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1
INTRODUCTION

For a human being, it takes a single glance at a room to understand the indoor built
environment. A person understands both its semantic and geometric details. For ex-
ample, there are table, walls, doors, windows, and furniture are present in the room and
the door is at the right side of table or there is a visible walkable path to the door. Pro-
cessing this information through a machine is a very challenging task and has been an
important area of research in the field of computer vision. Getting semantic 3D informa-
tion has many applications. For example, it can be used for by home or work assistance
robots for indoor environment to understand various elements in the indoor space and
take desired actions. A user can create a virtual model of the house or office which can
further be used for redesigning by the real estate company. This also has applications
in indoor navigation where a 3D model can be reconstructed and used as database for
localisation. Few of the applications have been depicted in figure 1.1

Daor 3 ConneciedSpece

Asset Management Indoor Navigation 3D Modelling

Figure 1.1: Applications of semantic 3D information using images : (a) Recognizing indoor space furniture
can help in asset management[Donaubauer et al., 2010],(b) Division of floor into small recognizable spaces for
indoor navigation[Zlatanova and Isikdag, 2017] (c) An application to create 3D model of a room[Canvas, 2016]

To get 3D information such as depth or planar surfaces from indoor space, combina-
tion of various sensors such as using laser scanning device with Global Position Sys-
tem(GPS) device, Inertial measurement unit (IMU) and wifi access points can provide
3D point clouds of indoor scene,[Choi et al., 2015]. However, due to expensive setup and
expertise, using multi-view stereo reconstruction proposed in [Sinha et al., 2009] and
[Furukawa et al., 2009] is easier than sensor based approach. In this, multiple images
having a minimum overlap to reconstruct geometric primitives such as line segments,
vanishing points, planes and local features such as corners, blobs, which are grouped
together into planar or surface patches[Gallup et al., 2010]. However, these bottom up
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techniques still face many difficulties: 1) there is occlusion present in image, thus only
limited observation about objects is present, 2) the variation of light and texture hin-
ders the feature extraction algorithms for feature reconstruction, and 3) the complexity
of placement of various objects challenges the Manhattan world norms. The top-down
approach using neural networks,[Liu et al., 2015] tries to tackle these challenges by look-
ing at an image from a holistic perceptive. Keeping this in mind, using a single image to
extract 3D information can make the data acquisition process easier.

With the evolution of deep learning techniques, the Convolution Neural networks have
been utilized to infer information such as semantic labels, depth maps, surface normals
from a single image[Eigen et al., 2014]. Using supervised learning techniques, ground
truth information per pixel for an image is used to train a model and infer semantic
labels, their location in an image and reconstructed depth[Mousavian et al., 2016]. In
literature, many models focus on designing neural networks to predict depth and se-
mantic information independently. Recently, new models have come which performs
these tasks using networks designed for segmentation to reconstruct depth-map from
single image, [Liu et al., 2018],[Yang and Zhou, 2018],[Yu et al., 2019]. PlaneRCNN [Liu
et al,, 2019] achieved a breakthrough in reconstructing 3D model outperforming other
models. It uses MaskRCNN, [He et al., 2017] as the backbone network and make improve-
ments for extracting planar surfaces and depthmap from single image. Through analysis
of existing methods, it is expected that using an energy function to enforce semantic
and color consistency, spatially with depth consistency can influence the reconstruction
process. The aim of this research project is to generate a depthmap or point cloud along
with semantic labels of objects from a single RGB image by jointly optimizing depth es-
timation and semantic segmentation. The main objectives are to investigate the current
state of the art methods, establish a benchmark, utilize the new energy functions to de-
sign a new model and generate a 3D semantic point cloud from single image



2
RELATED WORK

2.1. SEMANTIC SEGMENTATION

Image segmentation is a process of identifying certain certain objects or parts of ob-
jects in an image. This technique helps in eliminating the need of considering every
pixel as unit of observation and provides granular perspective of details in image. Initial
techniques for such detections used certain templates such as bounding boxes,[Chen
etal., 2016], complex 3d representations[Wu et al., 2016] and shape compositions. These
methods generally have coarse level features and do not handle the complexity of mod-
elling chaotic indoor scenes. Before the advent of CNN, Conditional Random Field (CRF)
was used to segment image in a hierarchical manner in [L. Ladicky and Torr., 2009] and
as fully connected in [Krahenbuhl and Koltun, 2012] . On a basic level, CRF is sort of
a probabilistic network to determine labels of objects and segmentation by incorporat-
ing certain relationships within pixels of image. For example, nearby pixels are likely
to have similar labels, same depth pixels probably form a plane surface. [Chen et al.,
2014], combined the deep CNN with fully connected CRE thus combining the positives
of both methods. The model is trained independently in the proposed method however
there were improvements in training schemes. In [Zheng et al., 2015], CRFs are utilized
with RNNs to exploit global level information and local information through differen-
tial operations for end to end training. In [Zhao et al., 2016], PSPNet model is proposed
which aggregates features at various scales using a Pyramid Pooling Module (PPM) to
derive the per-pixel prediction. In [Xiao et al., 2018], UPerNet model is proposed which
combines PPM with a Feature Pyramid Network (FPN),[Lin et al., 2016], providing less
training time and power consumption than PSPNet. Recently,[Sun et al., 2019] proposed
HRNet, a model that retains high resolution feature representation by incrementally in-
creasing the convolution networks at different scales rather than in a single stage.

2.2, INSTANCE SEGMENTATION

Semantic segmentation only provides pixels belonging to a category in image but does
not distinguish between several objects of same class in image, hence it is not instance
aware. This has been depicted in figure 2.1. In semantic segmentation all chairs be-
long to blue pixels in an image but in instance segmentation, these are further classified
into 9 separate chairs. The most common benchmark for instance level segmentation
is MaskRCNN proposed in [He et al., 2017], which is built upon Faster-RCNN[Ren et al.,
2015]. The MaskRCNN in first stage creates proposals, regions of interest with maximum
likelihood of containing an object, then in second stage,these proposals are classified
into a class and bounding box and a binary mask is generated for each classified pro-
posal. In another approach, [Newell et al., 2016],the concept of associative embedding
is used wherein,the pixels belonging to same instance level have similar properties. By
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using a discriminative loss introduced in [Brabandere et al., 2017], the model learns in-
stance embedding to form proposals using a mean shift clustering algorithm.

Input Image Semantic Segmentation Instance Segmentation

Figure 2.1: Image segmentation : This image from a blog shows difference between semantic and instancec
level segmentation by labelling chairs[Tsang, 2018]

2.3. 3D RECONSTRUCTION FROM IMAGES

Traditional methods for 3d reconstruction from images use multiple views of the scene
and sometimes, the depth information as well.([Sinha et al., 2009],[Furukawa et al., 2009]).
These methods generally first reconstruct the points in 3D, then, planes are fitted through
the points by inferring corresponding plane parameters and assigning a plane ID to each
point[Gallup et al., 2010]. A piece-wise planar depthmap can be produced by solving
global-inference problem. These methods are often time-consuming and statistical op-
timization is required to achieve accurate results. This also restricts their utility in real-
time applications. One of the early pioneers in this field, [Saxena et al., 2006] infers depth
from outdoor scenes using Markov Random field (MRF) to incorporate both global and
local features of an image to refine depth prediction. With the advent of deep neural net-
works, many CNN based techniques have been produced to infer depthmaps or surface
normals from single image [Li et al., 2015]. One well known approach was proposed by
[Eigen et al., 2014] wherein, two networks are used to improve the final depth prediction
by using both fine and coarse level features of image. But these methods do not provide
planar segmentation or parameters which can help in inferring topological relationships
among various elements in the scene.

Recently, a novel model, "Planenet", was proposed by [Liu et al., 2018] to reconstruct
a "piece-wise depthmap", given a single RGB-image using end-to-end deep neural net-
work built upon dilated Residual Networks(DRNs) proposed in [Yu et al.,, 2017]. Using
high resolution feature maps at the end of DRN, three separate output branches are
established. The network uses ground truth 3D planes for training to collectively pro-
vide a set of plane parameters, plane segmentation masks and a global depthmap.[Liu
et al.,, 2018]. In another approach, "PlaneRecover" a fully convolution network (FCN)
based on Disp-Net,[Mayer et al., 2015] simultaneously predicts plane segmentation map
and plane parameters, taking advantage of ground truth semantic labels, depthmap
and known camera pose, in outdoor RGB-D dataset, and categorising scene into planar
and non-planar depending upon their semantic labels[Yang and Zhou, 2018]. The non-
planar pixels are not considered in depth prediction. It is important to note here that
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backbone networks used in above methods are flexible networks for image classification
(global tasks) and semantic segmentation (pixel wise prediction tasks)[Yu et al., 2017].
Both Planenet and PlaneRecover provide limited number of planes(4-10) in the scene
which generalises various small planes into one large plane, thus loosing complexity in
reconstructed 3D model.

The problem of generalisation of scene was recently resolved in [Yu et al., 2019], wherein,
aencoder-decoder architecture is adopted to provide a proposal free instance level plane
segmentation and plane parameters in a two stage process. The encoder is built upon
Resnet-101 implemented by [Zhou et al., 2018a], an established benchmark for seman-
tic classification. In first stage, two decoders train CNN to infer plane segmentation and
pixel level embedding which are further merged to provide instance level embedding.
In second stage, these instance aware planar segmentation is combined with pixel-level
plane parameters to provide final piece-wise planar 3D model[Yu et al., 2019]. This ap-
proach uses an proposal-free approach. In another method, a proposal-based method
was adopted. PlaneRCNN, recently, made breakthrough in 3D planar reconstruction us-
ing single image by proposing a novel neural architecture in [Liu et al., 2019]. It contains
three networks: firstly, a plane detection network based on MaskRCNN, [He et al., 2017]
infers plane normals and offset information along with global depthmap to provide both
instance level planar masks and global depth map. Secondly, a joint refinement network
takes the output from previous stage to refine each planar instance mask and lastly a
warping loss module is used to optimize the reconstructed 3D model from nearby view
during training for performance boost. It provides significant improvement in planar re-
construction from all past methods. A visual comparison of some methods discussed in
the literature so far, is shown in figure 2.2, clipped from [Liu et al., 2019].

Input Image PlaneNet PlaneRecover PlaneRCNN

Figure 2.2: From left to right: input image, Planenet [Liu et al., 2018], PlaneRecover [Yang and Zhou, 2018], and
PlaneRCNN(Liu et al., 2019].



3
RESEARCH QUESTIONS

3.1. OBJECTIVES
Based on the information available at hand, our main research question is :

"To what extent, a 3D model of an indoor scene
can be generated from a single image 2"

To support our main research objective, some sub questions have also been formulated
as following :

¢ Is it possible, and to what extent, 3D information(e.g., plane/depth) of an indoor
scene can be extracted from a single image?

* Can joint depth estimation and semantic segmentation improve the accuracy of
the 3D model?

* How accurate is the output of the current techniques compared to traditional and
benchmark algorithms?

3.2. SCOPE OF THE THESIS

To provide focus on particular aspects of the main research question, we will only con-
sider following things :

* Onlyindoor scenes will be used for research Hence, no outdoor scenes or buildings
will be considered.

* Only single image will be used as data input, thus, no multiple images are utilized.

* The output will be a depth image or a point cloud with semantic information but
no solid model or surface representation will be produced. Reconstructing a mesh
or surface representation from point cloud or depth-map is beyond the scope of
this research.
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METHODOLOGY

To model a 3D semantic scene from a single RGB image, a convolution neural network
will be developed in such a way that the model jointly optimizes the depth estimation
and semantic segmentation. To conduct our research, we will perform the following
tasks.

4.1. BACKBONE NEURAL NETWORK

The main model will be developed using the principles of transfer learning, wherein, a
pre-trained model is used to access its feature maps and customized to design a new
model for performing another task. Based on the literature review, for depth estimation,
PlaneRCNN,[Liu et al., 2019] depicted in figure A.1, and PlanarReconstruction,[Yu et al.,
2019], depicted in figure A.2, are suitable candidates for our investigation and will be
analyzed empirically to test the quality of output. They provide piece-wise depthmaps
from single image and use instance level information for planar segmentation. Another
advantages of using these methods include no restriction on the number of planes con-
sidered in a scene and the combination of local and global features for inference. A
pre-trained model can be used to produce piece-wise planar depthmap from single RGB
image after creating a virtual environment and installing dependencies on a Linux ma-
chine. Using known camera intrinsic parameters a point cloud will be generated from
the depthmap. For a point P, in the camera coordinate system, let (xc,yc,zc, 1)t be the
homogeneous coordinates for a pixel P; in image with (i,j,1)! as homogeneous coordi-
nates. The pinhole camera equation gives us:

4.1)

+ +cr !
PI:T[(PC): (fxxc Cx)fyyc x) ) ’
z(Pp) z(Pp)
where fy, f, are focal lengths in x and y direction; cy, ¢y, are respective principal point
offsets; z (py) is the depth value of 2d point p;. If the depth is known for the 2D point, it
can be projected back to a 3D point using inverse projection function :

. i—c t
i=Cx J y,1) 4.2)

P.=n"' P, z(P :zp( )

c (Pr,z(Pp)) Pp I 5,
Once the point cloud is obtained, semantic segmentation is performed using the bench-
mark methods discussed in section 2.1. The models proposed in [Zhao et al., 2016], [Xiao
etal, 2018] and [Sun et al., 2019] will be analyzed using pre-trained models provided by
[Zhou et al., 2017] and [Zhou et al., 2018a] in an encoder-decoder architecture. These
models will be used to generate pixel wise semantic labels which are then further pro-

7
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jected onto the point cloud generated by using equation 4.2. The final backbone network
will be chosen based on experimenting the existing methods.

4.2.JOINT OPTIMIZATION

In order to design a model that can jointly optimize the depth and semantic informa-
tion, the neural network needs to enforce a constraint such that in an image, the pixels
in a neighborhood with similar colors and semantic labels should have similar depth
values. Thus, sudden depth changes should be penalised in a neighborhood of similar
colors. We can formulate this as an energy function which has to be minimized by the
neural network. If depth changes too much, the patch should be split. This problem be-
longs to the category of Conditional Random Field(CRF) problem[Liu et al., 2015]. Thus,
incorporating CRF energy function through convolution layers in a model can possibly
improve the results of depth estimation and corresponding 3d model. Broadly, there are
3 components of CRF: a) a unary network to define self-energy of a pixel b) a pairwise
network to define mutual energy between a pair of pixels using their shared properties
which in our case is color and semantic labels c) a loss layer to penalize the energy func-
tion.

To implement CRF for depth estimation alone, in [Liu et al., 2015], a fully convolution
network is used, while in [Xue et al., 2019] arecurrent neural network is used . In [Mousa-
vian et al., 2016], a multi-scale CRF neural network was used to further optimize seman-
tic using depth information in constraints. We will instead optimize depth map using
semantic information for pairwise network. Adopting the concept of super pixels repre-
senting depth of a pixel at its centroid from previous work, [Saxena et al., 2006],[Liu et al.,
2015], for an Image I, let N be the number of super-pixels and X = {x1, x2,..., xy} be the
continuous label vector of N superpixels of depthmap, where x; € {1,..., D}, given D as
the number of depth labels. The probability of assigning a depth label can be defined
using Gibbs distribution as :

1
Pr(x|I) = ﬁ exp(-Ex,I)), (4.3)

where E(x) is the energy function describing the cost of label assignment, and Z is the
normalization or partition factor defined as :

Z() = f exp{—E(x,D}dx, (4.4)

. For simplicity, I term will be dropped for now. The features representative of each
pixel i can be depicted as f; = {p;, I;, d;, Si} where p; is the spatial location, I; is the RGB
value, d; is the depth value and S; is the semantic label. The energy function for the fully
connected CRF becomes:

E, ) =) wu(x)+ D wp(xi fi xj, fi), 4.5)
i i,j

where unary potential }_; ¥, (x;) come from the depth decoder of the PlaneRCNN net-
work and the second term depicting pair-wise potentials have the form,
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vp (xi fi, %), fi) = w(xi ) K (i f3) 4.6)

where where /.t(x,-,xj) depicts the compatibility between depth label assignments of
pixel i and j. Gaussian kernel k (f;, f]) calibrates the evidence that should be dissem-
inated between x; and x; based on the spatial distance, RGB distance, depth distance
and semantic affinity between pairs of pixels. k(f;, f;) consists of four different weights
w' for i €1,2,3,4 and hyper-parameters 6(.) that control the tolerance with respect to
difference in semantic pixel labels, depth pixel values, RGB pixel values and spatial loca-
tion of pairs of pixels. k(f;, f;)is computed using the following equation:

— 2
k(ﬁ,fj)zwu)exp(lpz pil* |h 1]|)

202 26123
2 2
s 0 exp pi=pil” , |di-dj|
295 29? )
2 2 ’
+ w®exp \pi_pji +|Si_sj|
20% 26%
+w® exp —’pi _ pj’z
202

The inference will be done using the mean-field approximation used in previous works,
[Zhengetal., 2015]. The unary potentials, compatibility parameters and pairwise weights

are learnt during the training stage by back propagation. The derivatives are back-propagated
to further refine the feature representation. It is important to note here that there are var-
ious approaches to apply constraints. The semantic label can be replaced with instance
mask as well. To enforce constraint, for pixels belonging to same semantic label, the
depth is regularized, while when the labels are different, surface normal can be used to
guide the topological relationship as used in [Ji et al., 2016]. Another approach can be
considered from [Xu et al., 2018], where the a structured attention guided model is used

to correlate latent feature maps at different scales to guide the CRF network weights.

Using pre-trained models and adding CRF module to jointly optimize depth and seman-
tic labels will be an iterative task. Fine tuning the whole pipeline will be bottom up ap-
proach.For CRE we will start from incorporating color consistency, then semantic and
surface normal information will be used.

4.3. EVALUATION

4.3.1. DEPTH ESTIMATION
Following the previous works, the new model will be evaluated by using metrics adopted
in [Eigen et al., 2014] and [Wang et al., 2015]. If df " represents the predicted depth and

dlgt represents the ground truth depth of a pixel i and N is the number of pixels in images
to be tested, then the following errors will be calculated using their respective equations:
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* mean relative error :

t
L e
N (4.8)
N le s’
* Root mean square error(rmse) :
1N or a2
~ L@ =) (4.9
* mean log 10 error :
L& pr gt
NZ”logw (d;") —log, (dl. )H (4.10)

* scale invariant rmse log error: rmse log error of normalized predicted and ground
truth depth

* accuracy with respect to a certain threshold th, defined by equation 4.11 :

gt 4pr
] 2 3
max(ﬁ,?):6< th(the[1.25,1.25%,1.25°]) (4.11)
i i
4.3.2. SEMANTIC SEGMENTATION
The semantic segmentation will be measured by adopting the four metrics used in pre-

vious works, [Long et al., 2015] as follows :

* Pixel accuracy : It represents the percentage of pixels which are classified correctly

* Mean accuracy : It represents the percentage of pixels which are classified cor-
rectly averaged over all classes.

* MeanIoU : It represents the the intersection-over-union between the ground truth
and predicted pixels averaged over all classes.

* Weighted IoU : It represents the the IoU weighted by the ratio of all pixels of every
class.
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SCHEDULE

The following plan has been set up to complete tasks for fulfilling research objectives :

Start End Activity
1sept  31sept Exploring graduation topics
P1 - Progress review Graduation Plan
1oct 31dec Literature study
7 oct 15dec  Research existing methods for 3d reconstruction using single image
10oct 30dec  Study existing CNN models and reproduce results
150ct 15jan  Study semantic segmentation from single image and reproduce results
10nov 15jan  Generate 3d semantic point clouds using single image and analyze
P2 - Formal assessment Graduation Plan
10dec 1feb Define the new energy terms
25jan  15mar Implement the energy terms and the deep learning network
1 feb 15mar Quantitative and Qualitative evaluation
P3 - Colloquium midterm
20mar 12may Write final implementation
1 may 12may Thesis writing
P4 - Formal process assessment
12may 15jun  Finalize thesis
12jun  22jun  Prepare final presentation

P5 - Public presentation and final assessment

The tentative graduation calendar is shown below. The exact dates of the presentations
will be determined during the year.

Event Date

P1 11 Nov

P2 15 Jan

P3 12-20 Mar
P4 15-30 May
P5 10-30 June

Weekly meetings will be held with the daily supervisor dr. Liangliang Nan. Additional
guidance and feedback will be provided by another supervisor, dr. Jan Van Gemert. The
co-reader is yet to be decided.

11



6
EXPERIMENTS

6.1. ToOLS

In order to conduct experiments following hardware and softwares will be used. For
using deep learning techniques, Ubuntu 18.04 with graphics card, NVIDIA QUADRO
P1000 having 4GB GDDR5 on-board memory is used. For training and testing, graph-
ics card provided by HPC cluster, TU Delft will be used. For each experiment, a certain
virtual environment is required with some dependencies such as skit learn, cffi, numpy;,
opency,python, scikit-image, torch, tqdm. Thus, either conda or venv is used to do this.
For normal operations, python is used in Spyder while Open3d is used for visualization
and redering mages and point clouds.

6.2. DATA

In order to conduct our research, we will use established benchmark datasets which pro-
vide RGB-D ground truth with rich annotations at indoor level and toolbox to do pre-
processing. Also both real and synthetic datasets will be used for training and testing.
Considering this, following datasets will be used:

* NYU-Depth : There are two versions of v1[Silberman and Fergus, 2011] and v2
[Nathan Silberman and Fergus, 2012] introduced in 2011 and 2012, respectively.
The first one has 64 indoor scenes with 2347 RGBD images available for training
and testing at 60-40 ratio respectively. The second version has 1449 RGBD images
with pixel level labelling for 26 scene types. There are 795 images for training set
and 654 images for the testing set.

* Sun RGB-D : Provided by [Song et al., 2015], the dataset contains 10335 indoor
images with dense annotations in 2D and 3D for both objects and indoor scenes.

* ScanNet : Presented in [Dai et al., 2017], there are 1513 annotated scans avail-
able for 707 different spaces such as classrooms, apartments, offices, apartments.
They have level semantic category labels with 1205 scans for training and other
312 scans for testing.

e Matterport3D :In [Chang et al., 2017], it provides 194400 RGBD images for indoor
environments of 90 buildings annotated for 2D and 3D semantic segmentation,
camera poses and surface reconstructions

12
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6.3. EXPERIMENTS WITH EXISTING METHODS

6.3.1. SEMANTIC SEGMENTATION

For producing semantic segmentation, models provided in [Zhou et al., 2017] and [Zhou
et al., 2018a] are used. They provide normalized pre-trained models, whose training is
benchmarked on a server with 8 NVIDIA Pascal Titan Xp GPUs (12 GB GPU memory).
After experimentation with several models and visually comparing them, a model is se-
lected to project semantic labels onto the point cloud generated in first step. A visual
comparison for some of the models using two nearby images is shown in figure 6.1.

.wall .ﬂoor .bed .door .table .chair.sofa .rug lamp
.ceiling .picture .plate

cushion

Input Image ResNet18dilated + HRNetV2 Resnet-101-Upernet
PPM_deepsup

Figure 6.1: From left to right: input image, segmentation from resnetl8dilated-ppm-deepsup model, hrnetv2
model and resnet-101-upernet model

6.3.2. 3D RECONSTRUCTION

To create a 3D model from image, several models were considered in the beginning. Im-
plementing Planenet,[Liu et al., 2018] was difficult due to problems in compatibility of
software and hardware. It was possible to reproduce results from Planerecover, but it
was tested for outdoor images hence, is not shown here. Finally, we choose two models
for testing. Firstly, PlaneRCNN, [Liu et al., 2019] is used to load a pre-trained model on
NVIDIA TitanX GPU for 10 epochs with 100,000 randomly sampled images from training
scenes in ScanNet. A single image is processed using parameters stated in [Liu et al.,
2019] to get depth map, plane segmentation and masks. After creating an ad-hock func-
tion to generate point clouds using the estimated piece-wise depth-map. Three separate
ply files: mesh reproduced from model, a point cloud with xyz coordinates and another
colourised point cloud. The results of the same are shown in top row in figure 6.2 The
second model implemented is from [Yu et al.,, 2019]. A pre-trained model for 50 epochs
on one NVIDIA TITAN XP GPU device is used for testing images. The results of both Plan-
eRCNN and PlanarReconstruction can be seen in figure 6.2. From visual analysis, it can
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be observed that the point cloud of PlaneRCNN provides more information about local
objects and surfaces. PlanarReconstruction generalizes the scene into larger planes and
thus the depth information does not preserve the topological relationships.

PlanarReconstruction Model Generated Point Cloud RGB Point Cloud

Figure 6.2: From left to right: 3D mesh reproduced from model, generated point cloud using predicted depth,
and colored point cloud using original image rgb values

a) PlaneRCNN b) PlanarReconstruction

Figure 6.3: From left to right: point cloud generated from PlaneRCNN and PlanarReconstruction respectively.
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6.3.3. 3D SEMANTIC POINT CLOUD GENERATION AND RENDERING

To create a semantic point cloud which can represent indoor scene, the output from step
1 and 2 are combined. For first image, resnet-101-upernet model is chosen for semantics
while for second, hrnetv2 model is chosen. The point clouds generated from models of
PlaneRCNN and PlanarReconstruction are labelled with semantic labels using equation
4.2. Open3d, [Zhou et al., 2018b] is then used to load all point clouds and rendering for
visual analysis.

Input PlaneRCNN PlanarReconstruction
Image 3D semantic Point Cloud 3D semantic Point Cloud

Figure 6.4: From left to right: input image, 3D semantic point cloud from PlaneRCNN model, 3D semantic
point cloud from PlanarReconstruction model

6.4. WAY FORWARD

From visual analysis, with the observations in figures 6.2 and 6.3 that the first approach
by PlaneRCNN performs qualitatively better over second approach. It is globally and lo-
cally, better representation of indoor scene. In figure 6.3, and 6.5, both approaches does
not maintain the orthogonality of planes at all places and their placement is also not con-
sistent with nearby objects. However, PlaneRCNN has denser distribution of points and
preserves the topology better than PlanarReconstruction where geometric complexity is
not preserved. The semantic segmentation provides a good perspective on the quality of
depth-map. It can be observed in figure 6.3 that PlaneRCNN provides better represen-
tation of points to semantic labels than second approach. After analysing the existing
methods, it is expected that jointly optimizing depth estimation and semantic segmen-
tation can potentially help the process of extracting 3D information using single image
but it needs it to be implemented and tested.
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b) PlanarReconstruction

Figure 6.5: Side view of colored point cloud generated from second input image zoomed in on couch, pillows
and table generated using a)PlaneRCNN b) PlanarReconstruction

Figure 6.6: Side view of 3D semantic point cloud zoomed in on couch and pillows generated using a) PlaneR-
CNN, b)PlanarReconstruction,c) another view of 3D model focusing on table

The current approaches often fails in critical boundary conditions resulting in misplaced
planes or inconsistency in depth values. For example, in figure 6.1 a table and rug in the
image are together predicted as table while in the 3D model shown in figure 6.5, major
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points of table are predicted between ground and table and only a small portion is table
is appeared at a height in PlaneRCNN while a good part of table appears as planar sur-
face in PlanarReconstruction. Similarly for pillows in 6.6, there is no depth consistency
maintained for single object and when the boundary is changing. Hence, adding a new
constraint to enforce the relationship between depth and semantic information has a
potential to improve 3D reconstruction. Taking cue from this evidence, in next phase,
the energy terms defined in methodology will be implemented in an iterative manner.
Then the new model and the baseline methods will be evaluated qualitatively and quan-
titatively.
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Figure A.1: overview of methodology by planercnn, [Liu et al., 2019] used in chapter 4 and 6
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Figure A.2: overview of methodology by planarreconstruction, [Yu et al., 2019] used in chapter 4 and 6
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