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Predictive maintenance scheduling framework for offshore wind turbines
based on condition monitoring: A review

J.B. Hes & X. Jiang
Maritime and Transport Technology, Delft University of Technology, Delft, The Netherlands

ABSTRACT: This study investigates the optimization of the operation and maintenance of offshore wind tur-
bines based on condition monitoring data. Due to their increasingly remote and challenging location, a decision
framework is proposed that optimizes the cost and risk of maintenance scheduling based on, dynamic Bayesian
network based, iterative estimation of turbine lifetime. This allows for the combining of predictive and oppor-
tunistic maintenance strategies, scheduling preventative component replacements to minimize lost production,
while maximizing lifetime and optimizing use of resources. Assessment of related literature and applications
suggests the approach could lead to a reduction of maintenance costs that exceeds 30%. The proposed
framework relies on effective fault detection and prognosis of wind turbine components, realised through the
implementation of machine learning techniques on the turbine’s own SCADA system. The installing of
additional sensors can potentially increase the capability of this system for more advanced diagnosis and

localization of a fault.

1 INTRODUCTION

The rapidly increasing demand for renewable en-
ergy sources has made wind energy one of the most
promising alternatives to fossil fuels (Office of En-
ergy Efficiency and Renewable Energy nd). With off-
shore wind energy projected to triple its capacity by
2026 (International Energy Agency 2021), it offers an
efficient energy generation solution at a reduced envi-
ronmental impact (National Grid nd).

However, the working conditions imposed by the
marine environment present significant challenges for
the construction, infrastructure, but mostly mainte-
nance of offshore wind turbines (Duffy 2020). In-
creased loads from waves and strong winds, along
with increased humidity, contribute to heightened
failure rates among various turbine components, lead-
ing to costlier repairs and an increased need for main-
tenance (Zhu & Li 2018). Offshore working condi-
tions also increase the wind turbine downtime re-
quired for repairs, resulting in further loss of revenue
(Faulstich et al. 2011). Notably, the costs associated
with offshore Operations and Maintenance (O&M)
make up a considerable 23-35% of the overall invest-
ment, exceeding the 5-25% range typical for onshore
wind (Dinwoodie & Mcmillan 2014, Blanco 2009,
Sinha & Steel 2015b). As a consequence, 25% to 50%
of the total energy generation cost of an offshore wind

farm originates from maintenance expenses.

While research on onshore wind has tradition-
ally emphasized cost-effective design and maximiz-
ing performance to minimize the initial capital cost
of wind turbines (Molenaar 2003), the increased cost
of O&M has brought forward new research priorities
to ensure the long-term viability of the energy source
(Barthelmie & Pryor 2001, Li et al. 2020).

This study investigates the implementation of a pre-
dictive maintenance decision framework that enables
the application of strategic measures to enhance the
critical aspects of wind turbine reliability, minimize
the frequency of costly on-site visits, and aim to re-
duce the failure rates of high-risk components (Niki-
tas et al. 2020, Le & Andrews 2016, Carroll et al.
2017). Notably, the electric and control systems, gear-
box, generator, and blades emerge as key contributors,
accounting for 90% of the repair and replacement
costs over a turbine’s lifetime (Carroll et al. 2016, Ar-
tigao et al. 2018).

Recent studies into wind turbine condition monitor-
ing are discussed to assess the prerequisites and po-
tential capabilities of a fault prognosis system. Based
on this predictive assessment of the turbine’s health,
it 1s discussed how well-informed maintenance de-
cisions can be implemented to optimize O&M ex-
penses, while mitigating risk and maximizing com-
ponent lifetime.



2 INTELLIGENT CONDITION MONITORING

Predictive and condition-based maintenance deci-
sions rely on accurate determination of the health of
the system, which can be achieved by condition mon-
itoring (CM) (Ren et al. 2021). A Condition Monitor-
ing System (CMS) allows for the initiation of mainte-
nance decisions by providing information on the con-
dition of turbine subsystems.

While CM methods are initially ported from other
machinery types, often based on vibration monitor-
ing, the condition monitoring of wind turbines proved
to be more complex due to the increase of stress and
fatigue that originates from the inherently random
load spectrum (Barszcz 2019). Combined with the in-
creased remoteness of offshore turbines, a wide va-
riety of online monitoring methods is developed that
varies per type of component. Analysis of the oper-
ational data provided by SCADA systems as well as
additionally installed sensors that perform measure-
ments and report on the condition of the turbine allow
for appropriate maintenance decisions that improve
availability, reliability and lifespan, to provide the
best economic maintenance solution (Walgern et al.
2017).

2.1 SCADA data

Signals and alarms from monitoring instrumentation,
together with real-time performance and operational
parameters, are collected by the SCADA system (Tur-
bines 2005).

Thorough analysis of this comprehensive data set
can potentially result in a cost-effective and easy-to-
implement tool for evaluation of the wind turbine’s
health condition. Component specific CM approaches
based on SCADA data often employ a wide array of
parameters to evaluate anomalies in the turbine state,
as well as accompanying minima, maxima and stan-
dard deviations. These methods generally estimate
expected parameters, such as a component its tem-
perature, and consider deviations from the simulated
state as abnormal. An approach that considers the tur-
bine as a whole, generates an expected power curve
based on the set of SCADA parameters to compare
with the actual power curve in the localization of
anomalies (Papatheou et al. 2015, Pandit et al. 2019).

As wind turbine components deteriorate, the effi-
ciency of the energy conversion process decreases,
reducing the performance of the wind turbine. There-
fore, deviations in the relationship between parame-
ters such as power output, blade pitch angle, genera-
tor torque and rotor speed can be used as an assess-
ment of the turbine condition and the early detection
of faults (Sgrensen et al. 2002).

The major difficulty of fault detection based on
power output or other parameters is the variation in
operating point that influences the measured data. In-
formation on the operating point is not often avail-

able, so in abnormal events, data interpretation sys-
tems are required to distinguish between the existence
of a fault or a harmless internal or external influence.

A common method to improve accuracy and ro-
bustness of the fault detection system is the de-
ployment of machine learning methods (Zaher et al.
2009). These algorithms are well suited to process
large amounts of SCADA data, while being able to
deal with changes in operating point and complex sys-
tem interactions (Barszcz 2019).

Supervised methods learn signal patterns for dif-
ferent technical states using data from both malfunc-
tioning as well as healthy turbines. The data is la-
beled with information about the occurrence or type
of faults, to train a machine learning model to pre-
dict the type of fault based on new input data. Unsu-
pervised learning can also be used for fault diagnosis
when there is no labeled data available. In this case,
the goal is to identify patterns or anomalies in the data
that may be indicative of a fault (El Bouchefry & de
Souza 2020, Schneider & Xhafa 2022).

A common limitation originates from the low res-
olution of SCADA data, which is predominantly only
stored every 10 minutes. Therefore, most studies into
SCADA-based CM consider this sampling frequency
(Maldonado-Correa et al. 2020). This constraint in-
troduces the risk of overlooking spikes in tempera-
tures, power curve anomalies or oddities in voltages
and currents, causing SCADA-based CM applications
difficulty to match the capability of traditional sensor-
based CMSs. Recent studies investigate the possibil-
ity of using 1-s high frequency sampling of SCADA
data to overcome this issue, with promising results (Bi
et al. 2016, Gonzalez et al. 2017, Gonzalez et al. 2019,
Lin et al. 2020).

2.2 CM sensor data

A common approach to CM is to equip the sys-
tem with additional hardware, such as separate sen-
sors dedicated to monitoring particular conditions like
oil quality, vibrations, and sound emissions. Unlike
SCADA systems, these devices can provide more pre-
cise readings at faster intervals, giving a more detailed
understanding of the wind turbine’s condition. How-
ever, this introduces additional costs, which are in-
fluenced by factors like measurement accuracy, sam-
pling frequency, system capabilities, and the oper-
ating environment. Table 1 summarizes the sensing
methods and their applications on turbine compo-
nents according to existing research and reviews (e.g.
(Pérez & Marquez 2015, Qiao & Lu 2015, Tchakoua
etal. 2014, Hameed et al. 2011, Garcia Marquez et al.
2012, Du et al. 2020)), with cost indications of imple-
mentations based on a study by Yang et al. (2014).
Analysis of a survey into commercially available
CM systems performed by Crabtree et al. (2014) iden-
tifies vibration analysis applied to drive-train compo-
nents as the most dominant CM method for wind tur-



bines. In fact, 27 of the 36 total reviewed systems rely
on vibration monitoring through accelerometers. Af-
ter the drivetrain components, the blade is the most
popular component, often associated with acoustic
emission (AE) analysis (Verbruggen 2003). As most
of the reviewed methods rely on time-domain, Fast
Fourier Transform (FFT) or envelope analysis, there
remains a notable absence in the adoption of more ad-
vanced machine learning methods.

Table 1: Condition monitoring sensor techniques for turbine
components and their costs as adapted from Yang et al, each €
==+ 2000 euro
Blades Rotor Gearbox Generator Bearings Tower
Vibration 4 v 4 4 4
€
AE. v v v v v
€€€€
Ultrasonic v v v
€€
Oil debris v
€€€
Strain v v
€€€€EE
Shock Pulse v v v
€€
Thermography v v v v v
€€€€E

2.3 Wind Turbine CM Applications

Based on a thorough analysis of recent studies by Hes
in (Hes 2023), the most promising techniques for off-
shore wind CM, are established. Building on the com-
prehensive study performed by Badihi et al. (2022),
the analysis discusses the capability and accuracy of
CM methods from a practical perspective. The fol-
lowing sections brings forth recommendations based
on his findings, which are summarized at the end of
the section in Table 2.

2.3.1 Blade Condition Monitoring

Deterioration of the blade is quickly noticeable
through a decreased performance of the turbine’s
power output. Combined with other SCADA param-
eters such as wind- and rotor speeds, studies suggest
a fault warning can be produced hours (Wang et al.
2018), to days (Chen et al. 2013, Chen et al. 2015)
and months (Chen et al. 2017) in advance. However,
at this point, further localization and estimation of the
fault severity of the fault solely based on analyzing
SCADA parameters is difficult.

The most effective method to classify blade dam-
age applies acoustic emission sensors. By clustering
acoustic emissions picked up by two spaced sensors,
the developed machine learning model localizes the
fault. Xu et al. (2020) demonstrate accurate diagnosis
of structural defects and delamination. Much cheaper
vibration sensors potentially demonstrate the same di-
agnostic capability as AE sensors (Pacheco-Chérrez
& Probst 2022), but need further research as they are
not yet fully sensitive to damage and fail to obtain

high accuracies (Oliveira et al. 2018). These sensors
should also allow for the detection of icing and mud
levels when supported by analysis of the power curve
(Skrimpas et al. 2016).

Alternatively, a promising method to monitor struc-
tural defects, as well as erosion and the accumulation
of mud and ice, is based on UAV-based thermography
(Wang & Zhang 2017, Hwang et al. 2019, Sousa et al.
2020). However, this technique is still in an experi-
mental stage and requires additional development.

2.3.2 Generator Condition Monitoring

Zhang & Lang (2020) demonstrate that nonlinear sys-
tem frequency analysis of the power curve, as well
as the generator temperature referenced with other
SCADA parameters, is capable of producing a fault
warning one year ahead of time. By adding analysis of
generator currents, Brigham et al. (2020) demonstrate
potential SCADA-based severity estimation and fault
localization.

Even though some additional development of the
technique is required for implementation, both meth-
ods display high accuracies. Therefore generator
maintenance based only on SCADA data CM is very
promising. This fact is supported by Gangsar & Ti-
wari (2017), who state that current-based fault detec-
tion of electrical generator faults is the most effective
method for detecting and predicting generator faults.

2.3.3 Gearbox Condition Monitoring

Even though vibration analysis is still a very popular
gearbox CM technique, recent literature shows that
SCADA data can be used for the diagnosis and prog-
nosis of many complex gearbox faults. By deploy-
ing a machine learning model, Rashid et al. (2020)
demonstrate the detection of faults 2 months before
critical failure based on analysis of the interaction be-
tween gearbox temperature and the produced power.
The method is able to assess severity, but to provide
a cheap preventative solution to gearbox fault detec-
tion, it is required that the model can effectively rec-
ognize the health state of the turbine and character-
ize the fault. Therefore, the model should be com-
bined with models that allow for diagnosis, such as
proposed by Bravo-Imaz et al. (2017) and He et al.
(2020). They propose deviating between wear, crack,
and pitting through the application of high-level fea-
ture extraction methods on the current signal.

If a longer prediction horizon is preferred, while
also obtaining additional diagnostic information, ad-
ditional vibration sensors should be installed. For in-
stance, Teng et al. demonstrate a potential fault warn-
ing two years before critical failure by performing
wavelet analysis on the vibration data (Teng et al.
2019). Other studies show that, based on vibration
data, faults can be diagnosed very accurately in mul-
tiple gearbox stages (Carroll et al. 2019, Vamsi et al.
2019).



2.3.4 Bearing Condition Monitoring

Xiang et al. (2021) utilized convolutional, as well as
long-, and short-term memory neural networks to an-
alyze both temporal and spatial aspects of input data.
Combined with an attention mechanism, the model
predicts a bearing temperature based on SCADA data
trends.

In this model, discrepancies between the predicted
and actual bearing temperature trend serve as early
indicators of an impending defect, signaling its emer-
gence approximately two months before the eventual
failure. Leveraging the local measurement of SCADA
component temperatures, the model allows for di-
agnosis, facilitating the identification of the specific
bearing responsible for the temperature irregularity
and the evaluation of fault severity. This result is
strengthened by Hu et al. (2018) and Carroll et al.
(2019) who demonstrate accurate temperature-based
bearing diagnosis and prognosis.

These studies suggest that temperature deviations
could be detectable 4 to 6 months in advance. Al-
though this fault prediction may not be highly accu-
rate, about 70%, it can still provide valuable insights
for strategic maintenance decisions.

While SCADA data analysis is the cheapest and
least complex implementation, it is also the most ac-
curate and effective. In the current state of bearing
CM research, the implementation of SCADA-based
is able to replace traditional vibration analysis. While
the integration of vibration analysis alongside temper-
ature analysis does not improve diagnostic accuracy,
it does contribute to the accuracy of the RUL estima-
tion (Carroll et al. 2019). This option could be con-
sidered if increased prognostic accuracy is required
for effective maintenance decisions.

2.3.5 Condition Monitoring of Other Faults

Faults in the electrical- and auxiliary system are not
studied as extensively as the blade and drive-train. Lit-
erature does suggest however that most of these faults
can be detected or even predicted based on the analy-
sis of SCADA parameters such as temperatures and
error codes. While some studies are still in an ex-
perimental phase, after additional development, pro-
posed models should be able to accurately monitor
converter-, controller-, transformer-, hydraulic-, yaw-,
pitch- and anemometer defects (Schlechtingen & San-
tos 2014, Teimourzadeh Baboli et al. 2021, Chen et al.
2017, Astolfi et al. 2019, Guo & Infield 2020), respec-
tively.

The current state of research in turbine tower and
foundation CM is insufficient establish the advantages
of either AE or vibration implementation. However,
installing vibration sensors to allow implementation
of an ANN, as proposed by Nguyen et al. (2018),
while also running regression models as proposed by
Oliveira et al. (2018), can provide a cost effective
and accurate CM solution to both foundation cracks,

tower damage, and scour. This can provide an inclu-
sive CM solution for structure defects, in contrast to
AE appliances, which are currently limited to founda-
tion cracks (Tziavos et al. 2020).

Machine vision methods that assess component
condition with cameras, can also present possible so-
lutions to the maintenance of wind turbine structures
(Badihi et al. 2022).

2.3.6 Concluding Remarks on CM Application
Study of recent literature demonstrates that SCADA
data can provide an easy-to-implement and cost-
effective CM solution for every component except for
the tower and the foundation. While some of these
methods are still in an experimental or untested shape,
most component-specific cases demonstrate an accu-
rate indication of developing faults at least 2 months
before a failure turns critical. In the meanwhile, con-
tinuing analysis of deviations in the wind turbine’s
power curve can serve as a turbine-wide indicator
for damage. Currently, modelling of the power curve
based on Gaussian processes is demonstrated to be
most effective method (Pandit et al. 2019, Morrison
et al. 2022).

Installing additional sensors, such as vibration or
acoustic emission (AE) sensors, can potentially in-
crease the capability of a SCADA-based system,
for more advanced diagnosis and localization of a
fault. However, as this is not a given fact for every
component, this decision should be evaluated on a
component-specific basis, c onsidering the operator’s
requirements.

Table 2 summarizes these findings, showing if de-
veloping defects are noticeable through power curve
analysis and what the suggested methods are for on-
line prognosis and diagnosis of faults.

Table 2: CM Recommendations summarized in a table

Component Power Curve Diagnosis Prognosis
Blade v Vibration or AE SCADA
Generator v SCADA SCADA
Gearbox v SCADA or Vibration SCADA or Vibration
Bearing v SCADA or Vibration SCADA or Vibration
Auxiliary SCADA SCADA
Structures SCADA -

3  MAINTENANCE ARCHITECTURE

Pattison et al. (2016) present an architecture to allow
for structured and systematic handling of preventive
or predictive maintenance decisions based on the data
provided by CM techniques.

In contrast to other studies into maintenance
scheduling (e.g. (Rademakers et al. , Hofmann &
Sperstad 2013, Stalhane et al. 2016, Ioannou et al.
2019)), this maintenance architecture supports an au-
tomated and intelligent approach to identify failure
patterns or modes without the need for expert knowl-
edge. Short-term decisions can be made concerning
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Figure 1: High-level information flow of maintenance system

maintenance activities based on the current state of
external influences such as environmental- and logis-
tical conditions. In addition, the modular structure
allows for individual development of each module
and constant re-evaluation of the proposed solution
through feedback of the state of the other modules.

However, the architecture proposed by Pattison
et al. (2016) is limited to the use of fault detection
and diagnosis. As a result, the model can only di-
rectly incorporate data inputs related to the faulty
component, fault severity, and the confidence level
of the diagnosis. In the principles of Industry 4.0,
Cachada et al. (2018) propose an intelligent and pre-
dictive maintenance architecture for early fault detec-
tion of machine failures, raising the question of how
both real-time monitoring as well as prognosis can be
applied to schedule maintenance actions in offshore
wind maintenance. Consequently, this paper proposes
an adapted architecture.

Figure 1 illustrates three modules, that collectively
generate a solution in six high-level steps, from an
information flow perspective.

Here, the Intelligent condition monitoring (ICM)
module includes data analysis methods based on
SCADA or deployed sensors to identify anomalous
behavior (step 1). If any such deviation/anomaly is
found, the system identifies t his s tate a nd informs
the Risk and Reliability Management (RRM) mod-
ule (step 2). Based on the ICM input, this module
evaluates a component’s probability of survival across
the duration of its intended service life and adapts a
generic lifetime model to the observed state of the
component (step 3).

This expected remaining useful life (RUL) is de-
livered to the Maintenance Scheduling (MS) module
(step 4). Based on this, as well as ICM module fault
descriptive data, the module is able to propose the best
type and timing of maintenance actions (step 5). The
output will subsequently impact the turbine surviv-

+ predicted remaining life
it * actual remaining life

Probability density
o
wn

Monitoring period

Time (10 min)

Figure 2: Comparisons of Gaussian probability distributions of
RUL prediction results for turbine generator rear bearing, where
each monitoring period consists of 2 weeks, up to a total of about
18 weeks at period 9 (Hu et al. 2018)

ability within the RRM (step 6).

4 RISK AND RELIABILITY MANAGEMENT

Under the effect of a wide variety of external influ-
ences and a complex load pattern, a wind turbine’s
behaviour is difficult to predict. Combined with un-
certainty concerning the effect of a maintenance ac-
tion, the turbine state is under constant change.

For this reason, maintenance schedules are usually
only prepared for a short period of three to seven days.
Then, the schedule is updated every morning, as usu-
ally only the tasks of the first day are executed as
planned (Kovacs et al. 2011).

To address this dynamic and random behaviour,
the risk and reliability management module should be
able to react to varying conditions and uncertainty and
re-inform the scheduling process accordingly. This
uncertainty can arise from the unpredictability in per-
formance and power output due to for instance: (i)
Variation in wind direction and velocity, (ii) Reliabil-
ity of the turbine and grid connection, (iii) Regulatory
changes in the allowable operating hours (iv) Inaccu-
racy of data (Dinwoodie & McMillan 2014, Ioannou
et al. 2019, Dao et al. 2020).

The integration of prognosis allows for decisions
to be made further into the future, requiring the in-
creased alleviation of uncertainties due to inherently
random behavior in the development of the fault. This
uncertainty in degradation is influenced by factors
such as: (i) Environmental conditions, including salt-
water, winds, waves and temperature variations that
influence the rate at which components degrade and
corrode, (i) Variation in operational factors influenc-
ing its rate of degradation, such as high loads or ex-
tended operation at rated capacity, (iii) Effectiveness
and frequency of maintenance, (iv) Age of the turbine,
(v) Uncertainties in the data and models.

In the estimation of remaining useful life, these un-
certainties generally causes a decrease in prediction
accuracy for a longer prediction horizon. This behav-
ior can be seen in Figure 2, where the certainty of the
prediction converges to the actual remaining life when
the prediction horizon decreases.



As an example, Figure 2 is considered at 18 weeks
lead time. Here, the model estimates RUL as a proba-
bility function between 12.5 and 25 weeks. While this
can be considered an inaccurate estimate, it can actu-
ally already provide sufficient information to initial-
ize maintenance scheduling, because the failure will
occur somewhere in that time period. Through con-
tinuous monitoring of the development of the fault,
the RMM module should update the estimation based
on new turbine inspection data, and update the main-
tenance schedule.

4.1 Machine Learning Methods

Due to the required compatibility with CM data,
data-driven machine learning methods are considered
(Zonta et al. 2020). Ferreira & Gongalves (2022) re-
viewed machine learning methods for RUL predic-
tion, pointing out difficulties related to traditional ML
methods such as Kalman Filters and Support Vector
Machines. These methods do not consider the rele-
vance of time-series signals reflecting changes in the
health condition and often rely on manual feature ex-
traction from raw sensor data (Wu et al. 2020).

The application discussed in this paper introduces
additional stochastic requirements, that can be met
with approaches such as Bayesian Networks (BNs)
or fuzzy logic. Introduction of temporal dependen-
cies into these models, provide more advanced ver-
sions such as Dynamic Bayesian Networks (DBNs),
which includes the Hidden Markov Model, or fuzzi-
fied long short-term memory networks. The Dynamic
Bayesian network then emerges as the most promis-
ing method for the continuous refinement of estima-
tions in the face of external disturbances that influence
the lifetime prediction, such as differences in operat-
ing conditions and failure modes or unexpected cor-
relation between faults (Straub & Kiureghian 2010,
Adedipe et al. 2020).

4.2 Dynamic Bayesian Network

The versatility of BNs is widely acknowledged across
industries, particularly because of their ability to cope
with uncertainties present in organizational opera-
tions and decision-making. In structural reliability,
Straub & Kiureghian (2010) implemented a DBN,
which facilitates Bayesian updating of the model
when new information becomes available, including
both continuous and discrete random variables. Sim-
ilarly, a study focusing on battery health estimation
demonstrates the effectiveness of statistical forecast-
ing (Richardson et al. 2017). While this study uses a
more straightforward method based on Gaussian re-
gression, their results as displayed in Figure 3, serve
as an insightful demonstration of a continuously up-
dated lifetime estimation at different points in time.

The applicability of DBNs for wind turbines is
demonstrated by Nielsen & Sgrensen (2017). To an-
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Figure 3: Remaining useful life prediction of a battery at three
different points in time. Edited from: (Richardson et al. 2017).

alyze the degradation process and estimate the RUL
of wind turbine blades, the model produces an initial
prediction based on detected damage, which is up-
dated using CM and inspections.

Implementation of a DBN allows for the capturing
of the dynamic nature of current- and future degrada-
tion, while capable of updating the reliability of the
system based on data obtained through CM. More-
over, the DBN facilitates accurate estimations of the
resulting system state following various maintenance
interventions (Pattison et al. 2016).

5 MAINTENANCE SCHEDULING

The ability to identify faults preemptively, prevent-
ing them from progressing into critical failures, gives
time to optimize maintenance activities and costs
(Sinha & Steel 2015a, Kandukuri et al. 2016). Based
on SCADA or sensor data, maintenance tasks can be
initiated while considering factors such as downtime,
repair costs, risk of failure and the cost of lacking per-
formance.

During maintenance scheduling, it may be neces-
sary to temporarily halt turbine operation to extend
the available time for maintenance actions. Alterna-
tively, Fault-tolerant and Condition-based control can
be applied to accommodate the effects of noncritical
faults in wind turbines, or modify the operational state
of components depending on their health-condition
to avoid unnecessary shutdowns and missed produc-
tion, and increase the time window for maintenance
(Badihi et al. 2022).

By replacing components in anticipation of their
failure, while also assessing the most convenient and
efficient time and method, the inclusion of oppor-
tunistic scheduling strategies into predictive mainte-
nance can provide a promising step in the minimiza-
tion of maintenance costs de Pater & Mitici (2021).
Research that combines predictions with maritime lo-



gistics optimisation has yet to be performed, however
(Halvorsen-Weare & Nonas 2022).

To consider the application of this hybrid solution
to offshore wind, first, the separate aspects of pre-
dictive and opportunistic maintenance scheduling are
discussed.

5.1 Predictive Maintenance Scheduling

To determine if maintenance should be carried out
preventively, Zhu et al. (2017) assess the costs orig-
inating from a preventative or, future corrective main-
tenance action based on stochastic lifetime predic-
tions. Evaluation of these costs produces a control
limit used to notify the need for preventative replace-
ment. This ensures that component lifetime is max-
imized without unnecessary early replacements. A
similar threshold is applied by Zhou & Yin (2019),
while also allowing for preventative replacement of
other turbine components in the same action, if
the cost of this preventative action is lower than a
condition-based maintenance action later on.

Instead of a cost-based threshold to maximize the
effective RUL, Schenkelberg et al. (2020) propose
that the balancing of a failure risk in a maintenance
optimization problem can be done by estimating the
impact of failure on profitability. Through the appli-
cation of a DBN, the model predicts costs associated
with a possible failure escalation and compares that
with the cost of preventative replacement.

5.2 Opportunistic Maintenance Scheduling

Opportunistic maintenance aims to find the most ideal
moment to perform maintenance based on resources
and costs related to O&M. Each individual task poses
its own requirements on these resources, encompass-
ing the management of personnel and spare parts as
well as the arranging and routing of vessels (Kary-
otakis 2011). Importantly, transportation costs con-
stitute to 30% of a turbine’s maintenance expenses
(Irawan et al. 2017).

Maintenance costs can also arise due to lost pro-
duction. This lost revenue is a direct consequence of
maintenance activities, as turbines may need to be
temporarily halted for maintenance purposes. The ser-
vicing of one turbine can result in the interruption of
other turbines as well, because multiple turbines are
connected in series to the power grid (Pattison et al.
2016).

Lost production can be minimized by the incorpo-
ration of forecasted wind speed, or analysis of en-
ergy prices, aligning turbine shutdown with periods of
low yield. Proposed by Petros Papadopoulos & Ezzat
(2023), this method demonstrates promising results in
the optimization of total cost, downtime, resource uti-
lization, and maintenance interruptions.

Nguyen et al. (2022) propose a maintenance
scheduling approach, designed to maximize cost-

effectiveness while minimizing lost production and
environmental and safety risks. This is obtained by
the intelligent optimization of resources, minimiza-
tion of production losses and efficient vessel routing.
The proposed model utilizes fuzzy probabilities to as-
sess environmental- and safety risks associated with
marine environments.

Incorporation of these fuzzified risks into schedul-
ing decisions enables stochastic inputs into the model.
In a similar way, a probability density function asso-
ciated with a prognosis, as shown in Figure 2, can be
incorporated into the scheduling decision. Increased
risk of failure could be balanced with maintenance op-
portunities, such periods of low yield and lower safety
risks due to calm weather, or increased consolidation
of maintenance tasks. Careful evaluation of the risk
of component failure is required when seeking maxi-
mization of the RUL, as the preventative replacement
of a component is usually beneficial over the risk of
having to perform a more severe repair (Turnbull &
Carroll 2021).

5.3 Optimization solution methods

Based on the discussed literature, solving the pre-
dictive maintenance scheduling optimization problem
describes the scheduling of tasks and allocation of re-
sources such as vessels and spare parts, while opti-
mizing risk and costs.

When reviewing maintenance optimization studies,
the mathematical handling of these tasks can often be
found to be based on Mixed Integer Linear Program-
ming (MILP). Given the magnitude of transportation
costs of offshore O&M, proper management and rout-
ing of a suitable fleet of vessels is required. Stalhane
et al. (2016) demonstrate a MILP model for optimal
fleet deployment and long-term decision-making on
the fleet size and composition. This includes the ac-
quisition and routing of crew transfer vehicles, service
operation vessels, jack-up vessels and helicopters. In
this decision, which is made one year ahead of time,
environmental conditions as well as failures are taken
as a-priori information.

When the model is confronted with unexpected
weather conditions and turbine failures, unplanned
corrective maintenance actions drive up the O&M
cost. This also means that maintenance costs are often
underestimated. To achieve a better MILP estimate of
costs, an heuristic is presented by Gutierrez-Alcoba
et al. (2019). While this solution increases the initial
investment costs, the capability to react to uncertain
events reduces the risk of unexpected cost increases.

This prompts Magnus Stalhane & Hvattum (2021)
to include a broader field of strategic uncertainties as
well, such as economic trends, gradual development
of wind farms, and vessel technology development.
These approaches show that a more realistic descrip-
tion of the system, as well as associated costs allows
for more accurate predictions of decision outcomes,



and a overall more optimal scheduling solution.

Addressing maintenance task management from a
different point-of-view, Schrotenboer et al. solve the
optimization problem in the context of a single main-
tenance provider responsible for multiple wind farms
(Schrotenboer et al. 2020). In the Netherlands, for
instance, offshore wind practices demonstrate that
maintenance is performed by a service provider that
does not own the farms and, therefore, does not risk
uncertain production revenues due to alternating en-
ergy prices or the risk of production losses due to
downtime.

Ge et al. (2020) as well as Sang et al. (2021)
demonstrate that proper evaluation of downtime re-
lated wind costs should include power generation
losses due to wake effects. The proposed approach
consists of two stages, where the first stage de-
termines the required amount of ships and techni-
cians, and the second stage determines which turbines
should be maintained while minimizing cost or travel
distance per day. This allows for the short term updat-
ing of maintenance tasks if unexpected environmental
conditions or faults are revealed after the initial sched-
ule made in stage one.

The mathematical model of Irawan et al. (2017)
is considered to include spare part allocation. The
model includes constraints related to spare parts and
describes the not only the availability of spare parts,
but also limitations related to the weight and required
storage space when considering transportation.

Due to the uncertain nature of the marine envi-
ronment, the discussed MILP-based studies consider
heuristics and complex multi-layer solution frame-
works (Zhong et al. 2018). Other non-deterministic
methods can also be considered, including fuzzy-
based programming (Zhong et al. 2019), integration
of a rolling-horizon (Petros Papadopoulos & Ezzat
2023, Papadopoulos et al. 2022), discrete heuristic
optimization machine learning (Fan et al. 2019), and
meta-heuristic Genetic Algorithms (Stock-Williams
& Swamy 2019).

The model should be able to meet the opportunis-
tic demands of the maintenance scheduling module
within a given time-frame. When integrated into the
proposed architecture, the RUL probability function
from the RRM module replaces fixed predictions or
heuristic approaches to address unexpected failures
and degradation uncertainty. This integration allows
the optimization model to make advanced decisions,
leading to a more optimal solution.

5.4 Integrated Architecture

After evaluation of the proposed architecture’s re-
quired functions, a more detailed information flow
visualization of the maintenance decision model can
be made. Figure 4 depicts the three discussed major
modules, as well as their interaction with each other
and external data-sets.

Novel CM systems monitor the health of the tur-
bine. After detection of a fault, its location and sever-
ity are used to initiate maintenance decisions. Based
on the evaluation of component or turbine health, the
RRM module estimates the RUL utilizing a DBN. In
an iterative process, the RRM module converges step
by step to refine its estimation as the turbine condition
approaches its point of failure.

This estimated point of failure defines the amount
of time that is available to solve the maintenance
scheduling optimization problem. The required main-
tenance action is derived from the ICM module its di-
agnosis. This maintenance action includes task char-
acteristics, such as time and cost, as well as condi-
tional constraints such as equipment, stock or weather
requirements.

Meeting the scheduling demands is done in multi-
ple stages. First, the mid-term comprises the availabil-
ity of stock and, if applicable to the service provider,
the management of the fleet. This is followed by the
assigning of vessels as well as personnel within any
imposed environmental limitations. Finally, the short-
term stage, covers the optimal routing of tasks. Based
on the proposed schedule, the model verifies if a more
optimal solution can be found at a higher risk of criti-
cal failure. Even when a maintenance schedule is pro-
duced the proposed solution might require updating
in the face of changing environmental conditions. In
turn, the performed maintenance action influences the
predicted RUL.

6 COST

To estimate the potential financial impact of the im-
plementation of the proposed maintenance strategy,
several studies into the effect of predictive mainte-
nance or optimization of a maintenance problem are
discussed.

6.1 Predictive Maintenance

Through time-based simulation of wind farm oper-
ations, Turnbull & Carroll (2021) quantify the cost
benefits associated with different maintenance strate-
gies, taking into consideration both direct mainte-
nance costs and lost production.

Their results indicate that O&M costs can be re-
duced up to 8% along with a reduction of lost produc-
tion up to 11%. However in obtaining these values,
Turnbull & Carroll assume that, after fault detection
of monitoring systems, only 25% of major failures of
the generator and gearbox can be repaired before ma-
jor replacement is required.

6.2 Opportunistic Maintenance

A comprehensive review performed by Tusar &
Sarker (2022) reviews a vast amount of mainte-
nance models to assess the cost benefits associated
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Figure 4: Integrated high-level information flow of opportunistic and predictive maintenance system

with different strategic approaches. Certain risk and
reliability-based models reduce annual O&M costs
by 23%, whereas opportunistic maintenance strate-
gies suggest the ability to minimize 32% of produc-
tion losses and transportation costs.

The most cost-efficient model in the review per-
formed by Tusar & Sarker reduced the cost of mainte-
nance by 48.2% compared to corrective maintenance.
This method applied opportunistic maintenance for
wind farms, proposing the efficient scheduling of
tasks by grouping tasks of multiple components of a
single turbine or combining tasks of multiple proxi-
mate turbines in a farm (Ding & Tian 2012). To pro-
vide enough room for these decisions, the model al-
lows for performing incomplete or imperfect mainte-
nance tasks, not always returning the component to a
good-as-new state.

In a different approach, Besnard et al. (2011) pro-
pose stochastic scheduling at the lowest cost based on
a wind forecast. The schedule is updated daily based
on changes in the production and weather forecast.
After evaluation of real wind data, the proposed ap-
proach demonstrated a 32% reduction in maintenance
cost due to reduced production losses and saved trans-
portation costs.

6.3 Hybrid Maintenance Approach

To assess the cost benefit of the hybrid opportunis-
tic and predictive maintenance strategy as proposed in
this paper, the model proposed by Tian et al. (2011) is
considered. It uses predictive sensor data to determine
a cost-effective solution that incorporates both oppor-
tunistic as well as predictive maintenance aspects. Af-

ter comparing this method with traditional methods,
Tian et al. suggest a cost saving of 44.42%.

In these examples, it is crucial to ensure that the
benefits derived from implementing more advanced
methods surpass the associated increased costs. This
evaluation is contingent on the reliability and condi-
tions of each unique component. As a consequence,
the optimal maintenance solution must be assessed in-
dependently for each component (Zhong et al. 2019).

7 CONCLUSION

Optimization of the operation and maintenance costs
of offshore wind turbines is realized through informed
and strategic predictive decisions grounded on con-
dition monitoring data. Based on lifetime predictions
made by a dynamic Bayesian neural network, preven-
tative component replacements are scheduled in a way
that minimizes downtime and lost production, while
maximizing lifetime and optimizing the use of main-
tenance related resources.

Studied applications consistently show a potential
predicted lead time to failure of at least 2 months. Ap-
plying machine learning techniques on the turbine’s
own SCADA system provides an effective fault de-
tection and prognosis system for many turbine com-
ponents, while the installing of additional sensors can
potentially increase the capability of this system, for
more advanced diagnosis and localization of a fault.

Analysis of similar studies in offshore wind and
other fields suggests the combination of predictive
and opportunistic maintenance approaches could lead
to significant reductions in O&M costs.
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