real-time environment of the actor, and a reference library that
contains information on the environment. To create a connection between a scan and
reference model is to interpret the environment an actor is in. If the room or corridor
is recognized, semantic information can be retrieved accordingly. As the shape of the
floor and its surrounding walls determine the general shape of a room, the characteris-
tics of these building elements should be recognizable. After extracting a proper room
description from the scan, it is cross-referenced to a library of rooms contained within
the building. A match returns a unique room id, which allows the user to retrieve the
appertaining semantics. A general workflow can be found in FIGURE 4.1.

First, the input sources are analyzed in § 4.1. Then follows a projection of a 3D model
to a 2D graph. The output of this projection should be similar enough in type, such that a
match can be made. As both input models are based on different data types derived from
different interpretations of indoor space, both require a different projection method. In
order to form the meshM(F ,V) into graph G(N ,L) a method is designed in § 4.2. For
forming the solids S(c, d) extracted from the BIM into graphH(N ,L), a slightly different
method is constructed in § 4.3. Then, a method is presented to form the match between
G andH in § 4.4.

FIGURE 4.1: Methodological work�ow for creating a match between a mesh created on-the-�y and a
reference BIM library of solids. Both input types are projected into network space (yellow arrows) so
they can be represented as graphs. These graphs are compared and matched based on similarity

(green arrow).
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FIGURE 4.2: Test data used to visualize the methodology for matching a mesh (left) and a BIM

(right) model representing the same indoor environment.

4.1 | Input Sources

The methodology for extracting a graph from both reference models and matching them
is described in this chapter, and visualized using a test dataset (FIGURE 4.2). As the real
data would, all data the method is tested on consists of a mesh and BIM model repre-
senting the same (set of) room(s) stored according to their respective data types. As
FIGURE 4.1 implies, the mesh is stored using faces and vertices, and the BIM geometry as
solids containing curves and depths.

4.1.1 | Mesh

The input mesh (§ 3.4) is built by executing a VI-SLAM process (§ 3.3) on a mobile de-
vice, and is stored in a .obj format. The storage is structured as an indexed face-set
(TABLE 4.1). This means that all faces are stored according to their topological defini-
tion (EQUATION 3.6), and all vertices according to their geometrical components (EQUA-
TION 3.7). Each vertex is accompanied by its vertex normal, and both are stored in
counter-clockwise order per face, which makes the surface orientable. The normals are
computed along with the creation of the mesh, in order to store face orientation based
on visibility. The front faces thus represent the inside of a room, and back faces point
outwards. Each vertex is further accompanied by texture information, based on which
a coloured model can be displayed. A mesh model can be defined as a piecewise linear
surface representation (§ 3.4.2), where each triangular face forms a small planar partition
of the manifold surface it represents. This topological surface (§ 2.1.1) forms a draping of
the actors’ viewshed along a traversed trajectory. In other words, the mesh model stitches
a blanket of everything the mobile device could see while scanning.
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V N F
id unique id vi vertex id id unique id
v position [3] n normal [3] vi vertex/normal id

vj vertex/normal id
vk vertex/normal id

TABLE 4.1: Data structure for an indexed face set. Each vertex vi ∈ V is stored with a position
pi ∈ E3, and accompanied by a vertex normal ni. Each face fi ∈ F is de�ned by the id of its three

adjacent vertices, in counter-clockwise order.

4.1.2 | BIM

The contextual model is stored as IFC BIM (§ 3.1.1), is assumed to be complete, and to rep-
resent an as-built state. As representative information model it contains geometry, topol-
ogy and semantics (§ 3.1). The geometry is stored in the spatial structure of the model
embedded in R3, which implies a natural topology. The functional structure allows for
storage of topology and semantics inside attributes. The geometry type and specific stor-
age differs per element. This architectural interpretation of a building is decomposed
into building elements. In other words, all physical boundaries defining indoor space
are explicitly defined, as well as additional elements that belong to the construction and
installation of a building. The topological structure of a BIM is implied by the natural
topology of the Euclidean space it is embedded in (§ 2.1.2). Furthermore, the main class
Relation allows for the storage of several types of relational or topological properties of
elements.

4.1.3 | Input source handling

Both input sources are handled separately in order to extract rooms from the model. The
extraction methodology is based on the interpretation of an indoor environment each
model type is based on. Room defining elements are extracted in order to build a dual
graph of each model, consisting of connected clusters. Each cluster then represents a
room, and each cluster connection a possibility to traverse from one room to another.
Finally the characteristics of the graph are extracted on which a match can be based.
Differences in interpretation of both models is summarized in TABLE 4.2.

The methodology for extracting a rich graph from both models as part of the main
methodology referenced in FIGURE 4.1 is executed in three main steps (FIGURE 4.3). First,
the graph itself is extracted as a full topological representation of the modelled indoor
environment. Depending on the characteristics of the input source, either the graph is
extracted then filtered and clustered based on room definition, or the rooms are extracted
then translated to a topological graph. In both cases the resulting graph represents a
network of rooms. Its characteristics can be analysed by computing the spectral map.
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FIGURE 4.3: Methodology for extracting a rich graph from a reference model.

4.2 | Graph Extraction from Mesh

The approach to extracting initial graph G from the mesh model is based on the storage
and mathematical definition of the model (§ 4.1.1). Then G is prepared for matching by
simplifying the model based on a general interpretation of indoor space (§ 2.1.4) into G ′.
The steps can be found in FIGURE 4.4.

FIGURE 4.4: Method for extracting a graph from a mesh model.

4.2.1 | Compute Normals

In creation of the mesh, the direction of gravity as output of the IMU is taken into account.
Though the point of origin remains at the pose of the device at the start of the scan, it is
rotated so that the up-direction aligns with the corresponding axis. Thus, all normals
directed upwards represent horizontal surfaces, a quality which can be utilized in order
to extract the floor from the mesh. However, not every horizontal surface can be part of
the floor. Assuming the actor was instructed to focus on scanning the extents of the floor,
the height at which the largest amount of points are placed should be the height of the
floor. As such, it can be separated from e.g. tables, cabinets and ceilings, although the

MESH BIM

Viewshed of traversed trajectory
Collection of elements describing
the construction of a full building

Topological structure embedded
into metric space

Geometric structure embedding
topological attribution

Geometry described by set of points Geometry described by set of solids
Topology directly stored as

indexed face set
Topology implied by embedding metric space,

and stored as additional attributes
Semantics not included Semantics stored as attributes

Captured on-the-fly Built manually or semi-automatically

TABLE 4.2: Conceptual comparison of a mesh interpretation vs. a BIM interpretation of a model of
indoor space.
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latter are usually not well represented in scans taken on device with a limited FOV.
The normals of each face are computed and utilized for classification of connected

components, according to similarity to neighbours N and a unit vector k directed up-
wards. The normal vector n is computed according to Newells method (EQUATION 4.1),
as a robust basis for surface orientation. It separately computes the X, Y and Z compo-
nents of the normal vector n, traversing all vertexes of a face in order. Each face defining
vertex vi is decomposed into positions Xi, Yi and Zi. A cumulation of current vertex i and
next vertex i + 1 determines the output values.

nx =
n−1

∑
i=0

(Yi −Yi+1)(Zi + Zi+1)

ny =
n−1

∑
i=0

(Zi − Zi+1)(Xi + Xi+1)

nz =
n−1

∑
i=0

(Xi − Xi+1)(Yi + Yi+1)

(4.1)

4.2.2 | Compute Barycenters

The barycenter of each face is computed mainly for visually representative mapping of
the dual graph. It defines the placement of a dual node embedded in E3, as well as the
anchor point for the face normal vector. Every point p on a surface can be barymetri-
cally represented as in EQUATION 4.2 by parameters (α, β, γ) in relation to corner points
(a, b, c). The barycenter is found by mapping each parameter to 1

3 .

p = αa + βb + γc (4.2)

4.2.3 | Extract Graph

As a mesh is a representation of topological space embedded into Euclidean space, both
components can be extracted for analysis. As described above, the geometric component
is utilized to determine surface orientation as a basis for segmentation and mapping.
Such a model may then be clustered based on similarity and proximity of faces, forming
implicit neighbourhoods N . Alternatively, the topological component of a mesh can be
utilized to form explicit neighbourhoods based on adjacency of faces. The dual graph of
such a model (FIGURE 2.1) forms an efficient representation of the topological component,
based on which structures and relations can be analysed.

A dual graph can be built according to a face to face adjacency list, which forms a
barycentric subdivision of the surface. Each primal face is translated into a dual node,
and each pair of adjacent faces determines a link between these nodes. In other words,
two nodes are connected by a link if the corresponding faces are adjacent (Edelsbrunner
& Harer, 2010; Worboys & Duckham, 2004).

Theoretically, two faces are accepted as adjacent, when they have two vertices in com-
mon. As the faces are expected to form a proper manifold surface, no faces would overlap
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FIGURE 4.5: A mesh model and its dual graph G.

or be disconnected. Thus face to face adjacency is determined by overlapping edges. A
mapping of dual elements can be found in TABLE 4.3. This dual mapping results in a
graph representation of the input mesh (FIGURE 4.5).

4.2.4 | Connected Components

The clustering of mesh elements is done by performing a search through the dual graph
to find connected components, as the sets of subgraphs that are connected (Edelsbrunner
& Harer, 2010). The process is performed by picking a semi-random seed and performing
a depth-first search through its neighbours. Thus, the algorithm finds the connected
subgraphs, by forming a full subgraph before finding a next one. A seed is selected if
it has not been traversed yet, and adheres to a threshold for dot product similarity with
the unit vector pointing upwards, k̂ = (0, 0, 1)T. Neighbours are selected according to
adjacency stored in the graph structure and accepted if similar enough to the seed. The
similarity sij is defined as the dot product of current seed i and current neighbour j, and
tested to a threshold tsim.

The connected components algorithm in ALGORITHM 1 returns all horizontally and
vertically oriented clusters in the model, and attributes each link with the degree of sim-
ilarity. The output is shown in FIGURE 4.6.

4.2.5 | Filter Components

The filtering of graph G is executed based on the output of the connected components
algorithm. Faces which are oriented neither vertically nor horizontally are skipped by
the algorithm. In the end, all components smaller than a threshold are filtered out. Fur-

PRIMAL MESH DUAL GRAPH

0D Vertex 2D (Cycle)
1D (Edge) 1D Link
2D Face 0D Node

TABLE 4.3: Mapping of a primal mesh to its dual graph. Each element not explicitly stored is written
in brackets.
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Algorithm 1 CONNECTED COMPONENTS

Input: Graph G, Similarity threshold tsim
Output: Set of graph links {l(i, j)}

1: function DFS(G, tsim)
2: {A} ← nodes in G
3: while {A} is not ∅ do
4: if Current seed {Sc} is ∅ then
5: nA ← normal of A0
6: check_up← unit vector k̂ · nA
7: if check_up > tsim then
8: {Sc} ← A0
9: end if

10: {A} ← {A} \ A0
11: end if
12: for i in {Sc} do
13: {Ni} ← Neighbours of i
14: ni ← normal of i
15: for j in {Ni} do
16: if j in {A} then
17: nj ← normal of j
18: check_up← unit vector k̂ · nj
19: check_sim← ni · nj
20: if check_up > tsim and check_sim > tsim then
21: {A} ← {A} \ Aj
22: {Sc} ← {Sc} ∪ Aj
23: {l} ← {l} ∪ (i, j)
24: end if
25: else if j in {Sc} then
26: nj ← normal of j
27: check_up← unit vector k̂ · nj
28: check_sim← ni · nj
29: if check_up > tsim and check_sim > tsim then
30: {l} ← {l} ∪ (i, j)
31: end if
32: end if
33: end for
34: {Sc} ← {Sc} i
35: end for
36: end while
37: end function
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FIGURE 4.6: Graph G segmented into the largest horizontal component as �oor (blue) and all large
enough vertical components as walls (green).

FIGURE 4.7: Visualization of spectral properties of graph G. A spectral embedding (left) compared to
positional embedding (right), both coloured by its Fiedler vector. Both visual representations prove an
implicit occurrence of three or four clusters within the test data, of which the two rooms on the left

are most strongly disconnected from the rest of the model.

thermore, a check is run in case of a horizontally oriented face. As only the largest one
should represent a floor, this is the only one kept.

4.2.6 | Compute Spectral Map

The intrinsic properties of a fully connected graph can be extracted by computing its
spectral properties (§ 3.5). A spectral embedding using its eigenvectors (x2(i), x3(i)) on
node i gives an almost always planar and unique portrayal of the graph or the topolog-
ical structure it represents (FIGURE 4.7). It symbolizes clusters within the graph and the
degrees between these clusters, as well as the separate elements.

4.2.7 | Cluster Components

The Fiedler vector (§ 3.5.2) specifically implies the connectivity of the graph and can be
used as a basis for clustering. The values it assigns to each node represent a division into
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FIGURE 4.8: Sparsest cut in G based on the largest eigengap.

natural clusters within the graph, and the larger the gaps between these values are, the
less connected the nodes are. As such, the Fiedler vector may be used to create cuts in a
graph (FIGURE 4.8). A series of sparsest cuts may result in a set of graph clusters.

Alternatively to using Fiedler cuts to divide a graph, the spectral properties can be
used as a basis for clustering. When mapping all nodes into a spectral embedding, the
new coordinates imply clusters based not only on nearness of the faces all nodes repre-
sent, but also the connectivity between them. Applying a clustering algorithm on these
data points returns implicit graph clusters. Here, two unsupervised clustering algorithms
are applied, in order to compare results.

To separate the data into clusters of equal variance according to their mean value, a
k-means algorithm is applied (FIGURE 4.9). In order to minimize distortion the spectral
values are first normalized, after which k samples are chosen from the data (Pedregosa et
al., 2011). Including more and more data results in shifting these centroids, until the most
optimal centroid is found, which contains a mean coordinate for its cluster. However
robust, a number of k clusters must always be chosen, and all data points within a cluster
must form a convex group.

In stead of using distances between points, another spectral analysis of the dataset
can be applied for clustering (FIGURE 4.10) (Pedregosa et al., 2011). Thus, the spectral co-
ordinates of graph nodes are again treated as nodes, for which a nearest neighbour graph
can be constructed. Based on normalized graph cuts, an input is created for a k-means al-
gorithm which assigns each data point with a cluster index. Using the spectral properties
of the nearest neighbour graph, the number of k clusters in automatically determined.
Furthermore, this algorithm is suitable for non-convex clusters.

After clustering, nodes are filtered according to the extracted components (§ 4.2.4) and
clusters (FIGURE 4.10). The clusters divide the single floor component into floor pieces,
each now represented by a single node. These nodes are linked if the separated compo-
nents are connected. For each floor component, the wall components in the same cluster
are linked to it. The result as simplified graph G ′ is visible in FIGURE 4.11. A translation
of the resulting graph back to the original model is seen in FIGURE 4.12.
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FIGURE 4.9: Results of k-means clustering of spectral values of G as clusters and their centres in a
spectral embedding (left) and the output clusters remapped to their original positions (right).

FIGURE 4.10: Results of spectral graph clustering of spectral values of G as clusters and their centres
in a spectral embedding (left) and the output clusters remapped to their original positions (right).

FIGURE 4.11: Resulting graph G ′ after clustering the spectral embedding of G (left in figure 4.7)
based on the connected components and clusters computed. The nodes remaining in the clustered

graph (left) are remapped to their geometric locations (right) for visualization purposes.
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FIGURE 4.12: Conceptual visualization of the clustered graph G ′ representing the input mesh of the
test dataset.

4.3 | Graph Extraction from BIM

The approach to extracting graph H from the BIM model is based on the storage and
mathematical definition of the model (§ 4.1.2). The steps can be found in FIGURE 4.13.

As for mesh models, it would be possible to extract room structure from the BIM on
a purely geometric basis. Then, each room would be defined by its geometric bound-
aries, which are the ifcSlab as the floor and the ifcWall. Walls around a room can
be found as connecting or near through the natural topology of Euclidean space. The R3

world embedding of the origin point implies a natural topological relation between walls,
specifically stored by the RelativePlacement element. Furthermore, it may be accompa-
nied by a placement relative to another shape. However, a lot of coordinate computing
is necessary in order to retrieve the topological relationship between building elements.
Furthermore, pure geometry makes no distinction between different sides of a wall, due
to which walls would become connecting entities between different rooms. Furthermore,
floor elements are never stored per room. They are interpreted as structural elements,
spanning across building partitions. Thus, a purely geometric approach to extracting a
graph from a BIM model may be possible, though most possibly not optimal.

FIGURE 4.13: Method for extracting a topological graph from a BIM model.
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FIGURE 4.14: Composition of the ifcSpace element (BuildingSMART, 2016).

4.3.1 | Extract ifcSpace

A room in a BIM model is inherently stored as an ifcSpace. A space is defined as "an area
or volume bounded actually or theoretically. Spaces [..] provide for certain functions
within a building." (BuildingSMART, 2016). The composition of an ifcSpace is defined by
its storey and placement, and defines elements within it (FIGURE 4.14). As such, it can be
used to determine the distinction as well as the connection between rooms.

Then, to extract rooms from the BIM would mean to extract all ifcSpace entities, not-
ing they might occur as space clusters or partitions. The relative connections between
each space is defined by the attributes from the ifcRelConnect class. As such, a network
of spaces can be built.

4.3.2 | Extract ifcWall for each ifcSpace

A wall, as a basic building element which can bound a partition of indoor space, is
stored as ifcWall. In its standard case it is stored as a (poly)curve c built by Points

pi = (x, y)T ∈ R2 describing the general footprint of the element, and an extrusion depth
d. Thus, an ifcWall is stored as a solid S(c, d). The coordinates are defined relative to
object an origin O = (X, Y, Z)T ∈ R3 and set on a reference plane. The coordinates of the
origin are relative to the full model. A full example of an ifcWall is listed in § C.3.

Each ifcSpace entity may be connected with its bounding walls by relative place-
ment. Thus, for each ifcSpace a set of ifcWall objects may be extracted. If the same wall
is related to more than one ifcSpace, it should be duplicated. Furthermore, the amount
of ifcDoor elements embedded into the walls around an ifcSpace represent the num-
ber of links that should be laid from a single ifcSpace to one or more other ifcSpace

elements.
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FIGURE 4.15: Conceptual visualisation of the �nal graph H extracted from the BIM model in
figure 4.2.

4.3.3 | Group Walls using Path Connectivity

Walls bounding the same room are related by the Path Connectivity element, which is
used to ensure a single material or profile definition (§ C.2). Thus it can be used to group
walls per room. It can be applied to check if rooms assigned to spaces in the previous
step are correct and complete. If after these steps any of the walls is unassigned, the
coordinates embedded in the ifcWall elements may be used to find their placement.

4.3.4 | Connect each Wall to a Room

A star shaped graph can be built for each room, by translating the ifcSpace element to a
center node, surrounded by nodes representing its encapsulating ifcWall elements.

4.3.5 | Link Connecting Rooms

The full set of ifcSpace elements found within a BIM can be translated directly to a set
of nodes. Links are formed by stored relationships between spaces. As a check, each
ifcDoor between two ifcSpace elements should be connected to a link between nodes.
Combining this structural graph with the star graphs described in § 4.3.4, a full graph
representationH of rooms encapsulated in a BIM model can be built. A conceptual repre-
sentation of the final graph is visualized in FIGURE 4.15.

4.3.6 | Compute Spectral Map

For the resulting connected graph H, a spectral map can be computed as in § 4.2.6. The
resulting spectral graphs are visualized in FIGURE 4.16.

4.4 | Data Matching

In order to enrich the mesh model created on-the-fly, it should be connected with the
reference BIM. In the field of IMM attempts to match indoor spaces have been made be-
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FIGURE 4.16: Visualization of spectral properties of graph H extracted from the BIM in figure 4.2.
A spectral embedding (left) compared to positional embedding (right), both coloured by its Fiedler

vector.

fore, generally based on object matching. The method presented in this chapter takes a
different stance, as matching is based on structure, drawn from spectral graphs.

4.4.1 | Object Matching

Generally in IMM a location is recognized as such by performing object recognition meth-
ods. Volk et al. (2014) has made an overview of object recognition methods used to build
and enrich a BIM model (FIGURE 4.17). A match between the selected object type then
refers to a location at which data may be retrieved or added.

For example, Huber et al. (2011) extracts a floor plan from unstructured point cloud.
Tang, Huber, Akinci, Lipman, and Lytle (2010) executes instance-based object recognition
by (1) generating descriptors and store them in database, (2) finding descriptors in the
scene and retrieve closest matching descriptor from the database and (3) aligning objects
as control step. Huber and Hebert (2003) performs automatic registration through pair-
wise surface matching.

4.4.2 | Spectral Graph Matching

Alternatively, the structure of a building can be used as a basis for matching, rather than
separate elements within. This interpretation is used in the proposed method, where
graphs as topological representation of the models are matched according to their simi-
larity.

As mentioned in § 3.5.4, graph matching entails comparing two graphs to find whether
they are (semi) isomorphic. Theoretically, two models of the same indoor structure should
return two isomorphic graphs. However, as G andH are derived from two different types
of models, based on different interpretations of what indoor space means, in the least the
number of nodes in both models will be different (compare FIGURE 4.16 and FIGURE 4.11).
As such, the graphs will not be accepted as isomorphic.
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FIGURE 4.17: Object recognition approaches applied in existing buildings (Volk et al., 2014).

The option remaining would then be to construct an inexact matching process for G
and H. Kosinov and Caelli (2002) use spectral properties for graph matching, by em-
bedding all nodes into a vector subspace. This method is capable of making an inexact
match of co-spectral graphs, even if the number of nodes in both graphs is different. It
is constructed such that the dimensionality of the graph is decreased, while minimizing
loss of information. By using the matrix of eigenvectors U, the projection of data point x
can be constructed using EQUATION 4.3.

x̂ = UT
k x (4.3)

Specifically in this research, each data point x represents a 2D coordinate of a node in
the spectral embedding of the graph, constructed as (x2(i), x3(i)). The matrix of eigen-
vectors U is first constructed by decomposing the data covariance matrix Σ to its eigen-
vectors and eigenvalues, as in EQUATION 4.4.

Σ = UΛUT (4.4)

Matrix U used to remap coordinates x has a size dependent on the size and structure
of the graph. To be come a useful operator, it has to be decreased to the use of the first
k eigenvectors. This corresponds to the most important or influential eigenvectors. Of
these first k eigenvectors, only the first few dimensions are meaningful, corresponding
to the dimensionality of x. As each x is a 1x2 vector, only the first two dimensions of the
first k = 2 eigenvectors are taken.

The new embedding x̂ can be used as a basis for another clustering algorithm. If the
nodes in the same cluster are similar enough to pass as a match, it is accepted. This can be
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FIGURE 4.18: Clusters found in the vector subspace embedding for G and H

tested based on certain attributes of the nodes, e.g.the coordinates in the original graph
or the spectral values.

The match itself is based on the assumption that a graph structure implicitly stores
the topology of a dataset. Thus two graphs representing the same indoor environment
should be highly similar, independent of what type of model it was extracted from. Slight
differences may still occur, as the interpretation of indoor space different models are
based on may result in a slightly different graph. If a unique graph embedding is cho-
sen, the structure of graphs may be compared in an intuitive manner and quite quickly a
match between a scanned floor and its modelled counterpart can be made. Note that the
match relies on a structure, a network of rooms, thus will be more solid as more rooms
are added to the scan.

4.5 | Localization Process

After a match between mesh graph G and reference graph H is found, its characteristics
can be used as a basis for localization. In the mesh model, the actor capturing the indoor
environment has a current position. As it is situated in the local coordinate system the
mesh is stored in, this position can be connected to the closest room found in G. The nodes
of this room in G are connected to the same room in H through the matching process.
These are attributed with a marker, e.g.an id, which refers to a set of semantics describing
the characteristics of this room. Returning these to the actor, a location description is
formed. Furthermore, the coordinate values linked to this room can provide for a basis
to transform the mesh geometry such that it can be aligned with the BIM geometry. This
finalization of the localization process is depicted in FIGURE 4.19.
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FIGURE 4.19: Method for using the match between G and H to transcend the position retrieved
using SLAM on a mobile device to a location.
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5 | Implementation & Results

This chapter presents experiments based upon the underlying principles of SLAM as ex-
plained in § 3.3 and describes their outcomes and conclusions to be drawn from them.
Furthermore, the implementation details for the main METHODOLOGY are described, and
their results are evaluated.

5.1 | Tools & Libraries

All results described in this chapter were achieved using a Tango tablet. A description of
the hardware and design principles the software was based on is included in appendix x.
All data was captured at the Delft University of Technology, at the faculty of Architecture
& the Built Environment (BK) and the faculty of Electrical Engineering, Math and Com-
puter Sciences (EWI). Furthermore, the code written for the methodology was tested on a
series on test datasets, specifically designed to handle situations that would occur in real
data.

The visualizations of the data were created in Rhino and Paraview for the meshes,
and Revit for the BIM model. The code for the methodology was written in Python 2.7,
using the following libraries:

• csv to read .obj files

• networkx to create, adjust and analyse graphs

• scikit learn to perform clustering methods

• numpy to perform vector and matrix calculations

• matplotlib.pyplot to visualize data

5.2 | Performing VI-SLAM

The aspects for performing VI-SLAM, as described in § 3.3, are examined here by perform-
ing test studies. The separate partitions described are executed simultaneously and the
process is handled as the gathering of geoinformation (§ 2.2), as it models a physical
location.
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FIGURE 5.1: Depiction of central projection, to show the relationship between point coordinates
p = (X, Y, X), image coordinates (x, y), image width W and focal length f (Szeliski, 2010).

5.2.1 | Data Capture

In order to test the capabilities of the camera used for VI-SLAM, the FOV of each of the
cameras is determined. First, the intrinsic camera parameters K are retrieved by calibrat-
ing the device, from which the output then can be used to calculate the FOV according
to EQUATION 5.1 and EQUATION 5.2. Here, W and H are the width and height of the
camera image and fx and fy the corresponding focal lengths, corrected for the scale of
each pixel. The corresponding values and calculation results can be found in TABLE 5.1.
The relationship between image size and camera intrinsics is depicted in FIGURE 5.1.

FOVH = 2 · arctan
(

W
2 · f x

)
[◦] (5.1)

FOVV = 2 · arctan

(
H

2 · f y

)
[◦] (5.2)

Henry, Krainin, Herbst, Ren, and Fox (2010b) state that a typical camera, with a range
of around 5 meters, only reaches an FOV of ∼ 60o. The tested RGB-D camera evaluates to
average at ∼ 63o, and a range up to 4 meters. The fisheye camera does improve upon
this with a horizontal FOV of ∼ 102o. However, it does not compare to the ∼ 180◦ of laser
scanners typically used for 3D mapping, which can provide for a much richer flow of
data from each frame. Thus, the drawback in amount of data captured simultaneously
has to be compensated in alignment algorithms, using extra computing power. On the
other hand, a camera is capable of capturing a wider range of information that can be
used for environment interpretation. Computer vision algorithms may be utilized for
e.g. feature detection and colour based segmentation (Szeliski, 2010). Using the RGB-D
camera as main data source thus limits the data capture as any separate camera would.
However, if the broader FOV of the fisheye camera is utilized to enlarge the scene that
can be captured, mobile devices equipped with both have a lead on regular cameras in
capturing indoor environments.
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FIGURE 5.2: Calculated FOV for the RGB-D camera (yellow) and the �sheye camera (green), compared
to an ideal laser scanner (blue).

5.2.2 | Data Storage

With the introduction of Tango technology, a new storage format, the Area Description
File (ADF), was presented as an efficient alternative to map storage, encoding the trajec-
tory and a map of keyframes and landmarks into binary (Google, 2017b). An interface
was built around it for users to position themselves into previously scanned locations
(FIGURE 5.3). However, the application was not functioning most of the time. The ADF
could be written, and accessed without any visualization or further proof that an envi-
ronment was actually recognized.

In another application, a polygonal mesh could be created on-the-fly (FIGURE 3.9). In
addition to the geometric and topological component, colour values for each vertex are
stored for visualization purposes. The mesh is stored as an indexed face-set (TABLE 4.1),
allowing for fast calculation of face normals and colour values, and ensuring the ori-
entability of the surface it represents. The specific data structure for such a mesh can be
found in TABLE 5.2.

The captured data is prepared for storage by applying constant transformation to
the data, as separate frames are stitched together. Each keyframe is captured relative to
the camera origin, and needs to be mapped relative to the system origin, which is the
camera pose at the start of the service. Thus each geometric member pi of the dataset
is in the least subjected to Euclidean transformation [R|t]. Most generally, rotation is
stored as quaternion q = (x, y, z, w), which requires the set-up of rotation matrix R, as in
EQUATION 5.3.

Rq =

 1− 2(y2 + z2) 2(xy− wz) 2(xz + wy)
2(xy + wz) 1− 2(x2 + z2) 2(yz− wx)
2(wz− wy) 2(yz + wx) 1− 2(x2 + y2)

 (5.3)

Geometric points within a keyframe can then be connected by the creation of a mesh,

CAMERA W[px] H[px] fx[px] fy[px] FOVH [
o] FOVV [

o]
RGB-D 320 180 261.695 261.642 62.8831 37.9645

640 360 523.389 523.284 62.8832 37.9645
1280 720 1046.78 1046.57 62.8831 37.9645

Fisheye 640 480 257.952 257.727 102.255 85.9204

TABLE 5.1: Camera intrinsics in�uential to the FOV for the sensors embedded into the Tango tablet.
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FIGURE 5.3: The interface for a Tango application that would read an ADF and position the user into
a known area, for which the ADF was built previously (Google, 2017b).

which is updated by the stitching of point cloud frames. The natural topology of Eu-
clidean space allows for meshing and updating of each keyframe, as a surface draped on
the 2.5D viewshed.

5.2.3 | Data Analysis and Communication

Henry et al. (2010b) have devised a method to examine whether an RGB-D camera and
the VI-SLAM algorithm executed are suitable for use in robotics, specifically for creating
dense indoor maps. The experiment tests the capability of the camera to capture sufficient
information for performing SLAM, including place recognition. Here, the camera was
taken in large, single loops to create a map of its environment, which is then compared
to a map of the examined area. The reliability of the final model is a testament to the
functionality of the full process.

It is executed by scanning a large single loop, and aligning the resulting model with
the ground truth. The first loop is chosen at BK, and the second at EWI, both situated at
the Delft University of Technology. The tool used is the Tango Constructor, a developer
tool released to display the modelling capabilities of Tango technology. A mesh is created
and stored (TABLE 5.2) on-the-fly, and visualized directly in the interface.

V F
vi vX vY vZ R G B weight fi vi//ni vj//nj vk//nk
ni nX nY nZ

TABLE 5.2: Data structure of a Tango polygonal mesh stored in a .obj format.
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FIGURE 5.4: Example dataset of a mesh model created using VI-SLAM on a Tango device of a meeting
room at the TU Delft the faculty of Architecture & the Built Environment (BK). Shown as textured

surface model (left) and triangular mesh (right).

5.3 | Graph Extraction from Mesh

For the description of implementation details and results, the methodology for extracting
a graph from the mesh created using VI-SLAM is executed on a dataset captured using a
Tango device. The model represents a room with a large table (FIGURE 5.4), used to test
correct extraction of the partially occluded floor, and handling of noise.

As described in § 4.2, the extraction of the floor from the mesh is performed by creat-
ing a graph structure, which is then filtered by a connected components algorithm test-
ing orientation and similarity of adjacent faces. The largest connected component facing
upwards is taken as floor element, all large enough components facing sideways are ac-
cepted as walls. The resulting graph is clustered according to its spectral properties into
the separate rooms traversed. The result of this process is a graph of nodes representing
rooms and links representing traversable connections between these rooms.

5.3.1 | Extract Topological Model

A first inquiry of data captured using the Tango device proves an apt application of grav-
ity aware scanning, as all normal vectors V = {vi|nY > 0.5} accepted as (close enough to)
upwards form the horizontal surfaces in the scan (FIGURE 5.5). The histogram shown in
FIGURE 5.6 furthermore confirms the notion that the largest horizontal component should
represent floorspace, even when much of the area is filled with tables, as in this exam-
ple. The histogram was divided into 100 bins, of which the largest returned a height of
∼ −1.272, or the device was held at a height of approximately 1.25 meters while captur-
ing the model.

A complete dual graph for the dataset in FIGURE 5.4 is depicted in FIGURE 5.7. After
extracting a complete graph, the connected components algorithm is executed (ALGO-
RITHM 1). Input are the created graph G(N,L) and the similarity threshold tsim. The
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FIGURE 5.5: A model created on-the-�y, coloured according to face normal direction. Green is upward
as V = {vi|nY > 0.5}, blue to the side.

FIGURE 5.6: Side view of the mesh along with its height histogram. The largest bin corresponds to
the �oor set, and the second to largest to the table that is located in the middle of the room.

threshold can be entered by the actor as angle in degrees, as a measure to how much two
normal vectors attributed to adjacent nodes may diverge.

5.3.2 | Extract Floors and Walls

The connected components algorithm uses a depth first search through the entire graph,
to determine the similarity of neighbouring nodes. A first check is to see if the at-
tributed normal points upwards, thus represents a horizontal surface partition, according
to EQUATION 5.4. The built component is tested by size, such that only the largest floor
component remains. If the first check returns a vertically oriented normal, the seed is
always accepted to build a component. A second check finds the dot product similarity
of the normal vectors attributed to two neighbouring nodes (ni, nj). With a tsim set at 5
degrees, all tested datasets resulted in a graph representing floor and wall partitions only.

k̂ · n =

 0
0
1

 ·
 nx

ny
nz

 (5.4)
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FIGURE 5.7: Complete dual graph of the model in figure 5.4 (left) and the result of the connected
components algorithm selecting only horizontally oriented normal vectors (right).

5.3.3 | Retrieve Characteristics

A next step is to find the bottlenecks in the graphs, or the most weakly connected par-
titions as a basis for creating the sparsest cut. As described in § 4.2.6, the Fiedler vector
as eigenvector belonging to λ2 is mapped to each node. A visual representation of this
mapping for the test data can be found in FIGURE 4.7. The right shows a colour coded
division in which the three rooms are quite well distinguished.

The sparsest cut, or the cut in the graph which requires the least or weakest connected
edges to break, is found by dividing the nodes according the corresponding values in the
Fiedler vector. In the simplest approach this cut is defined as median at nle f t < 0 < nright.
A plot of these values for the test data is depicted on the left of FIGURE 4.7. This is the
first cut to be found in the data, of which the result is seen on the right. Thus the first
room is separated from the rest, though as expected a connecting partition of the hallway
is still incorporated. A similar result is obtained by finding the next cut in the same way.
However, the sparsest cut based on the Fiedler vector (FIGURE 4.8) does not return a cut
at the exact border of a room. As Luxburg (2007) mentions, a clustering of a graph may
be based on the sparsest cuts found in a graph. However, using a clustering algorithm on
gathered spectral values optimizes the division made and returns a more natural division
into more than 2 groups embedded in the graph structure.

The left image of FIGURE 4.7 shows the spectral embedding of the graph of which the
coordinates are drawn as (x2(i), x3(i)). This embedding should return a visual represen-
tation of the underlying structure of the graph. From this graph we may conclude the
traversed space is naturally divided into three main partitions and a centre. A natural
clustering into four divisions as the three separate rooms and a hallway visited can be
based on the gathered spectral properties.

5.3.4 | Cluster Components

The graph resulting from embedding nodes according to the graphs eigen vectors (left of
FIGURE 4.7) gives a representation of the underlying structure of the indoor environment
scanned. Using the coordinates of this embedding, a clustering method can be applied,
in order to find a natural division into the separate rooms visited.

FIGURE 4.9 shows a clustering of the nodes using k-means. As three rooms and a
hallway were visited, input for the algorithm would be k = 4. Giving each node an id
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for the group it ends up in and remapping the nodes to their geometrical position as dual
graph results in the right image. Here, it can be seen that the graph is nicely divided into
four rooms. Though the results look good, a drawback to this method is the need for
input, as to how many clusters should be formed.

Alternatively, spectral clustering as a method in itself is capable of estimating the
number of clusters to be assigned. However, the algorithm performs best when given a
number of clusters to aim at, after which the real number of clusters is estimated. With
prediction and estimation set at 4 clusters, the result in FIGURE 4.12 is gained.

Comparing both results, only difference is found in the door openings between both
rooms. Especially for the bottom left room, the cluster is better estimated using spectral
clustering.

After performing the clustering method, each node has received a cluster id. Using
the connected components formed in § 4.2.4, each cluster can be divided into sub-clusters,
each representing either a floor or a wall. The distinction between both is stored in a node
attribute, as normal vector direction. Now, each floor component becomes a node, which
is connected to all adjacent clusters. Each wall component is connected with the floor
component of the same cluster. The result is the graph in FIGURE 4.11.

5.4 | Graph Extraction from BIM

As described in § 4.3, the extraction of rooms from the BIM model is based on the decla-
ration of room defining elements. After extraction of the necessary elements, a reference
graph is built.

The encoding of the source is available in a STEP-file (STEP) file, which is based on
ISO 10303-21. It is a type of American Standard Code for Information Interchange (ASCII)
file with a key-value structure. Each key receives an id, so that later declared values may
reference to it. An example for a standard ifcWall declaration can be found in § C.3.

Depending on the quality of the model, some manual correction may be necessary.
As the BIM is not expected to change continuously, a semi-automated generation of such
a graph should be sufficient.

5.5 | Data Matching

Visually comparing G (FIGURE 4.11) and H (FIGURE 4.16), the spectral embedding seems
quite similar. Both graphs from a three armed star, where the first node on the arm is
connected to the central node, as well as to further nodes representing the same room.
However, an exact match between both models will never be made. The graphs are
not purely isomorphic, if only due to the different number of nodes. However, a visual
comparison does imply the possibility of an inexact match.

The difference in nodes between both models is due to the difference of interpretation
of indoor space. This is most clear around the doors. A mesh model created on-the-fly
would less likely contain a ceiling or the wall above the doors, as the hand-held device
used to capture it would be mostly pointed downwards. The viewshed formed drapes a
surface that can be divided according to the methodology described in § 4.2. Then, the
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wall partitions adjoining the door would never be connected, as they are unconnected in
the viewshed. On the other hand, in a BIM model, a door is only an element that can be
placed into a wall. Both partitions of the wall next to it will always remain connected, as
they are part of the same ifcWall element. Thus, it is important for the chosen matching
technique to be capable of notifying graph matches between models containing a differ-
ent number of nodes.

When remapping the nodes into a vector sub space, the new positions given to the
nodes of G and H again are quite similar. Running a clustering algorithm results in a
regrouping of nodes according to their positions in the vector subspace. Further inquiry
proves a similarity between grouped nodes for both graphs, resulting in an accepted
match.

In this research, only datasets representing the same number of rooms are examined.
In the scale of a full BIM model, which contains more data than just the rooms traversed,
a series of sub-graphs can be used for data matching. An example of such a method can
be found in Vento, Cordella, Foggia, and Sansone (2004).

5.6 | Localization Process

The method proposed in this research provides a possibility to perform graph-based in-
door localization. However different in nature and structure, both input sources can be
converted to a graph of similar calibre, such that they can be tested for a match. Be-
fore such a match can be made, a number of rooms must have been visited, in order to
retrieve a meaningful graph. Thus, initializing the proposed process would entail exten-
sive traversal through an unknown building, which would not be an ideal situation for
indoor localization. Alternatively, the process could be initialized by providing an actor
with a marker representing the hallway or room to start from, as well as its structure
relative to the two closest partitions of indoor space to be defined.
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6 | Conclusions

6.1 | Answer Research Questions

SQ1: WHAT CHARACTERISTICS OF INDOOR SPACE NEED TO BE UNDERSTOOD IN ORDER

TO LOCALIZE AN ACTOR?

Space is defined as a mathematical structure with relational properties, to which all its
members adhere (§ 2.1). As a subset of space in general, topological space is a structure
describing the relationships between (parts of) objects that do not change under continu-
ous deformation (§ 2.1.1). This also defines its subset metric space, as a set with a global
distance function, where distances and angles between all of its members can be defined
(§ 2.1.2). A metric space provides for a geometrical definition of its members.

Indoor Space is defined as a structure bounded by physical or functional elements,
enabling human activities (§ 2.1.4). It represents a (set of) bounded functional place(s)
and should be mapped in a geometrical, topological and semantic manner, in order to
describe its conceptual complexity. Its elements are defined as follows:

• Geometry - What is the place the actor is in?

• Topology - What is the structure of the place the actor is in?

• Semantics - What is the meaning of the place the actor is in?

As a type of space as a structure and its subsets define in what manner embedded objects
can be represented,

This structure defines in what manner embedded objects can be represented. These
may be embedded into different subsets of indoor space, defined as a geometrical, topo-
logical and semantic subset. Each of these subsets may be mapped differently, either in a
separate or combined model (§ 3.3.3). As such, indoor space as a data structure may be
represented as in TABLE 6.1.

Localization entails positioning an actor into a meaningful context (§ 2.2.2). Thus, in-
door space in which an actor can be localized must enable positioning methods, as well
as provide additional contextual information about a location. Therefore, the represen-
tation of indoor space must contain geometric, topological and semantic information to
fully represent its place, boundaries and function. Its place enables pure geometric posi-
tioning, its boundaries help define the underlying topological structure and its semantics
help interpret its functional meaning. As such, the analysis of the topology of indoor

65



GEOMETRY TOPOLOGY SEMANTICS

AMBIENT SPACE Euclidean Space Topological Space Semantic Space
ELEMENTS Pi = {X, Y, Z} ∈ E3 M = {V ,F} ∈ T Attributes

TABLE 6.1: Characteristics of indoor space to be mapped in order to form a comprehensive model for
an actor to perform indoor localization.

space allows for correct semantic assignment to its positions, so that an understanding of
indoor space can be reached.

SQ2: IN WHAT WAY CAN THE SENSORS EMBEDDED IN A MOBILE DEVICE BE UTILIZED TO

PERFORM INDOOR POSITIONING?

Indoor positioning not relying on a contingent system can be performed using a hybrid
fusion of different sensors embedded into a mobile device (§ 3.1.2). Combining data
captured by the IMU and camera, sufficient information should be retrievable, provided
that the captured environment contains sufficient salient features (§ 3.2.3). Thus, indoor
positioning can be performed by a VI-SLAM process, simultaneously building a geometric
environment and tracking each pose and heading relatively.

Data quality may be improved by using a sensor with a wide FOV and by determin-
ing depth values for each pixel stored (§ 3.3.1). The colour and light intensity can be
calculated per pixel as well.

VI-SLAM is improved by using data gathered by the IMU of the system. It defines
heading, can detect sudden movement and thus eliminate the unpredictable errors this
might cause. Furthermore, VI-SLAM can provide for pose change estimation in case of
camera occlusion, or too little salient features.

Generally, the map built in a SLAM process consists of purely geometrical aspects.
However, for IMM, a topological component is necessary as well. If the SLAM process is
designed to retrieve the topological component, a polygonal mesh can be built on-the-fly.
The quality of the mesh can be improved by integrating the input from all of the sensors
in the device. As such, the IMU can be used for drift correction, and the camera can be
used for image stitching.

Using a sufficiently enriched map, a SLAM process has been proven capable of posi-
tioning a user sufficiently accurate (§ 3.2). The reliability of both map and position can
be greatly improved by integrating data from several sensors. A camera can be useful as
main data source, but needs additional information to overcome commonly encountered
issues. The IMU can provide for drift correction, and elaborate algorithms can provide for
place recognition. The built model has to be flexible enough to adapt to these updates, in
order to accurately assess a position.

In conclusion, VI-SLAM functions as an semi-autonomous positioning system on a mo-
bile device, maximising its reliability by using multiple input sensors. The geometric
model used as a basis for positioning and tracking a device can be built and updated on-
the-fly, and be improved by retrieving and storing the topological structure of said model
simultaneously. The final product of this positioning process then represents the geomet-
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ric and topological components of the captured space. Combining the SLAM model with
a reference containing semantics can transcend the retrieved set of positions to a location.

SQ3: IN WHAT WAY CAN A GRAPH MODEL OF AN INDOOR ENVIRONMENT BE ENRICHED

WITH SEMANTIC INFORMATION FROM A BIM?

• A graph can be extracted from a model captured using a mobile device, as well as
from a BIM

• Spectral properties of the graph model represent intrinsic structural properties of
the model the graph was based on

• Similarities in spectral graphs represent similarities in structures

• The semantics of the BIM belonging to the node closest to a current position give
location information

6.2 | Main Conclusions

IN WHAT WAY CAN GRAPH-BASED INDOOR LOCALIZATION BE PERFORMED USING A MO-
BILE DEVICE, BY COMBINING SLAM AND A BIM MODEL?

• By extracting the topological structure of a captured model and a reference model

• By analysing graph properties using spectral graph theory

• By matching spectral graphs of both models, so that the current position node of
one model can be enriched with the semantics of the matching node in the other

6.3 | Recommendations

Though the process described in this research is not sufficient as an autonomous local-
ization process, mainly due to the prerequisites for finding a first match as described in
§ 5.6, it provides for an interesting different interpretation of performing indoor localiza-
tion. The graph-based matching approach could be used to enrich or improve existing
methods, or provide for a basis for a new graph-based indoor localization process.

For handling the graphs used for matching, the following topics are recommended
for future work:

• The place of the cut in § 4.2.7 is now set at t = 0. More research should go into
finding the cuts of lowest conductance in stead, as the widest spread in x2 values
may not be the most optimal place for clustering.

• Spielman (2007) states that the spectrum of the regular Laplacian Lij used in § 4.2.6
may return fine results for regular graphs, though a safer approach would be to
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extract the spectrum of the normalized Laplacian Lij, which may be defined as
EQUATION 6.1 and found by operating adjacency matrix Aij and degree matrix Dij

as D−1/2
ij (Dij −Aij)D−1/2

ij .

• Luxburg (2007) further states that though all versions of the Laplacian matrix return
similar results for regular graphs, in other cases they largely diverge. For example,
using the unnormalized Laplacian only minimizes the similarity between clusters,
where using a normalized version of the Laplacian can also account for similarity
within a cluster. Thus, comparing results of these different approaches specifically
for indoor models would be an interesting study.

• Another specification could be made by weighting the graph with similarity values.
As input, several values may possibly be useful. As such, the dot product similarity
of the normal vectors, the colour values of corresponding faces or a combination of
both may be optional weight inputs. When using this extra input, the spectrum will
be adjusted as now the adjacency matrix Aij is defined as EQUATION 6.2 in stead of
EQUATION 3.8. Luxburg (2007) states that the weights further direct placement of
the sparsest cut, as greater similarity between nodes should occur within clusters.
Then, a link crossing clusters will receive a lower weight and is more easily recog-
nized as the edge of a cluster.

Li,j =


1 i f i = j and dj 6= 0

− 1√
didj

i f (i, j) ∈ links L
0 otherwise

(6.1)

Ai,j =

{
wi,j i f (i, j) ∈ L

0 otherwise (6.2)
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A | The Tango Platform

The Tango platform is comprised of a software stack made available onto Tango enabled
devices. The stack contains Application Programming Interfaces (APIs) and Software De-
velopment Kits (SDKs) for developers to build upon. The device itself has to run on Tango
core technology and contains the sensors deemed necessary for its functionality.

The underlying principles of Tango technology are based on computer vision, and
are presented as threefold (Google, 2017b; Lee, 2015): motion tracking, area learning and
depth perception (FIGURE A.1). These concepts are designed to have a device interpret its
surroundings as close to human perception as possible. Therefore, the technology under-
lying these principles may intertwine at all times, but the culmination of the technologies
is expected to accumulate understanding of space, as humans would unconsciously.

A.1 | Motion Tracking

Motion tracking can be defined as the registration of movement the device undergoes in a
session, relative to its starting point.

Movement is recorded as the pose of the device in Six Degrees of Freedom (6DoF), de-
fined in pitch, roll and yaw. This egomotion is captured by the IMU and stored as a 3D
translation vector t = (tX, tY, tZ)

T and a rotation quaternion q = (x, y, z, w). This pose
is constantly updated, using pose estimation and correction algorithms. Furthermore,
the wide FOV of the fisheye camera is utilized to detect landmarks, and track their rel-

FIGURE A.1: Basic concepts underlying Tango technology. (Google, 2017b)
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FIGURE A.2: Depth perception methods included into Tango technology. (Google, 2017b)

ative movement across frames. These data sources are combined in real time, tracking
movement at 100 updates per second.

The duration of a session is defined by the application. At the start of a session, the
current pose of the device, now the starting position, is stored as point of origin, and a
3D reference frame is built around it. Further movement is tracked relatively, and can be
plotted onto a 2D grid. When a motion tracking session is finished, its data is not stored.

A.2 | Area Learning

For Tango technology, area learning is defined as the registration of a location, so that it
can be recognized by a positioning alogrithm.

Location representing instances are defined as landmarks and keyframes. These are
stored inside the ADF, and encoded to binary. The ADF can be read by the accompanied
application only, which would then perform the place recognition process.

A location is recognized when the camera detects a sufficient amount of landmarks
similar enough to ones stored in the ADF. The current pose is then stored as session
origin, accompanied by the relative difference to the ADF origin. Thus, two coordinate
systems are defined upon E3 space, as session S(tS, qS) and ADF A(tA, qA). The scale of
both systems is expected to be the same. Further movement is mirrored to the ADF, and
new pose estimation is improved by performing drift correction (§ 3.3.2).

A.3 | Depth Perception

Depth perception is accomplished through the estimation of distance to objects, to increase
accuracy and precision of both motion tracking and area learning. Here, three different
possible methods are utilized (FIGURE A.2):

The devices’ active IR sensor is used to perform structured-light depth perception, by
calculating the area of the projected IR beam onto a single object. The same data can be
used to calculate time-of-flight, as the time it takes an IR beam to travel to an object, and
back to the sensor. The stereo system utilizes imagery from both camera’s to calculate
depth through photogrammatric triangulation. These different depth measurements can
be interpolated, then stitched to create a frame-by-frame point cloud (FIGURE 3.5).
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A.4 | Tango Enabled Devices

Tango technology was introduced in 2014 on the Peanut phone, a pilot that was discon-
tinued in September 2015 (Google, 2017b). The next release was on the Tango Develop-
ment kit, which contained the Yellowstone tablet. The Lenovo Phab 2 Pro and the ASUS
ZenFone AR have been released as commercially available Tango enabled devices.

This research has been performed using the Tango development kit. The included
tablet has a 7.02" 1920x1200 HD IPS display (323 ppi) and runs on Android 4.4 KitKat.
It runs on a NVIDIA Tegra K1 processor and has 128 GB flash memory and 4 GB RAM.
The sensors embedded into the device and their function in SLAM processes can be found
in TABLE A.1. Additionally, a GNSS receiver is embedded, aided by a compass and barom-
eter for a faster and more precise outdoor location fix.

The new combination of sensors into a hand-held device should enable a plethora of
new possible applications interesting to the consumer. Therefore, Tango technology was
introduced accommodated by an open call for developers, to create new applications on
the platform, using its unique benefits. In order to create this possibility for developers,
a website was published (Google, 2017b), containing descriptions of the technology, as
well as the software stack developers can build their applications on. However, with the
discontinuation of the project, support and documentation became unavailable.

SENSOR FUNCTIONS

4MP 2 µm RGB-IR Camera Generate Stereo Images
Generate Point Cloud (Passive)

Fisheye Camera Generate Stereo Images
Motion Tracking

IR projector Generate Point Cloud (Active)
IMU: Accelerometer Acceleration Tracking
IMU: Gyroscope Pose Estimation

TABLE A.1: Sensors embedded into the Tango tablet and their functionality for indoor localization
and modelling.

FIGURE A.3: Hardware diagram for the Tango tablet. (Google, 2017b)
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A.5 | Research using the Tango Device

Since the release of Tango technology, the device has been used in several research projects
for its specific sensor combination in a hand-held device. It has mostly been used as a
tool for examining theories and algorithms.

The Tango tablet’s capabilities in 3D modelling for the purpose of indoor localization
was tested by Diakité and Zlatanova (2016), aiming at examining the extents of Tango
technology itself. The Tango tablet’s 3D modelling capabilities in large-scale outdoor
scenes have been tested by Schöps, Sattler, Häne, and Pollefeys (2015), using monocular
motion stereo to reconstruct scenes on the fly. This is based on the device’s VIO and
images generated from the fish eye camera by first computing frame by frame depth
maps, and then fusing them using volumetric depth map fusion. To improve the accuracy
of the model several filtering steps are performed, which are improved in a later set-up
(Schöps, Sattler, Häne, & Pollefeys, 2016). Furthermore, the applicability to other devices
is discussed, rendering the Tango tablet to merely a useful tool for the development of
this method.

In another outdoor application, Agarwal, Burgard, and Spinello (2015), have com-
bined the device’s VIO with geotagged images from Google Streetview, in order to obtain
accurate metric localization. Then, the Tango tablet is used to implement and evaluate
the developed system for the use of personal localization in an urban scenario. However,
when performing image matching from such large databases, geometric bursts will occur,
a problem to which Sattler, Leibe, and Kobbelt (2012) have attempted to find a solution
using the Tango tablet. Both research projects handle localization as an image matching
problem.

Ramirez (2015) has used the Tango device to generate data and implement an appli-
cation for the evaluation of text-based SLAM algorithms. Sweeney and Turk (2016) de-
veloped an AR application for the device to localize itself into a reference 3D point cloud
using its absolute position. This is determined through gravity calculations performed
using the devices IMU, a technique used to improve the accuracy of imaged based SLAM.
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B | Loop Experiment

In order to test an RGB-D camera and SLAM algorithm for performing VI-SLAM, Henry et
al. (2010b) scan a large closed loop and aligning the results with the ground truth. The
execution of loop closure is visualized in active updates of the ouput mesh, as the user
collects more data. When a loop is finished, the user returns to an environment that is
already scanned. The combination of many data sources in the used device should ac-
count for most of the drift occurring during the scan, thus objects that have been captured
before should be found in a position it has been placed at. If not, according to SLAM prin-
ciples, this place should be recognized, and the tracked pose of the user should be aligned
with the stored pose according to the captured features, as a sign of adaptive positioning.
Thus, closed loop capturing using apt VI-SLAM execution allows for a solid representation
of an environment, as the place recognition process at the end of the loop accounts for
drift that has occurred.

B.1 | Loop 1: BK

The loop at BK was focussed on capturing the inside bounds of the route, to match with
the floor plan. In this environment, the walls contained too many, and the floors too
little salient features. Considering this tough challenge, the result is still quite good (FIG-
URE B.2). The route began at the bottom left of the image, and continued following the
brightly coloured carpet. Before the first corner the lack of useful features in both floor
and wall proposed problems for the device. While attempting to capture the model, the
current pose was suddenly repositioned a few meters back, due to the lack of change in
the environment; a faulty execution of place recognition. In the model further examined,
this did not happen. In the top right corner a highly reflective floor is reached, and after
turn the route is bordered by a full glass wall. Due to these environmental challenges the
quality of the scan largely deteriorated.

The distortion in the loop at BK effectuates in a model displacement visible at the end
of the loop (FIGURE B.3). However, the displacement is mainly linear, and the model is
only slightly affected on angle. This implies that orientation changes may be accounted
for in the process by the IMU. However, the lack of features along the way can easily
result in recorded paths containing slight length distortions, immediately resulting in an
unclosed loop. Considering the small amount of landmarks the device could detect while
tracing the reflective and repetitive surroundings, the finalized loop turns out quite okay,
but not reliable enough for precise positioning.
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FIGURE B.1: Floorplan created using VI-SLAM compared to the ground truth. The used algorithm
classi�es elements with a limited height as furniture, which is then deleted from the map.

Furthermore, in another recording of the same loop, it was executed until the technol-
ogy at least attempted to connect the model of the starting and ending point. However,
only the faces belonging to the couch used as marker for this start and finish were re-
coloured, according to the newly recorded data. The model itself remained as originally
captured, not adapted by the drift correction. This may be due to the fact that capture
and visualization are performed simultaneously.

B.2 | Loop 2: EWI

The loop at EWI was focused on capturing as much of the floor as possible, while in-
cluding a small part of the wall. It contains a height difference in two sets of stairs, and
patterned floors which contains many visual features as possible landmarks.

The route was started at the white table, which can be seen at the top of FIGURE B.4,
then moves to the left of the image. At the start of the loop an error occurred due to
overexposure to light, even though the scene was scanned so that as many features as
possible would still be visible. Even though the scan was initiated facing away from the
sun, the light from the windows onto reflective surfaces directly deteriorated the quality
of the scan. The resulting lapse has immediate consequences for the quality of the model,
as direct horizontal displacement followed (FIGURE B.4), which persisted until the end of
the loop (FIGURE B.5). At the end of the route, the stairs taken down were not captured
by the cameras, resulting in a vertical displacement as well (FIGURE B.6). The rest of the
model is perfectly aligned on the Z-axis.

In both cases, a route correction based on the device’s IMU could have been applied.
This combination of input from several sensors would improve the quality of the cap-
tured data (§ 3.2). The dependence of the algorithm on visual input implies that sensor
integration was not applied here, though more input would have been available.
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B.3 | Conclusion

According to the execution of this experiment, the tool used does not execute the loop
closure process sufficiently in the scanning of a large loop. However, on a smaller scale,
the results are much reliable (FIGURE B.1). The difference could arise from the strain on
the processor and limitations to the executed algorithms in capturing the large loops, as
each keyframe update is directly visualized.

VII



FIGURE B.2: Modelled loop at BK projected onto �oor plan.

FIGURE B.3: Horizontal displacement of the model in figure B.2. Indicated by couch and wall for
start of loop (blue) and end of loop (green).
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FIGURE B.4: Modelled loop at EWI projected onto �oor plan.

FIGURE B.5: Horizontal displacement of the model in figure B.4. Indicated by table and staircase
handle for start of loop (blue) and end of loop (green).

FIGURE B.6: Vertical displacement of the model in figure B.4. Indicated by table and �oor height
for start of loop (blue) and end of loop (green).
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C | ifc Data Schema's

This appendix shows the data schema’s for relevant BIM components, as mentioned in
§ 4.3. It includes the definition of types of an ifcBuildingElement, the schema and an
example for an ifcWall Standard Case and the path connectivity relational schema for
material definition of building elements, such as an ifcWall.

C.1 | ifcBuildingElement

FIGURE C.1: Declaration for types of ifcBuildingElement.
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C.2 | Path Connectivity

FIGURE C.2: Schema for path connectivity as a relationship indicating parameter for material layers
or pro�les. http://www.buildingsmart-tech.org/ifc/IFC4/Add2/html/schema/templates/

diagrams/path-connectivity.png
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C.3 | ifcWall

FIGURE C.3: Part of the schema for an ifcWall building element, containing the placement of its
geometry, as well as an example for possible geometry. Full schema at http://

www.buildingsmart-tech.org/ifc/IFC4/Add2/html/diagrams/general-usage/ifcwall.png.

C.4 | ifcWall Standard Case
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ISO−10303−21;
HEADER;
FILE_DESCRIPTION ( ( ’ ViewDefinit ion [ DesignTransferView_V1 ] ’ ) , ’ 2 ; 1 ’ ) ;
/* name */
/* time_stamp */
/* author */
/* organiza t ion */
/* preprocessor_vers ion */
/* or ig inat ing_sys tem */
/* a u t h o r i z a t i o n */
FILE_NAME( ’ ’ , ’2016−02−04 T08 : 4 7 : 5 5 ’ , ( ’ Jon ’ ) , ( ’ Unknown ’ ) ,
’GeomGymIFC by Geometry Gym Pty Ltd ’ , ’ Unknown Applicat ion ’ , ’ None ’ ) ;
FILE_SCHEMA ( ( ’ IFC4 ’ ) ) ;
ENDSEC;
DATA;
/* general e n t i t i e s required f o r a l l IFC data se t s , def in ing the

contex t f o r the exchange */
#1=IFCGEOMETRICREPRESENTATIONCONTEXT( $ , ’ Model ’ , 3 , 0 . 0 0 0 1 , # 3 , $ ) ;
#2=IFCCARTESIANPOINT ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ;
#3=IFCAXIS2PLACEMENT3D( # 2 , $ , $ ) ;
#4=IFCGEOMETRICREPRESENTATIONSUBCONTEXT( ’ Axis ’ , ’ Model ’ , , , , , # 1 , $ ,
.MODEL_VIEW. , $ ) ;
#5=IFCGEOMETRICREPRESENTATIONSUBCONTEXT( ’ Body ’ , ’ Model ’ , , , , , # 1 , $ ,
.MODEL_VIEW. , $ ) ;
/* de f i nes the d e f a u l t bui lding ( as required as the minimum s p a t i a l

element ) */
#50=IFCBUILDING ( ’ 3 9 t4Pu3nTC4ekXYRIHJB9W ’ , # 5 6 , ’ I f c B u i l d i n g ’ ,

$ , $ , $ , $ , $ , $ , $ , $ , $ ) ;
#51=IFCPERSONANDORGANIZATION( # 5 2 , # 5 3 , $ ) ;
#52=IFCPERSON( ’ Jon ’ , ’ Jon ’ , $ , $ , $ , $ , $ , $ ) ;
#53=IFCORGANIZATION( $ , ’ Geometry Gym Pty Ltd ’ , $ , $ , $ ) ;
#54=IFCAPPLICATION ( # 5 5 , ’ 0 . 0 . 1 . 0 ’ , ’ ggRhinoIFC − Geometry Gym Plug−in f o r

Rhino3d ’ , ’ ggRhinoIFC ’ ) ;
#55=IFCORGANIZATION( $ , ’ Geometry Gym Pty Ltd ’ , $ , $ , $ ) ;
#56=IFCOWNERHISTORY( # 5 1 , # 5 4 , $ , .ADDED. , 1 4 5 4 5 7 5 6 7 5 , $ , $ , 1 4 5 4 5 7 5 6 7 5 ) ;
#57=IFCRELCONTAINEDINSPATIALSTRUCTURE( ’ 3 Sa3dTJGn0H8TQIGiuGQd5 ’ , # 5 6 ,

’ Building ’ , ’ Bui lding Container f o r Elements ’ , ( # 3 0 3 ) , # 5 0 ) ;
#58=IFCAXIS2PLACEMENT3D( # 2 , $ , $ ) ;
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#100=IFCPROJECT ( ’ 0$WU4A9R19$vKWO$AdOnKA’ , # 5 6 , ’ I f c P r o j e c t ’ , $ , $ , $ , $ , ( # 1 ) , # 1 0 1 ) ;
#101=IFCUNITASSIGNMENT( ( # 1 0 2 , # 1 0 3 , # 1 0 4 ) ) ;
#102=IFCSIUNIT ( , .LENGTHUNIT . , . MILLI . , . METRE . ) ;
#103=IFCSIUNIT ( , .PLANEANGLEUNIT. , $ , . RADIAN . ) ;
#104=IFCSIUNIT ( , . TIMEUNIT . , $ , . SECOND . ) ;
#105=IFCRELAGGREGATES( ’ 0 9 1 a6ewbvCMQ2Vyiqspa7a ’ , # 5 6 , ’ P r o j e c t Container ’ ,
’ P r o j e c t Container f o r Buildings ’ , # 1 0 0 , ( # 5 0 ) ) ;
#200=IFCMATERIAL( ’ Masonry − Brick − Brown ’ , $ , $ ) ;
#202=IFCMATERIAL( ’ Masonry ’ , $ , $ ) ;
#204=IFCMATERIALLAYER( # 2 0 0 , 1 1 0 . 0 , .U. , ’ F inish ’ , $ , $ , $ ) ;
#206=IFCMATERIALLAYER( $ , 5 0 . 0 , . T . , ’ Air I n f i l t r a t i o n B a r r i e r ’ , $ , $ , $ ) ;
#208=IFCMATERIALLAYER( # 2 0 2 , 1 1 0 . 0 , .U. , ’ Core ’ , $ , $ , $ ) ;
#210=IFCMATERIALLAYERSET( ( # 2 0 4 , # 2 0 6 , # 2 0 8 ) , ’ Double Br ick − 270 ’ , $ ) ;
#211=IFCRELASSOCIATESMATERIAL( ’ 3 6 U74BIPDD89cYkx9bkV$Y ’ , # 5 6 , ’ MatAssoc ’ ,

’ Mater ia l Associates ’ , ( # 3 0 0 ) , # 2 1 0 ) ;
#300=IFCWALLTYPE( ’ 2 aG1gZj7PD2PztLOx2$IVX ’ , # 5 6 , ’ Double Br ick − 270 ’ ,

$ , $ , $ , $ , $ , $ , . NOTDEFINED . ) ;
#301=IFCRELDEFINESBYTYPE ( ’ 1 $EkFElNT8TB_VUVG1FtMe ’ , # 5 6 , $ , $ , ( # 3 0 3 ) , # 3 0 0 ) ;
#302=IFCRELDECLARES( ’ 1 lEof85zvB$O57GEVffll1 ’ , # 5 6 , $ , $ , # 1 0 0 , ( # 3 0 0 ) ) ;
#303=IFCWALL( ’ 0 DWgwt6o1FOx7466fPk$jl ’ , # 5 6 , $ , $ , $ , # 3 0 6 , # 3 1 8 , $ , $ ) ;
#304=IFCMATERIALLAYERSETUSAGE( # 2 1 0 , . AXIS2 . , . POSITIVE . , 0 . 0 , $ ) ;
#305=IFCRELASSOCIATESMATERIAL( ’ 1 BYoVhjtLADPUZYzipA826 ’ , # 5 6 , ’ MatAssoc ’ ,

’ Mater ia l Associates ’ , ( # 3 0 3 ) , # 3 0 4 ) ;
#306=IFCLOCALPLACEMENT( $ , # 3 0 7 ) ;
#307=IFCAXIS2PLACEMENT3D( # 2 , $ , $ ) ;
#308=IFCCARTESIANPOINT ( ( 5 0 0 0 . 0 , 0 . 0 ) ) ;
#309=IFCCARTESIANPOINT ( ( 0 . 0 , 0 . 0 ) ) ;
#310=IFCPOLYLINE ( ( # 3 0 9 , # 3 0 8 ) ) ;
#311=IFCSHAPEREPRESENTATION( # 5 , ’ Axis ’ , ’ Curve2D ’ , ( # 3 1 0 ) ) ;
#312=IFCRECTANGLEPROFILEDEF ( .AREA. , ’ Wall Perim ’ , # 3 1 3 , 5 0 0 0 . 0 , 2 7 0 . 0 ) ;
#313=IFCAXIS2PLACEMENT2D( # 3 1 4 , $ ) ;
#314=IFCCARTESIANPOINT ( ( 2 5 0 0 . 0 , 1 3 5 . 0 ) ) ;
#315=IFCDIRECTION ( ( 0 . 0 , 0 . 0 , 1 . 0 ) ) ;
#316=IFCEXTRUDEDAREASOLID( # 3 1 2 , $ , # 3 1 5 , 2 0 0 0 . 0 ) ;
#317=IFCSHAPEREPRESENTATION( # 5 , ’ Body ’ , ’ SweptSolid ’ , ( # 3 1 6 ) ) ;
#318=IFCPRODUCTDEFINITIONSHAPE( $ , $ , ( # 3 1 1 , # 3 1 7 ) ) ;
ENDSEC;
END−ISO−10303−21;

FIGURE C.4: Source: http://www.buildingsmart-tech.org/ifc/IFC4/Add2/html/annex/
annex-e/wall-standard-case.ifc.htm
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