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Abstract—The condition monitoring of railway infrastructures
is collecting big data for intelligent asset management. Making
the most of the big data is a critical challenge facing the
railway industry. This study focuses on one of the main railway
infrastructures, namely the catenary (overhead line) system that
transmits power to trains. To facilitate the effective usage of
catenary condition monitoring data, this study proposes an
unsupervised anomaly detection approach as a pre-processing
measure. The approach trains autoencoders to reduce the di-
mensionality of multisensor data and generate discriminative
features between healthy and anomalous data. By testing the
reconstruction errors using the trained autoencoders, anomalous
data that indicate potential defects of catenary can be identified
without prior information and human intervention. A case study
on a section of high-speed railway catenary in China shows
that the approach can automatically distinguish between healthy
and anomalous data. The output anomalous data can save a
considerable amount of computation time and manpower in
further interpretations aiming to pinpoint defects.

Index Terms—anomaly detection, railway catenary, condition
monitoring, unsupervised learning, autoencoders

I. INTRODUCTION

Condition monitoring is widely deployed in worldwide

railways to enable better maintenance decision making, which

aims to prolong the life cycle of railway assets and reduce the

probability of asset failures that disrupt train services. With the

development of sensor technology, nowadays data are flowing

in on a daily basis from a variety of sensors adopted to monitor

railway assets in a comprehensive manner. It brings challenges

as well as opportunities in using the railway big data to its full

potential [1].

For railway infrastructures commonly distributed crossing

lands and continents, there are mainly three ways to perform

condition monitoring depending on the type and placement

of sensors. First, sensors installed on a specialised inspection

train or commercial train can measure the dynamic responses

of on-board components and take photos or videos of sur-

rounding infrastructures while the train is running [2], [3].

In this way, an entire railway network can be periodically

inspected every year, half a year or lesser. Second, sensors

installed on or near by infrastructures can monitor vibra-

tions, deformations, appearances and temperatures of critical

components at certain locations [4]. Data can be collected

by track-side servers through cables or wireless transmission.

Last, remote sensing techniques using satellites [5], drones [6],

etc. are recently gaining attentions, which brings conveniences

in monitoring railway infrastructures at a large scale from a

distance. Because a railway infrastructure normally consist

of tens or hundreds of component types, it may fail in

providing its functionality in many ways. It is thus necessary

and common that multiple sensors are adopted to monitor an

infrastructure from different aspects in practice.

Until now, railway catenary (overhead line) systems, the

most popular infrastructure for train power supply, are mainly

monitored and inspected using sensors installed on board.

To provide continuous and steady electric power to running

trains, a pantograph mounted on the train roof should be

able to collect electric current from the catenary through the

pantograph-catenary sliding contact. This contact is essentially

maintained by the contact force between the pantograph and

the catenary, which is subject to fluctuation due to contact-

induced vibrations. To monitor the quality of pantograph-

catenary contact, sensors are often installed on the pantograph

or the train roof. These sensors measure a variety of phys-

ical parameters or phenomenons that can reflect the contact

quality, including the pantograph-catenary contact force [7],

pantograph head acceleration [8], contact point or contact

wire displacement [9], [10], electric arcing effect [11] and so

on. In addition, components and foreign bodies of catenary

that do not directly interact with the pantograph, including

insulators, steady arms, cantilevers, fasteners, etc. [12], are

inspected by cameras or scanners taking photos [13], videos

[14] or point cloud data [15]. All data collected are commonly

synchronized with auxiliary measurements such as train speed,

GPS location, radio-frequency identification or similar, so that

the measurement location and condition are known for further

data analysis and on-site verification.

Transforming the collected multisensor data into qualitative

or quantitative conditions of catenary is a challenging task.

In practice and literature, condition assessment of catenary is

mostly carried out using one type of data. Data processing

techniques including Fourier transform, wavelet transform

[16], empirical mode decomposition [17] and quadratic time-

frequency distribution [18] have been adopted for feature ex-

traction. Due to recent advancements in artificial intelligence,

machine learning methods such as Bayesian network [19] and

deep convolutional neural network [20] have also been applied

to catenary condition assessment. However, existing studies
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and applications rely heavily on manual data processing to

identify and label unhealthy conditions for feature extraction

and training, while a majority of measurement data actually

represents a healthy condition because inspection trains collect

data by running through an entire railway line or network.

When dealing with multisensor data, identifying anomalies

becomes even more difficult because each data type reflects

the catenary condition in a particular way. Combining the

information contained in these data to make a correct judgment

is still an ongoing research question.

To facilitate the intelligent data processing and decision

making in catenary condition monitoring, this study proposes

an unsupervised approach to detect anomalies reflected by

the multisensor monitoring data. The approach adopts an

unsupervised learning method, namely autoencoders [21] to

distinguish between healthy and anomalous data samples with-

out giving prior knowledge and interpretation of the original

data. The rest of this paper is organized as follows. Section II

introduces the theory of autoencoder neural networks. Section

III presents the unsupervised anomaly detection approach

using autoencoders. Section IV presents and discusses results

applying the approach to a set of catenary condition monitor-

ing data measured at a high-speed railway line in China.

II. AUTOENCODERS

An autoencoder is a feed-forward neural network that can

automatically learn features from unlabelled data. Figure 1

shows an autoencoder consisting of an input layer, a hidden

layer and an output layer. The autoencoder first takes the

input training set x = {x1, x2, · · · , xn} and transforms it

into a hidden representation h = {h1, x2, · · · , hm} through

a nonlinear activation function

h = ϕ (Wx+ b) . (1)

This phase is also called an encoder. Then, the hidden

representation is mapped to an output representation y =
{y1, y2, · · · , yn} similar to the input

y = ϕ (W′x+ b′) . (2)

This phase is considered as a decoder. Through encoding and

decoding, the autoencoder tries to learn model parameters θ =
[W,b,W′,b′] that reconstruct the input so that the output

y = fθ(x) ≈ x. Thus, the model parameters can be optimized

by minimizing the reconstruction error between the output y
and the input x. This optimization problem can be formulated

using the mean square error (MSE), also known as a cost

function, as follows:

min
θ

1

N

N∑
i

(xi − fθ (xi))
2

(3)

where xi denotes the ith data sample and N is total number

of samples.

If the training of autoencoders is performed by minimizing

the MSE only, the learned transformation can be the iden-

tity one, which prevents the discovery of meaningful data

x1

x2

xn

. . .
b

h1

hm
. . .

b'

y1

y2

yn

. . .

Input
Hidden Output

Fig. 1. An autoencoder neural network.

structures. This issue can be handled by imposing a sparsity

constraint on the hidden units [21]. The constraint penalizes

excessive activations of hidden units so that the hidden units

are only sensitive to a certain type of training samples. It

updates the cost function to

min
θ

1

N

N∑
i

(xi − fθ (xi))
2
+ β

m∑
j

KL(p||pj) (4)

where the added term is the sum of the Kullback-Leibler (KL)

divergence over the m hidden units and β is a coefficient for

this sparsity penalty term. The KL-divergence measures the

difference between two probability distributions. For the jth

hidden unit,

KL(p||pj) = p log

(
p

pj

)
+ (1− p) log

(
1− p

1− pj

)
(5)

where pj is the average activation of the jth hidden unit over

the training data, which is penalized if deviating from p, and

p is a sparsity parameter typically with a value close to zero.

The hidden representation is an encoded and abstract rep-

resentation of the input data x. When the dimensionality of

the hidden representation (the number of hidden units) m is

smaller than that of the input n, the input data is compressed

into a lower dimension. This compression is particularly mean-

ingful when the input data vectors have certain correlations

with each other. The autoencoder discovers and generates

discriminative features in the hidden representation that can

clearly separate potential clusters in the input data [22]. A

set of condition monitoring data, which contains physically

correlated data measured under the same system dynamics, is

suitable for such compression.

III. AN UNSUPERVISED ANOMALY DETECTION

APPROACH

A. Data Correlation

Condition monitoring data of catenary measured by on-

board sensors can be considered as the results of the

pantograph-catenary interaction. Figure 2 shows a typical

pantograph-catenary contact above a train roof. When a pan-

tograph lifts up on the train roof, it gives an initial contact

2637

Authorized licensed use limited to: TU Delft Library. Downloaded on November 20,2020 at 09:10:47 UTC from IEEE Xplore.  Restrictions apply. 



force that presses the pantograph against the catenary. Electric

current can thus flow from the catenary through the pantograph

to the train locomotive. When the train starts running, the

pantograph head slides through the contact wire of catenary

with the contact force changing due to the variation of contact

wire stiffness along the running direction. The change of

contact force leads to vibrations of pantograph and catenary

as the contact point is constantly moving. If this interaction

cannot be maintained by a contact force regulated within a

certain range, the pantograph will not be able collect electric

current from the catenary during train operations, which should

certainly be avoided as much as possible in practice. Therefore,

physical parameters that reflect the status of pantograph-

catenary interaction are monitored during train operations to

evaluate the catenary performance. In this study, we consider

five physical parameters that are measured and related to the

pantograph-catenary interaction, as listed in Table I.

The five parameters are physically correlated with each

other. These correlations have been elaborated in [19], which

are summarized in short as follows:

1) The train speed is proportional to the average amplitude

of all other parameters measured, because in general

higher speeds cause stronger vibrations.

2) The inertia force Fi, as a part of the measured

pantograph-catenary contact force, yields Newton’s sec-

ond law of motion that is

Fi = mi · a
where a is the pantograph head acceleration and mi is

the mass of pantograph head.

3) The pantograph head acceleration is theoretically the

second derivative of contact wire dynamic height with

respect to time, assuming the pantograph head is always

in contact with the contact wire.

4) The contact wire dynamic stagger is proportional to the

contact force, because a larger contact force results in a

larger friction force in the lateral direction.

Therefore, it can be concluded that, by nature, the five types of

parameter are strongly correlated. The fact that these parame-

ters are measured by separate sensors makes it more likely and

meaningful to discover a structure among the measured pa-

rameters using dimensionality reduction by autoencoders. This

Catenary

Pantograph

Contact wire

Pantograph 
head

Fig. 2. Pantograph-catenary contact.

TABLE I
PHYSICAL PARAMETERS CONSIDERED IN THIS STUDY.

# Parameter Unit
1 Pantograph-catenary contact force (PCCF) N
2 Pantograph head acceleration (PHA) m/s2

3 Contact wire dynamic height (vertical displacement) (CDH) mm
4 Contact wire dynamic stagger (lateral displacement) (CDS) mm
5 Train speed km/h

structure enables clear clustering of the original measurement

data, which facilitates detecting anomalies in the measurement

data.

B. Anomaly Detection

One main characteristic of catenary condition monitoring

data is that a considerable amount of data samples represents

a healthy catenary condition. From experiences and literature,

most catenary defects, with a length from millimetres to meters

[16], are locally and sporadically distributed along kilometres

of catenary. In measurement data, these defects can only give

rise to several anomalous data samples out of the entire data

pool, depending on the sampling interval. When reducing the

dimensionality of this type of data with strong correlations,

the significant difference between the amount of healthy and

anomalous data makes it even easier to generate discriminative

features for identifying anomalies.

For condition monitoring data collected from a specific

railway line, the proposed anomaly detection approach is

described as follows:

Step 1: Train an autoencoder using historical data samples

measured at the same railway line, with the data

dimension n and the hidden representation dimension

m < n (m ∈ N+).
Step 2: Input a new set of measurement data samples xnew,

which should be measured at the same railway line

as the training data, into the trained autoencoder and

obtain a reconstructed version of the input data x
′
new.

Step 3: Calculate the MSE between the input samples and the

reconstructed ones.

Step 4: Identify the data samples with reconstruction errors

ranking above the pth percentile among all samples

as anomalous data.

In this study, the input data for training and testing are

the aforementioned five data types so that the number of

input units n = 5. Thus, the number of hidden units m is

selected to be 2 considering the aim is to classify data into

only two clusters (healthy and anomalous ones) and the strong

correlations among the five types of input data. Later, results

when m = 3 will also be compared with those using m = 2.

It is of course possible and advised to include more input data

types reflecting the pantograph-catenary interaction into the

autoencoder, by simply increasing the number of input units

n. The selection of the percentile threshold p in Step 4 highly

depends on the current condition of the targeted catenary. A

combined factor concerning the age and the traffic density of

the catenary should be taken into account. In general, an older
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Fig. 3. A segment of training data.

catenary structure with a higher traffic density has a smaller

threshold p, because more anomalies are expected to be found.

In addition, p can be slightly larger if the applied maintenance

frequency or standard is higher than average. Empirically, p
can range from 95 to 99.5.

IV. RESULTS AND DISCUSSIONS

A. Training

A set of historical data measured at a section of catenary in

the Beijing-Guangzhou high-speed railway line is adopted for

training and testing in this work. It contains data from more

than 20 inspection runs on the same section between 2015 and

2018. Data from the latest inspection run is used as the test

data, while the rest are used for autoencoder training. As a

result, a total number of over 3 million data samples trains

an autoencoder with the number of hidden units m = 2 and

m = 3, respectively. Figure 3 shows a part of the training

data set containing 20,000 samples. The five types of data

are simultaneously measured and synchronized with a fixed

sampling interval of 0.25m. All data types are rescaled through

mean normalization to have the same range of values.

It takes 510 and 390 epochs for the training of autoencoders

with two and three hidden units to converge, respectively. Both

autoencoders find a minimum MSE of 0.0116 over all training

samples. Figure 4(a) and 4(b) show the 2D and 3D repre-

sentations learned by training the autoencoders, respectively.

The dots are features generated by a piece of the training

dataset containing more than 100 thousand samples. In both

abstract representations, two clusters can be observed with one

gathering a majority of samples and the other with much less

samples. In the 2D representation, the big cluster is located

above the small one. In the 3D representation, there is a

small gap between the oval-shaped big cluster and the small

one located closer to the vertical axis. Both representations

demonstrate that a certain data structure has been learned

Dimension 1

Di
m

en
sio

n 
2

Dimension 1

Di
m

en
sio

n 
3

Dimension 2
(a) (b)

Fig. 4. The learned (a) 2D and (b) 3D representations of training data.

by the autoencoders. Although it is still unclear what is the

physical meaning of these clusters, the learned features are

quite discriminative in its own right.

B. Result Discussions

The trained autoencoders are tested on a new set of in-

spection data measured from the same section of railway

line, which consists of 12,500 data samples. Following the

anomaly detection approach presented in the previous section,

anomalous data are identified by ranking and comparing

the reconstruction errors among data samples. The catenary

evaluated in this case study is considered as well-maintained

with a high maintenance standard applied. Thus, a percentile

threshold p = 99 is chosen for reconstruction errors generated

by the trained autoencoders. Some interesting clusters includ-

ing imperfect ones are discussed in the following examples.

Figure 5 shows the anomaly detection results on a segment

of the tested data. Figure 5(a) and Figure 5(c) show that there

are differences between the anomalies identified by the autoen-

coder with two and three hidden units, which learns 2D and

3D features, respectively. From the 2D and 3D representations

shown in Figure 5(b) and Figure 5(d), it can be seen that

the 2D features are clearly clustered with anomalies separated

perfectly from the healthy samples, whereas the 3D features do

not represent a clear structure of the input data with anomalies

mixed with healthy data. For the rest of the tested data, this

discrepancy between 2D and 3D representations are consistent,

indicating that an autoencoder with two hidden units are a

more suitable choice in this case. In other words, the given

data set is better learned by compressing its dimensionality to

two. This choice only applies to the presented case and can

be larger if the number of input data types increases.

Figure 6 shows the normalized input data corresponding

to the detection results shown in Figure 5(a). It can be seen

that this segment of data was measured under a constant train

speed. The anomalies identified by the proposed approach

are data samples with either very small PCCF or very small

PHA. These samples indicate abnormal dynamic responses in

the pantograph-catenary interaction, which potentially caused

undesired electric arcing. It demonstrates that the autoencoder

with m = 2 learns that the PCCF and PHA are the main

physical parameters reflecting the catenary condition among

the five types of input parameters. This is reasonable because

the PCCF and PHA theoretically contain richer information

about the dynamic responses of the interaction. It is important

to validate these samples on site if given the opportunity, so
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Fig. 5. An example of anomaly detection results and the corresponding
clusters in 2D and 3D representations. (a) MSEs generated by the autoencoder
with m = 2 and (b) the 2D features. (c) MSEs generated by the autoencoder
with m = 3 and (d) the 3D features.
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Fig. 6. Normalized input data with the detected anomalies indicated by dashed
lines.

that the samples can be associated with a specific type of

defect or condition, which is valuable for pinpointing defects

in further research.

In comparison with one of the most popular traditional

methods for dimensionality reduction, the principal component

analysis (PCA), Figure 7 shows the MSEs of data recon-

structed by PCA and the autoencoder. It can be seen that the

level of MSEs is similar between the two methods. Although

there are similar outliers with high MSEs around the sample

250, most of the anomalies identified by the autoencoder

MSEs cannot be reflected by those of PCA. This indicates

that the 2D feature space generated by the autoencoder can

better represent the underlying structure among the data types

0.02
0.015
0.01

0.005

Au
to

en
do
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r M

SE

0.02

0.01PC
A 

M
SE

Fig. 7. Comparisons of MSEs resulting from the autoencoder (top) and PCA
(bottom).
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0.015

0.01
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Fig. 8. Two examples of anomaly detection results (top) with mixed clusters
in the 2D representations (bottom). (a) MSEs and 2D features with one sample
falsely identified as healthy. (b) MSEs and 2D features with one sample falsely
identified as anomaly. Both false samples are indicated by dashed lines with
an arrow at both ends.

for catenary condition monitoring compared with PCA.

Figure 8 shows two examples with imperfect clusters in the

2D representation. In the first example shown in Figure 8(a),

the dashed line indicates a data sample that should belong to

anomalies in the 2D representation, but still being identified as

healthy. This error is presumably caused by the fixed percentile

threshold defined in the proposed approach. It can be improved

by using an adaptive threshold or clustering directly in the 2D

representation. On the contrary, Figure 8(b) highlights a data

sample identified as an anomaly while appearing to be mixed

with the ‘healthy’ cluster in the 2D representation. The causes

of this error are likely related to the autoencoder learning.

The autoencoder structure adopted in this study is a simple

one with a single hidden layer. This structure can still be

optimized to improve the performance of anomaly detection

considering variants such as stacked autoencoders [23], de-

noising autoencoders [24] and variational autoencoders [25].
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V. CONCLUSION

This study proposes an unsupervised anomaly detection

approach for one of the main railway infrastructures, namely

the catenary systems. The multisensor data from catenary

condition monitoring are adopted as the input for the unsu-

pervised approach. The approach adopts autoencoder neural

networks with a single hidden layer to learn the structure

hidden among the catenary data set with strong physical

correlations. The anomalies are identified by percentile-based

thresholding on the reconstruction errors generated by the

trained autoencoders. Preliminary results on a historical data

set measured at a section of catenary in the Beijing-Guangzhou

high-speed line in China shows that, the multisensor data of

catenary is suitable to be compressed into 2D representations

by the autoencoder for the purpose of anomaly detection. The

2D representation generates discriminative features between

healthy and anomalous data, which are learned by the au-

toencoder in an unsupervised manner. Real-life examples with

detection results and comparisons with PCA are presented and

discussed, which inspire the following potential improvements

for future research:

1) Identifying anomalies by clustering features learned in

the abstract representations instead of comparing the

reconstruction errors.

2) Optimizing the autoencoder structure considering variants

such as stacked autoencoders, de-noising autoencoders

and variational autoencoders.

3) Including additional condition monitoring data sources of

catenary such as images, 3D point cloud data or even the

same data types measured by extra on-board sensors.

4) Extending from anomaly detection to defect identifica-

tion by using more complex features learned by deeper

autoencoders and potentially combining with supervised

classifiers.
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[2] M. Molodova, Z. Li, A. Núñez, and R. Dollevoet, Automatic detection
of squats in railway infrastructure, IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 1980-1990, 2014.

[3] J. Chen, Z. Liu, H. Wang, A. Núñez , and Z. Han, Automatic defect
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