
 
 

Delft University of Technology

Traffic modeling for wildland-urban interface fire evacuation

Intini, Paolo; Ronchi, Enrico; Gwynne, Steven; Pel, Adam

DOI
10.1061/JTEPBS.0000221
Publication date
2019
Document Version
Accepted author manuscript
Published in
Journal of Transportation Engineering Part A: Systems

Citation (APA)
Intini, P., Ronchi, E., Gwynne, S., & Pel, A. (2019). Traffic modeling for wildland-urban interface fire
evacuation. Journal of Transportation Engineering Part A: Systems, 145(3), 1-15. Article 04019002.
https://doi.org/10.1061/JTEPBS.0000221

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1061/JTEPBS.0000221
https://doi.org/10.1061/JTEPBS.0000221


 

 2 

 

TRAFFIC MODELLING FOR WILDLAND-URBAN INTERFACE FIRE EVACUATION 

 

 

Paolo Intini*, Ph.D. 

Post-doctoral Research Fellow 

Technical University of Bari/Lund University 

4 via Orabona, Bari, 70100 (Italy)/Box 118, 221 00 Lund (Sweden) 

Tel: +390805963389; Email: paolo.intini@poliba.it; ORCID: 0000-0003-1696-8131. 

 

Enrico Ronchi, Ph.D. 

Senior Lecturer 

Lund University 

Box 118, 221 00 Lund (Sweden) 

Tel: +462227200; Email: enrico.ronchi@brand.lth.se 

 

Steven Gwynne, Ph.D. 

Senior Research Officer 

National Research Council Canada 

Montreal Road Building M-59, Room 225, Ottawa, Ontario K1A 0R6 (Canada) 

Email: steven.gwynne@nrc-cnrc.gc.ca 

 

Adam Pel, Ph.D. 

Associate Professor 

Delft University of Technology 

P.O. Box 5048, 2600 GA Delft (Netherlands)  

Email: a.j.pel@tudelft.nl 

 

*Corresponding author 



 

 3 

 

ABSTRACT 

Several traffic modelling tools are currently available for evacuation planning and real-time 
decision support during emergencies. In this article, we review potential traffic modelling 
approaches in the context of Wildland-Urban-Interface (WUI) fire evacuation applications. An 
overview of existing modelling approaches and features are evaluated pertaining to: fire-related, 
spatial and demographic factors, intended application (planning or decision support), and 
temporal issues. This systematic review shows the importance of the following modelling 
approaches: dynamic modelling structures, considering behavioural variability and en-route 
choice; activity-based models for short-notice evacuation planning; macroscopic traffic 
simulation for real-time evacuation management. Subsequently, the modelling features of 
twenty-three traffic models and applications currently available in practice and the literature are 
reviewed and matched with the benchmark features identified for WUI fire applications. Based 
on this review analysis, recommendations are made for developing traffic models specifically 
applicable to WUI fire evacuation, including possible integrations with wildfire and pedestrian 
models. 



 

 4 

 

INTRODUCTION 

 

Fires propagating near urban areas may often result in vehicle evacuations (Westhaver, 2017). Traffic modelling 1 

may be important for both evacuation planning and real-time emergency management (Chiu et al., 2007; Wolshon 2 

and Marchive, 2007). The present work focuses on traffic evacuation modelling in case of fires in 3 

Wildland-Urban-Interfaces (WUI).  4 

A wildfire is ‘an unplanned and uncontrolled fire spreading through vegetative fuels, including any structures or 5 

other improvements thereon’ (NFPA, 2013). If it develops where structures and vegetation merge in a wildfire-prone 6 

environment, this is generally called WUI fire (Mell et al., 2010). WUI fires may result in severe consequences for 7 

the population (Mell et al., 2010; Caton et al., 2016), at a worldwide level (Manzello et al., 2017). Climate changes 8 

(Jolly et al., 2015) and population growth near/in WUI areas may increase the WUI fires frequency and severity 9 

(Paveglio et al., 2015).  10 

However, only a limited number of traffic evacuation modelling studies addresses WUI fires, compared to other 11 

hazards (Kolen and Helsloot, 2012; Lindell and Prater, 2007; Wilmot and Mei, 2004; Wolshon, 2001). These studies 12 

mainly adopt trigger modelling (Cova, 2005; Li et al., 2015): wildfire spread models are used to define the timing of 13 

the evacuation order rather than its consequences. Trigger models can be dynamically integrated with evacuation 14 

traffic simulation, such as agent-based simulation (Beloglazov et al., 2016; Scerri et al., 2010) for wildfires or WUI 15 

fires (Dennison et al., 2007). These models could be helpful for evacuation planning (Wolshon and Marchive, 2007) 16 

and/or real-time decision support, in particular for fire-prone communities with several households and few 17 

evacuation routes (Cova et al., 2013).  18 

Given gaps in existing understanding, a multi-disciplinary research project has been initiated to specify a simulation 19 

system aimed at quantifying the WUI fire evacuation performances, considering pedestrian, fire and traffic 20 

components (Ronchi et al., 2017). This study presents the traffic component, starting from the review of existing 21 

WUI fire evacuation traffic modelling approaches. Factors potentially influencing the WUI fire evacuation process 22 

(Stewart et al., 2017) are then considered. For instance, communities including WUIs can be very different in terms 23 

of dimensions and population density (Wolshon and Marchive, 2007): the larger the affected area, the likely greater 24 

are evacuating traffic volumes (Southworth, 1991). Moreover, the area actually affected by the fire over time and the 25 
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traffic evacuation process itself depend on many factors such as fire type, vegetation, topography, environment (fuel 26 

load, wind, temperature, etc.) (Wolshon and Marchive, 2007).  27 

As a result of the review conducted, the suitability of different modelling approaches is proposed for different WUI 28 

fire evacuation scenarios and applications. Conclusions concerning WUI fire traffic evacuation modelling needs are 29 

then drawn, also highlighting current research gaps. 30 

REVIEW STUDY: METHODS AND GOALS  31 

In this section, the methods used for the review conducted and the goals of the review study are presented, starting 32 

from the reasons behind the conception of this article, and its contribution to the state of the art. 33 

 34 

Contribution to the state of the art 35 

Several review articles on evacuation modelling are available, which adopt various perspectives and/or with specific 36 

focus on different types of incidents. Several general review articles outlined methodologies and frameworks which 37 

can be used in different scenarios (e.g. Gwynne et al., 1999; Alsnih and Stopher, 2004,a; Pel et al. 2012). Several 38 

review articles regarding hurricane evacuation studies exist typically addressing traffic evacuation (Wilmot and Mei, 39 

2004; Wolshon et al., 2005,a,b; Huang et al., 2016).  There were previously  no systematic reviews of traffic 40 

evacuation modelling concepts, strategies and methodologies in case of wildfires/WUI fires  to the knowledge of the 41 

authors (Ronchi et al., 2017). This is in contrast with other areas of fire evacuation modelling, such as in 42 

underground infrastructures (Fridolf et al., 2013); buildings (Kuligowski et al., 2005; Kobes et al., 2010), and 43 

high-rise buildings (Ronchi and Nilsson, 2013), where several reviews exist.  44 

The contribution of this article is not just to produce a systematic review of previous research in the field of traffic 45 

evacuation modelling in case of wildfires/WUI fires, but may also help practitioners and developers of WUI-specific 46 

traffic evacuation models/applications, who may directly consider the discussion concerning the most suitable 47 

approach to be used for each modelling step. For this aim, a consistent review methodology was used, explained as 48 

follows. 49 

 50 
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General review methodology 51 

The framework used for the review is a four-steps modelling approach, generally applied to transport modelling 52 

(Cascetta, 2009; Ortuzar and Willumsen, 2011) but also to evacuation (Murray-Tuite and Wolshon, 2013; Pel et al., 53 

2012) and specifically wildfires (de Araujo et al., 2011). 54 

The review of existing traffic modelling approaches conducted here was then split into the two main stages 55 

composing the four-steps approach: travel demand modelling and traffic assignment. These two stages are then 56 

further divided into several steps. The modelling approaches adopted for each step can be different or integrated 57 

within a single stage (e.g. the traffic assignment may depend on the travel demand stage, Cascetta, 2009). However, 58 

in case of WUI fire evacuation, they could be considered independent (especially the Generation step), since the 59 

evacuation decision is generally not significantly affected by roads blocked by fire propagation (Alsnih et al., 60 

2004,b). Moreover, although several transport modes may be used, the main focus of the review is on road traffic 61 

evacuation. 62 

For each modelling stage/step, the most appropriate approaches to be used for a WUI fire traffic evacuation model 63 

have been identified. The identification of the most suitable approaches is based on existing literature concerning 64 

wildfire-related traffic evacuation and on a review of large-scale WUI fires (Ronchi et al., 2017). The recommended 65 

modelling features are then compared against existing traffic models.  66 

 67 

Transferability of results from other hazards and time scales to the WUI fire evacuation case 68 

The review conducted covered areas where WUI fire evacuation-specific literature was scarce or even unavailable. 69 

In this case, studies for other comparable hazards were considered, where the findings may still be relevant for WUI 70 

fires. For example, there are several studies in the field of hurricane evacuation modelling, which may be relevant, 71 

since hurricanes may be similar to wildfires in terms of both time and spatial scales compared to other  types of 72 

disasters (see Wang et al., 2016). Therefore, hurricane evacuation studies may act as sources, due to the large 73 

quantity of real physical and behavioural data collected (see e.g. the early study by Baker, 1979, 1991; or Hasan et 74 

al., 2010). Some of these results may be relevant for WUI fire evacuations too, while others may highlight the 75 
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uniqueness of the considered hazard and the difficult transferability of modelling approaches between different 76 

hazards (Baker, 1991). 77 

The transferability of evacuation modeling research outputs from the case of short-notice crisis due to generic 78 

hazards to the case of long-notice disasters was also considered, if relevant. In fact, research studies in short-notice 79 

crises (e.g. fire evacuation in buildings, see Kobes et al., 2010; and transportation systems, see Fridolf et al., 2013, 80 

such as metros and tunnels) provides a series of theories that can be useful to explain behaviours in disasters with 81 

more notice such as WUI fires. These studies were discussed in the appropriate sections, according to the specific 82 

simulation step of evacuees’ behaviour to which they are referred. 83 

 84 

Aims of the review study 85 

The systematic review of previous research is structured according to the four-steps of the traffic modelling 86 

procedure, with the aim of presenting the most suitable approaches and features for WUI fire evacuation for each 87 

modelling step. Secondly, the identified benchmark modelling approaches and features were examined in some of 88 

the most widespread traffic modelling applications, to test their potential applicability for a WUI fire evacuation 89 

scenario. 90 

The strategy used for this review study has different goals, and is as follows: 91 

• Define the state-of-the art of the research in the field of traffic modelling evacuation in case of WUI fires; 92 

• Suggest possible practical modelling solutions (i.e. approach to be used for a specific modelling problem 93 

and/or factors to be considered) for traffic modelers who should simulate WUI fire evacuation scenarios; 94 

• Provide a possible benchmark structure for the development of a future integrated traffic modelling 95 

framework specifically dedicated to WUI fires, based on the most suitable approaches and features 96 

highlighted for each modelling step; 97 

• Provide an overview of some existing software applications/modelling structures, in respect to their 98 

applicability to WUI fire evacuation scenarios, useful for addressing both researchers and practitioners to 99 

future studies/applications including simulations in this field. 100 

Hence, this study may be beneficial to researchers and practitioners in: 1) the short-term dissemination of 101 
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information and practical solutions for different modelling stages and scenarios; 2) the long-term period and the 102 

further development of modelling tools and simulation studies specifically dedicated to the considered hazard. 103 

 104 

TRAFFIC MODELLING APPROACHES FOR WUI FIRE EVACUATION 105 

Existing traffic modelling approaches for WUI fire evacuation scenarios are presented in Figure 1. Each approach 106 

adopted for each stage/step is discussed as follows. 107 

 108 

Travel demand modelling for WUI fire evacuation 109 

An initial travel demand modelling choice is between trip modelling approaches (Pel, 2017): trip-based or 110 

activity-based. In the trip-based approach (Cascetta, 2009; Ortuzar and Willumsen, 2011), the reference unit is the 111 

trip: Origin O - Destination D. The total demand of evacuation (one-way) trips is estimated at the aggregated level. 112 

It can be differentiated according to: population characteristics (e.g., considering vehicle availability, experience 113 

with fires), purpose (e.g., reaching shelters, departing, firefighting, rescuing), time period (based on the evacuation 114 

response over time and the hazard propagation), and available transport modes. The activity-based approach 115 

(Cascetta, 2009; Bowman and Ben-Akiva, 2001) consists of estimating the travel demand (number of trips) by 116 

modelling individual users’ activities. The Origin-(final) Destination trip evolves into a tour: a chain of trips 117 

including more Origins and Destinations. 118 

Typical trip chains for WUI fire evacuations are presented in Figure 2. Through this approach, the possibility of 119 

having joined trips with the same transport mode by individuals of the same household, is explicitly modelled. 120 

Firefighting/rescuing trips can also be explicitly considered. Depending on the desired level of analysis and 121 

modelling, the estimated tours may either be kept as such or can be converted into multiple trips (and conventional 122 

OD matrices). 123 

The two approaches mainly differ in modelling intermediate trips (Murray-Tuite and Wolshon, 2013). Since 124 

households are likely to evacuate as a unit (e.g. parents collect children before evacuating, (Stern, 1989)), then 125 

modelling intermediate trips may be crucial in no-notice evacuations (Murray-Tuite and Mahmassani, 2004; Van der 126 
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Gun et al., 2016). If they are ignored, the total trips could be underestimated and time estimates can become 127 

unreliable (Murray-Tuite and Mahmassani, 2004; Pel et al., 2010,b; Van der Gun et al., 2016; Liu et al., 2011). In 128 

contrast, in case of long evacuation processes, the impact of intermediate trips may be negligible and a trip-based 129 

approach may still be suitable due to the complexity of activity models (Murray-Tuite and Wolshon, 2013; Pel et al., 130 

2012). 131 

Hence, all scenarios including factors fostering an immediate evacuation process could make an activity-based 132 

approach preferable. Among fire-related factors, fast fire spread rates may drastically reduce the available time, 133 

leading to quicker evacuation. The WUI area among the interested area (and its topography) may affect the fire 134 

propagation. Moreover, in sparsely populated areas, the evacuation can be slower (Murray-Tuite and Wolshon, 135 

2013). The more appropriate approach will result from the assessment of possible trade-offs between computational 136 

issues and needed accuracy for a given area. 137 

 138 

Modelling trip generation in WUI fire evacuation 139 

Trip generation concerns the decision: stay/evacuate (Murray-Tuite and Wolshon, 2013), related to the evacuation 140 

demand estimation (towards safe places inside/outside the area (Cova et al., 2011)). The binary choice evacuate/stay 141 

can be modelled through random utility models or descriptive methods (Barcelò, 2010). However, the stay decision 142 

may involve some trips anyway (e.g. collecting family members, re-entry), potentially estimated by activity models.  143 

Random utility models can simulate the departure decision, mainly adopting logit structures. They estimate the 144 

probability to evacuate among n alternative options. The utility of the evacuation option depends on several factors 145 

such as experience with evacuation, fear of looting (Murray-Tuite and Wolshon, 2013), type of evacuation 146 

instructions (voluntary/mandatory) (Mozumder et al., 2008). Moreover, social networks may condition relationships 147 

between evacuees and then their behaviour (Sadri et al., 2017,a). Hence, the influence of social networks may be 148 

considered as another factor in the evacuation decision-making process. This influence was noted in the case of 149 

hurricane evacuations and may also be applicable in WUI fire evacuations. Besides of simple logit models, other 150 

research approaches may be used. For example, a latent class logit model may be employed, consisting of an ordered 151 

logit approach with demand and event inputs (latent class) to predict risk perception, and supply inputs to predict 152 
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evacuation choices (Urata and Pel, 2017), being inspired by empirical and socio-psychological evacuation studies. 153 

Mixed logit structures may also be used, that address different levels of characteristics of individuals, households, 154 

and social networks (Sadri et al., 2017,b). Descriptive methods, such as cross-classification, can also be employed to 155 

estimate evacuation participation rates (Murray-Tuite and Wolshon, 2013). Cross-classification methods consist of 156 

different steps: 1) stratifying the population into layers based on different variables, 2) assigning the number of trips 157 

to each combination of layers based on estimates (e.g. surveys) (Post, 2000). More elaborate descriptive approaches 158 

involve regression analyses (Ortuzar and Willumsen, 2011), conducted on variables similar to those suggested for 159 

logit models, used for estimating the total number of trips from each origin (transportation zone), for different 160 

purposes and time periods. 161 

Departure times can be estimated through empirical or activity models, in relation to the general structure of the 162 

travel demand: trip or activity-based. Empirical formulations (i.e. sigmoid or S-curve) can be used for representing 163 

the evolution of the percentage of evacuees from a given origin over time (Pel et al., 2012). Its application to WUI 164 

fires depends on factors such as % of WUI area, population, density, size of affected area, fire propagation speed. 165 

Moreover, a population sub-set may spontaneously leave before warnings (Murray-Tuite and Wolshon, 2013). 166 

Depending on the intensity and propagation speed of the WUI fire, evacuations may progress in a comparable 167 

manner to other hazards. For example, in hurricane evacuations, household location, type of destinations, 168 

socio-economic variables, notice of evacuation and decision-making characteristics of households were found to be 169 

related to the time at which people commenced evacuation (Hasan et al., 2013). Even if these factors are also 170 

equivalently influential in WUI fire evacuations, the associated times are likely to be different. In fact, hurricane 171 

evacuations may last for days (four days in the case study presented by Hasan et al., 2013), and a significant 172 

percentage of evacuees may still decide to evacuate very close in time to the hurricane landfall, or wait even more 173 

than 24 hours from the evacuation decision to the actual evacuation, according to different variables (Sadri et al., 174 

2013,b). These conditions may be different from typical WUI fire incidents. 175 

There are a number of existing theories and models of evacuee behavior that might also be instructive of WUI 176 

evacuation, mainly describing human behaviour in fires (see e.g. Wood, 1972; Bickman et al., 1977; Bryan and 177 

Bryan, 1977; Green, 1980; Sime, 1983; Proulx, 1993; Brennan, 1995; Brennan, 1996; Brennan, 1999; Groner, 1996; 178 

Yoshimura, 2000; Bruck, 2001; Santos and Aguirre, 2005). For instance, Canter’s model (Canter et al., 1980) could 179 
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be applied to the WUI fires as well. This model describes a behavioural sequence of actions, namely 1) 180 

interpretation, 2) preparation and 3) action. The potential actions which may take place increase in variety as the 181 

behavioural sequences unfold. Such a framework might be applicable to WUI fires as it relates to the decisions that 182 

person makes from the early stage of a fire and the uncertainties associated with them, whilst needing to place this 183 

decision in context. 184 

The number of trips for each time interval is estimated by multiplying the population, the participation percentage 185 

obtained from the binary logit (stay/evacuate), and the specific time-interval departure percentage from the S-curve. 186 

Another solution could be an integrated approach, with a binary logit sequentially repeated over time, considering 187 

the evolution of the response and the utility of evacuating (Pel et al., 2012). This could allow to dynamically 188 

consider the fire propagation and its effect on users’ choices (not relying on S-curves). 189 

A crucial factor in determining the number and the nature of trips in a given time period (before the actual 190 

evacuation trip towards the safe place) can be the location of people at the warning dissemination, or hazard 191 

perception (Van der Gun et al., 2016). This information may be achieved through activity-based population models, 192 

providing daily schedule patterns of households (Van der Gun et al., 2016; Castiglione et al., 2015). Specific activity 193 

patterns and trip chains for evacuation can be generated using logit models or computational models such as 194 

decision trees (Murray-Tuite and Mahmassani, 2004; Arentze and Timmermans, 2000; Timmermans et al., 2002). 195 

For example, comprehensive agent-based models covering aspects of travel demand (from trip generation to modal 196 

split) have been developed for hurricane evacuations (Yin et al., 2014; Ukkusuri et al., 2016). They may generate 197 

household activity-based travel patterns, by considering hurricane-related factors. Moreover, a traffic simulation 198 

module based on the same strategy is integrated in the model proposed by Ukkusuri et al. (2016 as well. 199 

In respect to the evacuation demand modelling, logit models may be preferable given their ability to capture the 200 

variables affecting the departure choice (Pel et al., 2012; Fu and Wilmot, 2007). Several studies (Murray-Tuite and 201 

Wolshon, 2013; Alsnih et al., 2004,b; Mozumder et al., 2008; Fischer et al., 1995) investigated the factors suitable 202 

for modelling the widlfire evacuation decision. In particular, the calibration of descriptive methods may require 203 

large data samples, especially if several layers are considered (Ortuzar and Willumsen, 2011). Hence, logit models 204 

could be preferable for largely populated and large-sized areas affected by the fire (especially for high WUI 205 

percentages, with more potentially endangered people). In this case, population density and fire propagation speed 206 
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may not affect the model choice. However, the fire propagation may influence the risk perceived by residents 207 

(Mozumder et al., 2008). Since descriptive methods are easier to implement, they could be preferred for real-time 208 

applications, for very dense and largely populated areas, high WUI percentages and adverse fire factors. 209 

 210 

Modelling trip distribution in WUI fire evacuation 211 

The final destinations of evacuation trips are safe places: households (if starting the trip from somewhere else), 212 

houses of relatives/friends, hotels/motels, official shelters/refuges, etc. (Cuellar et al., 2009). However, depending on 213 

evacuation, hazard types, fire propagation (environmental and fire factors); the target of evacuation modelling may 214 

be immediately reach the first possible safe place, rather than desired final destinations (Lindell and Prater, 2007). 215 

Two different modelling strategies can be used for the distribution step, namely descriptive and random utility 216 

methods.  217 

Among the descriptive methods, gravity models are mostly used for evacuation (Pel et al., 2012; Murray-Tuite and 218 

Mahmassani, 2004), and specifically wildfires (de Araujo et al., 2011). These models consider the estimated trips 219 

produced from a given origin, and the trips attracted by a given destination. They also include a constant (Cascetta, 220 

2009) and a disutility function associated with O-D travel costs. The attraction can be estimated considering several 221 

variables (e.g. population, number of hotels) (Cheng, 2007). The variables used for estimating the travel disutility 222 

generally include travel time, distance, and safety or congestion-related variables. Travel distance was successfully 223 

used in previous evacuation studies to calibrate gravity models (Cheng, 2007; Cheng et al., 2008). Additional 224 

variables such as predicted threat, network conditions and accommodation availability can be also used (de Araujo et 225 

al., 2011). 226 

Random utility models, such as multinomial logit models, are usually employed at the distribution stage to simulate 227 

the choice of destinations (shelters, safe places), according to their associated utility (Cascetta, 2009). Utilities can 228 

be estimated based on travel-related variables, similarly to descriptive methods. 229 

Nested logit models can be used to simulate hierarchical choices. The model firstly simulates the evacuees’ selection 230 

between different types of destinations, and hereafter, for each destination type (lower level nest, Figure 3), further 231 

choices between transportation zones (or households/structures). This strategy was used by Mesa-Arango et al. 232 
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(2012) to model destination choices in case of hurricane evacuations. They explicitly considered individual 233 

destinations such as public shelters, workplaces, churches and other shelters different than friends/relatives’ houses 234 

or hotels (as they accounted for 15 % of total destinations). This may be applicable as well for WUI fire scenarios if 235 

the shelter-in-place decision is an option considered for the evacuation process. 236 

The utilities related to the highest choice level (between different groups of safe places) can be modelled as a 237 

function of hazard, severity, income, evacuation size and types, age, ethnicity, education, income, pet ownership 238 

(Murray-Tuite and Wolshon, 2013; Whitehead et al., 2000). The utilities related to the lower level choices (between 239 

alternative zones/units for the same group of safe places) can be modelled as a function of variables such as travel 240 

distance, number of hotels, proximity to freeway (Cheng et al., 2008). However, since there could be several 241 

alternatives, multinomial logit models require a simplification in the alternatives.  242 

Similar nested structures can also be used to model evacuation trip chains in the activity-based approach. The first 243 

choice is between stay or evacuate and the conditional choices represent further travels to intermediate and final 244 

destinations (e.g. for collecting people, re-entry, relocating to another shelter). Nested structures can also be used to 245 

simulate a higher departure time choice and a lower destination choice (Cheng et al., 2009). 246 

In a no-notice (or very short-notice) evacuation, in which activity models may be particularly suitable (Murray-Tuite 247 

and Mahmassani, 2004), information about final destinations may be unimportant or irrelevant, given the immediate 248 

priority to leave the area (Lindell and Prater, 2007). In fact, people may only have the urgency of escaping from the 249 

danger. In an average working day, the behavior may be governed by familiar choices (Colonna et al., 2016; Intini et 250 

al., 2018) and descriptive/utility models may be applicable. A mixed logit model was used by Sadri et al. (2013)a, 251 

for describing routing choices in hurricane evacuations including household and evacuation-related variables. In 252 

no-notice evacuations instead, evacuees may likely be unfamiliar with the emergency conditions, having the driving 253 

parameters, such as speed or response time, affected (Colonna et al., 2016; Yanko and Spalek, 2014). Descriptive or 254 

random utility methods may be suitable for real-time decision support (especially descriptive methods, 255 

computationally less demanding). 256 

 257 

Modelling modal split in WUI fire evacuation 258 
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The main transport modes in WUI fire evacuations are vehicles on roads. In special circumstances, evacuation has 259 

also been conducted via sea and air (Ronchi et al., 2017). Public transport may be the only option for specific groups 260 

such as people in hospitals or jails. 261 

The main approaches suitable for WUI fire evacuation modelling are descriptive, random utility and activity models. 262 

Descriptive models estimate the probability of choosing a mode in a given time period, given its generalized cost. 263 

Random utility models estimate the probability to use a given mode in different manners, e.g., through 264 

multinomial/nested logit models (see Figure 3) if the elementary transport modes are previously grouped into higher 265 

level categories (walk, private, public transport). The mode-associated utilities can depend on the same factors for 266 

all transportation modes (travel times) or specific to a given mode, such as vehicles per adult per family (for cars, 267 

motorcycles, bicycles); transfers (buses); age (e.g., cars, motorcycles). A nested structure was used by Sadri et al. 268 

(2014) to model mode choices in the case of a hypothetical major hurricane evacuation. They found that special 269 

evacuation buses may be a consistent choice among evacuees - a finding which may be useful should it be 270 

transferrable to WUI fire evacuations. 271 

Random utility models simulating the mode choice can also be nested with other travel demand steps (e.g. 272 

destination/modes). Nested structures of random utility models could be used as well for the activity-based 273 

approach. In this case, trip modal split is conditional to the mode chosen for the tour. However, other intermediate 274 

choices should be modelled, concerning departure times, intermediate destinations and time windows of single trips, 275 

which may complicate this approach. Moreover, the mode may not be the last choice in the sequence (Castiglione et 276 

al., 2015). In fact, evacuees may not have private vehicles, yielding the destination conditional to the mode choice 277 

(e.g. bus). 278 

Activity models mainly use microsimulation for individual mode choices, and probabilistic approaches, e.g., Monte 279 

Carlo methods (Castiglione et al., 2015). Choices are predicted considering explanatory variables for individuals 280 

(and not for a population, as usual), but several simulation repetitions are needed to achieve convergence. The 281 

information needed for developing activity models could be obtained through post-WUI fire evacuation surveys. 282 

The choice of the most appropriate model is influenced by the need for considering multi-modality (Van der Gun et 283 

al., 2016). In fact, both private and public modes of transport might be used and the fire (and its evolution over time) 284 
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may dynamically influence the number/type of routes available. However, the modal split under emergency 285 

evacuation has not been investigated in depth in previous studies, focused on private transport (Murray-Tuite and 286 

Wolshon, 2013; Pel et al., 2012; Wu et al., 2012). 287 

In sum, activity models may be applied only given the availability of sufficient data. Descriptive and random utility 288 

methods could be used for both evacuation planning and real-time management, mainly due to their lower 289 

computational needs. An activity-based approach can still be pursued, by adapting random utility models through 290 

nested structures. The modal split sub-models of the descriptive and random utility approaches should be possibly 291 

coupled with wildfire models (similarly to trip distribution), taking into account the progressive modal elimination 292 

due to the fire spread. 293 

 294 

Traffic assignment for WUI fire evacuation 295 

Different levels of refinement and strategies can be used for traffic assignment in WUI fire evacuation scenarios. 296 

These include a strategy for modelling the chosen routes, tools for simulating the network flows, and interactions 297 

between evacuees.  298 

The possibility of considering traffic variations over time (static or dynamic approach) is another important 299 

modelling question. A static assignment will generally rely on loading a typical peak-hour OD matrix into the 300 

network. In a dynamic approach, the traffic loading and users’ route choices are variable over time instead. 301 

Previous studies argued that the static approach is inappropriate for modelling traffic evacuations (Pel et al., 2012; 302 

Van der Gun et al., 2016). In fact, the conditions could be different during an emergency than a typical working day: 303 

evacuees may be disoriented, unfamiliar and have incomplete information (Pel et al., 2012). 304 

Moreover, the possible dynamic WUI fire evolution and its subsequent impact on the network (e.g. inaccessible link 305 

or with reduced capacity due to the smoke/fire), on traffic assignment and departure time distribution should be 306 

necessarily considered. In case of WUI fire evacuations, the variability of the traffic assignment characteristics 307 

among each base time unit of the simulation should be taken into account. The route chosen by drivers may be 308 

influenced by the evolution of the traffic flow over time indeed. The dynamic assignment considering the variability 309 
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of the traffic parameters in the simulation time unit is henceforth referred to as ‘Dynamic Traffic Assignment’ 310 

(DTA). A static approach may still be applicable for some objectives, such as obtaining a rough estimate of the total 311 

network clearance, by loading the whole estimated evacuation trips on the network. 312 

 313 

Modelling route choice 314 

In route choice-related evacuation research, people are deemed to take different decisions in similar conditions: 315 

concept of behavioural uncertainty (Ronchi et al., 2014). This is reflected in the use of deterministic or stochastic 316 

approaches for pre-trip decisions in a user equilibrium approach. As the algorithms relevant for WUI fires are 317 

mostly dynamic (i.e., Dynamic Traffic Assignment, DTA), deemed as appropriate for general evacuation modelling 318 

(Pel et al., 2012), the corresponding alternative route choice dynamic modelling approaches are summarized in 319 

Table 1. 320 

Uncongested assignment algorithms are sub-cases of the congested case, excluding the iterative update of flows and 321 

costs. Hence, only the assignment for congested networks is taken into account here. Dynamic deterministic and 322 

stochastic approaches are then reviewed. The deterministic approach allows the consequences of a specific set of 323 

behaviours to be established for ensuring a specific response; while stochastic approaches establish both the likely 324 

response and their consequences with less control over specific responses enacted. 325 

Deterministic approach: DUE versus DSO. The techniques for solving the DTA problem through a deterministic 326 

approach reach the equilibrium through iterations. Two equilibrium conditions are usually considered (Wardrop, 327 

1952; Ortuzar and Willumsen, 2011): 328 

• Dynamic User Equilibrium (DUE). For evacuation this entails that in networks in which congestion varies 329 

over time, at the equilibrium condition, at each instant, the generalised costs on all routes used by the 330 

evacuees are equal and less than those of any unused alternative route. This may be generalized for 331 

considering different departure times (Ortuzar and Willumsen, 2011).  332 

• Dynamic System Optimum (DSO): For evacuation this entails that at the equilibrium condition, evacuees 333 

follow routes such that the total sum of generalised costs as experienced by all evacuees is minimal. 334 
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Stochastic approach: Dynamic SUE. Stochastic route choice is only based on the UE approach. Route choice is 335 

modelled through random utility models (Ben-Akiva and Lehman, 1985), accounting for behavioural variability, 336 

such as multinomial/nested mixed logit (Ortuzar and Willumsen, 2011), probit  models (Cascetta, 2009). Logit 337 

functions can be adapted for considering the overlapping of alternative routes (Ben-Akiva and Bierlaire, 1999). 338 

Typically, the utility of routes depends on their cost, mostly based on travel time, even if tolls could mostly be 339 

disregarded during evacuations. Stochastic algorithms for performing the network loading under the UE condition 340 

are generally adapted from the deterministic case, achieving convergence as well (Sheffi, 1985). 341 

Additional to these DTA variants, the dynamic recourse assignment can take into account when travellers instead 342 

rely on actions en-route in response to unfolding traffic conditions (Peeta and Hsu, 2009; Pel et al., 2009). Route 343 

choice could then be rooted in pre-trip decisions, but the ultimate route decisions are simulated en-route. En-route 344 

decisions should take into account the behavioural variability in adjusting the initial choices, by reacting in real-time 345 

to unexpected situations (threat evolution). Hence, for en-route decisions (and the hybrid route choice), stochastic 346 

route choice modelling is preferred (Pel et al., 2010,a). 347 

From a modelling perspective, an optimal destination can be set individually or globally before the trip starts 348 

(pre-trip choice): designated shelters, house of friends/relatives, hotel/motel. Evacuees will tend to reach them 349 

through familiar routes, potentially preferring motorways (Chiu and Mirchandani, 2008). Familiar routes were also 350 

preferred to routes recommended by the officials in hurricane evacuations (Sadri et al., 2013,a). However, those 351 

routes may be affected by the threat (e.g. smoke or broken links). En-route decisions can lead to switching routes 352 

through reactive behaviour. Hence, a hybrid (both pre- and en-route) choice process is generally recommended for 353 

WUI fire evacuations, similarly to what is recommended for other scenarios (Pel et al., 2012). A stochastic route 354 

selection model and the related assignment algorithm (Dynamic System Recourse Assignment, possibly rooted in 355 

pre-trip (UE) route decisions) should be preferred, since it includes behavioural variability of en-route choices.  356 

Some theoretical basis for modeling complex route choice processes can be found in the literature, by also 357 

transferring research from other hazards or generic time scales. The theory of affiliation (Sime, 1984) can be used to 358 

discuss the misconception that people should assume the use of the shortest route when representing emergency 359 

evacuations. This theory suggests that people are more likely instead to move towards the familiar, i.e. people or 360 

places that they know. A person’s role can also be significant (as discussed by the role-rule model, see Sime, 1985), 361 
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as people who are familiar with a certain evacuation route may serve as leaders for others. This is linked to the 362 

process of taking decisions in groups during WUI fire evacuation. These decisions can be explained with social 363 

influence studies performed for short-term crises (e.g. building fires) (Deutsch and Gerard, 1955; Lovreglio et al., 364 

2015). Social influence can be divided into normative social influence (the influence to match the expectations of 365 

others, which in this case may be the decision to leave the property made by a neighbor or the routes chosen by other 366 

decision makers) and informational social influence (the influence to accept information obtained from others about 367 

the current situation). 368 

On the other hand, the need for a deterministic approach may arise while using system optimization (SO) 369 

techniques, aiming at achieving the minimum cost for road users. In a planning stage, a SO approach will suggest to 370 

authorities the optimal routes to be prescribed (e.g. through intelligent transport systems) in order to minimize total 371 

travel times, and then the network clearance time (Sbayti and Mahmassani, 2006). Population and density may play 372 

a prominent role in selecting a SO approach for WUI fire evacuations. In fact, the simulation of evacuation 373 

management through real-time instructions can be obtained with a SO approach, to study reduced congestion during 374 

evacuation in large and densely populated cities. However, in the simulation of mandatory evacuation orders through 375 

the SO approach, with routes ‘prescribed’ by the authorities based on the evacuation planning analysis, two matters 376 

should be highlighted: 377 

1) Evacuees may not follow the instructions (non-compliance); 378 

2) The true evolution of WUI fires can be faster or different compared to the simulated scenario. 379 

Hence, for real-time evacuation management, even if the SO approach was used in a planning stage, real-time 380 

en-route decisions should be considered. They may be based on the actual network conditions related to fire 381 

propagation and size of the affected area. However, the compliance rate of evacuees could be simulated in advance 382 

while designing evacuation plans (Pel et al., 2010,a), by optimizing evacuation plans accordingly (Pel et al., 2010,c; 383 

Fu et al., 2015). Adaptive real-time frameworks for evacuation management can be used as well (Liu et al., 2011). 384 

 385 

The impact of background traffic 386 
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Background traffic (including normal activities, shadow evacuation (Murray-Tuite and Wolshon, 2013) and 387 

rescue/emergency services) (Van der Gun et al., 2016) should be considered in traffic evacuation modelling. 388 

Otherwise, congestion may be underestimated and network capacity overestimated, as background traffic can 389 

amount to a substantial part of the overall traffic and cause crossing flow conflicts (i.e. orthogonal and counter 390 

flows).  391 

Background traffic can be considered in two ways: by loading an additional OD matrix on the network, or using an 392 

activity-based approach. The first approach relies on OD matrices disaggregated into time intervals, iteratively 393 

assigned to the network (Wu et al., 1998). The main evacuation OD matrix represents the traffic evacuating from the 394 

threatened area in a given period. However, another matrix may be used accounting for the background traffic, such 395 

as an average or peak-hour OD matrix (worst possible case, see (de Araujo et al., 2011) for wildfire evacuation). In 396 

the latter case, this share could be predominant among the components of the background traffic, and then include 397 

the others. More sophisticated results can be obtained through activity models, used to identify the household travel 398 

patterns in a normal working day (Van der Gun et al., 2016). 399 

Some of the factors considered for WUI fire evacuations may lead to relax or strengthen the need for representing 400 

background traffic. Quicker evacuations would be associated with a higher importance of the background traffic. In 401 

fact, in longer evacuations (e.g. lasting > 1 day), the effect of background traffic may be diluted over time, thus 402 

being important only at the beginning. However, this may be not applicable if evacuations are completed within one 403 

day or faster (Hardy and Wunderlich, 2009). 404 

Population may be influential since a highly populated zone will more likely be associated with a higher share of 405 

daily travellers composing the background traffic. The size of the area affected can be important for determining the 406 

evacuation speed. Moreover, the larger is the area affected by the fire, the larger could likely be the shadow 407 

evacuation traffic coming from other zones endangered and crossing the area under study (see Dow and Cutter, 408 

1998, for hurricanes; and Lamb et al., 2011, for floods). This also depends on the network configuration and the 409 

position of the area in the region. 410 
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The modelling approach for representing background traffic largely depends on the travel demand approach chosen. 411 

If an activity-based approach was selected, then it can be used for assessing the background traffic, thus likely being 412 

more accurate. Otherwise, the estimate may be based on a worst-case scenario through peak OD matrices.  413 

 414 

Traffic simulation modelling 415 

Different simulation techniques can be used for network loading, all potentially suitable for WUI fire evacuations. 416 

They can be divided into different categories according to: a) the scale of flow representation (not necessarily 417 

restricted by the scale at which the travel demand was computed (Van der Gun et al., 2016b)), b) the functions 418 

relating traffic flows to travel times (and costs). The three existing methods are macroscopic, microscopic and 419 

mesoscopic simulation.  420 

Macroscopic simulation. In the macroscopic simulation, link flows, speed, density, travel times and capacity are 421 

explicitly determined at an aggregated level; while individual route choices are not modelled (Burghout, 2005). For 422 

dynamic applications (DTA), inputs are continuously updated, and performance measures recalculated. The WUI 423 

fire propagation may cause a broken link, inaccessible by vehicles. The fire-fronts may arise at great distances from 424 

each other (i.e. kilometres, because of spot fires due to embers). The fire propagation will also produce smoke, 425 

potentially spreading from the fire front at varying distances, and affecting traffic evacuation behaviour. In fact, a 426 

link could be either broken or with reduced capacity. Such effects should be considered by updating over time the 427 

speed-density relationship for those links. 428 

In this regard, a comparison with fog, and adverse weather in general, could be useful. Adverse weather conditions 429 

were found to greatly affect the capacity, the speed at capacity and the free flow speed (Rakha et al., 2007). 430 

However, the same evidence found for rain was not found for fog, which may have the closest resemblance to 431 

smoke regarding visibility. Limited and contradictory research findings have been retrieved in this area, showing 432 

speeds and capacity decreasing in foggy conditions (e.g. Hoogendorn et al., 2010) or speeds even increasing (e.g. 433 

Snowden et al., 1998). 434 

Moreover, drops in capacity may generally be found during emergency evacuations (Sullivan et al., 2010). Most 435 

evacuees are unfamiliar with the evacuation driving condition, and this may also lead to speed reductions with 436 
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respect to the familiar condition (Chiu and Mirchandani, 2008; Charlton and Starkey, 2013). Hence, given the 437 

unclear influence of fog on traffic parameters, a reduction in capacity and speeds may be prudentially assumed. 438 

Microscopic simulation. For the application to WUI fire evacuations, different variables should be modified in the 439 

sub-models embedded in microscopic models (car-following, lane changing and gap acceptance models). These may 440 

include target speeds, desired spacing, reaction times, aggressiveness; which determine speed differences, 441 

accelerations/decelerations, headways, etc. Consistent quantitative estimations of those parameters in emergency 442 

conditions are lacking (Tu et al., 2010), even if microscopic simulations are used for evacuation studies (Pel et al., 443 

2012; Cova and Johnson, 2003). The individual microscopic parameters can largely vary during evacuation (Tu et 444 

al., 2010; Fries et al., 2016; Hamdar, 2004; Hamdar and Mahmassani, 2008): speeds and speed variance, 445 

acceleration/deceleration rates, headways can decrease (to compel others to give way/accelerate); reactions and 446 

aggressiveness can increase, lane-changing behaviour could be different, road and traffic signs may be ignored.  447 

In case of WUI fires, network links can be divided into broken links, available links, and links partially 448 

threat-affected. In dynamic frameworks (such as DTA), coupled with fire spread models (Dennison et al., 2007), the 449 

information about links available should be constantly updated. For available links, the individual microscopic 450 

parameters should be adapted considering their possible changes under emergency conditions. Considering the 451 

comparison between smoke and fog made for the macroscopic simulation, speeds and acceleration rates were found 452 

to significantly change in foggy conditions with headways increasing (Hoogendorn et al., 2010). 453 

Mesoscopic simulation. Since the mesoscopic approach includes both macroscopic (capacity, speed-density 454 

relationships) and microscopic features (car-following, interactions); then it includes also both the advantages and 455 

disadvantages of the two approaches for WUI fire evacuation modelling. In fact, by explicitly considering capacity 456 

and macroscopic traffic flow relationships, it can model the capacity drop in case of smoke for links partially 457 

affected by fire; while by considering simplified behavioural models, it could limit the errors made in estimating the 458 

microscopic parameters. However, given these advantages, the final result could be affected also by the uncertainties 459 

of both approaches in determining the relevant factors for WUI fire evacuation.  460 

The recommended level of granularity depends on the spatial and temporal scales considered in WUI fires (see 461 

Figure 4). Macroscopic models are by definition not able to represent refined scales, given their level of resolution. 462 
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For instance, a macroscopic traffic model represents aggregated traffic flows, not describing movements or 463 

decision-making of individual evacuees and the subsequent vehicle performances. 464 

Temporal and spatial scales can largely affect the simulation approach choice. Macroscopic simulation tools may be 465 

preferable for large spatial scales, if a lower level of detail may simplify the computation (e.g. very dense, largely 466 

populated area), and for real-time applications. Microscopic tools may be preferable for small spatial scales, if more 467 

details are required (e.g. corridor study), mostly for planning, or for not immediate evacuation management. 468 

Mesoscopic tools are intermediate between the above two simulation tools. They could be a valid option if a 469 

microscopic level of detail is needed, but the study area is large and/or a massive effort to represent its network is 470 

required. 471 

 472 

BENCHMARK MODEL FEATURES AND COMPARISON WITH EXISTING MODELS 473 

Based on the previous discussion on modelling approaches and features, Figure 5 presents a summary of the 474 

recommended model features for traffic modelling in case of WUI fire evacuation scenarios, and relates these to a 475 

detailed review of existing potential modelling approaches. These recommended model features can be used as a 476 

starting point for selecting and evaluating existing modelling tools to be used for the application of WUI fire 477 

evacuations as well as future development of dedicated traffic models these applications.  478 

For this review analysis, an overview is constructed of twenty-two existing traffic models available in practice and 479 

the literature. The aim of this overview is to compare the benchmark characteristics of a WUI fire evacuation model 480 

with the tools currently available (Table 2). To this end, a review template was developed in order to systematically 481 

assess existing models, their key variables and sub-models, in light of the benchmark characteristics.Models are 482 

classified according to their availability (open-source, commercial, academical, governmental); traffic simulation 483 

type (macroscopic, microscopic, mesoscopic), possibility to simulate dynamic processes (static or dynamic 484 

approach), and a list of variables identified based on the previous review: 485 

• Demand-side variables (demographic data ‘DD’, background traffic ‘BT’, travel demand patterns ‘TDP’); 486 

• Supply-side variables (capacity ‘C’, speed ‘S’, flow direction ‘FD’); 487 
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• User-side variables (driving behaviour ‘DB’, headway ‘H’, acceleration ‘A’, reaction time ‘RT’, route 488 

choice ‘RC’); 489 

• Dynamic variables (traffic management ‘TM’, dynamic road infrastructure ‘DRI’, adaptive choice 490 

behaviour ‘ACB’, people compliance ‘PC’, real-time instructions ‘RTI’). 491 

Although many models do not explicitly represent all variables under consideration, a number of them look 492 

potentially suitable for WUI fire evacuation. However, no reviewed model was developed specifically for the WUI 493 

fire case, considering a direct coupling with other modelling tools (e.g. wildfire models). Two additional models are 494 

available on the market which attempt the coupling between wildfire and traffic models: the WUIVAC model 495 

(Dennison et al., 2007), in which a simplified traffic modelling approach is coupled with a wildfire model; and the 496 

framework by Beloglazov et al. (2016), who implemented the open-source traffic model SUMO, coupled with a fire 497 

spread model. Nevertheless, also in these cases, some of the variables affecting evacuation can be implemented 498 

mostly implicitly (e.g. no direct impact of smoke on traffic parameters is implemented), thus confirming the lack of 499 

a comprehensive modelling tool for WUI fire evacuation.  500 

 501 

CONCLUSIONS 502 

The existing literature lacks of a dedicated framework for WUI fire traffic evacuation modelling. Based on an 503 

extensive review of the existing modelling approaches, an attempt to define the benchmark features of WUI fire 504 

traffic evacuation models has been made. Several aspects were addressed, considering a four-steps transport 505 

modelling framework and its two main stages: travel demand and traffic assignment. The impact of specific WUI 506 

fire-related factors (hazard propagation, size of the area affected), and non-fire-related factors (population, 507 

density, % of WUI area) on the choice of appropriate modelling approaches were considered. 508 

As a result of the review, a set of suggestions have been provided on suitable modelling approaches to be used for 509 

WUI fire evacuation scenarios. These are judgement calls which rely on the type of scenario under consideration and 510 

the model applications. Dynamic modelling approaches are preferable since they can take into account behavioural 511 

variability and the impact of changes in route availability. Activity-based models should be preferred in case of 512 

no-notice or short-notice evacuations at the planning stage. While microscopic traffic simulation tools may give the 513 
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most detailed results, macroscopic and mesoscopic traffic simulation tools could also be suitable for real-time 514 

evacuation management. The need for coupling traffic models with fire spread models in a dynamic framework is 515 

evident.  516 

Based on the review of existing traffic models conducted, many of them seem able to (at least implicitly) represent 517 

many of the variables affecting WUI fire evacuation. Nevertheless, the need for a dedicated dynamic modelling 518 

framework able to directly integrate results from other models (e.g. fire/pedestrian models) appears evident for WUI 519 

fire evacuations. 520 
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