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Abstract
Muscle-tendon paths vary between individuals, and musculoskeletal models show sensitivity to these

variations when estimating muscle and joint forces. Accurate estimations of these internal forces allow for a
more comprehensive approach to researching debilitating musculoskeletal pathologies such as osteoarthritis.
However, defining subject-specific muscle-tendon paths is labour-intensive and requires expert knowledge,
which is not as repeatable. Therefore, in this study, the accuracy of determining subject-specific muscle
points and volumes based on lower limb Magnetic Resonance (MR) scans with the nnU-net is evaluated.
Two models are trained using the open-source pipeline, referred to as the point and volume model. The
volume model aims to segment muscle-tendon volumes and is trained on the open-source augmented dataset
of Henson et al. (2023). The point model localises attachment and via points describing muscle action lines
for a subset of relevant muscles of the volume model. Since U-net is not designed for predicting points, a
workaround is introduced by creating cubes around the points as labels. The 3D volume model scored a
median Dice Similarity Coe�cient of 92.7 % and shows some generalisation capability. The 3D point model
scored a median Euclidean error of 5.1 mm. Compared to intra-operator variability for attachment points,
this approach yields lower and more repeatable accuracy without required manual intervention. The nnU-
net pipeline is capable of producing accurate models that can define subject-specific muscle-tendon paths
based on MR scans.

1 Introduction
Muscle and joint reaction forces are critical measures for understanding both normal and pathological
human movement, as they reflect the internal loading of the musculoskeletal system. The only currently
accessible method of determining these in vivo is by using an inverse or forward approach in combination
with a musculoskeletal model (MSM) and an optimisation algorithm. The MSM is required to detail ge-
ometric and dynamic relations of muscles and bones, and the optimisation is used to solve muscle and/or
trajectory redundancy problems. In research, these MSMs are predominately used in gait investigations.
Accurate estimations of these forces are valuable for understanding joint load-related pathologies such
as osteoarthritis (OA) [1]. Despite their potential, MSMs remain underutilised in clinical practice [2, 3].

Before MSMs can be readily adopted in the clinic, muscle-tendon and skeletal parameters of the model
need to be set appropriately, then, these models are ready to be verified and validated to ensure accurate
estimations [3]. Subject-specific models aim to determine model parameters that most accurately reflect
the subject’s mechanical properties. Whereas in certain research settings proof of concept could be
su�cient [4], in clinical scenarios, it is often desirable to have biomechanical estimations of individual
patients. For example, in a group of knee OA patients, the most e�ective gait alteration for reducing
knee load varied depending on whether the model was personalised [5]. Furthermore, including subject-
specificity in a gait simulation has been shown to result in an average di�erence in the second hip contact
force peak of 47% of body weight compared to a generic MSM [6].

Evidence shows that muscle-tendon paths vary per individual [7, 8] and estimations using MSMs such
as muscle [8, 9, 10] and joint forces [11] are considerably sensitive to changes in these parameters. An
anatomical study of the femur observed that muscle-tendon attachment sites of the gluteus maximus and
rectus femoris vary in such a way that their resulting moment arms around the joint have a standard
deviation of 65% [7]. Another study investigated the e�ect of natural anatomic variability of muscle
paths on muscle forces during gait [8]. The authors noted that 10 muscle attachments of a generic
musculoskeletal model [12] fell outside of the anatomic variability. Perturbing the muscle paths with
natural amplitude does a�ect muscle forces significantly. Especially, perturbing the psoas resulted in large
changes in muscle force ranging up to 230 N. Others also investigating gait found that perturbations of 1
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cm in muscle paths result in significant muscle force di�erences [9]. Sensitivity to muscle path parameters
is not exclusive to lower limb models; perturbing the quadratus lumborum attachment site in the Twente
Spine Model can alter the disc shear forces by 353% [11].

In the current state-of-the-art multi-body MSMs, which are typically used for gait investigations,
muscle forces are conceptualised as bound vectors [13, 8, 6]. Such a conceptualisation is mechanically
justified when using enough bound vectors located at the centroid of di�erent directional muscle fibre
groups of the muscle-tendon [14]. The paths of muscle-tendons are typically mapped out by a chain of
straight lines where the attachment points define the origin and insertion and the via points define the
trajectory in between these points. Via points are used to model the muscle-tendon unit when it wraps
around a bony contour or when the fascia restricts its path. This approach will be referred to as the poly-
line approach. These bound vectors act about a point which is typically chosen as the rotational point of
the joint [13]. The resulting moment can be calculated by crossing the vector from the rotational point
to any point on the line of action of the bound vector with the bound vector [15]. From this definition, it
is evident that both the muscle attachment location and direction of the muscle-tendon at the location
of attachment are crucial to accurately calculate muscle joint torque.

New ways of modelling muscle-tendons have been proposed that require fewer assumptions than the
poly-line approach. These will be referred to as the complex modelling approach. Blemker and Delp
introduced a finite element model of a muscle-tendon [16]. They simulated geometrically more complex
muscle-tendons such as the gluteus maximus, gluteus medius, psoas, and iliacus in hip movement around
each anatomical axis. Complex geometry was achieved by mapping di�erent pennation types to volumet-
ric muscle-tendon data derived from Magnetic Resonance (MR) scans. Unfortunately, the computational
expense of the method withholds it from being simulations that are already computationally expensive,
such as a static optimisation using inverse kinematics of roughly 90 muscle-tendons, which is typical for
gait investigations in the clinic. Recently, a volume-based model was proposed that addresses the same
issues only with less computational expense. The model automatically creates a predefined number of
fibres and a predefined number of straight lines to model each fibre based on muscle-tendon volumes and
attachment sites [17]. For the same simulation as in Blemker and Delp’s experiment [16], it took less than
a minute to compute the simulation compared to, at the time, 5 to 10 CPU hours. Both these methods
require volumetric data of the muscle-tendons to overcome the muscle-tendon modelling limitations of
the poly-line approach.

Independent of which muscle-tendon modelling approach is used, a fully automated muscle point and
volume identification technique could lower or eliminate the required labour and be more repeatable than
human expertise. Currently, the gold standard for defining muscle points or muscle volumes is to let an
expert annotate an MR scan manually. It takes an expert three to four hours to define muscle points of
a multi-body lower limb model with 34 muscles per leg [18]. Experts showed an intra- and inter-rater
variability of 6.9 and 5.6 mm while correcting predicted attachment points, respectively [18]. Another
study showed that inter-operator variability can cause up to 64% of deviation in peak muscle force in
pathological ankle and foot simulations [10]. In the case of semantic segmentation, i.e. determining
muscle-tendon volumes, it can take up to 40 hours to manually define 18 muscle-tendons per subject
bilaterally [19]. Ground truths in this field also su�er from repeatability issues. For instance, out of the
35 lower limb muscle segmentations defined by a single operator, only 23 were included because they
exhibited less than 10% variation in volume across all three runs [20].

In the literature, various automated methods have been proposed that can approximate muscle-tendon
paths (Figure 1). There are three main muscle-tendon path descriptors that are produced by these meth-
ods: muscle-tendon attachments defined by points, lines, and/or planes, muscle-tendon centroid paths
often defined by a series of points connected with line segments (poly-line approach), and muscle-tendon
masks which are always defined as point clouds. Typically, each muscle-tendon approximation corre-
sponds with a specific way of modelling muscle-tendons geometrically. Scaling based on palpable bony
landmarks is generally viewed as inaccurate [21, 22, 23] and requires no imaging modalities. Wesseling
et al. (2019) found that compared to scaling based on palpable bony landmarks, non-rigid deformation
based on bone shape reduced the average error in muscle points by 21%, resulting in an Euclidean error
of 17.3 mm [23]. Only Scheys et al. (2009) used an approach that could be classified as a segmentation
technique to estimate muscle points [18]. By applying a non-rigid registration algorithm to an MR atlas
with muscle points to a new MR image, it achieved a median Euclidean error of 6.1 mm. This is roughly
65% less error than the non-rigid deformation based on bone shape method [23]. The segmentation-like
approach [18] is considered to be superior compared to scaling based on bone shape [23]. Both techniques
rely on a labelled atlas, so their accuracy may be influenced by how well the atlas matches the subject’s
characteristics.
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Segmentation approaches can be divided into segmentation with explicit algorithms and segmentation
using supervised deep learning (Figure 1). Supervised deep learning methods have been shown to achieve
a Dice Similarity Coe�cient (DSC) that is 4.5% higher than that of a multi-atlas registration approach,
which is considered the state-of-the-art among explicit algorithms. [24]. There are many deep learning
models capable of segmenting muscle volumes, but none are open-source and able to segment muscles
around the hip, knee and ankle [25, 26, 27]. Recently, Henson et al. created a publicly available
augmented dataset of lower limb muscles by using their non-linear deformable image registration model
[20]. By augmenting the images, it was shown that the range of muscle volumes was increased. As
the authors suggested, this makes for a good opportunity to train a deep learning model to segment
lower limb muscles. Finally, a recent study demonstrated that a segmentation deep learning model (U-
net) could be adapted for point prediction with high accuracy on X-ray scans [28]. Possibly, a similar
conversion could be done to predict muscle points on MR images.

Bony landmarks Full bone shape

Muscle-tendon
attachments

 Muscle-tendon
attachment & via

points

Muscle-tendon
 mask

Locating in
reference 

frame

Bone 
segmentation

Muscle-
tendon

segmentation

                                                       Scaling based on palpable bony landmarks

                                               Scaling based on bone shape                  

                                    Segmentation using explicit methods

                                                  Segmentation using supervised deep learning

Reference bone shape model
with at least muscle-tendon

attachments

Palpable bony
landmarks CT

MR

Scaling Scaling

Scaling

Muscle-
tendon

segmentation

Straight-line approach

Poly-line approach

Complex approach

Muscle-tendon path
descriptors

Scheys 
et al. (2009)

Application in
musculoskeletal models

Wesseling 
et al. (2019)

Figure 1: Overview of flow of information of the four groups of techniques to identify subject-specific muscle-tendon paths
in the literature. The rectangles with sharp edges represent anatomical properties. The rectangles with rounded edges
represent inputs. The arrows show the flow of information and the colours of the arrows indicate which categorical technique
is used, where red, blue, purple, and green indicate scaling based on bony landmarks, scaling based on bone shape, muscle
segmentation with explicit algorithms, and muscle segmentation with supervised deep learning, respectively. Views of
straight- and poly-line approaches are screenshots of a gait model created in OpenSim and used under the Apache 2.0
License. See reference [29] for full details. The complex approach view is adapted from Figure 2 in Modenese and Kohout,
Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models,
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). See reference [17] for full details.

In the domain of biomedical semantic image segmentation, the U-net architecture is currently consid-
ered to be state-of-the-art. It was introduced by Ronneberger et al. during the International Symposium
on Biomedical Imaging cell tracking challenge in 2015 [30]. In terms of the union of intersections, the
model achieved a score of 92%, compared to the second-best score of 83%. Realising high performance
using the U-net is, however, not straightforward. It requires expert knowledge to correctly implement and
train the model. Key decisions include choices about pre-processing, architecture configuration, post-
processing, hyperparameter initialisation, and data augmentation, all of which depend on the dataset and
available computational resources. To address this limitation, the nnU-Net, a self-configuring pipeline,
was introduced [31]. By analysing the ’fingerprint’ of a raw dataset, rule-based decision making, and
empirically derived fixed parameters, it achieves state-of-the-art results, outperforming other models on
23 public datasets.
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nnU-Net appears to be a promising tool for both muscle point prediction and muscle volume segmen-
tation. This study aims to develop and evaluate automated methods for accurately identifying muscle
points and volumes by using the nnU-Net. Two models are examined: the ’point model’, which identifies
muscle points to directly define lines of action, and the ’volume model’, which segments muscle-tendon
volumes. The central question addressed is: How accurately can muscle points and volumes be defined
by nnU-net based on MR scans of the lower limbs?
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2 Methods
2.1 Datasets
2.1.1 Point Model
The dataset comprised 12 bilateral lower limbs MR imaging scans from a healthy control group (n =
7) and a hip OA patient group (n = 5). Muscle points were defined by an expert annotator. The MR
dataset used in this study has been previously employed in [32, 6, 33]. Among the control group, four
participants were aged between 45 and 60 years, and two participants were between 20 and 30 years.
The mean age of the OA group was 54 ± 8.6 [32]. Scans of the hip, femur, knee, and tibia scans were
made per participant. The voxel sizes (coronal ⇥ sagittal ⇥ and axial) of the hip, femur, knee, and tibia
were 0.93 mm ⇥ 1.00 mm ⇥ 0.93 mm, 0.94 mm ⇥ 2.00 mm ⇥ 0.94 mm, 0.93 mm ⇥ 1.00 mm ⇥ 0.93
mm, and 0.93 mm ⇥ 1.00 mm ⇥ 0.93 mm, respectively. The only exceptions were found in the scans of
control participants C2, C3, and C4. For C2, the hip scan had voxel sizes of 0.88 mm ⇥ 1.00 mm ⇥ 0.88
mm, and the knee scan had the same voxel sizes of 0.88 mm ⇥ 1.00 mm ⇥ 0.88 mm. In contrast, the
knee scans for C3 and C4 had voxel sizes of 0.84 mm ⇥ 1.00 mm ⇥ 0.84 mm. For the tibia scans, the
voxel sizes were 0.91 mm ⇥ 1.00 mm ⇥ 0.91 mm for C2, 0.84 ⇥ 1.00 mm ⇥ 0.84 mm for C3, and 0.88
mm ⇥ 1.00 mm ⇥ 0.88 mm for C4. All images were acquired using T1-weighted spin echo sequences on
a Philips Ingenia 3.0T. The combined superior-inferior range of the scans extended from the most distal
part of the toes to the level of vertebrae L5 up to L2.

2.1.2 Volume Model
The first dataset was retrieved from Henson et al. (2023) and contained augmented images and labels
[20]. The labels include 37 volume segmentations of the following muscles: adductor brevis, adductor
longus, adductor magnus, biceps femoris caput brevis, biceps femoris caput longum, extensor digitorum
longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis,
gastrocnemius medialis, gemellus superior, gluteus maximus, gluteus medius, gluteus minimus, gracilis,
iliacus, obturator externus, obturator internus, pectineus, peroneus brevis, peroneus longus, piriformis,
popliteus, psoas, quadratus femoris, rectus femoris, sartorius, semimembranosus, semitendinosus, soleus,
tensor fasciae latae, tibialis anterior, tibialis posterior, vastus intermedius, vastus lateralis, and vastus
medialis. The images included the full lower limbs of 11 post-menopausal women (mean age 69 ± 7
years, mean weight 66.9 ± 7.7 kg, mean height 159 ± 3 cm) without movement limitations [34]. All
scans were acquired during a hospital visit on a 1.5 T Magnetom Avanto scanner using T1-weighted
sequences. Imaging parameters included an echo time of 2.59 ms, a repetition time of 7.64 ms, and a
flip angle of 10�. Voxel dimensions were 1.1 ⇥ 1.1 ⇥ 5.0 mm for long bones and 1.1 ⇥ 1.1 ⇥ 3.0 mm for
joint regions. The augmented dataset consists of 69 combined lower limb scans based on the original 11.
The second dataset consists of a lower limb image of an anonymous participant with voxel sizes of 0.98
⇥ 0.98 ⇥ 1.5 mm. No label was available for this image. An axial fast-spoiled gradient-echo sequence
(LavaFlex, GE) with an isotropic resolution of R1.5 was used. All scans of this participant were acquired
on a 3T GE PET/MRI hybrid system.
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2.2 Pre-processing
2.2.1 Point Model
In Figure 2 the workflow of the preprocessing is presented. The hip, femur, knee and shank MR scans
of each participant were pre-processed in the following order: intensity rescaled if necessary, cropped,
resampled if necessary, merged into one image, and split into left and right. Intensity rescaling was only
applied to the femur scan of C16 because the distribution of intensities far exceeded the other scans. This
femur scan has been scaled with the maximum value found in the other scans of the participant. Cropping
was done in the superior-inferior direction to remove the planes containing only zeros. If necessary, the
scans were resampled to match the voxel sizes of the hip using a fourth order spline interpolation. The
scans were merged into a single image by using the a�ne matrices of the local and target scans to map
each voxel in the local scan to its corresponding voxel in the target scan. In the case of overlap, intensity
values were averaged using the inverse of the absolute product of the diagonal terms of the original a�ne
matrix.

In this dataset, muscle point locations are specified in the scanner’s reference frame. These points
were defined in a combined image that was manually aligned by only using translations. The following
steps were taken to achieve a fully automated alignment that accommodates rotations while preserving
the original voxel index for each muscle point. The annotated voxel of each muscle point was located by
using the original alignment and the scan’s a�nes, subsequently, these voxel indices were transformed
back to the combined image’s voxel space in the same way the individual scans are aligned. The only
exception was C16, where the a�ne matrices were missing in the header, so the original alignment was
used.

Figure 2: Overview of the conceptual preprocessing workflow for the point model. Orange containers repre-
sent objects used and blue containers represent scripts. The code can be found on https://gitlab.tudelft.nl/
clinical-biomechanical-lab.
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Since U-Net is a volume segmentation model and point prediction is desired, a workaround has been
implemented by placing 35-voxel cubes around the muscle points, inspired by [28]. After inference, the
centroid of the segmentation is calculated, to obtain a point. Beforehand, it was explored which cube
sizes led to steady improvements in pseudo DSCs while training for roughly 50 to 100 epochs. Because
nnU-Net only allows for a unique label map and the cubes overlap given the muscle points, a subset of
relevant muscle points of a typical lower limb model was selected. The following muscles with a number
of points have been included: tensor fasciae latae (TFL_1-4), iliacus (iliacus_1-5), psoas (psoas_1-
5), long head and short head of the biceps femoris (bi_fem_lh/sh_1-3), gastrocnemius lateral head
(gas_lat_1-2), gastrocnemius medial head (gas_med_1-2), gluteus maximus (glut_max1-3_1-4), glu-
teus medius (glut_med1-3_1-2), rectus femoris (rectus_fem_1-2), semimembranosus (semimem_1-3),
semitendinosus (semiten_1-5), vastus intermedius (vas_int_1-3), vastus lateralis (vas_lat_1-3), vastus
medialis (vas_med_1-3). The final number in the shorthand notation increases with the distal position
of the point (Figure 3). This subset consists of 61 points that are most contributing in terms of support
[35], knee stability [36, 37], knee loading [36, 37], and that have the largest e�ect on other muscle forces
[8] during gait. These points were divided over seven datasets, and thereby models, to further avoid label
overlap. A simulated annealing optimisation was implemented to find a division of muscle points over
the datasets to avoid overlap in all instances (Figure 2). Although the point model is not one model, but
seven, it will still be referred to as one. Each sample consisted of an MR image capturing a unilateral
view of a single leg (Figure 4).

Figure 3: Muscle points defining muscle action lines, where O, V, and I represent the origin, via, and insertion points,
respectively. The views illustrate the approximate locations of muscle points relative to the bones. A1–A4 show an anterior,
medial, posterior, and lateral view of the knee. B1–B2 show the hip joint. C provides the legend for the muscle action
lines.

Figure 4: Example of a sample out of the seven datasets used to train the point model. The pictures include a sagittal
view (A), a coronal view (B), axial views at the thigh (C) and shank (D), and a 3D representation of the muscle point
labels (E). The legend for the muscle point labels is provided in (F).
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2.2.2 Volume Model
The DICOM files of both datasets were converted to NifTi files using the NiBabel library [38]. The
original class values of the labels of the first dataset were roughly evenly distributed across a byte (0-
255) [20]. These values were then replaced with consecutive integers, as required by the nnU-Net format.
Before performing this replacement, a unique mapping between the original values and the new class
integers was created by iterating over all class values in the labels. This mapping was used to ensure
consistent meaning of class values across samples. For both datasets, all samples consisted of an MR
image capturing a unilateral view of a single leg (Figure 5).

Figure 5: Example of sample out the Henson et al. dataset [20] used to train the volume model. The pictures include a
sagittal view (A), a coronal view (B), an axial view at the thigh (C), an axial view at the shank (D), and a 3D representation
of the muscle volume segmentations (E). The legend for the muscle segmentation labels is shown in (F).

2.3 U-net Models
The point and volume U-net models were created by the nnU-Net pipeline [31]. Both models have 2D
and 3D configurations, and the volume model includes an additional ensemble prediction. An ensemble
configuration was not created for the point model because nnU-Net requires training on five folds. To
reduce GPU usage due to the seven point models, only a single fold was trained for each dataset instead
of the default five. The pipeline was configured with a specified VRAM capacity of 80 GB. Training has
been performed on the supercomputer DelftBlue [39] using the NVIDIA A100 Tensor Core GPU with
80 GB of VRAM. The volume and point models have been trained for 250 and 500 epochs per fold,
respectively. For the remaining specifications, the default was used for both models.

2.4 Validation
2.4.1 Point Model
The point model was validated by comparing its results on the test set against the annotations provided by
an experienced muscle point annotator, which served as the ground truth. Model accuracy was assessed
using both the Euclidean Error (EE) and the absolute distance error along each axis. For all spatial
errors, the median is reported with the interquartile range (IQR) in parentheses. The relation between
the Dice Similarity Coe�cient (DSC) and EE was also evaluated to validate the cube-segmentation
approach to perform point prediction. A custom randomised 80-20 train-test split was implemented for
both the 2D and 3D configurations. By randomly sampling from both populations in proportion to their
occurrences, both populations are equally represented in each split.

2.4.2 Volume Model
The performance of the volume model was evaluated by comparing its predictions on the test set with the
ground truth labels, using the Dice Similarity Coe�cient (DSC) as a measure of accuracy. The median
DSC is reported with the IQR in parentheses. The default five-fold cross-validation setup of nnU-Net was
applied to the first dataset. Inference on the second dataset was performed for a qualitative evaluation
to better understand the models performance, as validation with the first dataset is limited by the
augmented relation between test and train samples.
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3 Results
3.1 Point Model
Figure 6 shows a prediction with the 3D point model and the ground truth. The locations of the predicted
segmentations are similar to those of the ground truth. The shapes of the predictions are roughly cube-
like, although they deviate in some instances, such as at the third point of the vastus lateralis (Figure
6C). The first via point of the TFL is missing in the prediction (Figure 6D).

Figure 6: Predictions (pred) and ground truths (gt) of the 3D point model on C14 (L) out of the validation set. A, B, C,
and D show a coronal, axial, sagittal, and 3D view, respectively. E shows a legend of the muscle point label.

The EEs for the 3D and 2D point models are roughly six times higher for C16 compared to the
other samples (Table 1). At least one scan of C16 is assumed to be an outlier due to technical imaging
errors. As a result, this sample will be excluded from further analyses and conclusions related to the
point model. Detailed results including C16 are provided in the Appendix in Figure 11 and 12.

Table 1: Spatial errors (mm) of the point model per sample in the validation set.
2D 3D

Euclidean Coronal Sagittal Axial Euclidean Coronal Sagittal Axial
Sample MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR

C16 (L) 34.1 9.1 29.3 8.0 13.5 11.6 7.8 12.1 35.1 12.2 29.3 9.0 12.1 13.3 8.8 14.0

C1 (R) 5.4 4.3 1.9 3.0 1.8 2.8 3.1 3.7 4.2 4.0 1.9 2.0 2.8 2.8 3.0 2.8

C14 (L) 7.3 4.6 2.8 3.0 4.7 2.8 4.0 6.5 5.3 5.6 1.9 2.0 3.7 1.9 2.0 4.7

OA1 (L) 6.4 5.8 2.8 2.0 2.8 3.0 3.0 4.7 6.6 5.3 2.8 2.0 2.8 3.7 2.0 4.7

OA2 (R) 5.8 3.5 1.9 3.0 2.8 2.8 2.0 3.7 5.1 3.2 1.9 2.0 2.8 2.8 3.0 3.7

Bold numbers indicate the lowest overall Euclidean Error per participant between the 2D and 3D configuration. L
and R in the sample name refer to the unilateral side from the perspective of the participant.
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The pooled median for the 2D and 3D point model configurations are 6.3 (4.5) and 5.1 (4.3) mm,
respectively (Table 2). The 3D model outperforms the 2D model most of the time when grouping based
on individual samples (Table 1), point type, and anatomical regions (Table 2). The median EE di�erence
between via and attachment points is small in both configurations. Out of all the anatomical regions,
the femur region has the highest EE in both configurations. The 2D EE is 30% lower than the 3D EE in
the femur region. In both configurations of this anatomical region, the largest amount of error is along
the sagittal axis and the highest variability is along the axial axis.

Table 2: Spatial errors (mm) of the point model per category.
2D 3D

Euclidean Coronal Sagittal Axial Euclidean Coronal Sagittal Axial

Category MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR MED IQR

att. (38) 6.4 4.6 2.8 3.0 2.8 3.0 3.0 3.7 4.9 3.8 1.9 2.0 2.8 2.8 2.1 3.7

via (23) 6.3 4.5 1.9 3.0 2.8 2.8 3.1 4.7 5.1 4.3 1.9 2.0 2.8 2.8 2.1 4.4

hip (35) 6.9 5.0 2.8 3.0 3.7 3.7 3.9 3.8 5.7 4.6 1.9 2.0 3.7 2.8 3.0 4.7

femur (5) 7.5 4.9 0.9 2.0 4.7 1.9 2.2 6.5 10.7 7.8 1.9 2.0 5.6 2.3 2.0 7.9

knee (10) 4.5 3.5 2.8 3.0 1.8 1.9 3.5 2.3 4.7 3.2 2.8 2.0 1.8 3.7 2.5 1.9

tibia (11) 4.5 3.7 1.9 2.0 2.8 1.9 2.0 3.7 3.6 2.1 1.9 2.0 1.9 0.9 2.0 2.8

overall
(61)

6.3 4.5 1.9 3.0 2.8 2.8 3.1 4.7 5.1 4.3 1.9 2.0 2.8 2.8 2.1 4.4

Bold numbers indicate the lowest overall Euclidean Error between the 2D and 3D configuration. Attachments are
referred to as ’att.’ in the table. The numbers in parentheses next to the categories represent the average number of

points per participant.

The di�erent mode configurations performed in most muscle points similarly with the exception
of the vas_lat_2, vas_med_2, TFL_2, and psoas_1 (Figure 7). The vas_lat_2, vas_med_2, and
psoas_1 favour the 2D model. Only the TFL_2 shows a favour towards the 3D model, mostly in
terms of range. Both model configurations show a large range and moderately high median for the
bi_fem_sh_1. The high maximum of the bi_fem_sh_1 results from C14 (L). In three instances, via
points were not predicted. The 3D model failed to segment vas_lat_2 in OA1 (L) and TFL_2 in C14
(L; Figure 6). The 2D model failed to segment TFL_2 in OA1 (L).
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Figure 7: Median Euclidean errors per muscle point (circles) with minimum and maximum range (bars).
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The pooled median DSC of the 2D and 3D point model configurations are 71.9 (16.4) and 74.5
(18.3)%, respectively. Figure 8 presents the relation between the DSC and EE for all muscle points.
Generally, the higher the DSC, the lower the EE. The variance of EE also decreases with a higher DSC.

Figure 8: Every DSC plotted against the corresponding Euclidean error.
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3.2 Volume Model
Figure 9 shows a segmentation with the 3D volume model and the ground truth. Overall, the prediction
and ground truth segmentation look very similar. Both the prediction and ground truth show a lack of
labelled voxels in the medial midway thigh area (Figure 9A). In both prediction and ground truth, mis-
placed small fractions of the vastus lateralis can be observed (posterior to the brown vastus intermedius
in Figure 9C).

Figure 9: Predictions (A, C, E, and G) and ground truths (B, D, F, and H) of the volume model of sample number 13. A,
B, C, and D show a coronal, axial, sagittal, and 3D view, respectively. The legend of the segmentations can be found in
Figure 5.

Figure 10 shows an inference result from the second dataset sample. Compared to the inference result
in Figure 9, this one appears less densely annotated. Specifically, the adductor brevis, adductor longus,
flexor digitorum longus, extensor hallucis longus, and semimembranosus muscles are not fully segmented.
The segmentations for the gluteus maximus, gluteus medius, vastus intermedius, sartorius, soleus, tibialis
anterior, gastrocnemius lateralis, and gastrocnemius medialis are more complete compared to the others.
The relative positions of the larger segmentations are anatomically plausible. The only exception is a
small portion of the vastus medialis segmentation, which incorrectly overlaps with the caudal part of the
femur (Figure 10A).

Figure 10: Inference result of the second dataset, shown for qualitative purposes. A coronal (A), sagittal (B), axial (C-D),
and 3D view (E) are presented, where the upper axial slice is located at the thigh (C) and the bottom one at the shank
(D). The location of the axial thigh slice is shown in A, B, and E by the blue dotted lines. The full legend of the labels
can be found in Figure 5.
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The 3D configuration of the volume model scores the highest median DSC of 92.7 (4.4)% (Table
3). The quadratus femoris was not segmented in 11 cases for the 2D configuration, 12 cases for the 3D
configuration, and 12 cases for the ensemble configuration.

Table 3: DSC values (%) for each muscle for the di�erent volume model configurations.
2D 3D Ensemble

muscle MED IQR MED IQR MED IQR

adductor brevis 90.1 3.5 92.2 2.0 91.5 2.9
adductor longus 92.8 1.9 94.2 1.8 93.6 1.8
adductor magnus 95.2 1.1 96.0 0.8 95.9 0.9
biceps femoris caput brevis 92.9 4.6 93.8 3.0 93.8 3.8
biceps femoris caput longum 95.1 1.1 95.7 0.8 95.6 0.7
extensor digitorum longus 87.3 5.5 90.4 4.5 89.0 5.1
extensor hallucis longus 90.0 3.7 90.3 2.8 90.7 3.3
flexor digitorum longus 87.5 4.6 87.9 3.6 88.2 4.3
flexor hallucis longus 89.0 4.1 89.2 3.6 89.7 3.8
gastrocnemius lateralis 90.5 3.4 91.6 1.8 91.5 3.0
gastrocnemius medialis 95.2 1.9 95.7 1.2 95.7 1.5
gemellus superior 83.8 8.3 87.2 4.5 85.8 7.3
gluteus maximus 96.1 1.2 96.1 1.1 96.4 1.1
gluteus medius 95.0 1.1 95.2 0.7 95.5 0.8
gluteus minimus 89.8 3.4 90.3 2.8 90.7 2.6
gracilis 87.9 5.5 89.0 4.9 89.0 5.5
iliacus 92.6 1.6 93.2 1.3 93.4 1.3
obturator externus 89.0 4.1 92.1 2.5 90.9 2.8
obturator internus 90.4 4.1 91.4 2.8 91.5 3.7
pectineus 90.8 2.9 92.8 1.8 92.3 2.4
peroneus brevis 88.8 4.7 88.5 4.5 89.2 4.5
peroneus longus 90.4 3.5 91.9 2.5 91.5 2.8
piriformis 91.2 2.9 91.9 2.0 92.2 2.6
popliteus 85.9 8.3 88.4 5.1 87.4 7.3
psoas 92.1 3.0 93.0 2.6 92.9 2.8
quadratus femoris 84.4 11.8 86.3 6.1 86.2 8.9
rectus femoris 94.4 1.4 94.7 1.0 94.7 1.0
sartorius 90.4 5.0 91.6 3.5 91.7 4.2
semimembranosus 94.2 2.0 95.0 1.3 94.9 1.5
semitendinosus 93.5 2.1 94.5 1.4 94.3 1.5
soleus 93.8 2.3 94.2 2.0 94.3 2.0
tensor fasciae latae 91.9 2.1 92.5 1.8 92.5 1.9
tibialis anterior 93.8 1.5 94.1 1.5 94.2 1.3
tibialis posterior 91.8 2.3 92.0 2.2 92.4 2.3
vastus intermedius 93.2 2.2 93.9 2.2 93.8 2.0
vastus lateralis 94.3 1.6 95.0 1.6 94.8 1.5
vastus medialis 95.0 1.4 95.8 1.1 95.7 1.1
overall 91.8 5.2 92.7 4.4 92.6 4.6

The bold numbers indicate the DSC with the highest median for each muscle. In all three model instances, there
were cases where no pixels were segmented for the quadratus femoris.
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4 Discussion
4.1 Point Model
The cube-segmentation approach results in accurate muscle point predictions in the lower limbs, with
an overall median EE of the 3D configuration of 5.1 (4.3) mm. Compared to Scheys et al., this study
scores a 16% lower EE overall [18]. However, it must be mentioned that in this study only the relevant
points of the lower limbs are selected with only a few near the tibia and none at the ankle. Moreover,
the EE of the point model is smaller in terms of median and IQR compared to the inter- and intra-rater
operator attachment point variability of 5.6 (10.7) and 6.9 (7.7) mm, respectively [18]. Assuming that
the operator-variability is the same for the dataset in this paper, including via points, this suggests that
the 3D point model is indistinguishable from human expertise in terms of EE in most cases.

The biggest limitation of this study is the dependency between the train and test set. The model is
trained and validated on opposing leg scans of the same individual. To assess the extent to which this
dependency biased the results, the same operator labelled another sample of the point model dataset from
the healthy group; C0 (L). This sample was not used previously because the ground truth was missing,
and the scans lacked the superior part of the pelvis (vertebral L5 is not visible). The points that should
be placed on the superior part of the pelvis (glut_med1-3_1, glut_max1_1, psoas_1, and iliacus_1)
are excluded from the following results. The point model scored a median EE of 8.9 (5.6) and 6.8 (5.8)
mm for the 2D and 3D configurations, respectively. Both EEs exceed the respective pooled medians and
IQR sizes of the validation set. Only the median and total range of the 3D configuration fall within
the IQR and total range of the validation set. The EE distributions of the validation set and the new
sample show a lot of overlap (Figure 13). Apart from gaining insight into the possible dependency bias,
this sample also introduces challenges specific to its unique characteristics. First, the participant had a
relatively low body fat percentage which could complicate muscle volume segmentation [19] and possibly
point prediction as well. Only two other participants were similar in terms of body fat percentage, where
one of which is present in the validation set: C14 (L: Figure 6). C14 (L) scored the highest 2D EE and
second highest 3D EE. This supports the notion that the low body fat percentage of the new sample
also a�ected the results. Second, there was approximately an eight-year gap between the labelling of the
validation set and the new sample, which undoubtedly introduced variability to the ground truth muscle
point locations. It is assumed that the dependency of the validation set on the train set led to a slight
underestimation of the true EE. Given the result of the new sample, the 3D configuration still scored a
lower median and IQR compared to intra-operator attachment point variability.

The 3D configuration outperforms the 2D configuration in terms of DSC and EE in most cases
(including the new sample C0L), but the significance of this di�erence remains uncertain. A statistical
test was not performed due to the small validation set, which limits the likelihood of finding significant
di�erences. The high error observed in the sagittal direction of the femur region suggests that point
prediction performance may decrease with voxel size. Both configurations were a�ected by this, though
the 3D configuration appeared more sensitive to it. The high error variability of the origin of the psoas in
the 3D configuration might indicate that the varying anatomical range withholds the model from learning
general patterns. In three instances, via points were not predicted, which may indicate that via points
are more challenging to localise than attachment points. However, the di�erence in EE medians between
the two point types is small, and the point type with the lowest error varies across configurations. The
implicit nature of deep learning models makes it di�cult to pinpoint the causes of deviating results.

Unlike in typical deep learning studies, where the cost function consists of the metric the model is
evaluated with, this study performed an indirect approach with the point model. The standard cost
function of nnU-Net was used to train the point model which consists of an equal weighting combination
of the cross-entropy loss and DSC term. Figure 8 shows that, for this study, when the DSC increases,
the EE decreases. The DSC is often used to assess segmentation performance, therefore, it could be
assumed that this approach is reasonable to estimate points when good segmentation performance is
expected. This approach is appealing in its current form because it does not require any modifications
to the nnU-Net. However, this comes with a high computational cost. This approach needs multiple
models to avoid overlap of cubes which scales the training computations needed linearly. With which
factor it scales, depends on how close the points are relative to each other and how large the cubes are.
It is observed in this study, that a su�ciently large cube is needed for the cube-segmentation approach
to work. A cube with an edge length of 11 voxels resulted in poor increases of pseudo DSCs within
100 epochs. Therefore, adjusting the architecture of U-Net to allow for overlap between cubes would be
beneficial. Isensee, the founder of the nnU-Net, stated that this could be done by changing the activation
function of the output layer to a binary sigmoid function and the cost function’s cross-entropy term to a
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binary one [40]. Additionally, a thresholding method needs to be applied. In this way, the voxels are no
longer mutually exclusive. It was also noted that this would likely be incorporated in the next version
of nnU-Net.

Each point model shows a higher final training loss than final validation loss for both configurations
(see example in Figure 16). This points towards successful training. However, there are still likely three
factors that diminish performance. First, it was assumed that the left portion of C16 images is not
closely related to the other images. The other sagittal half was present in the training set. This probably
stagnated the progress during the training and thereby performance. Second, for a deep learning model,
a dataset of 24 cases is rather small. Third, it can be seen that after around 100 epochs in the 3D
configuration, the training loss converges and the validation loss has a slight decreasing trend (Figure
16). This suggests that more epochs could increase performance. This is not as surprising since 1000
epochs are the default for nnU-Net.

The image alignment process introduced some artefacts at the shank in the case of C1. These artefacts
include a few black lines in the shank region (Figure 14A) and a ’blocky’ appearance at primarily the
posterior end of the shank (Figure 14B). Further investigation revealed that, when overlapping voxels were
not averaged, bright lines also appeared (Figure 14C-D). These artefacts are caused by the voxel spaces
having di�erent orientations, which leads to misalignment between the voxels in the two spaces using the
current approach. As the misalignment errors accumulate and necessary rounding to integers is applied,
they eventually result in either bright or black voxels. The contracting drift along the posterior-anterior
axis results in periodic skipping of values, which appear as black voxels. Conversely, the expanding drift
along the superior-inferior axis causes a periodic double-intensity value, appearing as bright voxels. This
issue can be resolved by reorienting the MR data of the local scan to match the orientation of the target
scan beforehand and updating the local a�ne matrix accordingly. The o�-diagonal terms in the rotation
and scaling portion of the transformation matrix are relatively small, approximately one-hundredth the
size of the diagonal terms. Therefore, it is assumed that these artefacts had minimal impact on the
images and point accuracy of the prediction. This is evident in the relatively low accuracy error for both
configurations in the case of C1 (R).

Not including points around the shank is a limitation of the dataset, as the Achilles tendon insertion
exhibits the highest overall sensitivity to other muscle forces during gait [9]. Actually, not including
muscle points at the shank might have underestimated the overall error for muscle points in the lower
limbs. It could be assumed that it is more challenging to accurately define points around the ankle
because of the observed variability of the posture. This adds extra complexity to the problem for the
model to account for. Although the authors did not attribute it primarily to the lower signal-to-noise
ratio, it was observed that registration methods to estimate muscle points showed lower accuracy in the
more caudal parts of the scans [18].

In this study, the EE is primarily used to validate the point model, which does not directly indicate
the e�ect on moment arm lengths. Not every muscle point error along each axis contributes equally to
moment arm length errors. For example, the maximum EE of the origin of the short head of the biceps
femoris was high (Figure 7). The largest part of the EE was found in the axial axis which roughly aligns
with the direction of the action line and the distance with the next muscle point is quite large. In turn,
the resulting moment arm length errors are expected to be small because the change in muscle action line
direction is small. It is also possible for a small muscle point error to cause a relatively large change in
moment arm length. This is the case because in some instances attachment and via points are positioned
close together, such as in the psoas, iliacus and semimembranosus. This increases the directional change
of muscle action lines due to a muscle point error, thereby a�ecting the moment arm length. Future
research will focus on the e�ect of the reported errors in muscle points on the moment arm length errors.
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4.2 Volume Model
The 3D volume model has been shown to be able to segment lower limb muscles accurately in the valida-
tion set (median DSC of 92.7 %). A beneficial result is that the DSCs of muscles not well represented by
a poly-line approach (iliacus, psoas, gluteus maximus and gluteus medius) score relatively high (average
DSC of 94.5%). However, drawing conclusions based on this result is not sound because of the depen-
dency of the train and test data on each other. This is inherently the case because of the augmentation
process and cannot be resolved because no further details are provided regarding the relation between the
augmented and original data. The inference of the sample of the second dataset shows that the volume
model is capable of generalising to other data so far that the relative positions of the segmentations are
correct. This sample is di�erent from the original dataset in scanner, settings, and scan post-processing.
This suggests that the model could be used for lower limb muscle segmentation to speed up the labelling
of similar datasets.

The volume model not predicting the quadratus femoris at all instances, can be explained by the
fact that twelve labels did not contain this class. It was found that in these cases, the segmentation of
the adductor magnus covered the actual quadratus femoris voxels (Figure 15). It is likely that multiple
original labels contain this error and during the augmentation process, it has propagated. In the study
itself [20], not all segmentations were used because some muscles showed low repeatability in terms
of volume. For the same muscle, not more than 10% variation in volume was allowed. Out of the two
muscles, only the quadratus femoris was excluded. Since the adductor magnus is typically larger than the
quadratus femoris, it could be the case that this volume criteria is inadequate to detect such a problem.
Furthermore, out of all the relative muscle volumes of the augmented data, the adductor magnus showed
the largest relative range in volume. This can be explained by the fact that in some instances, the
quadratus volume was added to it, and in others, subtracted from it. This further supports the notion
that this is the case.

At first glance, high DSC coe�cients show great promise for an automated complex approach pipeline
to model muscle-tendons (Figure 1). However, muscle segmentation studies do often not specify what
is regarded as the boundaries of a muscle. This is evident in the fact that the segmentation volume
variability is often larger than 10% [20]. This makes comparing volume models based on expert opinion
ground truths between studies less valid. Furthermore, it has been shown that for the iliopsoas and
gluteus medius, the intra-operator segmentation variability increases when approaching the attachment
sites in MR images [41]. It is likely that errors towards the attachments in complex muscle models will
also be the most sensitive to changes in muscle force during gait, as is the case in the poly-line approach
[9]. This further diminishes the utility of the DSC for biomechanical purposes. In this study, the labels
of the volume dataset did not include all tendons crossing the knee joint (Figure 5). Reporting the
proportion of segmentation coverage along the direction of a straight line from the origin to the insertion
could aid in standardisation that is relevant for creating subject-specific MSMs. Such a technique has
been implemented in [41]. This could be another potential use case for muscle attachment prediction
models like the point model in this study.

Typically, volume models are used for the complex approach, however, they could also be used for
the poly-line approach. In fact, the poly-line approach or also known as the centroid line approach,
used volumes to estimate centroids when it was introduced [42]. This could improve the repeatability
issues in defining muscle points by eliminating subjective decisions from the process. The automated
technique proposed by Modenese and Kohout allows the user to define the level of discretisation of a
muscle, i.e. picking the poly-line or complex approach or anywhere in between [17]. This technique
could serve as a tool to investigate the e�ect of the discretisation of a muscle-tendon per individual in a
systematic manner on any desired outcome variable. For the iliacus, psoas, gluteus maximus and gluteus
medius it has been shown that most of the time the moment arms of the poly-line approach fall mostly
within the range of the complex approach over a physiological hip range of motion [17]. However, how
these di�erences a�ect desirable internal loading parameters during gait has not yet been studied. This
is especially relevant because when using the poly-line approach, it is known that the perturbing the
gluteus medius, iliacus, and psoas results in the largest changes in muscle forces during gait [8].

Muscle volume models can o�er some more benefits in the scope of subject-specific MSMs apart from
defining muscle paths. Firstly, when muscle fibre paths and the volume are known, as is typically the
case in the complex modelling approach, the physiological cross-sectional area can be calculated. This
variable is assumed to highly correlate with the maximal isometric force of a muscle which has also
shown sensitivity to muscle force estimations [43]. Secondly, the current point model has been shown
to not always define via points reliably. Since both models take MR scans as input, it takes minimal
extra manual labour to run an inference of the volume model. Given the muscle volumes, a centroid
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approximation can be done to determine the location of the missing via point or it could be checked if the
point at hand is classified as the correct corresponding muscle class. Since muscle volume segmentations
often contain the most segmented voxels in the central parts of the muscle and only via point predictions
were absent, such a strategy could function. Of course, checking the output of the volume is also
possible with the point model. Both propositions and models in this paper could be integrated into the
Musculoskeletal Atlas Project Client to minimise the required labour to include subject-specificity [44].
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5 Conclusion
This study introduces two models designed to automatically identify muscle points and volumes, o�ering
researchers and clinicians tools to estimate internal loading measures of the musculoskeletal system in
vivo. The 3D muscle point model shows comparable accuracy to intra-operator variability of attachment
points. The cube-segmentation approach used is accessible and requires limited deep learning expertise.
It is likely that with more coherent data, this approach could attain higher accuracy. Future research
will include a moment arm length error analysis. The muscle volume model could be used as a starting
point to label other datasets that are similar to the current data it is tested and trained on. A validation
with independent samples of the training data is required to evaluate the model’s performance properly.
Di�erent use cases have been described where these models could support or progress following computa-
tional biomechanical research. This study demonstrated that the nnU-Net can produce accurate models
that can automatically define subject-specific muscle-tendon paths.
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6 Appendix

Figure 11: Median Euclidean errors per muscle point (circles) with minimum and maximum range (bars) while including
C16.
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Figure 12: Distributions of Euclidean errors of the 2D (above) and 3D (below) point model on the original validation set.

Figure 13: Distributions of Euclidean errors of the 2D (above) and 3D (below) point model on the validation set (green)
and the new sample (red).
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Figure 14: Observed data artefacts after pre-processing of C1 out of the point model dataset. A and B show black lines and
’blockiness’ in a coronal view of the shank after pre-processing. C shows the combined image without weighing individual
scans and shows also bright lines. D shows a sagittal view of the shank where bright and black voxel can be seen. In B
and C, both legs are shown for illustration purposes, unilateral samples were used for training and validation.

A B C D

Figure 15: Erroneous segmentation of quadratus femoris in Henson et al (2023) dataset [20]. A and B show sample 1 and
C and D show sample 2. A and C show a coronal view and B and D show a 3D view.
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Figure 16: Example training progression curves of the point and volume model. All graphs show the progressions of the first fold.
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