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SUMMARY

In this paper we formalize the defect prediction problem as a multi-objective optimization problem.
Specifically, we propose an approach, coined as MODEP (Multi-Objective DEfect Predictor), based on
multi-objective forms of machine learning techniques—logistic regression and decision trees specifically—
trained using a genetic algorithm. The multi-objective approach allows software engineers to choose
predictors achieving a specific compromise between the number of likely defect-prone classes, or the
number of defects that the analysis would likely discover (effectiveness), and LOC to be analyzed/tested
(which can be considered as a proxy of the cost of code inspection). Results of an empirical evaluation
on 10 datasets from the PROMISE repository indicate the quantitative superiority of MODEP with respect
to single-objective predictors, and with respect to trivial baseline ranking classes by size in ascending or
descending order. Also, MODEP outperforms an alternative approach for cross-project prediction, based on
local prediction upon clusters of similar classes.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Defect prediction; multi-objective optimization; cost-effectiveness; cross-project defect
prediction.

1. INTRODUCTION

Defect prediction models aim at identifying likely defect-prone software components to prioritize
Quality Assurance (QA) activities. The main reason why such models are required can be found in
the limited time or resources available that required QA teams to focus on subsets of software
entities only, trying to maximize the number of discovered defects. Existing defect prediction
models try to identify defect-prone artifacts based on product or process metrics. For example, Basili
et al. [1] and Gyimothy et al. [2] use Chidamber and Kemerer (CK) metrics [3] while Moser et al.
[4] use process metrics, e.g., number and kinds of changes occurred on software artifacts. Ostrand
et al. [5] and Kim et al. [6] perform prediction based on knowledge about previously occurred
faults. Also, Kim et al. [7] used their SZZ algorithm [8, 9] to identify fix-inducing changes and
characterized them aiming at using change-related features—e.g., change size, delta of cyclomatic
complexity—to predict whether a change induces or not a fault.

All these approaches, as pointed out by Nagappan et al. [10] and as it is true for any supervised
prediction approach, require the availability of enough data about defects occurred in the history of
a project. For this reason, such models are difficult to be applied on new projects for which limited
or no historical defect data is available. In order to overcome this limitation, several authors [11],
[12], [13], [14] have argued about the possibility of performing cross-project defect prediction, i.e.,
using data from other projects to train machine learning models, and then perform a prediction on a
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new project. However, Turhan et al. [11] and Zimmermann et al. [12] found that cross-project defect
prediction does not always work well. The reasons are mainly due to the projects’ heterogeneity,
in terms of domain, source code characteristics (e.g., classes of a project can be intrinsically larger
or more complex than those of another project), and process organization (e.g., one project exhibits
more frequent changes than another). Sometimes, such a heterogeneity can also be found within a
single, large project consisting of several, pretty different subsystems. A practical approach to deal
with heterogeneity—either for within-project prediction, or above all, for cross project prediction—
is to perform local prediction [13, 14] by (i) grouping together similar artifacts possibly belonging to
different projects according to a given similarity criteria, e.g., artifacts having a similar size, similar
metric profiles, or similar change frequency, and (ii) performing prediction within these groups.

In summary, traditional prediction models cannot be applied out-of-the-box for cross-project
prediction. However, a recent study by Rahman et al. [15] pointed out that cross-project defect
predictors do not necessarily work worse than within-project predictors. Instead, such models are
often quite good in terms of the cost-effectiveness. Specifically, they achieve a good compromise
between the number of defect-prone artifacts that the model predicts, and the amount of code—i.e.,
LOC of the artifact predicted as defect-prone—that a developer has to analyze/test to discover such
defects. Also, Harman [16] pointed out that when performing prediction models there are different,
potentially conflicting objectives to be pursued (e.g., prediction quality and cost).

Stemming from the considerations by Rahman et al. [15], who analyzed the cost-effectiveness
of a single objective prediction model, and from the seminal idea by Harman [16], we propose
to shift from the single-objective defect prediction model—which recommends a set or a ranked
list of likely defect-prone artifacts and tries to achieve an implicit compromise between cost and
effectiveness—towards multi-objective defect prediction models. We use a multi-objective Genetic
Algorithm (GA), and specifically the NSGA-II algorithm [17] to train machine learning predictors.
The GA evolves the coefficients of the predictor algorithm (in our case a logistic regression or a
decision tree, but the approach can be applied to other machine learning techniques) to build a set of
models (with different coefficients) each of which provide a specific (near) optimum compromise
between the two conflicting objectives of cost and effectiveness. In such a context, the cost is
represented by the cumulative LOC of the entities (classes in our study) that the approach predicts
as likely defect-prone. Such a size indicator (LOC) provides a proxy measure of the inspection
cost; however, without loss of generality, one can also model the testing cost considering other
aspects (such as cyclomatic complexity, number of method parameters, etc) instead of LOC. As
effectiveness measure, we use either (a) the proportion of actual defect-prone classes among the
predicted ones, or (b) the proportion of defects contained in the classes predicted as defect-prone
out of the total number of defects. In essence, instead of training a single model achieving an implicit
compromise between cost and effectiveness, we obtain a set of predictors, providing (near) optimum
performance in terms of cost-effectiveness. Therefore, for a given budget (i.e., LOC that can be
reviewed or tested with the available time/resources) the software engineer can choose a predictor
that (a) maximizes the number of defect-prone classes tested (which might be useful if one wants
to ensure that an adequate proportion of defect-prone classes has been tested), or (b) maximizes
the number of defects that can be discovered by the analysis/testing. Note that the latter objective is
different from the former because most of the defects can be in few classes. Also, we choose to adopt
a cost-effectiveness multi-objective predictor rather than a precision-recall multi-objective predictor
because—and in agreement with Rahman et al. [15]—we believe that cost is a more meaningful
(and of practical use) information to software engineers than precision.

The proposed approach, called MODEP (Multi-Objective DEfect Predictor), has been applied
on 10 projects from the PROMISE dataset∗. The results achieved show that (i) MODEP is more
effective than single-objective predictors in the context of a cross-project defect prediction, i.e., it
identifies a higher number of defects at the same level of inspection cost; (ii) MODEP provides
software engineers the ability to balance between different objectives; and (iii) finally, MODEP
outperforms a local prediction approach based on clustering proposed by Menzies et al. [13].

∗https://code.google.com/p/promisedata/
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Structure of the paper. The rest of the paper is organized as follows. Section 2 discusses the
related literature, while Section 3 describes the multi-objective defect-prediction approach proposed
in this paper, detailing its implementation using both logistic regression and decision trees. Section 4
describes the empirical study we carried out to evaluate the proposed approach. Results are reported
and discussed in Section 5, while Section 6 discusses the threats to validity. Section 7 concludes the
paper and outlines directions for future work.

2. RELATED WORK

In the last decade, a substantial effort has been devoted to define approaches for defect prediction
that train the model using a within project training strategy. A complete survey on all these
approaches can be found in the paper by D’Ambros et al. [18], while in this section we focus
on approaches that predict defect prone classes using a cross-project training strategy.

The earliest works on such a topic provided empirical evidence that simply using projects in
the same domain does not help to build accurate prediction models [12, 19]. For this reason,
Zimmermann et al. [12] identified a series of factors that should be evaluated before selecting the
projects to be used for building cross-project predictors. However, even when using such guidelines,
the choice of the training set is not trivial, and there might be cases where projects from the same
domain are not available.

The main problem for performing cross-project defect prediction is in the heterogeneity of
data. Several approaches have been proposed in the literature to mitigate such a problem. Turhan
et al. [11] used nearest-neighbor filtering to fine tune cross-project defect prediction models.
Unfortunately, such a filtering only reduces the gap between the accuracy of within- and cross-
project defect prediction models. Cruz et al. [20] studied the application of data transformation for
building and using logistic regression models. They showed that simple log transformations can
be useful when measures are not as spread as those measures used in the construction. Nam et al.
[21] applied a data normalization (z-score normalization) for cross-project prediction in order to
reduce data coming from different projects to the same interval. This data pre-processing is also
used in this paper to reduce the heterogeneity of data. Turhan et al. [22] analyzed the effectiveness
of prediction models built on mixed data, i.e., within- and cross-project. Their results indicated
that there are some benefits when considering mixed data. Nevertheless, the accuracy achieved
considering project-specific data is greater than the accuracy obtained for cross-project prediction.

Menzies et al. [13] observed that prediction accuracy may not be generalizable within a project
itself. Specifically, data from a project may be crowded in local regions which, when considered at a
global level, may lead to different conclusions in terms of both quality control and effort estimation.
For this reason, they proposed a “local prediction” that could be applied to perform cross-project or
within-project defect prediction. In the cross-project defect prediction scenario, let us suppose we
have two projects, A and B, and suppose one wants to perform defect prediction in B based on data
available for A. First, the approach proposed by Menzies et al. [13] clusters together similar classes
(according to the set of identified predictors) into n clusters. Each cluster contains classes belonging
to A and classes belonging to B. Then, for each cluster, classes belonging to A are used to train the
prediction model, which is then used to predict defect-proneness of classes belonging to B. This
means that n different prediction models are built. The results of an empirical evaluation indicated
that conclusions derived from local models are typically superior and more insightful than those
derived from global models. The approach proposed by Menzies et al. [13] is used in our paper as
one of the experimental baselines.

A wider comparison of global and local models has been performed by Bettenburg et al. [14], who
compared (i) local models, (ii) global models, and (iii) global models accounting for data specificity.
Results of their study suggest that local models are valid only for specific subsets of data, whereas
global models provide trends that are too general to be used in the practice.

All these studies suggested that cross-project prediction is particularly challenging and, due to
the heterogeneity of projects, prediction accuracy might be poor in terms of precision, recall and F-
score. Rahman et al. [15] argued that while broadly applicable, such measures are not well-suited for
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the quality-control settings in which defect prediction models are used. They showed that, instead,
the choice of prediction models should be based on both effectiveness (e.g., precision and recall)
and inspection cost, which they approximate in terms of number of source code lines that need to be
inspected to detect a given number/percentage of defects. By considering such factors, they found
that the accuracy of cross-project defect prediction are adequate, and comparable to within-project
prediction from a practical point of view.

Arisholm et al. [23] also suggested to measure the performance of prediction models in terms of
cost and effectiveness for within-project prediction. A good model is the one that identifies defect-
prone files with the best ratio between (i) effort spent to inspect such files, and (ii) number of
defects identified. Once again, the cost was approximated by the percentage of lines of code to
be inspected, while the effectiveness was measured as the percentage of defects found within the
inspected code. However, they used classical predicting models (classification tree, PART, Logistic
Regression, Back-propagation neural networks) to identify the defect-prone classes. Arisholm and
Briand [24] used traditional logistic regression with a variety of metrics (history data, structural
measures, etc.) to predict the defect-proneness of classes between subsequent versions of a Java
legacy system, and used the cost-effectiveness to measure the performance of the obtained logistic
models.

Our work is also inspired by previous work that use cost-effectiveness when performing a
prediction [15, 24, 23]. However, cost-effectiveness has been, so far, only used to assess the quality
of a predictor, and previous work still relies on single-objective predictors (such as the logistic
regression) which, by definition, find a model that minimizes the fitting error of precision and
recall, thus achieving a compromise between them. In this paper we introduce, for the first time, an
explicit multi-objective definition of the defect prediction problem, which produces a Pareto front
of (near) optimal prediction models—instead of a single model as done in the past—with different
effectiveness and cost values.

Harman [16] was the first to argue that search-based optimization techniques, and in particular
multi-objective optimization, can be potentially used to build predictive models where the user can
balance across multiple objectives, such as predictive quality, cost, privacy, readability, coverage
and weighting. At that time, Harman pointed out that the way how such multi-objective predictors
could be built remained an open problem. Our work specifically addresses this open problem, by
specifying a multi-objective prediction model based on logistic regression, and by using a GA to
train it.

Finally, this paper represents an extension of our previous conference paper [25], where we
introduced the multi-objective defect-prediction approach. The specific contributions of this paper as
compared to the conference paper can be summarized as follows: (i) we instanced MODEP by using
two different machine learning techniques, namely logistic regression and decision trees, while in
the conference paper, we only used logistic regression. In addition, we measure the effectiveness
through the proportion of (i) correctly predicted defect-prone classes and (ii) of defects in classes
predicted as defect-prone. In the conference paper, we only used as effectiveness measure the
proportion of correctly predicted defect-prone classes. The new measure was introduced to provide a
more accurate measure of effectiveness but also to provide evidence that the approach can be easily
extended by adding other goals; (ii) we evaluated MODEP on 10 projects from the PROMISE
dataset as done in the conference paper. However, we extended the quantitative analysis and we
also performed a qualitative analysis to better highlight the advantages of the multi-objective defect
prediction, i.e., its ability to show how different values of predictor variables lead towards a high
cost and effectiveness, and the capability the software engineer has to choose, from the provided
prediction models, the model that better suits her needs.

3. MODEP: MULTI-OBJECTIVE DEFECT PREDICTOR

MODEP builds defect prediction models following the process described in Figure 1. First, a set
of predictors (e.g., product [1, 2] or process metrics [4]) is computed for each class of a software
project. The computed data is then preprocessed or normalized to reduce data heterogeneity. Such
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Figure 1. The generic process for building defect prediction models.

preprocessing step is particularly useful when performing cross-project defect prediction, as data
from different projects—and in some cases in the same project—have different properties [13].
Once the data have been preprocessed, a machine learning technique is used to build a prediction
model. In this paper, we focus on logistic regression or decision trees. However, other techniques
can be applied without loss of generality.

3.1. Data Preprocessing

From a defect prediction point-of-view, software projects are often heterogeneous because they
exhibit different software metric distributions. For example, the average number of lines of code
(LOC) of classes, which is a widely used (and obvious) defect predictor variable, can be quite
different from a project to another. Hence, when evaluating prediction models on a software project
with a software metric distribution that is different with respect to the data distribution used to build
the models themselves, the prediction accuracy can be compromised [13].

In MODEP we perform a data standardization, i.e., we convert metrics into a z distribution aiming
at reducing the effect of heterogeneity between different projects. Specifically, given the value of
the metric mi computed on class cj of project P , denoted as mi(cj , P ), we convert it into:

m̃i(cj , P ) =
mi(cj , P )− µ(mi, P )

σ(mi, P )
(1)

In other words, we subtract from the value of the metric mi the mean value µ(mi, P ) obtained
across all classes of project P , and divide by the standard deviation σ(mi, S). Such a normalization
transforms the data belonging to different projects to fall within the same range, by measuring
the distance of a data point from the mean in terms of the standard deviation. The standardized
dataset has mean 0 and standard deviation 1, and it preserves the shape properties of the original
dataset (i.e., same skewness and kurtosis). Note that the application of data standardization is a
quite common practice when performing defect prediction [2, 21]. Specifically, Gyimothy et al. [2]
used such preprocessing to reduce CK metrics to the same interval before combining them (using
logistic regression) for within-project prediction, while Nam et al. [21] recently demonstrated that
the cross-project prediction accuracy can be better when the model is trained on normalized data.
Note that in the study described Section 4 we always apply data normalization, on both MODEP
and the alternative approaches, so that the normalization equally influences both approaches.
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3.2. Multi-Objective Defect Prediction Models

Without loss of generality, a defect prediction model is a mathematical function/model F : Rn → R,
which takes as input a set of predictors and returns a scalar value that measures the likelihood that a
specific software entity is defect-prone. Specifically, a model F combines the predictors into some
classification/prediction rules through a set of scalar values A = {a1, a2, . . . , ak}. The number of
scalar values and the type of classification/prediction rules depend on the model/function F itself.
During the training process of the model F , an optimization algorithm is used to find the set of
values A = {a1, a2, . . . , ak} that provides the best prediction of the outcome. For example, when
using a linear regression technique, the predictors are combined through a linear combination, where
the scalar values A = {a1, a2, . . . , ak} are the linear combination coefficients.

Formally, given a set of classes C = {c1, c2, . . . , cn} and a specific machine learning model F
based on a set of combination coefficients A = {a1, a2, . . . , ak}, the traditional defect prediction
problem consists of finding the set of coefficients A, within the space of all possible coefficients,
that minimizes the root-mean-square error (RMSE) [26]:

minRMSE =

√√√√ n∑
i=1

(FA(ci)−DefectProne(ci))2 (2)

where FA(ci) and DefectProne(ci) range in {0; 1} and represent the predicted defect-proneness
and the actual defect-proneness of ci.

In other words, such a problem corresponds to minimizing the number of defect-prone classes
erroneously classified as defect-free (false negatives), and minimizing the number of defect-free
classes classified as defect-prone ones (false positives) within the training set. Thus, optimizing
this objective function means maximizing both precision (no false positives) and recall (no false
negatives) of the prediction. Since the two contrasting goals (precision and recall) are treated using
only one function, an optimal solution for a given dataset represents an optimal compromise between
precision and recall.

However, focusing on precision and recall might be not enough for building an effective and
efficient prediction model. In fact, for the software engineer—who has to test/inspect the classes
classified as defect-prone—the prediction error does not provide any insights on the effort required
to analyze the identified defect-prone classes (that is a crucial aspect when prioritizing QA
activities). Indeed, larger classes might require more effort to detect defects than smaller ones,
because in the worst case the software engineer has to inspect the whole source code. Furthermore,
it would be more useful to analyze early classes having a high likelihood to be affected by more
defects. Unfortunately, all these aspects are not explicitly captured by traditional single-objective
formulation of the defect prediction problem.

For this reason, we suggest to shift from the single-objective formulation of defect prediction
towards a multi-objective one. The idea is to measure the goodness of a defect prediction model in
terms of cost and effectiveness, that, by definition, are two contrasting goals. More precisely, we
provide a new (multi-objective) formulation of the problem of creating defect prediction models.
Given a set of classes C = {c1, c2, . . . , cn} and given a specific machine learning model F based on
a set of combination coefficientsA = {a1, a2, . . . , ak}, solving the defect prediction problem means
finding a set of values A = {a1, a2, . . . , ak} that (near) optimize the following objective functions:

max effectiveness(A) =

n∑
i=1

FA(ci) ·DefectProne(ci)

min cost(A) =

n∑
i=1

FA(ci) · LOC(ci)

(3)

where FA(ci) and DefectProne(ci) range in {0; 1} and represent the predicted defect-proneness and
the actual defect-proneness of ci, respectively, while LOC(ci) measures the number of lines of code
of ci.
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In this formulation of the problem, we measure the effectiveness in terms of the number of actual
defect-prone classes predicted as such. However, defect-prone classes could have different density
of defects. In other words, there could be classes with only one defect and other classes with several
defects. Thus, could be worthwhile—at the same cost—to focus the attention on classes having
a high defect density. For this reason, we propose a second multi-objective formulation of the
problem. Given a set of classes C = {c1, c2, . . . , cn} and given a specific machine learning model
F based on a set of combination coefficients A = {a1, a2, . . . , ak}, solving the defect prediction
problem means finding a set of values A = {a1, a2, . . . , ak} that (near) optimizes the following
objective functions:

max effectiveness(A) =

n∑
i=1

FA(ci) ·DefectNumber(ci)

min cost(A) =

n∑
i=1

FA(ci) · LOC(ci)

(4)

where DefectNumber(ci) denotes the actual number of defects in the class ci.
In both formulations, cost and effectiveness are two conflicting objectives, because one cannot

increase the effectiveness (e.g., number of defect-prone classes correctly classified) without
increasing (worsening) the inspection cost†. As said in the introduction, we choose not to consider
precision and recall as the two contrasting objectives, because precision is less relevant than
inspection cost when choosing the most suitable predictor. Similarly, it does not make sense to build
models using cost and precision as objectives, because precision is related to the inspection cost,
i.e., a low precision would imply a high code inspection cost. However, as pointed out by Rahman
et al. [15], the size (LOC) of the software components to be inspected provides a better measure of
the cost required by the software engineer to inspect them with respect the simple number of classes
to be inspected (using the precision all classes have an inspection cost equals to 1).

Differently from single-objective problems, finding optimal solutions for problems with multiple
criteria requires trade-off analysis. Given the set of all possible coefficients, generally referred to as
feasible region, for a given prediction model FA, we are interested in finding the solutions that allows
to optimize the two objectives. Therefore, solving the multi-objective defect prediction problems
defined above requires to find the set of solutions which represent optimal compromises between
cost and effectiveness [27]. Hence, the goal becomes to find a multitude of optimal sets of decision
coefficients A, i.e., a set of optimal prediction models. For multi-objective problems, the concept
of optimality is based on two widely used notions of Pareto dominance and Pareto optimality (or
Pareto efficiency), coming from economics and having also a wide range of applications in game
theory and engineering [27]. Without loss of generality, the definition of Pareto dominance for
multi-objective defect prediction is the following:

Definition 1
A solution x dominates another solution y (also written x <p y) if and only if the values of the
objective functions satisfy the following conditions:

cost(x) ≤ cost(y) and effectiveness(x) > effectiveness(y)
or
cost(x) < cost(y) and effectiveness(x) ≥ effectiveness(y)

(5)

Conceptually, the definition above indicates that x is preferred to (dominates) y if and only if, at
the same level of effectiveness, x has a lower inspection cost than y. Alternatively, x is preferred
to (dominates) y if and only if, at the same level of inspection cost, x has a greater effectiveness
than y. Figure 2 provides a graphical interpretation of Pareto dominance in terms of effectiveness
and inspection cost in the context of defect prediction. All solutions in the line-pattern rectangle (C,
D, E) are dominated by B, because B has both a lower inspection cost and a greater effectiveness,

†In the ideal case the inspection cost is increased by the cost required to analyze the new classes classified as defect-prone.
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Figure 2. Graphical interpretation of Pareto dominance.

i.e., it is better on both dimensions. All solutions in the gray rectangle (A and B) dominate solution
C. The solution A does not dominate the solution B because it allows to improve the effectiveness
(with respect to B) but at the same time it increases the inspection cost. Vice versa, the solution B
does not dominate the solution A becauseB is better in terms of inspection cost but it is also worsen
in terms of effectiveness. Thus, the solutions A and B are non-dominated by any other solution,
while the solutions C, D, and E are dominated by either A or B.

Among all possible solutions (coefficients A for defect prediction model FA) we are interested
in finding all the solutions that are not dominated by any other possible solution. This properties
corresponds to the concept of Pareto Optimality:

Definition 2
A solution x∗ is Pareto optimal (or Pareto efficient) if and only if it is not dominated by any other
solution in the space of all possible solutions Ω (feasible region), i.e., if and only if

@ x 6= x∗ ∈ Ω : f(x) <p f(x∗) (6)

In others words, a solution x∗ is Pareto optimal if and only if no other solution x exists which
would improve effectiveness, without worsening the inspection cost, and vice versa. While single-
objective optimization problems have one solution only, solving a multi-objective problem may
lead to find a set of Pareto-optimal solutions which, when evaluated, correspond to trade-offs in
the objective space. All the solutions (i.e., decision vectors) that are not dominated by any other
decision vector are said to form a Pareto optimal set, while the corresponding objective vectors
(containing the values of two objective functions effectiveness and cost) are said to form a Pareto
front. Identifying a Pareto front is particularly useful because the software engineer can use the
front to make a well-informed decision that balances the trade-offs between the two objectives.
In other words, the software engineer can choose the solution with lower inspection cost or higher
effectiveness on the basis of the resources available for inspecting the predicted defect-prone classes.

The two multi-objective formulations of the defect prediction problem can be applied to any
machine learning technique, by identifying the Pareto optimal decision vectors that can be used to
combine the predictors in classification/prediction rules. In this paper we provide a multi-objective
formulation of logistic regression and decision trees. The details of both multi-objective logistic
regression and multi-objective decision tree are reported in Sections 3.2.1 and 3.2.2 respectively.
Once the two prediction models are reformulated as multi-objective problems, we use search-based
optimization techniques to solve them, i.e., to efficiently find Pareto Optimal solutions (coefficients).
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Specifically, in this paper we use multi-objective GAs. Further details on multi-objective GAs and
how they are used to solve the multi-objective defect prediction problems are reported in section 3.3.

3.2.1. Multi-Objective Logistic Regression One of the widely used machine learning techniques
is the multivariate logistic regression [28]. In general, multivariate logistic regression is used for
modeling the relationship between a dichotomous predicted variable and one or more predictors
p1, p2, . . . , pm. Thus, it is suitable for defect-proneness prediction, because there are only two
possible outcomes: either the software entity is defect-prone or it is non defect-prone. In the context
of defect prediction, logistic regression has been applied by Gyimothy et al. [2] and by Nagappan et
al. [10], which related product metrics to class defect-proneness. It was also used by Zimmermann
et al. [12] in the first work on cross-project defect prediction.

Let C = {c1, c2, . . . , cn} be the set of classes in the training set and let P be the corresponding
class-by-predictor matrix, i.e., a m× n matrix, where m is the number of predictors and n is the
number of classes in the training set, while its generic entry pi,j denotes the value of the ith predictor
for the jth class. The mathematical function used for regression is called logit:

logit(cj) =
eα+β1 pj,1+···+βm pj,m

1 + eα+β1 pj,1+···+βm pj,m
(7)

where logit(cj) is the estimated probability that the jth class is defect-prone, while the scalars
(α, β1, . . . , βm) represent the linear combination coefficients for the predictors pj,1, . . . , pj,m. Using
the logit function, it is possible to define a defect prediction model as follows:

F (cj) =

{
1 if logit(cj) > 0.5;
0 otherwise.

(8)

In the traditional single-objective formulation of the defect prediction problem, the predicted values
F (cj) are compared against the actual defect-proneness of the classes in the training set, in order to
find the set of decision scalars (α, β1, . . . , βn) minimizing the RMSE. The procedure used to find
such a set of decision scalars is the maximum likelihood [26] search algorithm, which estimates
the coefficients that maximize the likelihood of obtaining the observed outcome values, i.e., actual
defect-prone classes or number of defects. Once obtained the model, it can be used to predict the
defect-proneness of other classes.

The multi-objective logistic regression model can be obtained from the single-objective model,
by using the same logit function, but evaluating the quality of the obtained model by using (i) the
inspection cost, and (ii) the effectiveness of the prediction, that can be the number of defective
classes or defect density. In this way, given a solution A = (α, β1, . . . , βm) and the corresponding
prediction values F (cj) computed applying the equation 7, we can evaluate the Pareto optimality
of A using the cost and effectiveness functions (according to the equations 3 or the equations 4).
Finally, given this multi-objective formulation, it is possible to apply multi-objective GAs to find the
set of Pareto optimal defect prediction models which represents optimal compromises (trade-offs)
between the two objective functions. Once this set of solutions is available, the software engineer
can select the one that she considers the most appropriate and uses it to predict the defect-proneness
of other classes.

3.2.2. Multi-Objective Decision Trees Decision trees are also widely used for defect prediction and
they are generated according to a specific set of classification rules [12, 29]. A decision tree has,
clearly, a tree structure where the leaf nodes are the prediction outcomes (class defect-proneness in
our case), while the other nodes, often called as decision nodes, contain the decision rules. Each
decision rule is based on a predictor pi, and it partitions the decision in two branches according to
a specific decision coefficient ai. In other words, a decision tree can be viewed as a sequence of
questions, where each question depends on the previous questions. Hence, a decision corresponds
to a specific path on the tree. Figure 3 shows a typical example of decision tree used for defect
prediction. Each decision node has the form if pi < ai, while each leaf node contains 1 (defective
class) or 0 (non defective class).
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p1 < a1

yes no

1 p2 < a2

yes no

p1 < a3

yes no

0 1

p3 < a4

yes no

0 1

Figure 3. Decision tree for defect prediction.

The process of building a decision tree consists of two main steps: (i) generating the structure
of the tree, and (ii) generating the decision rules for each decision node according to a given set
of decision coefficients A = {a1, a2, . . . , ak}. Several algorithms can be used to build the structure
of a decision tree [30] that can use a bottom-up or top-down approach. In this paper we use the
ID3 algorithm developed by Quinlan [31], which applies a top-down strategy with a greedy search
through the search space to derive the best structure of the tree. In particular, starting from the root
node, the ID3 algorithm uses the concepts of Information Entropy and Information Gain to assign
a given predictor pi to the current node‡, and then to split each node in two children, partitioning
the data in two subsets containing instances with similar predictors values. The process continues
iteratively until no further split affects the Information Entropy.

Once the structure of the tree is built, the problem of finding the best decision tree in the traditional
single-objective paradigm consists of finding for the all decision nodes the set of coefficients
A = {a1, a2, . . . , ak} which minimizes the root square prediction error. Similarly to the logistic
regression, we can shift from the single objective formulation towards a multi-objective one by
using the two-objective functions reported in equations 3 or 4. We propose to find a multiple sets
of decision coefficients A = {a1, a2, . . . , an} that (near) represent optimal compromises between
(i) the inspection cost, and (ii) the prediction effectiveness. Note that MODEP only acts on the
decision coefficients, while it uses a well-known algorithm, i.e., the ID3 algorithm, for building the
tree structure. This means that the set of decision trees on the Pareto front have all the same structure
but different decision coefficients.

3.3. Training the Multi-Objective Predictor using Genetic Algorithms

The problem of determining the coefficients for the logistic model or for the decision tree can be
seen as an optimization problem with two conflicting goals (i.e., fitness functions). In MODEP we
decided to solve such a problem using a multi-objective GA. The first step for the definition of a
GA is the solution representation. In MODEP, a solution (chromosome) is represented by a vector
of values. For the logistic regression, the chromosome contains the coefficients of the logit function.
Instead, the decision coefficients of the decision nodes are encoded in the chromosome in the case of
decision trees. For example, a chromosome for the decision tree is A = {a1, a2, a3, a4} (see Figure
3) which is the set of decision coefficients used to make a decision on each decision node.

‡A predictor pi is assigned to a given node nj if and only if the predictor pi is the larger informational gain with respect
to the other predictors.
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Algorithm 1: NSGA-II
Input:
Number of coefficients N for defect prediction model
Population size M
Result: A set of Pareto efficient solutions (coefficients for defect prediction model)

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(N ,M )
4 while not (end condition) do
5 Qt ←−MAKE-NEW-POP(Pt)
6 Rt ←− Pt

⋃
Qt

7 F←− FAST-NONDOMINATED-SORT(Rt)
8 Pt+1 ←− ∅
9 i←− 1

10 while | Pt+1 | + | Fi |6 M do
11 CROWDING-DISTANCE-ASSIGNMENT(Fi)
12 Pt+1 ←− Pt+1

⋃
Fi

13 i←− i+ 1

14 Sort(Fi) //according to the crowding distance
15 Pt+1 ←− Pt+1

⋃
Fi[1 : (M− | Pt+1 |)]

16 t←− t+ 1

17 S ←− Pt

Once the model coefficients are encoded as chromosomes, multi-objective GAs are used to
determine them. Several variants of multi-objective GA have been proposed, each of which differs
from the others on the basis of how the contrasting objective goals are combined for building the
selection algorithm. In this work we used NSGA-II, a popular multi-objective GA proposed by
Deb et al. [17]. As shown in Algorithm 1, NSGA-II starts with an initial set of random solutions
(random vectors of coefficients in our case) called population, obtained by randomly sampling the
search space (line 3 of Algorithm 1). Each individual (i.e., chromosome) of the population represents
a potential solution to the optimization problem. Then, the population is evolved towards better
solutions through subsequent iterations, called generations, to form new individuals by using genetic
operators. Specifically, to produce the next generation, NSGA-II first creates new individuals, called
offsprings, by merging the genes of two individuals in the current generation using a crossover
operator or modifying a solution using a mutation operator (function MAKE-NEW-POP [17], line
5 of Algorithm 1). A new population is generated using a selection operator, to select parents and
offspring according to the values of the objective functions. The process of selection is performed
using the fast non-dominated sorting algorithm and the concept of crowding distance. In line 7 of
Algorithm 1, the function FAST-NON-DOMINATED-SORT [17] assigns the non-dominated ranks
to individuals parents and offsprings. The loop between lines 10 and 14 adds as many individuals
as possible to the next generation, according to their non-dominance ranks. Specifically, at each
generation such an algorithm identifies all non-dominated solutions within the current population
and assigns to them the first non-dominance rank (rank = 1). Once this step is terminated, the
solutions with assigned ranks are removed from the assignment process. Then, the algorithm assigns
rank = 2 to all non-dominated solutions remaining in the pool. Subsequently, the process is iterated
until the pool of remaining solutions is empty, or equivalently until each solutions have an own non-
dominance rank. If the number of individuals in the next generation is smaller than the population
sizeM , then further individuals are selected according to the descending order of crowding distance
in lines 15–16. The crowding distance to each individual is computed as the sum of the distances
between such an individual and all the other individuals having the same Pareto dominance rank.
Hence, individuals having higher crowding distance are stated in less densely populated regions of
the search space. This mechanism is used to avoid the selection of individuals that are too similar to
each other.
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The population evolves under specific selection rules by adapting itself to the objective functions
to be optimized. In general, after some generations the algorithm converges to the set of best
individuals, which hopefully represents an approximation of the Pareto front [27].

It is important to clarify that we apply NSGA-II to define decision/coefficient values based on data
belonging to the training set. After that, each Pareto-optimal solution can be used to build a model
(based on logistic regression or decision tree) for performing the prediction outside the training set.

4. DESIGN OF THE EMPIRICAL STUDY

This section describes the study we conducted to evaluate the proposed multi-objective formulation
of the defect prediction problem. The description follows a template originating from the Goal-
Question-Metric paradigm [32].

4.1. Definition and Context

The goal of the study is to evaluate MODEP, with the purpose of investigating the benefits
introduced by the proposed multi-objective model in a cross-project defect prediction context. The
reason why we focus on cross-project prediction is because (i) this is very useful when project
history data is missing and challenging at the same time [12]; and (ii) as pointed out by Rahman et
al. [15], cross-project prediction may turn out to be cost-effective while not exhibiting high precision
values.

The quality focus of the study is the capability of MODEP to highlight likely defect-prone classes
in a cost-effective way, i.e., recommending the QA team to perform a cost-effective inspection of
classes giving higher priority to classes that have a higher defect density and in general maximizing
the number of defects identified at a given cost. The perspective is of researchers aiming at
developing a better, cost-effective defect prediction model, also able to work well for cross-project
prediction, where the availability of project data does not allow a reliable within-project defect
prediction.

The context of our study consists of 10 Java projects having the availability of information about
defects. All of them come from the Promise repository§. A summary of the project characteristics
is reported in Table II. All the datasets report the actual defect-proneness of classes, plus a pool of
metrics used as predictors, i.e., LOC and the Chidamber & Kemerer metric suite [3]. Table I reports
the metrics (predictors) used in our study.

It is worth noting that, while in this paper we used only LOC and the CK metric suite, other
software metrics have been used in literature as predictors for building defect prediction models.
The choice of the CK suite is not random but it is guided by the wide use of such metrics to measure
the quality of Object-Oriented (OO) software systems. However, the purpose of this paper is not
to evaluate which is the best suite of predictors for defect prediction, but to show the benefits of
multi-objective approaches independently of the specific model the software engineer can adopt .
An extensive analysis of the different software metrics used as predictors can be found in the survey
by D’Ambros et al. [33].

4.2. Research Questions

In order to evaluate the benefits of MODEP we preliminarily formulate the following research
questions:

• RQ1: How does MODEP perform, compared to trivial prediction models and to an ideal
prediction model? This research question aims at evaluating the performances of MODEP
with respect to an ideal model that selects all faulty classes first (to maximize effectiveness)
and in increasing order of LOC (to minimize the cost). While we do not expect that MODEP

§https://code.google.com/p/promisedata/
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Table I. Metrics used as predictors in our study.

Name Description
Lines of Code (LOC) Number of non-commented lines of code for

each software component (e.g., in a class)

Weighted Methods per Class (WMC) Number of methods contained in a class
including public, private and protected methods

Coupling Between Objects (CBO) Number of classes coupled to a given class

Depth of Inheritance (DIT) Maximum class inheritance depth for a given
class

Number Of Children (NOC) Number of classes inheriting from a given parent
class

Response For a Class (RFC) Number of methods that can be invoked for an
object of given class

Lack of Cohesion Among Methods (LCOM) Number of methods in a class that are not related
through the sharing of some of the class fields

Table II. Characteristics of the Java projects used in the study.

Characteristics System
Ant Camel Ivy jEdit Log4j Lucene Poi Prop Tomcat Xalan

Release 1.7 1.6 2.0 4.0 1.2 2.4 3.0 6.0 6.0 2.7
Classes 745 965 352 306 205 340 442 661 858 910
N. Defect. classes 166 188 40 75 189 203 281 66 77 898
% Defect. classes 22% 19% 11% 25% 92% 60% 64% 10% 9% 99%

WMC
min 4 4 5 4 4 5 4 5 4 4
mean 11 9 11 13 8 10 14 9 13 11
max 120 166 157 407 105 166 134 40 252 138

DIT
min 1 0 1 1 1 1 1 1 1 1
mean 3 2 2 3 2 2 2 1 2 3
max 7 6 8 7 5 6 5 6 3 8

NOC
min 0 0 0 0 0 0 0 0 0 0
mean 1 1 0 0 0 1 1 0 0 1
max 102 39 17 35 12 17 134 20 31 29

CBO
min 0 0 1 1 0 0 0 0 0 0
mean 11 11 13 12 8 11 10 10 8 12
max 499 448 150 184 65 128 214 76 109 172

RFC
min 0 0 1 1 0 1 0 1 0 0
mean 34 21 34 38 25 25 30 24 33 29
max 288 322 312 494 392 390 154 511 428 511

LCOM
min 0 0 0 0 0 0 0 0 0 0
mean 89 79 132 197 54 69 100 42 176 126
max 6,692 13,617 11,749 16,6336 4,900 6,747 7,059 492 29,258 8,413

LOC
min 4 4 5 5 5 5 4 5 4 4
mean 280 117 249 473 186 303 293 148 350 471
max 4,571 2,077 2,894 23,683 2,443 8,474 9,886 1,051 7,956 4,489

performs better than the ideal model, we want to know how much our approach is close
to it. In addition, as larger classes are more likely defect-prone, we compare MODEP with
a trivial model, ranking classes in decreasing order of LOC. Finally, we consider a further
trivial model ranking classes in increasing order of LOC, mimicking how developers could
(trivially) optimized their effort by testing/analyzing smaller classes first, in absence of any
other information obtained by means of predictor models. The comparison of MODEP with
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these three models is useful to (ii) understand to what extent is MODEP able to approximate
an optimal model; and (i) investigate whether we really need a multi-objective predictor or
whether, instead, a simple ranking based on LOC would be enough to achieve the cost-benefit
tradeoff outlined by Rahman at al. [15].

After this preliminary investigation, we analyze the actual benefits of MODEP as compared
to other defect prediction approaches proposed in the literature. Specifically, we formulate the
following research questions:

• RQ2: How does MODEP perform compared to single-objective prediction? This research
question aims at evaluating, from a quantitative point of view, the benefits introduced by the
multi-objective definition of a cross-project defect prediction problem. We evaluate multi-
objective predictors based on logistic regression and decision trees. Also, we consider models
producing Pareto fronts of predictors (i) between LOC and number of predicted defect-prone
classes, and (ii) between LOC and number of predicted defects.

• RQ3: How does MODEP perform compared to the local prediction approach? This research
question aims at comparing the cross-project prediction capabilities of MODEP with those
of the approach—proposed by Menzies et al. [13]—that uses local prediction to mitigate the
heterogeneity of projects in the context of cross-project defect prediction. We consider such
an approach as a baseline for comparison because it is considered as the state-of-the-art for
cross-project defect prediction.

In addition, we provide qualitative insights about the practical usefulness of having Pareto fronts
of defect predictors instead of a single predictor. Also, we highlight how, for a given machine
learning model (e.g., logistic regression or decision trees) one can choose the appropriate rules
(on the various metrics) that leads towards a prediction achieving a given level of cost-effectiveness.
Finally, we report the time performance of MODEP, to provide figures about the time needed to
train predictors.

4.3. Variable Selection

Our evaluation studied the effect of the following independent variables:

• Machine learning algorithm: both single and multi-objective prediction are implemented
using logistic regression and decision trees. We used the logistic regression and the decision
tree implementations available in MATLAB [34]. The glmfit routine was used to train
the logistic regression model with binomial distribution and using the logit function as
generalized linear model, while for the decision tree model we used the classregtree class
to built decision trees.

• Objectives (MODEP vs. other predictors): the main goal of RQ2 is to compare single-
objective models with multi-objective predictors. The former are a traditional machine
learning models in which the model is built by fitting data in the training set. As explained
in Section 3.2, the latter are a set of Pareto-optimal predictors built by a multi-objective GA,
achieving different cost-effectiveness tradeoffs. In addition to that, we preliminarily (RQ1)
compare MODEP with two simple heuristics, i.e., ideal model and trivial model, aiming at
investigating whether we really need a multi-objective predictor.

• Training (within-project vs. cross-project prediction): we compare the prediction capability in
the context of within-project prediction with those of cross-project prediction. The conjecture
we want to test is wether the cross-project strategy is comparable/better than the within-project
strategy in terms of cost-effectiveness when using MODEP.

• Prediction (local vs. global): we consider—within RQ3–both local prediction (using the
clustering approach by Menzies et al. [13]) and global prediction.

In terms of dependent variables, we evaluated our models using (i) code inspection cost, measured
as the KLOC of the of classes predicted as defect-prone (as done by Rahman at al. [15]), and
(ii) recall, which provides a measure of the model effectiveness. In particular, we considered two
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granularity levels for recall, by counting (i) the number of defect-prone classes correctly classified;
and (ii) the number of defects:

recallclass =

n∑
i=1

F (ci) ·DefectProne(ci)

n∑
i=1

DefectProne(ci)

recalldefect =

n∑
i=1

F (ci) ·DefectNumber(ci)

n∑
i=1

DefectNumber(ci)

where F (ci) denotes the predicted defect proneness of the class ci, DefectProne(ci) measures its
actual defect proneness and DefectNumber(ci) is the number of defects in ci. Hence, the recall
metric computed at class granularity level corresponds to the traditional recall metric which
measures the percentage of defect prone classes that are correctly classified as defect-prone or
defect-free. The recall metric computed at defect granularity level provides a weighted version
of recall where the weights are represented by the number of defects in the classes. That is, at the
same level of inspection cost, it would be more effective to inspect early classes having a higher
defect density, i.e., classes, that are affected by a higher number of defects.

During the analysis of the results, we also report precision to facilitate the comparison with other
models:

precision =

n∑
i=1

F (ci) ·DefectProne(ci)

n∑
i=1

F (ci)

It is important to note that precision, recall and cost refer to defect-prone classes only. It is
advisable not to aggregate such values with those of defect-free classes and hence show overall
precision and recall values. This is because a model with a high overall precision (say 90%) when the
number of defect-prone classes is very limited (say 5%), performs worse than a constant classifier
(95% overall precision). Similar considerations apply when considering the cost instead of the
precision: a model with lower cost (lower number of KLOC to analyze), but with a limited number
of defect-prone classes might not be effective.

We use a cross-validation procedure [35] to compute precision, recall and inspection cost.
Specifically, for the within-project prediction, we used a 10-fold cross validation implemented in
MATLAB by the crossvalind routine, which randomly partitions a software project into 10 equal
size folds; we used 9 folds as training set and the 10th as test set. This procedure was performed 10
times, with each fold used exactly once as the test set. For the cross-project prediction, we applied a
similar procedure, removing each time a project from the set, training on 9 projects and predicting
on the 10th one.

4.4. Analysis Method

To address RQ1 we compare MODEL with an ideal model and two trivial models. For MODEP,
we report the performance of logistic regression and decision trees. Also, we analyze the two
multi-objective models separately, i.e., the one that considers as objectives cost and defect-prone
classes, and the one that consider cost and number of defect. In order to compare the experimented
predictors, we visually compare the Pareto fronts obtained with MODEP (more specifically, the line
obtained by computing the median over the Pareto fronts of 30 GA runs), and the cost-effectiveness
curve of the ideal and the two trivial models. The latter have been obtained by plotting n points in
the cost-effectiveness plane, where the generic ith point represents the cost-effectiveness obtained
considering the first i classes ranked by the model (ideal or trivial). In order to facilitate the
comparison across models, we report the Area Under the Curve (AUC) obtained by MODEP and the
two trivial models. An area of 1 represents a perfect cost-effective classifier, whereas for a random
classifier an area of 0.5 would be expected.

As for RQ2, we compare the performance of MODEP with those of the single objective (i) within
project (ii) and cross-project predictors. For both MODEP and the single objective predictors, we
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report the performance of logistic regression and decision trees. Also, in this case we analyze the
two multi-objective models separately, i.e., the one that considers as objectives cost and defect-
prone classes, and the one that consider cost and number of defect. To compare the experimented
predictors, we first visually compare the Pareto fronts (more specifically, the line obtained by
computing the median over the Pareto fronts of 30 GA runs) and the performance (a single dot
in the cost-effectiveness plane) of the single-objective predictors. Then, we compare the recall and
precision of MODEP and single-objective predictors at the same level of inspection cost. Finally,
by using the precision and recall values over the 10 projects, we also statistically compare MODEP
with the single objective models using the two-tailed Wilcoxon paired test [36] to determine whether
the following null hypotheses could be rejected:

• H0R : there is no significant difference between the recall of MODEP and the recall of the
single-objective predictor.

• H0P : there is no significant difference between the precision of MODEP and the precision of
the single-objective predictor.

Note that the comparison is made by considering both MODEP and the single-objective predictor
implemented with logistic regression and decision tree, and with the two different kinds of recall
measures (based on the proportion of defect-prone classes and of defects). In addition, we use
the Wilcoxon test, because it is non-parametric and does not require any assumption upon the
underlying data distribution; also, we perform a two-tailed test because we do not know a priori
whether the difference is in favor of MODEP or of the single-objective models. For all tests we
assume a significance level α = 0.05, i.e., 5% of probability of rejecting the null hypothesis when it
should not be rejected.

Turning to RQ3, we compare MODEP with the local prediction approach proposed by Menzies
et al. [13]. In the following, we briefly explain our re-implementation of the local prediction
approach using the MATLAB environment [34] and, specifically, the RWeka and cluster packages.
The prediction process consists of three steps:

1. Data preprocessing: we preprocess the data set as described in Section 3.1.
2. Data clustering: we cluster together classes having similar characteristics (corresponding

to the WHERE heuristic by Menzies et al. [13]). We use a traditional multidimensional
scaling algorithm (MDS)¶ to cluster the data based on the Euclidean distance to compute
the dissimilarities between classes. We use its implementation available in MATLAB with the
mdscale routine and setting as number of iterations it =

√
n, where n is the number of classes

in the training set (such a parameter is the same used by Menzies et al. [13]). As demonstrated
by Yang et al. [37] such an algorithm is exactly equivalent to the FASTMAP algorithm
used by Menzies et al. [13], except for the computation cost. FASTMAP approximates the
classical MDS by solving the problem for a subset of the data set, and by fitting the remainder
solutions [37]. A critical factor in the local prediction approach is represented by the number
of clusters k to be considered. To determine the number of clusters, we used an approach
based on the Silhouette coefficient [38]. The Silhouette coefficient ranges between -1 and 1,
and measures the quality of a clustering. A high Silhouette coefficient means that the average
cluster cohesion is high, and that clusters are well separated. Clearly, if we vary the number
of considered clusters (k) for the same clustering algorithm, we obtain different Silhouette
Coefficient values, since this leads to a different assignment of classes to the extracted clusters.
Thus, in order to determine the number of clusters, we computed the Silhouette coefficients
for all the different clusterings obtained by FASTMAP when varying the number of clusters k
from 1 to the number of classes contained in each dataset, and we considered the k value that
resulted in the maximum for the Silhouette coefficient value. In our study we found a number
of clusters k =10 to be optimal.

¶Specifically we used a metric-based multidimensional scaling algorithm, where the metric used is the Euclidean distance
in the space of predictors.
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3. Local prediction: finally, we perform a local prediction within each cluster identified using
MDS. Basically, for each cluster obtained in the previous step, we use classes from n− 1
projects to train the model, and then we predict defects for classes of the remaining project. We
use an association rule learner to generate a predicting model according to the cluster-based
cross-project strategy (WHICH heuristic by Menzies et al. [13]). We used a MATLAB’s tool,
called ARMADA‖, which provides a set of routines for generating and managing association
rule discovery.

4.5. Implementation and Settings of the Genetic Algorithm

MODEP has been implemented using MATLAB Global Optimization Toolbox (release R2011b).
In particular, the gamultiobj routine was used to run the NSGA-II algorithm, while the routine
gaoptimset was used to set the GA parameters. We used the GA configuration typically used for
numerical problems [27]:

• Population size: we choose a moderate population size with p = 200.
• Initial population: for each software system the initial population is uniformly and randomly

generated within the solutions space. Since such a problem in unconstrained, i.e., there are
no upper and lower bounds for the values that the coefficients can assume, we consider as
feasible solutions all the solutions ranging within the interval [−10,000; 10,000], while the
initial population was randomly and uniformly generated in the interval [−10; 10].

• Number of generations: we set the maximum number of generation equal to 400.
• Crossover function: we use arithmetic crossover with probability pc = 0.60. This operator

combines two selected parent chromosomes to produce two new offsprings by linear
combination. Formally, given two parents x = (x1, . . . , xn) and y = (y1, . . . , yn), the
arithmetic crossover generates two offsprings z and w as follows: zi = xi · p+ yi · (1− p)
andwi = xi · (1− p) + yi · p, where p is a random number generated within the interval [0; 1].
Graphically, the two generated offsprings lie on the line segment connecting the two parents.

• Mutation function: we use a uniform mutation function with probability pm = 1/n where
n is the size of the chromosomes (solutions representation). The uniform mutation randomly
changes the values of each individual with small probability pm, replacing an element (real
value) of the chromosome with another real value of the feasible region, i.e. within the
interval [−10,000; 10,000]. Formally, given a solution x = (x1, . . . , xn) with lower bound
xmin = −10,000 and upper bound xmax =10,000. The uniform mutation will change with
small probability pm a generic element xi of x as follows: xi = ximin

+ p · (ximax
− ximin

),
where p is a random number generated within the interval [0; 1].

• Stopping criterion: if the average Pareto spread is lower than 10−8 in the subsequent 50
generations, then the execution of the GA is stopped. The average Pareto spread measures
the average distance between individuals of two subsequent Pareto fronts, i.e., obtained from
two subsequent generations. Thus, the average Pareto spread is used to measure whether the
obtained Pareto front does not change across generations (i.e., whether NSGA-II converged).

The algorithm has been executed 30 times on each object program to account the inherent
randomness of GAs [39]. Then, we select a Pareto front composed of points achieving the median
performance across the 30 runs.

4.6. Replication Package

The replication package of our study is publicly available∗∗. In the replication package we provide:

• the script for running MODEP on a specific dataset;
• the datasets used in our experimentation; and
• the raw data for all the experimented predictors.

‖http://www.mathworks.com/matlabcentral/fileexchange/3016-armada-data-mining-tool-version-1-4
∗∗http://distat.unimol.it/reports/MODEP
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5. STUDY RESULTS

This section discusses the results of our study aimed at answering the research questions formulated
in Section 4.2.

5.1. RQ1: How does MODEP perform, compared to trivial prediction models and to an ideal
prediction model?

As planned, we preliminarily compare MODEP with an ideal model and two trivial models that
select the classes in increasing and decreasing order of LOC respectively. This analysis is required
(i) to understand whether we really need a multi-objective predictor or, to achieve the cost-benefit
tradeoff outlined by Rahman at al. [15], a simple ranking would be enough; and (ii) to analyze to
what extent MODEP is able to approximate the optimal cost-effectiveness predictor.

Figure 4 compares MODEP with the ideal model and the two trivial models when optimizing
inspection cost and number of defect-prone classes. TrivialInc. and TrivialDec. denote the trivial
models ranking classes in increasing and decreasing order of LOC, respectively. As we can see, in
5 cases (JEdit, Log4j, Lucene, Xalan, Poi) out of 10, MODEP reaches a cost-effectiveness that is
very close to the cost-effectiveness of the ideal model, confirming the usefulness of the proposed
approach. Also, as expected, in all cases MODEP outperforms the trivial model TrivialDec.. This
result is particular evident for Tomcat, Xalan, Lucene and Log4j. MODEP solutions also generally
dominate the solutions provided by the trivial model TrivialInc.. However, MODEP is not able to
overcome TrivialInc. on Xalan and Log4j, where the results obtained by MODEP and the trivial
model are substantially the same. This means that for projects like Log4j and Xalan where the
majority of classes are defect-prone (92% and 99% respectively) the trivial model TrivialInc.
provides results that are very close to those achieved by MODEP and by the ideal model. These
findings are also confirmed by the quantitative analysis reported in Tables III and IV. Indeed, on 8
out of 10 projects, the AUC values achieved by MODEP are better (higher) than the AUC values
of the trivial models. In such cases the improvement achieved by MODEP with respect to the two
trivial models varies between 10% and 36%. This result suggests that the use of trivial models based
only on LOC is not sufficient to build a cost-effectiveness prediction model.

Similar results are also obtained when comparing MODEP with the ideal and trivial models when
optimizing inspection cost and number of defects. Specifically, MODEP always outperforms the
trivial models and, in some cases (on three projects, Log4j, Lucene, Xalan), it is able to reach a
cost-effectiveness very close to the cost-effectiveness of the ideal model.

In conclusion, we can claim that MODEP can be particularly suited for cross-project defect
prediction, since it is able to achieve in several cases a cost-effectiveness very close to the optimum.
As expected, MODEP also outperforms two trivial models that just rank classes in decreasing or
increasing order of LOC. Finally, the results are pretty consistent across most of the studied projects
(except Log4j and Xalan). This means that a developer can rely in MODEP since it seems to be
independent of the specific characteristics of a given project (in terms of predictors and number of
defects).

5.2. RQ2: How does MODEP perform compared to single-objective prediction?

In this section we compare MODEP with a single-objective defect predictor. We first discuss the
results achieved when using as objective functions inspection cost and number of defect-prone
classes classified as such. Then, we discuss the results achieved when considering as objective
functions inspection cost and number of defects (over the total number of defects) contained in the
defect-prone classes classified as such.

5.2.1. MODEP based on inspection cost and defect-prone classes. Figure 6 shows the Pareto fronts
achieved by MODEP (using logistic regression and decision trees), when predicting defect-prone
classes—and optimizing the inspection cost and the number of defect-prone classes identified—
on each of the 10 projects after training the model on the remaining 9. The plots also show, as
single points: (i) the single-objective cross-project logistic regression and decision tree predictors
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Figure 4. Comparison of MODEP with an ideal and trivial models when optimizing inspection cost and
number of defect-prone classes.
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Figure 5. Comparison with trivial models when optimizing inspection cost and number of defects.
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Table III. AUC values achieved when comparing MODEP (using logistic regression and decision trees) and
Trivial models when considering as objective functions inspection cost and number of defect-prone classes.

System MODEP-Logistic MODEP-DTree TrivialInc. TrivialDec.
Ant 0.71 0.71 0.64 0.54
Camel 0.85 0.85 0.74 0.35
Ivy 0.70 0.70 0.60 0.49
jEdit 0.87 0.86 0.76 0.38
Log4j 0.97 0.97 0.97 0.27
Lucene 0.93 0.93 0.85 0.29
Poi 0.97 0.96 0.88 0.40
Prop 0.69 0.68 0.56 0.50
Tomcat 0.68 0.68 0.60 0.47
Xalan 0.99 0.99 0.99 0.19

Table IV. AUC values achieved when comparing MODEP (using logistic regression and decision trees) and
Trivial models when considering as objective functions inspection cost and number of defects.

System MODEP-Logistic MODEP-DTree TrivialInc. TrivialDec.
Ant 0.78 0.79 0.65 0.68
Camel 0.69 0.70 0.61 0.49
Ivy 0.70 0.72 0.57 0.59
jEdit 0.83 0.79 0.53 0.58
Log4j 0.95 0.95 0.94 0.30
Lucene 0.88 0.86 0.78 0.41
Poi 0.84 0.83 0.74 0.49
Prop 0.68 0.68 0.58 0.48
Tomcat 0.67 0.67 0.57 0.56
Xalan 0.99 0.99 0.99 0.26

(as a black triangle for logistic regression, and gray triangle for decision trees); and (ii) the single-
objective within-project for logistic and decision tree predictors (a black square for the logistic and
a gray square for the decision tree), where the prediction has been performed using 10-fold cross-
validation within the same project.

A preliminary analysis indicates that, generally, the solutions (sets of predictors) provided by
MODEP (based on logistic regression or decision tree) dominate the solutions provided by both
cross- and within-project single objective models. This means that the Pareto-optimal predictors
provided by MODEP are able to predict a larger number of defect-prone classes with a lower
inspection cost. Only in one case MODEP is not able to overcome the single-objective predictors.
Specifically, for Tomcat the single-objective solutions (both cross- and within- project) are quite
close to the Pareto fronts provided by MODEP based on decision trees.

In order to provide a deeper comparison of the different prediction models, Table V compares the
performances of MODEP with those of the cross project single-objective predictors (both logistic
and decision tree predictors) in terms of precision and recallclass. Specifically, the table reports
the recallclass and the precision of the two models for the same level of inspection cost. Results
indicate that the logistic model MODEP always achieves better recallclass levels. In particular, for
6 systems (Ant, Camel, Log4j, Lucene, Poi, and Prop) the recallclass is greater (of at least 10%) than
the recallclass of the single-objective predictors. However, the precision generally decreases, even
if in several cases the decrement is negligible. The same considerations also apply when MODEP
uses decision trees.

We also compare MODEP with the single-objective predictors trained using a within-project
strategy. This analysis is necessary to analyze to what extent MODEP trained with a cross-
project strategy is comparable/better than single-objective predictors trained with a within-project
strategy in terms of cost-effectiveness. Table V reports the achieved results in terms of precision
and recallclass for the same level of inspection cost. Not surprisingly, the within-project logistic
predictor achieves a better precision, for 8 out of 10 projects (Ant, Camel, Ivy, jEdit, Lucene, Poi,
Prop, and Tomcat). Instead, the precision is the same for both logistic-based models for Log4j, and
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Figure 6. Performances of predicting models achieved when optimizing inspection cost and number of
defect-prone classes.
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Table V. MODEP vs. single-objective predictors when optimizing inspection cost and number of defect-
prone classes identified. Single-objective predictors are also applied using a within-project training strategy.

System Metric Logistic Dtree Logistic Dtree
SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 167 167 - 121 121 - 101 101 - 104 104 -
Recallclass 0.77 0.90 +0.13 0.49 0.68 +0.19 0.39 0.60 +0.21 0.43 0.60 +0.17
precision 0.43 0.21 -0.22 0.50 0.17 -0.33 0.68 0.52 -0.16 0.35 0.15 -0.20

Camel
Cost 93 93 - 83 83 - 13 13 - 33 33 -
Recallclass 0.54 0.94 +0.40 0.57 0.90 +0.33 0.09 0.36 +0.25 0.25 0.59 +0.24
precision 0.26 0.19 -0.07 0.37 0.19 -0.18 0.54 0.14 -0.30 0.33 0.16 - 0.17

Ivy
Cost 74 74 - 75 75 - 28 28 - 38 38 -
Recallclass 0.83 0.90 +0.07 0.72 0.90 +0.18 0.25 0.40 +0.15 0.35 0.52 +0.17
precision 0.27 0.11 -0.16 0.22 0.21 -0.01 0.50 0.06 -0.44 0.37 0.07 -0.30

jEdit
Cost 121 121 - 95 95 - 66 66 - 85 85 -
Recallclass 0.64 1.00 - 0.49 0.97 +0.38 0.33 0.84 +0.51 0.49 0.91 +0.42
precision 0.42 0.25 -0.19 0.66 0.24 -0.42 0.66 0.22 -0.44 0.50 0.23 -0.27

Log4j
Cost 30 30 - 20 20 - 38 38 - 35 35 -
Recallclass 0.42 0.96 +0.54 0.41 0.85 +0.44 0.99 0.99 - 0.92 0.99 +0.07
precision 0.94 0.92 -0.02 0.93 0.92 -0.01 0.92 0.92 - 0.93 0.92 -0.01

Lucene
Cost 83 83 - 66 66 - 86 86 - 81 81 -
Recallclass 0.53 0.97 +0.44 0.62 0.94 32 0.77 0.99 +0.22 0.73 0.95 +0.13
precision 0.80 0.59 -0.21 0.63 0.59 -0.04 0.74 0.60 -0.14 0.74 0.59 -0.15

Poi
Cost 102 102 - 96 96 - 120 120 - 104 104 -
Recallclass 0.53 0.98 +0.45 0.64 0.96 +0.32 0.90 1.00 +0.10 0.83 0.96 +0.13
precision 0.87 0.63 -0.24 0.73 0.63 -0.10 0.79 0.64 -0.15 0.81 0.64 -0.23

Prop
Cost 76 76 - 107 107 - 74 74 - 104 104 -
Recallclass 0.69 0.91 +0.22 0.83 0.97 +0.14 0.87 0.90 +0.03 0.82 0.95 +0.13
precision 0.67 0.62 -0.05 0.81 0.63 -0.18 0.77 0.61 -0.16 0.83 0.63 -0.20

Tomcat
Cost 214 214 - 241 241 - 64 64 - 54 54 -
Recallclass 0.82 0.86 +0.04 0.84 0.87 +0.03 0.18 0.33 +0.15 0.18 0.32 +0.14
precision 0.21 0.08 -0.13 0.22 0.08 -0.14 0.58 0.04 -0.53 0.59 0.59 -

Xalan
Cost 285 285 - 158 158 - 429 429 - 428 428 -
Recallclass 0.38 0.95 - 0.36 0.81 +0.45 6 1.00 1.00 - 0.99 1.00 +0.01
precision 1 0.99 -0.01 0.99 0.98 -0.01 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

Xalan. Similarly, the within-project decision tree predictor achieves a better precision, for 8 out of
10 projects. However, the difference between the precision values achieved by MODEP and the
single-objective predictor are lower then 5% on 3 projects. Thus, the within-project single-project
predictors achieve—for both logistic and decision tree—better precision than MODEP trained with
a cross-project strategy. These results are consistent with those of a previous study [12], and show
that, in general, within-project prediction outperforms cross-project prediction (and when this does
not happen, performances are very similar). However, although the precision decreases, MODEP is
able to generally achieve higher recallclass values using both the machine learning algorithms. This
means that—for the same cost (KLOC)—the software engineer has to analyze more false positives,
but she is also able to identify more defect-prone classes.

Let us now deeply discuss some specific cases among the projects we studied. For some of them—
such as Ivy or Tomcat—a cross-project single-objective logistic regression reaches a high recall and
a low precision, whereas for others—such as Log4j or Xalan—it yields a relatively low recall and a
high precision. Instead, MODEP allows the software engineer to understand, based on the amount
of code she can analyze, what would be the estimated level of recall—i.e., the percentage of defect-
prone classes identified—that can be achieved, and therefore to select the most suitable predictors.
For example, for Xalan, achieving an (estimated) recall of 80% instead of 38% would require the
analysis of about 132 KLOC instead of 13 KLOC (see Figure 6-j). In this case, the higher additional
cost can be explained because most of the Xalan classes are defect-prone; therefore achieving a
good recall means analyzing most of the system, if not the entire system. Let us suppose, instead,
to have only a limited time available to perform code inspection. For Ivy, as indicated by the multi-
objective decision tree predictor, we could choose to decrease the inspection cost from 32 KLOC to
15 KLOC if we accept a recall of 50% instead of 83% (see Figure 6-c). It is important to point out
that the recall value provided by the multi-objective model is an estimated one (based on the training
set) rather than an actual one, because the recall cannot be known a priori when the prediction is
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Table VI. MODEP vs. single-objective predictors when optimizing inspection cost and number of defects
identified. Single-objective predictors are also applied using a within-project training strategy.

System Metric Logistic Dtree Logistic Dtree
SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 167 168 - 121 121 - 101 101 - 104 104 -
recalldefects 0.85 0.85 - 0.64 0.64 - 0.57 0.48 -0.09 0.51 0.49 -0.03
precision 0.43 0.43 - 0.50 0.56 +0.06 0.68 0.25 -0.43 0.35 0.30 -0.05

Camel
Cost 93 92 -1 83 83 - 13 13 - 33 33 -
recalldefects 0.74 0.90 +0.16 0.67 0.90 +0.023 0.15 0.20 +0.05 0.30 0.36 +0.06
precision 0.26 0.18 -0.08 0.37 0.18 -0.19 0.54 0.14 -0.40 0.33 0.16 -0.17

Ivy
Cost 74 74 - 75 75 - 28 28 - 38 38 -
recalldefects 0.89 0.93 +0.04 0.79 0.80 +0.01 0.29 0.30 +0.01 0.39 0.45 +0.06
precision 0.27 0.11 -0.16 0.22 0.16 -0.06 0.71 0.45 -0.26 0.37 0.35 -0.02

jEdit
Cost 121 121 - 95 95 - 66 66 - 85 85 -
recalldefects 0.64 1.00 +0.36 0.49 0.97 +0.48 0.33 0.84 +0.51 0.49 0.93 +0.44
precision 0.42 0.24 -0.20 0.66 0.24 -0.42 0.66 0.22 -0.44 0.50 0.23 -0.27

Log4j
Cost 30 30 - 20 20 - 38 38 - 35 35 -
recalldefects 0.51 0.90 +0.39 0.42 0.79 +0.37 0.98 1.00 +0.02 0.92 0.98 +0.06
precision 0.94 0.93 -0.01 0.93 0.92 -0.01 0.92 0.92 - 0.93 0.92 -0.01

Lucene
Cost 83 83 - 66 66 - 86 86 - 81 81 -
recalldefects 0.67 0.94 +0.27 0.56 0.79 +0.23 0.84 0.95 +0.11 0.24 0.87 +0.63
precision 0.80 0.59 -0.21 0.63 0.58 -0.05 0.74 0.55 -0.19 0.74 0.57 -0.17

Poi
Cost 102 102 - 96 96 - 120 120 - 104 104 -
recalldefects 0.67 0.89 +0.22 0.64 0.90 +0.26 0.92 1.00 +0.08 0.58 0.92 +0.34
precision 0.87 0.63 -0.16 0.73 0.63 -0.10 0.77 0.63 -0.14 0.81 0.64 -0.17

Prop
Cost 76 76 - 107 107 - 112 112 - 104 104 -
recalldefects 0.67 0.92 +0.25 0.67 1.00 +0.33 0.91 1.00 +0.09 0.84 1.00 +0.16
precision 0.67 0.62 -0.05 0.81 0.63 -0.19 0.77 0.61 -0.16 0.83 0.59 -0.24

Tomcat
Cost 214 214 - 241 241 - 64 64 - 54 54 -
recalldefects 0.86 0.83 -0.03 0.56 0.83 +0.27 0.28 0.28 - 0.11 0.22 +0.11
precision 0.22 0.08 -0.14 0.22 0.09 -0.13 0.58 0.04 -0.54 0.59 0.04 -0.55

Xalan
Cost 285 285 - 158 158 - 429 429 - 428 428 -
recalldefects 0.38 0.70 +0.32 0.37 0.78 +0.41 1.00 1.00 - 0.99 1.00 +0.01
precision 1 0.99 -0.01 0.99 0.99 - 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

made. Nevertheless, even such an estimated recall provides the software engineering with a rough
idea that high inspection cost would be paid back by more defects detected.

All these findings are also confirmed by our statistical analysis. As for the logistic regression,
the Wilcoxon test indicate that the precision of MODEP is significantly lower (p-value = 0.02)
than for the single-objective, but at the same time the recallclass is also significantly greater (p-
value < 0.01) than for the single-objective. Similarly, for the decision tree we also obtained a
significant difference in terms of both precision (it is significantly lower using MODEP, with p-value
< 0.01) and recallclass (it is significantly higher using MODEP with p-value < 0.01). Thus, we can
reject both the null hypotheses, H0R in favor of MODEP and H0P in favor of the single-objective
predictors. This means that, for the same inspection cost, MODEP achieves a lower prediction
precision, but it increases the number of defect-prone classes identified, with respect to the single-
objective predictors.

5.2.2. MODEP based on inspection cost and number of defects. Figure 7 shows the Pareto fronts
produced by MODEP when optimizing inspection cost and number of defects. Also in this case, the
models were evaluated on each of the 10 projects after training the model on the remaining 9.

A preliminary analysis shows that, also when considering the number of defects as effectiveness
measure, MODEP dominates the solutions provided by both cross- and within-project single
objective models, using either logistic regression or decision trees. This means that the Pareto-
optimal predictors provided by MODEP are able to predict classes having more defects with a
lower inspection cost. Only in few cases, i.e., for Tomcat and Ivy, the single-objective solutions
(both cross- and within-project) are quite close to the Pareto fronts provided by MODEP while only
in one case, i.e., for Ant, the within-project logistic regression dominates the solutions achieved by
MODEP.
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Figure 7. Performances of predicting models achieved when optimizing inspection cost and number of
defects.
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As done for the previous two-objective formulation of the defect prediction problem, Table VI
reports the performances, in terms of precision and recalldefect, achieved by the experimented
defect prediction models for the same inspection costs. Results indicate that MODEP is able to
provide better results than the corresponding single-objective predictors in terms of number of
predicted defects—i.e., contained in the classes identified as defect-prone—at the same cost. Indeed,
on 8 out of 10 projects, and for both logistic regression and decision trees, the number of defects
contained in the classes predicted by MODEP as defect-prone is greater than the number of defects
contained in the classes predicted as defect-prone by the single-objective predictors. Specifically,
MODEP allows the software engineer to analyze the trade-off between cost and percentage of
defects contained in the classes identified as defect-prone, and then to select the predictors that best
fit the practical constraints (e.g., limited time for analyzing the predicted classes). For example, let
us assume to have enough time/resources to inspect the Xalan source code. In this case, by selecting
a predictor that favors recall over precision, we can achieve a recall (percentage of defects) of 80%
instead of 40% by analyzing about 200 KLOC instead of 50 KLOC (see Figure 7-j). Let us suppose,
instead, to have only a limited time available to perform code inspection. For Ivy, as indicated by
the multi-objective decision tree predictor, we could choose to decrease the inspection cost from 80
KLOC to 40 KLOC if we accept to identify defect-prone classes containing 50% of the total amount
of defects instead of 83% (see Figure 7-c). The only exceptions is represented by Tomcat for the
logistic regression, where the number of defects is the same for both MODEP and single-objective
cross-project predictors.

In summary, also when formulating the multi-objective problem in terms of cost and number of
defects, MODEP is able to increase the number of defects in the predicted classes. However, the
prediction achieved with single-objective predictors provides a higher precision.

We also compare MODEP with single-objective defect predictors trained using a within-project
strategy (see Table VI). Results indicate that MODEP is able to better prioritize classes with more
defects than the single-objective models. Indeed, for the logistic model, at same level of cost
MODEP classifies as defect-prone classes having more defects than the classes classified as defect-
prone by the within-project single objective logistic regression. For 3 out of 10 projects (Ant, Ivy,
and Tomcat), the recalldefects is (about) the same, while for the other projects the difference in favor
of MODEP ranges between +1% and +48% in terms of recalldefects for the same amount of source
code to analyze (KLOC), mirroring an increase of the number of defects contained in the classes
identified as defect-prone ranging between +11 and +121 defects. The only exception to the rule is
represented by Ant where the within-project single-objective predictor identifies a higher number
of defects as compared to MODEP. Once again, MODEP provides an improvement in number of
defects but also a general decrement of precision. For what concerns the decision trees, we can
observe that the results achieved are even better. MODEP predicts classes having more defects than
those predicted by the single-objective within project prediction for 8 out of 10 projects. In this case,
the difference in terms recalldefects ranges between +1% and +63% with a corresponding increase
of number of defects ranging between +3 and +401. Also for the decision tree predictor, there is a
decrement of the precision for all the projects (lower than 6% in 50% of cases).

Also in this case, the statistical analysis confirmed our initial findings. Considering the logistic
regression, the precision is significantly lower (p-value = 0.02) while, at the same cost, the
recalldefects significantly increases (p-value = 0.02). Similarly, for the decision tree we also
obtained a significant decrement in terms of precision using MODEP (p-value = 0.03) but at the
same inspection cost value we also achieved a statistically significant increase of recalldefects (p-
value < 0.01). Thus, we can reject both the null hypotheses, H0R in favor of MODEP and H0P in
favor of the single-objective predictors.

In summary, besides the quantitative advantages highlighted above, a multi-objective model (like
MODEP, as well as, the two trivial models presented above) has also the advantage of providing the
software engineer with the possibility to make choices to balance between prediction effectiveness
and inspection cost. Certainly, on the one hand this does not necessarily mean that the use of
MODEP would necessarily help the software engineer to reduce the inspection cost, or to increase
the number of detected defects. On the other hand, it provides to the software engineer with different
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Table VII. MODEP vs. local predictors when optimizing inspection cost and number of predicted defect-
prone classes.

System Metric Local MO-Logistic MO-DTree

Ant
Cost 132 132 - 132 -
RecallClasses 0.62 0.74 +0.12 0.66 +0.04
Precision 0.32 0.28 -0.04 0.17 -0.15

Camel
Cost 68 68 - 68 -
RecallClasses 0.34 0.82 +0.48 0.86 +0.52
Precision 0.26 0.18 -0.08 0.17 -0.15

Ivy
Cost 59 59 - 59 -
RecallClasses 0.68 0.78 +0.10 0.78 +0.10
Precision 0.25 0.20 -0.05 0.10 -0.15

jEdit
Cost 104 104 - 104 -
RecallClasses 0.56 0.97 +0.41 0.85 +0.44
Precision 0.46 0.24 -0.22 0.22 -

Log4j
Cost 28 28 - 28 -
RecallClasses 0.52 0.94 +0.42 0.94 +0.42
Precision 0.94 0.92 -0.02 0.92 -0.02

Lucene
Cost 73 73 - 73 -
RecallClasses 0.42 0.95 +0.43 0.95 +0.43
Precision 0.80 0.58 -0.22 0.59 -0.21

Poi
Cost 85 85 - 85 -
RecallClasses 0.62 0.66 +0.64 0.93 +0.43
Precision 0.88 0.62 -0.26 0.59 -0.21

Prop
Cost 91 91 - 91 -
RecallClasses 0.66 0.96 +0.30 0.94 +0.28
Precision 0.85 0.63 -0.21 0.62 -0.23

Tomcat
Cost 201 201 - 201 -
RecallClasses 0.68 0.83 +0.15 0.83 +0.15
Precision 0.22 0.08 -0.14 0.08 -0.14

Xalan
Cost 201 201 - 201 -
RecallClasses 0.68 0.81 +0.13 0.73 +0.05
Precision 0.22 0.08 -0.14 0.08 -0.14

Local: Local Prediction; MO: Multi-Objective

possible choices, instead of only one as single-objective models do. Indeed, a single-objective
predictor (either logistic regression or decision trees) provides a single model that classifies a given
set of classes as defect-prone or not. This means that, given the results of the prediction, the software
engineer should inspect all classes classified as defect-prone. Depending on whether the model
favors a high recall or a high precision, the software engineer could be asked to inspect a too high
number of classes (hence, an excessive inspection cost), or the model may fail to identify some
defect-prone classes.

5.3. RQ3: How does MODEP perform compared to the local prediction approach?

In this section we compare the performance of MODEP with an alternative method for cross-project
predictor, i.e., the “local” predictor based on clustering proposed by Menzies et al. [13]. Table VII
shows recallclass and precision—for both approaches—at the same level of inspection cost. Results
indicate that, at the same level of cost, MODEP is able to identify a larger number of defect-prone
classes (higher recallclass values). Specifically, the difference in terms of recallclass ranges between
+13% and +64%. We can also note that in the majority of cases MODEP achieves a lower precision,
ranging between 2% and 22% except for Jedit where it increases of 1%.
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Table VIII. MODEP vs. local predictors when optimizing inspection cost and number of predicted defects.

System Metric Local MO-Logistic MO-DTree

Ant
Cost 132 132 - 132 -
RecallDefects 0.66 0.63 -0.03 0.58 -0.08
Precision 0.32 0.18 -0.13 0.64 +0.32

Camel
Cost 68 68 - 68 -
RecallDefects 0.46 0.62 +0.16 0.62 +0.16
Precision 0.26 0.18 -0.08 0.18 -0.08

Ivy
Cost 59 59 - 59 -
RecallDefects 0.48 0.66 +0.18 0.66 +0.18
Precision 0.25 0.09 -0.16 0.14 -0.11

jEdit
Cost 104 104 - 104 -
RecallDefects 0.56 0.97 +0.39 0.97 +0.39
Precision 0.46 0.24 -0.22 0.24 -0.22

Log4j
Cost 28 28 - 28 -
RecallDefects 0.56 0.90 +0.34 0.91 +0.35
Precision 0.94 0.92 -0.02 0.92 -0.02

Lucene
Cost 73 73 - 73 -
RecallDefects 0.57 0.99 +0.42 0.87 +0.44
Precision 0.80 0.59 -0.21 0.56 -0.24

Poi
Cost 85 85 - 85 -
RecallDefects 0.65 0.85 +0.20 0.87 +0.22
Precision 0.88 0.63 -0.25 0.59 -0.21

Prop
Cost 91 91 - 91 -
RecallDefects 0.70 0.89 +0.19 0.87 +0.17
Precision 0.85 0.63 -0.22 0.69 -0.16

Tomcat
Cost 201 201 - 201 -
RecallDefects 0.71 0.75 +0.04 0.78 +0.07
Precision 0.22 0.08 -0.14 0.13 -0.09

Xalan
Cost 201 201 - 201 -
RecallDefects 0.73 0.75 +0.03 0.73 +0.05
Precision 0.22 0.08 -0.14 0.08 -0.14

Local: Local Prediction; MO: Multi-Objective

These findings are supported by our statistical analysis. Specifically, the Wilcoxon test indicates
that the differences are statistically significant (p-value < 0.01) for both recallclass and precision.
Such results are not surprising since the local prediction model where designed to increase the
prediction accuracy over the traditional (global) model in the context of cross-project prediction.

Table VII shows recalldefect and precision—for both MODEP and the local prediction
approach—at the same level of cost. We can observe that MODEP is able to identify a larger number
of defects (higher recalldefect values), mirroring a better ability to identify classes having a higher
density of defects. The difference, in terms of number of defects, ranges between +3% and +44%.
There is only one exception, represented by Ant, for which the recalldefect value is lower (-3%). At
the same time, the results reported in Table VII also show that, in the majority of cases, MODEP
achieves a lower precision, raging between -3% and -25%, with the only exception of Camel where
it increases by 3%. Also in this case, the Wilcoxon test highlight that the differences in terms of
recalldefect and precision are statistically significant (p-value < 0.01).
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Table IX. The first 10 Pareto optimal models obtained by MODEP (using logistic regression) on Log4j.

Training Set Test Set Logistic Coefficients
Cost Recallclasses Cost Recallclasses Scalar WMC DIT NOC CBO RFC LCOM LOC

0 0% 0 0% -0.91 0.26 -0.03 -0.55 -0.08 -0.06 -0.11 -0.65
0 0% 0 0% -0.84 0.04 -0.02 -0.14 -0.01 -0.02 0.05 -0.40

2,330 1% 0 0% -0.52 0.05 -0.01 -0.29 -0.11 -0.09 -0.01 -0.45
8,663 3% 46 6% -0.47 -0.30 -0.02 -0.10 0.03 0.04 -0.03 -0.39
10,033 3% 133 6% -0.42 0.10 -0.02 -0.25 -0.03 -0.04 -0.06 -0.73
18,089 6% 401 18% -0.41 0.13 -0.01 -0.34 -0.03 -0.05 -0.08 -0.50
25,873 8% 512 20% -0.36 -0.03 -0.02 0.00 0.04 -0.02 0.13 -0.56
33,282 8% 608 22% -0.32 -0.06 -0.02 -0.06 0.04 -0.03 0.11 -0.49
43,161 10% 837 26% -0.32 -0.03 -0.02 0.01 0.04 -0.02 0.12 -0.55
57,441 13% 1384 31% -0.32 -0.05 -0.01 0.00 0.03 -0.01 0.02 -0.54

Table X. Average execution time in seconds.

System MO Logistic SO Logistic MO Decision Tree SO Decision tree
Ant 136.27s 0.31s 155.30s 0.63s
Camel 167.14s 0.54s 130.47s 1.04s
Ivy 74.55s 0.56s 141.39s 2.23s
jEdit 163.66s 0.43s 120.95s 2.21s
Log4j 176.70s 0.45s 134.48s 2.07s
Lucene 164.64s 0.50s 171.39s 1.63s
Poi 162.20s 0.61s 157.81s 1.35s
Prop 155.88s 0.45s 207.95s 1.39s
Tomcat 123.80s 0.39s 203.75s 1.38s
Xalan 148.83s 0.39s 294.17s 1.31s

SO: Single-Objective Cross-project; MO: Multi-Objective Cross-project

5.4. Further analyses

In this section we report further analyses related to the evaluation of MODEP. Specifically, we
analyzed the execution time of MODEP as compared to traditional single-objective prediction
models and the benefits provided by the data standardization.

5.4.1. Execution time.

Table X reports the average execution time required by MODEP and traditional single objective
algorithm to build prediction models when using cross-project strategy. For MODEP, the table
reports the average execution time required over 30 independent runs for each system considered
in our empirical study. The execution time was measured using a machine with an Intel Core i7
processor running at 2.6GHz with 12GB RAM and using the MATLAB’s cputime routine, which
returns the total CPU time (in seconds) used by a MATLAB script.

Measurement results reported in Table X show how MODEP requires more time than the
traditional single objective models. Specifically, executing MODEP requires, on average, 2 minutes
and 27 seconds when using Logistic Regression, and 2 minutes and 52 seconds when using Decision
Trees. This is an expected result since MODEP has to find a set of multiple solutions instead of
only one. However, the running time required by MODEP is always lower than 3 minutes. In our
understanding, such an increase of execution time can be considered as acceptable if compared with
the improvement in terms of inspection cost (measures as number of LOC to be analyzed) obtained
by MODEP. For example, on Ant the single objective logistic regression is built in 0.31 seconds
while MODEP requires 136 seconds to find multiple trade-offs between recall and LOC. Despite
this increase of running time, MODEP allows to reduce by thousands the number of LOC to analyze.
Specifically, the single-objective logistic regression requires the analysis of 167,334 LOC to cover
77% of defect-prone classes, while MODEP is able to reach the same percentage of defect-prone
classes with 125,242 LOC.
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Table XI. MODEP vs. single-objective predictors when optimizing inspection cost and number of defect-
prone classes identified. Data are not normalized. Single-objective predictors are also applied using a within-

project training strategy.

System Metric Logistic Dtree Logistic Dtree
SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 38 38 - 141 141 - 101 101 - 104 104 -
Recallclass 0.23 0.41 +0.18 1.00 1.00 - 0.39 0.71 +0.32 0.43 0.78 +0.35
precision 0.15 0.14 -0.01 0.22 0.22 - 0.68 18 -0.50 0.35 0.19 -0.16

Camel
Cost 41 41 - 110 110 - 13 13 - 33 -
Recallclass 0.69 0.72 +0.04 1.00 1.00 - 0.09 0.46 +0.35 0.25 0.64 +0.39
precision 0.17 0.17 - 0.19 0.19 - 0.54 0.17 -0.27 0.33 0.17 -0.16

Ivy
Cost 13 13 - 83 81 -2 28 28 - 38 38 -
Recallclass 0.15 0.25 +0.10 1.00 1.00 - 0.25 0.63 +0.38 0.35 0.63 +0.28
precision 0.06 0.04 -0.02 0.11 0.12 +0.01 0.50 0.08 -0.42 0.37 0.09 -0.28

jEdit
Cost 15 15 - 83 82 -1 66 66 - 85 85 -
Recallclass 0.20 0.37 +0.17 1.00 1.00 - 0.33 1.00 +0.67 1.00 1.00 -
precision 0.15 0.16 +0.01 0.24 0.25 +0.01 0.66 0.25 -0.41 0.50 0.24 -0.26

Log4j
Cost 13 13 - 38 35 -3 38 35 -3 35 35 -
Recallclass 0.70 0.75 +0.05 1.00 1.00 - 0.99 1.00 +0.01 0.92 0.93 +0.01
precision 0.92 0.93 +0.01 0.92 0.93 +0.01 0.92 0.93 +0.01 0.93 0.93 -

Lucene
Cost 19 19 - 61 61 - 86 61 -25 81 61 -20
Recallclass 0.58 0.70 +0.12 1.00 1.00 - 0.77 1.00 +0.23 0.73 1.00 +0.27
precision 0.54 0.57 +0.03 0.60 0.60 - 0.74 0.60 -0.14 0.74 0.60 -0.14

Poi
Cost 26 26 - 92 90 -2 120 92 -28 104 104 -14
Recallclass 0.52 0.61 +0.09 1.00 1.00 - 0.90 1.00 +0.10 0.83 1.00 +0.17
precision 0.57 0.57 - 0.64 0.64 - 0.79 0.64 -0.15 0.81 0.64 -0.17

Prop
Cost 32 32 - 94 97 -3 74 74 - 104 97 -7
Recallclass 0.41 0.49 +0.08 1.00 1.00 - 0.70 0.80 +0.10 0.82 1.00 +0.18
precision 0.08 0.07 -0.01 0.10 0.10 - 0.77 0.09 -0.69 0.83 0.10 -0.73

Tomcat
Cost 37 37 - 144 129 -15 64 64 - 54 54 -
Recallclass 0.18 0.59 +0.41 1.00 1.00 - 0.18 0.70 +0.52 0.18 0.68 +0.50
precision 0.05 0.07 +0.02 0.09 0.09 - 0.58 0.08 -0.50 0.59 0.08 -0.51

Xalan
Cost 62 62 - 197 194 -3 197 194 -3 197 194 -3
Recallclass 0.68 0.75 +0.07 1.00 1.00 - 1.00 1.00 - 0.99 1.00 +0.01
precision 0.98 0.99 +0.01 0.98 0.99 +0.01 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

5.4.2. Effect of data standardization.

In the previous sections we reported the results obtained by the different defect prediction
techniques when applying a data standardization. Such a pre-processing has been performed in
order to mitigate the effect of project heterogeneity in cross-project prediction. Even if data
standardization is a quite common practice in defect prediction, we are still interested in analyzing
to what extent such a pre-processing affected the achieved results. Thus, we compared MODEP
with traditional single-objective defect prediction models, without performing data standardization.
The comparison was based on precision and recallclass.

Table XI compares the performances of MODEP with those of the cross project single-objective
predictors (both logistic and decision tree predictors) when optimizing inspection cost and number
of defect-prone classes identified. Specifically, the table reports the recallclass and the precision of
the different models for the same level of inspection cost. Results indicate that MODEP (based on
the logistic regression) always achieves better recallclass levels. In particular, for 5 systems (Ant,
Ivy, jEdit, Lucene, and Tomcat) the recallclass is greater (of at least 10%) than the recallclass of the
single-objective predictors. Moreover, the precision generally increases, even if the improvement is
negligible (less than 4% in all the cases). As for the decision tree, we observe an interesting behavior
of the prediction models. The traditional single-objective cross-project approach always (i.e., for all
the systems) produces a constant classifier which classifies all the classes as defect-prone ones,
hence, reaching the maximum recallclass and also the maximum (worst) inspection cost. This is
due to the data heterogeneity and such a result emphasizes the need of data standardization when
performing cross-project defect prediction. Instead, the decision tree MODEP does not produce
constant classifier and then it reaches the same maximum recallclass but with a lower inspection
cost (cost decrease raging between 2% and 21%).
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Table XII. MODEP vs. single-objective predictors when optimizing inspection cost and number of defects
identified. Data are not normalized. Single-objective predictors are also applied using a within-project

training strategy.

System Metric Logistic Dtree Logistic Dtree
SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 38 38 - 141 141 - 101 101 - 104 104 -
recalldefects 0.14 0.47 +0.33 1.00 1.00 - 0.57 0.75 +0.18 0.51 0.79 +0.28
precision 0.15 0.14 -0.01 0.22 0.22 - 0.68 0.20 -0.48 0.35 0.20 -0.15

Camel
Cost 41 41 - 110 110 - 13 13 - 33 33 -
recalldefects 0.44 0.55 +0.11 1.00 1.00 - 0.15 0.35 +0.20 0.30 0.48 +0.18
precision 0.17 0.17 - 0.19 0.19 - 0.54 0.17 -0.37 0.33 0.17 -0.16

Ivy
Cost 13 13 - 83 77 -6 28 28 - 38 38 -
recalldefects 0.11 0.21 +10 1.00 1.00 - 0.29 0.39 +0.10 0.39 0.55 +0.14
precision 0.06 0.04 -0.02 0.11 0.12 +0.01 0.71 0.07 -0.64 0.37 0.08 -0.29

jEdit
Cost 15 15 - 82 82 - 66 66 - 85 81 -4
recalldefects 0.09 0.48 +0.39 1.00 1.00 - 0.33 0.90 +0.57 0.49 1.00 +0.51
precision 0.15 0.17 +0.02 0.24 0.25 +0.01 0.66 0.23 -0.43 0.50 0.25 -0.25

Log4j
Cost 13 13 - 38 35 -3 38 35 -3 35 35 -
recalldefects 0.63 0.68 +0.05 1.00 1.00 - 0.98 1.00 +0.02 0.92 1.00 +0.08
precision 0.92 0.93 +0.01 0.92 0.93 +0.01 0.92 0.93 +0.01 0.93 0.93 -

Lucene
Cost 19 19 - 61 60 -1 86 60 -26 81 60 -21
recalldefects 0.41 0.70 +0.29 1.00 1.00 - 0.84 1.00 +0.16 0.24 1.00 +0.86
precision 0.54 0.57 +0.03 0.60 0.60 - 0.74 0.60 -0.14 0.74 0.60 -0.14

Poi
Cost 26 26 - 92 90 -2 120 90 -30 104 90 -14
recalldefects 0.40 0.56 +0.16 1.00 1.00 - 0.92 1.00 +0.08 0.58 1.00 +0.42
precision 0.58 0.56 -0.02 0.64 0.64 - 0.77 0.64 -0.13 0.81 0.64 -0.17

Prop
Cost 32 32 - 97 93 -4 112 93 - 104 93 -11
recalldefects 0.42 0.47 +0.05 1.00 1.00 - 0.91 1.00 +0.09 0.84 1.00 +0.16
precision 0.08 0.07 -0.01 0.10 0.10 - 0.77 0.10 -0.67 0.83 0.10 -0.73

Tomcat
Cost 37 37 - 144 128 -16 64 64 - 54 54 -
recalldefects 0.13 0.64 +0.51 1.00 1.00 - 0.28 0.75 +0.47 0.11 0.72 +0.61
precision 0.09 0.07 -0.02 0.05 0.09 +0.04 0.58 0.08 -0.50 0.59 0.07 -0.52

Xalan
Cost 62 62 - 197 195 -2 197 194 -3 197 194 -3
recalldefects 0.62 0.68 +0.07 1.00 1.00 - 1.00 1.00 - 0.99 1.00 -
precision 0.98 0.99 +0.01 0.99 0.99 - 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

We also compare MODEP with the single-objective predictors trained using a within-project
strategy without data standardization (see Table V). Not surprisingly, in this case the single-objective
predictors achieve a better precision, for 8 out of 10 projects. These results are consistent with those
achieved with data standardization and of a previous study [12]. However, although the precision
decreases, MODEP is able to generally achieve higher recallclass values using both the machine
learning algorithms. This means that—for the same or lower cost (KLOC)—the software engineer
has to analyze more false positives, but she is also able to identify more defect-prone classes. Indeed,
the improvements in terms of recallclass range between +1% and +67%, with the only exception of
jEdit when using the decision tree and jEdit when using the logistic regression.

Table XII reports the results of the comparison of MODEP with the other predictors when
optimizing inspection cost and number of defects identified (problem formulation in Equation
3). Considering the logistic regression as machine learning technique used to build the prediction
models, the results are consistent with those achieved with data standardization: MODEP is able to
provide better performance than the corresponding single-objective predictors in terms of number
of predicted defects—i.e., contained in the classes identified as defect-prone—at the same cost.
When using the decision tree, we observe the same behavior observed with the first two-objective
formulation, i.e., the model works as a constant classifier. Once again, this behavior is due to the
data heterogeneity problem.

Also for the second two-objective formulation of the defect-prediction problem (Equation 4),
we compare MODEP with single-objective defect predictors trained using a within-project strategy
(see Table XII). Results indicate that MODEP is able to better prioritize classes with more defects
than the single-objective models, similarly to the results obtained using the data standardization
process. Indeed, for both logistic regression and decision tree in 9 out of 10 projects the difference
in favor of MODEP ranges between +1% and +61% in terms of recalldefects for the same amount
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of source code to analyze (KLOC). Also for this two-objective formulation, there is a decrement of
the precision for all the projects and for both logistic regression and decision tree.

6. THREATS TO VALIDITY

This section discusses the threats that could affect the validity of MODEP evaluation and
of the reported study. Threats to construct validity concern the relation between theory and
experimentation. Some of the measures we used to assess the models (precision and recall) are
widely adopted in the context of defect prediction. We computed recall in two different ways, i.e.,
(i) as percentage of defect-prone classes identified as such by the approach, and (ii) as percentage
of defects the approach is able to highlight. In addition, we use the LOC to be analyzed as a proxy
indicator of the analysis/testing cost, as also done by Rahman et al. [15]. We are aware that such
a measure is not necessarily representative of the testing cost especially when black-box testing
techniques or object-oriented (e.g., state-based) testing techniques are used. Also, another threat
to construct validity can be related to the used metrics and defect data sets. Although we have
performed our study on widely used data sets from the PROMISE repository, we cannot exclude
that they can be subject to imprecision and incompleteness. Threats to internal validity concern
factors that could influence our results. We mitigated the influence of the GA randomness when
building the model by repeating the process 30 times and reporting the median values achieved.
Also, it might be possible that the performances of the proposed approach and of the approaches
being compared depend on the particular choice of the machine learning technique. In this paper,
we evaluated the proposed approach using two machine learning techniques—logistic regression
and decision trees—that have been extensively used in previous research on defect prediction (e.g.,
Basili et al. [1] and Gyimothy et al. [2] for the logistic, Zimmermann et al. [12] for the decision
tree). We cannot exclude that specific variants of such techniques would produce different results,
although the aim of this paper is to show the advantages of the proposed multi-objective approach,
rather than comparing different machine learning techniques. Threats to conclusion validity concern
the relationship between the treatment and the outcome. In addition to showing values of cost,
precision and recall, we have also statistically compared the various model using the Wilcoxon,
non-parametric test, indicating whether differences in terms of cost and precision are statistically
significant. Threats to external validity concern the generalization of our findings. Although we
considered data from 10 projects, the study deserves to be replicated on further projects. Also, it is
worthwhile to use the same approach with different kinds of predictor metrics, e.g., process metrics
or other product metrics.

7. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel formulation of the defect prediction problem. Specifically, we
proposed to shift from the single-objective defect prediction model—which recommends a set or
a ranked list of likely defect-prone artifacts and tries to achieve an implicit compromise between
cost and effectiveness—towards multi-objective defect prediction models. The proposed approach,
named MODEP (Multi-Objective DEfect Predictor), produces a Pareto front of predictors (in our
work a logistic regression or a decision tree, but the approach can be applied to other machine
learning techniques) that allow to achieve different trade-off between the cost of code inspection—
measured in this paper in terms of KLOC of the source code artifacts (class)—and the amount of
defect-prone classes or number of defects that the model can predict (i.e., recall). In this way, for
a given budget—i.e., LOC that can be reviewed or tested with the available time/resources—the
software engineer can choose a predictor that (a) maximizes the number of defect-prone classes
to be tested (which might be useful if one wants to ensure that an adequate proportion of defect-
prone classes has been tested), or (b) maximizes the number of defects that can be discovered by
the analysis/testing.
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MODEP has been applied on 10 datasets from the PROMISE repository. Our results indicated
that:

1. while cross-project prediction is worse than within-project prediction in terms of precision
and recall (as also found by Zimmermann et al. [12]), MODEP allows to achieve a better
cost-effectiveness than single-objective predictors trained with both a within- or cross-project
strategy.

2. MODEP outperforms a state-of-the-art approach for cross-project defect prediction [13],
based on local prediction among classes having similar characteristics. Specifically, MODEP
achieves, at the same level of cost, a significantly higher recall (based on both the number of
defect-prone classes and the number of defects).

3. Instead of producing a single predictor MODEP, allows the software engineer to choose the
configuration that better fits her needs, in terms of recall and of amount of code she can
inspect. In other words, the multi-objective model is able to tell the software engineer how
much code one needs to analyze to achieve a given level of recall. Also, the software engineer
can easily inspect the different models aiming at understanding what predictor variables lead
towards a higher cost and/or a higher recall. Although in principle (and in absence of any
prediction model) a software engineer could simply test larger or smaller classes first, hence
optimizing the likelihood of finding bugs or the testing effort, our results indicate that, with
the exception of two projects where over 90% of the classes are fault-prone, MODEP achieves
significantly better results than when using such trivial heuristics.

In summary, MODEP seems to be particularly suited for cross-project defect prediction, although
the advantages of such a multi-objective approach can also be exploited in within-project
predictions.

Future work aims at replicating the experiment on other datasets (considering software projects
written in other programming languages) and considering different kinds of cost-effectiveness
models. As said, we considered LOC as a proxy for code inspection cost, but certainly it is not a
perfect indicator of the cost of analysis and testing. It would therefore be worthwhile to also consider
alternative cost models, e.g., those better reflecting the cost of some testing strategies, such as code
cyclomatic complexity for white box testing, or input characteristics for black box testing. Last,
but not least, we plan to investigate whether the proposed approach could be used in combination
with—rather than as an alternative to—the local prediction approach [13].
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