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ABSTRACT

Advanced Driver Assistance Systems have become widely available in modern commer-
cial vehicles. These systems bring safety to the roads and comfort to the driver by min-
imising human errors and lowering the mental and physical workload. However, most of
these systems fail to consider the driver in the control loop. For instance, conventional
Lane Keeping Assists are often set to strictly follow the centre of the lane while the driver
shows non-linear behaviour during the steering task. This conflict in intentions between
the assist and driver could result in it being turned off, eliminating the safety aspect.

Therefore, this study proposes a hybrid controller for a human-centric haptic shared
Lane Keeping Assist, pairing a data-driven driver model with a model-based controller
to foster the collaboration between the driver and assist. First, where parametric ap-
proaches struggle to model the driver’s non-linear behaviour, this study proposes a Bidi-
rectional Long Short-Term Memory network to learn the driver’s behaviour from driving
data where it predicts the steering wheel torque inputs. Even though models have been
developed during this research with high accuracy surpassing the performance of previ-
ous work, it was found that the smoothness of the prediction is more substantial to cre-
ate a pleasant human-centric assist. Thus, the proposed driver model has been tuned to
have an accuracy =72.4% and a smoothness =0.85Nm/s over a 0.4s prediction horizon,
where the smoothness metric is the Standard Deviation of the torque rate.

Second, a Model Predictive Controller is developed with a linear bicycle and steering
model. The real-time predictions made by the driver model are used as a time-varying
reference to the controller, along with the reference path. The Model Predictive Con-
troller optimises the control input over the 0.4s prediction horizon, where it balances
between accurately following the centre of the lane and adhering to the driver model’s
prediction based on the tuned weights.

To test the hybrid controller, three versions of the human-centric controller were
developed for comparison and a state-of-the-art commercial solution was used as the
baseline Lane Keeping Assist. The experiments were performed in Toyota Motor Eu-
rope’s fixed-base driving simulator, where 15 participants tested and evaluated the four
controllers. The objective results show a 113.1% increase in collaborative ratio while
maintaining a similar path tracking performance compared to the baseline. Addition-
ally, the subjective results show a significant preference for the proposed controllers by
the participants over the baseline.

In conclusion, the proposed hybrid controller significantly improves the human-
machine interaction by reducing conflicts and fostering collaboration.

Keywords: Haptic shared control, data-driven driver modelling, Artificial Neural Net-
work, Model Predictive Control, human-machine interaction.
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INTRODUCTION

Autonomous driving has become an extensive research field, with vehicle manufactur-
ers investing heavily in developing this complex technology. However, during this time-
consuming transition to fully autonomous driving, Advanced Driver Assistance Systems
(ADAS) have provided means to use forms of partial automation in commercially avail-
able vehicles. These systems aim to increase road safety and driver comfort by min-
imising human errors and reducing the mental and physical workload, as they perform
specific parts of the driving task or take over during emergencies [16] [17]. For example,
an Autonomous Emergency Braking System will automatically make an emergency stop
if it detects an obstacle in front of the vehicle or even steers away to avoid a collision
[18]. Another form of ADAS is a Lane Keeping Assist (LKA), where this system performs
the steering task [19].

Most of the current LKAs are in vehicles rated at SAE Level 2, which means that the
human driver should always be ready to be the fallback entity [20]. Thus, if the LKA is not
able to operate well in a specific scenario or makes a mistake, the driver should be ready
to intervene and take over full control. However, due to the driver having an inactive
role in the steering task where he/she mainly monitors the system, the risk of an unsafe
transition of control increases with the reduced situational awareness [21]. Hence, the
driver still has to stay involved to make sure that this transition of authority goes safely
[22].

To increase the active involvement of the driver with the steering task when the LKA
is active, the use of haptic shared control between the driver and the assist has been
proposed [23] [24], where the control authority is shared between both. This enables
the driver to maintain situational awareness and be ready to take over full control while
the assist still performs a substantial part of the steering effort, enforcing the benefits of
ADAS.

However, haptic shared control also results in the driver and automation having to
cooperate more intensively. This imposes the risk of a mismatch in intentions between
both, resulting in a conflict [25] [26]. For example, LKAs are conventionally developed to
strictly follow the centre of the lane while a driver demonstrates ‘satisficing’ behaviour
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[27], such as cutting the turns or driving more on the sides of the lane.

This mismatch in intentions could result in the driver not accepting the assist and
turning it off completely. This eliminates the safety and efficiency that the assist brings
to the roads. To prevent similar mismatches between a robot and its user, the Human-
Robot Interaction field has proposed to incorporate human behaviour modelling in the
planning of a robot’s actions [11] [28] [29] [30]. This tackles the human-machine inter-
action problem where “the automation does not understand the human” [24].

Accordingly, driver behaviour modelling has been proposed for a symbiotic LKA by
[31]. Their work focused on the parametric representation of the human body parts in-
volved during the steering task in the Model Predictive Control (MPC) framework, specif-
ically modelling the neuromuscular system, sensory organs and cognitive behaviour of
the driver. This resulted in an assist which improved collaboration between the driver
and assist. However, they discovered the driver’s non-linear steering behaviour to be
challenging to model with a parametric approach, as was also concluded by [32].

Therefore, a torque-based data-driven approach has been proposed to capture the
non-linear behaviour from data [12]. Previous work already paired a Hidden Markov
Model (HMM) with MPC on a steering wheel angle control basis and not the torque,
resulting in an uncompliant assist [33]. Thus, the study by [12] focused on a HMM to
predict the steering wheel torque inputs of the driver, which showed promising perfor-
mance with accurate predictions. However, the main research gap in their work is the
absence of a controller-in-the-loop implementation. Additionally, an Artificial Neural
Network (ANN) has also proven to be a promising option for driver modelling over a
HMM [1].

All in all, this thesis focuses on a human-centric haptic shared LKA, pairing an ANN
driver model with a MPC controller to foster the collaboration between driver and as-
sist, tackling the conflicts between both. Specifically, the proposed hybrid controller
works with steering wheel torque control instead of the conventional steering wheel an-
gle control, promoting a compliant assist. Finally, the hybrid controller’s subjective and
objective performance is evaluated on Toyota Motor Europe’s (TME) advanced driving
simulator against a commercially available LKA by performing driver-in-the-loop exper-
iments.

1.1. RESEARCH OBJECTIVES

To address the research gap of a human-centric torque-based hybrid controller, this the-
sis presents an ANN driver model coupled to the MPC framework. The ANN captures the
non-linear driver behaviour while the MPC controller gives an optimised control input,
where it balances between accurately following the centre of the lane and adhering to
the driver model’s prediction. Thus, the main goal of this thesis is stated as:

The design and assessment of a novel torque-based human-centric haptic shared LKA us-
ing an ANN driver behaviour model and MPC to foster collaborative driving.

The main goal is broken down into the following research objectives.

1. Investigate ANN-based driver models to capture the driver’s non-linear steering
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behaviour, identifying trends of promising types of ANNs.

2. Design and validate the proposed ANN driver model on a highway-driving dataset
collected from a fixed-base driving simulator. The performance is evaluated on
the set Key Performance Indicators (KPIs).

3. Design a MPC framework which accommodates the predictions from the ANN
driver model and models the steering-vehicle dynamics.

4. Tune the weights of the hybrid controller to obtain a collaborative haptic shared
LKA without deteriorating path tracking performance, while ensuring driver-in-
the-loop stability.

5. Design an experiment for a fixed-base driving simulator with the driver-in-the-
loop to assess the subjective and objective performance of the proposed hybrid
controller against a state-of-the-art commercial solution, additionally investigat-
ing different levels of control authority.

6. Compare the subjective and objective performance of the proposed hybrid con-
troller to the state-of-the-art commercial solution with the set list of KPIs.

1.2. THESIS STRUCTURE

This thesis is structured as follows. Chapter 2 presents the IEEE journal paper contain-
ing the main approach and findings of this thesis. Subsequently, Appendix A gives an
overview of Machine Learning (ML) studies for driver modelling. Additionally, it gives
supplementary details about the proposed ANN model, such as the KPIs used to eval-
uate the ANN model and a brief feature analysis. Appendix B covers additional infor-
mation regarding the hybrid controller, describing the solver settings and the software
architecture used. Furthermore, supplementary results are given in Appendix C along
with the list of KPIs. Lastly, the topic of user adaptation for future work is explained in
more detail in Appendix D.
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This chapter presents the journal paper, written in the IEEE format, describing the main
approach and findings. Appendix A.3.1 defines the KPIs used to assess the ANN driver
model. Furthermore, Appendix C.2.1 defines the list of KPIs used to obtain the objective
results.



Hybrid Human-Centric Haptic Shared Control using
Artificial Neural Network and Model Predictive
Control

Abstract—Commercially available Lane Keeping Assist sys-
tems fail to consider the driver’s intentions since they mainly
focus on minimising path tracking errors, resulting in conflicts
between humans and automation. This often leads to users being
unsatisfactory and turning off the assist, as a result diminishing
the advantages such as reduced workload and increased road
safety. Considering a driver model in the assist helps increase user
acceptance. Therefore, we propose a torque-based hybrid con-
troller for a human-centric haptic shared Lane Keeping Assist,
pairing a data-driven driver model with a model-based controller
to foster the collaboration between the driver and assist. First, the
driver’s non-linear steering wheel torque behaviour is modelled
and predicted using a Bidirectional Long Short-Term Memory
network with an accuracy >72.4% and a smoothness >0.85Nm/s
over a 0.4s prediction horizon. Second, a Model Predictive
Controller with a linear bicycle and steering model is developed,
where it utilises the driver model’s predictions as a time-varying
reference. We developed three human-centric controllers for
comparison and used a state-of-the-art commercial solution as
the baseline controller. The experiments were performed in
Toyota Motor Europe’s fixed-base driving simulator, where 15
participants tested and evaluated the four controllers. The results
show a 113.1% increase in collaborative ratio while maintaining
a similar path tracking performance compared to the baseline.

Index Terms—Haptic shared control, data-driven driver mod-
elling, Artificial Neural Network, Model Predictive Control,
human-machine interaction.

I. INTRODUCTION

DVANCED Diriver Assistance Systems (ADAS) have be-

come a widespread solution during the transition to fully
automated driving. These systems aim to increase road safety
and driver comfort by using partial automation to take over
certain driving tasks, attempting to minimise human errors
and reduce the workload of the task [1] [2]. For example,
a Lane Keeping Assist (LKA) performs the steering task to
follow the road centreline. Most commercially available LKA
systems are found in vehicles which are rated at SAE level 2
or lower, making the driver the fallback entity when the assist
fails to work.

However, due to the driver having an inactive role in the
steering task where he/she mainly monitors the system, the risk
of an unsafe transition of control increases. This is caused by
the risk of the driver having reduced situational awareness and
having to suddenly go from mental underload (e.g. boredom)
to mental overload during the transition [3]. For example, it
has been shown that the quality of a forced take-over decreases
when the driver is distracted [4].

Thus, to increase driver involvement, but still maintain the
safety and comfort aspect of ADAS, haptic shared control has
been proposed [5] [6]. This ensures the active participation of

the driver in the steering task, while the haptic shared control
inputs of such LKA would decrease the mental and physical
workload. However, this also means that the automation and
the driver constantly interact. This could result in a conflict
between them, as the intentions of both might not align [7]
[8]. For example, the driver might prefer to cut sharp turns or
drive on the sides of the lane, showing ‘satisficing’ behaviour
[9], while a conventional LKA tends to follow the lane centre.

Consequently, the misalignment between driver and automa-
tion imposes the risk of ADAS being turned off, taking away
the safety and comfort features. To prevent similar mismatches
between a robot and its user, the Human-Robot Interaction
field has proposed to incorporate human behaviour modelling
in the planning of a robot’s actions [10] [11] [12]. This
tackles the human-machine interaction problem where “the
automation does not understand the human” [6].

Therefore, driver behaviour modelling has been proposed
for a symbiotic LKA by [13]. They focused on a parametric
representation of the driver’s neuromuscular system, sensory
organs and cognitive behaviour in the Model Predictive Con-
trol (MPC) framework, along with a model of the vehicle
dynamics. However, they discovered that a human portrays
non-linear cognitive behaviour during the steering task, as was
also concluded by [14], making it challenging to capture the
driver’s behaviour with a parametric approach.

Hence, this study proposes a data-driven approach for driver
modelling, specifically using an Artificial Neural Network
(ANN), based on the related work covered in Section II. This
driver model is then used in the proposed MPC framework to
obtain a hybrid controller for a human-centric LKA for haptic
shared control.

II. RELATED WORK

Previous work related to driver modelling using a data-
driven approach has focused on different aspects of the driving
task. Lane change behaviour modelling has been an extensive
research field for the implementation of different types of
Machine Learning (ML) algorithms. For example, Long Short-
Term Memory (LSTM) [15] networks have proven to be an
accurate solution to predict the time left for a lane change to
be performed by the driver [16] [17]. Predictions like these
allow ADAS to anticipate future events and plan their steps
accordingly.

The research on driver modelling using ML for the lane
keeping task has been less extensive, especially using ANNs.
However, to show the effect of a driver model for the lane
keeping task, a comparison between a Feedforward ANN



(FANN) model, trained on driving data, and a MPC con-
troller, containing a bicycle model and no driver modelling,
is proposed in [18]. Their results showed that the steering
wheel angle inputs of the FANN model gave a Root Mean
Square Error (RMSE), with respect to the driver input, which
was almost 10 times lower than the MPC controller’s RMSE.
This demonstrates the gap between the driver and the MPC
controller when the driver is not accounted for.

Additionally, a comparison of different ML methods for
driver steering modelling is proposed by [19]. It covered,
among others, a Gaussian Process, Gaussian Mixture Regres-
sion (GMR), Hidden Markov Model (HMM) GMR and an
ANN model, where the models predict the steering wheel
torque (SWT) inputs of the driver. The ANN model performed
the best, as it was the most accurate while also being the
most robust to inter-driver variability. Notably, a relatively
simple ANN model was used, namely a fully connected FANN
with one hidden layer containing two nodes, where more
performance could potentially be gained.

Hence, a FANN with four hidden layers is proposed by [20]
to model the steering wheel angle inputs of expert drivers. The
model was used to provide haptic guidance to novice drivers.
Furthermore, a FANN model has been developed by [21] to
predict the SWT inputs, but using two hidden layers with 32
nodes each. Sliding window features were used to feed the past
input data to the model to make use of the temporal relations
of human behaviour.

However, a Bidirectional LSTM (BiLSTM) [22] model is
proposed by [23] due to its better performance on sequential
data, where it predicts the SWT inputs of the driver using
Electromyography signals. The model contained two BiLSTM
layers, followed by a fully connected feedforward layer. The
past 200ms of input features were fed to the model, which
predicted the SWT for the upcoming 200ms. The BiLSTM
model outperformed, among others, a LSTM model with the
same architecture.

Another study has focused on capturing the motor inter-
mittency of human drivers using a Deep Convolutional Fuzzy
System model to predict the steering wheel angle inputs of
the driver [24]. Furthermore, Deep Reinforcement Learning
has also been used to predict the steering wheel angle inputs
in an effort to create comfort-oriented haptic guidance [25].

However, the discussed ANN driver models lack the imple-
mentation of a controller-in-the-loop. Hence, a driver model
using a HMM paired with MPC is proposed by [26], where
the predictions from the driver model were used in the cost
function of the MPC controller. However, the control input to
the plant and the prediction of the HMM is the steering wheel
angle instead of the SWT. This imposes the risk of the steering
wheel becoming less compliant with human intervention.

Thus, a HMM has been implemented to make offline
predictions of the driver’s SWT inputs by collecting driving
data in an advanced driving simulator [27]. Their model
showed high accuracy and smoothness in its predictions,
using a detailed feature analysis. This study uses the dataset
collected by [27] to train the proposed ANN models, which
are benchmarked against the HMM. However, an important
research gap from their work is also the lack of a controller-in-

the-loop implementation to develop and test a human-centric
LKA.

Summarising, the main contribution of this study is the
development of a driver behaviour model using a BILSTM net-
work combined with the MPC framework to create a human-
centric torque-based hybrid controller for a haptic shared LKA
to foster collaborative driving between the driver and assist.
Moreover, the proposed controllers are tuned and evaluated
extensively on an advanced driving simulator to obtain sub-
jective and objective results representing the performance gain
over a commercially available LKA.

Finally, the structure of this paper is as follows. Section III
describes the BILSTM network developed to model the driver.
This is followed by the hybrid controller implementation
in Section IV, where the MPC controller is outlined. The
experimental setup is specified in Section V, followed by the
results obtained from the experiments and the discussion in
Section VI. Lastly, the main conclusions and future directions
of this study are given in Section VIIL.

ITI. ARTIFICIAL NEURAL NETWORK DRIVER MODEL

The proposed hybrid controller uses an ANN model, specif-
ically a BiLSTM network, to predict the SWT inputs of the
driver. The purpose is to use the predictions to anticipate the
driver’s behaviour and make the controller act accordingly to
foster the collaboration between driver and assist, creating a
symbiosis. Thus, the predictions of the ANN model are used
in the MPC controller, which will be discussed in more detail
in Section IV. This section describes the data used to train the
driver model, specifies the network’s architecture and gives an
assessment of its performance.

A. Dataset

The dataset to train, validate and test the BiILSTM model is
obtained from [27]. In this dataset, seven participants drove a
total of 14 hours in an advanced driving simulator, which has
been used in this study as well. The task of the participants
was to drive on the middle lane of a three-lane highway, where
they only performed the steering task, as the vehicle was set
to a constant speed of 100km/h. The 2 hours of driving for
each participant consisted of 24 different road scenarios with
different combinations of corners, where the data was collected
at a rate of 100Hz. The data of each participant was split into
50% for training, 25% for validation, and 25% for testing, in
accordance with [27].

Furthermore, the 18 candidate features described by [27]
were also considered for the BiLSTM model. The noisy
features were pre-processed using a zero-phase low-pass filter.

B. Architecture

The BiLSTM network has been developed using a thorough
objective and subjective evaluation, where the hyperparameters
are tuned through trial-and-error. First, the objective evaluation
was done by training the BiLSTM model on the training
dataset and assessing its performance on the validation dataset
on two Key Performance Indicators (KPIs). These KPIs are the
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Fig. 1. Overview of the proposed BiLSTM model.

accuracy and smoothness of the SWT prediction, where the
smoothness is defined as the Standard Deviation (SD) of the
torque rate [27]. To accelerate the training time of each model
iteration, four NVIDIA A10G Graphics Processing Units were
used.

Second, the subjective evaluation was done by implement-
ing the BiLSTM model in the driving simulator and letting
expert drivers test the steering wheel feeling of different
model iterations. To do this, the real-time SWT prediction was
applied directly as an assist torque without using a controller,
as it gives a better impression of the raw performance of
the BILSTM model. The model’s hyperparameters were then
further tuned based on the feedback of the expert drivers.

Figure 1 gives an overview of the final architecture ob-
tained from the tuning process, where T),,..q denotes the SWT
prediction made by the BiLSTM model. The network starts
with a BiLSTM layer with 20 features each in the hidden
state for both the forward and backward pass LSTM layer.
This is then followed by a normalisation layer, passing onto
a fully connected linear layer with 20 nodes. Subsequently,
a second fully connected linear layer with 25 nodes is used,
followed by an output layer with 5 outputs. Table I lists the
hyperparameters obtained during the tuning phase. The model
is developed in Python [28] using the PyTorch library [29].

The input features found to perform the best out of the
candidate features [27], after an extensive feature analysis,
were the environment data captured from the virtual onboard
sensors. The exact features are shown in Table II, where
the distance mentioned is the look-ahead distance from the
centre of the front axle to the centre of the lane. Similarly,
the deviation of the vehicle is also measured with the same
references. Furthermore, the input features’ historical data of
the past 0.5s, the historical window ¢, is also passed on to

TABLE 1
HYPERPARAMETERS SET FOR THE BILSTM MODEL.
[ Hyperparameter [ Setting ]
Loss function MSE

Optimiser Adam
Learning rate 2.0-107°
Number of epochs 6
Batch size 500
Validation split 0.25
Historical window ¢, 0.5s
Prediction horizon ¢ ¢ 0.4s

the network with steps of 7'=0.1s. The network gives the SWT
predictions as an output, where it predicts the torque for the
current timestep and the following 0.4s, the prediction horizon
ty, with a period of 0.1s, resulting in five output values.

TABLE II
INPUT FEATURES TO THE BILSTM MODEL.
I Feature [ Unit ]|
Deviation Distance at Om m
Deviation Angle at Om rad
Road Curvature at Om 1/m
Deviation Angle at 10m rad
Road Curvature at 10m 1/m
Deviation Angle at 30m rad
Road Curvature at 30m 1/m

C. Model assessment

The final BiLSTM model design is trained on both the
training and validation dataset. The performance of the model,
in terms of the KPIs, is assessed using the test dataset. Figure
2 shows the accuracy and smoothness scores of the SWT
predictions over the prediction horizon. The average accuracy



and smoothness are respectively equal to 73.4% and 0.91Nm/s,
where specifically the predictions for the current time step
(t=0) result in 72.4% and 0.85Nm/s.
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Fig. 2. Accuracy (a) and smoothness (b) of the BiLSTM model over the
prediction horizon.

There was also a model trained during the development
phase which obtained 96.3% accuracy and 2.55Nm/s smooth-
ness for ¢=0. This model uses all 18 candidate features and 170
epochs, while the architecture and the other hyperparameters
are the same as the final model. Thus, these scores show that
the BILSTM model is capable of outperforming the previous
work done with a HMM [27].

However, a significant finding during the subjective evalu-
ation of the BiLSTM model on the driving simulator is that
the accuracy of the prediction is less relevant compared to
the smoothness. Having a very accurate model of the driver
also means taking over the imperfections the driver has. For
example, humans make many small corrections during the
steering task. If the BILSTM model replicates this and applies
it as haptic feedback, the driver will experience many small
movements of the steering wheel, making the assist feel jerky.
Thus, it is important to keep the smoothness KPI at a low level,
inherently resulting in lower accuracy. Figure 3 illustrates this
by giving a fragment of the predictions made by a very smooth
and accurate model.
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Fig. 3. Smooth (a) and accurate (b) prediction of the driver’s SWT inputs.

IV. HYBRID CONTROLLER

The hybrid controller seeks to apply an optimised control
input to the vehicle’s steering wheel using MPC, where it
attempts to balance out the prediction of the BILSTM model
to the accurate following of the lane centre based on the tuned
weights. This improves the robustness and safety of the hybrid
controller as the MPC controller is capable of compensating
for false predictions made by the BiLSTM model and is able

to function in a broader range of scenarios since it does not
rely on data training.

This section covers the design of the hybrid controller. First,
the pairing of the driver model with the MPC framework
is described. Second, the vehicle dynamics are defined and,
finally, the MPC design is specified.
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Fig. 4. Overview of the hybrid controller implementation in the advanced
driving simulator.

A. Hybrid controller structure

Figure 4 shows how the BiLSTM model and MPC controller
cooperate, where X4yy denotes the input features to the ANN
model as mentioned in Table II, Ty, stands for the SWT
applied by the driver and T, denotes the total SWT applied
to the steering system. With steps of 0.1s, the BILSTM model
predicts 0.4s into the future, which is the same length as the
prediction horizon of the MPC controller. The prediction is
passed onto the MPC controller as a time-varying SWT refer-
ence signal, which can then be used during the optimisation
steps. The MPC solver is developed in MATLAB using the
FORCESPRO [30] software. The generated solver is then used
in Simulink.

B. Vehicle model

The vehicle dynamics are represented using a linear bicycle
model with linear steering dynamics, as adapted from [13] and
[31]. The bicycle and steering models are shown in Figure 5.
The vehicle model assumes a constant longitudinal velocity v,
set at 100km/h, and linear tyre dynamics. The steering model
works with the SWT instead of the steering wheel angle. Thus,
the control input » of the MPC controller is the SWT rate T,
which is integrated and applied as the assist torque of the LKA.
The dynamics of the vehicle are described as follows.

X = vy sin () + vy cos (1) (la)

(1b)

Y = v, cos (¥) — vy sin (1))



Fig. 5. Bicycle and steering model.
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where X and Y are the global coordinates of the vehicle, v
is the yaw angle, v, is the lateral velocity, m is the vehicle
mass and r is the yaw rate. Furthermore, [y and [, denote
the distance between the centre of gravity and the front and
rear axle, respectively. I, is the yaw inertia of the vehicle at
the centre of mass, I,,, is the steering wheel inertia and I,
is the inertia of the front wheels and the rack with respect to
the pinion. 6, denotes the steering wheel angle and 6. the
steering column angle. K; and Ky, are the steering column
and self-centring stiffness, respectively, C; is the torsion bar
damping and Cj,, is the steering mechanism damping with
respect to the steering wheel axle. G denotes the steering gear
ratio. Thus, the states vector is

Xmpc = [X Y Uy Yor Osw é.sw 0. éz: qu]T~ ()

Furthermore, the road wheel angle § is determined using
the equation
0.
0= —. 3
G (3)
The lateral forces on the front axle F, ; and rear axle Fy ,
are described as

Fyp = =Coytan(ay) @

Ej,7' = _OIX,T' tan (07) (5)

where Cy,; and Cy , are the cornering stiffness of the front
and rear tyres, respectively, and oy and c,. are the slip angles
at the front and rear axle, respectively, which are determined
with

ay = —§ + arctan <v—'7’ + lfr) 6)

x

=1
a, = arctan (u) 7)
Uy
Finally, the self-aligning moment 73, due to the torque on
the king-pin axis, is approximated as

Tw = y,fd (8)

where d denotes the trail distance of the front tyre.

C. Cost function and MPC settings

The cost function brings the BiLSTM driver model and
the MPC controller together. As mentioned before, the SWT
predictions of the BiLSTM model T},..q are being used as
one of the reference signals to the MPC. The cost function is
described as

Np—1
T =Y wx(Xe = Xpepn)® +wy (Vi = Yiepr)?
k=0

+ wy (Y — Yrep )+ 0r(Towg — Tpred k)

+ wyul (C)]

+wxy (XN, = Xregn,)? + wyy (YN, = Yiesn,)?

+ Wy (wNp - w'r'rff,N,.)Q

+wry (Tow,N, — Tpred,n, )

where wx and wx, are the stage and terminal cost weights
for the error in the global X-direction, wy and wy, are the
weights for the Y -direction, and w,, and wy, are the weights
for the yaw angle error. wy and wr, denote the stage and
terminal cost weights for the difference between the applied
SWT T, and the predicted SWT T),,..q by the BiLSTM
model. Thus, these two weights determine the level of the
penalty when the prediction of the BiLSTM model does not
match the actual SWT being applied. Finally, w,, denotes the
weight for the control input u = Tsw.

The reference signals Y,..r, X,y and v,y represent the
desired path, which is set as the centre of the lane, while IV,
denotes the prediction horizon. Table IIT shows the settings
and weights used for the MPC controller, where T . is the
sampling time of the MPC controller, set at 100Hz to match
the standard CAN broadcast frequency on driving simulators,
while T 4ip, is the sampling time of the simulation, set at
1000Hz. The prediction horizon IV, and control horizon are
both set at 40 timesteps (0.4s), as it was found to be the
best trade-off between the computational load and controller
performance.



The weights are determined through an extensive trial-and-
error process. First, the weights were tuned to ensure closed-
loop stability by running local simulations. Second, this set
of weights formed a basis for the driving simulator imple-
mentation, where the weights were further tuned with Toyota
Motor Europe’s (TME) previous-generation driving simulator
to ensure driver-in-the-loop stability. Lastly, the final set of
weights was determined on the advanced driving simulator at
TME, described in Section V-A, with the feedback of expert
drivers to obtain collaborative haptic shared control, while
considering the overshoot and settling time of the system.

TABLE III
MPC SETTINGS AND WEIGHTS.

[ Variable Value [ Variable Value |
Ts,c 1-107%s [ T sim 1-107%s
Np 40 wx 1-1074
wy 1-107% Wy 1-10-1
wp 51074 | wy 1.2-1076
Wi 2-w; i {X,Y, 9, T}
|0sw,maz| 360 deg [Osw,maz| 800 deg/s
|Tsw 10 Nm |Tsw,maz| 20 Nm/s
|rmaz| 50 deg/s

V. DRIVING SIMULATOR EXPERIMENT

To evaluate the performance of the proposed LKA, three
variations of the hybrid controller have been implemented in
an advanced fixed-base driving simulator at TME. Addition-
ally, a commercially available LKA is used as a benchmark.
This section describes how the experiments are designed and
performed, and specifies the four controllers.
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Fig. 6. Path used for the experiment on a three-lane highway.

A. Driving scenario

Figure 6 shows the path used during the experiments.
This route contains a three-lane highway where a distance

of 8.3km is covered at a constant speed of 100km/h, tak-
ing approximately 5 minutes. This path contains a variety
of turns with different curvatures to expose the driver to
various circumstances to experience the LKA’s capabilities.
The participants only controlled the steering wheel and were
instructed to solely follow the second lane like they normally
would. At the final straight section of the route, the participants
were instructed to perform lane changes. First, a lane change
to the right lane was performed, followed by a lane change
back to the middle lane and eventually to the left lane. The
lane changes were performed to give the participants a better
impression of how much effort is needed to overrule the assist.

The driving simulator has a fixed base and uses the cockpit
of a commercially available Toyota car and a 210° projection
screen for better immersion, as shown in Figure 7. The
dynamics of the vehicle are simulated in IPG CarMaker, except
for the steering system which is simulated using Toyota’s high-
fidelity steering model [32]. IPG CarMaker is also used to
define the scenario, where rFpro renders the graphics for the
projection screen.

Fig. 7. Fixed base driving simulator at Toyota Motor Europe, Belgium.

B. Experimental procedure

The participants were first informed of their task during
the experiment. Subsequently, they drove the scenario without
the assists on, as to familiarise themselves with the driving
simulator, the steering feel and the scenario. This was followed
by running the same driving scenario but with one of the four
LKAs. The scenario was then repeated for the other LKAs.
The order of the assists was randomised (Randomised Latin
Square Method) and the participants were not informed on
which LKA they were testing, as to eliminate any bias [33].
The participants evaluated each LKA immediately after the
scenario by filling in a questionnaire but were allowed to
change their answers after testing the other LKAs.

A total of 15 participants, all TME employees, took part in
the experiment with an average age of 30.5 years (SD=5.4),
ranging from the age between 24 and 41 years old, and
an average of 10.8 years (SD=6.7) of driving experience.
Additionally, two of the participants are rated as expert drivers
within TME.



C. LKA controllers

This section describes the four LKA controllers evaluated
during the experiment.

1) Baseline LKA: A commercially available LKA is used
as the baseline to compare with the proposed LKAs. This
baseline controller aims to accurately follow the centre of
the lane without considering the driver’s intentions. It uses
an adaptive level of control authority with the level being
inversely proportional to the opposing SWT input from the
driver. The LKA even gets momentarily deactivated if the
driver opposes the assist with a SWT of 3Nm or higher.

2) ANN: The first proposed controller only uses the BilL-
STM driver model. The prediction of the model at =0 of the
prediction horizon is passed on as the actual assist torque,
instead of going to the MPC controller. The SWT inputs from
this assist are set to have a control authority of 70%, leaving
the remaining 30% to the driver to perform the lane keeping
task. The ANN assist is implemented to test how well the
BiLSTM model performs on its own without the use of a
supplementary controller.

3) Hybrid-1: The other two proposed controllers are hybrid
controllers, where both use the same set of weights, but their
control inputs are adapted to two different levels of authority.
The first mode, Hybrid-1, has been set to the same level of
control authority as the ANN controller, namely 70%, allowing
for a direct comparison between both controllers.

4) Hybrid-2: The second mode, Hybrid-2, is set to a control
authority of 50%. This mode aims to give the driver more
control to test its effect on collaborative driving. Thus, the
two hybrid controller modes will give a better impression of
the participants’ preferred authority level for haptic shared
control.

VI. RESULTS AND DISCUSSION

This section discusses the obtained subjective and objective
results. The KPIs for both results focus on five main elements,
specifically the steering effort, tracking performance, collab-
orative behaviour, level of control authority and smoothness.
The statistical significance of the four controllers is analysed
for each KPI using a paired t-test.

A. Subjective results

As the participants had to fill in the questionnaire for each
assist, they answered five questions per assist by awarding a
point based on a seven-point scale. The ideal range for the
first question is between 3 and 5 points, while the other four
questions had an ideal range between 5 and 7 points. The
questions focus on the following aspects:

1) Steering effort: How soft or heavy the steering system
feels with the assist on. A grade of 1 means that it is
too soft, while a grade of 7 signifies that it is too heavy.

2) Path tracking performance: The perceived path tracking
performance and guidance level, where a grade of 1
means low and a 7 means high performance.

3) Collaborative behaviour: How well the driver’s inten-
tions are matched by the assist, thus whether there are

no conflicts. A grade of 1 means bad and a 7 means
good collaboration.

Authority level: How easily the assist can be overruled
by the driver if desired. A grade of 1 means difficult and
a 7 means easy to overrule.

Smooth control: How smooth the assist feels to the hand
during haptic shared control, where a grade of 1 signifies
abrupt and a 7 means smooth control.
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Figure 8 shows the mean scores of the participants’ answers
for each question and assist, where the braces indicate the
results of the paired t-test. The paired t-test demonstrates the
statistical significance between the baseline LKA and the pro-
posed controllers in terms of the steering effort, collaborative
behaviour and smooth control. Table IV gives the exact values
of the mean scores and shows the SD in parentheses. The pro-
posed LKAs outperform the baseline in every metric, except
for the Hybrid-2 controller in terms of tracking performance.
This can be explained by the Hybrid-2 controller’s lower level
of control authority, making it feel like a worse path follower
if the driver does not cooperate in the steering task. Besides,
the baseline LKA tries to precisely follow the centre of the
lane by also making constant minor corrections, giving the
impression of accurate path following, even if it does not
match the driver’s desired path.

TABLE IV
MEAN SUBJECTIVE RESULTS FOR THE KPIS WITH THE SD IN
PARENTHESES.

Metric [ Baseline ANN  Hybrid-1  Hybrid-2
Steering effort 5.30 353 367 4.00
cering ettor (1.26)  (1.19)  (1.29) (1.36)
Tracking performance 4.60 573 5.40 4353
ing perior (1.92)  (1.03)  (1.24) (1.73)
. ) 247 527 547 5.40
Collaborative behaviour (136) (1.10) (1.41) 091
Authority level 327 720 327 747
uthority feve (1.83)  (1.57)  (1.33) (1.77)
Smooth control 2.00 533 527 5.60
00th contro (1L13)  (1.23) (144 (1.30)

Furthermore, the proposed controllers score best for the
KPIs interchangeably. Hybrid-2 was found to have the best
steering feel, which can be explained by the lighter assist mak-
ing the steering wheel feel slightly heavier to the driver. It also
scored best regarding the authority level and smoothness of the
assist. Again, the relative lightness of the assist contributes to
giving more control to the driver and feeling less aggressive



to the hand. The ANN controller was found to have the best
path tracking performance and the Hybrid-1 controller was
evaluated to have the best collaborative behaviour by a small
margin over the other proposed controllers.

Finally, the participants were asked to rank the assists at
the end of the experiment based on which one they preferred
the most. Seven out of the 15 participants ranked the Hybrid-
2 controller in first place, while four participants ranked the
Hybrid-1 assist and another four participants ranked the ANN
assist as their favourite.

TABLE V
MEAN OBJECTIVE RESULTS FOR THE KPIS WITH THE SD IN
PARENTHESES.
Metric | Baseline ANN Hybrid-1 ~ Hybrid-2
. 5 37471 128.88 122.68 240.65
Driver effort INm” s] | (g55g)  (1722)  (1395)  (2042)
Controller effort 363.15 368.71 193.28
[Nm? s] B (21.05) (14.94) (7.19)
0.33 0.38 0.34 0.33
Lateral RMSE [m] | 009)  0.11)  (0.10)  (0.08)
Maximum e, [m] 0.88 1.00 0.87 0.88
4 (0.27) (0.24) (0.21) (0.19)
Mean e, [m] 0.12 0.21 0.15 0.17
v (0.10) (0.13) (0.14) (0.12)
SD e, [m] 0.29 0.30 0.28 0.27
Yy (0.07) (0.07) (0.08) (0.05)
. . 0.38 0.76 0.77 0.81
Collaborative ratio [-] 0.03) 0.03) 0.03) 0.03)
Intrusiveness ratio [-] 0.62 0.24 0.23 0.19
(0.03) (0.03) (0.03) (0.03)
. . 0.14 0.12 0.13
Resistance ratio [-] - 0.02) 0.02) 0.02)
- . 0.10 0.11 0.06
Contradiction ratio [-] - 0.02) 0.02) 0.01)
Coherence [-] R 0.69 0.70 0.84
(0.04) (0.05) (0.02)
Level of 2.88 3.05 0.81
control authority [-] B (0.52) (0.44) (0.10)
Steering reversal rate 17.56 13.33 13.69 14.01
[reversal/min] (3.66) (2.76) (2.47) (3.02)
Driver smoothness 3.16 1.98 2.00 2.17
[Nm/s] (0.48) (0.37) (0.40) (0.41)
Controller smoothness 0.64 0.67 0.48
[Nm/s] } (0.04) (0.05) (0.04)

B. Objective results

Table V shows the mean objective results obtained from
the driving data of the participants, with the SD given in
parentheses. The first 13 KPIs are obtained from [13], with
the metrics driver and controller smoothness added to the list,
which is the same as the smoothness KPI used in Section
III-C. Additionally, Table VII gives the results of the paired t-
test for each pair of assists for every KPI. The pairs associated
with the letters are shown in Table V1. For six of the metrics, a
representative and comparable value cannot be obtained for the
baseline LKA. This is due to a fundamentally different steering
approach where the assist torque values are determined to
actuate on the steering column instead of the steering wheel,
resulting in assist torque values which are significantly higher.
To avoid any misconceptions, those KPI values have been
omitted, while still allowing for a comparison between the
proposed controllers for the same KPIs.

TABLE VI
SYMBOLS FOR THE PAIRS USED FOR THE PAIRED T-TEST.

Symbol ‘ P-value comparison
A Baseline <> ANN
B Baseline <> Hybrid-1
C Baseline <+ Hybrid-2
D ANN <« Hybrid-1
E ANN < Hybrid-2
F Hybrid-1 < Hybrid-2
TABLE VII
PAIRED T-TEST P-VALUES FOR THE OBJECTIVE RESULTS.
Metric [ A B C D E F
Driver effort <0.01 <0.01 <001 <0.01 <0.01 <0.01
Controller eff. - - - 0.07 <0.01 <0.01
Lateral RMSE | <0.01 036 0.78 0.01 0.01 0.45
Maximum e, 0.02 0.86 0.97 0.05 0.01 0.73
Mean e, <0.01 0.07 0.01 0.04 0.01 0.51
SD ey 0.28 0.29 0.02 0.10 0.01 0.30
Collaborative <0.01 <0.01 <001 036 <001 <0.01
Intrusiveness <0.01 <0.01 <0.01 036 <0.01 <0.01
Resistance - - - 0.02 0.69 0.05
Contradiction - - - 0.09 <0.01 <0.01
Coherence - - - 0.14 <0.01 <0.01
Authority - - - 0.01 <0.01 <0.01
Steering RR <0.01 <0.01 <001 057 0.33 0.57
Driver smooth. | <0.01 <0.01 <0.01 0.76 0.02 0.03
Control. smooth. - - - <0.01 <0.01 <0.01

The results show a significant drop in driver effort with
the proposed controllers compared to the baseline, where the
driver effort is defined as the integral of the driver’s squared
SWT input. The Hybrid-1 controller even shows a decrease of
67.3%. This is explained by the collaborative behaviour of the
proposed controllers being significantly improved as it matches
the driver’s intentions, resulting in fewer conflicts and steering
corrections as can be seen with the Steering Reversal Rate
(SRR) with a decrease of up to 24.1%, but this is also related
to the level of control authority. The control authority of the
baseline LKA decreases with increasing conflicts, resulting in
more effort needed from the driver. Furthermore, the driver
effort of the Hybrid-2 LKA is almost twice as high as the
other proposed LKAs, which is due to the lower level of
control authority set. This can also be seen by the controller
effort being up to 47.6% lower. Additionally, the paired t-test
highlights the differences between the controllers as it shows
statistical significance between each pair of LKA in terms of
driver effort, with the difference being relatively small between
the ANN and Hybrid-1 controllers.

Moreover, the lower level of control authority of the Hybrid-
2 controller has also resulted in a 113.1% increase in the
collaborative ratio over the baseline LKA and a 5.2% in-
crease over the Hybrid-1 controller, with the collaborative
ratio indicating the ratio between the time where the driver
and controller applied a SWT with the same sign and the
total scenario time. Thus, the driver and Hybrid-2 controller
have a better agreement compared to the other LKAs, where
the paired t-test shows statistical significance between the
Hybrid-2 controller and the other controllers. Additionally, the
Hybrid-2 LKA also outperforms the other proposed controllers
significantly in terms of the contradiction ratio with a decrease



of up to 45.5% and coherence with an increase of up to 21.7%.
However, leaving more control to the driver has introduced
less smooth steering inputs, as a human makes more minor
corrections during the steering task than the controller, with an
increase in SRR of up to 5.1% and driver smoothness of up to
9.6% when comparing the Hybrid-2 controller to the other pro-
posed controller. Nevertheless, the Hybrid-2 controller shows
a decrease of 20.2% and 31.3% over the baseline LKA in
terms of SRR and driver smoothness, respectively.

Furthermore, Figure 9 shows the boxplot for the lateral
RMSE and the SD of the lateral error with reference to the
centre of the lane. Notably, the ANN controller has relatively
higher RMSE and SD values compared to the other controllers,
with an increase of up to 15.2% and 11.1%, respectively. This
shows the impact of the absence of a MPC controller, as
the MPC element of the hybrid controllers also penalises for
the lateral offset from the centre of the lane while the ANN
controller does not directly account for it. The participants
also noticed this behaviour from the ANN controller, where it
would usually turn relatively early into a corner resulting in a
higher lateral error or it would not perform minor corrections
to follow the centre of the lane accurately on the straight
sections. However, most of the participants did note that they
found the early turn-in pleasant as it matched their driving
style more, which explains the high subjective score for the
path tracking performance of the ANN model.
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Fig. 9. Lateral RMSE (a) and SD of the lateral error (b) with respect to the
centre of the lane.

Figure 10 shows the average steering inputs of the proposed
controllers and the participants, with the coloured areas cov-
ering the respective SD. These graphs show the authority split
between the controller and driver. While the ANN and Hybrid-
1 controllers have more authority over the driver, the Hybrid-2
controller and the driver are more balanced. Additionally, it
also demonstrates how the controller and driver complement
each other without any significant conflicts.

Overall, the ANN and Hybrid-1 controllers have closely
matched results on all the KPIs. However, the relatively poor
performance of the ANN LKA on the lateral error metrics
gives the Hybrid-1 LKA a slight preference between the two,
as the path tracking performance is an important element of
safety. Nonetheless, the lighter assist torque from the Hybrid-
2 controller has resulted in better collaboration between the
assist and the driver compared to the other controllers. Even
though the driver has to put relatively more steering effort
in, keeping the driver more engaged, the Hybrid-2 LKA
still lowers the workload by splitting the effort in half, as
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Fig. 10. Average and SD of the SWT inputs of the participants and proposed
LKAs.

shown in Figure 10. Besides, the better collaboration would
result in a long-term symbiosis between the LKA and the
driver, preventing the assist from being turned off and, thus,
maintaining the benefits of ADAS.

VII. CONCLUSION

In this study, we introduced a hybrid LKA using a BiL-
STM driver model paired with a MPC controller to enable
human-centric haptic shared control to foster collaborative
driving between the driver and assist. The BiLSTM model
was validated and tested to obtain the optimal driver model,
as the driver portrays non-linear cognitive behaviour. Even
though high accuracy ANN driver models surpassing previous
work were obtained during development, it was found that
the smoothness KPI was significantly more critical than the
accuracy to obtain a pleasant assist.

Furthermore, the BILSTM model makes a prediction over
the prediction horizon during each iteration. This prediction
is then used by the real-time MPC controller as a time-
varying reference signal to create the hybrid controller. The
MPC controller optimises the control input where it balances
between following the centre of the lane and adhering to the
predictions of the BILSTM model, based on the tuned weights.

The subjective and objective results show the proposed con-
trollers to significantly outperform the commercially available
baseline LKA in almost every KPI. The proposed controllers
decrease the driver’s steering effort while substantially im-
proving the collaboration with the assist. However, the second
mode of the hybrid controller, Hybrid-2, has shown to be the
most favourable assist as it fosters collaborative driving the
most without lowering the path tracking performance.

Future work should focus on creating a hybrid controller
capable of working at different speeds and road scenarios.
This means that extensive data collection has to be done to
train the ANN model. Furthermore, work should be done in
creating a custom loss function when training the ANN model,
where both the accuracy and smoothness KPI are accounted
for. However, the challenge is to find a good balance of the



weights for such a loss function. Additionally, introducing
user adaptation, such as online learning or meta-learning, to
the ANN model would allow the model to converge to the
preferences of a specific driver. This could result in an even
better collaboration between the driver and assist.

To improve the MPC controller, the vehicle dynamics
model should be more detailed to perform better at different
speeds and scenarios. This can be done with a non-linear
bicycle model or even using a planar model, while taking
the non-linear steering friction into account in the steering
model. Furthermore, other configurations to pair the ANN
model with the MPC controller should be investigated and
compared, especially implementing the ANN as a part of the
plant model within the MPC controller. Moreover, an adaptive
level of control authority on the hybrid controller should be
studied to understand its effect on collaborative driving. Lastly,
the hybrid controller should be tested on a physical vehicle
to investigate its commercial feasibility. This would require
the introduction of more robustness to the driver-in-the-loop
system, such as lane departure warnings.
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MACHINE LEARNING FOR DRIVER
MODELLING

This chapter will cover different ML techniques for driver modelling. First, an overview
will be given of ‘classical’ ML. methods used for driver modelling. This is followed by
an extensive analysis of ANN implementations. Finally, the proposed ANN model for
the hybrid controller is analysed in more detail, specifying the KPIs used to evaluate the
model.

A.1. CLASSICAL MACHINE LEARNING STUDIES

This section briefly covers ‘classical’ ML algorithms used to model driver behaviour.
‘Classical’ ML mainly refers to ML techniques excluding deep learning. Additionally, a
study comparing different ML, including an ANN, is discussed.

A.1.1. STATE-OF-THE-ART RESEARCH

Different types of ‘classical’ ML algorithms have been developed to predict the human
driver’s intentions for a variety of tasks. While some studies focus on a classification
problem where the driver’s behaviour can be approached categorically, such as a left or
right turn, others work on a regression problem where the driver’s behaviour is modelled
in continuous-time, such as the exact steering wheel torque a driver is expected to give
at a certain time.

For example, a classifier using a Support Vector Machine (SVM) and a k-nearest neigh-
bours algorithm to determine the driving skill of the human driver while taking corners
is proposed by [34]. Another algorithm is the dynamic Bayesian network which predicts
the tiredness level of the driver [35]. Furthermore, a SVM with a Bayesian filter and a
HMM is developed by [36] to predict the human driver’s intentions at road intersections.
Moreover, a random forest classifier which distinguishes different drivers based on their
driving data is proposed by [37].

Additionally, the driver’s longitudinal control actions are predicted by [38] using a
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Gaussian Mixture Model. In an effort to improve fuel efficiency, a Markov chain has been
proposed to predict the driver’s throttle input level [39]. Nevertheless, HMM has been
a popular data-driven method for driver modelling. Dating back to 1999, a HMM to
predict the driver’s subsequent actions is proposed by[40]. This is then followed up by
more work using HMMs [41] [42] [43].

More recent work is done by [12], where a HMM is developed to predict the driver’s
steering wheel torque inputs. The data to train, validate and test the model was collected
in a high-end driving simulator with human participants driving in highway scenarios at
a constant speed of 100km/h. This dataset and driving simulator have also been used for
the proposed hybrid controller of this study. Furthermore, an in-depth feature analysis
has also been performed by [12] to find the best correlating input data. This helps to
find the most optimal input features to maximise the scores on the two KPIs set by the
author. These KPIs are the accuracy and the smoothness of the predictions, as described
in Section A.3.1. However, as mentioned earlier, the main research gap in this HMM
study is the absence of a controller-in-the-loop implementation.

A.1.2. COMPARISON OF MACHINE LEARNING ALGORITHMS

However, a comparison of different ML algorithms has shown ANN models to be an in-
teresting approach for driver modelling [1]. Their study focuses on predicting the steer-
ing wheel torque inputs of the driver, with the aim of using it for haptic shared control
in ADAS. Specifically, the ML methods considered are Gaussian Process (GP), Gaussian
Mixture Regression (GMR), Hidden Markov Model Gaussian Mixture Regression (HMM-
GMR) and an ANN. As a form of benchmark to these ML algorithms, a Piecewise Con-
stant Model (PCM) and Piecewise Linear Model (PLM) have also been created. The PCM
works with the assumption that the current driver steering torque will be the same as
the torque given in the previous timestep, while the PLM takes the time derivative of the
steering torque into consideration as well.

The input features used for the M1 methods are the road curvature, side slip an-
gle, yaw rate and the steering wheel angle, giving the steering wheel torque prediction
as an output. The authors collected two datasets in a simulator, where one was a syn-
thetic dataset created by letting a virtual driver drive the simulated road, while the other
dataset was collected from real human driving on their driving simulator. The reason
for these two datasets is that the synthetic dataset eliminates the inconsistency of hu-
man driving behaviour, enabling a better evaluation of the regression performance of
each method. Thus, the real human dataset introduces the inconsistencies within and
between each driver, which gives way to evaluating the methods’ level of robustness to
driver variability. The datasets are evaluated separately from each other. In all cases, the
vehicle was kept at a constant speed of 50km per hour.

The results showed that the HMM-GMR and ANN performed better in terms of Root
Mean Square Error (RMSE) than the other methods on the synthetic dataset, with the
ANN slightly outperforming the HMM-GMR. For the real human dataset, the ANN ob-
tained the best results on average, as shown in Figure A.1, proving that it is more robust
to human variation. Finally, it was also found by [1] that the ANN is good at capturing the
behaviour of novice drivers. It should be noted that this paper created a relatively sim-
ple ANN, with one hidden layer consisting of two nodes. This means that there is much
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more room for improvement with optimised ANN methods, which is a topic covered in
Section A.2.

Additionally, ANNs have also shown improvements in performance in other fields.
For example, a comparison between ML techniques has been performed for language
modelling [44] and for computer vision [45], among others.
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Figure A.1: The RMSE of the different M. methods on the real human dataset, which was split into four
subsets A, B, C and D for cross-validation [1].
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A.2. ARTIFICIAL NEURAL NETWORK STUDIES

This section gives an overview of different ANN implementations in literature for hu-
man behaviour modelling. First, a study will be highlighted which shows the effect of an
ANN driver model. Second, the background information of three popular ANN methods
will be given. This is then followed by an overview of work done with ANNs for human
driver modelling, specifically for lane change and lane following tasks. ANN modelling
for other driving related tasks will also be briefly touched upon. Finally, due to the lim-
ited work available for driver modelling and as a source of more inspiration, this section
also covers work done on ANN implementations for human behaviour modelling for
non-driving related tasks.

A.2.1.IMPACT OF A DRIVER MODEL

Before looking into the different ANN approaches for driver modelling, it is relevant to
highlight the findings from the study by [2] where they show the effect of an ANN driver
model. They propose a comparison between a model-based and data-driven approach
to the lateral and longitudinal control of a vehicle. Specifically, they created a MPC algo-
rithm, a topic which will be covered in more detail in Appendix B, and an ANN model.
The lateral control aspect of each method is more relevant for this report, with the con-
trol input being the steering wheel angle. The driving scenario is related to racing, where
the ideal trajectory is the racing line with a variable speed profile. The experiments were
done in a driving simulator.

The MPC uses a bicycle model as the lateral dynamics model and does not include
any other aspects to directly model the human driver. The ANN is a multi-layer feedfor-
ward sigmoidal neural network, where more details about the structure of the network
have been left out. The data for the ANN was collected by letting professional human
drivers drive at a track on the simulator.

Steering Angle,$
Steering Angle,

t
Figure A.2: Comparison between the control inputs given by the MPC controller (in blue) and ANN model (in
red) with the correct driver inputs as the reference (in black) [2].

To test both algorithms, the control inputs for a specific section of the track were
compared to how the professional drivers would have taken it. The results showed that
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the RMSE between the MPC and human driver control input was 1.10 * 1073 radians,
while the ANN produced a RMSE of 1.97 * 10~ radians. Figure A.2 shows the control
inputs given by the MPC, in blue, and ANN, in red, compared to a professional driver,
in black, for the same section of the track. Thus, this shows that the ANN “provides a
better representation of human driver behaviour” [2] as expected, but also highlights
the gap between a standard MPC controller and the driver as the driver’s behaviour is
not accounted for.

A.2.2. TECHNICAL BACKGROUND

Having highlighted the significant effect of an ANN driver model, this section covers the
technical background information of three popular types of ANN, namely the Feedfor-
ward ANN (FANN), Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) network.

FEEDFORWARD ARTIFICIAL NEURAL NETWORK

Starting with a more basic form of ANN, as was also used by [1] and [2], brings the FANN.
The FANN is one of the first and simplest type of ANN, with its architecture shown in
Figure A.3. It consists of an input layer followed by one or more hidden layers which
then lead into the output layer. The number of nodes in the input layer depends on the
number of features being passed on to the network. The nodes in the input layer only
serve as a passage of the data to the hidden layer(s). The number of nodes in each hidden
layer has to be determined during the tuning phase of the network and can significantly
impact the performance of the model. The number of outputs required from the model
determines the number of nodes in the output layer. As shown by the arrows in Figure
A.3, the information flows from the input layer to the output layer without any form of
cycles or loops happening, explaining the FANN name.

Input Layer Hidden Layers Output Layer

Figure A.3: Architecture of a FANN [3].
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The nodes in the hidden and output layers perform a weighted sum, which then goes
through an activation function. Figure A.4 shows this process, where three input signals
are connected to the node, with each input signal having its own weight factor. Thus,
these inputs are multiplied by their weights and then summed together, including a bias
factor, as shown in equation A.1 [3].

v=wx+Db (A1)

where v is the weighted sum, w is the set of weights, x is the set of input signals coming
into the node, and b is the bias term.

This weighted sum is then passed on to an activation function, which gives the output of
the node. Determining the best activation function is also part of the tuning phase when
developing the network. The weights and biases of all the nodes are determined during
the training process of the ANN.

X ~_
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Figure A.4: A node, taken from a FANN, with three inputs [3].

A block diagram portraying the training process of an ANN in general for supervised
learning is shown in Figure A.5. The training process is also similar for the other two
ANN methods discussed in this section. The training data is collected beforehand, where
both the input and correct output are known. For the first iteration of training, random
weights and biases can be set for the ANN model. The input data is then passed through
the ANN and its output is compared to the correct output using a loss function. A popu-
lar loss function is the Mean Squared Error (MSE), where the goal is to minimize it. The
error is then used to proportionally adapt the weights and biases of the ANN in a process
called backpropagation. These steps are then repeated until either a certain number of
iterations have been reached or until a threshold for the MSE has been passed.

Once the network is trained, it can move on to the test phase and be used for its
intended application. Only the input data is passed on to the model now, as the correct
output is not known yet. The ANN model gives its own output as a prediction based on
the input data it received.
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Figure A.5: Block diagram showing the training process of an ANN [3].

CONVOLUTIONAL NEURAL NETWORK

The CNN [46] [47] is a type of ANN which is popular for classification and computer
vision tasks, such as object detection in images. A CNN uses convolutional layers as a
feature extractor, as the extracted features can then be used for better predictions. Thus,
a CNN is often constructed in a way that the input data passes through a convolutional
layer, or multiple convolutional layers, followed by one or more fully connected feed-
forward layers. However, the convolutional layer is still the main building block. The
convolutional layer contains a filter, or also referred to as a kernel. This kernel is a two-
dimensional array with weights and serves the purpose of feature detection in the data,
for example, finding low-level objects in an image. Thus, the convolutional layer creates
a feature map.

Figure A.6 shows an example of how this process works, with the greyscale pixe-
lated boxes in the convolutional layer resembling the kernels. The input image is passed
through four different kernels, extracting diverse features from the image. These feature
maps can then be used by the following layers for better predictions, as there is more
relevant information extracted from the original input.

Continuing with the example of an image, the kernel usually covers a relatively small
area of the image in one iteration, as the kernel has a smaller size than the image. Thus,
the kernel shifts by a predetermined stride, covering a new area of the image. This is done
until the whole image is mapped from the original image to the feature map. This also
means that the weights in a kernel, which remain constant during filtering, are shared
over the complete input sequence. This parameter sharing makes a CNN more regu-
larized compared to a FANN, as there are significantly less parameters involved during
training and testing. The weights of the kernels are determined during the training phase
with a process similar to the one already discussed for the FANN.

LONG SHORT-TERM MEMORY NETWORKS
LSTM [48] networks are a type of Recurrent Neural Network (RNN). A RNN, as the name
suggest, has loops in them where a cycle is created between one or more nodes. This
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Figure A.6: An input image is passed on to a convolutional layer with four filters, resulting in a feature map
with four images [3].

means that the output from a node could have an effect on the input from the next
timestep. Figure A.7 shows an example of a RNN unit on the left, with a piece of ANN
in the loop. On the right, Figure A.7 shows what the unfolded loop would look like. Thus,
processed information from the past is passed on to the next timestep. Having this in-
formation passed on, along with the new inputs, enables RNNs to capture relations be-
tween past inputs and the new input. This is why a RNN is strong with sequential data,
such as timeseries, making it popular for applications such as speech recognition and
language modelling.
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Figure A.7: RNN when unrolling the loop [4].
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However, a standard RNN struggles to capture past information for the long-term.
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That is why a LSTM has been developed. Figure A.8 shows the unfolded loop of three
consecutive LSTM units, where X is the input and h the output from each unit. One
unit contains four neural network layers, shown by the yellow boxes. The o stands for an
ANN layer with the sigmoid activation function, which saturates its output to be between
0 and 1, and the tanh stands for an ANN layer with the tanh activation function, which
saturates the outputs between -1 and 1.
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Figure A.8: Unfolded LSTM chain [4].

The part that enables the long-term memory of the LSTMV, is the so called cell state
C, as shown in Figure A.9. This part is often compared to a conveyer belt which contains
information from the previous timesteps and carries it along into the next timestep. To
manage the cell state, a LSTM unit uses three gates. Gates, as the name suggest, control
what information to block or let through. The gates are the forget, input and output gate.

®
@

Figure A.9: Cell state of the LSTM [4].

The forget gate f;, shown in Figure A.10, is a sigmoid layer that outputs which infor-



A.2. ARTIFICIAL NEURAL NETWORK STUDIES 24

mation needs to be forgotten in the cell state. In other words, which information from
the past timesteps should be taken off the conveyer belt. The equation for the forget
gate is shown in equation A.2 [4], where Wy are the weights for the forget layer, by the
biases, h;_; is the output of the LSTM unit in the previous timestep and x; is the input
data from the current timestep. h;—; passes the information for the short-term mem-
ory, as was also the case for a standard RNN. The output from the forget gate contains
an array with values between 0 and 1, where a 0 would mean that a specific information
needs to be completely forgotten, while a 1 would indicate that no information should
be forgotten. The output is then pointwise multiplied with the cell state.

fr=0(Ws-[hi1,x:]+ by) (A.2)
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Figure A.10: Forget gate of the LSTM [4].

The input gate i;, shown in Figure A.11, is also a sigmoid layer. It determines which
new information should be added to the cell state, thus the new information that needs
to be placed onto the conveyer belt. The potential new information, which has to pass
through the input gate, is the so-called candidate state C;. The equations for the input
gate and the candidate states are shown in equations A.3 and A.4 [4], where W; and b;
are the weights and biases for the input gate, and W¢ and b are the weights and biases
for the candidate state. The candidate state is obtained from the tanh layer and then
pointwise multiplied with the input gate, as to determine which new information should
be added to the cell state.

ir=0W;-[he-1, %]+ b;) (A.3)

C; = tanh (Wc - [hs-1, X1 + bc) (A4)

Figure A.12 shows the operations done to the cell state, where a piece of information
from the previous timesteps is forgotten and new information from the current timestep
is added. Equation A.5 [4] gives the operations done with the forget gate, input gate
and candidate state. The cell state is then ready to move onto the next timestep. An
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Figure A.11: Input gate and candidates state of the LSTM [4].

example to have a better image of what is happening is for the application of language
modelling. If the subject in the first part of the text is a male, all the pronouns would
correspond to that. Thus, the gender is stored in the cell state as to make sure that this
information is still considered in future timesteps. However, if the subject changes and it
is now describing a female, the forget gate would let the cell state forget the male gender
and the input gate would add the female gender as new information to be passed onto
future timesteps to have the correct pronouns.

Ci=fi*Ciy+ip*xCy (A.5)
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Figure A.12: Operations done to the cell state using the forget gate, input gate and candidate state [4].

Finally, there is the output gate o;, shown in Figure A.13. This gate, which is again
a sigmoid layer, determines which information from the new cell state to use as the fi-
nal output h; of the current timestep for this LSTM unit. The cell state itself is passed
through a tanh function, saturating its values between -1 and 1. This is then pointwise
multiplied by the output gate. Equations A.6 and A.7 show this process, where W, and
b, are the weights and biases for the output gate.
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Figure A.13: Output gate and the final output of the LSTM unit [4].

All in all, this explanation has given a better understanding of how a LSTM network
works. It shows how this network is able to capture both long and short-term infor-
mation over sequential data, making it a very promising option for handling timeseries
data.

A.2.3. DRIVER MODELLING

This section focuses on ANN models used for driver modelling. The driver model is usu-
ally developed for a specific application, such as lateral control or lane change predic-
tions. Due to limited work available on ANN driver modelling for the lane keeping task,
this section will first cover ANN driver modelling done for lane change predictions. This
is still related to the steering task and the input features used are still relevant to the
lane keeping task. Subsequently, an overview of the work done with ANN driver mod-
elling for lane keeping will be given. Finally, human behaviour models for other driving
related tasks will be briefly covered.

LANE CHANGE PREDICTIONS
In the domain of lane change predictions, ANN has been a powerful tool in predicting
the next action of the driver. The driver could perform a lane change to the left or right,
or continue driving on the same road. Predicting lane changes is useful to anticipate
what the driver is going to do and for ADAS to act accordingly. For example, the ADAS
do not have to give unnecessary warnings when the driver is not going to perform a lane
change. This helps in avoiding mistrust from the driver.

Lane change prediction models are often developed as classifiers, where the labels
are usually whether the driver is going to perform a Lane Change (1.C) event to the left,
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right or no LC. However, there are also studies focusing on a regression model. Specif-
ically, they try to predict the Time-To-Lane-Change (I'TLC). This is defined as the time
between the current timestep and when the vehicle crosses the centre of the lane. Addi-
tionally, it was found that the architecture of a classification ANN model for lane change
predictions, translates well to a regression model with only minor changes to the out-
put layer of the network [7]. This makes the classification models also relevant for the
regression task. This section first gives an overview of classification models, followed by
regression models.

FANN classifier

A SVM classifier and a FANN classifier, and also a combination of both, has been pro-
posed by [49]. In this study, they focused on the ego-vehicle merging from an auxiliary
lane to the adjacent lane of the main road. This means that the classifiers only have one
binary output, specifically whether the driver is or is not going to merge.

The classifiers have seven input features, such as the difference in velocity and ac-
celeration between the ego-vehicle and the lead vehicle, where the lead vehicle is driv-
ing on the adjacent lane ahead of the ego-vehicle. Furthermore, the FANN consisted
of one hidden layer with fourteen nodes. The combined classifier works on a voting
method, where they tested a conservative and aggressive voting method. The conserva-
tive method would predict a merge event only if both the SVM and ANN predict a merge,
otherwise it is classified as a non-merge. It is the other way round for the aggressive
method, where both the SVM and ANN need to predict a non-merge event for the com-
bined classifier to predict the same, otherwise it outputs a merge prediction.

The results show a mixed performance, as the SVM outperforms the ANN for non-
merge predictions on one dataset, whereas the ANN is better at predicting merge events.
For another dataset, it is the other way round where the ANN is better in predicting
non-merge events but worse on merge predictions. For both datasets, the conservative
combined classifier outperforms every other method strongly for non-merge classifica-
tions, but underperforms in merge predictions, while the aggressive combined classifier
lightly underperforms for non-merge predictions and outperforms for merge classifica-
tions compared to the other methods. The combined classifier is a good inspiration for
a regression problem, where two regression models could also be combined using, for
example, a weighted average method.

CNN classifiers

Proceeding, a CNN classifier predicting between a LC or non-LC event has been pro-
posed by [50], specifically a Multivariate Time Series Group-wise CNN (MTS-GCNN).
The Multivariate Time Series part of the name indicates that the CNN will handle more
than two timeseries data. Specifically, this paper used 22 physiological signals which are
derived from the Electrocardiogram, Galvanic Skin Response and Respiration Rate raw
signals, such as the heart rate and conductance of the skin.

Their results showed that the MTS-GCNN outperformed both a RNN and a more ba-
sic CNN with about 4% more accuracy on average, making the MTS-GCNN look promis-
ing. However, the physiological input data relies on physical sensors to be placed on the
driver, making its real-world applicability on commercial vehicles more difficult or even
impossible.
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Another study also proposed a CNN, specifically a Multi-task Attention-based CNN (MACNN)
[51]. Multi-task refers to the output of the MACNN where both a classification and re-
gression output comes out. So, one output indicates whether the target vehicle, which
is not the ego-vehicle, is expected to remain in the same lane or make a L.C to the left
or to the right (classification), while the other output predicts the Time-To-Lane-Change
(TTLC) of the target vehicle. Having these predictions on vehicles around the ego-vehicle
helps the ADAS to plan its next steps, as it can anticipate the movements of the other ve-
hicles.

The attention-based part of the network is a layer which, as the name suggests, puts
more attention into some parts of the input data. For example, the target vehicle’s en-
vironment is full of different objects, but the most relevant information for a given situ-
ation could be that the car in front is going slow. This is an important factor for a lane
change, thus also more relevant for the CNN to consider. This method could also be
used for other driver models as the results show promising performance gains over the
baseline models considered. Notably, the environment data around the vehicles is cap-
tured from a bird’s-eye view in their simulation, instead of using the sensors on the ego
vehicle.

This bird’s-eye view approach was also used by [52]. However, they created this simpli-
fied view from data collected with standard sensors in vehicles during real-world driving.
They used a CNN to predict a left, right or no cut-in from a target vehicle. Their network
consists of 6 layers, but more details about the architecture and the input variables used
are not clear. Interestingly, they implemented a MPC for Adaptive Cruise Control (ACC)
which uses the predictions from the CNN. This enables the ego-vehicle to anticipate a
cut-in and the MPC tries to act accordingly to improve comfort. Unfortunately, the exact
implementation of the CNN output into the MPC has not been described. Their results
do show that the ACC with a CNN outperforms an ACC with HMM and a commercially
available ACC.

LSTM classifiers

Moving on to LSTM networks, a comparison between a Gaussian Classifier, SVM and
LSTM is proposed by [53]. The classifiers give the output as a left, right or no LC. The
input data to the LSTM is the lateral position change and the longitudinal position of the
vehicle. The network consisted of one LSTM layer and the output layer used a softmax
activation function. They found the LSTM to significantly outperform the other methods
as it is much more capable in capturing temporal relationships in the data.

Another comparison with a LSTM network is proposed by [54], however, they compared
it to an Echo State Network (ESN) [55], which is also a strong method for timeseries pre-
dictions. An ESN is part of the reservoir computing framework, which is an extension of
ANN where the hidden layer is now a reservoir with randomly partially connected nodes
with non-trainable weights, which are usually randomly initialised. Figure A.14 shows
the architecture of an ESN. The reservoir is connected to an output layer, which is train-
able. Thus, the reservoir serves the purpose of creating an embedding of the inputs.

The LSTM network and ESN were both used to classify for a left or right LC. After
looking into different input feature selections, they found the combination of the steer-
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Figure A.14: Architecture of an ESN [5].

ing angle and the indicator of the vehicle to be the best performing. They also used the
previous 99 data points per feature as an input to capture the events from the direct
past influencing the immediate future. The results showed both models to perform well,
but not significantly outperforming each other. Interestingly and inexplicably, the LSTM
model is better at right L.C predictions, while the ESN model predicts the left LC better.
So, a hybrid model using both networks might be an interesting approach.

LSTM regressor

Proceeding to regression models, a LSTM network to predict the TTLC is proposed by [6].
Specifically, their model gives two outputs where one indicates the TTLC to the right and
the other to the left. The LSTM model consisted of one LSTM layer followed by a FANN
hidden layer and then by an output layer. The LSTM layer had an output dimensionality
of 256, while the hidden layer consisted of 32 nodes. As mentioned, the output layer
gives two outputs and the activation function used in both the hidden and output layer
is the rectified linear unit (ReLU). The loss function used is the MSE.

Furthermore, they used a wide range of input features, such as the distance to the
vehicle in front or in the rear, but also the relative velocity and acceleration to the sur-
rounding vehicles. The data was obtained from the highD dataset [56], which contains
real-world data. The model also receives the previous three seconds of the features as
input. This is done to find relations over time affecting the predictions and because a
LSTM network is strong in capturing these temporal relations. Some of the hyperparam-
eters were tuned using a grid search, giving 54 possible combinations. Each combination
was evaluated using a 5-fold cross validation.

The results show a RMSE of 0.674 seconds for TTLC to the left (TTLCL) and 0.743
seconds for TTLC to the right (TTLCR). Furthermore, Figure A.15 shows how the RMSE
develops over the TTLC. TTLC predictions below 3 seconds appear to be accurate, while
the RMSE also appears to be low around a TTLC of 7 seconds. This is because their
study capped every TTLC in the data at 7 seconds, even if there is no L.C for a while.
Thus, values around 7 seconds will be predicted more often. However, this still shows
that there is a limit to how far into the future predictions can be made, highlighting the
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uncertainty.
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Figure A.15: RMSE and error distribution (boxplot) for the TTLCL and TTLCR predictions [6].

Similarly, a LSTM network has been proposed by [7] to predict the TTLC. However, they
collected their data by letting 34 participants with different age and experience drive in
a driving simulator. They split their datasets into 26 participants for training and 8 for
testing, which means that the trained network will not have seen any of the test split
participants during training. Their model uses 9 input features which can be charac-
terized into three main groups, namely, the driver monitoring data, vehicle information
data and environmental information data. These 9 input features are the head and gaze
directions, obtained from a Head-Eye-Tracking system, the speed, acceleration, steering
wheel angle and steering wheel torque of the ego-vehicle. Furthermore, they also use
the lateral deviation of the ego-vehicle to the centre of the lane, the gap between the
ego-vehicle and the next vehicle on the same lane, and the angle between the lane and
the ego-vehicle’s longitudinal axis.

Their model consists of one LSTM layer with 250 hidden features, followed by two
FANN hidden layers with 256 nodes in each layer. This is then followed by an output layer
which gives out two values, the TTLC to the left and to the right. The output layer uses
the ReLU activation function. Furthermore, they also applied batch normalization next
to implementing dropout layers. This helps in preventing overfitting and in accelerating
the convergence.

Another interesting contribution is their use of personalisation in their model. Per-
sonalisation, in this case, means that the network is adapted for the driver it is going to
make predictions for, also referred to as user adaptation. There are different methods to
do this, which will be covered in Section D.1. This paper, however, uses a method where
the model trained on the 26 participants is retrained on 20 minutes of driving data from
a specific participant in the test set. The remaining data from that participant, which
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is 10 minutes of driving, is then used as the final test data to evaluate the performance.
This is then repeated for the other test participants. Thus, the initial trained model forms
a basis for each personalised model.

Finally, the model is compared to a baseline model, which is a Random Forest (RF)
regression model. The LSTM model outperforms the RF in terms of RMSE for each time
horizon, as can be seen in Figure A.16. Furthermore, the personalised LSTM model
showed better performance for each test participant compared to the base LSTM model.
The improvement was especially apparent for larger labelling windows. This means that
predictions within smaller time windows work fine with a general model, but predictions
further into the future require more knowledge about the current driver.

| Labeling Window | 2.5s | 3s [ 4s |
RF Regression 0.3077 | 0.3415 | 0.3447
LSTM Regression 0.2723 | 0.3081 | 0.3292

Figure A.16: RMSE of the RF and LSTM regression models for three different labeling windows [7].

Fuzzy Neural Network regressor

Lastly, a different approach to the problem has been proposed by [57]. While the other
studies created classifiers to predict a LC or regression models to predict the TTLC, their
study predicts the future steering wheel angle applied by the driver. This is then used
to determine the trajectory of the vehicle, which in turn indicates whether a LC is ex-
pected. The predictions were made using a Fuzzy Neural Network (FNN), which is a
method where the ANN learns the parameters of the fuzzy system, such as the mem-
bership functions, from data. This makes the reasoning behind the ANN’s output more
interpretable.

The FNN has five inputs, namely, the longitudinal and lateral distance between the
ego-vehicle and the vehicle in front. Also, the relative velocity between both vehicles, and
the travel heading angle and the acceleration of the ego-vehicle are used. As mentioned,
the only output is the steering wheel angle. Furthermore, this paper also implemented
an adaptive learning method, where the RMSE of the prediction forms the basis for up-
dating the membership functions and fuzzy inference. The results show that the FNN
outperforms the four benchmark models they created for their comparison. These mod-
els are a conventional ANN (more details about the architecture were not mentioned),
SVM, HMM and Multivariable Linear Regression. Most interestingly, they found out that
the heading angle and acceleration of the ego-vehicle had the most influence on accu-
rate steering wheel angle predictions out of the five input features.

LANE KEEPING TASKS

This section gives an overview of human driver modelling research related to the lane
keeping task using ANN models. FANN models proposed by [1] and [2] were already
covered in Sections A.1.2 and A.2.1, respectively. Some research focused on predicting
the steering wheel angle, while more recent studies have focused on the steering wheel
torque. Having the steering wheel torque as a control input to a haptic system allows the
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system to feel more compliant to the driver, creating a better steer feel, more comfort
and user acceptance.

FANN model for steering wheel torque predictions

A FANN model is proposed by [58] to model human driver steering behaviour. This
modelis intended to be used for a steer-by-wire vehicle where the torque feedback matches
the driver and what he/she would normally feel, thus the model attempts to learn the
steering feel. The input features to the ANN are the steering wheel angle, steering wheel
angle speed, vehicle velocity, longitudinal acceleration, lateral acceleration and yaw rate.
The model then gives the steering wheel torque as an output.

They investigated how different configurations of their FANN would influence the
performance, by changing the number of hidden layers and the number of nodes per
layer. Within the configurations they looked into, a FANN with two hidden layers and
32 nodes each performed the best with a RMSE of 0.426Nm. However, this model only
uses the input from the current timestep to make a prediction into the immediate future,
even though the data is in timeseries.

That is why they also investigated adding, so called, sliding window features. The
sliding window is a set time window within which extra input features can be extracted
from the immediate past, specifically the mean and standard deviation of the original
input features. This time window then progresses as time passes on. This captures extra
information about the inputs from the past.

Just as with the initial FANN, the model architecture with two hidden layers and 32
nodes per layer obtained the best performance for the FANN with sliding window fea-
tures. This model gave a RMSE of 0.318Nm, outperforming the FANN without sliding
window features. They found that their FANN is generally sufficiently accurate. How-
ever, it was lacking performance at lower speeds. Thus, they recommend investigating
other types of ANN to improve the overall performance, where they mention CNN and
RNN to be interesting options. Specifically, they mention LSTM models to be promising.

FANN model for steering wheel angle predictions

A FANN is also proposed by [8]. However, their goal was to model the steering wheel and
accelerator pedal behaviour of only expert drivers. This model would then be used to
provide haptic feedback and assistance to train novice drivers. To accommodate predic-
tions for both the steering wheel and accelerator pedal, they used two FANN in parallel,
where one only predicted the steering wheel angle and the other only the accelerator
pedal angle. Both architectures were exactly the same, containing 4 hidden layers with
the sigmoid activation function, where the first hidden layer contained 32 nodes, the
second 16 nodes, the third 8 nodes and the fourth 4 nodes.

The input features consisted of vehicle and environmental state data. Specifically,
the vehicle state contained the longitudinal and angular velocity, and the revolutions per
minute of the engine. The environmental state was accounted for by using the distance
between the driver and road boundaries from five different angles. These angles were
30°, 15°, 0°, -15°and -30°from the longitudinal axis. They chose this total of 60°as it covers
the field of view of the driver in their driving simulator. The output from both networks
gives a prediction of 0.2 seconds into the future, as to compensate for human body time
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delays. The data to train the ANN was collected by letting five expert drivers drive specific
paths in a driving simulator while trying to maintain a speed of 60 km/h.

Furthermore, they created a Proportional-Integral-Derivative (PID) controller to de-
termine the Haptic Guidance (HG) torque for the steering wheel, where the error is
the difference between the current steering wheel angle and the predicted expert driver
steering wheel angle. The HG was applied as a guidance for the novice driver.

The results cover two parts of their work. First, they only looked at the prediction
performance of the FANN model, where they analysed the steering wheel angle error
between the model and what the driver actually gave as an input. When evaluating the
model with new expert driver data, they obtained a mean prediction error of 1.55%. For
data collected from novice drivers driving without any HG, they managed to get a mean
prediction error of 2.55%. Figure A.17 shows the plot of the predicted steering wheel
angle (in red) compared to the actual steering input from a novice driver.
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Figure A.17: Prediction performance of FANN model on a novice driver, with the predicted steering wheel
angle (red line) and the actual driver input applied (dotted black line) [8].

Second, they compared the objective and subjective performance of their HG system
to a conventional HG. In this case, the novice drivers drove different scenarios with the
HG systems and were asked to answer questions regarding the effectiveness, comfort,
fun and helpfulness of the assist. Looking at the objective performance, they obtained
a mean prediction error of 1.10% for the FANN HG and 1.42% for the conventional HG.
The prediction error in this case refers to the error between the novice driver’s path with
HG and the expert driver’s path without HG. Furthermore, the FANN HG is better at fol-
lowing the centre of the lane compared to the conventional HG, while it performs worse
in maintaining the correct heading angle of the car.

Finally, the subjective data shows that the FANN HG creates more comfort, while the
conventional HG was found to be slightly more effective. However, in terms of fun and
helpfulness, the participant preferred having no HG at all. This shows that there is still a
gap present, which could be solved by having the ANN be trained on novice driver data as
well, along with working with the steering wheel torque instead of the angle. This could
improve the prediction results and lead to better acceptance of the assist, as it would feel
more natural to the novice drivers.
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Bidirectional LSTM model for steering wheel torque predictions

Since LSTM networks show good performance with timeseries data, a Bidirectional LSTM
(BiLSTM) [59] network to predict driver steering wheel torque inputs using Electromyo-
graphy (EMG) signals has been proposed by [10]. BiLSTM is a type of LSTM where there
is both a, so called, forward and backward pass, as shown in Figure A.18. As was de-
scribed in Section A.2.2, a LSTM unit passes its outputs to the next timestep, resulting in
information from the past being carried forward. With a backward pass, the information
from the input sequence flows to the previous timesteps, carrying information from later
timesteps back. This helps in also finding relations from the present that have affected
the past. The forward and backward layers get the same inputs, after which their outputs
are concatenated as the output of the BiLSTM layer. This type of ANN has also been used
for the proposed hybrid controller.
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Figure A.18: Architecture of a BiLSTM layer with forward pass (green arrows) and backward pass (red arrows).
Adapted from [9].

They used two BiLSTM layers for their steering wheel torque prediction. The first
BiLSTM layer contains, in each direction, 60 LSTM hidden features, while the second
has 40 LSTM hidden features. The second layer is then followed by a FANN hidden layer
with 100 hidden nodes, followed by the output layer. The input data consists of 10 EMG
signals coming from the upper-body and of the applied steering wheel torque measured
by the torque-sensor. The data was collected by having 21 male participants drive in a
driving simulator.

The historical horizon was chosen to be 200 timesteps, where one timestep is 1ms.
This means that all the EMG and steering wheel torque data from the past 200ms was
given as an input during each iteration. The prediction horizon was also 200 timesteps,
resulting in steering wheel torque predictions of 200ms into the future as the output.
This was done since they found out that approximately 200ms was the time delay be-
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tween the EMG signals and the steering wheel torque being applied.

Another contribution by [10] is the use of transfer learning to create a second BiLSTM
model for a discrete prediction of the steering input. Specifically, the prediction gives
one of the five classes, namely, “right steering”, “right steering back”, “left steering”, “left
steering back” and “hold”. The reason for this classifier is that it “can be an essential input
to the take-over performance assessment system and a high-level collaborative decision-
making system for the automated driving vehicle” [10]. The transfer learning is because
this model uses the first BILSTM layer from the continuous prediction model. This layer
is seen as the temporal pattern extraction layer, which can be shared over both networks,
as they share the same inputs. For the discrete model, this layer is then followed by a new
BiLSTM layer with 40 LSTM hidden features, followed by a FANN hidden layer with 100
hidden nodes and, finally, followed by a softmax output layer.

For the results, they compared their continuous model to a FANN, Time Delay ANN
(TDANN) and LSTM model, which has a similar architecture as the BiLSTM model. They
also created a version of their BiLSTM model where only the EMG signals with a strong
correlation to the output were used, resulting in only 3 out of 10 EMG signals being used.
They found their normal BiLSTM model to perform the best with a RMSE of 0.582Nm,
followed by their 3 EMG signal BiLSTM with 0.624Nm. The LSTM model fell behind with
a RMSE of 1.548Nm. The FANN obtained a RMSE of 2.558Nm and the TDANN 8.902Nm.
Overall, the BiLSTM outperforms the other models and Figure A.19 shows a plot of its
predictions. It can be seen that this model works well, but it could still improve its pre-
dictions at the peak points, which are the steering reversals. Furthermore, they found
that their history and prediction window worked well for their task. However, Figure
A.19 does show a limitation of this research, where the plot suggests that a simplified
steering model is used to simulate the vehicle where no friction forces are modelled.
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Figure A.19: Prediction performance of the BiLSTM model [10].

Deep Convolutional Fuzzy System model for steering wheel angle predictions

Another study used expert driver data to train its ANN model, specifically they devel-
oped a Deep Convolutional Fuzzy System (DCFS) model [60]. Their aim was to capture
the motor intermittency of human drivers by modelling the driving behaviour of expert
drivers. They used their DCFS model as the feedforward controller, while also imple-
menting a supervisory feedback controller which only acts when the vehicle reaches the
set boundaries, like a Lane Departure Assist.
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The data was collected in a driving simulator where the input data to the model con-
sisted of data obtained from the vehicle camera sensors and the vehicle state data. The
output from the model was the steering wheel angle. Furthermore, they compared their
controller to two MPC controllers, where MPC-1 penalized the control effort relatively
more, while MPC-2 penalized the tracking error relatively more. They found their DCFS
model to capture the expert driver behaviour the best without losing out too much in
terms of tracking performance, while also capturing the motor intermittency. Further-
more, it seemed to lower the mental workload of novice drivers when they performed
the driving task in the driving simulator.

However, during their data collection and experiments, the authors told their 15 par-
ticipants to follow the centre of the lane. This reduces the human variability for the steer-
ing task. Thus, the DCFS model does not fully capture the natural driving behaviour of
the driver and does not show full human-like behaviour as an assist. Furthermore, the
speed of the vehicle was kept relatively low at a maximum of 35km/h.

Reinforcement Learning

All the ANN models discussed until now used supervised learning. This means that the
ANN model has been trained with previously collected data which contains both the
input and corresponding output features. With this data, the model learns a mapping
between the input and output. Once the model is being used in real-time, the mapping
gives a prediction based on the new input data passed on to the model. However, deep
reinforcement learning to create a comfort oriented LKA for haptic guidance has been
proposed by [61], where they try to increase driver acceptance of the assist.

Reinforcement Learning (RL) uses rewards and penalties to make the learning algo-
rithm obtain the optimal policy for the task at hand. Essentially, the policy is a mapping
between the input data and the action performed by the LKA, and it can often be a func-
tion approximator, such as an ANN. Given the overall goal, the learning algorithm tries
to find the policy that gives the most rewards and continuously updates the policy based
on the rewards. For example, sharper turns would require more steering input from the
LKA to stay within the lane. Through trial-and-error, the RL algorithm learns the optimal
action and remembers it for future sharp turns.

A Deep Q Network [62] has been researched by [61] as their RL. method, where they
used a fully connected FANN as the function approximator. The input data consists of
the steering wheel angle and the lateral error between the vehicle and the centre of the
lane. The evaluation of the model was done by looking into the lane keeping accuracy
with respect to the centre of the lane, and the steering control activity, as this covers the
comfort aspect of the assist.

They compared their RL. method to a continuous and threshold-based HG. They
found their method to obtain better performance on lowering steering control activ-
ity, while still having maintained an overall good lane keeping accuracy. However, their
study presents a very novel approach to using RL for LKA. They simulated the driver for
their experiments, in which they only used a straight road with the vehicle travelling at
60km/h. This oversimplifies the method significantly, making it difficult to assess the
relevance of using RL for driver modelling.
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OTHER DRIVING TASKS

This section briefly covers driver modelling studies which focus on other tasks than lane
changes and lane keeping. Firstly, the work done by [63] models the driver for the longi-
tudinal movement of the vehicle, specifically the throttle inputs. They did this by having
afixed ANN and an adaptive ANN in parallel. The fixed ANN is responsible for predicting
the throttle behaviour of the human driver and acts as a controller to follow the target
speed in a human-like fashion. The adaptive ANN uses an online training algorithm
which has been implemented to account for any changes in the vehicle and road condi-
tions, where it tries to reduce any small speed errors. Both networks use a single-layered
FANN, where the fixed ANN uses five hidden nodes, and the adaptive ANN uses three
hidden nodes.

Secondly, another study focused on the lateral and longitudinal trajectory predic-
tions of surrounding vehicles [64]. These predictions can then be used by the ego-vehicle
to plan its actions. For their model, they used one LSTM layer with 256 units, followed
by two FANN layers with 256 and 128 hidden nodes. The input features are mainly re-
lated to information human drivers would base their actions upon, such as the relative
velocity between the ego-vehicle and target vehicle, and the time-to-collision. The out-
puts are the predicted lateral position and longitudinal velocity of one target vehicle.
Their data comes from the Next Generation Simulation US101 dataset [65], which con-
tains more than 6000 trajectories of different vehicles during real driving on highways.
Overall, their model shows good performance, with the LSTM model showing promising
results in handling timeseries data.

Thirdly, a model containing two parts for autonomous driving is proposed by [66].
One part uses a CNN to detect objects on the road and determines the lane boundaries.
The other part uses this information to plan and control the vehicle. This is done using
a LSTM network, which contains three LSTM layers. The CNN model uses the images
from three front-facing cameras mounted on a car, where the output of the CNN is used
to map the environment features. The data used was collected using real-world driving.
The extracted environment features are then passed onto the LSTM network alongside
vehicle state data, such as the velocity. This network then gives the steering commands,
which mimics human behaviour as it was trained on human driving data.

Finally, a FNN to predict the electric current going to the electric motor of an Electric
Power Steering (EPS) system is proposed by [67]. The input features are the steering
wheel torque inputs by the driver and the vehicle speed. Their aim is to achieve EPS
which feels more natural to the driver, while avoiding the difficult parameter tuning of a
conventional PID controller. They found promising results, where their FNN controller
was more robust than a conventional PID controller.

A.2.4. NON-DRIVING RELATED TASKS
This section covers work done in ANN user modelling for tasks which are not related to
driving. Even though it is not related to driving, it does give a good overview of which
methods have shown to be promising in human modelling in other domains, broaden-
ing the scope of this report. This could be an inspiration for certain models or methods
to be implemented in automotive applications.

For example, the model developed by [68] predicts human motion using their own
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custom ANN called Motion Prediction Network where they use CNN layers to predict
the pose of the human. They also use meta-learning, which will be covered in Section
D.1, to learn new motion categories with limited data. A study by [69] also focuses on hu-
man activity, but specifically on activity recognition for Ambient Assisted Living systems.
These are systems which are used for humans who need extra care, such as the elderly.
They give a complete overview of the different modelling attempts in this domain, such
as LSTM models.

Furthermore, a popular domain for human behaviour prediction is Human-Robot
Interaction (HRI). The work by [70] tries to predict whether the human is going to take
the task over from a collaborative robot. They used a Spiking Neural Network, which is
inspired by the human brain. A RNN to predict the path of visually impaired humans
when following a guiding robot has been proposed by [71]. This knowledge would help
the robot to plan future actions while considering the human. Another aspect of HRI is
that the human can teach the robot to perform certain tasks, as proposed by [72]. They
created a modular architecture covering different aspects of performing a task. Thus,
they were able to implement ANN models from other work for tasks such as language
comprehension.

ANN is also popular for temporal modelling of other tasks besides human modelling,
such as in the chemical industry and investing. A RNN to model a reactor in a chemical
plant is proposed by [73], where they try to control the temperature of the reactor. The
model developed by [74] makes predictions in the Energy Market, where it tries to de-
termine the future electricity prices using a BiLSTM network. This model serves as an
advisory tool for investors.

Finally, the research done by [11] will be covered in more detail, as it provides an inter-
esting approach to human user modelling and applying HG to the user during a virtual
air hockey game. Figure A.20 shows the experiment setup on the left, where a haptic de-
vice is used to control the player’s paddle on the screen. On the right of Figure A.20, a
schematic overview is given of the different elements of their architecture.
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Figure A.20: The experiment setup (left) and HG controller architecture (right) [11].

Through RL, they have created an Optimal Action (OA) model, where two Artificial
Intelligence agents play against each other to develop the optimal policy to play the
game, which outperforms a human player. For a lane keeping task, this could be seen
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as following the centre of the lane very precisely. On the other hand, they have also cre-
ated a User Prediction (UP) model with a supervised ANN, which predicts the inputs the
human player is going to give through the haptic device. An example of this for lane
keeping would be the corner cutting human drivers sometimes do. The ANN is trained
on previously collected data from users playing the game without any HG.

Since every human is different from the other, a specific user would play the game in
a different manner. To close the gap between the base model and a specific user, they
use meta-learning to account for User Adaptation (UA) with a relatively small amount of
user-specific data. This means that the UP model gives better and more personal pre-
dictions for a specific user. Furthermore, their model gives the mean and standard devi-
ation as the prediction. They used the standard deviation to quantify the uncertainty of
the prediction, which could then be used to determine the level of HG. If the uncertainty
is high, the HG would be very soft or not activate at all.

From the two models, they tested three types of HG: OA-based, UP-based and a com-
bination of both. The combined method was implemented by taking the average of the
predictions from the two models. They also added an extra weight which lowers the out-
put of the combined method depending on the disagreement between the OA and UP
model. The results showed that the combined method of HG “exhibited a further de-
crease in user disagreement ... without reducing any objective and subjective scores”
[11].

A.3. PROPOSED BILSTM MODEL FOR THE HYBRID CONTROLLER
The architecture and hyperparameters of the BiLSTM model developed for the proposed
hybrid controller is defined in Chapter 2. This section describes the KPIs used to evaluate
the model and gives an additional analysis of the model’s performance.

A.3.1. KEY PERFORMANCE INDICATORS

The two KPIs, as defined by [12], are used to evaluate the intermediary models during
the tuning phase and the final model. The two metrics are the accuracy and smoothness
of the prediction

1) The accuracy of the prediction is described as

At = (1 ——RMSE(T -100 (A.8)
pred SD (Tdriver) ( pred)

where T¢q is the predicted SWT the driver is expected to give and Ty iy, denotes the
SWT the driver actually gave. Furthermore, the SD of the driver’'s SWT is defined as

1N 2
SD (Tgriver) = \j N Z (Ti,driver - /JTd,i,,e,) (A9)
i=1

and the RMSE of the predicted SWT to the driver SWT is defined as

(Ti,pred - Ti,driver)z-

M=

1
RMSE (Tpreq) = $ N (A.10)

i=1
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2) The smoothness of the prediction is described as the SD of the time derivative of Ty ¢q.
Thus, the smoothness metric is defined as

. 1 & 2
SMTPred =SD (Tpred) = N 1:21 (Ti,Pred - #Tpred) (All)
where a lower value represents a smoother prediction.

A.3.2. DATASET

The dataset was recorded by [12] on TME’s advanced driving simulator, where 7 partici-
pants took part in a total of 14 hours of driving in an advanced driving simulator. The task
of the participants was to drive on the middle lane of a three-lane highway, where they
only performed the steering task, as the vehicle was set to a constant speed of 100km/h.
The 2 hours of driving for each participant consisted of 24 different road scenarios with
different combinations of corners, where the data was collected at a rate of 100Hz. The
data was split into 50% for training, 25% for validation, and 25% for testing.

An extensive feature analysis has also been performed by [12] to find the most rel-
evant input features for predicting the steering wheel torque actions of the driver. The
relevant input features were shortlisted as the top 18 candidate features. The candidate
features have also been considered for the proposed hybrid controller. These input fea-
tures and their corresponding units are shown in Table A.1, where the first 11 features
are vehicle data features and the last 7 features are environment data features.

Table A.1: Candidate features [12] with the first 11 features being related to the vehicle and the last 7 to the
environment around the vehicle.

[ # ] Feature | Unit ||
1 Steering Wheel Angle rad
2 Steering Wheel Velocity rad/s
3 | Steering Wheel Acceleration | rad/s?
4 Lateral Velocity m/s
5 Lateral Acceleration m/s?
6 Slip Angle rad
7 Yaw Rate rad/s
8 Yaw Acceleration rad/s?
9 Roll Angle rad
10 Roll Velocity rad/s
11 Roll Acceleration rad/s?
12 Deviation Distance at Om m
13 Deviation Angle at Om rad
14 Road Curvature at Om 1/m
15 Deviation Angle at 10m rad
16 Road Curvature at 10m 1/m
17 Deviation Angle at 30m rad
18 Road Curvature at 30m 1/m
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Furthermore, since the raw data was used, the noisy input features were pre-processed
with a zero-phase low-pass filter. The filter settings were set as shown in Table A.2.

Table A.2: Low-pass filter settings.

I Parameter Value ||

Sampling frequency 100 Hz
Pass band frequency 10 Hz
Stop band frequency 15 Hz

Pass band ripple 0.01dB
Stop band attenuation | 60 dB

A.3.3. FEATURE ANALYSIS

This section covers a small part of the feature analysis done to determine the ideal set
of features for the proposed BiLSTM model. This will give an impression of the effect
certain features have on the KPIs. To eliminate influence from any other factors, the
hyperparameters have stayed constant while the weights of the model have been ini-
tialised with the same value for each set of features. The architecture of the model has
also stayed the same as the model mentioned in Chapter 2. The hyperparameters used
for this feature analysis are defined in Table A.3. Furthermore, only the training dataset
is used to train the model and the validation set is used to evaluate it. The test set is left
untouched as that has been used for the final evaluation described in Chapter 2.

Table A.3: Hyperparameters set for the feature analysis.

| Hyperparameter | Setting ||

Loss function MSE
Optimiser Adam
Learning rate 2.0*107°
Number of epochs 10
Batch size 500
Validation split 0.25
Historical window 0.5s
Prediction horizon 0.4s

CANDIDATE FEATURES
First, all 18 candidate features mentioned in Table A.1 have been tested. Figure A.21
shows the accuracy and smoothness scores of this model over the prediction horizon. It
also gives a fragment of the SWT predictions at t=0. The accuracy drops gradually over
the prediction horizon while the smoothness metric increases. The smoothness of the
drivers in the validation dataset is 2.29Nm/s, showing that this model’s predictions are
less smooth.

However, it should be noted that having more features also takes more epochs for
the model to fit the data properly. For example, training this exact same model for 170
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epochs gives the scores shown in Figure A.22, where it significantly improves in terms of
both accuracy and smoothness. Besides, having a more complex architecture with more
layers and nodes also results in better KPI performance for this feature set. Nevertheless,
that is beyond the aim of this section, as it attempts to showcase the effects of certain
types of features.
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Figure A.21: Accuracy (a), smoothness (b) over the prediction horizon and SWT prediction at ¢=0 (c) using all
18 candidate features.
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Figure A.22: Accuracy (a) and smoothness (b) over the prediction horizon and SWT prediction at =0 (c) using
all 18 candidate features, but with 170 epochs.

VEHICLE FEATURES

The second set of features only uses the data related to the vehicle, which are the first 11
features listed in Table A.1. Figure A.23 shows the performance of this model. It shows
improved accuracy at =0, but gradually gets worse over the prediction horizon. Addi-
tionally, it also performs worse in terms of smoothness over the entire prediction hori-
zon. This shows that only having the vehicle features improves the prediction into the
immediate future but does reduce the performance further into the horizon, while the
predictions overall are not smooth.

ENVIRONMENT FEATURES

Thirdly, only the features related to the environment around the vehicle are used. These
features are the last 7 features shown in Table A.1 and are data collected by the virtual
sensors of the vehicle which capture information regarding the path of the vehicle and
the relative deviation from it. Figure A.24 shows the performance of this model, where
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Figure A.23: Accuracy (a) and smoothness (b) over the prediction horizon and SWT prediction at ¢=0 (c) using
the vehicle data features.

a completely different behaviour can be seen. The accuracy has gotten worse, while
the smoothness has improved significantly. Furthermore, the KPIs stay approximately
consistent over the prediction horizon. The SWT predictions from this model also show
the effect of the improved smoothness, as the high to medium frequency oscillations
have been eliminated.

During the subjective evaluations performed with expert drivers on the driving simu-
lator to tune the BiLSTM model, as described in Chapter 2, it was found that this feature
set created the most pleasant SWT feedback due to the smoothness. Additionally, this
model is significantly smoother than the drivers in the validation set as it eliminates the
minor corrections humans tend to make while steering.
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Figure A.24: Accuracy (a) and smoothness (b) over the prediction horizon and SWT prediction at ¢=0 (c) using
the environment data features.

STRONGEST CORRELATED FEATURES
Thus, it has been shown that the vehicle data improves accuracy at =0, while the envi-
ronment data improves smoothness and creates more consistency over the prediction
horizon. Using all the candidate features has shown how these two types of feature sets
balance each other out. Lastly, it is interesting to look at the 10 strongest correlated can-
didate features, as determined by [12] and shown in Table A.4, to see how another com-
bination of the vehicle and environment features performs.

Figure A.25 gives the plots of this model. It shows that the model performs slightly
worse in terms of accuracy over the prediction horizon, except at =0, compared to
the model trained on all candidate features. However, it does show an improvement
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in smoothness over the entire prediction horizon. This difference can be explained by
fewer features being present in this feature set resulting in fewer epochs being needed
to fit the data. Nevertheless, this still shows the balance both vehicle and environment
features create between accuracy and smoothness, as the smoothness has improved due
to more vehicle features being eliminated from the set.

Table A.4: Strongest correlated candidate features [12].

I # ] Feature | Unit ||
1 Steering Wheel Angle rad
4 Lateral Velocity m/s
5 Lateral Acceleration m/s?
6 Slip Angle rad
7 Yaw Rate rad/s
9 Roll Angle rad

14 | Road Curvature at 0Om 1/m
16 | Road Curvatureat10m | 1/m
17 | Deviation Angle at 30m | rad
18 | Road Curvature at30m | 1/m
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Figure A.25: Accuracy (a) and smoothness (b) over the prediction horizon and SWT prediction at =0 (c) using
the strongest correlated features [12].

A.3.4. PREDICTIONS OVER HORIZON

Thus, the environment features were found to be the most optimal for a pleasant as-
sist. This section analyses the predictions made by the proposed BiLSTM model in more
detail, specifically focusing on the performance over the prediction horizon.

As described in Chapter 2, the BiLSTM model has a prediction horizon of 0.4s with
0.1s intervals. This means that a prediction is made at #=0s,0.1s,0.2s,0.3s,0.4s, explaining
the five outputs from the BiLSTM model. Figure A.26 shows those five predictions and
the driver’s SWT. The main differences between the predictions were found to be near
the absolute peaks of the torque-time curves. The absolute peaks are usually the lowest
for the predictions at t=0s and highest at r=0.4s. Furthermore, those absolute peaks also
happen earlier for t=0s, showing stronger anticipatory behaviour.
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This shows the predictions at #=0.4s to be slightly closer to the driver’s actual steer-
ing inputs, as it is closer to the peaks in the driver’s SWT. These characteristics are in
accordance with the KPI performance of the model where the accuracy and smoothness
metrics increase further into the prediction horizon, as was shown in Chapter 2.
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Figure A.26: SWT predictions made by the BiLSTM model over the prediction horizon at
1=0s,0.1s,0.25,0.3s,0.4s.

A.4. CONCLUSION

This appendix has focused on driver modelling using ML. First, an overview of ‘classical’
ML methods has been given, where HMM has shown to be a popular option. However, a
comparison between different ML techniques has shown ANNs to be a promising option
for driver modelling.

Subsequently, an overview of ANN implementations for driver modelling has been
given, where first the background information was covered of three popular types of
ANN. A FANN contains nodes which perform a weighted sum of the inputs and pass it
through an activation function. A CNN uses a filter to create a feature map of the inputs,
which highlights certain features of the data. A LSTM network uses gates to manage the
flow of information, where it is able to store information for its long-term memory. This
makes a LSTM network perform very well on sequential data.

These three ANN methods were also used by work related to lane change predictions.
The LSTM network appeared to be the most popular for the regression models which
predict the TTLC. This is due to LSTM layers extracting the temporal features of the data
well. These models already gave an impression of potential architectures.

This appendix also covered ANN models for the lane keeping task directly. However,
there were only limited studies available on this topic, with each using different types
of ANN. Still, the implementation of a BiLSTM looks very promising as it appeared to
outperform a regular LSTM, resulting in a BiLSTM network being developed for the pro-
posed hybrid controller. These studies also gave a good impression of the wide range of
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input features that can be used by the model. For example, EMG signals can be used,
which would require physical sensors to be placed on the driver, while it would also be
fine to only use the sensors already available on the vehicle to collect vehicle and envi-
ronment data.

Furthermore, models for other tasks were also covered, both driving and non-driving
related, where LSTM networks are still popular. These studies also form a great source
of inspiration due to the different methodologies used. For example, combining an OA
model with a UP model gave promising results for human-centric HG.

Lastly, the KPIs, accuracy and smoothness, used to evaluate the proposed BiLSTM
model for the hybrid controller have been defined. Additionally, the proposed BiL.STM
model’s performance has been discussed in more detail.



HYBRID CONTROLLER

This appendix covers the second element of the hybrid controller, the MPC controller.
First, a short introduction and background information will be given about MPC, as
the MPC design of the hybrid controller has already been defined in Chapter 2. This
will then be followed by an overview of methods considered to combine an ANN with a
MPC, including the method used for the proposed hybrid controller. This will serve as
an overview for potential future work on different configurations of hybrid controllers,
which can then be compared to the proposed hybrid controller.

B.1. MODEL PREDICTIVE CONTROL BACKGROUND

MPC is a strong tool for optimising the present control input while considering calcu-
lated future events within a time window. As the name suggests, MPC uses a model of
the plant for its predictions. This enables the algorithm to have an approximation of the
plant’s state. For vehicle control, for example, equations describing the dynamics of the
vehicle enable the prediction of where the vehicle will be a certain amount of timesteps
into the future. A more complex model would result in more accurate predictions, but,
as a trade-off, increases computational load.

MPC uses a finite horizon for its predictions, where the time window shifts along
with every timestep. This is also why MPC is referred to as Receding Horizon Control,
where there are two horizons defined. One is the prediction horizon N, which gives
the number of timesteps to be predicted during each iteration. The other is the control
horizon N, which gives the number of control steps to be optimized in every iteration,
where it has to be lower than or equal to N,,. They are often set to the same horizon
length N.

The optimization is done using a cost function, where the aim is to minimize the
cost over the horizon, while also considering the constraints set. During each control
step, iterations are performed to obtain the minimum cost, after which the control input
from the first timestep in the horizon is sent to the plant. One timestep later, the new
state is measured and the MPC optimisation process is repeated. Figure B.1 shows a
scheme portraying what the optimisation process does.

47
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Figure B.1: Optimisation scheme of MPC. Adapted from [13].

MPC has become a popular control option for the automotive industry in recent
years. For example, MPC has been used for stability and traction control implemen-
tations [75] [76]. Furthermore, it has also been used for lane keeping and obstacle avoid-
ance tasks [77] [78], among many other tasks.

B.2. METHODS

This section covers four different methods to combine an ANN model with MPC. The
ANN introduces human modelling into the overall controller. If the controller only used
MPC, it would need a complex model to describe the non-linear behaviour a human
portrays. The ANN results in simplifying the MPC, where the MPC serves the purpose of
optimally controlling the vehicle while considering the constraints. The MPC controller
also introduces robustness as it considers the accurate following of the centre of the lane
along with the driver’s behaviour.

Firstly, the method used for the proposed hybrid controller, as described in Chapter
2, is where the output of the ANN is used as a reference for the MPC, as shown in Figure
B.2. Thus, along with the path reference, a reference steering torque is passed onto the
MPC. Based on the weights set, the effect of the ANN can be manipulated to a pleasant
controller which offers both a good path tracking performance and shows more human-
like behaviour. This method has been inspired by [33], where they used a HMM to pre-
dict the driver’s steering input and used it in the cost function of the MPC controller.
However, their approach uses the steering wheel angle and the HMM only makes a pre-
diction for one timestep. Thus, they use a bicycle model to predict the input features
for the next timestep with which the HMM makes another prediction. This is repeated
until all the steering wheel angle predictions are made over the prediction horizon. This
limitation has been overcome by the proposed BiLSTM driver model, which makes a
prediction over the whole prediction horizon with one pass.

An advantage of this method is that it uses the ANN prediction during optimisation.
It also allows for the ANN to make predictions into the future, which can then be used
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as the reference for the prediction horizon. However, the new weight needed to account
for the extra reference could make the tuning process more complicated.
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Figure B.2: (Method 1) ANN prediction used as a reference for the MPC controller. This method has been used
for the proposed hybrid controller.

Secondly, a relatively simple method would be to use the ANN and MPC in parallel
and take the average of both outputs. This is inspired by the work implemented by [11],
covered in Section A.2.4, where they take the average of their OA and UP model. Figure
B.3 gives a schematic overview of this method. The MPC remains a simple path follower
where it tracks the centre of the lane, while the ANN predicts human steering behaviour.
It is also possible to use a weighted average which could be manually tuned, or could be
based on the uncertainty of the prediction of the ANN. An advantage of this method is
that it is relatively easy to implement. However, the main disadvantage is that the ANN
prediction is not taken into account during the optimisation steps of the MPC. Thus, the
ANN predictions are not considered for control actions in the horizon.
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Figure B.3: (Method 2) Taking the average of the outputs from the MPC controller and ANN model as the
control input.

Thirdly, a method which also passes its ANN prediction to the MPC, but now as con-
straints, is inspired by [79], where they adapt the constraints for the MPC based on the
prediction of their LSTM model. Their LSTM model predicts the motions of surrounding
vehicles, which then changes the boundaries of where the ego-vehicle could go. A sim-
ilar method could be applied for the LKA controller, where constraints could be set on
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the control input from the MPC based on a range predicted by the ANN model, as shown
in Figure B.4. This would force the MPC to find a control input closer to the ANN pre-
diction, making it feel more human-like. An advantage of this method is that the control
input is optimized with the ANN prediction in mind. However, it could result in more it-
erations to meet the new constraints, or even lead to instability if the constraints cannot
be met.

ANN prediction

Constraints l lCost function
Vehicle state ( MPC

I ]
Optimisation )
< > Assist torque

Vehicle model

Reference path

.

Figure B.4: (Method 3) ANN prediction used to adapt the constraints of the MPC controller.

Finally, it would also be an option to use the ANN as the plant model, or a part of it.
For example, an ACC with MPC has been proposed by [80], where they use an ANN to
predict the speed of the vehicle after a throttle or brake input. Thus, the ANN learns the
vehicle characteristics as a way to model the plant. Their reasoning is that a mathemat-
ical formulation of the engine mapping is complicated to develop, where an ANN can
learn it based on data. A similar method has also been implemented in the chemical in-
dustry [81], where they propose an ANN to model the reactor, which is being controlled
by MPC.
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Figure B.5: (Method 4) ANN used to model the plant within the MPC controller.

This could also be done for the human-centric LKA, where a part of the plant mod-
elling could be done by the ANN, as shown in Figure B.5. Specifically, the ANN could
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only focus on driver modelling and the vehicle dynamics equations would stay. How-
ever, it is also possible to cover both the driver modelling and the vehicle dynamics with
the ANN. An advantage of this method is that it is a direct part of the optimisation loop,
where the ANN makes predictions for the horizon. A disadvantage is the data needed for
the ANN, especially when it also covers the vehicle dynamics, becomes more complex.
Besides, the computational load increases significantly due to the ANN model being run
significantly more often, which could lead to a compromised ANN model.

B.3. FORCESPRO SETTINGS

This section gives the settings used for the MPC solver created with the FORCESPRO [82]
software. FORCESPRO is a licensed software for generating numerical solvers for optimi-
sation problems, mainly MPC. The solvers can be generated from MATLAB and Python
[83], where the optimisation problem is described. The solver can then be run in MAT-
LAB, Simulink, C/C++ and Python. FORCESPRO credits itself for being able to generate
fast solvers, making it the software solution used for the proposed hybrid controller as it
has to run real-time in the driving simulator.

Table B.1 gives the M PC settings, as was already discussed in Chapter 2. The sampling
time of the MPC controller T . is set at 100Hz as to match the standard CAN broadcast
frequency on driving simulators, while the sampling time of the simulation T g;,, the
non-linear plant, is set at 1000Hz. The prediction and control horizons are set to the
same length of 40 timesteps (0.4s).

Furthermore, Table B.2 gives the most relevant code options set for the FORCESPRO
software, while the rest of the code options was set to the default option. All the MPC
and FORCESPRO settings were tuned through trial-and-error to find a trade-off between
computational load (real-time), and system performance and stability.

Table B.1: MPC settings.

Setting | Value | Description

Ts,c 1-1072s | Sampling time of the controller
Tsplant | 1 10~3s | Sampling time of the plant (IPG CarMaker)
Ny 40 Prediction horizon
N, 40 Control horizon
Nyar 11 Number of variables
Teg 10 Number of equality constraints
Npar 13 Number of runtime parameters

B.4. SOFTWARE ARCHITECTURE

This section covers the software architecture used to develop and operate the proposed
hybrid controller. Different programming languages and software were used to work in
cohesion, specifically, Python [83], MATLAB, Simulink, FORCESPRO [82] and IPG Car-
Maker. Figure B.6 shows which elements of the hybrid controller use which software,
where there are also overlapping software.
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Table B.2: FORCESPRO settings.

Code option Setting Description
maxit 200 Maximum number of iterations
nlp.integrator.type ERK4 Type of integrator for the continu-
ous dynamics
nlp.integrator.Ts 1-1072s Discretization interval of the inte-
grator
nlp.integrator.nodes 5 Number of integrator nodes per
interval

nlp.hessian_approximation | gauss-newton | Defining the method to compute
the Hessian of the Lagrangian

function
nlp.ad_tool casadi-351 Defining the algorithmic differen-
tiation tool
optlevel 3 Compiler optimization level
solvemethod SQP_NLP Defining the solve method used by
the generated solver
sqp_nlp.use_line_search 0 Internal line search

First, the ANN was developed in Python using the library PyTorch [84]. The reason for
using Python was the popularity and community support for ML related programming,
also creating more room for future developments such as user adaptation. Initially, the
TensorFlow [85] library was used to develop the ANN, but it was found that it introduced
issues when cooperating with MATLAB and Simulink, which were eliminated with the
use of PyTorch.

The reason that these Python libraries had to cooperate with MATLAB and Simulink
is due to the proposed hybrid controller having to work in Simulink, as TME’s high-
fidelity steering model [86] for the simulation was implemented in Simulink and as the
communication with IPG CarMaker also went through Simulink. To accommodate the
ANN model in Simulink, a Python environment was created within MATLAB. The model
would first be saved as a PT file after training. This model then getsloaded into MATLAB's
Python environment. It was not possible to load the model directly into Simulink by the
code generator, thus the ‘coder.extrinsic’ option was used to load the model through the
MATLAB engine within Simulink.

Loading the model was done through object-oriented programming, where a class
was created within Python. During the initialisation of the class, the model gets loaded
resulting in the model only getting loaded once, reducing the computational load. Fur-
thermore, the class contains a function which passes the input data to the model and
gets the SWT predictions from the model. Summarising this process, Simulink passes
the input features for the ANN model coming from IPG CarMaker to the MATLAB en-
gine, which passes it onto the Python codes, where the input features are fed into the
ANN model. The predictions are then sent back to the MATLAB engine and back into
Simulink. It was tested that this process had an insignificant computational load. The
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prediction is then used by the MPC solver.

The optimisation problem for the MPC solver is defined in MATLAB using FORCE-
SPRO. FORCESPRO then generates the solver based on the problem formulation, de-
scribed in Chapter 2, and the settings, mentioned in Section B.3. The solver is generated
on the servers of FORCESPRO and sent back to the local computer, as it is a licensed
product. This introduced issues as TME’s firewall blocked any communications with the
FORCESPRO servers. This was eventually solved by avoiding the certificate verification
of the servers.

The generated MPC solver is then used in Simulink, where it receives the ANN model’s
SWT predictions along with the other input signals. The optimised assist torque is then
passed into the high-fidelity steering model, which simulates the steering dynamics.
Subsequently, steering signals are then sent to IPG CarMaker where the vehicle dynam-
ics and experiment scenario are simulated. To have improved graphics, rFpro is used to
project the driving scenario onto the screen of the driving simulator. Finally, the vehicle
states are retrieved from IPG CarMaker to repeat the controller loop.
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Figure B.6: Software architecture of the proposed hybrid controller.

B.5. CONCLUSION

In conclusion, this appendix gave a brief technical introduction to MPC, where its strength
and popularity became clear. It also covered four potential methods for combining an
ANN and MPC.

The first method, where the ANN prediction is used as a reference, has been used
for the proposed hybrid controller as it was considered to be the most viable method. It
allows for a modular implementation, as the ANN and MPC can be considered separate
systems during development, but the ANN prediction is still taken into account during
the optimisation steps of the MPC. It is also easier to ensure stability and it provides more
room for tuning due to the weights when compared to the third method, where the ANN
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predictions would be used as constraints.

Besides, the computational load for the first method is lower when compared to the
fourth method, where the ANN models the plant. This is due to the ANN only making
one prediction for every control step in the first method, while it would have to make a
prediction for every optimisation step in the fourth method. However, this does mean
that the ANN in the first method would have to make predictions into the future which
fit in the horizon of the MPC, as has been done for the proposed hybrid controller.

Additionally, the settings for the FORCESPRO solver of the proposed hybrid con-
troller have been given. Lastly, the software architecture of the proposed hybrid con-
troller has been explained, where a combination of Python, MATLAB, Simulink, FORCE-
SPRO and IPG CarMaker has been used.



RESULTS AND DISCUSSION

This Appendix covers the subjective and objective results from the driving simulator ex-
periment in more detail, specifically covering more figures and tables to show the per-
formances of the controllers. Manual driving performance will also be covered briefly.
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Figure C.1: Boxplot of the subjective results and the questionnaire scores given by the participants.

C.1. SUBJECTIVE EVALUATION

Figure C.1 shows the boxplots obtained from the questionnaire results, including the
scores given by the participants. The plots show the variance in the participants’ an-
swers, where they had significantly different opinions in terms of the path tracking per-
formance and authority level, showcasing the contrasting preferences of the drivers. For

55
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the collaborative behaviour and smooth control questions, the participants appear to be
more in line.

To get a better image of the preferences of the participants, they were asked to rank
the four assists. Figure C.2 shows how many participants put each assist in the respective
rank. For example, 7 participants put the Hybrid-2 controller in first place, while 12
participants put the baseline LKA in last place. The Hybrid-2 controller has also been
placed in the third spot the most, while the Hybrid-1 and ANN assists stand out in second
place. This partly shows the preference of the participants in terms of the level of control
authority, where participants who prefer the controller to have more authority tend to
put the Hybrid-2 controller in third place.

Subi

rankings given by the particip
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Number of participants
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Given rank

Figure C.2: Rankings given by the participants based on their preferences.

Table C.1 shows the mean subjective scores and the SD, as was already discussed in
Chapter 2. Additionally, Table C.3 shows the results of the paired t-test for the subjec-
tive results, with the definition of the abbreviations shown in Table C.2. The paired t-test
demonstrates the statistical significance of the baseline LKA paired with the other con-
trollers in terms of the steering effort, collaborative behaviour and smooth control. This
highlights the difference in scores between the baseline and the proposed controllers for
these metrics.

Table C.1: Mean subjective results for the KPIs with the SD in parentheses.

Metric \ Baseline ANN Hybrid-1 Hybrid-2

Steering effort 5.80 3.53 3.67 4.00

8 1.26) (1.19)  (1.29) (1.36)

Tracking performance 4.60 5.73 540 4.53
&P (1.92) (1.03) (1.24) (1.73)

. . 2.47 5.27 5.47 5.40
Collaborative behaviour (1.36) (1.10) (L41) 0.91)
. 3.27 4.20 4.27 4.47
Authority level (1.83) (157  (1.33) (1.77)
2.00 5.33 5.27 5.60

Smooth control (1.13) (1.23) (1.44) (1.30)
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Table C.2: Symbols for the pairs used for the paired t-test.

Symbol | P-value comparison

A Baseline — ANN

B Baseline — Hybrid-1
C Baseline — Hybrid-2
D ANN < Hybrid-1
E ANN — Hybrid-2
F Hybrid-1 < Hybrid-2

Table C.3: Paired t-test p-values for the subjective results.

Metric A B C D E F

Steering effort <0.01 <0.01 <0.01 0.72 0.29 0.49
Tracking performance 0.06 0.25 092 024 0.01 0.13
Collaborative behaviour | <0.01 <0.01 <0.01 0.60 0.74 0.87
Authority level 0.14 0.06 0.04 088 072 0.66
Smooth control <0.01 <0.01 <0.01 0.84 0.50 0.33

C.2. OBJECTIVE EVALUATION

This section covers the objective evaluation of the assists. First, the KPIs will be defined.
Second, the results will be discussed in more detail with additional figures, where a com-
parison will also be made with no LKA on (manual driving).

C.2.1. KEY PERFORMANCE INDICATORS

This section defines the 15 KPIs used to evaluate the objective results, where 13 of the
KPIs are defined by [31]. The KPIs can be divided under the following five main cate-
gories: Steering effort, path tracking performance, collaborative behaviour, level of con-
trol authority and smooth driving.

STEERING EFFORT

1) Driver effort: Steering effort put in by the driver over the scenario time duration T,
defined as

T
S€Tariver :\[0 Ti'l‘l'l/erdt (C.D)

where T;,i,or denotes the SWT applied by the driver.

2) Controller effort: Steering effort put in by the assist torque of the controller, defined as

T
seTcuntr :](; T%ontrdt (Cz)

where T, denotes the SWT applied by the assist.
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PATH TRACKING PERFORMANCE
1) Lateral RMSE: Root Mean Square Error between the lateral position of the front axle’s
centre and the lane centre, defined as

RMSEy = (C3)
where N denotes the total number of datapoints and ey the lateral error.
2) Maximum lateral error: Absolute maximum lateral position error, defined as
€y max = max(|ey|)- (C4)
3) Mean lateral error: Defines as
1 N
E = = — Cvi. C.5
J’ l’tey N lzzl J’:l ( )
4) SD lateral error: Defined as
1 XY 2
Ge, =SD(ey) = | 2 (e —tte, ) (C.6)
Ni3

COLLABORATIVE BEHAVIOUR
1) Collaborative ratio: Ratio between the time when the driver and controller SWT have
the same sign and the total scenario time, defined as

I .
rcoz?ﬁ sign(TariverTcontr)dt if TariverTcontr = 0. (C7

2) Intrusiveness ratio: Ratio between the time when the driver and controller SWT have
the opposite sign and the total scenario time, defined as

17 ,
Tint = ?j; sign(TariverTeontr) dt if TgriverTcontr <O. (C.8)
3) Resistance ratio [87]: Ratio between the time when the driver and controller SWT have

the opposite sign and the total scenario time, if the driver SWT is bigger than the con-
troller SWT, defined as

I .
T're = ?L sign(TariverTcontr) dt i TariverTcontr <0and Tariver > Teontr-  (C.9)
4) Contradiction ratio [87]: Ratio between the time when the driver and controller SWT

have the opposite sign and the total scenario time, if the driver SWT is smaller than the
controller SWT, defined as

1T . .
I'cont = ?f(; sign (TariverTcontr) At i TariverTeontr <0and Tgriper <Teoner. (C.10)
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5) Coherence [88]: Cosine of the angles formed by the driver and controller SWT, where
a positive value indicates collaborative behaviour, defined as
T
_ f() TariverTcontrdt
L T '
\/fo T2 . dt [y T2, dt

driver contr

(C.11)

LEVEL OF CONTROL AUTHORITY
1) Level of control authority [88]: Ratio between the controller and driver steering effort,
defined as

SeTEOVlZV

Tauth = (C.12)

erriver

SMOOTH DRIVING

1) Steering Reversal Rate (SRR) [89]: Number of steering reversals, larger than the gap
value 6., min, per minute. The steering wheel angle and velocity data are filtered with
a second-order Butterworth filter with the cut-off frequency set at 0.6Hz, as to lower the
high-frequency noise. The number of steering reversals 7,¢y¢r54; 1S determined by the
number of times where

1051w (t1) = B0 (£2)] 2931,{/,ml'n:3deg (C.13)

where #; and t, are the timesteps of two consecutive moments where the steering wheel
velocity is equal to zero. The SRR is defined as

SRR = W -60. (C.14)

2) Driver smoothness: The SD of the driver SWT’s time derivative, as was described in
Section A.3.1, defined as

. 1N 2
SMTdriyer =SD (Tdriver) = N Z (Ti,driver - IJTd”-W,) . (C.15)
i=1

3) Controller smoothness: The SD of the controller SWT’s time derivative, defined as

2

. 1N
SMTL‘ontr = SD (Tcontr) = N Z (Ti,corltr _I'I'Tcontr) ° (C16)
i=1

C.2.2. RESULTS

This section covers the results obtained from the driving simulator experiment based
on the KPIs. It should be noted that for certain KPIs a representative value cannot be
obtained for the baseline LKA, as this controller is fundamentally different where the
assist torque values are determined to actuate on the steering column instead of the
steering wheel, resulting in significantly higher torque values. Thus, those KPI values are
omitted from the results.
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Figure C.3: Steering effort done by the driver and controller.

Figure C.3 shows the boxplots of the steering effort put in by the driver and the con-
troller. The baseline controller shows a significantly greater variance, indicating that cer-
tain participants managed to work better with the assist than others as they needed to
put in less effort to complete the lane following task.

Furthermore, the path tracking performance boxplots are shown in Figure C.4, where
the lateral error is the distance between the centre of the front axle and the centre of
the lane. The baseline LKA shows a higher variance in terms of maximum lateral error.
Overall, the mean lateral error shows a tendency of the participants to drive more on the
left side of the lane, which is potentially caused by the path having more left turns. One
participant also had the tendency to drive mainly on the left side of the lane, especially
with the ANN controller, resulting in higher lateral error values.
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Figure C.4: Path tracking performance of the four assists.

Figure C.5 shows the collaborative behaviour boxplots. As discussed in Chapter 2, the
proposed controllers significantly improve the collaborative behaviour of the driver with
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the assist compared to the baseline LKA. Specifically, the Hybrid-2 controller scores the
best, except for the resistance ratio where the Hybrid-1 controller shows the best results.
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Figure C.5: Collaborative behaviour KPIs.

The level of control authority boxplot is shown in Figure C.6, where the differences
in control authority are as expected due to the authority levels set in the controllers.

Level of control authority

Level of authority [-]

ANN Hybrid-1 Hybrid-2
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Figure C.6: Level of control authority of the assists.

Finally, the smooth driving boxplots are shown in figure C.7. These show that the
baseline controller is less smooth as it results in a higher SRR and driver smoothness
metric. Between the proposed controllers, the Hybrid-2 controller causes the driver to be
less smooth due to the lower control authority, but does result in a smoother controller.

Moreover, it is also interesting to compare the participants’ performance with the
assists on and without any assist on (manual driving). In this case, only 7 out of the 15
KPIs can be used for comparison. Figure C.8 shows the boxplots of the driver steering
effort, SRR and driver smoothness. As was expected, manual driving results in a higher
driver steering effort. Thus, the assists do lower the physical workload. Furthermore, the
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Figure C.7: Smooth driving KPIs.

proposed controllers do improve the SRR, while the baseline LKA causes the driver to be
less smooth than when driving manually, indicating poor collaborative behaviour.

The path tracking performance boxplots are shown in Figure C.9. Overall, the base-
line, Hybrid-1 and Hybrid-2 controllers result in a slight improvement in path tracking
performance. The ANN controller performs worse, which is due to the lack of the MPC
controller-in-the-loop, which would enforce better path tracking as is the case with the
hybrid controllers.
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Figure C.8: Driver steering effort, SRR and driver smoothness for manual driving and the four assists.

Finally, Table C.4 gives the mean values and the SD of the objective results, also in-
cluding the manual driving values. As mentioned earlier, KPI values which cannot be
determined for the baseline controller and for manual driving have been omitted. The
paired t-test results are shown in Table C.5, with the abbreviations defined earlier in Ta-
ble C.2. The light-grey shaded fields highlight the pairs which demonstrate statistical
significance for that specific KPI.
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Table C.4: Mean objective results for the KPIs with the SD in parentheses.

Metric \ Manual Baseline ANN  Hybrid-1 Hybrid-2
. 799.30 374.71 128.88 122.68 240.65
Drivereffort INm”s] | 3000 (g5gg)  (1722)  (13.95)  (2042)
Controller effort 363.15 368.71 193.28
[Nm? s] i i (21.05)  (14.94) (7.19)
0.34 0.33 0.38 0.34 0.33
Lateral RMSE [m] 0100  (0.09)  (0.11)  (0.10) (0.08)
Maximum e, [m] 0.93 0.88 1.00 0.87 0.88
Y (0.29) 0.27) (0.24) (0.21) (0.19)
Mean e, [m] 0.17 0.12 0.21 0.15 0.17
Y (0.15) (0.10) (0.13) (0.14) (0.12)
SD e, [m] 0.27 0.29 0.30 0.28 0.27
Y (0.07) (0.07) (0.07) (0.08) (0.05)
. . 0.38 0.76 0.77 0.81
Collaborative ratio [-] - (0.03) (0.03) (0.03) 0.03)
Intrusiveness ratio [-] - 0.62 0.24 0.23 0.19
(0.03) (0.03) (0.03) (0.03)
Resistance ratio [-] - - 0.14 0.12 0.13
(0.02) (0.02) (0.02)
Contradiction ratio [-] - - 0.10 0.11 0.06
(0.02) (0.02) (0.01)
0.69 0.70 0.84
Coherence [} - ; 0.04)  (0.05) (0.02)
Level of 2.88 3.05 0.81
control authority [-] ) ) (0.52) (0.44) (0.10)
Steering reversal rate 18.22 17.56 13.33 13.69 14.01
[reversal/min] (3.81) (3.66) (2.76) (2.47) (3.02)
Driver smoothness 2.75 3.16 1.98 2.00 2.17
[Nm/s] (0.28) (0.48) (0.37) (0.40) (0.41)
Controller smoothness 0.64 0.67 0.48
[Nm/s] i i (0.04) (0.05) (0.04)




C.2. OBJECTIVE EVALUATION 65

Table C.5: Paired t-test p-values for the objective results.

Metric | A B C D E F
Driver effort <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Controller eff. - - - 0.07 <0.01 <0.01

Lateral RMSE <0.01 0.36 0.78 0.01 0.01 0.45
Maximum e, 0.02 0.86 0.97 0.05 0.01 0.73
Mean ey, <0.01 0.07 0.01 0.04 0.01 0.51
SD ey, 0.28 0.29 0.02 0.10 0.01 0.30
Collaborative <0.01 <0.01 <0.01 0.36 <0.01 <0.01
Intrusiveness <0.01 <0.01 <0.01 0.36 <0.01 <0.01

Resistance - - - 0.02 0.69 0.05
Contradiction - - - 0.09 <0.01 <0.01
Coherence - - - 0.14 <0.01 <0.01
Authority - - - 0.01 <0.01 <0.01

Steering RR <0.01 <0.01 <0.01 0.57 0.33 0.57
Driver smooth. <0.01 <0.01 <0.01 0.76 0.02 0.03
Control. smooth. - - - <0.01 <0.01 <0.01




FUTURE WORK

Chapter 2 already discussed the recommended future work on the topic of human-centric
haptic control using a hybrid controller. This chapter gives more in-depth information
regarding one of the recommended points, namely User Adaptation UA through online
learning or meta-learning. This overview could be used as the basis of future work re-
garding UA, with meta-learning being an interesting option.

D.1. USER ADAPTATION

Every human is unique and portrays individual characteristic traits. For example, cer-
tain drivers might drive more on the right side of the lane or cut the corners more during
a lane keeping task. Overall, every driver tries to find his/her ideal balance between
lane keeping performance and maintaining a comfortable workload. However, having
an ANN trained on a large dataset with different drivers, results in a generalized model
which might not capture the small differences between each driver. To make the model
more tailored to a specific driver, UA could be used to slightly adapt the generalized
model to a specific driver. This section covers two UA methods, namely, online learn-
ing and meta-learning.

Online learning [90] [91] is a common method in ML, where the parameters of the
model are still updated while being deployed. Normally, a M L. model would be trained
offline on all the available data at the time with backpropagation, where the optimizer
tries to lower the loss function. For offline learning, the model would then be ready and
be deployed without being changed, until enough new data has been collected to redo
the whole process of offline training. However, for online training, the pre-trained model
is still being optimized by the new data being collected during operation. This is again
done using backpropagation and a loss function, but with only one datapoint or a small
batch of datapoints. This enables the online learning model to converge more towards
the new data. However, it is important that the correct output should be collected or
measured during operation, as that will be used to quantify the error in the model.

There is a wide range of methods and implementations for online learning. An overview
of a few methods and the main challenges with online learning is given by [92]. Unfortu-
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nately, there are not many online learning implementations for driver modelling. How-
ever, it is still popular in other domains. For example, in user typing input predictions
[93], where they try to predict the words the users want to type based on their gaze. An-
other example is the use of online learning for dialogue systems [94], where the system
tries to be more personal.

In recent years, meta-learning [95] has started to become popular for model adaptation.
Meta-learning is also referred to as “learning to learn”, where it tries to adapt itself to a
new context with limited new data. It essentially tries to capture the learning pattern
of the actual model, which enables it to understand the model better. This results in
only limited new data being sufficient to accurately adapt the model. For example, the
general model will be trained on a large dataset with different drivers performing the
lane keeping task. When a new driver is going to drive, only a few minutes of driving is
already enough data to personalise the model to the new driver. This results in better
predictions for that specific driver.

There is a wide range of meta-learning methods. A popular approach is the Model-
Agnostic Meta-Learning (MAML) [96] method. The previously discussed study by [11]
used the MAML method for their UA in their virtual air hockey game. They did this as
their previous work demonstrated that meta-learning provided fast UA with very limited
data of a new user, outperforming a typical ANN method [97].

Figure D.1: CAVIA method with the context parameters shown in the red box [14].

However, the MAML method updates all the parameters of the network, making it
more prone to overfitting the new data and being computationally heavy. That is why
the Fast Context Adaptation Via Meta-Learning (CAVIA) method has been proposed by
[14], where only a preselected set of parameters are updated. This set of parameters is
referred to as the ‘context parameters’, as it quickly adapts the network to the new task or
user, while the other parameters provide a generalized performance across many tasks
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or users, thus staying constant after the initial training. Figure D.1 shows the basic idea
behind the CAVIA method, where the red box contains the context parameters. The gen-
eral parameters, shown in the green box, are trained like a normal ANN during the train-
ing phase with a large dataset containing different users. They remain constant during
operation and only the context parameters are updated. The study by [14] showed that
the CAVIA method outperformed the MAML approach.

Furthermore, a new meta-learning algorithm has been proposed by [15], which was
inspired by the CAVIA method. They have implemented a second ANN which predicts
the initialisation for user-specific context parameters. Figure D.2 shows their method,
where the initialisation network determines the context parameters based on the new
user. The context parameters are then used together with the constant general parame-
ters to make the predictions.

Prediction Net Initialization Net

___________ - y
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MLP, |[MLP, |[MLPy, | (ML,

Weight
Encoder
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=
UL S
s

o o e =

Figure D.2: Meta-learning method developed by [15].

In their experiments, they used the virtual air hockey game from their previous work
in [11]. They compared two non-meta-learning baselines, where one was a fixed ANN
and the other a fine-tuned ANN with a few gradient steps based on the new user. They
also used five meta-learning algorithms as baselines, including the MAML and CAVIA
methods. The other three methods are Reptile [98], MAML with Model Regression Net-
work [99] and ANIL [100], which are all inspired by the MAML method. The results
showed that all the meta-learning models outperformed the non-meta-learning mod-
els for user-specific predictions. The CAVIA method outperformed the other baseline
meta-learning models. However, the proposed meta-learning method performed the
best with the lowest MSE. This shows that their new method works best for fast UA using
meta-learning.

Unfortunately, there were no papers found with a comparison between online learn-
ing and meta-learning. However, an online meta-learning method has been proposed
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by [101], where the online learning part gradually adapts the network to the task at hand
using new datapoints coming in, while the meta-learning part adapts the model to a
new task using batches of new data. Nonetheless, its performance has not been tested
against the previously mentioned meta-learning methods.
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