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Improving ASCAT soil moisture retrievals with an
enhanced spatially-variable vegetation

parameterization
Sebastian Hahn, Wolfgang Wagner, Senior Member, IEEE, Susan Steele-Dunne,

Mariette Vreugdenhil and Thomas Melzer

Abstract—This study investigates the performance of the
TU Wien soil moisture retrieval algorithm (TUW-SMR) by
adapting the strength of the vegetation correction. The semi-
empirical change detection method TUW-SMR exploits the
multi-angle backscatter observations from spaceborne fan-beam
scatterometer systems in order to derive surface soil moisture
information expressed in degree of saturation. The vegetation
parameterization of TUW-SMR is controlled by the dry and
wet cross-over angles that are used to determine the dry and
wet backscatter reference. Backscatter observations from the
Advanced Scatterometer (ASCAT) are used to produce four
soil moisture data sets based on different dry and wet cross-
over angles describing: (i) a static respectively no vegetation
correction, (ii) the currently used seasonal vegetation correction
(iii) a stronger seasonal vegetation correction and (iv) a spatially-
variable seasonal vegetation correction with the stronger vegeta-
tion correction over vegetated areas and no vegetation correction
over bare land. All four ASCAT soil moisture data sets are
evaluated against soil moisture estimates from GLDAS-2.1 Noah
land surface model and the ESA CCI Passive v04.5 soil moisture
product using the triple collocation method and a traditional
correlation analysis. The results show that the spatially-variable
vegetation correction overall improves soil moisture estimates in
both more densely vegetated areas, e.g. in large parts of North
America and Europe, and more sparsely-vegetated, e.g. Western
Africa. Nonetheless, the experiment also provides insight into
challenging retrieval conditions where the TUW-SMR fails to
take all relevant backscatter processes into account, e.g. wetlands
and bare soils with sub-surface scattering.

Index Terms—Performance evaluation, Radar remote sensing,
Radar cross-sections, Soil moisture.

I. INTRODUCTION

THE topic of microwave remote sensing of soil moisture
has been studied extensively [1]–[4]. Microwaves exhibit

a strong dependence on the soil dielectric properties, which are
largely controlled by the water content in the soil. In addition,
microwaves benefit from the fact that they are hardly affected
by clouds and independent of solar illumination. Therefore,
microwaves have proven to be a useful tool to measure soil
moisture changes over land.
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Numerous satellite soil moisture products have been devel-
oped and published based on active and passive microwave
instruments [5]–[11]. Furthermore, effort has been directed
towards merging active and passive microwave satellite soil
moisture products in the framework of ESA’s Climate Change
Initiative (CCI) [12], [13]. By harnessing the assets of active
and passive microwave instruments, it is possible to overcome
the limitations of one technique by another.

However, vegetation cover effects are still a challenge
when deriving surface soil moisture information from active
and passive microwave instruments. When the soil surface
is covered by vegetation, part of the microwave radiation
is absorbed and scattered. A mix of surface, volume and
multiple scattering is reducing the signal sensitivity to soil
moisture [14], [15]. Various approaches have been investigated
to account for vegetation effects e.g. using optical vegetation
indices (e.g. Normalized Difference Vegetation Index (NDVI),
Leaf Area Index (LAI)) [16], [17], directly estimating vege-
tation parameters from microwave measurements (e.g. Vege-
tation Optical Depth (VOD), Radar Vegetation Index (RVI),
polarization ratio) [4], [9], [18], or exploiting multi-angle
backscatter observations [10], [19]. The TU Wien soil moisture
retrieval algorithm (TUW-SMR) belongs to the last category,
since it utilizes the multi-angle measurement capabilities of
spaceborne fan-beam scatterometer to account for vegetation
during the retrieval of surface soil moisture [20].

TUW-SMR was originally developed for the C-band scat-
terometer instruments on-board ERS-1 and ERS-2 [10] and
later applied to the Advanced Scatterometer (ASCAT) on-
board the series of Metop satellites [11], [21]. The vegetation
parameterization of TUW-SMR exploits the incidence angle
dependence of backscatter, relating it to vegetation and soil-
vegetation interaction effects [22], [23]. It is based on the
assumption that a change in soil moisture equally affects the
backscatter intensity (expressed in dB) across the incidence
angle range between 20◦– 60◦, whereas vegetation phenology
results in more complex variations in the incidence angle
dependence of backscatter. Applying this abstraction to spe-
cific soil and vegetation states eventually leads to intersections
at certain incidence angles. The so-called cross-over angle
concept utilizes this behavior by defining two distinct inci-
dence angle at which the backscatter signal is independent
from vegetation changes in case of a dry and wet (saturated)
soil. Based on empirical observations from previous studies
using ERS-1 and ERS-2 scatterometer data, the dry and
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Fig. 1. The TU Wien soil moisture retrieval algorithm is a physically-based semi-empirical change detection method. Backscatter observations σ0 are
normalized to a common reference incidence angle (θr = 40◦) and scaled between a dry and wet backscatter reference (σd, σw). Soil moisture is expressed
in degree of saturation ranging between 0 (dry soil conditions) and 100% (saturated soil condition).

wet cross-over angles are set to θd = 25◦ and θw = 40◦

globally [10], [22], [24]. The choice of the cross-over angles
is important because they directly influence the amplitude of
the dynamic vegetation correction and ultimately determine the
signal sensitivity to soil moisture (i.e. the distance between the
dry and wet backscatter reference).

Recent research has shown that in some areas seasonal veg-
etation biases are evident [25], [26]. The selection of θd and θw
has not been changed since the initial development of TUW-
SMR and no dedicated experiments have so far been conducted
changing them on a global scale. A first study adapting the
vegetation parameterization to regional conditions indicated a
clear benefit of using a stronger vegetation correction in an
agricultural area in Lower Austria [27].

In the present study we evaluate the performance of TUW-
SMR globally using different pairs of dry and wet cross-over
angles:

1) θd = 40◦ and θw = 40◦ which switches off the vegeta-
tion correction over bare land surface areas respectively
assumes that the scattering behaviour of vegetation is
stable over the year.

2) θd = 25◦ and θw = 40◦ representing the current
seasonal vegetation correction.

3) θd = 10◦ and θw = 30◦ representing the stronger
vegetation parameterization successfully tested by [27]
over temperate climates.

4) a spatially-variable choice of cross-over angles derived
from a Vegetation Continuous Fields (VCF) data set to
tune the vegetation correction from no vegetation cor-
rection over bare land surfaces to the stronger vegetation
parameterization over vegetated areas.

Hence, four different ASCAT surface soil moisture data
records are computed and evaluated using soil moisture in-
formation from the Global Land Data Assimilation System
(GLDAS) Noah v2.1 [28] and the ESA CCI Passive soil
moisture data set v4.5 [29] for the time period January
2007 until December 2018. The main performance metrics
computed in this study are the Pearson Correlation Coefficient
and the estimated error variance expressed as Signal-to-Noise
Ratio (SNR) derived using Triple Collocation (TC) [30], [31].

II. BACKGROUND

A. TU Wien soil moisture retrieval algorithm

The TU Wien soil moisture retrieval algorithm (TUW-
SMR) represents a change detection method developed for
scatterometer instruments in 1999 [10], [22], [24]. Stepwise
improvements have been developed in the past years, such as
correcting azimuthal anisotropy [32], supporting Metop AS-
CAT [21] and error characterization [33]. Figure 1 illustrates
the final step in the change detection method and Equation 1
its mathematical expression. Backscatter observations (σ0)
normalized to a common reference incidence angle (θr = 40◦)
are scaled between a dry and wet backscatter reference (σd,
σw), resulting in relative surface soil moisture information
(ms) expressed in degree of saturation. The surface soil mois-
ture values range between 0 (dry soil conditions) and 100%
(saturated soil conditions) and any σ0 observation outside the
dry/wet backscatter reference are either corrected to 0/100%
or rejected as an extreme outlier.

ms (t) =
σ0 (t)− σd (t)

σw (t)− σd (t)
· 100 [%] (1)

The physical basis of TUW-SMR can be attributed to the
strong linear relationship between C-band backscatter and soil
water content in the top soil layer (1-2 cm) [11]. Despite the
lack of a direct parameterization of common soil surface prop-
erties (e.g. surface roughness, vegetation, land cover) which
are usually part of semi-empirical or theoretical backscatter
models, TUW-SMR is grounded on physical principles and
the following basic assumptions [10]:

1) The relationship between the backscatter coefficient σ0

expressed in decibels (dB) and the surface soil moisture
content is linear.

2) Surface roughness and land cover are temporally stable
at a spatial resolution of 25/50 km.

3) The incidence angle dependence of σ0 characterizes soil
roughness conditions and land cover dynamics, but is not
affected by changes in the surface soil moisture content.

4) The effect of vegetation on σ0 changes on a seasonal
scale without inter-annual variations.
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One advantage of this method is that model parameterization
is possible without an iterative adjustment, which is normally
necessary for more complex backscatter models. Furthermore,
the simple mathematical description allows for a straightfor-
ward application of error propagation analysis to estimate a
retrieval error of the final surface soil moisture estimate [23].

TUW-SMR model parameters can either be predefined
globally or estimated for each individual location on the
land surface. Thus, model parameters can be spatially and
temporally constant (i.e. θr = 40◦, θd = 25◦, θw = 40◦) or
change temporally and geographically (i.e. σ′, σ′′, σd, σw).
The estimation of the unknown model parameters is typically
done in the time domain and computationally expensive. Long-
term backscatter time series (> 2-4 years) are needed for each
location in order to compute robust results.

B. The cross-over angle concept

TUW-SMR assumes that distinct cross-over angles exist at
which the backscatter signal is independent from vegetation
phenology. Figure 2 depicts this concept showing backscatter
curves for four special cases. Two distinct intersections can
be registered, the so-called dry and wet cross-over angles (θd,
θw), where backscatter intensity is no longer dependent on the
vegetation state. The selection of θd = 25◦ and θw = 40◦ is
based on empirical observations and analysis from previous
studies [10], [22], [24].
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Fig. 2. Illustration of the cross-over angle concept after [24]. Two distinct
intersections can be registered for dry and wet soil conditions, which are
called dry and wet cross-over angles (θd, θw).

The dry and wet cross-over angles are important parameters
because the dry and wet backscatter references are computed
at these incidence angles. A second-order Taylor polynomial is
used to describe the incidence angle dependency of backscatter
(see Equation 2). The so-called slope σ′ and curvature σ′′ are
used to normalize backscatter observed at arbitrary incidence
angles (σ0

θ ) to a common reference incidence angle (θr = 40◦).
σ′ and σ′′ represent the first and second derivative of backscat-
ter with respect to the incidence angle, which are estimated
for each location independently and change temporally [34].

σ0 (t) = σ0
θ (t)− σ′ (t) · (θ− θr)−

1

2
· σ′′ (t) · (θ− θr)

2 (2)

Rearranging Equation 2 allows us to convert σ0 from the
reference incidence angle θr to θd and θw, respectively:

σ0
d (t) = σ0 (t)+σ′ (t) · (θd− θr)+

1

2
·σ′′ (t) · (θd− θr)2 (3)

σ0
w (t) = σ0 (t)+σ′ (t) ·(θw−θr)+

1

2
·σ′′ (t) ·(θw−θr)2 (4)

The backscatter time series at the cross-over angle (σ0
d, σ0

w)
are used to determine the dry and wet backscatter reference
from the extreme lowest and highest backscatter values. The
selection of the extreme backscatter observations is based on
a confidence interval determined by the noise distribution of
the backscatter at the respective cross-over angle [23]. The
average of the two selected backscatter subsamples represents
the dry and wet backscatter reference at the dry and wet cross-
over angles (C0

d , C0
w). A final transformation of C0

d and C0
w

is needed in order to convert the backscatter values from the
cross-over angles back to θr = 40◦:

σd (t) = C0
d − σ′ (t) · (θd − θr)−

1

2
· σ′′ (t) · (θd − θr)

2 (5)

σw (t) = C0
w − σ′ (t) · (θw − θr)−

1

2
· σ′′ (t) · (θw − θr)

2 (6)

It is worth noting that C0
d and C0

w are both constant values
(at the respective cross-over angle), but as a result of the
final transformation to θr, σ′ and σ′′ impose their temporal
signature on σd and σw. Technically, this is only the case for
σd for the current settings, because θr = θw.

Figure 3 shows an example of σd and σw determined at
different cross-over angles and transformed back to θr. It can
be seen that the selection of the cross-over angle controls the
strength of the temporal characteristics. A lower cross-over
angle enhances the temporal signature coming from σ′ and
σ′′. In the extreme case that the cross-over angle is equal to
the reference incidence angle, no transformation is necessary
and the reference is constant. The distance between σd and
σw determines the backscatter signal sensitivity to changes in
soil moisture. Naturally, with increasing vegetation coverage,
backscatter sensitivity to changes in soil moisture is decreasing
due to attenuation effects. A typical variable in microwave
remote sensing describing vegetation attenuation properties is
the Vegetation Optical Depth (VOD). In fact, [20] developed
a method deriving VOD by ingesting σd and σw into a
Water Cloud Model (WCM) [14], [35], which compared well
in temperate and continental climates to VOD derived from
passive microwave observations. Hence, the selection of θd
and θw determines the temporal development of σd and σw,
which, ultimately, can be interpreted as changes in VOD.
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Fig. 3. Examples of different dry (σd) and wet (σw) backscatter references at θr = 40◦ derived using different dry and wet cross-over angles (θd =
{10◦, 25◦, 40◦}, θw = {30◦, 40◦}).

III. DATA SETS

A. Metop ASCAT backscatter

The Advanced Scatterometer (ASCAT) on-board the series
of Metop satellites is an active C-band (5.255 GHz) radar
using six vertically polarized fan-beam antennas. From around
800 km altitude ASCAT transmits well characterized pulses of
microwave energy towards the Earth’s surface and measures
the reflected energy expressed in terms of the Normalized
Radar Cross Section (NRCS), also known as backscatter coef-
ficient σ0 [36]. ASCAT represents a follow-on scatterometer
for the Active Microwave Instruments (AMI) on-board ERS-1
and ERS-2 [37] and has proven to be a stable and well cali-
brated instrument [38], [39]. Two main Level 1b backscatter
products are generated by spatially averaging the geolocated
full resolution backscatter measurements in order to obtain
σ0 triplets from the Fore, Mid and Aft beam resampled on
a regular orbit grid: Sigma Zero Operational (SZO) with a
spatial resolution of about 50 km, sampled on 21 nodes across
each swath, with a spacing of approximately 25 km between
nodes and successive rows of nodes and Sigma Zero Research
(SZR) with a spatial resolution of 25-34 km, sampled on 41
nodes across each swath, with a spacing of approximately
12.5 km [39]. The latter uses a dynamic filter size in order to
maintain a similar radiometric resolution at the cost of altering
the spatial resolution in the cross-track direction.

At the moment, all three Metop satellites share the same
sun-synchronous orbit and each carries an ASCAT instrument.
The series of Metop satellites were launched 6 years apart,
starting with Metop-A in October 2006, Metop-B in September
2012 and Metop-C in November 2018. In order to extend
the lifetime of Metop-A, the spacecraft will be directed into
a drifting orbit shifting the satellites Local Time of the
Descending Node (LTDN) from 9:30 a.m. (nominal) to 7:30
a.m. by April 2022. Afterwards, Metop-A will be de-orbited
into a 25 years re-entry orbit [40].

In this study we used Metop-A and Metop-B Level 1b SZR
products, which have been downloaded from the EUMET-
SAT data centre1. In case of the Metop-A, a Fundamental
Climate Data Record (FCDR) exists covering January 2007

1https://eoportal.eumetsat.int/

to March 2014, which has been extended with the Metop-A
Level 1b SZR product from the operational ground segment
until December 2018. Currently no FCDR is available for
Metop-B, therefore the Metop-B Level 1b SZR product from
the operational ground segment has been downloaded for the
period January 2013 until December 2018.

B. GLDAS-2.1 Noah soil moisture
The Global Land Data Assimilation System (GLDAS) is a

global, high-resolution, offline (uncoupled to the atmosphere)
terrestrial modeling system that ingests satellite- and ground-
based observations and has been developed jointly by Na-
tional Aeronautics and Space Administration (NASA) God-
dard Space Flight Center (GSFC) and the National Oceanic
and Atmospheric Administration (NOAA) National Centers
for Environmental Prediction (NCEP) [28], [41]. In this paper
we used the GLDAS-2.1 Noah 0.25 degree 3-hourly product,
which has been simulated with the Noah Model 3.3 in Land
Information System (LIS) version 7 [42]. It contains 36 land
surface fields from January 2000 until present. The data were
downloaded from the NASA Goddard Earth Sciences Data
and Information Services Center (GES DISC) for the period
January 2007 until December 20182.

The Noah model incorporates soil-vegetation-atmosphere
transfer schemes (SVATS), with vegetation properties con-
trolling fluxes and storages of energy and water at the land
surface. GLDAS makes use of a vegetation classification map
and also utilizes satellite derived leaf area index (LAI) from
both the AVHRR and MODIS sensors (Rodell et al 2004).
Therefore, unlike active and passive microwave-based soil
moisture products (where vegetation is part of the received
signal and needs to be accounted for), the seasonal cycle
of GLDAS soil moisture is indirectly affected by vegetation
controlled by SVATS.

GLDAS-2.1 Noah has a total of four different layers rep-
resenting soil moisture: 0-10 cm, 10-40 cm, 40-100 cm and
100-200 cm expressed in kg m−2. In this study we used soil
moisture information from the first soil layer 0-10 cm, as well
as snow water equivalent and soil temperature 0-10 cm to mask
potentially invalid remote sensing soil moisture observations.

2https://disc.gsfc.nasa.gov/
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C. ESA CCI Passive soil moisture

In 2009, the European Space Agency (ESA) started the
Climate Change Initiative (CCI) in response to the need
for climate-monitoring satellite data. Soil moisture has been
recognized as an Essential Climate Variable (ECV) and be-
came part of the ESA CCI program in 2012. The ESA CCI
soil moisture project3 combines multiple active and passive
microwave soil moisture products generating three harmonized
climate data records: Active, Passive and Merged. In this
study we used the ESA CCI Passive soil moisture product
v04.5 expressing surface soil moisture in m3 m−3 covering
the period from 1978-11-01 until 2018-12-31 [29], [43], [44].

The main data sources for the ESA CCI Passive product
v04.5 for the period under investigation (2007-2018) are based
on AMSR-E, WindSat, AMSR2 and SMOS. All satellite data
are processed with the so-called Land Parameter Retrieval
Model (LPRM) [45]. LPRM is a zero order radiative transfer
model and makes use of the Microwave Polarization Dif-
ference Index (MPDI) to calculate vegetation optical depth,
which is used to parameterize the attenuation of the signal by
the vegetation [46].

D. Vegetation Continuous Fields - VCF5KYR

The NASA Making Earth System Data Records for Use in
Research Environments (MEaSUREs)4 Vegetation Continuous
Fields (VCF) Version 1 data product (VCF5KYR) provides
global fractional vegetation cover at 0.05◦ spatial resolution
at yearly intervals from 1982 to 2016 [47]. The VCF5KYR
product is derived from a bagged linear model algorithm
using observations from the Advanced Very High Resolution
Radiometer (AVHRR) Long Term Data Record Version 4
(LTDR V4). The three bands included in VCF5KYR are:
percent of tree cover (tc), non-tree vegetation (v) and bare
ground (bg).

In this study we utilized the VCF5KYR 2016 data to
estimate the dry (Equation 7) and wet (Equation 8) cross-
over angle. The three bands are used as weights assuming
that no vegetation correction is required in case of bare ground
(θd = θw = 40◦), while tree and non-tree vegetated surfaces
tend to have lower cross-over angle (θd = 10◦, θw = 30◦).

θd = 10 · v + 10 · tc+ 40 · bg (7)

θw = 30 · v + 30 · tc+ 40 · bg (8)

The global maps shown in Figure 4 illustrate the spatial
distribution of θd and θw derived from the VCF5KYR 2016
data set using Equation 7 and 8.

E. Köppen-Geiger climate classification

The Köppen-Geiger climate classification5 realized by [48]
is sampled on a regular 0.5◦ lat/lon grid and defines 30 climate

3http://www.esa-soilmoisture-cci.org/
4https://earthdata.nasa.gov/community/community-data-system-

programs/measures-projects
5https://people.eng.unimelb.edu.au/mpeel/koppen.html

(a) Cross-over angle

10 20 30 40

Dry cross-over angle [deg]

(b) Cross-over angle

10 20 30 40

Wet cross-over angle [deg]

(c)

Tree cover

Non-tree vegetation

Bare ground

Fig. 4. Dry (a) and wet (b) cross-over angles derived from the VCF5KYR
2016 data set(c).

classes (see Table I). In this study we used the Köppen-
Geiger classification to group validation results by climate type
around the world.

Af Am Aw BW BS Cs Cw Cf Ds Dw Df

Köppen-Geiger Climate Classification

Fig. 5. Köppen Geiger Climate classification map.
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TABLE I
KÖPPEN-GEIGER CLIMATE SYMBOLS AFTER [48].

1st 2nd 3rd Description
A Tropical

f - Rainforest
m - Savannah

B Arid
W - Desert
S - Steppe

h - Hot
k - Cold

C Temperate
s - Dry Summer
w - Dry Winter
f - Without dry season

a - Hot Summer
b - Warm Summer
c - Cold Summer

D Cold
s - Dry Summer
w - Dry Winter
f - Without dry season

a - Hot Summer
b - Warm Summer
c - Cold Summer
d - Very Cold Winter

E Polar
T - Tundra
F - Frost

F. ESA CCI Land Cover

The ESA CCI Land Cover project provides annual land
cover maps (1992-2015) at 300 m spatial resolution [49].
The land cover map 2015 v2.0.7 was aggregated to 12.5 km
collecting the fractional area of each land cover class and
its majority class. The data set was used to group validation
results by land cover type. Subclasses are merged into their
respective main class (see Table II).

0 10 20 30 40 50 60 70 80 90 100 110 120 130 150 160 180 190 200

ESA CCI Landcover

Fig. 6. ESA CCI land cover map 2015 (v2.0.7).

IV. METHODS

TUW-SMR was applied to Metop-A and Metop-B ASCAT
backscatter observations, which were resampled from their
original orbit swath geometry to a fixed Earth grid beforehand.
This pre-processing step is necessary because backscatter

TABLE II
ESA CCI LAND COVER CLASS DESCRIPTIONS.

Identifier Description

10, 11, 12 Cropland, rainfed

20 Cropland, irrigated or post-flooding

30 Mosaic cropland (>50%) / natural vegetation
(tree, shrub, herbaceous cover)

40 Mosaic natural vegetation (tree, shrub,
herbaceous cover) (>50%) / mosaic cropland

50 Tree cover, broadleaved, evergreen,
closed to open (>15%)

60, 61, 62 Tree cover, broadleaved, deciduous,
closed to open (>15%)

70, 71, 72 Tree cover, needleleaved, evergreen,
closed to open (>15%)

80, 81, 82 Tree cover, needleleaved, deciduous,
closed to open (>15%)

90 Tree cover, mixed leaf type

100 Mosaic tree and shrub (>50%),
herbaceous cover (<50%)

110 Mosaic herbaceous cover (>50%),
tree and shrub (<50%)

120, 121, 122 Shrubland

130 Grassland

140 Lichens and mosses

150, 151, 152, 153 Sparse vegetation (tree, shrub, herbaceous cover)

160, 170 Tree cover, flooded, saline, fresh or brakish water

180 Shrub or herbaceous cover, flooded,
fresh/saline/brakish water

200, 201, 202 Bare areas

TABLE III
ASCAT SOIL MOISTURE DATA SETS.

Name θd [◦] θw [◦] Description

ASCAT SM-10/30 10 30 strong vegetation correction
ASCAT SM-25/40 25 40 present standard settings
ASCAT SM-40/40 40 40 only static vegetation correction
ASCAT SM-Dyn 10-40 30-40 variable cross-over angles

observations in time series format are needed by TUW-SMR.
The so-called WARP5 grid was used as a spatial reference
with a global equidistant sampling of 12.5 km [23]. A search
radius of 34 km was centered around each WARP5 land grid
point selecting original orbit swath backscatter observations
inside, which were subsequently weighted and averaged using
a Hamming window function. In this way, a backscatter time
series was generated incrementally and used as input for
TUW-SMR. TUW-SMR was applied four times, with each run
generating a surface soil moisture data set based on a different
set of cross-over angles (see Table III).

The ASCAT surface soil moisture data sets (ASCAT SM-
10/30, ASCAT SM-25/40, ASCAT SM-40/40 and ASCAT
SM-Dyn) were validated against GLDAS-2.1 Noah and CCI
Passive soil moisture computing the Pearson correlation co-
efficient (R) and by applying Triple Collocation (TC). TC is
a method to study error characteristics from three spatially
and temporally collocated data sets [30]. The mean squared
random error of all three data sets are estimated individually
by cross-multiplying differences between them. The computed
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ASCAT SM-25/40 vs GLDAS-2.1 Noah SM: R [-]

(b) xy-pr-1030-2540
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(ASCAT SM-10/30 - ASCAT SM-25/40): Difference R [-]

(c) xy-pr-4040-2540
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(ASCAT SM-40/40 - ASCAT SM-25/40): Difference R [-]

(d) xy-pr-xxxx-2540

-0.4 -0.2 0 0.2 0.4

(ASCAT SM-Dyn - ASCAT SM-25/40): Difference R [-]

Fig. 7. Global maps of Pearson R (p <0.05 and more than 100 observations).
Difference between Pearson R are only shown if both Pearson R values are
positive.

error variance can be expressed in absolute terms, but as
shown by [31], the obtained noise variance can be also related
to the signal variance leading to the Signal-to-Noise Ratio
(SNR). SNR expressed in decibel (dB) allows for a physical
meaningful interpretation: if signal and noise variance are

(a) xz-pr-2540

-1 -0.5 0 0.5 1

ASCAT SM-25/40 vs CCI Passive SM: R [-]

(b) xz-pr-1030-2540

-0.4 -0.2 0 0.2 0.4

(ASCAT SM-10/30 - ASCAT SM-25/40): Difference R [-]

(c) xz-pr-4040-2540

-0.4 -0.2 0 0.2 0.4

(ASCAT SM-40/40 - ASCAT SM-25/40): Difference R [-]

(d) xz-pr-xxxx-2540

-0.4 -0.2 0 0.2 0.4

(ASCAT SM-Dyn - ASCAT SM-25/40): Difference R [-]

Fig. 8. Global maps of Pearson R (p <0.05 and more than 100 observations).
Difference between Pearson R are only shown if both Pearson R values are
positive.

equal, SNR is zero, whereas each doubling/halving of their
ratio correspond to additional ±3 dB.

The temporal period under investigation was 2007-01-01
until 2018-12-31, which is covered by all soil moisture data
sets. In order to calculate the validation metrics (R, SNR),
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Fig. 9. Difference of Pearson R summarized as boxplot per land cover class
using Noah GLDAS-2.1 SM as reference. Whisker ends represent 5th and
95th percentile.

a spatial and temporal collocation has been performed. In
the spatial domain the WARP5 grid was used as a reference
selecting nearest neighbors from the GLDAS-2.1 Noah and
CCI Passive grid. In the temporal domain, the ASCAT soil
moisture time stamps were used to find the closest correspond-
ing soil moisture observation within ±8 hours from GLDAS-
2.1 Noah and CCI Passive. Time periods with frozen soil
conditions and snow cover were masked out beforehand using
soil temperature (<4◦) and Snow Water Equivalent (SWE
>0) information provided by GLDAS-2.1 Noah. The temporal
matching was only performed between two data sets for the
computation of Pearson R, while in case of TC the temporal
matching was carried out between all three data sets.
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Fig. 10. Difference of Pearson R summarized as boxplot per land cover class
using ESA CCI Passive SM as reference. Whisker ends represent 5th and 95th
percentile.

V. RESULTS AND DISCUSSION

A. Pearson R

Figure 7 and Figure 8 show the result of Pearson R for
ASCAT SM-25/40 and the difference against the other ASCAT
SM data sets. Locations with p-values <0.05 are shown in
Figure 7a and Figure 8a, whereas the difference of Pearson
R (Figure 7b-7d and Figure 8b-8d) is only shown in case of
positive correlations. Pearson R obtained from ASCAT SM-
25/40 and GLDAS-2.1 Noah SM (Figure 7a) shows large
areas with good temporal correlations similar to Pearson R
computed using ASCAT SM-25/40 and ESA CCI Passive
SM (Figure 8a). However, both cases also indicate strong
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Fig. 11. Difference of Pearson R summarized as boxplot per Köppen
Geiger climate class using Noah GLDAS-2.1 SM as reference. Whisker ends
represent 5th and 95th percentile.

negative correlations visible in very dry regions (e.g. Arabian
peninsula, North Africa, Namibia, Chile, US Arizona), which
has been repeatedly shown by other studies as well [12],
[50]–[52]. On-going research suggests that this could be due
to subsurface scattering effects with an inverse relationship
between backscatter and (low) soil moisture conditions: under
very dry soil conditions deeper soil layers might cause volume
scattering or scattering by subsurface discontinuities (e.g.
bedrock or rocky layer covered by shallow soil), which is
entirely obscured during wet soil conditions with an overall
lower (surface) scattering intensity [11]. Such an effect has
been observed in a field experiment for sandy soils in north
central Florida using a L-band radar instrument [53] and also
reproduced in an indoor laboratory experiment using C-band
radar observations [54].

In addition, negative correlations can also be seen in high
latitudes (>65◦N) in the case of GLDAS-2.1 Noah SM (Fig-
ure 7a), although not as strong compared to dry environments.
In general, northern latitudes present challenging retrieval
conditions, especially for coarse resolution instruments such as
ASCAT. For example, when frozen soil or snow dominates the
instrument footprint, the retrieval of soil moisture is difficult or

−0.4 −0.2 0.0 0.2 0.4

Difference R [-]

Af (7780)

Am (10404)

Aw (73221)

BW (90864)

BS (97816)

Cs (13341)

Cw (34231)

Cf (41752)

Ds (7227)

Dw (25180)

Df (139372)

K
öp
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Fig. 12. Difference of Pearson R summarized as boxplot per Köppen Geiger
climate class using ESA CCI Passive SM as reference. Whisker ends represent
5th and 95th percentile.

not possible at all. This is also true for transition periods with
snow melt and (temporary) standing water [55], [56]. However,
also the performance of land surface models is restricted
in such environments, which, for example, depends on a
correct parameterization of snow and frozen soil conditions
[57]. Due to these two physical processes leading to negative
correlations the differences in R are not shown (Figure 7b-7d
and Figure 8b-8d).

Figures 7b and 7c illustrate the difference of Pearson R
between ASCAT SM-25/40 and ASCAT SM-10/30, as well
as ASCAT SM-25/40 and ASCAT SM-40/40 using GLDAS-
2.1 Noah SM as reference. Positive values indicate improve-
ments with respect to the standard vegetation characterization
(θd = 25◦, θw = 40◦). North America, Europe and southern
parts of South America show throughout a positive impact
of using a stronger vegetation correction (ASCAT SM-10/30,
Figure 7b), while a static-only vegetation correction (ASCAT
SM-40/40, Figure 7c) leads to an overall lower performance
compared to ASCAT SM-25/40. A similar pattern can be seen
compared to ESA CCI Passive SM (Figures 8b and 8c) except
for some areas in high latitudes, which tend to be better
for ASCAT SM-40/40. However, as mentioned before, high
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ASCAT SM-25/40: SNR [dB]

(b) xyz-x-snr
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(ASCAT SM-10/30 - ASCAT SM-25/40): SNR [dB]

(c) xyz-x-snr
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(ASCAT SM-40/40 - ASCAT SM-25/40): SNR [dB]

(d) xyz-x-snr

-9 -6 -3 0 3 6 9

(ASCAT SM-Dyn - ASCAT SM-25/40): SNR [dB]

Fig. 13. Signal-to-Noise Ratio (SNR) estimated by TCA between ASCAT
SM, GLDAS-2.1 Noah SM and CCI Passive SM. Locations only with more
than 100 temporally colocated observations and a positive Pearson R between
the data sets are shown.

latitudes are quite complex environments with an extended
cold season leaving not many observations for validation. Poor
results using a stronger vegetation correction are clearly visible
in parts of Africa and East Asia, as well as India, Bolivia and
Brazil (Figures 7b and 8b). Interestingly, Pearson R tends to be

(a) xyz-x-snr

0 0.02 0.04 0.06 0.08

ASCAT SM-25/40: Error Standard Deviation [m3 m−3]

(b) xyz-x-snr
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(ASCAT SM-10/30 - ASCAT SM-25/40): Error Standard Deviation [m3 m−3]

(c) xyz-x-snr
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(ASCAT SM-40/40 - ASCAT SM-25/40): Error Standard Deviation [m3 m−3]

(d) xyz-x-snr

-0.04 -0.02 0 0.02 0.04

(ASCAT SM-Dyn - ASCAT SM-25/40): Error Standard Deviation [m3 m−3]

Fig. 14. Error standard deviation estimated by TC between ASCAT SM,
GLDAS-2.1 Noah SM and CCI Passive SM. Locations only with more than
100 temporally colocated observations and a positive Pearson R between the
data sets are shown.

similar between ASCAT SM-25/40 and ASCAT SM-40/40 for
exactly these areas (Figures 7c and 8c). A closer examination
of these regions shows that different reasons are causing this
unexpected results.

Firstly, semi-arid regions, such as the Sahel zone and South



IEEE TRANSACTIONS IN GEOSCIENCE AND REMOTE SENSJING, VOL. X, NO. X, DECEMBER 2020 11

−18 −12 −6 0 6 12 18

Difference SNR [dB]

10 (88887)

20 (9555)

30 (6878)

40 (6077)

50 (17898)

60 (35506)

70 (22850)

80 (6133)

90 (2873)

100 (5624)

110 (2602)

120 (66770)

130 (67449)

150 (35237)

160 (987)

180 (3885)

190 (1007)

200 (35479)

E
SA

C
C

IL
an

d
C

ov
er

cl
as

s
(n

um
be

ro
fs

am
pl

es
)

Reference: GLDAS-2.1 Noah SM, ESA CCI Passive SM

ASCAT SM-10/30 - ASCAT SM-25/40
ASCAT SM-40/40 - ASCAT SM-25/40
ASCAT SM-Dyn - ASCAT SM-25/40

Fig. 15. Difference of SNR summarized as boxplot per land cover class.
Whisker ends represent 5th and 95th percentile.

Africa, exhibit a high level of variation in their seasonal
soil moisture and vegetation dynamics. For example, these
areas can suffer from large scale disruptions, such as fires
and subsequent multi-annual recoveries. Therefore, the as-
sumption that a climatology is able to represent the inter-
annual cycle of vegetation phenology might be insufficient.
This was also shown by [20] who demonstrated that the TUW-
SMR soil moisture retrievals improved when using a inter-
annually varying vegetation correction based on VOD from
passive microwave observations. More in-depth analysis in
South Africa have indicated (not shown) that incorrect (not
dry) backscatter observations are selected to determine the
dry reference. Hence, a misrepresentation of the inter-annual
vegetation cycle using a climatology of σ′ and σ′′ is one of
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Fig. 16. Difference of Error Standard Deviation summarized as boxplot per
land cover class. Whisker ends represent 5th and 95th percentile.

the reason why the lowest backscatter extrapolated to the dry
cross-over angle no longer corresponds to driest soil moisture
conditions.

Secondly, the poor performance in India, Bolivia, Brazil
and part of East Asia are related to wetlands. Some of
the worlds largest wetlands are clearly visible, such as the
Amazon River Floodplain, the Pantanal in South America
and the Sundarbans in the Ganges-Brahmaputra Delta. In
Africa, the outline of numerous Zambezian flooded grasslands
(e.g Okavango Delta, Bangweulu Wetlands, Lukanga Swamp)
can be detected. Wetland backscatter signatures are quite
unique because the dominant scattering mechanism ranges
from surface and volume scattering to specular reflection and
double-bounce effects [58]. Therefore, temporal changes in the
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Fig. 17. Difference of SNR summarized as boxplot per Köppen Geiger
climate class. Whisker ends represent 5th and 95th percentile.

incidence angle dependency of backscatter are mainly driven
by changes in the scattering mechanism. Further enhancing
the vegetation correction may increase already existing errors
due to an incorrect representation of the scattering behavior,
ultimately misinterpreting vegetation phenology. Similar to the
situation in high latitudes, an accurate retrieval of surface
soil moisture information is quite complex or impossible in
wetlands. Flooding dynamics and vegetation coverage are the
main problems. However, Synthetic Aperture Radar (SAR)
systems have shown good results mapping and monitoring
wetland changes (e.g. [59]), but coarse scale instruments, such
as ASCAT, have a clear handicap.

Finally, a large part of negative Pearson R results using
a stronger vegetation correction can be linked to flooded
cropland, e.g. visible in Thailand, India and China. Similar
to wetlands, emergent vegetation from continuously or peri-
odically inundated cropland can lead to multiple scattering
mechanism affecting the temporal behavior of σ′ and σ′′. In
addition, the climatological representation of σ′ and σ′′ can
have a negative impact on both, wetlands and flooded cropland.
As previously mentioned, strong inter-annual variations can
lead to extrapolation errors selecting the wrong backscatter ob-
servations for the determination of the dry and wet backscatter
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Fig. 18. Difference of Error Standard Deviation summarized as boxplot per
Köppen Geiger climate class. Whisker ends represent 5th and 95th percentile.

reference. In fact, the TUW-SMR has not been developed to
model backscatter behavior of flooded vegetation. Therefore,
an optimization of the vegetation parameterization will not
help in such situations.

Combining the results of Pearson R between ASCAT SM
and GLDAS-2.1 Noah SM in CCI Land Cover classes [49]
(Figure 9) and Köppen Geiger climate classes [48] (Figure 11),
shows that tree cover land cover classes (70, 80, 90), as well
as cold (Cs, Cf) and temperate (Ds, Df) climates benefit the
most from a stronger vegetation correction. Moreover, the
performance clearly deteriorates in case of flooded vegetation
(20, 160, 180). The latter is in line with previous observations
and discussions on mixed scattering behavior in such regions.
Interestingly, in some cases the standard vegetation correction
seems to be superior, most notably in cropland (20) and
shrubland (120).

The performance of ASCAT SM-Dyn is very similar to
ASCAT SM-10/30, which is expected because the spatially-
variable cross-over angles are close to θd = 10◦ and θw = 30◦

over large parts of the world. The exception are sparsely
vegetated and bare areas, where the cross-over angles are
shifting towards θd = 40◦ and θw = 40◦ leading to no
seasonal vegetation correction. Therefore, ASCAT SM-Dyn
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has the advantage of showing a good performance in similar
areas as ASCAT SM-10/30 compared to ASCAT SM-25/40,
while at the same time avoiding an inaccurate and erroneous
(seasonal) vegetation correction in areas previously discussed
(Figure 7d).

In case of ASCAT SM and CCI Passive SM (Figure 10 and
Figure 12) the Pearson R results show smaller improvements
of ASCAT SM-10/30, illustrating that θd = 25◦ and θw = 40◦

have been a good choice on a global basis. However, the
performance consistently improves for the cropland classes
(10, 20, 30) and cold (Cs, Cf) climates. Similar to GLDAS-2.1
Noah SM, the comparison against ESA CCI Passive SM also
shows comparable results between ASCAT SM-Dyn and AS-
CAT SM-10/30, but again with the same advantage of ASCAT
SM-Dyn containing less areas with a poor performance.

It has also been tested whether performance differences can
be detected computing soil moisture anomalies using a sliding
window of five weeks similar to [60]. However, the remaining
soil moisture anomaly contains only short term variations
and the performance metrics indicate no significant difference
for the ASCAT SM data sets (not shown) as the vegetation
parameterization affects the seasonality of soil moisture more
than short-term changes.

B. Triple Collocation

The error variance computed using Triple Collocation (TC)
are presented as Signal-to-Noise Ratio (SNR) in Figure 13
and scaled error standard deviation (EStd) in Figure 14. While
EStd indicates errors only, SNR presents errors with respect
to the signal variance on a logarithmic scale [31].

TC has been applied four times, each time using Noah
GLDAS-2.1 SM and CCI Passive SM in combination with
a different ASCAT SM data set (see Table III). The results of
SNR and EStd are shown in Figure 13 and Figure 14 only for
locations having a positive Pearson R and at least more than
100 temporally collocated soil moisture triplets. The SNR and
EStd of ASCAT SM-25/40 (Figure 13a and Figure 14a) have
been used as a baseline and the difference to all other ASCAT
SM data sets has been computed.

As can be seen in Figure 13b, a stronger vegetation cor-
rection (ASCAT SM-10/30) tends to improve SNR especially
in the Northern Hemisphere. Many parts of North America
and Europe increase from around 0 dB to more than 3-
6 dB indicating a substantial improvement in terms of SNR.
However, an exceptional decrease of SNR can be also detected,
e.g. in India and South Africa dropping more than 3 dB in
some parts. As previously discussed in case of Pearson R, the
climatological representation of the vegetation phenology in
combination with mixed scattering mechanism are compromis-
ing the soil moisture retrieval, which becomes more evident
using a stronger vegetation correction (ASCAT SM-10/30).
The spatially-variable characterization of the cross-over angles
(ASCAT SM-Dyn) produces more balanced results with less
strong negative SNR results (Figure 13d) compared to ASCAT
SM-10/30 indicating that a static vegetation correction (like
in ASCAT SM-40/40) seems to be the best case scenario at
the moment in areas such as Africa and India (Figure 13c)
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Fig. 19. Difference of Pearson R in case of GLDAS-2.1 Noah SM (a) and CCI
Passive SM (b), as well as difference of SNR (c) and EStd (d) summarized
as boxplots. Whisker ends represent 5th and 95th percentile.
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before better characterizing the inter-annual vegetation cycle.
Otherwise a seasonal vegetation correction has a clear benefit
as can be seen in Figure 13c, because many areas indicate a
negative SNR.

A similar spatial pattern can be found in the case of EStd,
representing the scaled error standard deviation. Smaller errors
can be found in Eastern Europe and Eastern U.S. for ASCAT
SM-10/30 (Figure 14b), as well as countries like Argentina
and Uruguay which also benefit from a stronger vegetation
correction when compared to ASCAT SM-25/40. As evident
in Figure 14c, there are no large differences in EStd between
ASCAT SM-25/40 and ASCAT SM-40/40. This suggests, that
the soil moisture benefits most from applying a seasonal
vegetation correction, which becomes even more evident for
ASCAT SM-10/30 and ASCAT SM-Dyn.

Like Pearson R, aggregating SNR in terms of CCI Land
Cover classes (Figure 15) and Köppen Geiger climate classes
(Figure 17) shows better results for tree cover (60, 70, 80,
90, 100) and crop classes (10, 30), as well as cold (Cs, Cf)
and temperate climates (Ds, Df). A direct comparison between
SNR and EStd suggest that especially tree cover classes (70,
80, 90) gain in terms of signal variance since the median of
EStd remains overall close to zero. Looking at areas containing
flooded vegetation (20, 160, 180) reveals a higher EStd with an
overall reduction of SNR for ASCAT SM-10/30 and ASCAT
SM-Dyn, which is consistent with the results based on Pearson
R.

VI. CONCLUSION AND OUTLOOK

In this study we investigated the performance of the
TU Wien soil moisture retrieval algorithm using different pairs
of dry and wet cross-over angles: (i) θd = 40◦ and θw = 40◦

which is equivalent to no respectively static vegetation correc-
tion, (ii) θd = 25◦ and θw = 40◦ representing the current
(standard) seasonal vegetation correction, (iii) θd = 10◦

and θw = 30◦ describing a stronger seasonal vegetation
correction and (iv) a spatially-variable choice of cross-over
angles derived from a Vegetation Continuous Fields (VCF)
data set. A comparison against GLDAS-2.1 Noah SM and
ESA CCI Passive SM v04.5 showed that a better performance
in terms of Pearson R and SNR can be achieved using a
stronger vegetation correction (ASCAT SM-10/30), which was
particularly the case for many parts of North America and
Europe. The ASCAT soil moisture data record based on the
spatially-variable selection of cross-over angles (ASCAT SM-
Dyn) indicated also a good performance compared to the
current seasonal vegetation correction (ASCAT SM-25/40), but
with the advantage that over bare or sparsely vegetated land
the vegetation correction is switched off. Over vegetated areas
the results of ASCAT SM-40/40 generally showed a lower
performance compared to the parameterisations modelling a
seasonal vegetation signal (ASCAT SM-25/40, ASCAT SM-
10/30, ASCAT SM-Dyn). Hence, these results confirm the
value of the information contained in the ASCAT observed
slope σ′ and curvature σ′′ for describing vegetation dynamics
[61] and illustrate that it is not enough to just take normalising
backscatter time series for estimating soil moisture as this
causes seasonal biases.

The analysis also provided insight into challenging condi-
tions where the TU Wien soil moisture retrieval algorithm
fails to describe all relevant backscatter phenomena, such as
subsurface scattering in dry areas or regions with (temporary)
flooded vegetation (e.g. wetlands, flooded cropland). Further-
more, we identified a shortcoming related to the climatological
characterization of the vegetation cycle. A previous study has
tried characterizing σ′ and σ′′ as time series based on a kernel
smoother showing promising results [62], however, further
work is needed to combine this method with the new selection
of cross-over angles investigated in this study. In addition,
the assumptions behind the TU Wien soil moisture retrieval
algorithm have been tested and evaluated against a newly
developed radiative transfer model (RT1) [63], which has
been recently applied to ASCAT [64]. RT1 has shown a very
similar functional behavior, but also differences e.g. suggesting
a certain dependency between slope and soil moisture. Further
research is planned on this subject.

The initial selection of the cross-over angles (θd = 25◦

and θw = 40◦) has been a robust and effective choice [10],
[22], [24], but based on the results presented in this study a
stronger vegetation correction helps to improve the ASCAT
soil moisture signal (Figure 13b and Figure 13d). Quantita-
tively ASCAT SM-10/30 and ASCAT SM-Dyn are showing
a similar performance, with less extreme values in case of
ASCAT SM-Dyn (Figure 19). Apart from that, a spatially-
variable cross-over angle selection is preferable eventually
(ASCAT SM-Dyn), because it allows further adjustment of the
optimal choice of cross-over angles. In fact, some areas still
indicate ASCAT SM-25/40 as the best compromise. Therefore,
our recommendation for the operational H SAF ASCAT soil
moisture data services [11] is to adopt the new spatially-
variable vegetation parameterization introduced here.

A new generation of C-band scatterometer instrument
(called SCA) is currently being prepared and foreseen to be
launched in 2024. The SCA instrument will be on-board the
Metop Second Generation (Metop-SG) satellite representing
the space segment of the EUMETSAT Polar System – Second
Generation (EPS-SG). The new Metop-SG constellation will
contain three pairs of satellites, i.e. 6 satellites (A1-A3, B1-
B3), instead of 3 in case of Metop (A, B, C). SCA will be
on-board of the B series of the Metop-SG satellites ensuring
C-band backscatter measurements until 2040. Apart from an
improved radiometric and spatial resolution of SCA compared
to ASCAT, a new feature will be an additional VH channel
on SCA’s Mid beam antennas [65]. This additional source
of information can be vital to further optimize and improve
vegetation characterization in the TU Wien soil moisture
retrieval algorithm.
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