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Abstract

A phase estimation algorithm is presented to estimate the phase of a recurring pattern in a nonstationary
signal. The signal is modelled by a template signal that represents one revolution of the recurring pattern,
and that the frequency of this pattern can change at any time with no assumptions about local stationarity.
The algorithm uses a constraint maximum likelihood estimator (MLE) to estimate the phase of the recurring
pattern in the time series. Using the dynamic programming techniques from the dynamic time warping
(DTW) algorithm, the solution is found in an efficient manner. The algorithm is applied to the digitization of
meter readings from analog consumption meters.

As of today, analog consumption meters are still widely used to measure the consumption of gas, electricity
and water. Often, smart home appliance use a simple reflective photosensor located on a rotating part of
the meter to obtain information about the state of the consumption meter. The algorithm presented in this
thesis accurately estimates the phase of the repeating pattern that occurs in the sensor observation when the
meter rotates. Using this estimate, the signal of the photosensor can be converted to an estimate of the total
resource consumption and consumption rate.

The algorithm improves in accuracy over conventional methods based on peak detection, and is shown to
work in cases where the peak detection methods fails. Examples of this are signals where there is no distinc-
tive peak in the signal or a signal where the recurring pattern is reversed. Furthermore, a template compres-
sion scheme is proposed that is used to decrease the computational complexity of the algorithm. Different
time series compression methods are applied to the algorithm and evaluated on their performance.
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1
Introduction

Managing the increased demand for energy and reducing its impact on the environment is one of the biggest
challenges of the twenty-first century. A decreasing stock of fossil fuel sources along with increased awareness
of the environmental effects of high energy consumption have created an urge for more efficient resource
consumption. A simple first step in the process towards resource efficiency is to gain more insight into energy
usage, and to reflect on the current efficiency of resource consumption.

Insight in energy usage is key to raising awareness. Particularly on a customer level, it can be difficult to
gain insight into the usage of resources such as electricity, gas or water. At many times, the only insight
for consumers is the yearly bill, which only presents the total sum of the consumption, and does not indi-
cate any sources of waste or shows a breakdown of the cost. Providing end users with insight about their
household consumption can reduce waste, but also help raise general awareness about how we can reduce
consumption. Studies from the Europian Union [1] have shown that users that were provided with personal
consumption insights had savings up to 9%.

Recently, numerous solutions have been developed that help customers in this process. This is becoming
increasingly easy because many analogue consumption meters are being replaced by smart meters: digital
meters that can automatically report usage to the provider or to other endpoint devices in the home of the
user. Smart home appliances that aim at monitoring and providing insight into resource consumption obtain
their information by interfacing with a smart meter. The appliance converts the data from the meter into
graphs or advice to the end user.

The adoption of smart meters is unfortunately a slow process, since the meter can only be installed when the
customer agrees to the installation and because due to high costs, replacement is spread out over multiple
years. Recent data from Netbeheer Nederland has shown that the adoption of smart meters was around 50%
in March 2018 1. When no smart meter is present, a method is needed to convert the readings from the
analogue meter to a digital format. Therefore, a simple sensor is usually in place that digitises the readings
from analogue consumption meters.

Estimating the state of an analogue consumption meter can be a challenging task. In this work, the signals
from a typical reflective photosensor are analysed, and it is shown how the observed signals of the meter
correlate to the state of the consumption meter. An algorithm is presented that efficiently and accurately
estimates the state of the consumption meter from the observed signals, and that works for a variety of meter
types. Using a number of simulations, the performance of the algorithm is evaluated, and compared to the
conventional techniques.

1Data received in personal communication with Netbeheer Nederland (11-04-18) and shared with permission.
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2 1. Introduction

Figure 1.1: A picture of the photosensor that measures the reflectivity of a rotating part of the consumption meter.
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Figure 1.2: On the left, a schematic view is shown of the blue light emitted by the sensor and the reflection on the disc of the electricity
meter. On the right side, a sketch of the observed reflection is shown. The peak generated by the marking on the disc can be used to track
the position of the disc.

1.1. Optical sensing of analogue meters

A photograph of a small piece of hardware sensing an electricity meter is shown in Figure 1.1 and the working
principle of this sensor is depicted in Figure 1.2. The photosensor is suited for analogue meters that have a
part that rotates with a frequency proportionally to the consumption. In the case of an electricity meter, a
spinning disc below the counter indicates the usage. When the sensor is placed over the edge of this disc, the
marking on the disc generates a peak in the observed reflection, which is used to track the meter position.
Each meter has a predefined C value that indicates how many revolutions the disc makes per kWh. The
total consumption can then be found from the total number of revolutions. By measuring the speed of the
spinning disc the current consumption rate can be calculated. Generally, the speed of the spinning disc is
estimated by measuring the time it takes to complete a revolution.
Not all consumption meters have a spinning disc such as shown in Figures 1.1 and 1.2, but generally all meters
have some part that rotates with a frequency proportional to the consumption, such as a small pointer or a
mechanical counter.

1.2. Optical signal properties

Most consumption meters have an area with high contrast on one of the rotating parts. Figure 1.4 shows a
number of examples of meters where the contrast area is indicated with a blue circle. Almost all meters have
either a small mirror or a red or black marking on the disc, which creates a positive or a negative peak in the
reflection measured by the photosensor. This feature enables the device that uses the photosensor to count
the number of revolutions with a simple peak detection algorithm. A few examples of recordings from the
photosensor are shown in Figure 1.3. From left to right recorded reflections for an electricity meter, a gas
meter and a water meter are shown. Peaks with high values indicate absorption, whereas peaks with low
value are reflections. Some other visual features from the meters can also be recognised in the recordings.
When comparing the recorded observation from the water meter in Figure 1.3 with the picture of a water
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Figure 1.3: Recorded reflections for different types of meters. A higher value indicates less reflection, or higher absorption of transmitted
light. From left to right the figures show full rotations each for an electricity meter, a gas meter and a water meter.

Problem definition and preliminary literature review 8Figure 1.4: From the left to the right an electricity meter, gas meter and water meter are shown. The blue circles indicate a high contrast
area of a rotating part of the consumption meter. The high contrast area can either be a mirror that causes a peak in the reflected light,
or a black or red marking that causes a decrease in reflected light.

meter in Figure 1.4, the signal peaks can be linked to visual features: for the water meter we see a short peak
for the orange pointer on the indicator, and a larger trough for the mirror on the opposite side of the indicator.
Similarly, upon closer examination ten small peaks can be discovered in the gas meter signal for each of the
digits of the mechanical counter. The electricity meter signal clearly shows a peak from the marking on the
disc, but interestingly there are other recurring features in the signal as well. Most likely, those features are
generated by impurities on the disc or because the disc is not perfectly round, causing a variation in distance
between the disc edge and the sensor.

1.3. Problem definition

As described in the previous signals, many consumption meter types have a marking or a mirror on of the ro-
tating parts, that generates a peak in the signal observed by the photosensor. Yet all of the signals in Figure 1.3
also have other clear repetitive features next to the main signal peaks. Inspection of the observed signals of
the photosensor shows that those features very little with time and are unique to each meter and meter sen-
sor. Those features can potentially be used in a meter phase estimation algorithm.
It is common practice in the industry to only use the extreme values of the observed signal for a tracking
algorithm. Although this works in most cases, there are a number of practical limitations to this approach.
With a peak detection algorithm, the number of revolutions cannot accurately be counted when there is no
high contrast area on the meter, or when there are multiple peaks in the signal that are equal in amplitude.
This means that the sensor only works for a limited range of consumption meters. A test on a set of over 500
different consumption meters encountered in the Netherlands has shown more than 15 % of the meter types
proved not compatible with a peak detection algorithm2.
Secondly, the peak detection algorithm only uses one specific feature of the signal, and therefore the resolu-
tion is limited to an estimation of the number of revolutions. When the resource consumption is very low, the
frequency of the meter can drop to a very low level, such that a single revolution can take up to tens of min-

2Internal research of Quby B.V., 2012.
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utes. This means that the consumption estimate cannot be updated during this time window. As was shown
in the previous section, the signal has more features that can be utilised to increase the time resolution of the
estimate.
A third problem specific to monitoring electricity meters is that they might turn backwards. When the end
user has solar panels installed, the production from the solar panels might result in a negative electricity
consumption as seen by the meter. A peak detection algorithm will not be able to distinguish between the
backwards and forwards motion, since the algorithm only tracks two states of the signal (a peak is present or
no peak is present), and the state pattern will be the same for forward and backwards motion.

The observation that there are many signal features present in the signal not used by the peak detection al-
gorithm, combined with the present issues described in the previous section, lead to the following objectives
for a new signal processing algorithm for the photosensor:

Objective

Design an algorithm that can estimate the phase of a rotating object, given the observations of the
reflections of that object over time. The algorithm must have the following properties:

1. Adaptable: The algorithm must be applicable to a wide range of meters with rotating parts, with
as little preconditions as possible.

2. High resolution: The algorithm must have an update rate that uses all the features present in
the signal and updates the phase accordingly.

3. Able to detect direction: The algorithm should detect in which direction the meter is turning.

4. Computationally efficient: The algorithm should be able to run in real-time on an embedded
microcontroller.

1.4. Scientific contributions

This thesis presents a generic framework for estimating the phase of a signal that has repeating patterns but
is not stationary. During the research, the following contributions were made:

• A maximum-likelihood-based phase estimation algorithm is proposed that accurately estimates the
state of the consumption meter over time based on the recordings of a reflective photosensor.

• The dynamic programming methods of the dynamic time warping (DTW) algorithm are adapted to
solve the maximum-likelihood problem.

• The performance of a number of different time series compression methods is evaluated in the context
of the phase estimation algorithm.

• A generic time series phase estimation algorithm is proposed for estimating the phase of nonstationary
signals with repeating patterns.

1.5. Thesis outline

In Chapter 2, an outline for the phase estimation algorithm is presented, and commonly used techniques for
tracking time series data will be described. In Chapter 3, the contributions of this thesis will be presented. The
contributions included an adaptation of existing algorithms to work with streaming time series and different
methods to compress the incoming data. In Chapter 4 the performance of the different algorithms will be
examined and compared with the state of the art. Chapter 5 will reflect on the results and provide a motivation
of the results where possible. Finally, conclusions and suggestions for future work can be found in Chapter 6.



2
Background

The analysis and tracking of time series data has applications in many different fields. The field of time se-
ries analysis has been steadily growing over the past decade, and there are numerous applications where a
changing frequency over time is tracked, bearing similarity to the problem in this thesis. Similar applications
include (amongst others) the tracking of electric signals from the heart (ECG) or brain (EEG) [2, 3], the detec-
tion of patterns in financial data [4], the alignment of speech and audio recordings [5] or tracking of music
performances [6].
Many extensive reviews on time series data mining have been published in the past five years, detailing the
different problems in the field of time series data mining, and commonly used techniques [7–9]. Researchers
also assessed the numerical performance of common algorithms on a number of different datasets [10, 11].
Two main problems from the field of time series data mining [9] that are relevant to the work of this thesis
are:

1. Similarity measurements: How can the similarity between a pair or group of time series be measured?

2. Representation methods: How can the time series be compressed, whilst maintaining the information
of interest?

The first problem, defining similarity measures for time series, is related to the problem of detecting and esti-
mation the phase of a repeating pattern in the recorded signal of the photosensor. The relationship between
those two problems is that the signal of the photosensor consists of a repetitive pattern that is repeated at
different frequencies, related to the rate of consumption. The second problem is the search for a suitable rep-
resentation method for time series data. A suitable representation method might help to compress the data
and transform it into a domain that provides more efficient estimation. In the context of this thesis, transfor-
mation of the data or data compression could potentially help in reducing the computation time of the phase
estimation algorithm, without losing too much accuracy. In the rest of this chapter, an overview of the state
of the art literature is presented, and a brief explanation of some of the common algorithms is presented.

2.1. Algorithm outline

To structure the literature review (Chapter 2) and the methods section (Chapter 3), a general structure for the
meter phase estimation algorithm is provided in this section. Each block in Figure 2.1 will be examined in
a separate section. A short motivation is provided in this section, and a more extensive presentation of the
motivation and signal model can be found in Chapter 3.
From the example signals presented in Figure 1.3, we see that the signals consist of a repetitive pattern, which
will be referred to as the template, that changes in frequency based on the rotational speed of the meter.

5



6 2. Background

Figure 2.1: The algorithm consists of a learning phase where the template is recorded and an estimation phase where the signal phase is
estimated using the template. Both the template and incoming signal can be compressed to reduce complexity.

Therefore, we can interpret the objective as estimating the relative phase of this template signal in the ob-
served signal.
In addition to the repetitive pattern, each signal that was shown in Figure 1.3 has a different vertical offset
and a different scale of the template, which can vary over time based on the ambient light. This time-varying
difference in scale and offset motivates the introduction of a normalisation step before the actual phase es-
timation algorithm, so that a representative comparison between the recorded template and the observed
signal can be assured.
A schematic view of the workflow of the algorithm is shown in Figure 2.1, and a short explanation of each of
the blocks is provided below.

• ADC signal: The input of the complete algorithm is a stream of samples from the analogue to digital
converter (ADC) connected to the photosensor. The signal is discrete in time and value.

• Normalisation: The signal amplitude and mean are expected to vary over time due to changing am-
bient light conditions. The normalisation step updates the estimate of the signal mean and variance
during stationary periods and uses the estimate to normalise the observed signal.

• Learning the signal template: The template signal holds the expected reflection from the rotating ob-
ject for one full rotation. The learning step detects when the signal is stationary, and calculates the
template from an average of multiple periods during those segments.

• Compression: To reduce algorithmic complexity, the number of samples of the template is reduced by
a compression step.

• Phase estimation: Given a compressed input signal and a compressed signal template, the phase of
the input signal is estimated. The output of the algorithm is the meter position over time.

2.2. Frequency estimation for stationary signals

Estimating the frequency and phase of a signal is a problem that has been studied for a long time. When
the assumption can be made that a signal is wide-sense stationary (WSS), the autocorrelation and Fourier
transform are very useful to estimate the period of the signal [12, p.13,81-85]. As will be shown in Section 3.1,
the observations of the photosensor are not stationary. However, the stationary estimation techniques will be
used to learn the signal template during regions of the signal that are locally stationary.

Autocorrelation

When the time series signal is WSS, the autocorrelation is linked to the main period T of the signal as:

rx (T ) = rx (0) , (2.1)

where rx is the autocorrelation function of the signal x. Since the autocorrelation also satisfies rx (0) ≥ rx (k),
the period of the signal could theoretically be found by searching for the lag k where Equation (2.1) holds with
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equality. In practice this relation cannot hold, since the autocorrelation function from an observed signal
must be estimated from the samples and is bound to be a mere approximation of the true autocorrelation
function. Even though equality will not hold, the autocorrelation will still have a local maximum when k = T .
Therefore, the autocorrelation can be estimated from the first local maxima after rx (0) [13, 14]:

T̂ =argmax
k≥kmi n

rx (k), (2.2)

where kmi n is defined such that the maximum is not part of the first peak. Under some circumstances the
autocorrelation provides a good estimate of the period, but it is less effective when the assumptions for a WSS
process are violated. When considering a process that is the sum of two WSS processes (for example a periodic
and a seasonal effect), the autocorrelation will have peaks at the periods of both processes, but the highest
peak in the signal will occur when the two periods collide. An example application of the autocorrelation
method is pitch detection in audio signals [15].

Short-time Fourier transform

A closely related technique to the autocorrelation method is the periodogram [12, p. 394]. Similarly, the
maximum value of the periodogram can be used to find the main frequency of the observed signal. From
the main frequency, the main period can be computed. The advantage of the periodogram is that it will
clearly separate the two periods described previously, and show only one peak for each frequency in the
signal. When the signal has a shape that is not a sine wave, some harmonics will be present, but generally the
main frequency of the signal will give the highest peak. A disadvantage of the periodogram is that when an
observation is made with a limited number of samples, the resolution of the frequency estimate can be poor.
For improved accuracy and resolution, these two methods can also be combined [16], where a threshold is
applied on the periodogram to find the main period, and the autocorrelation is used to improve the resolution
of the estimate.

For signals that are not WSS, often the assumption of local stationarity can still be valid. Especially in the
field of audio signal processing, signals often are assumed to be stationary within short time windows of ap-
proximately 20 ms [17, p.16]. Within those windows, the same techniques as described before can be used
to estimate the main period of a signal. Those techniques are called the short time Fourier transform (STFT)
and the short time autocorrelation, and have been used for many decades [18].
Since the frequency of the audio signal generally varies slowly with respect to the window length, the peri-
odograms or autocorrelations of the different frames can be combined when estimating the period, using the
information of the previous frame to improve the estimate of the current frame. The STFT can be combined
with other techniques such as peak filtering method and the so-called synchrosqueezing transform [19] to ob-
tain a smooth estimate of the frequency over time. This technique is amongst others used to track heart rates
from ECG measurements [3]. One requirement for such an approach is that the signal should approximately
be stationary within each window, and that the window must be long enough to detect the main frequency
accurately. This is a major drawback when the signal period changes faster than one period of the signal or
faster than the window size, because in the latter case the periodicity cannot be detected by the Fourier trans-
form or the autocorrelation. This is the case with the application of this work, since the consumption meter
can make a single rotation and the stop again, or can have a frequency that changes within one rotation if the
consumption rate is increasing.

2.3. Nonstationary frequency estimation

2.3.1. Dynamic Time Warping

A widespread technique in the field of time series analysis is called dynamic time warping (DTW). It was
formalised in the late seventies by Sakoe and Chiba [20] and has been broadly adopted since. The goal of
DTW is to provide a similarity measure between two time series, which we will call the input signal and the
template signal. In many applications, DTW is used as an elastic similarity measure, that can be combined
with a nearest-neighbour scheme to find a template from a library of templates that is most similar to the
observation. The DTW algorithm provides an alternative to the Euclidean distance measure. When signal
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Figure 2.2: On the left the dashed lines represent the optimal alignment or ‘warp’ between the reference template and the input signal.
The matrix to the right shows the cost for all possible warpings where a brighter colour indicates higher cost, and the path that is drawn
through it minimises the warping cost and is the optimal warping path. In the left figure, a vertical offset has been added for improved
visibility.

features are not synchronous in the template and the observed signal, using the Euclidean distance measure
to directly compare the samples of the observations can result in high errors. DTW compensates for temporal
misalignment by ‘warping’ the signals so that the aligned signals have minimal error. This alignment between
the two observed signals is of particular interest since it can be used to solve the phase estimation problem,
as is shown in Chapter 3.

In this section, a full explanation of the DTW algorithm will be provided, since many of the core principles of
the algorithm will be used in the maximum-likelihood based estimator that will be presented in Chapter 3.
The DTW algorithm works by considering all samples of the input signal and all samples of the template signal
and aligning them such that the difference between the aligned samples of the two signals is minimised.
When the signals are of different frequencies, multiple samples of one signal can be linked to a single sample
of the other signal. This alignment is called a warping function or warping path [20].

Let x = [[x[0], x[1], . . . x[N−1]], and y = [y[0], y[1], . . . , y[M−1]] be the respective input signal and template
signal. The input and template signal vectors are denoted as x and y . A two-dimensional grid of size M N is
formed with the elements of the two series along the respective axes. Each node (i , j ) on this grid represents
a possible alignment between the samples x[i ] and y[ j ], and is associated with a cost d(i , j ) that defines
an error measure for the two samples. Therefore, this grid is commonly referred to as the cost matrix. The
warping path is an ordered sequence of K nodes from a starting node (i0, j0) to a final node (iK−1, jK−1) [21,
p. 482] of the form

(i0, j0), (i1, j1), . . . , (ik , jk ), . . . (iK−1, jK−1).

A visual representation of a warping path is shown on the left of Figure 2.2. Here, two time series are shown
that exhibit a similar pattern but deviate locally. For visibility, the signals are plotted with a vertical offset. A
dashed line between the signals indicates a warping node (i , j ) that matches a sample between the signals x
and y . Thus, the DTW algorithm corrects for any temporal misalignment by matching each sample x[i ] to a
sample y[ j ] based on the nodes (ik , jk ) of the warping path. Each node in this path is associated with a cost
for each node. The cost in a node depends on the values of the samples x[i ] and y[ j ], but will be denoted
using only the sample indices i and j for notational convenience:

d(i , j ) = d(x[i ], y[ j ]) , (2.3)

where a common choice for the error function d(i , j ) is the squared error, or the absolute value.

Example 2.1. On the right side of Figure 2.2 the cost matrix of the DTW algorithm is shown. Each element
of this matrix shows the cost of d(i , j ) for the respective node, where a brighter colour indicates a higher cost.
For example, observe the low-valued region in both signals around sample index 9-15. This region has a low
matching cost when it is matched with the corresponding lower region of the other signal, but has a high cost
when it is matched with one of the higher regions in the signal, e.g. the area with indices 19-25. This effect can
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be seen in the cost matrix on the right, where a band-like structure appears the cost matrix at the indices 9-15
corresponding with the lower region. The alignment of i ∈ [10−16] with j ∈ [9−15] shows as an area of low cost
(darker colours), whereas the area the samples from i ∈ [10−16] with indices j corresponding with the higher
regions show as a high-cost area (brighter colours).

The goal of the DTW algorithm is to find a contiguous path through the cost matrix that minimises the total
cost of the nodes along that path. In the figure, the optimal warping nodes are represented as dashed lines
on the left of the figure, and as a set of markers on the right in the cost matrix. Both representations show the
same warping path, that aligns the signals x and y .

The total cost of a warping path depends on the cost of the nodes in the path and the transitions between
succeeding nodes. We will define the transition (∆ik ,∆ jk ) between two nodes in the path as the first-order
difference between the elements of the two contiguous nodes:

(∆ik ,∆ jk ) = (
ik − ik−1, jk − jk−1

)
.

For k = 0, we have ∆i0 = 1 and ∆ j0 = 1. The corresponding transition cost is denoted as α(∆ik ,∆ jk ). The
transition cost usually accounts for the number of samples that have been matched between two nodes. The
different options for transition costs and motivation behind the choice of transition cost are discussed further
on in this section.
The total cost for the warping path is a function of all the nodes in the path, and will be denoted with D . For
ease of notation, we will denote the path from the starting (i0, j0) to a node (ik , jk ) as a function of only the
final node:

D((i0, j0) (i1, j1), . . . (ik , jk )) = D(ik , jk ) .

The warping cost for the path from (i0, j0) to (iK−1, jK−1) is computed as the sum of the cost for each node in
the path multiplied by the transition costs:

D(iK−1, jK−1) =
K−1∑
k=0

α(∆ik ,∆ jk )d(ik , jk ) . (2.4)

The optimal warping path D∗ is the warping path from a node (i0, j0) to a node (ik , jk ) that satisfies the
constraints imposed on the path and minimises the total path cost:

D∗(ik , jk ) = min
(i0, j0)...(ik , jk )

D(ik , jk ) . (2.5)

Common constraints for the warping path will be explained in the next section.

Global and local constraints

In the traditional variant of DTW, a number of constraints are imposed on the warping function, to assure
that the warping path is a contiguous path and that the solution of the optimisation problem can be found
efficiently. The following constraints are part of the DTW algorithm [20]:

1. Local constraints: The transitions between different nodes in the warping is generally limited by the
following constraints:

(a) Monotonicity: The warping between both samples must be increasing in time:

ik ≥ ik−1 and jk ≥ jk−1 . (2.6)

(b) Contiguity condition: To ensure that all samples of both signals are matched, a constraint is placed
on the maximum difference between two successive nodes, so that every index i and j occur in at
least one of the nodes, and all the samples are matched. This is enforced by the constraint

ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1. (2.7)

The two constraints above result in a set of transitions s that is restricted to (∆ik ,∆ jk ) ∈ s, where
s = {(0,1), (1,0), (1,1)}. Other common choices for s are presented in [20] and [22].



10 2. Background

2. Boundary conditions: It is assumed that the start and end points in both signals are matching pairs:

(i0, j0) = (0,0) , (Starting node) (2.8)

(iK−1, iK−1) = (M−1, N−1) . (End-point constraint) (2.9)

3. Maximum allowed warp: To speed up the algorithm, the number of possible warping paths can be
reduced by bounding the maximum difference between the index of the signal indices i and j [20] such
that

|ik − jk | ≤ r . (2.10)

where |·| denotes the absolute value operator. This constraint is called the bounding window, since
it bounds the maximum difference between the indices i and j . A variety of different windows have
been proposed. [22], [21, p.495]. Note that this is not a constraint on the transitions or steps between
consecutive nodes, but a limit on the cost matrix itself. Coordinates that do not satisfy this constraint
are not considered altogether.

Matching cost and transition costs

Both the definition of the cost function d(i , j ) and the transition cost can be different depending on imple-
mentation. In most cases, a squared error term is used for the cost function:

d(i , j ) := ∥∥x[i ]− y[ j ]
∥∥2 .

Traditionally, the transition weights are based on the number of samples that have been matched. When the
time series are aligned to each other using the warping path, each increment of the index i or the index j
corresponds with aligning a new time sample. Therefore, the transition weight α depends on the change of
indices between consecutive nodes:

α(∆ik ,∆ jk ) :=∆ik +∆ jk . (2.11)

The latter weighting scheme is known as symmetric weighting, since transition weights of a vertical step and
a horizontal step combined are equal to a diagonal step, and therefore it is unbiased towards different paths
in the cost matrix. The other weighting scheme of Equation (2.13) is not named in literature, but will be
referred to as the unweighted weighting scheme. When considering all possible paths between two nodes,
the unweighted scheme will have lower costs for paths with more diagonal steps.
An alternative for the weighting scheme is asymmetric weighting [20]. The asymmetric weighting function is
defined as

α(∆ik ,∆ jk ) :=∆ik . (2.12)

The reason for the name ‘asymmetric’ is that it violates the symmetric property of the DTW distance. Nor-
mally, given to signals x and y , we have

DT W (x , y) = DT W (y , x) ,

where DT W (·) denotes the minimum path cost for the path with boundary constraints (i0, j0) = (0,0) and
(iK−1, jK−1) = (N , M). It is easily verified that for the symmetric weighting scheme, the problem does not
changed when the signals x and y are swapped. For the asymmetric weighting scheme that is defined above,
the cost will however be different.
Finally, in some cases the DTW algorithm is used with unit weights:

α(∆ik ,∆ jk ) := 1. (2.13)

In many papers DTW is formulated with this unweighted scheme [23–26].

Example 2.2. When the conditions on monotonicity (Equation (2.6)) and contiguity (Equation (2.7)) described
above are applied, the number of possible steps is limited to the following set:

(ik − ik−1 , jk − jk−1) = (∆ik ,∆ jk ) ∈ s =


(1,0) ,

(0,1) ,

(1,1) .
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When the symmetric weighting scheme is applied, the transition weights are as follows:

α(∆ik ,∆ jk ) =


1 if (∆ik ,∆ jk ) = (1,0) ,

1 if (∆ik ,∆ jk ) = (0,1) ,

2 if (∆ik ,∆ jk ) = (1,1) .

The unweighted scheme would have α= 1 for each of the steps, including the diagonal step.
Now consider two signals x of length N and y of length M:

x = [1,2,8,3,4] ,

y = [1,3,4,7,4] .

From the signal, the cost matrix can be computed using d(i , j ) = (x[i ]− y[ j ])2. The cost matrix show the value
of d(i , j ) for all values of i and j , where the bottom left corner represents (i , j ) = (0,0) and the top right corner
corresponds with (N , M):

d(i , j ) =


9 4 16 1 0

36 25 1 16 9
9 4 16 1 0
4 1 25 0 1
0 1 49 4 9

 .

The next step in the DTW algorithm is to find an optimal warping path from the cost matrix defined above. The
next section will explain how this path can be found, and in Example 2.3 the optimal path costs are computed.

Dynamic programming algorithms and Bellman’s optimality principle

In the previous section, the concept of a warping path and a cost matrix was introduced, with the warping
path as the path that minimises the total warping cost D(i , j ) and satisfies the global and local constraints.
This section will describe how this optimal warping path can be found in an efficient manner.

Although the number of possible paths through the cost matrix is extremely large1, the optimal path can be
computed without evaluating all possible paths. Let the optimal path from a starting node (i0, j0) to any node
(iK−1, jK−1) be defined as

(i0, j0)
opt .−−−→ (iK−1, jK−1) . (2.14)

Bellman’s optimality principle [21, p.484](first described in [28]) states that any subsequence of the optimal
path is also an optimal path itself. In other words, when the optimal path from (i0, j0) to (iK−1, jK−1) passes
through an intermediate node (i , j ), the optimal path must be a concatenation of the optimal path from the
starting node to the intermediate node, and the optimal path from the intermediate node to the endpoint:

(i0, j0)
opt .−−−→
(i , j )

(iK−1, jK−1) = (i0, j0)
opt .−−−→ (i , j ) ⊕ (i , j )

opt .−−−→ (iK−1, jK−1) , (2.15)

where ⊕ denotes the concatenation of the two paths. In the context of the DTW algorithm, this principle
can be used to grow the optimal path iteratively. As described previously, the number of possible preceding
states is limited by the local constraints. If the optimal path from the starting node to all allowed preceding
states is known, Bellman’s optimality principle can be used to state the optimal path to the current node is
the concatenation of the optimal path from the starting point to one of the predecessors and the path from
that predecessor to the current node:

D∗(ik , jk ) = min
(ik−1, jk−1)

D∗(ik−1, jk−1)+α(∆ik ,∆ jk )d(ik , jk ) . (2.16)

This approach to finding the optimal path is known as dynamic programming. Dynamic programming is
a technique for problems that can be separated in smaller subproblems, where the result of one problem

1In fact, the number of possible paths is roughly proportional to 10N for a N ×N matrix. For a 100×100 matrix, the number of possible
paths is 3.54 ·1074 [27, p. 81].
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is extended iteratively to find the solution to full problem [21, p.484]. Using this recursive definition of the
optimal path cost, the optimal path from the origin to any point in the matrix can be found by extending
the previously known optimal paths, without having to search all possible paths. The optimal path from
the origin to any point in the matrix can then be found in O (M N ) computations. During this procedure, a
matrix is constructed that stores all the optimal path costs D(i , j ). This matrix is called the accumulated cost
matrix[29, p.72].

Example 2.3. Continuing from the signals and the constraints defined in Example 2.2, recall the cost matrix
that was found in that example:

d(i , j ) =


9 4 16 1 0

36 25 1 16 9
9 4 16 1 0
4 1 25 0 1
0 1 49 4 9

 .

Now, we will find the optimal path cost from the origin to a point (i , j ) in the matrix using the relation of
Equation (2.16). We will initialise the algorithm at node (0,0), and set the cost of that node to zero. Next,
we realise that for the node (1,0), the only allowed predecessor is the node (0,0), since the cost function is not
defined for the other possible predecessors, (0,−1) and (1,−1). Therefore, the minimisation of Equation (2.16)
reduces to

D∗(1,0) = D∗(0,0)+d(1,0) = 0+1.

Similarly, for the node (0,1) there is also only one allowed predecessor and we find D∗(0,1) = 4. Now for the node
(1,1), the set of possible predecessors as defined by monotonicity and contiguity constraints is {(1,0), (0,0), (0,1)}.
Evaluating Equation (2.16) results in

D∗(1,1) = min
(∆ik ,∆ jk )∈(1,0),(0,0),(0,1)

D∗(ik−1, jk−1)+α(∆ik ,∆ jk )d(ik , jk ) ,

= min{(1+1 ·1), (0+2 ·1), (4+1)} ,

= 2.

Using the obtained results, the optimal cost for to the node (2,0), can be computed, and then the cost for the
node (2,1). This process can be repeated the cost to any node in the grid is known. The optimal cost D∗ for every
value (i , j ) is listed below.

D∗(i , j ) =


58 35 24 10 10
49 31 8 24 32
13 6 22 23 23
4 2 27 27 28
0 1 50 54 63



Backtracking

Once the accumulated cost matrix is known, the lowest possible path cost from the starting node to any
endpoint can be found directly. The final step of the algorithm is to recover the path that results in the optimal
cost from the accumulated cost matrix. This process is called backtracking [30]. Equation (2.16) showed the
recursive property of the optimal DTW path. This same property can be used to recover the optimal path.
The algorithm is initialised with a selected endpoint and operates on the accumulated cost matrix. In each
iteration of the algorithm, a new node is added to the optimal path until the starting node is reached. The
node that is added to the path is selected from the possible predecessors of the current node. The node
from this set with the lowest cost is added to the path, and selected as the new current node. This process is
repeated until the starting node is reached. The optimal path links the indices of the template to the indices
of the input signal. From this path, the phase estimate of the input signal over time can be found by finding
the template index at each time step or index of the input signal. Pseudocode for the backtracking procedure
is described in Algorithm 1. Here, the full warping path ((i0, j0), (i1, j1) . . . (iK−1, jK−1) is denoted by W .

Example 2.4. Continuing from the accumulated cost matrix that was found in Example 2.3, we now apply
the backtracking procedure to find the optimal warping path. We initialise the procedure with the endpoint
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constraint, and set (iK−1, jK−1) = (4,4).
Next, we find the predecessor of this node with the lowest cost. In this case the candidates are the nodes
(4,3), (3,3)and(3,4). From those nodes, the node with the lowest cost is node (3,4) with cost 10. Thus, the
node (3,4) is added to the list. For this node, the predecessors are (2,4), (2,3) and (3,3). This time, node (3,3) has
lowest cost with cost 8. This process is continued until the origin is reached, and the complete optimal path is
found as

((0,0), (1,1), (1,2), (2,3), (3,4), (4,4)) . (2.17)

Algorithm 1 backtracking the optimal path from the optimal cost matrix.

1: procedure BACKTRACKDTW(endpoint (iK−1, jK−1), optimal cost matrix D∗)
2: Initialise (i , j ) = (iK−1, jK−1).
3: Initialise W ∗ = (iK−1, jK−1) .
4: while (i , j ) 6= (0,0) do
5: Update (i , j ) = min(i , j ){D∗(i −1, j ),D∗(i , j −1),D∗(i −1, j −1)} .
6: Append W ∗ with (i , j ) .
7: end while
8: Reverse order of W ∗ .
9: end procedure

Further literature on dynamic time warping

Because DTW directly matches the values of the signal, it is sensitive to gain and vertical offset errors. A num-
ber of variations have been proposed that slightly modify the algorithm. Some of the adaptations include
Derivative Dynamic Time Warping [23] where DTW is applied to the derivative of the signal, Cubic Spline In-
terpolation Time Warping [31], or Two-Dimensional Warping [32], where the template is allowed to be warped
both in time and amplitude. Generally, the input and template sequence are assumed to be aligned at the be-
ginning and the end, but the algorithm can also be applied to repetitive signals for streaming data analysis
[33] by using a windowing method. To deal with the quadratic time complexity of the algorithm, different
windowing techniques (similar to the bounding window in Equation (2.10)) were proposed and compared
along with the introduction of the algorithm [20], and more recent research shows that the type of constraint
on the warping path also impacts overall performance when DTW is used to search for similar sequences[34].

A paper of particular interest is the work of Makira et al. [14], where they propose a technique called ‘self-
DTW’ to estimate the phase of a quasi-periodic signal. The problem setting is roughly equivalent to that of the
work presented in this thesis, where the phase of a repetitive but nonstationary signal is tracked. In the paper,
a cost matrix is constructed where the observed signal used both as a template signal and as an input signal.
Because the input and template are the same, there is a perfect match along the main diagonal. The path-
finding technique used to find a warping path for the off-diagonal warping paths, which match the signal
of one period to the same signal in the next period. By first obtaining a rough estimate of the period of the
signal, the self-DTW algorithm can be used to find the warping path between different periods of the signal
itself. An optimisation problem is then defined that combines the information from all the different inter-
period matches, and combines it into one phase estimate for the entire signal. However, the technique has a
very high time complexity due to the quadratic programming problem that needs to be solved in addition to
multiple iterations of the DTW algorithm. Furthermore, it can only operate on signals that are quasi-periodic,
i.e. that exhibit periodic behaviour, with a period that varies over time within a certain range.

2.3.2. Particle filters

Particle filtering (PF) or Sequential Monte Carlo (SMC) [35] is a general filtering technique that can be applied
to a wide range of models, without requiring linearity of the model. In the filtering model, a number of ‘parti-
cles’ is generated that represent different system states. Next, an estimate for the next state of the particles is
derived from the system model. The system output is simulated for all the particles using the system model,
and the predicted output of the particles is compared to the observed output. The particles are then weighted
by their likelihood given the observed output. After this, new samples are generated based on the weights of
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the previous samples, with higher weights having a higher probability of being reselected. After this, the next
state is computed and the process is repeated.

Since the particles with low likelihood are less likely to be re-sampled on every succeeding iteration of the
algorithm, the particles will in most cases converge to the true state of the system. The mean of all particles is
used as an estimate for the system state. It is however not always guaranteed that the particles will converge
to the optimal solution [36]. In the meter phase estimation problem, the particles could represent different
positions and speeds for the consumption meter, and a signal as will be presented in Section 3.1 could be
used to predict the output of the states.

2.3.3. Kalman filtering

Kalman filtering is a technique for noisy signals with a known model. The Kalman filter is a minimum mean-
squared error (MMSE) estimator that uses the information of a dynamic system model to estimate the model
parameters. The estimator is optimal under the assumption of a linear model and Gaussian noise [37, p. 442].
A Kalman filter uses the system model to predict the next state of the system using the statistical model, and
combines the estimate of the model with the observed measurement. Given a system state θ and a transition
matrix A, the Kalman model is

θ[i ] = Aθ[i −1] ,

x[i ] = Hθ[i ] ,
(2.18)

where H is the observation matrix that relates the state θ to an observation x .

The extended Kalman filter

For nonlinear models, the extended Kalman filter (EKF)[38, p. 400] was developed. In the EKF, the linear
system model of the Kalman filter is extended to a nonlinear model:

θ[i ] = f (θ[i −1]) , (2.19)

x[i ] = g (θ[i ])+ε[i ] , (2.20)

where f and g can be any nonlinear function, and replace the matrices A and H of Equation (2.18). The non-
linear model is used for computing the predictions θ̂[i |i −1] and x̂[i |i −1]. The Kalman gain K is computed
using first order approximations of the nonlinear functions. The state estimate θ̂[i ] is computed using the ap-
proximate Kalman gain that was derived from a linearisation of the model. Because the Kalman gain is now
an approximation, the optimality properties are lost. Furthermore, it is difficult to estimate the performance
of the algorithm on beforehand since the linearisation depends on the current state of the system[37, p.451].
Another method to adapt the Kalman filter to nonlinear model is the unscented Kalman filter (UKF) [39],
which predict the signal means and covariance with higher accuracy than the linearised model.

In the phase estimation problem, the position and frequency of the meter could be modelled by a system state
θ, and the observed reflection could be modelled as a nonlinear function g (θ) that maps the state of the con-
sumption meter to the expected reflection. Some recent publications use the EKF and UKF for nonstationary
frequency estimation of harmonic signals [40, 41].

2.4. Signal compression

For most of the algorithms presented in the previous section, the computational complexity is high. For the
DTW algorithm, the complexity of the algorithm is in the order O (M N ), where M is the number of samples
in the template signal and N the number of samples in the observed signal. For the Viterbi algorithm with M
states and M transition probabilities, the complexity is as high as O (M 2N ) [42, p. 340]. For those algorithms,
the complexity of the algorithm can be reduced by reducing the number of samples in the model M or the
samples in the observation N .

One way of reducing the number of samples to process is by decimating the signals, but as we show in Sec-
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tion 4.1 that method might not be the most efficient manner. Therefore, this section will discuss various
methods that can be used to compress the model or the observation in an efficient manner.

2.4.1. An overview of compression methods

There are many different representation methods for time series signals. Each representation method com-
presses the signal in a different way, all with different assumptions on the data model. Informally, many
representation methods aim to capture the ‘shape’ of the signals, or some specific feature of the signal. An
extensive comparison table of different representation methods is provided in [7]. Representation methods
can be divided in two categories: data adaptive methods and non-data adaptive methods. Data adaptive
methods ‘adapt’ to the data by minimizing some kind of reconstruction error, usually in an iterative manner.
Non-data adaptive methods perform an operation that does not change with respect to the data. An example
of this would be computing the first order difference of the data: the operations to compute the derivative are
the same, regardless of the data.

A simple and fast method to reduce the number of data points is called Piecewise Aggregate Approximation
(PAA), which segments the data into a fixed number of segments, and then computes the average over each
segment [43]. Similarly, a piecewise linear approximation technique (PLA) [44] has been proposed that ap-
proximates the series with line segments instead of constant segments. In extension to PAA, the piecewise
aggregate approximation (APCA) technique with variable-length segments [45] was proposed. In addition to
this method, an optimal piecewise segmentation method called Parsimonious Temporal Aggregation (PTA)
[46] has been proposed, but at the cost of also having a higher computational complexity. Next to the piece-
wise linear and aggregate approximations, a number of techniques have been proposed that focus on finding
intuitive patterns, such as peaks and troughs [47], shapes [48, 49] or ‘perceptually important points’[50].

Other popular techniques are non-data adaptive spectral decompositions such as the discrete Fourier trans-
form [51] or the wavelet transform, which can take multiple types of ‘mother waveforms’ to convert the signal
to a time-frequency representation [52]. The most commonly used waveform for wavelet decompositions
is the Haar wavelet, but other waveforms such as the Chebyshev polynomials have also been used for time
series analysis [53].

2.4.2. Approximate Piecewise Constant Approximation

The adaptive piecewise constant approximation technique (APCA) is a lossy compression method that ap-
proximates the time series with a list of constant segments of variable length. At its core, the compression
scheme is based on the Haar wavelet. Because of the unitary property, the energy of the signal is preserved
in the wavelet domain. [21, p.375]. In the wavelet domain, only the first M coefficients with the highest en-
ergy are considered. Since the wavelet transform is a unitary transform, the squared error introduced in the
wavelet domain is the same as the squared error in the time domain. Therefore, when discarding L coef-
ficients, choosing the coefficients with the lowest absolute value will result in the smallest squared error in
both time and wavelet domain. When the coefficients are discarded, the signal is converted back to the time
domain.
Since some coefficients in the wavelet domain will have overlapping transitions in the time domain and oth-
ers not, the time domain approximation can have anywhere between M and 3M segments. The next step of
the algorithm is to merge the segments that give minimal rise in error. After that, the mean of the segments
is recomputed. The merge of segments is repeated until a representation with M segments is obtained. After
this, the result is translated back to the time domain. Some of the segments are merged until the desired
number of segments is obtained. To decrease the error with the original signal, the means of the segments
are recomputed. APCA is not an optimal technique, but it can generate good approximations with low com-
putational complexity [45].
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2.4.3. Compressed Sensing and Total Variation minimisation

Compressed sensing is a recently developed technique [54] that allows for a near perfect reconstruction of an
observed signal on a certain type of signals, even when the signal is sampled at a rate that is below the Nyquist
rate. The main assumption for compressed sensing to work, is that the noise-free source signal is sparse
when it is transformed to some other domain [55]. A widespread example of Compressed Sensing (CS) is the
improvement in MRI imaging time [56] with little to no quality loss. In this example, the imaging time can be
reduced by severe undersampling in the so-called k-space, thereby reducing the number of measurements
needed. When the signal is assumed to be sparse under some transformation, such as under the wavelet
transform, a reconstruction can be made by finding a sparse representation in the transformed domain that
matches with the observed signal when the inverse transform is applied. This sparse representation can be
found using `1-minimisation.

A subfield of compressed sensing is total variation minimisation (TV minimisation). In TV minimisation, it
is assumed that the signal can be approximated by a signal with a sparse derivative. [57] This means that the
source signal has the property that it is flat for a relatively large part of the time, and sometimes has a non-
zero derivative and changes level. Total variation minimisation has been used to de-noise time series that are
generated according to such a model, and was shown to preserve the edges where the source signal changed
level [58]. The TV minimisation problem can be formulated as

min
ỹ

∥∥y − ỹ
∥∥

2 +λ
∥∥∇ỹ

∥∥
1 , (2.21)

where y represents the original signal, ỹ the approximation, and ∇ỹ represents the first order difference of the
vector ỹ . The first term minimises the squared error between the original template y and the approximation
ỹ . The second term induces sparsity in the first order difference of the template approximation with an `1-
norm [59, p. 334]. λ is a weighting parameter that determines the relationship between the energy of the
derivative and the reconstruction error. Since the `1-norm induces sparsity, the elements of the first order
difference that are close to zero are forced to zero. Because the derivative of the signal is sparse, the signal
itself will consist of constant segments. This technique could be used to approximate the signal template with
an approximation that consists of constant segments.

2.4.4. Fisher-based sample selection

All of the previous compression methods aimed to find a compressed approximation ỹ that can be recon-
structed from fewer samples than the original signal y , and that minimises the error d(y , ỹ) between the
original and the compressed signal.
As an alternative to this approach, a sample selection criterion can be formulated that does not aim to repro-
duce the original signal, but that aims at retaining the samples of the signal that contain the most information
with regards to the estimation task. In [60], a sample selection design technique is presented that selects the
samples such that maximises the Fisher information of the selected samples. The Fisher information [37, p.
34] is a measure of information that indicates how well a parameter of a stochastic model can be estimated.
The Fisher information is denoted as I (θ). Consider a probability density function p(X ;θ) of a stochastic
variable X that depends on the parameter θ. If we wish to make an estimate θ̂ of the true model parameter,
there is a direct relationship to the minimal achievable variance of the estimator and the Fisher information:

var(θ̂) ≥ 1

I (θ)
. (2.22)

This relationship is called the Cramér-Rao lower bound (CRLB). The Fisher information is defined as

I (θ) =−Ex

[
∂2 ln pX (x | θ)

∂θ2

]
. (2.23)

Example 2.5. In some models, the Fisher information is a function of time. Consider the case of a sinusoid
in white noise with known frequency but unknown amplitude. When estimating the amplitude of the signal,
the amplitude can be estimated with greater accuracy at the peaks of the sinusoid than near the zero-crossings.
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This intuitive reasoning is confirmed when the Fisher information of this model is computed. Consider the
model

x[i ] = A sin(ωi )+ε[i ] , (2.24)

ε∼N (0,σ) .

When we compute the Fisher information for the parameter A, we find that it is indeed maximised at the peak
of the sinusoid:

I (i ; A) = sin(ωi )2

σ2 . (2.25)

In the work of Swärd et al. [60], the principle of Example 2.5 is used to optimally select the samples in time
(or in some other sampling space) that minimise the CRLB of the estimator. Consider a model with a vector
of parameters θ and a vector with observations in time x . When there are multiple parameters, the Fisher
information matrix (FIM) I is defined as

[I (i ;θ)]kl =−Ex

[
∂2pX (x | θ)

∂θk ∂θl

]
. (2.26)

The Cramér-Rao lower bound for a single parameter is found on the diagonal of the inverse of the Fisher
information matrix:

var(θ̂k ) ≥ [I (i ;θ)−1]kk . (2.27)

Using this, the sample selection problem can be formulated as

min
w

tr

((
N−1∑
i=0

w[i ]I (i ,θ)

)−1)
,

s.t . ‖w‖1 ≤λ ,

w[i ] ∈ {0,1}, i = 0,1, . . . N−1.

(2.28)

where w is a vector that selects which samples are used, and tr(·) denotes the trace operator. The `1 norm in
the constraint of the optimisation problem limits the number of samples that can be selected by the binary
selection vector w . Assuming independence of the samples over time, the total Fisher information is found as
the sum of the individual observations. Combining this information with the definition from Equation (2.27)
and given the fact that the trace operator sums all diagonal elements, we can interpret the objective of Equa-
tion (2.28) as the sum of the CRLBs for each estimator θ̂k , given the sample selection provided by w . The goal
of the optimisation problem is to select w such that the variance of the estimators is minimised.

A downside of this approach is that since the Fisher information often depends on the parameters themselves,
an estimate of the parameters is needed of the parameters. Using the estimate, the samples selection proce-
dure is run. When the parameters are close to the original estimate, the selected samples will still be near the
minimum of the new CRLB. A second difficulty is that the optimisation procedure has a high computational
complexity.





3
Phase estimation algorithm

The main algorithm for estimating the phase of the consumption meter over time will be presented in this
chapter. First, a model is presented that relates the observed signal from the photosensor to the phase of
the meter. After that, the maximum likelihood estimator is derived from the model, and it is shown that the
dynamic programming techniques of the DTW algorithm can be used to efficiently compute the maximum
likelihood estimate.
Next, different compression methods are applied to the signals to reduce the complexity of the algorithm. In
Chapter 4, the performance of the algorithm and of the different compression methods is evaluated.

3.1. Statistical model

A number of different observed signals from the photosensor were shown in Figure 1.2 of the introduction.
From the figures, it becomes clear that there is a repetitive pattern in the signal that correlates with the state
of the consumption meter. In this section, a signal model is introduced, that is used to motivate the choice of
algorithms in the rest of the chapter.

When the meter rotates, a difference in reflected light is observed because the rotating part of the meter
has varying reflective properties for different positions. The reflection observed by the photosensor forms
a time series that contains encoded information about the position of the rotating part. The variations in
the reflective properties are caused by markings on the rotating part of the meter or by irregularities on the
surface. We will call this observation x , and presented a model for how the position or phase of the rotating
part θ relates to the measured reflection in this section. Furthermore, the outline for the algorithm that tracks
the phase of the rotating part is presented, with the objective to use the phase estimate to estimate the state
of the consumption meter.
One important assumption behind the model is that the consumption meter has static reflective properties.
This means that each element of the object will give the same reflection pattern each time that it passes by the
sensor, and that the reflective properties do not change over time. Thus, the true reflection of the object can
be assumed to be a deterministic function of the object angle θ, which can be approximated by a template
vector y . Figure 3.1 shows a typical template signal for an electricity meter. Here, the reflection template y
is shown as a function of the object phase θ. Once this template signal is known, the values of the template
can be used to estimate the state of the meter. In addition to the position of the meter, the observed light
of the sensor is also influenced by the ambient light and the light emitted by the LED of the photosensor
itself, which will be modelled by a gain factor a and can have a vertical offset b. Finally, it is assumed that the
measurement is contaminated by zero-mean i.i.d. Gaussian noise ε[i ] with standard deviation σ. For each
time instance i , an the unfiltered observation xr aw [i ] can now be modelled as follows:

xr aw [i ] = ay[θ[i ]]+b +ε[i ] , ε ∈N (0,σ) . (3.1)

19
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Figure 3.1: The observed reflections by the sensor for different values of θ.

The first step in the algorithm outline is normalisation of the signal. Normalisation of the signal is a nontrivial
process, since estimate a and b, y[θ[i ]] must be known. since the gain a and offset b can vary with time as
the lighting conditions change. In Section 3.2, a normalisation procedure of the signal is discussed, although
the main work of this thesis will focus on the estimation of the phase from the normalised signal rather than
on the normalisation procedure. After normalisation, the observation model reduces to

x[i ] = xr aw [i ]−b

a
= y[θ[i ]]+ε[i ] , ε ∈N (0,σ) . (3.2)

Figure 3.2 visually demonstrate this model, and shows how the observation x is related to the latent variable
θ.

In the rest of this chapter, the algorithms that aim at estimating the phase θ will assume the normalised
observation model of Equation (3.2). Using this observation model, the probability density function of the
observations depends on the phase θ[i ] and is defined as

pX (x | θ[i ]) ∼N (y[θ[i ]],σ) , (3.3)

pX (x | θ[i ]) = 1p
2πσ2

exp

((
x − y[θ[i ]]

)2

2σ2

)
, (3.4)

with corresponding log likelihood

lnpX (x | θ[i ]) = ln

(
1p

2πσ2

)
−

(
x − y[θ[i ]]

)2

2σ2 , (3.5)

where X is a stochastic variable, and x is a realisation of that variable.

3.2. Signal normalisation

To compensate for possible errors due to the gain a and offset b as described in Section 3.1, a normalisation
procedure is applied before the phase estimation algorithm. When a and b are estimated, the transformation
of Equation (3.2) can be used to make the signal zero mean and unit variance. Without loss of generality, we
can assume the signal template y is zero mean and unit variance. Using this assumption, the gain and offset
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Figure 3.2: An illustration of the signal model of Equation (3.2) using the template signal of Figure 3.1. On the top, the noisy observation
x is shown, while the bottom plot shows the latent phase vector θ.

parameters can be estimated as the mean and variance of the signal during stationary periods of the signal.
Using the autocorrelation-based technique to detect stationary as described in the next section, a segment
of the observation can be extracted that contains an integer number of periods of revolutions, and has an
approximately constant speed. Over this segment, a and b can be estimated as

â =
√

var(xr aw − b̂)−σ2 , b̂ = mean(xr aw ) , (3.6)

where mean() and var() denote the sample mean and sample standard deviation respectively. Although the
estimator for a is not the MVU estimator, the estimator for â is consistent, and the estimator for b̂ is unbiased
under the assumption that the contribution of y[θ] is zero mean and unit variance over the sampled segment.
The MVU estimator for a and b is derived in Appendix A, but cannot be used in practice since it relies on y[θ]
to be known over the estimated segment.

3.3. Template estimation

3.3.1. Properties of the pattern template

In order to estimate the phase θ of the meter, an estimate of the reflective function y is needed, which we
will approximate with the template vector y . Inspection of different readings from the photosensor showed
that the signal template varied based on the type and model of the meter that it is attached to, but also based
on the placement of the sensor and age of the meter. Figure 1.3 showed some examples of recordings for an
electricity meter, a water meter and a gas meter. For this reason, the template needs to be estimated as part
of the algorithm, and it is not possible to use a predefined template based on the meter type.

One important observation from the signals in Figure 3.1 is that template y is almost always surjective when
viewed as a function of θ: there will be angles θm and θn such that y[θm] = y[θn]. This implies that when a
certain reflection x = y[θ] is observed, there will be ambiguity in the estimate of x, since there will be multiple
θ that satisfy x = y[θ]. Therefore, even in the noise-free case, the phase cannot uniquely be recovered from a
single observation. To summarise, the following assumptions are made about y[θ]:

• The template y is different for every set-up and must be estimated from the signal itself in a learning
period.
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• The template function is surjective, and therefore θ cannot uniquely be determined from a single ob-
servation.

In order to obtain an estimate, it is assumed that there will be moments throughout the day where the ob-
served signal is locally stationary, i.e. the derivative of θ is constant for multiple periods. With a measure for
signal stationarity we can then estimate the signal period using techniques for stationary frequency estima-
tion, and extract an average period of the observed signal which will be used as the estimated template.

3.3.2. Detecting periodicity

The autocorrelation function is a measure for how well the signal correlates with a shifted version of itself.
It can be used to estimate the fundamental period of a stationary signal, but can also be used to measure
whether a signal exhibits periodic behaviour [13, 14]. A consistent estimator for autocovariance function cx

of the normalized signal x is [61, p.189]

cx [k] = 1

N −k

N−1−k∑
i=0

x[i ]x[i +k] . (3.7)

where k is the lag between the template and the shifted template. The autocorrelation is defined as the auto-
covariance normalised by the signal energy:

rx [k] = cx [k] / cx [0] . (3.8)

here the fact that cx [0] represents the signal energy is used. After the normalisation step, we have rx [0] = 1.
We will use the property that the autocorrelation will only be 1 when the shifted signal matches the original
signal. When the signal is too much contaminated by noise or when it is nonstationary, the normalised auto-
correlation will be less than one. In this way, a threshold can be set to detect when the signal is approximately
periodic. The algorithm will continuously compute the autocorrelation over a fixed window and check if the
first peak after rx [0] exceeds the threshold. If this is the case, the signal is assumed locally stationary and the
template can be extracted from the estimation window.

3.3.3. Estimating the template

When the aforementioned threshold is exceeded, the argument of the maximum value of the autocorrelation
can be used as an estimate for the period of the signal:

T̂ = argmax
k≥kmi n

rx [k] . (3.9)

And the estimate for the reflective function is found by averaging over multiple periods of the signal:

ŷ[i ] =
⌊

N

T̂

⌋ bN /T̂c∑
i=0

x[n + i T̂ ] . (3.10)

Here b·c denotes the floor operator, and N is the number of samples that is used to estimate the signal tem-
plate.

3.4. Nonstationary phase estimation

Using the statistical model from the first section of this chapter, we can restate the phase estimation problem
for the normalised signal model as
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Phase estimation problem

Given a signal template y = [y[0], y[1], . . . , y[M−1]] and a series of observations x =
[x[0], x[1], . . . , x[N − 1]] contaminated by measurement noise ε[i ] ∼ N (0,σ) and generated by
the model

x[i ] = y[θ[i ]]+ε[i ] , (3.11)

find an estimate of the phase vector θ = [θ[0],θ[1], . . . ,θ[N−1]] with θ[i ] ∈ (0,1, . . . M−1).

In this section, a constrained maximum likelihood estimator (MLE) is proposed that solves the phase estima-
tion problem. After that, the equivalence between the ML estimator and the DTW algorithm is shown, and
an adapted version of the DTW algorithm is used to solve the MLE problem.

3.4.1. Maximum likelihood estimation for a single sample

A general estimator for stochastic models is the maximum likelihood estimator (MLE) [37, p. 157]. It is de-
fined as the estimator that maximises the likelihood of the model parameters given an observation of the
model. In our case, this means that the probability density function that was derived previously should be
maximised with respect to θ. Using the concavity of the log function, this maximizing the likelihood is equiv-
alent to maximizing the log-likelihood. The estimate for a single sample x[i ] can be found using the model of
Equation (3.2):

θ̂MLE = max
θ

ln pX (x | θ) = max
θ

[
−1

2
ln(2πσ2)− 1

2σ2 (x − y[θ])2
]

. (3.12)

The first maximisation term consists of a term that depends only onσ2, andσ is assumed to be constant. The
second term is a product ofσ2 and a term dependent on θ, and therefore it is equivalent to minimise over the
squared error between the observed sample and the function y(θ[i ]):

θ̂MLE [i ] = min
θ

(
x[i ]− y[θ]

)2 , (3.13)

which is the least squares estimator. Thus, when the phase is estimated from a single sample, the most likely
phase θ is the phase where the template y[θ] yields a reflection that is the most similar to the observed re-
flection. Since the reflection is usually not a one-to-one function, there might be multiple θ that have a high
likelihood, or low squared error.
To illustrate this, consider the signal in Figure 3.1. Here, an observed reflection with value x = 5 only matches
the template y[θ] near the high peak, and will result in an unambiguous estimate of the phase θ. For different
values of the observed reflection however, there might be multiple candidates for the phase θ. Concluding, a
single sample will not allow us to estimate the phase without ambiguity.

Maximum likelihood estimation for vector observations

Even though we cannot accurately estimate the phase from a single sample, the samples can be combined to
obtain a more accurate estimate of the phase over time. When a vector of observations x = [x[0], x[1], . . . , x[N−1]]
is made, the model can be extended to estimate a vector θ = [θ[0],θ[1], . . . ,θ[N−1]] that contains the phase
estimates over time. Since the measurement noise is assumed to be uncorrelated, it can be assumed that the
observations x[i ] are independent, and that the joint pdf is the product of the individual pdfs:

pX (x | θ) =
N−1∏
i=0

pX (x[i ] | θ[i ]) . (3.14)

When computing the maximum log-likelihood estimate for the vector θ, similar steps can be taken as for the
case with a single observations, and the maximum likelihood estimator for θ can be found as:

θ̂MLE = min
θ

N−1∑
i=0

(
x[i ]− y[θ[i ]]

)2 . (3.15)
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As can be seen from the equation above, for each time step i one value of θ[i ] minimises the error with one
sample from the observation x[i ]. This result implies that the most straightforward way to estimate the phase
over time θ is to estimate θ[i ] for each sample x[i ] independently. Although this might be the most simple
approach, this approach does not take into account the fact that the θ[i ] over time are correlated. Therefore,
the next step in finding an estimator for θ is to define an assumption about how different θ[i ] are correlated.

3.4.2. Proposed method

Since the measurements are based on a physical model, we know that the meter cannot rotate faster than
the maximum consumption rate for a household. A limit on the maximum frequency of the meter implies a
limited slope for the phase as a function over time. Therefore, we will constrain our maximum likelihood esti-
mator by limiting the difference between two consecutive phase estimates θ[i ] to be smaller than some value
c, dependent on the maximum known speed. For the simplicity of the algorithm, we will set this constant to
one, and control the constraint by the number of samples in the template and the sampling frequency.
Formally, the constrained maximum likelihood estimator for the phase θ can now be formulated as

θ̂MLE = min
θ

N−1∑
i=0

(
x[i ]− y[θ[i ]]

)2 ,

s.t. −1 ≤ θ[i ]−θ[i−1] ≤ 1.

(3.16)

By setting the maximum slope of the estimate to one, the maximum meter frequency that can be tracked
equals the sampling frequency divided by the number of samples in the template. When it is known that the
consumption meter rotates only in on direction, the constraint can be adjusted accordingly, and the formu-
lation becomes

θ̂MLE = min
θ

N−1∑
i=0

(
x[i ]− y[θ[i ]]

)2 ,

s.t. 0 ≤ θ[i ]−θ[i−1] ≤ 1.

(3.17)

In the next section, the relationship between the costs of the DTW warping path and the squared error of the
alignment costs obtained from the algorithm is shown. This result will be used in Section 3.4.4 to show how
the DTW algorithm can be used to solve the MLE problem, and how for different constraints an equivalent
DTW and MLE can be found. An overview of the relationship between the constraints of the DTW problems
and the constraints of the MLE problems is shown in Table 3.1. Pseudocode for the proposed algorithm is
provided in Algorithm 2

Algorithm 2 The algorithm that finds the ML estimate described in Equation (3.17). The algorithm is an
adapted form of dynamic time warping and uses the recursive update step from Equation (2.16). Further
adaptations with regards to the traditional DTW algorithm are described in Sections 3.4.4 and 3.4.5.

1: procedure PHASE ESTIMATION(x , N, y , M)
2: Initialise D∗(0, j ) = d(0, j ) ∀ j ∈ (0,1, . . . , M−1)
3: for i in 1,2, . . . N−1 do
4: for j in 0,1, . . . M−1 do
5: s = {

( j +q) mod M : q ∈ (−1,0,1)
}

\\Find the possible predecessors of j
6: D∗(i , j ) = minD(i−1,r ) {D(i −1,r ) : r ∈ s}+d(i , j )
7: end for
8: end for
9: Find the optimal endpoint j∗K−1 = argmin j {D(N−1, j ) : j ∈ (0,1, . . . M−1)} \\Find predecessor with

minimal cost
10: W ∗ = BACKTRACE((N−1, j∗K−1), D∗)
11: θx = min j { j ∈ (0,1, . . . , M−1) : (i , j ) ∈W }
12: end procedure
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Table 3.1: This table shows the relationships between the constraints and objective of the MLE and the constraints on the DTW algorithm.

MLE problem DTW constraints Visual constraints Comments

minθx ,θy d(x[θy ], y)+d(x , y[θx ])

s.t. θx [i ] ≥ θx [i−1]
θy [ j ] ≥ θy [ j−1]

α(∆ik ,∆ jk ) =∆ik +∆ jk

0 ≤∆ik ≤ 1
0 ≤∆ jk ≤ 1

1 2

1
Symmetric DTW [20]

minθx d(x , y[θx ])

s.t. θx [i ] ≥ θx [i−1]

α(∆ik ,∆ jk ) =∆ik

0 ≤∆ik ≤ 1
0 ≤∆ jk ≤ 1

0 1

1
Asymmetric DTW [20]

minθx d(x , y[θx ])
α(∆ik ,∆ jk ) =∆ik

∆ik = 1

0 1
1

10
Unconstrained MLE

minθx d(x , y[θx ])

s.t. −1 ≤ θx [i ]−θx [i−1] ≤ 1

α(∆ik ,∆ jk ) =∆ik

∆ik = 1
−1 ≤∆ jk ≤ 1

1
1

1
Proposed algorithm

minθx d(x , y[θx ])

s.t. θx [i ]−θx [i−1] ≤ 1

α(∆ik ,∆ jk ) =∆ik

∆ik = 1
∆ jk ≤ 1

1

1

Proposed algorithm,
forward rotation
only

3.4.3. Relationship between the dynamic time warping algorithm and the alignment costs

Moving away from the maximum likelihood estimator for a moment, a proof is given in this section that
shows that there is a direct relationship between the error of the alignment of two signals and the path cost
of the DTW algorithm. The alignment that will be presented in Equation (3.21) closely resemble the cost the
the MLE minimises of Equation (3.16). Later on, this proof is used to adopt the DTW algorithm to the MLE
problem.
The original goal of the DTW algorithm as described in Section 2.3.1 is to find a measure of similarity for two
time series that are not synchronous in time. The similarity is measured by finding a warping path that maps
indices of one signal to indices of the other signal. This mapping can in turn be used to align the signals in
time. This section will show that there is a direct relationship between the squared error of the aligned signals
and the cost of the warping path. An example of such an alignment is shown in Figure 3.3. In fact, it will be
shown that for some DTW problems, an equivalent maximum-likelihood problem can be formulated, and
that under the right constraints a form of the DTW algorithm can be used to find the ML estimator for θ as
formulated in Equation (3.16). Table 3.1 shows the relationships between the MLE problem definitions and
the DTW constraints.

To show this, we will first introduce some terminology to aid the proof of equivalence. Recall from Sec-
tion 2.3.1 that the dynamic time warping algorithm (DTW) aligns the samples of two signals x[i ], i = 1,2, . . . , N ,
and y[ j ], j = 1,2, . . . , M by searching for a warping path. The warping path is defined as a list of nodes
(i0, j0), . . . (iK−1, jK−1) = W of length K , where each node is a pair of indices (i , j ). The total cost of a warp-
ing path is defined as

D(iK−1, jK−1) :=
K−1∑
k=0

α(∆ik ,∆ jk )d(ik , jk ) , (2.4 revisited)

where α(∆ik ,∆ jk ) and d(ik , jk ) represent the transitions cost and warping cost as defined in Section 2.3.1.
Next to this, we have ∆ik = ik − ik−1 and ∆ jk = jk − jk−1. The objective of DTW is to find the optimal path W ∗
from the starting node (i0, j0) to the endpoint (iK−1, jK−1) that minimises the warping cost.
Since the warping path consists of index pairs that matches the indices i with the indices j , we can define a
phase function that finds a corresponding j for each i , and vice versa. The phase function that aligns j to i
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Figure 3.3: On the top left, two signals x and y are shown. Below the signals, the alignment of x and ỹ and the alignment y and x̃ are
shown. Both alignments are created using the phase functions that were derived from the warping path W ∗ and accumulated cost matrix
D∗, as shown on the right.

will be referred to as θx , and the function that aligns i to j is referred to as θy . This phase function θx can then
be used to align the samples y[ j ] to the samples x[i ]. An example of such an alignment is shown in Figure 3.3.
We define the phase functions with respect to x and with respect to y as

θx [i ] := min
j

{ j ∈ (1, . . . , M−1) : (i , j ) ∈W } , (3.18)

θy [ j ] := min
i

{i ∈ (1, . . . , N−1) : (i , j ) ∈W } . (3.19)

Using this phase function, one signal can be aligned to the other signal by indexing the signal with the phase
function. This will be denoted as

y[θx ] = [
y[θx [0]], y[θx [1]], . . . y[θx [N−1]]

]
. (3.20)

Now we define the error between the aligned signals as

d(x , y[θx ]) =
N−1∑
i=0

(x[i ]− y[θx [i ]])2 , (3.21)

and

d(x[θy ], y) =
M−1∑
j=0

(x[θy [ j ]]− y[ j ])2 .

Given the definition of the warping path cost from Equation (2.4) and the error of the aligned signal in Equa-
tion (3.21), we will now show that under the right constraints, both costs are in fact equal.

Theorem 3.1. Under the constraints

0 ≤∆ik ≤ 1, 0 ≤∆ jk ≤ 1, (3.22)

α(∆ik ,∆ jk ) :=∆ik +∆ jk . (3.23)

the total costs over all nodes of the warping path as defined by Equation (2.4) are equal to the error between the
alignments of the signals x and y :

D(ik , jk ) = d(x , y[θx ])+d(x[θy ], y) , (3.24)

K−1∑
k=0

α(∆ik ,∆ jk )d(ik , jk ) =
N−1∑
i=0

(x[i ]− y[θx [i ]])2 +
M−1∑
j=0

(x[θy [ j ]]− y[ j ])2 , (3.25)

for any warping path that satisfies the constraints, and thus also for the optimal warping path.
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Figure 3.4: A visual representation of the relationship between the warping path and the phase function as described in Equation (3.18).
The dashed lines indicate how every first node that occurs at an index i or j corresponds with an element of the phase function.

Proof. Starting from the definition of the warping cost

D(iK−1, jK−1) =
K−1∑
k=0

d(ik , jk )α(∆ik ,∆ jk ) , (3.26)

we will substitute the above definition of the transition cost α(∆ik ,∆ jk ).

D(iK−1, jK−1) =
K−1∑
k=0

d(ik , jk )(∆ik +∆ jk ) , (3.27)

=
K−1∑
k=0

d(ik , jk )∆ik +
K−1∑
k=0

d(ik , jk )∆ jk . (3.28)

Now, the first summation over all nodes K can be rewritten as a summation over all columns p = 1. . . N−1
and all the nodes that are part of that column, i.e. that satisfy ik = p. For the second term, the summation
can be rewritten as a summation over the rows q.

D(iK−1, jK−1) =
N−1∑
p=0

∑
(p, jk )∈W

d(p, jk )∆ik +
M−1∑
q=0

∑
(ik ,q)∈W

d(ik , q)∆ jk . (3.29)

Note that if (p, jk ), (p, j ′k ) ∈W for some j ′k > jk , then (p, j ′k ) ∈W , so ∆ik = p −p = 0. This implies that the only
contribution in

∑
(p, jk )∈W comes from the first node in the path that satisfies ik = p. Now recall the definition

of the phase function from Equation (3.18), and consider the constraint jk > jk−1. It follows that the only node
that contributes to the summation has the value of jk specified by θx [ik ], and we can write the summation as

D(iK−1, jK−1) =
N−1∑
p=0

d(p,θx (p))+
M−1∑
q=0

d(θy (q), q) , (3.30)

= d(x , y[θx ])+d(x[θy ], y) . (3.31)

From this it follows that under the constraints provided above, the cost of the total warping path cost D(i , j ) is
always equal to the corresponding alignment costs d(x , y[θx ]) between the signals and d(x[θy ], y). From this
it follows that equality must also hold for the optimal case. The optimal warping path W ∗ that is the solution
to

D∗(iK−1, jK−1) = min
W

D(W ) = D(W ∗) , (3.32)
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also minimises the sum of the cost of aligning the signal x to y and aligning the signal y to x .

min
W

d(x , y[θx ])+d(x[θy ], y) = d(x , y[θx ])+d(x[θy ], y) | W =W ∗ . (3.33)

A visual illustration of this theorem is provided in Figure 3.4. In the figure, a warping path is shown. To the
left and at the bottom of the matrix, the phase functions θx and θy are shown. The phase functions can
be seen of a projection of the first node encountered in the warping path for each i and j respectively. A
dashed line indicates a connection between the phase function and the warping path. From the figure, it
can be seen that for a diagonal step, two lines connect to the node, indicating a contribution to both phase
functions and thus to both alignment costs. When there is a horizontal or vertical step, only one dashed
line connects to that node, and this step contributes to only one of the phase functions. Thus, we can say
that diagonal steps contribute to two phase functions and thus two both terms of Equation (3.21), while
orthogonal steps contribute to only one of the terms. Defining orthogonal steps as unit weight and diagonal
steps as double cost corresponds with the definition of the transition cost α(∆ik ,∆ jk ) in the theorem. The
relationship between the transition costs and the contributions to the phase functions partly motivates the
theorem.

The result of Theorem 3.1 is that under the right constraints, solving the DTW problem is equivalent to finding
the optimal alignment. When DTW is used with a different weighting scheme, such as the unweighted scheme
as described in 2.13, this analogy no longer holds. In many applications, it is desirable to use the symmetric
weighting schemes, since most applications use DTW to cluster groups of time series, or to find a reference
sequence that is similar to the recorded sequence. In such cases, it is a logical step to optimise for a symmetric
cost function such as the one defined in 3.33.
For the meter tracking problem of this thesis, a symmetric warping scheme is questionable. The goal of the
phase estimation algorithm is to estimate the phase of the observed signal x with respect to some template
vector y . This is analogous to aligning the template to the observed signal. The other alignment is however
less relevant to the meter phase estimation algorithm. In the next section, this analogy is further explored,
and it is shown that using a asymmetric weighting scheme, DTW alignment is analogous to the maximum
likelihood estimator.

3.4.4. Solving the maximum likelihood problem using DTW

Now that the relationship between the alignment costs and the step size for the DTW algorithm is shown, it
will be shown that the asymmetric DTW algorithm bears great resemblance with the maximum likelihood
estimator for θ as defined in Equation (3.16). The asymmetric DTW algorithm [20] uses the following con-
straints:

α(∆ik ,∆ jk ) :=∆ik ,

0 ≤∆ik ≤ 1, 0 <∆ jk ≤ 1.

Following the same procedure as in the proof of Theorem 3.1, the summation over all nodes can be expressed
as a summation over the indices:

D(iK−1, jK−1) =
K−1∑
k=0

d(ik , jk )(∆ik ) ,

Again, we rewrite the summation over all nodes to a summation over all rows and the nodes that are in that
row:

D(iK−1, jK−1) =
N−1∑
p=0

∑
(p, jk )∈W

d(p, jk )∆ik . (3.34)

The difference with the symmetric case is that since α(∆ik ,∆ jk ) was defined to depend only on ∆ik and not
on ∆ jk , the summation is no longer split into two terms, but only one term remains. Following the same
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reasoning as with the symmetric case, we find that the only values that have ∆ik 6= 0 are the values of (i , j )
described by the phase function with respect to i :

D(iK−1, jK−1) =
N−1∑
p=0

d(p,θx (p)) ,

=
N−1∑
p=0

d(x[p], y[θx [p]]) ,

= d(x , y[θx ]) . (3.35)

Upon closer inspection, we find that this derivation shows that the optimal warping path is the path min-
imises the error between the samples x[i ] and the matched samples y[θx [i ]]. This problem formulation car-
ries great resemblance with the maximum likelihood estimator for the phase over time as derived in Equa-
tion (3.15). The question that needs to addressed, is whether the phase function θx derived in this section
is the same function as the maximum-likelihood estimator, θMLE . In the problem formulation of Equa-
tion (3.15), the phase estimation is completely unconstrained: at a time index i , any template sample y[θx [ j ]]
can be selected such that d(x[i ], y[θ[i ]]) is minimised. For the solution of the DTW algorithm, the constraint
0 ≤ ∆ jk ≤ 1, along with the definition of the phase function, result in the implicit constraint on the phase
function. This is shown in the second entry of Table 3.1.

θx [ik ] ≥ θx [ik−1] . (3.36)

This constraint arises from the DTW problem because of the constraints on the warping path. The constraint
that both i and j should be increasing in the path implies that for higher values of i in the path, the value of
j must be equal or higher too. Combining this with the definition of the phase function of Equation (3.18)
leads to the implicit constraint on the phase function.
This implicit constraint can be avoided by dropping the constraint on ∆ jk and setting the constraint on ∆ik

as ∆ik = 1. Under those constraints, the DTW algorithm produces the same result as the unconstrained
maximum likelihood estimator. In order to make the problem similar to the constraint estimator of Equa-
tion (3.16), we can set the constraint −1 ≤∆ jk ≤ 1.
Concluding, we can say that for most formulations of the DTW algorithm, an equivalent constrained MLE
can be formulated, and the other way around. An overview of the different problem formulations is shown in
Table 3.1.

3.4.5. Further adaptations to the DTW algorithm

The DTW algorithm is designed to work with two signals with aligned starting and end points. However, in
our case, the observed signal can be of any length, and since the meter will continuously rotate and repeat
the template pattern, there is no fixed endpoint. Fortunately, the DTW algorithm computes the optimal path
cost D∗(i , j ) for any point (i , j ), as was described in Section 2.3.1. In this section, it is described how the
information from the accumulated cost matrix D∗ can be used to find the most likely endpoint. Furthermore,
a windowing technique is presented to adapt the DTW algorithm for real-time phase estimation.

Endpoint constraints

Traditionally, the DTW algorithm is used for aligning two time series that may be of different length, but are
still assumed to be aligned at the start and of the end of the signal. For example, in a speech recognition
application, the DTW algorithm is used to determine the similarity between a recorded vowel and a sample
from a library of known vowels. The vowel starts the beginning of the observation and ends with the final
sample, and therefore it is a reasonable assumption that the starting points and end points of the signals are
aligned.
For the meter phase estimation problem, it is not known in which state the consumption meter is at the end
of the observation x[N−1]. Therefore, any value of θ is a candidate endpoint. Now recall that the accumu-
lated cost matrix D∗(i , j ) holds the lowest achievable cost for the warping path to any index pair (i , j ). This
means that for the final time index iK−1, the lowest possible costs for all j can be found from the accumulated
cost matrix. If we recall the relationship between the path cost and the maximum likelihood estimator from
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Figure 3.5: The accumulated cost matrices for different speed input signals. The red line indicates the phase estimate. On the left, a case
is shown where the endpoints of the observations are aligned. On the right, the adaptations for the endpoints are shown, connecting the
first and last sample of the template and allowing the estimation to end in any state.

Equation (3.35), it can be seen that selecting the endpoint with the lowest warping cost is equivalent to the
alignment with the lowest squared error, which is in turn equivalent to selecting the most likely endpoint.
Therefore, we can find the most likely endpoint jK−1 as the endpoint that minimises the cost D∗:

jK−1 = argmin
D∗(N−1, j )

{D∗(N−1, j ) : j ∈ (0,1, . . . , M−1)} . (3.37)

A visual demonstration of this technique is shown in Figure 3.5, where one observation is shown that is
aligned at the end of the signal, and another observation that is not aligned at the end of the signal. By
selecting the most likely endpoint and applying the backtracking procedure of Algorithm 1 from there, the
optimal warping path is found. The optimal warping path is indicated in the figure with a red line.

Starting point

In traditional DTW, the algorithm is initialised by letting D∗(0,0) = d(0,0). Since we have no indication of the
starting state of the meter, the algorithm will be initialised with

D∗(0, j ) = d(0, j ) ∀ j ∈ (0,1, . . . , M−1) . (3.38)

By backtracking the optimal path from the most likely endpoint (iK−1, jK−1), the optimal warping path W ∗
and the phase function θx can be determined.

Repeating the template

To be able to track multiple periods of the signal, the phase estimation algorithm should be able to start at
the beginning of the template when the end has been reached. For this reason, we will connect the first state
of the template y[0] to the last state of the template y[M−1], so that the first state is reachable from the last
state and vice versa.

Real-time phase estimation

In order to apply the phase estimation algorithm to a stream of observations, further adaptations to the algo-
rithm are required. In principle, the algorithm described in the previous section can be applied to two time
series of any length. However, in a real-time environment it is not feasible to apply the signal to the entire
history of the signal.
To avoid this, an approach is proposed in this section that segments the observations into frames with length

W and hop size h ≤W . For each window of the observation, an estimate of the phase can be made by apply-
ing the DTW algorithm to the input window and the template signal. The estimated phase for each window
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Figure 3.6: A visual illustration of the windowing technique described in Algorithm 3. At each iteration, the window is shifted slightly and
the backtracking step is performed over the window of length W , and h new elements are added to the phase estimate

can then be concatenated again, so that a contiguous phase estimate is obtained. This is done by first esti-
mating the minimal warping cost D∗ for the first W samples. After this, the backtracking step can be applied
to find the phase estimate θx . Now the phase estimate for the first h samples is used. After the backtracking
step, the matrix D∗ can be grown until W +hth sample. This is illustrated in Figure 3.6. Next, the backtracking
step is applied again and the phase estimate is updated until the 2hth sample. To prevent the cost from be-
coming too high, the minimum value of D∗ can be subtracted from all elements after the backtracking step.
An overview of this procedure is presented in Algorithm 3. Because the phase is estimated over windows of
data, there is a delay between the observation and the phase estimate for that observation. This delay is equal
to the length of the window divided by the sampling rate.

Algorithm 3 An windowing technique for continuously estimating the phase of an incoming signal.

1: procedure STREAMING PHASE ESTIMATION ALGORITHM(x , y)
2: Initialise D∗(0, j ) = d(0, j ) ∀ j ∈ (0,1, . . . , M−1)
3: Compute first W rows of D∗ using the method from Algorithm 2.
4: while there are samples left in x do
5: Find θx using the backtracking procedure.
6: Add first h elements from θx to the phase estimate.
7: Discard the first h rows of D∗.
8: Subtract minimum value of D∗.
9: Compute h new rows of D∗ using the method from Algorithm 2.

10: end while
11: end procedure

3.4.6. Phase estimation using compressed template signals

The phase estimation algorithm presented previously finds the most likely phase function θ given the ob-
served signal x and a template y . To do this, it considers the squared error of the observed signal with every
sample of the template signal. Therefore, the algorithmic complexity scales with the number of observations
N per time unit and also with the number of samples M in the template. The complexity of the algorithm is
therefore proportional to O (M N ).

To reduce the complexity of the algorithm, either M or N should be decreased. In the next section, a number
of nonuniform downsampling techniques are applied to reduce the number of samples M of the template.
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Figure 3.7: Visual representation of a strongly compressed template signal, showing the numbered index-value pairs. The dashed line
shows a constant interpolation of the compressed signal.

A nonuniform downsampling scheme for the observed signal is not considered, since compressing the input
signal generally is a more computationally intensive problem than applying the phase estimation algorithm
to all samples of the observation. The template signal only needs to be compressed once when a new template
is learned.

Now consider a template signal y . Let ỹ be an approximation of y consisting of L time-value pairs as
(( j0, v0), ( j1, v1), . . . ( jL−1, vL−1)), where i denotes the corresponding index of the original template and v the
corresponding value for that index. We will denote the vector that holds all the values as ỹ v , and the vector
with all the indices as ỹ j . An example of a compressed signal is shown in Figure 3.7. The approximation of
the template is not unique, and the next section will discuss different ways of finding such an approximation.

When applying the phase estimation algorithm to a compressed signal, the values of the compressed tem-
plate ỹ v can be used as the new template for estimation. The algorithm will then produce a compressed
estimate of the phase θ̃x , that represents an alignment between the compressed template ỹ and the observed
signal x . The indices ỹ j of the compressed signal can in turn be used to obtain an uncompressed phase

estimate θ̂x . This process is summarised in Algorithm 4.

Algorithm 4 Compressed phase estimation procedure.

1: procedure COMPRESSEDPHASETRACKING(observation x , template y)
2: (ỹ j , ỹ v ) = Compress(y)

3: θ̃x = Track phase(x , ỹ)
4: θ̂ = Uncompress(θ̃x , ỹ j )
5: end procedure

In the next section, different methods for determining a compressed estimate are explored. Since there are
fewer samples in the compressed template, the phase estimate will be less detailed, and might also be more
sensitive to errors. Furthermore, the slope constraint that was formulated might be violated, since two adja-
cent samples of the compressed template can have a bigger time step between them. In Chapter 4, the effect
of the compression ratio on the performance of the algorithm is investigated.
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3.5. Converting the phase estimate to a consumption rate

Once the estimate of the phase of the meter has been determined using the algorithm described in the pre-
vious sections, the estimate needs to be converted to a consumed quantity and corresponding consumption
rate. All household electricity meters have a C-value. This C-value is a ratio that relates the rotation of the
meter to the amount of energy was consumed. A typical value for C is 600 revolutions per kWh, but can be
anywhere in the range from 75 to 750. For gas meters and water meters, a similar ratio can be determined
that relates the revolutions of the meter to the gas or water usage in litres.

Using this value, the absolute phase that was estimated by the meter module can directly be translated to a
consumed quantity. To estimate the consumption rate, the first order difference of the signal can be com-
puted. Since the estimate of the phase can have some local deviation and noise, the derivative of the signal
was smoothed over time.

3.6. Compression methods

In this section, a number of different compression methods are presented. For each of the compression
schemes a short explanation is provided, and some motivation why it was selected.

Four different methods to approximate the template signal with a lower number of samples are considered.
First, the total variation (TV) minimisation and APCA technique are both commonly used to approximate
time series with constant segments. The third method is based on the Fisher information of the signal that
was derived from the signal model. As a last reference method, a uniform downsampling of the template
is considered. The performance of the compression methods will be judged in this section based on the
squared error with the original templates, and in Section 4.1 the performance of the compression methods
in combination with the phase estimation algorithm is evaluated. The reason that the squared error was
chosen as a metric, is that the phase estimation algorithm works by minimizing the error between the aligned
template and the observed signal, with the squared error as an error measure. Therefore, it is likely that
templates with a lower squared error with the original template also perform better in the phase estimation
algorithm.

A visual comparison of the compression methods is shown in Figure 3.8. In the figure, example signals of
an electricity meter, a gas meter and a water meter are compressed using the APCA method, TV minimisa-
tion, Fisher information sample selection and downsampling. It can be seen from the figure that the APCA
method replicates the shape of the signal well. Table 3.2 shows the RMS error that corresponds with the com-
pressed templates shown in Figure 3.8. From the table, it can be seen that the APCA method has a lower
reconstruction error than the downsampled signal. The TV minimisation has a higher error than APCA or
the downsampled signal, and the Fisher information also has a relatively high RMS. Here it must be noted
that for the Fisher information, the only selection criterion was to select the samples, and not to optimise for
the reconstruction error. In Section 4.1 it will be shown that there is a relation between the RMS error of the
approximation and the performance of the algorithm.

3.6.1. Total variation minimisation and APCA

The TV minimisation approach tries to find a representation of the signal that minimises the squared error
between the template and the approximation, and at the same time minimises the number of segments in
the approximation. When the number of segments is reduced, the template can be reproduced by only the
values and timestamps of those segments, and the complexity of the algorithm is reduced. With the APCA
method, a similar method is used where each of the segments is represented only by its value. Both methods
have a representation that segments the signal into a desired number of segments, but also aim at keeping
the error with the original template as low as possible.
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Figure 3.8: Different compression methods result in different approximations of the original template. For three different signals, an
approximation is shown using the compression techniques is shown with a constant interpolation of the segments. In the figures, the
original template is shown with 400 samples, and the approximations were formed with 50 samples.

3.6.2. Fisher information maximisation

In the text below, the Fisher information method as explained in Section 2.4.4 is applied to the signal model
that was found earlier. The Fisher information method selects a number of samples that have the highest
local information about the parameter. The timestamps and values of the samples with the highest Fisher
information are then used as the new template values for the phase estimation algorithm.

In the work of Swärd et al. [60], an optimal sample selection scheme is derived for a multi-parameter model.
In Section 2.4.4, it was explained how the sum of the Cramér-Rao lower bounds of the estimators can be
minimised. The CRLBs are found on the diagonal of the inverse of the Fisher information matrix. The opti-
misation problem selects the samples such that the Fisher information matrix of the selected samples results
in the lowest total CRLB. From the phase estimation algorithm, recall the model that was assumed for the
observations:

lnp(X |θ[i ]) = ln

(
1p

2πσ2

)
−

(
x − y(θ[i ])

)2

2σ2 , (3.5 revisited)

For this model, we can use the equations of Section 2.4.4 to compute the Fisher information. The resulting
Fisher information is

I [y(θ[i ])] = 1

σ2

∂2 y(θ[i ])

∂θ[i ]2 . (3.39)

A similar result is also presented in [37, p.36]. From this result we can conclude that the Fisher information is
proportional with the square of the derivative of the template function. Reflecting on this result, we can see
that the parts of a template that have the highest derivative indeed provide the greatest change in x when a
small deviation in the phase θ occurs. Because of this property, any noise on the observation x[i ] will result
in minimal local error in θ[i ] where the derivative of y[θ] is the highest. The main difference between the
approach in this thesis and the work of Swärd et al. [60] is that in their work a model with a small number of
parameters is used with respect to the number of observed samples. In one of the examples, five parameters
of a noisy sinusoid are estimated using 50 samples. In our model, an observation of 50 samples is described
by a phase function also consisting of 50 samples.



3.6. Compression methods 35

Table 3.2: RMS error for different combinations of compression methods and meter types

APCA TV Fisher Downsampling
Electricity 0.16 0.23 0.18 0.30
Gas 0.25 0.43 0.70 0.42
Water 0.05 0.15 0.15 0.09

3.6.3. Uniform downsampling

Another method that should be considered is downsampling the template. Downsampling of the template
has the benefit that is trivial to implement, and retains the even spacing over time of the template. First, a
low-pass filter is applied to the signal to prevent aliasing effects after downsampling, and then the signal can
be downsampled. There are a number of downsides to the downsampling technique. First, some steep tran-
sitions might not be preserved by the low-pass filter. Furthermore, when a template has constant segments
(for example the water meter example in Figure 1.3), the downsampled signal will have the same resolution
for the constant segments with low detail as for parts of the signal with high detail. In other words, since the
downsampling technique is non-data-adaptive, it will have the same sampling density for areas with high
detail as for areas with low detail.





4
Results

In this chapter, the performance of the proposed algorithm is evaluated through a number of different exper-
iments. The algorithm is compared to a number of conventional frequency tracking algorithms. The algo-
rithm will be evaluated on three main experiments. First, the performance of the phase estimation algorithm
is evaluated as a function of the number of samples in the compressed template. Secondly, the performance
of the algorithm is compared with three different reference algorithms. Finally, the performance of the algo-
rithm under different signal-to-noise ratios (SNRs) is evaluated.

The performance of the algorithm will be evaluated on two different outputs of the algorithm. First, the
estimate of the consumption rate. The consumption rate corresponds with the frequency of the consumption
meter, and the root-mean-square (RMS) of the error between the estimate and the actual rate is used as a
metric for the performance. For electricity meters, this value is converted to Watts, and for water and gas
this value is converted to an error in the flow rate in litres/hour. The second measure of performance is the
total accumulated error in the total consumed quantity, which corresponds with the number of revolutions
the meter has made over the total window. For electricity, this value is converted to kWh, and for gas and
water this value is converted to litres. A linear interpolation of the phase and frequency estimates was made
to compute the local deviation and RMSE.
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Figure 4.1: The load patterns that were used for the test results shown in Figure 4.3 and Figure 4.2.
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Figure 4.2: Root mean square error for the consumption rate of electricity, gas and water. The consumption rate was computed as the
derivative from the estimated phase.

4.1. Performance for different compression rates

In the previous section, different compression methods were presented to reduce the number of samples that
are needed to represent the signal template. Now, the performance of those different compression methods
is evaluated as a function of the number of samples of the template.
For this test, typical consumption patterns were used for an electricity meter, a gas meter and a water meter,
along with typical template patterns for the respective meter types. The templates used in this test are the
same templates that were shown in Figure 3.8. The load patterns are shown in Figure 4.1. In this test, only
the performance of the phase estimation step is evaluated. This implies that the template signal is known,
and that the observed signal is zero mean and unit variance, so that no errors are introduced due to gain or
offset errors. The load pattern that was used has a length of approximately 4000 seconds and was simulated
at a sampling frequency such that the slope constraint of the algorithm was in the right range for the corre-
sponding meter type, given the C-value of the meter and the maximum consumption for a household. The
sampling frequencies that were used 200, 5 and 20 Hz for the electricity, gas and water meter respectively. For
the first two tests, a SNR of 20 dB was used.

From the load pattern of Figure 4.1, the frequency of the meter over time was calculated. Then, a noisy ob-
servation x was simulated using the statistical model of Equation (3.2). The noisy simulated signal was used
as an input to the phase estimation algorithm. Because the observed signals were simulated, a ground-truth
reference of the actual consumption rate is available that was used to compute the performance of the phase
estimation algorithm. After the estimation step of the phase estimation algorithm, the phase estimate is con-
verted to an estimate of the power over time as described in Section 3.5, using C-values of 600, 100 and 1000
for the electricity, gas and water meter respectively. For the estimate of the consumption rate, the RMSE is
shown as a function of the number of samples to represent the template in Figure 4.2. The template is consid-
ered ‘uncompressed’ at 200 samples, since no observable improvement in performance was observed when
adding more than 200 samples. Figure 4.3 shows the accumulated error in Wh or litres over the total time
window. Comparing the graphs, we can see that the accumulative error converges to zero for all compression
methods, which means that when the signal is represented with enough samples, it will accurately estimate
the number of revolutions that the meter has made. The phase estimation method might deviate locally, but
will not deviate enough to miss a revolution. For example considering the gas meter, there will be a num-
ber of samples where the algorithms is able detect the peak the mirror is in front of the sensor, but there are
not enough sample in the template to track the effects caused by the digits on the gas meter, causing a local
deviation. The effect of those local deviations is reflected in the RMSE of the consumption rate.

There is a clear difference in the performance of the different compression methods. For low sample count,
the data-adaptive APCA compression method performs the best. For a slightly higher sample count, the
downsampling method performs best. The Fisher information method outperforms the TV minimisation
method. As the number of samples increases, the error for all compression methods converges. When look-
ing back at the results of Table 3.2, we can see that there is indeed a correlation between the error of the
compressed template and the actual template, and the RMS performance measure presented in this chapter.
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Figure 4.3: Comparison the error at the end of the estimation for different compression schemes. Once there are enough samples to not
miss any of the clear peaks in the signal, the accumulated error converges to zero.
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Figure 4.4: The performance of the different compression methods as a function of the signal to noise ratio of the observation for the
electricity dataset. The templates were compressed using 50 samples. The SNR for recorded signals was typically between 10 and 100.

Performance for different signal-to-noise ratios

Figure 4.4 shows the result of a simulation where the tracking algorithm was run on the same electricity
dataset as before, but with different signal-to-noise ratios (SNRs). The template signal was compressed using
the four compression methods with 50 samples. In recorded signals from actual consumption meters, the
SNR typically varied between 10 and 20 dB. In this test, the SNR was swept from 0 to 20 dB. As can be seen
from Figure 4.4, the downsampled compression method performs poorly for low SNRs. The TV-minimisation
and Fisher information method roughly show the same behaviour, and APCA method performs the best.

Other datasets

To test for the objective of detecting a meter with backwards motion, a load curve for a household with solar
patterns was generated. A household that has solar panels can deliver power back through the grid when
the solar panels generate more energy than the consumption rate of the household, and the meter rotates
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Figure 4.5: An example load curve for a household with solar panels. The power consumption from the household alternates between
positive and negative usage, resulting in a meter that rotates backwards and forwards.

in the opposite direction of normal operation. Figure 4.5 shows an example of such a load curve. In the
figure, the reference pattern is shown along with the estimate by the phase estimation algorithm and the
APCA compressed signal. The accumulated usage error of the algorithm converged to zero as more samples
were added to the template, and the RMS error converged to approximately 30 Watts. The curve with respect
to the number of samples looked similar to that of the test with the normal electricity pattern, but slightly
more samples were needed for the algorithm to direct the direction of the meter.

Next to the problem with solar panels, some older meter types exist that do not have a clear marking on the
rotating part of the meter. Figure 4.7 shows an observed signal from a gas meter that does not have a clear
peak in the signal. The phase estimation algorithm needed approximately 100 samples for the accumulative
error of the phase estimation algorithm to converge to less than one period. This is slightly more than the
50-75 samples that were needed for the other patterns. This is due to the fact that there is more variation in
the signal, and more samples are needed to capture the shape of the signal.

Proposed compression method

Based on the results of the simulations using different compression rates shown in Figures 4.2 to 4.4, the
APCA compression method is selected as the proposed compression method, since it has the best overall
performance. When using 75 samples in the compressed template, we can see that the accumulated error
has converged for all three datasets with the APCA method, and that there is little decrease in RMS error if
more than 75 samples are added. In the next section, those settings are used for the comparison with the
other algorithms.

4.2. Comparison with other algorithms

For comparison, a number of different algorithms were implemented to track the phase of the consumption
meters. As a first reference algorithm, an advanced peak detection algorithm was applied, which assumes a
mirror or marking on the meter [62]. Secondly, the short time Fourier Transform-based pitch tracking method
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Figure 4.6: In the top graph, the usage pattern for the three different meter types is shown. This load curves that were used are the same
as in Figure 4.1, but in this graph the accumulated consumption is shown instead of the consumption rate. The top graphs show the
estimates for each of the algorithms, and the bottom graphs show a more close-up view of the error with the reference. In the bottom
graph, it can be seen that although the peak detect has a good tracking performance, it has larger deviations in error than the proposed
method.

Table 4.1: In adition to Figure 4.6 that show the estimates of the total consumed quantity, the table below shows RMS error of the
consumption rate estimate of the four different algorithms. In addition to the three datasets of Figure 4.6, results are shown for the
mirrorles gas meter of Figure 4.7 and the solar load curve of Figure 4.5. It can be seen from the table that the difference in error between
the proposed method and other algorithms is the largest for the latter two datasets.

This work Peak detection Particle filter STFT
Electricity (W) 35.24 49.03 788.18 179.65
Gas (L/h) 49.01 67.80 124.45 581.79
Water(L/h) 19.32 25.16 64.37 55.37
Gas no mirror (L/h) 61.23 613.38 401.04 4687.28
Electricity solar (W) 43.07 258.81 287.16 252.73

[63] commonly found in speech processing-based applications was used to track the frequency over time.
This frequency estimate was integrated to obtain a phase estimate. As a third reference, a particle filter [35]
was implemented that generates a number of particles and propagate the particles through the nonlinear
model that was described in this thesis. A more extensive discussion of those methods can be found in Chap-
ter 2.

Some adjustments were made to the algorithm parameters depending on the dataset. For the particle filter,
the update step was slightly adjusted for the different datasets to match the expected speed of the different
meter types. For the STFT method, the window size was also varied per dataset optimise the time-frequency
resolution. For the peak-detect algorithm, the threshold levels were selected manually to ensure the best
algorithm performance. The phase estimation algorithm presented in this thesis was run with a 75-sample
template that was compressed by the APCA method. Figure 4.6 shows the test load pattern for the electricity,
water and gas dataset, and the corresponding absolute error of the estimated usage over time. From the top
graphs in Figure 4.6, it can be seen that the particle filter and STFT method are not always able to accurately
track the consumption and start to deviate. The method of this thesis and the peak detection method perform
better. In the bottom graphs, the local error of the estimate is shown. Here, it can be seen that the method of
this thesis has very low deviation in the consumption estimate, while the peak detection algorithm deviates
more, because the estimate cannot be updated when there is no peak in the signal. The RMS error of the
consumption rate is shown in Table 4.1.
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Figure 4.7: An observation from a gas meter with no mirror. In the figure, approximately one and a half revolutions of the meter are
visible. Upon closer inspection, ten peaks can be seen in one period of the signal, caused by the numbers 0-9 on the display. The phase
estimation algorithm converged to near zero accumulated error.

4.3. Algorithm complexity

Finally, the last objective for the algorithm is to have a computational complexity that allows the algorithm
to run in real-time on an embedded device. In this section, we will demonstrate the feasibility of this with
an approximate calculation. From the previous results, we can conclude at a sampling frequency of 200 Hz,
the phase of the meter can accurately be estimated using a template of approximately 75 samples. Under
those conditions, the algorithm has to consider 75×200 states per second. If finding the lowest cost for one
state takes approximately 100 clock cycles, this means that the algorithm requires at least 1.5 million clock
cycles per second. On a modern microcontroller running on a clock speed of 8 or 32 MHz, this should be
feasible, leaving time for the backtracking procedure and other tasks. The memory usage of the algorithm
can be quite high for a microprocessor, but the window size of the real-time algorithm as described in Sec-
tion 3.4.5 can be adjusted to match the available memory of the microcontroller. On a modern computer,
a C++-implementation of the algorithm could be compute the estimate for one hour in approximately two
seconds, with a template size of 75 and sampling frequency of 200 Hz.



5
Discussion

5.1. Evaluation of the objectives

In Section 1.3, the problem statement for the phase estimation algorithm was introduced. In short, the ob-
jectives for the algorithm are as follows:

1. Adaptability: Performance of the algorithm on signals from various meter types.

2. Resolution: Decreasing the smallest detectable phase difference of the consumption meter.

3. Able to detect direction: Estimating the phase both when the consumption meter rotates forward and
when the meter rotates backwards.

4. Computationally efficient: Sufficiently computationally efficient to run in real-time on an embedded
device.

We will now shortly reflect on each of those goals.

Adaptability and ability to detect direction

In Chapter 4, it was shown that the phase estimation algorithm performed well on all the datasets. Two
datasets were presented where all the comparative algorithms failed. The first test was the example of the
gas meter with no clear peak, and the second example is the solar usage pattern, where the meter rotated
backwards. In both cases, the algorithm performed well and demonstrated its adaptability.

Resolution

The algorithm that was designed allows for a trade-off between computational complexity and the resolution
of the estimate by changing the number of samples in the template signal. Since the comparative algorithms
require at least one full rotation or multiple periods to estimate the phase of the meter, this algorithm im-
proves the resolution of the estimate.

Computational efficiency

The algorithm runs in O (M N ) time, where M is the number of signals in the template signal, and N is the
number of samples in the observation. That means that with regards to the data size, the algorithm scales
with O (N ). It was shown in Section 4.3 that the algorithm has a complexity that is low enough to run on an
embedded device.
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Figure 5.1: In total variation minimisation, the goal is to find a signal approximation ỹ with a sparse derivative. On the left, a signal with
a steep transition is shown. On the right, an approximation with a sparse derivative is shown with only one nonzero element. It is clear
from the costs of the norm that the `1-norm does not change, while the `0-norm shows a big difference. Hence, the `1-norm is less
suited for finding a sparse derivative

5.2. Analysis of compression methods

The results of Section 4.1 show that the performance of the algorithm depends on what type of compression
method was used. The APCA method and the downsampling technique generally have the best performance,
while the Fisher information sample selection and the TV minimisation show lesser results. To provide a mo-
tivation behind this difference in performance, let us recall the error of the compressed templates with their
respective uncompressed templates from Table 3.2. In Table 3.2 we can see that the compression methods
with lower reconstruction error also tend to have better performance with the phase estimation algorithm.

Adaptive piecewise constant approximation and uniform downsampling

Of the four compression methods that were evaluated in Section 3.6, the APCA method is the method that has
the lowest reconstruction error with the original template. In the results of Section 4.1, it can be seen that in
many cases the APCA method needs the fewest samples for the accumulative error to converge to zero. When
the number of samples increases, the RMS error of the consumption rate was sometimes higher for APCA
than for the downsampled signal. This could be because of the non-uniform spacing of the APCA method,
which causes an uneven spreading of the phase estimate, leading to a higher RMS error.

Total variation minimisation

In TV minimisation, the goal is to find a signal with a sparse derivative that has a low reconstruction error with
the original signal. To minimise the number of elements in the derivative, the `0 norm can be used to min-
imise the number of elements in the derivative of the signal. The optimisation problem could be formulated
as:

min
ỹ

∥∥y − ỹ
∥∥

2 +λ
∥∥∇ỹ

∥∥
0 , (5.1)

where ỹ represents the approximation of the signal, ∇ỹ the first order difference of the signal, and y the
original signal. ‖·‖2 and ‖·‖0 represent the `0 and `2-norm respectively. The first term of the cost function
minimises the squared error with the original signal, and the second term minimises the number of nonzero
elements in the derivative. The main problem is that the `0-norm makes the problem a non-convex problem,
and thus difficult to solve efficiently [59, p.310]. For this reason, the `0-norm is relaxed to a `1-norm, which
in many cases was shown to approximate the original problem well [64],[59, p.314].
In this case, this relaxation impacts the performance of the algorithm when trying to find an approximation
of the template with a fixed number of segments (or equivalently, nonzero elements of the derivative).
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Consider a template signal with a steep transition in the middle of the template such as shown in Figure 5.1,
with a number of successive samples on the edge of the transition. If the edge is steep, it could be approxi-
mated with a single step between the state before the edge and the state after the edge, without any interme-
diate samples. With the `0-norm, this would be a likely outcome of the TV minimisation, since the signal is
well reconstructed with just one nonzero element of the derivative. With the `1-norm however, including all
transitions yields approximately the same cost, since the `1-norm of the sum of all the transitions that form
the edge has approximately the same cost as one single transition for the edge under the `1-norm. Because
of this approximation, the compression based on TV-minimisation tends to select all samples on the steep
edges of the signal, leaving fewer samples for other details in the template. This can also be seen in the plots
of the compressed templates in Figure 3.8.

Fisher information-based sample selection

Recall the Fisher information derived for our statistical model as derived in Section 3.6:

I [y(θ[i ])] = 1

σ2

∂2 y(θ[i ])

∂θ[i ]2 . (Equation (3.39) revisited)

The Fisher information is a measure of how accurately θ can be estimated with respect to the measurement
noise of the model. That is, the locations in the template where a deviation in the measurement x[i ] causes
the smallest deviation in the phase estimate θ. From the equation we can see that the Fisher information
increases with the amplitude of the derivative of the template. By definition, the derivative of y[θ] relates
how a small change in input in θ relates to a change in y[θ]. Therefore, for high derivatives a disturbance in
x[i ] will result in a small change in the estimated θ, and when the derivative is low in amplitude, a disturbance
in x[i ] will have a bigger impact on the estimate θ.

Although this is true locally, it does not take into account that even in the noise-free case, it is still not always
possible to recover the phase directly from an observation, since the template signal can be such that multiple
θ satisfy y[θ] = x[i ]. If the model was a one-to-one function, this method would likely perform better. In this
case, the Fisher-information sampling technique optimizes for local performance with respect to the noise,
but does not optimize for a good reconstruction of the template, which results in a worse performance than
the other methods.

5.3. Comparison with other algorithms

In Section 4.2, the performance of the phase estimation algorithm was compared to conventional methods
for tracking time series signals. In this section, a brief discussion of the performance of each of the algorithms
is provided.

Peak detection method

The conventional peak detection method worked reliable on the three main datasets for the water meter,
gas meter and electricity meter. Since it was able to detect all the pulses, the accumulative phase error was
approximately zero for those three datasets. The RMS error of the consumption rate was significantly higher
for the peak detection algorithm, especially in the case of the electricity meter and gas meter. When the gas
or water usage drops from a certain consumption rate to zero, it might take a long time for the next pulse
comes by, and the frequency cannot accurately be estimated in the time between the two pulses. The phase
estimation algorithm presented in this thesis was able to estimate the steep declines in consumption rate and
low consumption rates better, since it can detect when the meter stops rotating.
Secondly, two types of datasets were presented that could not be tracked by the peak detection algorithm.
For the usage pattern with negative consumption, the peak detection is still able to detect the peaks, but not
the direction of the signal. This means that all negative value consumption would be counted as positive
consumption. The second example showed an example signal that did not have a clear peak in the signal. In
this case, the peak detection would not be able to count the number of revolutions.
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Particle filtering method

The particle filter is a technique that generates a number of particles randomly. Each particle represents
a system state, and the particles propagate according to the (stochastic) system model. At each iteration,
new particles are generated randomly based on the likelihood of the predicted output of the particle state.
The particle filter is a relatively simple model that can handle the nonlinearity of the template-based model
well. The particle filter was able to track the signal in most cases, but proved to be strongly dependent on
the update step of the model. When the samples were allowed to spread to different states too much, the
system did not converge. When there was too little spread in the update step, there were not enough samples
that moved enough to track the signal. Possibly, the quality of the estimation could be improved when the
particle state is extended to contain an estimate of the frequency and phase, instead of only a phase estimate.
Furthermore, since the particle filtering method is a stochastic method, it did not produce the same results
when it was applied twice to the same observation. The particle filter roughly has the same time complexity as
the phase estimation algorithm presented in this thesis, but performed less in the tests that were conducted.

Short time Fourier transform

The short time Fourier transform (STFT) is a commonly used technique to analyse the frequency of a signal
over time. Generally, the assumption is made that within a short period of time, the signal is locally stationary.
Over this time period, the Fourier transform is applied, and in the Fourier domain the main frequency of the
signal is determined. For the electricity signal, the STFT performed relatively well. For the water and gas
dataset, the performance was less. This is mainly because the electricity meter generally rotates faster, and
almost never stops due to a typical standby usage of several tens of Watts in a common household. Because
of this it is more likely in the case of the electricity that there are multiple periods of the signal within one time
frame of the STFT, so that the frequency is accurately estimated. When the signal is moving to slow to capture
a revolution in a STFT time frame or when the frequency changed within a time frame, the STFT method was
not able to detect the main signal frequency correctly. For the gas and water meter, this happened more often
due to the pulse-like usage patterns and due to the slow moving meters.

Kalman filters

Kalman filtering is a filtering technique for signals embedded in noise. The Kalman filter is a minimum mean-
squared error (MMSE) estimator that uses the information of a dynamic system model to estimate the model
parameters. The estimator is optimal under the assumption of a linear model and Gaussian noise [37, p. 446].
A Kalman filter predicts the next value of the estimated parameter using the statistical model, and combines
the estimate of the model with the observed measurement. When a new measurement is observed, the error
between the predicted value of the measurement and the observed value can be computed.

The Kalman filter was not included as a reference method, since applying Kalman filtering techniques to the
model in this thesis brings forth a number of challenges that are nontrivial. For the ordinary Kalman filter,
a model is required with linear update equations. For nonlinear models such as the model in this thesis,
the Extended Kalman filter (EKF) [38, p. 400] and Unscented Kalman filter (UKF) [39] were developed. The
model that was presented in Section 3.1 consists of noisy observations x[i ] from the internal state θ[i ] and a
template function y . One of the problems with this model is that no update rule for θ[i ] is assumed. Secondly,
the Kalman filter will make an estimate for the state only based on the previous estimate and the current
observation, whereas the model presented in this work finds the maximum likelihood estimate for the model
given the entire sequence of observations. For these reasons, implementing the Kalman-filtering techniques
was not considered as a viable reference method for this problem.

Analogy with Hidden Markov models

The model presented in this thesis bears resemblance with the Hidden Markov Modelling (HMM) technique
and the corresponding Viterbi algorithm [21, p. 523] as described in [5, 65]. The Hidden Markov Model is
based on a Markov model with a number of states that are not directly observable. Instead, only the stochastic
output of the state is observable. When applied to the problem of this thesis, the states could represent
different phases of the consumption meter, and the output the observed reflection that corresponds with that
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phase. HMMs have been used for similar problems such as the analysis of ECG signals [66] or EEG rhythms
[2].

The main difference between an HMM and the model presented in this thesis is in the transition probabilities.
In an HMM, it is assumed that the transition probabilities between different states are fixed and are known, or
can be estimated. The Viterbi algorithm uses a similar dynamic programming technique to find the sequence
of states that has the highest probability. In this work, it was assumed that the maximum difference between
two succeeding phase estimated is limited, thereby constraining the slope of the phase estimate.

When the transition probabilities of the HMM are set equal for all states that satisfy this slope constraint, and
zero for all states that violate the constraint, the Viterbi algorithm could be used to yield the same result as the
phase estimation algorithm of this thesis. In the model of this thesis, the transition between different states
of the template is dependent on the underlying frequency of the consumption meter, and can vary greatly
over time.

5.4. Vulnerabilities of the algorithm

Although the algorithm performs well and achieves all the goals that were set in the objective, there are a
few situations where the performance of the algorithm quickly degrades. There are two notable cases that
will be discussed: sensitivity against offsets or gain errors and having an incorrect number of samples in the
template.

Offset and gain errors

One of the main assumptions of the algorithm is that both the template and observation have the same offset
and scaling. Since the algorithm tries to find the best match of the values of the observed signal with the
values of the template signal, the algorithm is sensitive to deviations the signal values. Figure 5.2 shows an
illustration of a phase estimation procedure where the offset is slowly increased. At first, the algorithm will
track the phase of the signal without any problems, but as the offset error increases, the observed signals has
a progression of values that cannot be matched with the values in the template. To minimise the alignment
cost, the algorithm will start to favour the template samples with higher values, until finally all the samples of
the observation lie outside of the range of the template, and the best estimate that the algorithm can make is
the template state with the highest value.
For the gain offset, a similar situation occurs where the values of the observation can no longer efficiently
matched with the template signal. An example of this is shown at the bottom of Figure 5.2. It is difficult to
avoid this kind of vulnerability in the algorithm, since the phase estimation algorithm has to rely on the values
of the time series, since the frequency of the meter can change at any time.

Therefore, the algorithm has to rely on the normalisation step to correct for the gain and offset of the observed
signal. However, this estimation step will of course not always be perfect. Since the gain and vertical offset are
only updated during stationary periods of the signal, the normalisation step could fail if there is a big change
in the gain or vertical offset during a nonstationary period of the signal. One approach to mitigate this issue
could be to monitor the alignment cost of the algorithm. If there is a sudden increase in the warping or
alignment cost, this could be an indicator that a sudden change in gain or offset has occurred, and that the
aligned template does not match the observed signal well. This increase in cost could trigger a recalculation of
the gain and offset, or could serve as an indicator that the estimate is unreliable. In the case of the meter phase
estimation problem this problem is unlikely to occur, since many meters are installed in a dark environment
where the conditions in ambient light do not change.

Incorrect number of template samples

When the number of samples in the template is either too high or too low, the estimation procedure can lead
to erroneous results. First, consider the case where there are a low number of samples in the (compressed)
template signal. Since the algorithm is applied directly to the template values, the number of values in the
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Figure 5.2: An observed signal with an increasing gain and offset error are shown. When the offset error increases too much, only the
states with the highest values of the template will be used. For the gain error, the template can only be matched at the zero crossings,
and for the other parts the extreme values of the template are used

template also influences the slope constraint of the algorithm. If there are only three samples in the template
and the slope is limited to one state per observed sample as described in Table 3.1, the maximum slope would
be one period in only three samples. Note that when the observed signal is noisy, the algorithm can quickly
skip to a state that matches the current value best. Therefore, the sampling rate of the observed signal and
the slope constraint of the algorithm should be matched so that the slope constraint approximately matches
with the maximum expected frequency based on the maximum consumption rate for a household.
A similar problem can occur when there are too many samples in the template and the algorithm tracks both
forward and backwards motion. Consider the case where there is a steep edge in the template signal, but the
edge is still represented by many samples. In that case, the algorithm could in some cases find an optimal
alignment by just moving along that edge, and ‘selecting’ the best matching value by moving forwards and
backwards along that edge. This problem only occurs when there is much noise on the signal. It can be
prevented by filtering out a part of the noise, or by adding constraints to the algorithm that limit the number
of times the algorithm can switch between backwards and forwards rotation.
One other example of a mismatch in the estimated phase occurs when the template signal is sufficiently
symmetric, and the observation is noisy. In this case it can occur that the phase estimation algorithm aligns
the signal by moving the meter backwards and forwards, but never more than a full rotation. Because of the
template symmetry, an alignment is generated that matches the observed signal well.
In all of the cases described above, the phase estimation algorithm still finds the optimal cost within the
constraints that were provided. The problem here is that although the algorithm finds the optimal solution
for the model and the constraints that were specified, it does not always find a solution that is close to the
true phase. This typically occurs when there are too little samples in the template or when the noise on the
signal is high.



6
Conclusions and future work

A phase estimation method was developed that is able to track the phase of recurring patterns in nonsta-
tionary time series, with an application to the monitoring of analogue consumption meters. The time series
signal was modelled with a template pattern that is repeated over time at varying frequencies, where the fre-
quency can change rapidly over time, and no assumption about local stationary are made. Using the dynamic
programming methods common to the Dynamic Time Warping (DTW) and Viterbi algorithm, a constrained
maximum-likelihood estimate for the phase over time was derived. A general framework was proposed that
can be applied to any time series with repeating patterns that correspond with the template-based signal
model.

The phase estimation algorithm was shown to improve in accuracy and adaptability over the conventional
peak detection algorithm, at the cost of increased computational complexity. The algorithm was tested on
an electricity meter, a gas meter and a water meter with realistic phase signals. Two examples were shown of
datasets with signals with negative rotation and signals without a distinctive peak, that could not be tracked
by the conventional peak detection method. The proposed algorithm could accurately estimate the phase in
both cases.

To reduce the complexity of the algorithm, a number of different compression techniques for the signal tem-
plate were implemented, and the performance of the different compression methods was compared. Using
the Adaptive piecewise constant approximation (APCA) technique, an accurate estimate could be obtained
for the three common meter types with a time complexity that is low enough to implement the algorithm on
a simple embedded device.

Some conditions were described that lead to erroneous estimations of the algorithm, due to an incorrect
number of samples in the template, incorrect sample frequency or changing lighting conditions. With the
appropriate preconditions, those circumstances can be avoided.

Suggestions for future work

In this thesis, a framework for estimating the phase of consumption meters was tested. The work has been
verified on simulated observations and on some home recordings, but further testing is needed to test the
robustness of the algorithm in real-life situations. The algorithm relies on an accurate estimate of the signal
template. In practice, the estimated signal template might be noisy or might have a slightly incorrect length.
The algorithm will still be able to track the phase when the template is distorted, but it is unknown what
the precise effect of distortion of the template signal will be. Tests with the algorithm in a real-life situation
or with simulated distortions in the template could provide more insight into how the template influences
estimation performance. One other parameter of interest is the window size of the algorithm. The effect of
the windowing procedure might affects the performance of the algorithm, and real-life test could provide
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more insight in the minimum window length that is required.

Furthermore, the algorithm is sensitive against disturbances in the vertical offset and gain of the signal. In
many cases the meter can be placed in an environment with fixed lighting conditions and this problem can
be avoided, but there will also be cases where ambient light influences the meter. Further research is needed
to investigate how strong this influence is, and if it is possible to accurately track the gain and vertical offset
parameters in rapidly changing lighting conditions, such as partly cloudy weather for meters that are placed
outside.

Next to this, the model could be extended with statistics about the expected frequency of the meter. In the
signal model of this thesis, no assumptions about the progression of the meter were made, other than that its
maximum frequency is bounded. The model could be extended further with statistics about the frequency
of the meter. Public datasets and probabilistic models for energy usage have already been published [67, 68],
and those could be used as prior information about the phase over time.

Finally, the applications of the template-based tracking technique could be explored. The algorithm as pre-
sented could by applied to other nonstationary time series that are generated from a recurring pattern. Ex-
amples of such time series are ECG recordings, EEG recordings or other set-ups where a sensor is connected
to a rotating or oscillating object.
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A
MVU estimators for vertical offset and gain

In this section, the MVU estimators for the vertical offset b and gain a of the model presented in Section 3.1
are derived.

x[i ] = Ay[θ[i ]]+b +ε[i ] , (A.1)

where ε[i ] is zero mean Gaussian noise with variance σ, y is the template vector, indexed by the phase θ[i ].
From this model, we have the probability density function

pX (x | θ) = 1

(2πσ2)2/N
exp

(−∑N−1
i=0 (x[i ]− (Ay[θ[i ]]+b))2

2σ2

)
. (A.2)

with corresponding log-likelihood

ln pX (x | θ[i ]) = ln

(
1

(2πσ2)2/N

)
− (x − (Ay[θ[i ]]+b))2

2σ2 . (A.3)

We define the model parameters θ as [A b]T . For those parameters, the Fisher information matrix is

I (θ) = 1

σ2

∑
y[θ[i ]]2 ∑

y[θ[i ]]∑
y[θ[i ]] N

 . (A.4)

The MVU estimator must satisfy the following relation [37]:

∂pX (x | θ)

∂θ
= I (θ)(g (x)−θ) , (A.5)

where g (x) is the estimator function. Substituting the probability density function of Equation (A.3) and the
Fisher information of Equation (A.4) we obtain

1

σ2

∑
(x[i ]− Ay[θ[i ]]−b)y[θ[i ]]∑

(x[i ]− Ay[θ[i ]]−b)

= 1

σ2

∑
y[θ[i ]]2 ∑

y[θ[i ]]∑
y[θ[i ]] N

Â− A

b̂ −b

 . (A.6)

Computing the product on the right hand side and rearranging for Â and b̂ we find

Â

b̂

=


∑

x[i ]y[θ[i ]]− b̂
∑

y[θ[i ]]∑
y[θ[i ]]

1

N

∑
x[i ]− 1

N
Â

∑
y[θ[i ]]

 . (A.7)
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Solving for Â we find the MVU estimator for A as

Â =
∑

x[i ]y[θ[i ]]− 1

N

∑
x[i ]

∑
[yθ[i ]]∑

y[θ[i ]]2 − 1

N

(∑
[yθ[i ]]

)2
= cov(x , y)

cov(y , y)
. (A.8)

From this it follows that an efficient estimator for Â and b̂ exists, but that the estimator requires the template
y to be known.
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