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Malvika Dixit1, Ties Brands1, Niels van Oort1, Oded Cats1,
and Serge Hoogendoorn1

Abstract
Urban transit networks typically consist of multiple modes and the journeys may involve a transfer within or across
modes. Therefore, the passenger experience of travel time reliability is based on the whole journey experience including
the transfers. Although the impact of transfers on reliability has been highlighted in the literature, the existing indicators
either focus on unimodal transfers only or fail to include all components of travel time in reliability measurement. This
study extends the existing ‘‘reliability buffer time’’ metric to transit journeys with multimodal transfers and develops a
methodology to calculate it using a combination of smartcard and automatic vehicle location data. The developed metho-
dology is applied to a real-life case study for the Amsterdam transit network consisting of bus, metro, and tram lines. By
using a consistent method for all journeys in the network, reliability can be compared between different transit modes or
between multiple routes for the same origin–destination pair. The developed metric can be used to study the reliability
impacts of policies affecting multiple transit modes. It can also be used as an input to behavioral models such as mode,
route, or departure time choice models.

Transit service reliability forms an important component
of service quality and its importance to customer satis-
faction has been repeatedly highlighted in the literature
(1–3). From the operator’s perspective, improved
reliability can reduce operational costs and increase reve-
nue by potentially increasing the ridership and retention
(4).

Urban transit networks typically consist of multiple
modes and passenger journeys may involve a transfer
within or across modes. Therefore, the passenger experi-
ence of reliability on such networks is based on the whole
journey experience including the transfers. Although
there are multiple passenger-oriented reliability indica-
tors available (1–3, 5, 6), the majority are restricted to
single-leg journeys (without transfers), and do not con-
sider different modes and their interactions. Some of the
recent work has looked at journeys with transfers, but
focused primarily on the reliability of transfer time (7) or
travel time from the time passenger boarded the vehicle
(8), ignoring the waiting time at the origin.

This study uses an existing indicator—reliability buf-
fer time (RBT, described by [5, 6])—as a point of depar-
ture, and extends it to journeys with multiple legs and
modes for urban, high-frequency transit networks using
smartcard and automatic vehicle location (AVL) data.
The developed metric aims to:

� Measure reliability for multimodal public trans-
port journeys;

� Enable the comparison of different transit modes
and routes; and

� Be sensitive to the variability in waiting time, in-
vehicle time, and transfer time for all legs of the
journey.

The method developed is applied to a real-life case
study of the Amsterdam transit network to demonstrate
its implementation in practice. The methodology, how-
ever, is independent of the data system(s) in use and
could be applied to any transit network where smartcard
and AVL data sources are available.

By using a consistent method for all journeys using all
available transit modes, reliability can be compared
between any route for any origin–destination (OD) pair
in a multimodal transit network. The developed metric
can be used to study the reliability impacts of policies
affecting multiple transit modes. Additionally, it could
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also be used as an input to behavioral models such as
mode, route, or departure time choice models.

The rest of the paper is structured as follows. First a
background on reliability and the application of auto-
mated data for reliability measurement is presented. The
second section then introduces the new metric and the
methodology to calculate it using smartcard and AVL
data. The developed methodology is applied to the case
study in the third section, for which the results are dis-
cussed in the fourth section. Lastly, the fifth section pre-
sents the conclusions and limitations of the study.

Background

Travel Time Reliability

Reliability in this context is defined as ‘‘certainty of ser-
vice aspects compared with the schedule (such as travel
time (including waiting), arrival time and seat availabil-
ity) as perceived by the user’’ (9). Traditionally measured
in terms of service-oriented indicators (such as on-time
performance, headway regularity [10]), lately there has
been a shift toward passenger-oriented measures, as they
can better capture the effectiveness of reliability improve-
ment strategies by including the end-user perspective (8).
A review of the existing passenger-oriented reliability
measures can be found in Gittens and Shalaby (1) and in
Currie et al. (11).

Reliability may be measured in terms of travel time
regularity (consistency of experienced travel times) or
punctuality (deviation from the scheduled arrival time/
travel time). Cats notes that in case of urban high-
frequency services, passengers arrive randomly without
consulting the schedule, making travel time regularity
more relevant than punctuality (12). This study is based
on dense high-frequency urban transit networks, so relia-
bility has been measured in terms of regularity of travel
time.

Reliability and Automated Data Sources

The smartcard data source has been utilized repeatedly
in the recent past for a range of applications in transport
planning. Pelletier et al. provide a review of these appli-
cations of smartcard data for strategic, tactical, and
operational levels of transport planning (13). For service
reliability measurement too, much of the recent research
utilizes smartcard and AVL data sources (5, 6). In addi-
tion, in practice, many transit agencies are moving
toward such data sources because of lower data collec-
tion costs and better quality of data (10).

The AVL data provides spatiotemporal information
on vehicle movement, which can be used directly to cal-
culate vehicle-oriented passenger reliability metrics (14).
For estimating passenger-oriented metrics, AVL data

can be used in combination with automated passenger
counts (APC) data to weigh the calculated metrics based
on demand. Furth and Muller used the observed head-
ways from AVL data to obtain the waiting time distribu-
tion at origin stop for buses (15). A similar approach
was also employed by Ehrlich to estimate the travel time
(waiting time + in-vehicle time) distribution for bus
journeys in London (16).

Lee et al. highlighted the importance of including the
impact of transfers on reliability assessment (7). Using
AVL data, they estimated the additional delay caused by
transfer synchronization. Jenelius also used the AVL
data to estimate the transfer times by tracing a virtual
‘‘probe traveler’’ undertaking the journeys between dif-
ferent OD pairs (3). Because AVL data does not directly
provide any information on transfers, assumptions need
to be made to estimate transfer time(s) experienced by
the passengers. However, with AFC data, the total jour-
ney time including the experienced transfer time can be
inferred precisely for each passenger. In addition, the
number of transferring passengers for each OD pair can
also be derived.

Bagherian et al. used the AFC data for measuring reg-
ularity and punctuality for journeys with transfers (8).
However, the travel time is measured from tap-in at first
stop to tap-out of last stop of the journey, ignoring the
waiting time at the origin stop.

Table 1 provides a summary of some of the notable
studies using automated data sources for reliability mea-
surement, in terms of the components of travel time
reliability included and the type of journeys they are
applicable to.

From a passenger perspective, the reliability of a jour-
ney should incorporate the variation in all the travel time
components—the waiting time, in-vehicle time, and
transfer time. Although the various components of relia-
bility have been addressed individually or combined in
the existing literature, none of the existing indicators
incorporate sensitivity to all components of travel time
for multimodal public transport journeys. This research
aims to fill that gap.

Methodology

Definitions

In this study, the word ‘‘journey’’ refers to the travel
made by a passenger from an origin transit stop to a des-
tination transit stop including transfers, if any. A ‘‘leg’’
of a journey consists of the travel made using a single
transit line, without any transfers. A journey may include
multiple legs by the same or different transit modes.

The term origin–destination (OD) pair is used to
denote a combination of transit stops (a stop–stop pair).
An OD pair may be connected by more than one transit
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‘‘route’’ which refers to the combination of transit lines a
passenger may choose, where each route may or may not
include a transfer.

Reliability Buffer Time

The RBT, first introduced by Chan (5) and later
updated by Uniman et al. (6), measures the variability
in travel time as the absolute difference between an
extreme Nth percentile and the 50th percentile travel
times. The value of N is typically set to 95 (17), where
RBT can be interpreted as the additional time passen-
gers have to budget for their travel to ensure on-time
arrival one out of 20 times, a value considered accepta-
ble in the literature. RBT, including its variations (such
as individual RBT and platform to platform RBT [17]),
is one of the popular ways of measuring travel time
reliability. Besides being easy to compute, some of its
key advantages include its representation of passenger
perspective, ease of interpretation for nonexperts, and
flexibility of calculation across time and space (17).
Although originally developed for metro, RBT has also
been applied for reliability evaluation of bus networks
(16). However, so far, the majority of applications of

RBT have focused on unimodal journeys. This study
extends the calculation of RBT to multimodal transit
journeys. The RBT is calculated for each transit route
alternative per OD pair, which may or may not include
transfers.

For a journey with multiple legs, the total travel time
(of the transit part of a journey) includes the waiting time
at the origin stop, the in-vehicle time for the first leg, the
waiting times and in-vehicle times for the subsequent legs
of the journey, and the transfer (walking) times between
each leg—shown in Figure 1 for a journey with two tran-
sit modes. Because the passenger experience of reliability
is defined by the variation in all of these components of
travel time, the ideal reliability metric should be sensitive
to each of these components, where each component
may be perceived differently by travelers. However, this
research assigns equal value to the variability in each
individual component of travel time, because, in the end,
the travel time variability of the entire journey is relevant
for the traveler. Furthermore, these components may be
correlated, in that the variation in in-vehicle time for the
first leg of the journey could be absorbed by the waiting
time at the transfer. Therefore, this study measures varia-
bility of the total travel time over the entire journey.

Table 1. Existing Travel Time Reliability Measures using Automated Data Sources

Study Measure(s) developed Data used

Travel time component included

Modes
applicable to

In-vehicle
time

Waiting time
(origin)

Transfer
time

Furth and Muller (15) Waiting cost AVL No Yes No All
Uniman et al. (6) Reliability buffer time,

Excess reliability buffer time
AFC Yes Yes Yes Metro

Van Oort (2) Additional travel time,
Reliability buffer time

AVL Yes Yes No All

Lee et al. (7) Additional travel time,
Reliability buffer time

AVL,
APC

No No Yes Train and tram

Gittens and Shalaby (1) Journey time buffer index AVL, APC Yes Yes No Bus
Bagherian et al. (8) Passenger journey time variability,

Passenger schedule
deviation reliability

AVL, AFC Yes No Yes Bus/tram

Figure 1. Components of passenger experienced travel time for a transit journey with two legs.
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For each multi-leg journey ‘‘i’’, the total travel time is
given as:

tto, d, r, i =
Xno, d, r

l = 1

wto, d, r, l, i +ivto, d, r, l, ið Þ

+
Xno, d, r�1

l= 1

xo, d, r, l, i 8o, d, r, i

ð1Þ

where
wto, d, r, l, i represents the waiting time for leg ‘‘l’’ of

journey ‘‘i’’ using route ‘‘r’’ between origin–destination
pair ‘‘o,d’’;

ivto, d, r, l, i represents the in-vehicle time for leg ‘‘l’’ of
journey ‘‘i’’ using route ‘‘r’’ between ‘‘o,d’’;

xo, d, r, l, i is the transfer time between leg ‘‘l’’ and
‘‘l+1’’ for journey ‘‘i’’ using route ‘‘r’’ between ‘‘o,d’’;

no, d, r represents the number of legs in journey between
‘‘o,d’’ using route ‘‘r’’; and

tto, d, r, i is the total travel time for journey ‘‘i’’ using
route ‘‘r’’ between ‘‘o,d’’ over all legs.

The individual travel times are aggregated over all
journeys that belong to a specific OD pair and route
combination, by calculating the median value and the
95th percentile value, and using these values to calculate
the RBT for each OD pair for each route:

RBTo, d, r =tto, d, r95 � tto, d, r50 ð2Þ

where
tt50

o, d, r is the 50th percentile travel time over all jour-
neys between origin–destination pair ‘‘o,d’’ using route
‘‘r’’; and

tt95
o, d, r is the 95th percentile travel time over all jour-

neys between origin–destination pair ‘‘o,d’’ using route
‘‘r’’.
The RBT measures the absolute difference (in minutes)
in travel times, as opposed to the relative values. This
has been consciously chosen for this study, for three
reasons:

1. Different modes have different speeds; that is,
metro routes are expected to have a shorter travel
time than trams for the same OD pair. Because
one of the aims is to be able to compare reliability
between modes, the relative values may underesti-
mate the reliability of faster modes.

2. For OD pairs very close to each other (for exam-
ple next stop on metro), the ratio of 95th to 50th
percentile travel times may be very high, because
the waiting time component is large compared
with the in-vehicle travel time. If the reliability is
measured as a percentage of median travel times,

this will lead to RBT values exceeding 100%
which are difficult to compare.

3. When using travel time variability in policy eva-
luation (using a value of travel time reliability)
absolute values are preferred.

The RBT can be measured for any selected time inter-
val such as the peak hour or three hours, provided that
enough data points are available. It is recommended to
choose a time period when the frequency of services is
consistent, because variation in frequencies can contrib-
ute to higher variation in waiting and transfer times,
leading to a higher RBT.

RBT Calculation using Smartcard Data

Because the aim is to measure variability in travel times,
the large amount of observations provided by the smart-
card data allow for a realistic measurement (6). For this
study, data from the Dutch smartcard system [see Van
Oort et al. (18) for details] and AVL data [see Van Oort
et al. (14) for details] have been utilized. The Dutch smart-
card requires tap-in and tap-out for all modes, implying
both boarding and alighting locations and times are avail-
able. However, for systems in which tap-out is not
recorded (London buses, New York metro, etc.), destina-
tions can be inferred using a combination of smartcard
and AVL data (19, 20). Once the destination is available
for all transactions, transfer inference is undertaken to
combine individual transactions to journeys (21, 22).

Depending on the system, the tap-in is either at the
stop (e.g., most current metro systems, including
Amsterdam) or on board the vehicle (most current bus
and tram systems, e.g., London bus and Amsterdam bus
and trams). When tap-in is in the vehicle, the difference
between tap-out and tap-in times for each transaction
correspond to the in-vehicle times only (t2-t1 and t5-t4 in
Figure 1), whereas in the station-based tap-in, this time
also includes access/egress time to the vehicle, waiting
time at the platform and the transfer time within the same
mode (if applicable) (t2-t0 and t5-t3 in Figure 1). For the
sake of simplicity, and assuming they form a small com-
ponent of the overall travel time, the access and egress
time to the vehicle from the fare gates is not explicitly
included in the specification of the measure used in this
paper. It is assumed that this time is constant across pas-
sengers and therefore does not contribute to reliability.

For Amsterdam, for journeys with metro as the first
mode, the total travel time can be calculated directly
from the smartcard data as the difference between the
last tap-out and first tap-in (t5-t0 in Figure 1). For jour-
neys with buses and trams as the first mode, on the other
hand, the waiting time at the origin stop needs to be
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measured/estimated separately (only t5-t1 in Figure 1 is
measured). This is represented as:

tto, d, r, i =
(touti, l = no, d, r

� tini, l= 1) if mode is metro for l = 1

(touti, l = no, d, r
� tini, l= 1)+wti, l = 1 if mode is bus or tram for l= 1

(
ð3Þ

where
tin

i, l is the tap-in time for leg ‘‘l’’ of journey ‘‘i’’; and
tout

i, l is the tap-out time for leg ‘‘l’’ of journey ‘‘i’’.
In this study, the waiting time at origin wti, l = 1 is esti-

mated for each individual (journey) and then added to
the time measured by smartcard data for journeys with
bus or tram as the first mode.

For short headway services, it has been known that
passengers arrive at the transit stops without consulting
the schedules (15, 23). Therefore, within this short inter-
val of time between the arrivals of consecutive buses/
trams, a uniform distribution of passenger arrivals can
be assumed. Continuous random variables are then gen-
erated and sampled over the uniform distribution of [0,
observed headway] to obtain waiting time for each indi-
vidual journey. The observed headway is obtained from
the AVL data. Because the waiting time is sampled over
all the passengers arriving during an observed headway,
this method captures the ramifications of uneven

headways on passenger waiting times as more waiting
times are sampled for the longer headways.

Once the waiting time is assigned for journeys in which
the first mode is bus/tram, the total travel time is calcu-
lated for each journey (using Equation 1) and aggregated
to percentile values for each route for each stop–stop
pair. Subsequently, RBT is calculated based on Equation
2. RBT can be compared between multiple routes for the
same OD pair. It can also be aggregated for each mode
or mode combination by using a demand weighted aver-
age, given by:

RBTm =

P
o, d, r2Rm, o, d

No, d, r*RBTo, d, rð ÞP
o, d, r2Rm, o, d

No, d, r
8m ð4Þ

where
No, d, r represents the total passengers traveling on

route ‘‘r’’ between origin–destination pair ‘‘o,d’’; and
Rm, o, d is the set of all routes on origin–destination pair

‘‘o,d’’ using mode ‘‘m’’.
Using a similar approach, it can also be aggregated or

segmented to other dimensions such as for the number of
transfers involved, or for the whole population or groups
of users within the population.

Figure 2 summarizes the steps that can be followed to
derive RBT for multimodal journeys using smartcard
and AVL data.

Application

Case Study Description

The proposed method is applied to a real-world case
study consisting of bus, tram, and metro lines operated
by GVB—the urban transit operator of Amsterdam. The
study area consists of 4 metro lines, 15 tram lines, and 25
bus lines spread over 1,282 stops, shown in Figure 3.

The smartcard and AVL dataset used for the analysis
is for two weekdays (1 and 2 March 2018), and consists
of more than 750,000 transactions per day for each day
spread over more than 80,000 OD pairs. The average fre-
quency for metro in the dataset is 6 to 8 trains per hour
per direction during 7 a.m. to 7 p.m. For bus, this num-
ber ranges between 4 and 10 and for tram between 5 and
12 vehicles per hour per direction. Four bus lines (29,
231, 240, and 248) with a frequency of fewer than four
vehicles per hour have been removed from the dataset
used for the analysis.

Figure 2. Analysis steps to derive RBT from raw smartcard and
AVL data.

Dixit et al 5



The planned headways for the lines are found to be
homogenous throughout the day, and the RBT analysis

for this study has been performed for the entire day (7 a.m.

to 7 p.m.). From the realized headways it can be observed

that in regular situations during transit operation in the

study area vehicle bunching is not common. The OD/route

combinations with fewer than 20 observations during this

period have been excluded from the analysis.

Implementation

Each record/transaction of the smartcard data received
from the operator consists of a combination of tap-in
and tap-out, which in case of buses and trams includes
one leg of the journey only (without transfers). For metro
it may include transfers within the metro, because passen-
gers transfer without using their smartcard. Each record
consists of boarding and alighting times, locations, and

Figure 3. Amsterdam transit network (Source: GVB, 2018).
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the mode used. For bus and tram trips, the line number
and vehicle number are also provided. The data however
does not provide a smartcard ID because of privacy
restrictions, implying that the transactions cannot be
tracked within the day. Instead, a journey ID is provided,
which combines individual transactions based on the
transfer inference criteria applied by the operator which
identify any transaction by the same user within 35 min
of the previous transaction as a transfer.

Data Cleaning. The raw smartcard and AVL data are first
cleaned to remove erroneous or incomplete transactions
such as unrealistic travel times, departure time before
arrival time, missing origin and destination information
and so forth (7.4% in the dataset).

For metro trips, some extreme values of travel times
can be observed in the data, possibly because of passen-
gers taking the wrong train or waiting for a friend at the
platform. To ensure that such passenger behavior does
not lead to unrealistic reliability measurement, the fol-
lowing procedure is applied to identify and remove
records with odd passenger behavior for metro, ensuring
that large disturbances are retained:

1. For each OD pair, select the records for which
the travel time was more than double that of the
median travel time and which exceeded by more
than 15 min the median travel time for that OD
pair. This value is decided by observing the out-
liers in the data, taking into consideration both
very short and very long metro journeys.

2. For each selected record, check if there is another
record in the smartcard data that started after the
tap-in and ended before the tap-out of the selected
record. If the difference between tap-outs of these
two records is more than one headway (10min),
the selected record is considered an outlier and
removed from the dataset. This results in the
removal of 0.25% of metro trips.

Data Fusion. Next, the individual transactions in the AFC
data are matched with the AVL data to obtain the actual
vehicle arrival and departure times at stops for bus and
tram trips. Because the smartcard data for Amsterdam
does not provide a vehicle trip number which can be
matched directly to the AVL data, the matching is under-
taken based on the vehicle number, boarding time, and
location. If a tap-in time lies between the arrival of a
vehicle at the boarding stop and the arrival of the vehicle
at the next stop on that line, the passenger trip is assigned
to that vehicle trip ID. For the first stop in a vehicle trip,
a buffer time of 5min before the departure of the vehicle
is considered for assigning the passenger trip to that

vehicle trip. With this algorithm, 92% of the bus and
tram trips could be matched to a corresponding vehicle
trip, and of these 88% could be matched based on desti-
nation also. It is noted that there are other more rigorous
methods available to match the remaining smartcard
data to AVL data (24), but because that is not the focus
of this work, this was not undertaken. Instead, for the
passenger trips for which a corresponding vehicle trip
could not be found in the AVL data, the tap-in and tap-
out times have been considered as the trip start and end
times.

Although the Dutch smartcard system requires tap-in
and tap-out for all modes, ~3.5% of transactions have
missing tap-outs for buses and trams. In the absence of
the smartcard ID, it is not possible to infer destinations
for these records, and they are therefore removed from
the data.

Transfer Inference. Because the purpose of this study is
reliability measurement, it is crucial that this step is car-
ried out accurately as an incorrectly classified transfer
may add extreme values of travel times, increasing thus
the measured reliability. The transfer criterion of 35min
applied by the operator is very generous and may include
some activities wrongly classified as transfers. Therefore,
this study applies four additional transfer inference cri-
teria derived from (21, 22):

1. Two consecutive journey legs on the same line in
either direction are not classified as a transfer.

2. Only those legs are considered as a transfer in
which the passenger boarded the first vehicle
which arrived after the passenger reached the next
boarding stop. This has been calculated by esti-
mating the walking distance as

ffiffiffi
2
p

times the
Euclidean distance between the two stops. The
2.5th percentile of walking speed (25) has been
assumed to ensure that this criterion does not
eliminate passengers with walking speed on the
lower side. Additionally, a minimum transfer buf-
fer time of 5min is applied.

3. Transfers occurring with a Euclidean distance of
more than 750m (21) between the two stops are
not considered as transfers.

4. Circuity of more than 2.5 is classified as an activ-
ity. This has been applied to prevent back and
forth trips on different but parallel lines from
being classified as a transfer.

Waiting Time Distribution. The waiting time for journeys
with bus/tram as the first mode is estimated by assuming
uniform arrivals over the observed headway for each
vehicle trip for each stop. For the vehicle trips for which
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the observed headway was not available (such as the first
vehicle trip in the day), the headway was assumed as the
average of the observed headways during the hour.
Additionally, for the stops with headway longer than
15min for a line, such as when a stop was skipped during
certain runs, the waiting times have been distributed over
15min (maximum planned headway) only.

RBT Calculation. With all the components of travel time
available for each journey, RBT is calculated for each
stop–stop pair and route combination for which a mini-
mum of 20 observations (journeys) have been recorded.
For Amsterdam, this represents 673,767 journeys spread
over a total of 7,531 OD/route combinations.

Results and Discussion

Reliability per Mode

The RBT is calculated for each mode combination avail-
able in the data (Table 2) as the demand weighted aver-
age of RBT for each OD pair/route, as shown in
Equation 4. Based on the observed data, journeys with
only metro are found to be the most reliable, followed
by the single-leg journeys using bus or tram modes.
Because of separate right-of-way and no disruptions
observed during selected days, there is negligible varia-
tion in in-vehicle time component for metro journeys
and the RBT is primarily contributed by the variation in
waiting time component of the journey (including at
transfers).

The tram network in Amsterdam serves the congested
city center with mixed traffic, including bikes, and faces
high passenger demand potentially causing lower reliabil-
ity levels. Buses, on the other hand, tend to run on less
central streets with lower demand levels and therefore
less crowding variation, making them relatively more
reliable for single-leg journeys. However, the frequency

of buses is typically lower—making the journeys with
intramodal transfers less reliable for buses than for
trams.

Journeys with intermodal transfers do not show major
variations between different mode combinations. That a
transfer is involved increases RBT, with a lesser impor-
tance to the specific combination of bus, tram, or metro
between which the transfer is made. It should be noted
here that because RBT is measured in absolute terms, it
is expected to be higher for journeys with transfers
because of typically longer journey lengths.

Differences are also found in the distribution of
RBT across OD pairs by mode(s) used (Figure 4). Only
the mode(s) with a minimum of 40 OD/route combina-
tions have been presented here. It is observed that
the spread of RBT values across OD pairs is much wider
for journeys with transfers compared with the ones
without a transfer, possibly because of longer journey
lengths for transfer journeys. Routes connected by
single-leg bus journeys are found to have not only the
lowest average RBT value but also the lowest variation
of RBT across different routes. The largest spread of
RBT is seen for the tram–tram transfer journeys. It is
noted here that Table 2 shows the RBT as the demand
weighted average whereas Figure 4 shows the spread of
RBT over OD pairs. Therefore, although RBT for metro
seems to be higher when looking at the distribution
across OD pairs, more passengers seem to use the lower
RBT metro routes, bringing down the overall RBT
(Table 2).

Reliability of Accessing Transit Hubs

The developed RBT can be used to analyze the reliability
of a transit stop to/from all other origin/destination tran-
sit stops, as obtained using Equation 2. Figure 5 shows
the spatial distribution of RBT values for journeys from

Table 2. RBT for Different Mode Combinations

Mode(s) used Number of journeys Number of OD pair/route combinations Median travel time (mins) RBT (mins)

Unimodal
Metro(+ metro–metro) 235,287 1,189 14.7 5.9
Tram 315,410 4,094 15.4 6.6
Bus 104,495 1,703 14.8 6.2
Tram–tram 1,755 60 23.2 7.2
Bus–bus 130 5 20.5 9.1

Multimodal
Metro–tram 7,588 213 25.0 7.6
Metro–bus 747 26 28.8 7.8
Tram–metro 6,665 179 26.3 8.3
Tram–bus 115 5 21.6 8.3
Bus–metro 1,336 48 28.7 8.5
Bus–tram 239 9 24.8 7.9
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various transit stops to two major train stations
(Amsterdam Central and Sloterdijk) by various modes.
The size of the circles represents the RBT from that ori-
gin to the selected train station.

The Sloterdijk station is situated outside the city cen-
ter. Consequently, it can be reached in a relatively reli-
able way, from all directions and with all modes. In the
South and in the Southeast of the city two metro
branches can be observed that are less reliable, which
makes sense because a transfer is needed to reach
Sloterdijk from these branches. Moreover, the combined
mode of tram and metro seems relatively less reliable for
Sloterdijk.

To and from the Central Station most destinations are
reached without a transfer. The metro branches to the
Southeast of the city as well as the buses to the North are
found to be relatively reliable. Reliability by trams seems
relatively lower except for tram line 26 to the East of the
city which avoids the crowded city center.

Reliability per Route

Next, the RBT for different routes for the same OD pair
is investigated. Four route alternatives are available
between the origin–destination pair of Station Sloterdijk
to Boelelaan (Figure 6). One could either take a metro
(with a transfer at Amsterdam Zuid station), or take the
metro until Amstelveenseveg station and from there bus
62 or trams 16 or 24.

Based on the data, it is seen that RBT is in this case in
fact the highest for metro and lowest for the route with
metro and bus together (Table 3). This example high-
lights that aggregating RBT across routes/modes/OD
pairs ignores the variations observed between different
areas and routes. Measuring RBT at a route level gives
more detailed and actionable results of reliability.

It is also noted that the number of journeys is least for
the metro–metro route. This is expected as not only the
RBT but the median travel time is also the highest for
this route. Tram routes 16 and 24 overlap, which is also

Figure 4. Distribution of RBT across OD pair/route combination by mode(s) used.

Figure 5. Reliability to transit stops using different modes.
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reflected in the similar travel times and RBT for these
routes.

Looking at the journey time distribution for different
routes (Figure 7), it is noted that the route with metro
and bus services has a steep slope of travel time indicat-
ing a more reliable service. The metro route on the other

hand has a jump in travel time just before the 90th per-
centile value—potentially because of the passengers miss-
ing the metro at the transfer station and having to wait
another headway (10min).

Conclusions

This research proposes a new metric for travel time relia-
bility measurement, considering multimodal transit jour-
neys, including waiting and transfer times for all legs of
the journey. The developed metric can be calculated
using a combination of smartcard and AVL data, which
was demonstrated by applying it to the Amsterdam tran-
sit network. Because the chosen smartcard data do not
measure the waiting time for bus and tram journeys, a
method to estimate the waiting time for each journey
starting with these modes was proposed, based on the
observed headway from AVL data. Based on the seman-
tics of the smartcard system applicable, the method can
be modified and applied to other networks.

Because the reliability metric is developed at a very
disaggregate level (i.e., for each OD pair/route combina-
tion), it provides flexibility of aggregation across various
dimensions depending on the goal. The case study
demonstrated its application by aggregating across three
dimensions—mode, transit stop, and routes.

Aggregating the RBT at a larger scale such as at the
mode level provides an overall picture of reliability. This
can for example be used for reliability impact analysis of
policies affecting one or more transit modes. In the
Amsterdam case study, it was observed that for single-
leg journeys, trams in the city center are the least reliable.
For multiple legs however, a bus to bus transfer was
found to be the least reliable of all, possibly because of
the longer headways and consequently longer transfer
times because of missed connections.

However, aggregating at such a large scale ignores the
variations in reliability between different OD pairs and
routes. For example, in the case study it was seen that
for the journeys from Sloterdijk to Boelelaan station, the
RBT was highest for the route with metro only compared
with the other three routes consisting of metro in combi-
nation with either bus or trams. This type of information
can be used to address specific unreliability issues for a
particular route/OD pair. Route level RBT can also be

Table 3. RBT per Route for Station Sloterdijk to Boelelaan

Journey origin Journey destination Route Number of journeys Median (min) 95th percentile (min) RBT

Sloterdijk Boelelaan Metro–metro 25 26.0 36.8 10.8
Metro–bus 62 66 22.4 27.8 5.4
Metro–tram 16 217 23.1 32.2 9.1
Metro–tram 24 105 22.9 31.4 8.6

Figure 6. Observed passenger routes from Sloterdijk to
Boelelaan Station.
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used as a direct input to behavioral models such as route
choice models.

The RBT can also be compared for different origin/
destinations from a selected transit stop/hub. This can
for example be used to analyze from which locations and
using which modes is the unreliability largest, providing
policy makers with information on urgency of reliability
issues across the city.

The case study demonstrated some of the potential
applications of the developed method. However, because
of the low sample size (only 2 days), the analysis was
undertaken for a longer time period within the day (7
a.m. to 7 p.m.). As future work, this method could be
applied to a larger dataset enabling analysis at an hourly
level. The RBT can then be used to compare progress in
performance over time or between different time periods
during the day.

Based on the available data, simplifications were
made leading to some limitations of the work. First, it
was assumed that the passengers boarded the first vehicle
that arrived in case of bus and tram modes. In case of
overcrowded vehicles (for example caused by vehicle
bunching) in reality passengers may prefer to take the
next arriving vehicle. However, for metro the time mea-
sured by smartcard already includes the potential delay
caused by denied boardings. Additionally, this study did
not consider the impacts of availability of real-time
information on passenger arrivals and their waiting time
distribution. Although only short headway services were
considered, it is common for passengers to consult the
real-time arrival information before arriving at the tran-
sit stop. Further research could focus on addressing these
limitations of the analysis.
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