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Abstract

Object detectors, much like humans, perform less well
on small than on large objects. Because of this, the object
size distribution of a dataset influences the average preci-
sion a network achieves on that dataset. Therefore, the
object size/precision curve of a network might be a better
way to compare convolutional object detectors than the av-
erage precision over an entire dataset. In this paper we
measure the relationship between object size and accuracy
for a modern mobile convolutional object detector. We ver-
ify that this relationship holds for a different dataset, and
that the dataset object size distribution influences the aver-
age precision over the entire dataset. We conclude that the
object size/accuracy curve might contain more information
about a network’s performance than the average precision
over an entire dataset.

1. Introduction
The performance of convolutional object detectors has

been improving both in terms of precision and inference
speed in recent years. R-CNN [1] introduced region pro-
posals using selective search and made convolutional neural
nets computationally feasible for object detection by apply-
ing convolutions on regions of interest. Fast R-CNN [2] im-
proved on this idea by generating a feature map of the entire
image. Faster R-CNN [3] sped up detections by generating
the region proposals using a region proposal network. With
the advent of single-pass techniques such as SSD [4] and
YOLO [5], object detectors are becoming feasible for mo-
bile devices.

When selecting a network for a given task, parameters
such as network precision, size and speed have to be taken
into account. For instance, a mobile application that detects
cars in real-time might require a smaller and faster network
than one detecting anomalies in x-rays, which needs more
precision.

When comparing network precision, the (mean) aver-
age precision (mAP or AP) on benchmark datasets such
as COCO [6] is usually used. However, object detectors,
much like humans, perform better on large objects than on
small objects. The average precision over an entire dataset
is therefore influenced by the object size distribution of the
dataset used. Depending on how much the performance of a
network varies with object size, using the average precision
for an entire dataset as a performance metric might leave
out information about the performance of a network.

An object detector with a low AP on for instance the
COCO dataset (which has a lot of small objects) might have
a high precision on larger objects. Therefore, measuring the
relationship between object size and precision can aid in
deciding what model to use. This is especially relevant for
mobile applications, where inference speed and model size
are more important. For example, when selecting a network
to detect pedestrians for a self driving car using a mobile
platform, a network that performs in real time and has a high
precision on large objects might be a better choice than one
that is slow but has state-of-the art precision on COCO. We
illustrate this idea in figure 1.

Figure 1. Object detectors work better on larger objects than small
ones. While the object detector in a self driving car might detect
30% of all people it sees, it might detect 100% of people closer
than 10 meters.

In this paper we examine the relationship between ob-
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ject size and average precision for a modern mobile convo-
lutional object detector1.

Our main contributions are as follows:
• We show that there is significant relationship between

object size and precision for a modern mobile convo-
lutional object detector.

• We show that this relationship stays similar after trans-
fer learning a different dataset.

• Our results show that the precision/object size curve
might give extra information about the performance of
a network compared to just the AP over a benchmark
dataset.

2. Related Work
Comparing the performance of different networks can be

difficult. This fact is for example the case for inference
speed: papers for techniques like Pelee [8] and YOLO [5]
do tend to publish that they achieve a certain frame rate, and
compare this framerate to other networks. However, these
measurements are usually conducted under different condi-
tions, such as different feature extracters, hardware, input
image sizes and software platforms. Because of these vary-
ing conditions, plotting speed/accuracy tradeoffs can pro-
vide more information about an architectures performance
than an one-dimensional framerate measurement. Measur-
ing these tradeoffs under standarized conditions allows a
fair comparison between networks for speed, as was done
by Huang et al. [9].

For precision, large public datasets and detection chal-
lenges like COCO [6] and PascalVOC [10] allow develop-
ers to make a comparison on AP between the different net-
works. Most papers report their achieved precision on one
of these datasets. This precision is calculated as

Precision =
True Positives
All Positives

. (1)

The precision of detections is usually reported for a certain
Intersection over Union (IoU), which describes how much
the detected bounding box overlaps the ground truth bound-
ing box, as calculated by:

IoU =
Area of Overlap
Area of Union

. (2)

For the COCO challenge, the primary challenge metric is
the AP averaged across 10 different IoU thresholds between
.5 and .95, with a step size of .05 [11].

Some papers investigate the relationship between object
size and precision. The effects of the bounding box area on
the precision per category of the PascalVOC dataset for five
size groups (XS, S, M, L and XL) is investigated in the SSD

1MobileNetV2 + SSDLite [7]

paper [4]. As is shown in figure 2, this research shows that
object detectors perform better on larger objects.

Figure 2. The effects of bounding box area per category for
SSD300 [4]

As is shown in figure 3, bounding box area might how-
ever not be related to the actual object pixel area and could
therefore not give a precise picture of the object size versus
precision trade off.

Figure 3. A giraffe and its bounding box. The actual object only
covers a small area of the bounding box. Adapted from [12]

As is shown in figure 4, object segmentation area repre-
sents the actual amount of pixels that make up an object in
an image better than bounding boxes.

Figure 4. A dog and its boundingbox and segmentation from the
Pascal In Detail dataset [13].

The COCO dataset is fully segmented and its evaluation
API calculates precision for three segmentation area scales
by default2. Not all papers that measure their precision on
COCO state their results for the different object segmenta-
tion areas. For instance, in the paper for the network we
use, no performance is given for the different object areas.
Some papers, such as YOLO9000 [14] and R-FCN [15], do
compare their results to others for these different scales. A
comparison between the accuracy on large and small ob-
jects for different networks is made by by Huang et al. [9].

2small (area < 322), medium (322 < area < 962) and large (area
> 962), in pixels
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However, using only a few datapoints to evaluate the object
area/precision relation of a network might be enough reso-
lution to show the network performance, as we show in this
paper.

3. Methods
We measure the precision of a real-time object detector

for mobile platforms, MobilenetV2+SSDLite [7]. In our ex-
periments we use a network that is pretrained on the COCO
dataset.3 This network has an input image size of 300 by
300 pixels.

For inference, we use the Tensorflow object detection
API [9]. We infer detections on the COCO val2017 [6]
dataset of this architecture trained on the COCO dataset.

To measure the relationship between object size and pre-
cision, we use the COCO API [16]. Instead of the default
small, medium and large areas scales, we divide all objects
over 100 area buckets, with each bucket containing an equal
amount of objects. We then calculate the average area of a
bucket, and calculate the average precision for every bucket.

We create our own dataset of the logo of Aiir Innova-
tions. For this we have taken 80 clips in different settings,
distances and lighting conditions. We have annotated these
videos by hand using a video masking tool. From these
clips, we extract one frame for every second of video, re-
sulting in 542 images. The gamma of the images is changed
randomly, in order to create more variation in the dataset. In
figure 5 we show an example of our created dataset.

Figure 5. An example of an image from our own dataset of the logo
of Aiir Innovations, showing the bounding box and segmentation
annotation (note that the Aiir logo is blue and color changes are
due to the displayed segmentations).

We add this extra class, called ”Aiir”, to the Pascal in
Detail [13] dataset, which contains fully segmented objects
for the original PascalVOC2010 dataset. We then convert
these annotations to the COCO annotation format. Finally,

3As taken from http://download.tensorflow.org/
models/object_detection/ssdlite_mobilenet_v2_
coco_2018_05_09.tar.gz

we train the MobilenetV2+SSDLite network on this new
dataset using transfer learning for 191 epochs on a batch
size of 50, and measure the precision for the validation set
using the COCO API.

4. Results
In order to rule out that our network performs less well

on small objects because it was only trained on large ones,
we check that our training datasets contain more small ob-
jects than large ones. As is shown in Figure 6 and Figure
7, both training sets contain many more small object than
large objects. Overall, the objects in Pascal in Detail + Aiir
train are larger than those in COCO train2017.

Figure 6. The object size distribution of the COCO 2017 train set.

Figure 7. The object size distribution of our Pascal in Detail + Aiir
train set.

As shown in table 1, the COCO training dataset is much
larger than Pascal in Detail+Aiir. Furthermore, it should be
noted that due to an error the generating of our dataset, the
Pascal in Detail + Aiir train set misses 20% its object an-
notations, uniformly distributed over its classes and object
sizes. This lowers our overall achieved AP, but since it is
uniformly distributed over object sizes, it should not influ-
ence the object size/precision relation.
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Table 1. Image splits for the used train and validation sets

# images
train set

# images
val set

COCO 2017 118k 5k
Pascal in Detail + Aiir 9k 1,6k

4.1. Object size versus precision for COCO val2017

The network should perform better on large objects than
small objects. As Figure 8 shows, the average precision of
the network rapidly increases until an area of around 50∗103
pixels. The upper bound of the AP is around 0.7 for this
network and dataset. Note that the largest image size in the
coco dataset is 410 ∗ 103 pixels.

Figure 8. AP at IoU = [0.5:0.05:0.95] versus object segmentation
size for the COCO validation set. The achieved AP over the entire
dataset is 0.243.

As is shown in figure 8, there is a strong relationship
between object size and precision that is not shown in the
singular value of AP over the entire dataset.

4.2. AP over entire COCO val2017 dataset

The COCO val2017 dataset has a similar object size dis-
tribution as its training counterpart, as is shown in Figure
9. Therefore most objects in the COCO val2017 set are of
a size that our network performs less well on, and the AP
over the entire COCO validation set should be much lower
than the networks accuracy upper bound of 0.7. Using the
COCO API we measure an overall AP of 0.243.

Figure 9. The object size distribution of the COCO 2017 val set.

4.3. Object size versus precision for Pascal in De­
tail+Aiir val

To verify that the same network shows a similar object
size/precision relationship for a different dataset, we first
train our network on the Pascal+Aiir classes using transfer
learning. We then measure the performance of the network
on our validation set for Pascal in Detail+Aiir.

Figure 10. AP at IoU = [0.5:0.05:0.95] versus object segmentation
size for the Pascal in Detal+Aiir validation set. The achieved AP
over the entire dataset is 0.403.

As Figure 10 shows, the network shows a strong object
size/precision relationship for this dataset as well. The data
points show more variance than those for coco, which could
be caused by the validation set being smaller.

4.4. AP over entire Pascal in Detail+Aiir val dataset

Because the object size and precision tradeoff for the
Pascal in Detail+Aiir is similar to that for COCO, the ob-
ject size distribution of the inferred dataset should give an
indication of the AP over the entire dataset.
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Figure 11. The object size distribution of the Pascal in Detal+Aiir
val set.

Figure 11 shows that the Pascal in Detail+Aiir validation
set contains a larger objects than COCO val2017. There-
fore, the measured AP over the entire dataset should be
higher than the AP measured over COCO. Using the COCO
API, we determine that the COCO primary challenge metric
achieved by the network is 0.403, confirming this theory.

5. Discussion
Our results show that the precision of the Mo-

bilenetV2+SSDLite architecture is dependent on the size of
the objects it is asked to infer. Because of this, the AP over
an entire dataset for a given network is highly dependent on
the object size distribution of the dataset used.

The relationship between object size and precision seems
to be similar for different datasets when using transfer learn-
ing. However, this might not hold when training networks
from scratch. The results of our transfer learned Pascal in
Detail+Aiir dataset also show more variance than those for
COCO. This could be because the network is not optimally
trained, as 20% of object annotations in the training set are
missing.

The relationship between object size and precision might
be influenced by various measurement conditions, such as
input image size and network design. This curve might not
only have different values for different conditions, but also
different shapes. Performing the same type of experiments
on multiple architectures and databases in standarized con-
ditions, much like [9], could provide more information on
the merits of evaluating the performance of networks using
object size/precision curves.

6. Conclusion
We have shown that the precision of a convolutional ob-

ject detector is highly dependent on object size. We have
also shown that because of this the object size distribution of
a dataset influences the overall AP of a network for a given
dataset. Combining these results, we can conclude that the

object size/precision curve of a network for a dataset might
give more detailed information about the performance of an
object detector than AP over an entire dataset.
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