<]
TUDelft

Delft University of Technology

Strong Agile Metrics

Mining Log Data to Determine Predictive Power of Software Metrics for Continuous
Delivery Teams

Huijgens, Hennie; Lamping, Robert; Stevens, Dick; Rothengatter, Hartger; Gousios, Georgios; Romano,
Daniele

DOI
10.1145/3106237.3117779

Publication date
2017

Document Version
Accepted author manuscript

Published in
ESEC/FSE 2017

Citation (APA)

Huijgens, H., Lamping, R., Stevens, D., Rothengatter, H., Gousios, G., & Romano, D. (2017). Strong Agile
Metrics: Mining Log Data to Determine Predictive Power of Software Metrics for Continuous Delivery
Teams. In ESEC/FSE 2017: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (pp. 866-871). ACM. https://doi.org/10.1145/3106237.3117779

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3106237.3117779
https://doi.org/10.1145/3106237.3117779

Delft University of Technology
Software Engineering Research Group
Technical Report Series

Strong Agile Metrics

Hennie Huijgens, Robert Lamping, Dick Stevens, Hartger
Rothengatter, Daniele Romano and Georgios Gousios

Report TUD-SERG-2017-010

%
TUDelft SE[p@

TUD-SERG-2017-010

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Industry Track of the ACM Proceedings of the 11th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, held in Paderborn, Germany, September 2017 (ESEC/FSE17). https:
//doi.org/10.1145/3106237.3117779

(© 2017 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1145/3106237.3117779
https://doi.org/10.1145/3106237.3117779

SE

Strong Agile Metrics

Strong Agile Metrics: Mining Log Data to Determine Predictive
Power of Software Metrics for Continuous Delivery Teams

Hennie Huijgens
Delft University of Technology
Delft, The Netherlands
h.k.m.huijgens@tudelft.nl

Hartger Rothengatter
ING Bank
Amsterdam, The Netherlands
hartger.rothengatter@ing.com

ABSTRACT

ING Bank, a large Netherlands-based internationally operating
bank, implemented a fully automated continuous delivery pipe-
line for its software engineering activities in more than 300 teams,
that perform more than 2500 deployments to production each
month on more than 750 different applications. Our objective is to
examine how strong metrics for agile (Scrum) DevOps teams can
be set in an iterative fashion. We perform an exploratory case
study that focuses on the classification based on predictive power
of software metrics, in which we analyze log data derived from
two initial sources within this pipeline. We analyzed a subset of
16 metrics from 59 squads. We identified two lagging metrics and
assessed four leading metrics to be strong.

CCS CONCEPTS

« General and reference — Cross-computing tools and
techniques — Metrics

KEYWORDS

Software Economics; Agile Metrics, Scrum, Continuous Delivery,
Prediction Modelling, DevOps, Data Mining, Software Analytics.

ACM Reference format:

Hennie Huijgens, Robert Lamping, Dick Stevens, Hartger Rothengatter,
Daniele Romano and Georgios Gousios. 2017. Strong Agile Metrics:
Mining of Log Data to Determine Predictive Power of Software Metrics
for Continuous Delivery Teams. In ACM Proceedings of the 11 joint
meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 2017 (ESEC/FSE’17), 6 pages.
https://doi.org/10.1145/3106237.3117779

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
ESEC/FSE'17, September 4-8, 2017, Paderborn, Germany.

© 2017 Association for Computing Machinery. 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117779

TUD-SERG-2017-010

Robert Lamping
ING Bank and CGI
Amsterdam, The Netherlands
robert.Jamping@ing.com

Daniele Romano
ING Bank
Amsterdam, The Netherlands
daniele.romano@ing.com

Dick Stevens
ING Bank
Amsterdam, The Netherlands
dick.stevens@ing.com

Georgios Gousios
Delft University of Technology
Delft, The Netherlands
g.gousios@tudelft.nl

1 INTRODUCTION

In order to further speed up application deployments, reduce risks
of failure, and deliver applications rapid, repeatable, and reliable,
ING Bank, a large Netherlands-based internationally operating
bank, introduced Continuous Delivery as a Service (CDaaS) and
DevOps. ING’s continuous delivery cycle includes code, build,
deploy, test and release of all software engineering activities, and
supports more than 300 software delivery teams - squads in ING
terminology - that operate primarily on a Linux or a Windows
platform. The mindset behind CDaasS is to go to production as fast
as possible while maintaining or improving quality, so teams get
fast feedback, and know they are on the right track. The
continuous delivery pipeline is at the core of a transition that is
ongoing within ING towards DevOps.

ING’s continuous delivery cycle is now implemented. Two ma-
tured CDaaS squads support a huge variety of squads in different
business domains and software technologies. And all teams work
in an agile (Scrum) way. Yet, now a need is felt to develop a
monitor and control capability that fits the different squads in the
organization. In this process of setting up a software metrics
approach, the company wants to prevent from looking at metrics
in isolation, treating a metric (making alterations just to improve
a metric), or one trick metrics on the one hand against metrics
galore on the other [1]. In line with the fully automated building,
testing, and deployment of software in the continuous delivery
pipeline three important requirements are applicable. (1) The
monitor and control capability is implemented as a fully auto-
mated and iterative process, (2) it supports the different squads
where possible in improving their deliveries, and (3) the capability
must have a high degree of predictive power.

In this paper we describe the initial process to determine strong
software metrics - being metrics with high predictive power - in
order to be able to support a highly effective monitor and control
capability within ING Bank. Because the process to classify met-
rics will be iterative — adding new metrics to the procedure will
lead to a fluid and ongoing redefinition of the concept of ‘strong’
- we use the terminology of strong agile metrics. We perform our

Strong Agile Metrics

ESEC/FSE’17, September 2017, Paderborn, Germany

analysis as an exploratory case study, based on two initial data
sources from ING’s software engineering domain: the Backlog
Management (BLM) discipline, and the Continuous Delivery
(CDaaS) discipline. Although data is collected on a per squad level,
strong metrics are analyzed and reported at an aggregated
(average) level and not as such on a per squad level.

Our objectives are to explore whether data mining techniques can
help to define such strong agile metrics. In a follow-up case study
based at this exploratory study we aim to develop a 1-to-5 star-
rating for software metrics, that can be used throughout ING’s
software organization as a support tool when preparing
dashboards and other visualizations. The aspect of automation
and building a performance dashboard itself is not within the
scope of this paper. We address the following research question:

RQ How can we set strong metrics for agile (Scrum) DevOps teams
in an iterative fashion?

As our key contribution we evaluate how to determine the
predictive power of software metrics from log data of a toolset of
more than 300 different development teams in a large software
company, that perform more than 2500 deployments to produc-
tion each month on more than 750 different applications.

1.1 Background

ING Bank implemented Continuous Delivery based on the model
described by Humble and Farley [2], where the CD pipeline is pro-
posed as a deployment pipeline for the whole value stream of soft-
ware development. ING Bank set up two different pipelines based
on the main technologies Linux and Windows. Its’ main goal is to
support squads in maximizing the benefits of shared use of tools.
In this paper we focus at the CDaaS Linux pipeline. It provides
developers with a complete set of standard tools that are sup-
ported by a Linux CDaaS squad and available to all squads within
the bank. The pipeline fully automates the software release pro-
cess for Linux based applications. It contains several specialized
tools which are connected to each other, such as GitLab (code),
Jenkins, SonarQube, and QWasp and Artifactory (build), Nolio
(deploy), iTested (test), and iValidate (release).

The final goal of our analysis (yet, out-of-scope for this explora-
tory study) is to examine ‘good’ deliveries (being better than
average within the scope of a squad) and ‘bad’ deliveries (being
worse than average), as described in previous work on success and
failure in software engineering projects [3]. By doing so we expect
to identify success factors that help squads to create better deliver-
ies in future releases, and failure factors that help squads to
prevent from ‘bad’ deliveries. However, due to the limited number
of initial data sets this final goal is out-of-scope for this paper.

2 RESEARCH APPROACH

We conduct our research as an exploratory case study and we
assess the predictive power of software delivery metrics, in which

SE

H. Huijgens, R. Lamping, D. Stevens,
H. Rothengatter, D. Romano, G. Gousios

we use data derived from two initial sources. The first data source
is log data from ServiceNow, the Backlog Management (BLM) tool
that is used by most of the software development squads. The
second data source that is used in this study is deployment log
data from Nolio.

For our exploratory study we define a limited set of software met-
rics focused at a delivery scope (e.g. epics, user stories) as a mini-
mum viable product (MVP): a product with just enough features
to gather validated learning about the product and its continued
development [4]. Based on the initial two data sets we designed
four steps to define the MVP: (1) Scope definition, (2) Collect
metrics, (3) Analyze for correlations, and (4) Determine prediction
power of metrics.

2.1 Scope Definition

In this initial step we define the scope of the software metrics to
be analyzed. Within the scope of this exploratory case study we
limit the scope of data to log data of two data sources, derived
from ServiceNow and Nolio. We combine a snapshot of Service-
Now data from 370 squads with CDaa$ data of the deployment file
from 101 squads. No time series are included in both datasets. We
focus our analysis on squads; teams that deliver sets of user
stories, combined in epics, to users within ING Bank or to ING’s
customers. Due to various missing data in both datasets, linking
both datasets result in 59 squads for which all data are present.
This is our analysis set.

2.2 Define and Collect Metrics

In a number of meetings with stakeholders definitions of metrics
and hypothesis are classified. A draft metrics framework, an in-
ventory of existing dashboards within the company, and an infor-
mal literature review are used as a baseline. Our intention is not
to come up with a finalized inventory, but instead to set up and
maintain a backlog of prioritized software metrics. In order to set
up a repeatable future-proof procedure that is fully automated in-
the-end, we do not analyze raw data itself. Instead we structure
the log data upfront in a dedicated data warehouse with an
automated feed from BLM and CDaaS in the background. Within
the scope of this study a limited set of one daily download is used
for further analysis. In this initial data set observations with
missing values are beforehand removed.

2.3 Lagging and Leading Metrics

In this paper we distinguish two types of metrics: lagging and
leading metrics. Lagging metrics are output oriented and cannot
be directly influenced. A lagging indicator gives a signal after the
trend or reversal occurs. These metrics are perceived as key
indicators for high performing teams. Leading metrics are input
oriented and easy to influence. A leading indicator gives a signal
before the trend or reversal occurs [5].

TUD-SERG-2017-010

SE

Strong Agile Metrics: Mining Log Data...

Strong Agile Metrics

ESEC/FSE’17, September 2017, Paderborn, Germany

Table 1. Metrics Descriptions and Descriptive Statistics.

Metric* Source n Type Skewness Kurtosis Min 1t Q Median Mean 3dQ Max
cdaas_cycletime_tst1_prd [Lagging] CDaaS 59 Days 0.56 -0.19 0.41 11.21 17.22 17.96 2518 46.52
cdaas_mtb_prd_Ist90days CDaaS 59 Days 0.73 0.96 2.98 23.02 34.16 36.77 49.22 104.90
cdaas_numberofdeploymentsprd CDaaS 59 Number 4.12 18.77 1.00 3.00 7.00 16.73 17.00 194.00
sprint_averageleadtime BLM 59 Days 5.19 45.31 -6.50 22.15 31.17 37.65 44.25 370.50
sprint_averagepointsperstory BLM 59 Ratio 3.37 13.34 0.03 0.08 0.11 0.17 0.17 1.00
sprint_duration BLM 59 Days 3.14 21.08 5.00 13.00 13.00 14.79 14.00 55.00
sprint_numberofchangemembers BLM 59 Number 3.76 30.14 0.00 7.00 9.00 9.54 11.00 51.00
sprint_numberofepicslastsprint BLM 59 Number 1.51 3.77 1.00 7.00 11.00 12.00 16.00 48.00
sprint_numberofsquadmembers BLM 59 Number 3.56 26.93 2.00 7.00 10.00 10.01 12.00 51.00
sprint_plannedpointscompletionratio [Lagging] BLM 59 Ratio -0.62 -0.23 0.00 0.05 0.67 0.64 0.83 1.00
sprint_plannedstoriescompletionratio [Lagging] BLM 59 Ratio -0.53 -0.55 0.00 0.44 0.67 0.63 0.86 1.00
sprint_pointscompletionratio BLM 59 Ratio 0.29 1.75 0.02 0.50 0.72 0.70 0.90 2.18
sprint_remainingtimeratio BLM 59 Ratio 5.28 29.28 0.00 0.00 0.00 0.03 0.00 1.00
sprint_scopegrowth BLM 59 Number 16.65 283.94 -112.00 0.00 0.00 2.82 0.00 919.00
sprint_unplannedexistingpointscompletionratio BLM 59 Ratio 1.53 1.85 0.00 0.00 0.07 0.17 0.27 1.00
sprint_unplannednewpointscompletionratio BLM 59 Ratio 3.95 18.55 0.00 0.00 0.00 0.07 0.07 1.00

Backlog Management (BLM) log data from ServiceNow and CDaa$ log data from Nolio

. *A more detailed description of each metric, including extended descriptive statistics is

included in the Technical Report. In order to assess distribution we included Skewness and Kurtosis of each individual metric. Lagging metrics are indicated with the text

2.4 Analysis

We define and collect metrics from two initial data sources, clas-
sify metrics, and specify whether metrics are lagging or leading.
we examine descriptive statistics and we analyze the total set of
metrics from the two initial data sources for statistical correlation.
To understand any relations between individual metrics we
perform linear regression. For visualization purposes we prepare
a correlation matrix that plots positive and negative correlations
between all individual metrics; this matrix is not included in this
paper, it is to be found in a Technical Report [6].

2.5 Determining Predictive Power of Metrics

To classify software metrics based on their prediction strength
with regard to the performance of releases delivered by agile
(Scrum) DevOps teams, we use a search algorithm to find the best
model, based on forward selection, backward elimination, and
stepwise regression. We define strong metrics as leading metrics
with strong correlation(s) to lagging metrics in the data set. Alt-
hough in our exploratory case study we do this in a manual way,
we plan for automated methods to identify predictor variables in
a future solution. Automated methods are useful when the
number of explanatory variables is large, as in our case, and when
it is not feasible to fit all possible models. For this purpose we built
a new model in R, based on the existing Corrplot package, in
which we visualize the outcomes of the multiple linear regression
in a Leading Lagging Matrix (see Figure 1).

TUD-SERG-2017-010

[Lagging] behind their names in the first column of the table above.

3 RESULTS

In Table 1 we inventory descriptive statistics of the BLM metrics
and CDaaS metrics in scope. To test whether the data in our
datasets is normally distributed or not, we used a skewness and
kurtosis test. As values for skewness and kurtosis between -2 and
+2 are considered acceptable in order to prove normal univariate
distribution [7], we assess the majority of metrics in both subsets
to be not normally distributed.

3.1 Analysis of Predicting Variables

We perform pairwise correlation in order to find any relations be-
tween individual metrics. Because a small majority of the metrics
are assessed to be not normally distributed we use the method
Spearman. A visualization in the form of a correlation matrix is
included in the Technical Report [6]. Variables that have no
significant correlation in a 1-to-1 analysis, may act differently in
multiple regression. Remaining time ratio is an example of such a
variable.

We are modelling lagging indicators in terms of leading variables.
In Figure 1 the impact of leading metrics on the set of lagging met-
rics is visualized in a Leading Lagging Matrix. The figure shows
for each lagging variable (horizontal axis) what the impact is of
each leading variable (vertical axis). The color of each circle
indicates whether the impact is positive (blue) or negative (red).
The size of a circle indicates whether impact is strong (large im-
pact) or weak (small impact). Same size circles on the same row
do not mean they are equal: for each lagging variable the leading
variables are calculated using multiple linear regression, subse-
quently all multiple linear regression coefficients are rescaled to a

Strong Agile Metrics

ESEC/FSE’17, September 2017, Paderborn, Germany

cdaas_cycletime_tst1_prd .
cdaas_mtb_prd_|Ist90days .
cdaas_numberofdeploymentsprd .
sprint_averageleadtime
sprint_averagepointsperstory .
sprint_duration

H
sprint_numberofchangemembers -----.-
sprint_numberofepicslastsprint ---.---

sprint_numberofsquadmembers
sprint_plannedpointscompletionratio '
sprint_plannedstoriescompletionratio !
sprint_pointscompletionratio !

sprint_remainingtimeratio !

sprint_scopegrowth -u..

sprint_unplannedexistingpointscompletionratio U
sprint_unplannednewpointscompletionratio .

SERE

H. Huijgens, R. Lamping, D. Stevens,
H. Rothengatter, D. Romano, G. Gousios

08
06
04
02
0
-0.2

-0.4

-06

-0.8

HOREC |

Figure 1: Leading Lagging Matrix showing the impact of leading metrics (vertical axis) on lagging metrics (horizontal axis).

scale of -1 to 1. Empty squares indicate a coefficient of zero.
Crossed out variables are excluded from the lagging model in
order to avoid collinearity (independent variables that are highly
correlated).

In this first exploratory study we used a pragmatic approach to
determine which variables are leading or lagging in our model.
We argued that in this first analysis three metrics are assessed to
be lagging. (1) Planned stories completion ratio; the number of
planned stories that were completed in a sprint divided by the
number of planned stories. (2) Planned points completion ratio; the
number of completed planned story points divided by the number
of planned story points. (3) CDaasS cycle time; the mean time from
first test deployment after last production has been done until the
next production deployment for all applications of a squad.

The choice for these three lagging metrics is mainly driven by the
assumption that they are typically output related and cannot
easily be planned upfront. For analysis purposes we included a
reference set of five other metrics on the x-axis of the matrix,
although these were not assumed to be lagging.

3.4 Key Findings
When examining the Leading Lagging Matrix as depicted in Figure
1, we observe the following:

Observation 1. Higher average story points (5% row) have a nega-
tive impact on the planned completion ratio (either points or
stories) and on the total completion ratio. Besides that, higher
average story points lead to a longer CDaaS cycle time (from test
to production).

Observation 2. If the planned points completion ratio (10™ row)
goes up, also the number of epics increases. At the same time
unplanned backlog work (unplanned existing) decreases.
Observation 3. The planned stories completion ratio (11t row)
shows an opposite effect: if this variable goes up, the number of
epics decreases. The different behavior of both metrics need to be
examined further in follow-up research.

Observation 4. If the points completion ratio (12 row) increases,
also the number of epics goes up, an effect that is similar to Obser-
vation 2.

Observation 5. If the remaining time ratio (13t row) goes up, the
number of epics and the CDaaS cycle time decreases. Further-
more, if there is time left after all planned work is done, we see
that squads pick up backlog work.

Observation 6. When unplanned existing work (15" row) (e.g.
picked up from backlog) pops up this has a moderate negative
impact on the planned work and the ability to pick up backlog
work. In this case the number of epics increases moderately, while
remaining time ratio increases strongly.

TUD-SERG-2017-010

SE

Strong Agile Metrics: Mining Log Data...

Observation 7. Average lead time is negatively impacted by
unplanned new work (e.g. incidents) (bottom row), possibly
because it delays planned work that was already started in the
current sprint or earlier and that cannot finish in the planned time.
Average lead time is not tightly linked to a sprint, but more to a
user story.

Observation 8. No significant impact is caused in our models by
the three CDaaS$ variables, and the remaining BLM variables.

4 DISCUSSION

As explained in paragraph 3.3 we assumed upfront three metrics
to be lagging: planned stories completion ratio, planned points
completion ratio, and CDaaS cycle time. The first two metrics are
both about the completion of planned work, so to say the
predictability of delivery of squads. We prefer planned stories
completion ratio because it has the advantage that scope growth
(measured in story points) has no influence on the ratio value.
Leading variables for this metric are unplanned new points
completion ratio, unplanned existing points completion ratio, and
average points per story. With regard to this lagging metric we
assess these three leading variables as ‘strong metrics’.

The third lagging variable, CDaa$ cycle time, can be influenced
by the leading variables remaining time ratio and average points
per story. With regard to this lagging metric we assess both lead-
ing variables as ‘strong metrics’.

Besides these three variables we observe that also the number of
epics (4™ column from the left) can be influenced strongly by
planned points completion ratio, points completion ratio, remain-
ing time ratio, unplanned existing points completion ratio, and
unplanned new points completion ratio. However, because we
assume that this variable can be easily planned upfront we do not
assess it as a lagging variable as such.

From an overall point of view we argue that average points per
story is influencing both preferred lagging metrics, and due to that
is to be assessed as the most powerful metric in the actual subset.

4.1 Implications

Our model, based on an initial subset of BLM and CDaaS data,
indicates that squads can improve their planned stories comple-
tion ratio and reduce their CDaasS cycle time by slicing their deliv-
erables in smaller user stories. Squads can reduce their CDaa$
cycle time by keeping open space in their sprint planning (e.g. in-
creasing their remaining time ratio). Finally, by reducing unex-
pected unplanned work squads can increase their predictability of
delivery (e.g. planned stories completion ratio). These
implications are also identified by Humble and Farley [2] as key
measures for implementing Continuous Delivery and DevOps.
Our research herewith substantiated these measures based on
statistical analysis of ING’s Continuous Delivery cycles.

4.2 Threats to Validity

With regard to construct validity we are aware that the use of sto-
ry points for comparison purposes over squads might be spurious

TUD-SERG-2017-010

Strong Agile Metrics

ESEC/FSE’17, September 2017, Paderborn, Germany

in a way. However, to prevent from differences in ranges used by
different squads we calculated all measurements with story points
involved to indexes. A second threat that we take into account is
the way we picked metrics to be included in the study and the
choice of lagging versus leading metrics. In our actual approach
we inventoried metrics in related work and existing dashboards
within ING bank, and mapped these on a metrics framework that
we based on previous work [8]. We realize that some systemic
bias might play a role here and are looking for ways to mitigate
this in a more mature approach. A third threat with regard to
construct validity is that we did not exclude outliers from our
research dataset. Although we realize that this is important for a
future approach we did not include this in this exploratory study.
Finally we recognize challenges with data quality as a threat to
validity. Especially to link BLM data on squads and applications
with the CDaaS dataset was a blockade in some cases.

A threat to internal validity that we acknowledge is the fact that
‘fishing for p -values’ might hold a risk that some of the correla-
tions we find are a coincidence. Although we acknowledge the
fact that in a future approach corrections (e.g. Benjamini-Hoch-
berg [9]) are to be implemented, we did not apply any of such
corrections in this initial and exploratory study.

Concerning external validity we argue that results from our study
are not to be generalized to other companies than ING Bank. We
assume that different companies have their own specific metrics
patterns. We expect that our approach to derive strong metrics by
mining log data from software delivery pipeline tools can be
successfully used in practice by other companies too. To encour-
age reuse and further improvement of our approach, we share a
subset of the R-code developed by us in the Technical Report [6].

5 RELATED WORK

Where from the 80s onwards software companies used to follow
a software process improvement (SPI) approach with varying suc-
cess [10] [11], since the start of this millennium an industry-wide
transformation towards agile development methods is obvious.
Although several studies are performed on the success and failure
of agile methods [12] [13] [3], a clear definition of success is diffi-
cult to find. A number of researchers and practitioners come up
with terms such as hyperproductivity [14] [15] [16], usually with
a limited focus on best practices in a Scrum environment, de-
scribed as for example ‘the most productive Java projects ever
documented’ [14]. To define definitions for hyperproductivity and
accompanying software metrics we based our research besides the
above on metrics for continuous delivery as mentioned by Hum-
ble and Farley [2] and on Puppet’s State of DevOps Report [5].
The effect on strong positive correlations between Project Size,
Project Cost, and Number of Defects is known from related work
[3] [17] [18]. Also the effect of project size as a risk factor is de-
scribed earlier. Smaller projects tend to have lower cancellation
rates [19]. Smaller projects tend to perform better in terms of qual-
ity, being on budget, and being on schedule [19] [20]. Project size
is found to be an important risk factor for success [21] [22] [23].

Strong Agile Metrics

ESEC/FSE’17, September 2017, Paderborn, Germany

In previous work we found strong effects by comparing quantita-
tive metrics such as cost, duration, number of defects, and size
with qualitative metrics like stakeholder satisfaction and per-
ceived value [8]. A recent guest editorial by Méntyla et al. [24]
mentions that, although “many papers investigate success and
failure of software projects from diverse perspectives, leading to
a myriad of antecedents, causes, correlates, factors and predictors
of success and failure”, a solid, empirically grounded body of evi-
dence enabling actionable practices for increasing success and
avoiding failure in software projects is not yet found.

Premrai et al. [25] investigated how software project productivity
had changed over time, finding that an improving trend was
measured, however less marked since 1990. The trend varied over
companies and business sectors, a finding that matches the result
of our previous research with regard to differentiation over
business domains [3].

6 CONCLUSIONS AND FUTURE WORK

We analyzed a dataset built from BLM and CDaaS$ data from ING
Bank in order to identify strong metrics; metrics with high
predictive power towards a subset of lagging variables. We found
two lagging metrics and four leading metrics that are assessed to
be strong.

In future research we plan to extend the number of data sources -
e.g. availability, squad decomposition, business process perfor-
mance, customer experience, incidents - and due to that the num-
ber of variables in our model. We also plan to examine how lag-
ging metrics and strong leading metrics can be identified in an
automated procedure. Furthermore we intend to automatically set
targets on the strong agile metrics, based on the performance of
high performing teams within ING Bank. Our final objective is to
use our findings to define relevant lagging metrics and related
strong leading metrics to enable squads and management to steer
on performance by delivering strong agile metric dashboards.

ACKNOWLEDGMENTS

Our sincere thanks to ING Bank for offering us the opportunity
and the confidence to perform research in their challenging soft-
ware development team environment.

REFERENCES

[1] E. Bouwers, J. Visser en A. van Deursen, ,Getting What You Measure,”
Communications of the ACM, vol. 55, nr. 7, pp. 54-59, 2012.

[2] J. Humble en D. Farley, Continuous Delivery, reliable software releases
through build, test and deployment automation, Addison-Wesley, 2010.

[3] H. Huijgens, R. van Solingen en A. van Deursen, ,How to build a good
practice software project portfolio?,” in ACM Companion Proceedings of the
36th International Conference on Software Engineering (ICSE), 2014.

[4] J. Miinch, F. Fagerholm, P. Johnson,]. Pirttilahti, J. Torkkel en J. Jaarvinen,
»Creating minimum viable products in industry-academia collaborations,”
in Lean Enterprise Software and Systems, Springer Berlin Heidelberg, 2013,
pp. 137-151.

[5]
[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SE

H. Huijgens, R. Lamping, D. Stevens,
H. Rothengatter, D. Romano, G. Gousios

LState of DevOps Report,” Puppet, 2016.

H. Huijgens, R. Lamping, D. Stevens, H. Rothengatter en G. Gousios, ,Strong
Agile Metrics - Technical Report TUD-SERG-2017-010,” Delft University of
Technology, 2017.

D. George en M. Mallery, SPSS for Windows Step by Step: A Simple Guide
and Reference, 17.0 update (10a ed.) red., Boston: Pearson., 2010.

H. Huijgens, A. van Deursen en R. van Solingen, , The Effects of Perceived
Value and Stakeholder Satisfaction on Software Project Impact,” Information
and Software Technology, 2017.

W. Hopkins, A new view of statistics, Internet Society for Sport Science,
2000.

T. Hall, A. Rainer en N. Baddoo, ,Implementing Software Process
Improvement: An Empirical Study,” Software Process Improvement and
Practice, vol. 7, pp. 3-15, 2002.

T. Dyba, ,An Empirical Investigation of the Key Factors for Success in
Software Process Improvement,” IEEE Transactions on Software Engineering,
vol. 31, nr. 5, pp. 410-424, 2005.

T. Chow en D.-B. Cao, ,A survey study of critical success factors in agile
software projects,” The Journal of Systems and Software, vol. 81, pp. 961-971,
2008.

S. C. Misra, V. Kumar en U. Kumar, ,Identifying some important success
factors in adopting agile software development practices,” The Journal of
Systems and Software, vol. 82, pp. 1869-1890, 2009.

J. Sutherland, A. Viktorov, J. Blount en N. Puntikov, ,Distributed Scrum:
Agile project management with outsourced development teams,” in IEEE
40th Annual Hawaii International Conference on System Sciences (HICSS),
2007.

M. Beedle , M. Devos, Y. Sharon, K. Schwaber en J. Sutherland, ,SCRUM: An
extension Pattern Language for Hyperproductive Software Development,”
in Pattern Languages of Program Design, Addison-Wesley, 2000, pp. 637-651.

J. Sutherland, N. Harrison en J. Riddle, ,Teams that Finish Early Accelerate
Faster: A Pattern Language for High Performing Scrum Teams,” in 47th
Hawaii International Conference on System Science, 2014.

K. El Emam en A. Gines Koru, ,A replicated survey of IT software project
failures,” IEEE software, vol. 25, nr. 5, pp. 84-90, 2008.

M. Bhardwaj en A. Rana, ,Key Software Metrics and its Impact on each other
for Software Development Projects,” ACM SIGSOFT Software Engineering
Notes, vol. 41, nr. 1, pp. 1-4, 2016.

D. Rubinstein, ,Standish group report: There’s less development chaos
today,” Software Development Times, vol. 1, 2007.

R. Sonnekus en L. Labuschagne, ,Establishing the Relationship between IT
Project Management Maturity and IT Project Success in a South African
Context,” Proc. 2004, PMSA Global Knowledge Conf., Project Management
South Africa, pp. 183-192, 2004.

H. Barki, S. Rivard en J. Talbot, ,Toward an assessment of software
development risk,” Journal of Management Information Systems, vol. 10, pp.
203-223, 1993.

J. Jiang en G. Klein, ,Software development risks to project effectiveness,”
Journal of Systems and Software, vol. 52, nr. 1, pp. 3-10, 2000.

R. Schmidt, K. Lyytinen, P. Cule en M. Keil, ,Identifying software project
risks: An international Delphi study,” Journal of management information
systems, vol. 17, nr. 4, pp. 5-36, 2001.

M. V. Mintyl4, M. Jorgensen, P. Ralph en H. Erdogmus, ,Guest editorial for
special section on success and failure in software engineering,” Empirical
Software Engineering, vol. April, pp. 1-17, 2017.

R. Premrai, M. Shepperd, B. Kitchenham en P. Forselius, ,An Empirical
Analysis of Software Productivity Over Time,” in IEEE International
Symposium Software Metrics, Como, Italy, 2005.

TUD-SERG-2017-010

SE Strong Agile Metrics

Appendix A — Technical Report

Technical Report - Global Agile Metrics

1 Introduction and first inspection

1.1 Introduction
Goal of the first part of this project is to establish a way of working to analyze data and distinguish leading and lagging metrics.
Way of working:

e Get your data

e Inspect your data

e Correlate all data

e Define the output variable(s) (Lagging variable)

e Get an impression of the data and describe it

e Choose by intuition which variables could be lagging variables and test the assumption

e Calculate which independent variables are predictor for the output variable.(leading variable)
e Repeat above steps for all new data that is added to data set

1.2 Next Cycle: Addition of CDaaS Deployment Data to the Sprint Data

After obtaining the ServiceNow Backlog Management (BLM) data we added the CDaaS data. There are about 370 squads. For 316 we have
BLM data for all the BLM variables. We excluded squads with missing data. For 101 squads be have CDaaS deployment data available. The
union of both result in approximately 59 squad observations.

Regarding the CDaaS date we expect to see that:

e Teams with more deployments lead to shorter cycle.
e Shorter cycle times also indicate lower average story size?

Adagium of first cycle: Just add the data and see what happens.

Is the lagging variable still the lagging variable?

1.3 Data quality

CDaasS portal is not adequately connected to ServiceNow. It misses unique application names and application IDs and ServiceNow squad
names.

Naming convention on the CD portal is not strict and CD portal teams and are named to the production name. Application ID is missing, but
will be added in the future. CD Portal names are different from ServiceNow teams.

In preparation to go live of the IT ServiceManagement (ITSM) module in ServiceNow an excel list is prepared and maintained until go live of
the link between application name and squad name. This list is not complete yet. An attempt to use the CI Long Name failed as it also contains
environment post fixes, which were not expected.

Finally in a last attempt we tried to retrieve the squad name by finding out who deployed an application and whether this person is linked to
only one squad name in ServiceNow. If so, that squad name was linked to the application name. Furthermore if that application was deployed
more often and not yet linked to this squad name, then this squad name was added.

1.4 First Cycle

For the first cycle we tried some arbitrary metrics to find out how the R tooling works. And later on we added some more metrics. In this report
you will see the combined data set.

1.5 Data source

e Snapshot Backlog management, (No time series)
e MS Access is used to gather the metrics.

TUD-SERG-2017-010 7

Strong Agile Metrics

Appendix A - Technical Report

1.6 Metrics Definitions

All sprint metrics are calculated based on the last completed sprint of a squad before a certain snapshot date

Metric Name

cdaas_cycletime_tst1_prd

‘ Metric Description

Mean time from first test deployment after last production has been done until
the next production deployment for all applications of a squad

cdaas_mtb_prd_Ist90days

Mean time between production deployments in the last 90 days

cdaas_numberofdeploymentsprd

Number of deployments per squad

sprint_averageleadtime

The average time in days between creation of user story until completed, for the
stories that got completed in the current sprint.

sprint_averagepointsperstory

Average size of a story compared to the completed points.

sprint_duration

Sprint End date — Sprint Start date

sprint_numberofchangemembers

Number of change members in sprint (opposed to business and operation
members)

sprint_numberofepicslastsprint

Number of epics involved in a sprint

sprint_numberofsquadmembers

Number of squad members in a sprint

sprint_plannedpointscompletionratio

Sprint_PlannedPointsCompleted / Sprint_PlannedPoints

sprint_plannedstoriescompletionratio

Sprint_PlannedStoriesCompleted / Sprint_PlannedStories

sprint_pointscompletionratio

Sprint_CompletedPoints / Sprint_PlannedPoints

sprint_remainingtimeratio

Remaining time left until the end of the sprint measured from the moment that
the last planned story's status is set to complete

sprint_scopegrowth

Change in point size during the sprint compare with the first day of the sprint.
Can be positive, 0 or negative.

sprint_unplannedexistingpointscompletionratio

Unplanned Existing Completed Points / Sprint Completed Points

Unplanned existing work is work that was already on the Product backlog and
pulled into the current sprint after Day 1 of the sprint

sprint_unplannednewpointscompletionratio

Unplanned New Completed Points / Sprint Completed Points

Unplanned New work is a story that is created after day 1 of the sprint.

TUD-SERG-2017-010

SERE

Strong Agile Metrics

Appendix A — Technical Report

1.7 Way of Working

r 1. Collect metrics » 2. Analyze for correlation ‘ 3. Select metrics » 4. Build/update dashboard

Datasets

Choose response variables

Correlation Matrix (lagging) Multiple regression Dashboards

Define metrics once
based on available data

sources

Add new and changed
data sources to

datamart

Limit the set of metrics
to powerful metricsonly
(select strongly
correlated metrics)

Analyze the total set of
metrics for statistical
correlation

Define lagging -
which variable is a clear
response variable (lagging)

Leading variables are now found
and a star rating is added
indicating strength

Automatic Method
use of R as a statistical
tool (method Spearman)

For BLM this is possibly the
average cycle time per
team

Develop dashboard drilled down
from management level to
squad levelto enable squads and
management to steer on

One response variable
with multiple predictors

See which variablesare Exploring when more data Automatic Method using performance
is available R-steg to perform
- Overall cycle time variable selection using
- Change failure rate AIC (backward) [r— ©) sams s omine

- Downtime caused by
change
- MTIR

1
1
1
1
1
1
1
1
1
1
1
correlated :
T 1
1
1
1
1
1
1
1
1
1 I~
1
! Advice others about strong (star
rated) leading & lagging
variables to adjust their

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
: dashboards
1

1

1
Repeat steps for eachnew variable, lagging variable, dr new source

N

1.8 Getyour data

There is a daily download of the ServiceNow data. This is imported into Access. Using several queries the input for R is created and exported

to csv format.

In the future this data will come directly from the datamart. The code for this link is already present in R here below.

First step: Load the data by reading the created csv.

if (FALSE) {

dbhandle <- odbcDriverConnect ("driver=SQL Server; Server=xxxxxxxxxxx;trusted connection=true")

dtinput <- sglQuery(dbhandle, 'SELECT TOP 10 [Number] FROM [DataMart0l].[dbo].[factsprint]') # test
query
odbcClose (dbhandle)
} else {
dtinput <- data.frame(read.csv("Data BLM CDAAS.csv", header = TRUE, sep=";"))
}
dtinput <- dtinput[, order (names (dtinput))]
names (dtinput) <- tolower (names (dtinput))
#Leave out factor and character variables:
dt <- dtinput[,-grep ("factor|character", sapply (dtinput, class))]
#dt <- sort (dt,decreasing=TRUE)
#At some point in time you may wish to leave out columns by name
drops <- c("update_frequency", "bl p upnvsmax", "bl p upevsmax", "tribe", "squad_name")

dt <- dt[,

! (names (dt)

%$in% drops)]

TUD-SERG-2017-010

Strong Agile Metrics

10

Appendix A - Technical Report

1.9 Datainspection

SERE

A straightforward summary is always a good place to begin, because for one thing it will find any variables that have missing values.

Structure

str (dt)

'data.frame': 59 obs. of 16 variables:

$ cdaas cycletime tstl prd num 3.97 6.05 19.69 26.7 23.05
$ cdaas_mtb prd 1st90days num 65.5 23 49 31.8 72.3 ..
$ cdaas numberofdeploymentsprd int 65 1 14 7 1 4 18 39 4 13
§$ sprint_averageleadtime num 34.7 27.2 25.5 33.3 40.7
$ sprint averagepointsperstory num 0.13 0.08 0.05 0.11 0.26 0.15 0.05 0.14 0.18 0.09
$ sprint_duration int 14 13 13 14 13 13 20 20 13 13
$ sprint numberofchangemembers int 11 9 6 6 7 8 6 13 10 8 ..
$ sprint numberofepicslastsprint int 10 15 16 11 5 7 24 5 7 11
$ sprint numberofsquadmembers int 11 97 6 7 8 7 14 10 9

$ sprint plannedpointscompletionratio num 0.846 0.917 1 0.909 0.75
$ sprint plannedstoriescompletionratio num 0.84 0.941 1 0.893 0.88 ...
§$ sprint pointscompletionratio num 0.913 0.952 1.8 0.929 0.824
$ sprint_remainingtimeratio num 0 0 00 0O0O0O0O0O

$ sprint scopegrowth :int 0000000030 ...
$ sprint unplannedexistingpointscompletionratio: num 0.0952 0.25 0.0926 0 0

$ sprint_unplannednewpointscompletionratio num O 0.05 0.2593 0.0385 0
Summary

#t (summary (dt))

st <- t(do.call(cbind, lapply(dt, summary)))

st <- cbind(st, t(skewness(dt)), t(kurtosis(dt)))

st

#4# Min. 1lst Qu. Median

cdaas_cycletime tstl prd 0.41370 11.2100 17.22000

cdaas _mtb _prd 1st90days 2.97900 23.0200 34.16000

cdaas numberofdeploymentsprd 1.00000 3.0000 7.00000

sprint averageleadtime 5.11200 25.5500 33.08000

sprint_averagepointsperstory 0.05000 0.0800 0.12000

sprint duration 12.00000 13.0000 13.00000

sprint numberofchangemembers 4.00000 7.0000 9.00000

sprint numberofepicslastsprint 1.00000 7.0000 11.00000

sprint numberofsquadmembers 4.00000 8.0000 10.00000

sprint plannedpointscompletionratio 0.00000 0.4721 0.72410

sprint plannedstoriescompletionratio 0.00000 0.5074 0.67650

sprint pointscompletionratio 0.04545 0.5601 0.68920

sprint_remainingtimeratio 0.00000 0.0000 0.00000

sprint scopegrowth -1.00000 0.0000 0.00000

sprint_unplannedexistingpointscompletionratio 0.00000 0.0000 0.11110

sprint unplannednewpointscompletionratio 0.00000 0.0000 0.03061

#4# Mean 3rd Qu. Max.

cdaas_cycletime_tstl prd 17.96000 25.1800 46.5200

cdaas mtb prd 1st90days 36.77000 49.2200 104.9000

cdaas_numberofdeploymentsprd 16.73000 17.0000 194.0000

sprint_ averageleadtime 35.52000 40.7200 136.7000

sprint_ averagepointsperstory 0.15270 0.1800 1.0000

sprint duration 14.42000 14.0000 34.0000

sprint numberofchangemembers 9.10200 11.0000 15.0000

sprint numberofepicslastsprint 11.41000 15.0000 28.0000

sprint numberofsquadmembers 9.76300 11.0000 15.0000

sprint plannedpointscompletionratio 0.64920 0.8258 1.0000

sprint_plannedstoriescompletionratio 0.64020 0.8697 1.0000

sprint pointscompletionratio 0.69730 0.8987 1.8000

sprint_remainingtimeratio 0.01425 0.0000 0.3077

sprint scopegrowth 0.10170 0.0000 3.0000

sprint unplannedexistingpointscompletionratio 0.19170 0.2848 0.8889

sprint_unplannednewpointscompletionratio 0.08522 0.1111 0.8000

Skewness Excess Kurtosis

cdaas cycletime tstl prd 0.5583460 -0.1916332

cdaas_mtb_prd_lst90days 0.7303560 0.9596513

TUD-SERG-2017-010

SERE

Appendix A — Technical Report

cdaas_numberofdeploymentsprd
sprint averageleadtime

sprint averagepointsperstory
sprint duration

sprint numberofchangemembers
sprint_numberofepicslastsprint
sprint numberofsquadmembers

sprint_plannedpointscompletionratio
sprint plannedstoriescompletionratio

sprint pointscompletionratio
sprint remainingtimeratio
sprint scopegrowth

sprint unplannedexistingpointscompletionratio
sprint_unplannednewpointscompletionratio

Strong Agile Metrics

4.1232022 18.7709372
3.1495237 15.1360934
4.6346163 26.7361704
3.7347634 16.7196697
0.3598441 -0.4325227
0.5736728 -0.2320281
0.3264224 -0.3740228
-0.6125398 -0.4608336
-0.6127988 -0.4153330
0.5183665 1.5347557
4.0891617 15.4764432
3.5853894 13.9384310
1.2242807 1.1303911
2.7216999 8.9543944

##Display first and last rows of the table for inspection only

#head (dt)
#tail (dt)

1.10 Included observations and missing values

Currently observations with missing values are taken out of the dataset on forehand in Access.

To be included as an observation the variables must comply to the following rules:

Variable Inclusion rule Remark

sprint_numberofsquadmembers >0 Only Teams that have at least 1 CIO NL member are included
sprint_numberofchangemembers not NULL

sprint_duration >0

sprint_averagepointsperstory >0 Maybe this rule should not be enforced
sprint_numberofepicslastsprint not NULL

sprint_pointscompletionratio not NULL Squad must have at least one Completed Sprint

The variable sprint_averagepointsperstory maybe has to be replaced with sprint_averageplannedpointsperstory. Currently it calculates only the

user stories that are completed within the sprint.

A quick look at how variables in the current dataset are correlated can be established with a correlation matrix, combined with scatterplots.

TUD-SERG-2017-010

11

Strong Agile Metrics SERE

Appendix A - Technical Report

1.11 The correlation matrix in color

For each pair of variables the correlation between the two is calculated. If the p-value is much less than 0.05, we reject the null hypothesis and
conclude there is a significant relationship between the two variables in the linear regression model of the data.

The correlation value is always a number between -1 and 1.

To blank out insignificant correlation values, the parameter p.mat must be provided as a matrix of p-values. If not provided, the arguments
sig.level, insig, pch, pch.col, pch.cex are invalid and all correlation values will be shown. To see even the smallest circles a colored background
is used.

Insignificant values are not shown (see parameter: insig="blank”). The significant level is set to 0.05.

Usually, a significance level (denoted as alpha) of 0.05 works well. A significance level of 0.05 indicates a 5% risk of concluding that a
difference exists when there is no actual difference.

See also: http://support.minitab.com/en-us/minitab/17/topic-library/basic-statistics-and-graphs/introductory-concepts/p-value-and-significance-
level/significance-level/

G o N Ko I e Ry
a Corplot matrix with coloured circles
dtm <- cor(dt, method = "spearman")

par (mar=c(2,6,6,2))
resl <- cor.mtest(dt,0.95)
corrplot (dtm, p.mat = resl[[1l]], sig.level=0.05, insig = "blank"
bg="snow4", tl.cex=0.7, cl.cex=0.6, tl.srt=50, tl.col="snowd")

cdaas_cycletime_tst1_prd
cdaas_mtb_prd_|st30days
cdaas_numbercfdeploymentsprd
sprint_averageleadtime
sprint_averagepointspearstorny
sprint_duration
sprint_numberafchangemembers
sprint_numberofepicslastsprint
sprint_numbarafsguadmembers
sprint_plannedpointscompletionratio
sprint_plannedstoriescompletionratio
sprint_pointscompletionratio
sprint_remainingtimeratio
sprint_scopegrowth
sprint_unplannedexistingpointscompletionratio

sprint_unplannednawpointscompletionratio

Variables that seem to have no significant correlation when considered in a 1-to-1 situation, may act differently in the multiple regression.
Sprint_remainingtimeratio is such a variable.

12 TUD-SERG-2017-010

SE[lE Strong Agile Metrics

Appendix A — Technical Report

1.12 The correlation matrix in more detail for further analyses
The R package PerformanceAnalytics shows all the information in 1 plot.

The chart.Correlation() function from the PerformanceAnalytics package produces a very nice scatterplot of the correlation matrix, with
histograms, kernel density overlays, absolute correlations, and significance asterisks (0.05, 0.01, 0.001). Although the schema becomes
unreadable when we get too much variables.

Visualization of a Correlation Matrix:
On top right the (absolute) value of the correlation plus the result of the cor.test as stars.

On bottom left, the bivariate scatterplots, with a fitted line.

plot the data —————————————————— -
library (PerformanceAnalytics)
suppressWarnings (chart.Correlation(dt, histogram=TRUE, method="spearman"))

0 &0 0 a0 15 30 0 15 00 08 00 1.5 1103 00 08
L1ill LI 1111l NN (NN 111 111 111 =
i - |-
B * 061] o= nz - - - o - - - - 3 =+
="
[=] ibfprd I -
o | om naz” = am - . = ™ . = b3 -
= EEGE] = - g
o g . - FE 433 - an I =
= [E°EE = o
- an L] L A 44 AT A am - A4
= =
B -] Ty o e el =
03 - |.0.82 = 52 | o4 | 058 L] . -0.43 =
T_dura ; — =
o [LE n " - % 2 1
-+
e = == = -
- — p—" D_a’g’ m 2z o e - =
Iy
= —— e 43 r 085 048" 0s8] sz | = | 0| -
=
= o+
*
- 0 s
D24 E
= o
* [=1
LE] =
o’ = E [=]
= O
] [=1
shing pan| -
=
WD =
0 30 0 150 02 1.0 4 10 4 10 00 08 Q.00 030 00 08
#' @param R data for the x axis, can take matrix,vector, or timeseries
#' @param histogram TRUE/FALSE whether or not to display a histogram
#' @param method a character string indicating which correlation coefficient
#' (or covariance) is to be computed. One of "pearson"
#' (default), "kendall", or "spearman", can be abbreviated.
#' @param /dots any other passthru parameters into /code{/link{pairs}}
within this Correlation function the folowwing significance cutpoints are used:
Significance: cutpoints = c(0 , 0,001, 0,01, .05, 0.1, 1y,
+ symbols S (MAAAM mkkWwxkwo o wowowomy)
7

TUD-SERG-2017-010 13

Strong Agile Metrics SE

Appendix A - Technical Report

2 Choice of correlation method

Usually, in statistics, we measure four types of correlations: Pearson correlation, Kendall rank correlation, Spearman correlation, and the Point-
Biserial correlation.

The histograms show that most of the data is not normalized and therefor use the Spearman correlation. In R we set this method in a variable.

cormethod = "spearman"

Spearman rank correlation

Spearman rank correlation is a non-parametric test that is used to measure the degree of association between two variables. It was developed by
Spearman, thus it is called the Spearman rank correlation. Spearman rank correlation test does not assume any assumptions about the
distribution of the data and is the appropriate correlation analysis when the variables are measured on a scale that is at least ordinal.

Further underpinning of the choice for Spearman can e.g. found at:
http://stats.stackexchange.com/questions/3730/pearsons-or-spearmans-correlation-with-non-normal-data/3744#3744

Spearman’s correlation is a rank based correlation measure; it’s non-parametric and does not rest upon an assumption of normality.

The sampling distribution for Pearson’s correlation does assume normality; in particular this means that although you can compute it,
conclusions based on significance testing may not be sound. ...with large sample this is not an issue. With small samples though, where
normality is violated, Spearman’s correlation should be preferred.

14 TUD-SERG-2017-010

SE

Strong Agile Metrics

Appendix A — Technical Report

3 Automatic methods to find the leading (predictor) variables

3.1 Multiple regression

See: http://www.statmethods.net/stats/regression.html

The step formula can be used to find the predictors for a chosen lagging (response) variable. Step computes the (generalized) Akaike An
Information Criterion for a fitted parametric mode.

Automatic methods are useful when the number of explanatory variables is large (as in our case) and it is not feasible to fit all possible models.
In this case, it is more efficient to use a search algorithm (e.g., Forward selection, Backward elimination and Stepwise regression) to find the
best model.

‘What would be our lagging (response) variable for BLM? From our correlation matrix we learn that Lead-time BLM (LT_BLM) has the most
significant relations with other variables. Also Cnt_Sqm is a candidate, but is would be more a leading (predictor) than a lagging (response)
variable. (Lt_blm and ctn-sqm were work names during the first cycle for sprint_averageleadtime and sprint_numberofsquadmembers.)

At least this is what we thought in the beginning. During the analyses we found that sprint_plannedstoriescompletionratio was a better lagging
indicator. It is more related to the predictiveness and stability of the squad.

For each lagging variable to test, we calculate by providing the model and let the step function do its work and show the result. A function has
been created so that we can easily repeat the work:

stepmodel <- function(formulastring, data) ({
model <- 1m(formula=as.formula (formulastring), data=data)
model step <- step (model, direction="backward", trace=FALSE)
plot_coeffs(model_ step) #user defined function to plot coefficients

}

«

For each model we define the lagging variable and the independent variables that we want to ignore. The latter have a “-” sign before their

name.
Example:

stepmodel(completion_ratio ~ . - sprint_plannedpointscompletionratio -sprint_plannedstoriescompletion_ratio, data=dt)

TUD-SERG-2017-010

15

Strong Agile Metrics

16

Appendix A - Technical Report

3.2 Sprint_PlannedStoriesCompletionRatio

SERE

Sprint_plannedstoriescompletionratio ignores the scope growth of user stories and this is an advantage compared to

Sprint_plannedpointscompletionratio.

Definition: Sprint_PlannedStoriesCompleted / Sprint_PlannedStories

Model: sprint_plannedstoriescompletionratio is strongly correlated with sprint_pointscompletionratio and sprint_plannedpointscompletionratio.

Therefore we omit these in the regression model.

stepmodel (sprint plannedstoriescompletionratio ~
-sprint plannedpointscompletionratio, data=dt)

sprint plannedstoriescompletionratio

-sprint pointscompletionratio

Regression Coefficients for sprint_plannedstoriescompletionratio
o~

o

008200 e
2 R —

-0.03015
o~
R
A4
- -0.32267
g
©
e
?
o 069369
> -0.71824
9
Q
o
' o o 6 @
e e e o
o = o @
N W e o o

- s~ & et 5 &

" e W7 wy‘

b & e N Al
xS i
o

Rescaled regr. coeff. (-1 to 1) for sprint_planr i pletionrat
o
c 0.08624
- 02064
S] = o
~ 0.04194
R
it
3
© -0.44881
g -
Q@
2
?
<
- T y—
© 5
* & 0 0 el @
P e
o o P s & 56
= *“Gw & o S 609"@
& g " N o

TUD-SERG-2017-010

SERXE Strong Agile Metrics

Appendix A — Technical Report

3.3 Planned Points Completion Ratio

More interesting it is to see whether you finish what you promised. In other words does a team complete its planned work. And if not, what is
the cause?

Definition: Sprint_PlannedPointsCompleted / Sprint_PlannedPoints

Model: sprint_plannedpointscompletionratio is strongly correlated with sprint_storiescompletionratio and sprint_plannedpointscompletionratio.
Therefore we omit these in the regression model.

stepmodel (sprint plannedpointscompletionratio ~ . -sprint pointscompletionratio
-sprint plannedstoriescompletionratio, data=dt)
sprint_plannedpointscompletionratio

Regression Coefficients for sprint_plannedpointscompletionratio Rescaled regr. coeff. (-1 to 1) for sprint_plannedpointscompletionrati
~N

S S oims2

0.08837
o | EEE 0 - 0.02800
S 7 = S 7 I

-0.03309 ~ 005514
o S
Q\ =
< -0.29236 S
S © -0.48717
g -
b= ©
o 7 g
T 059698 -060012 S
@ o
Q- T 0.99476 -1,00000
© © N 50 ©
o 05 @ B o 6 & e s ot
& o @& @ PR qﬂd“ﬁ e A ey
a2 oo \r?“‘ge & o o o\?‘ﬁ ﬁ\av"” \c!‘““!‘z oo s o

< S & o o o ' & @@vﬂ" 2 2

e oF A @e&‘ i ot ¥ “‘# q“«\,

< o &ﬁz"z s o o - o B
o e o ach
4 o o o
E
Result:

We see that especially that “sprint_unplannednewpointscompletionratio” and sprint_averagepointsperstory has a negative impact on the
completion of planned story points.

The variable “sprint_unplannedexistingpointscompletionratio” has also has a negative influence. The mechanism behind this is unclear. Could
it mean that that priority gets changed and that fellow team members are disturbed in completing the planned work?

The other variables that are relevant do not show a high impact and can be neglected.

TUD-SERG-2017-010 17

Strong Agile Metrics SERE

Appendix A - Technical Report

3.4 Sprint_pointscompletionratio
Definition: Sprint CompletedPoints / Sprint_PlannedPoints

Model: This definition includes unplanned work in the CompletedPoints and possible scope growth (- or +).

summary (dt$sprint pointscompletionratio)
#4# Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04545 0.56010 0.68920 0.69730 0.89870 1.80000

stepmodel (sprint_pointscompletionratio ~ . -sprint_plannedpointscompletionratio -
sprint plannedstoriescompletionratio, data=dt)

sprint_pointscompletionratio

Regression Coefficients for sprint_pointscompletionratio Reﬁffled regr. coeff. (-1 to 1) for sprint_pointscompletionratio

o
0.03680
o 0.02267 000217 ° 0.00352
) | co— > | oo— —
° | ©
-0.04182 o | -0.06787
o <
e s
S
<
S 7 =
=}
© «Q
S Q7
-0.61610
o
a F‘ N 1.00000
C 1.
& S o ot
p + e o o o o o
" o & & o J o
S = P & P ® 3 Pel
¥ ¢ & o o o
& © > el ad o
& o o s o o o
o i <«
G 28 o
e
Result

e An increase of average story points leads to a lower completion rate.

18 TUD-SERG-2017-010

SERE

Appendix A — Technical Report

3.5 Focus

We expect that focus is high when the number of epics in one sprint is low. But is it true?

Model: Count_epics_last_sprint is tested against all other variables

Strong Agile Metrics

stepmodel (sprint numberofepicslastsprint ~ . , data=dt)
sprint_numberofepicslastsprint

Regression Coefficients for sprint_numberofepicslastsprint

o
e -
N
057972
. 11.77823 oo @ 0.48771
- 6.07692 L 0.29910
072362
o 4 —— 003562
nosaaz- 2
° —o.coza7
S -7.16794
= -13.405344 0538 g B -0.35280
Q. 7
)
-20.31716 -0.659800 69172
3 e
! b3 -1.00000
S o «® o @ 5 5
095 005 @ o o 0 g0 Ty M“’ﬁ A w" o
o o 6 o6 o I o W 0 @ o 9 T o o
JE RS L 0 0P 7 o 0T P T e
& @ oF o o0 TP T g 8T e e
5 e = S g o j@ﬁe o I o
A 4 {\“\y‘d & SN o R S
& o« S R
Results

Positive impact:

Rescaled regr. coeff. (-1 to 1) for sprint_numberofepicslastsprint

e Completing any kind of work (planned or unplanned existing work) increases the number of epics in the a completed sprint

Negative impact:

e Strongest negative impact is caused by the sprint_remainingtimeratio. So, if there is time left it seems that a squad continues with the
other stories of the same epic?
e Unplanned new work (Surprise work) is decreasing the number of epics in a sprint just a bit.

TUD-SERG-2017-010

19

Strong Agile Metrics SERE

20

Appendix A - Technical Report

3.6 Lead Time

Lead Time is not regarded as a lagging indicator, but still it is interesting to see what is influencing lead time.

Definition: Here Lead time is the average time in days between creation of user story until completed, for the stories that got completed in the
current sprint. The creation of the story happens outside the sprint. We might have to consider to leave it out of the dataset in the future and
include it when observing a large timeline.

stepmodel (sprint averageleadtime ~ . -sprint pointscompletionratio -sprint plannedpointscompletionratio,
data=dt)
sprint averageleadtime

Regression Coefficients for sprint_averageleadtime Rescaled regr. coeff. (-1 to 1) for sprint_averageleadtime
o
o
is9T28 Aseats o 005555 005545
o - e M ° 0.00504
108811 =

- -0.03680

2 a
= |

- Q@

S
©
B

Q -

8 2675154 o
& -

g =

. =
‘ +1.00000

o) o P . i 5o
‘\%@é“’ Y o 3. g w\#@v“ (oi‘ew(\(o ﬁﬁd@\ i w””@w ¢"‘°°ﬁ
o e ﬂ\w}" . o0 & Fwﬂ‘“& - g o o 4
o @ S & o & &
¥ . " < @ ¢
e 7 o S
S o
Results

e Unplanned new decreasing effect on the sprint average lead-time. This ratio is based on the completed stories either planned or unplanned.
Unplanned new work has an incident character and must be realized in shorter time, hence smaller lead times and it replaces planned
work. The overall effect seems to lower the average lead time.

TUD-SERG-2017-010

SERXE Strong Agile Metrics

Appendix A — Technical Report

3.7 Remaining Time

stepmodel (sprint remainingtimeratio ~ . , data=dt)
sprint remainingtimeratio

o Regression Coefficients for sprint_remainingtimeratio Rescaled regr. coeff. (-1 to 1) for sprint_remainingtimeratio
c - 100000
2 p
. 007110 o |
o
g 1 o
(=]
3 |
S < |
o
8 "
=] P
g 0.00085 0.01337
= = c’ 7 I
° 000113 -0.00281 e 001583 D384
" N o N
o - o o B o o N o
o o e o o S s &
e Ea M}"M o w@\‘*"’ o o @e"w
d@m‘(’ l & o o # v"“‘\'&
N o °
A s

Result

e When unplanned existing work is completed in a sprint, than there was obviously time to do so. We state it this way, as it is more the
other way around. If you have completed your planned work in time and have some time left, then you can pick up some additional work
of the backlog. See next model.

TUD-SERG-2017-010 21

Strong Agile Metrics

Appendix A - Technical Report

3.8 Unplanned Existing Work

SERE

stepmodel (sprint unplannedexistingpointscompletionratio ~
sprint unplannedexistingpointscompletionratio

-sprint pointscompletionratio , data=dt)

Regression Coefficients for sprint_unpl

=
b

05

0.0

Result:

0.72306

001923

ﬁ..gpoin! CC

—_—
e e -

-0.26450

-0.34906

regr. coeff. (-1 to 1) for sprint_unplar

0.0 05 1.0

-0.5

ingpoint: p

1.00000

0.02659

e —
e -

-0.36580

3 o
2 @
@ \éev““ ; S o S
oo o o &
o S e o &
of
) o &
o P sv“"‘\/“ S &“ﬁ"

e Ifthere is time left after planned work is done, then unplanned is picked up. Arrival of unplanned new work on the other hand is really
killing for unplanned existing work. Finishing planned work of new unplanned work has a negative impact on this ratio.

22

TUD-SERG-2017-010

SERE

Appendix A — Technical Report

3.9 cdaas_cycletime_tst1_prd

Strong Agile Metrics

Definition: Time from first test deployment after last production has been done until the next production deployment.

Model: This variable against all other variables.

summary (dt$cdaas_cycletime tstl prd)
#4# Min. 1st Qu. Median

Mean 3rd Qu.

Max.

0.4137 11.2100 17.2200 17.9600 25.1800 46.5200

stepmodel (cdaas_cycletime tstl prd
cdaas_cycletime tstl prd

’

data=dt)

Regression Coefficients for cdaas_cycletime_tst1_prd

16.038640

-0.06033 257918

-20

Result

These are the first conclusion based on a limited data set of 59 observations:

-36.51971

©
=]

0.0

-0.5

-1.0

Rescaled regr. coeff. (-1 to 1) for cdaas_cycletime_tst1_prd

~ 043912
000165
-1.00000
5 & ®
& & o i =
éﬁw& e & & o
e e o o
5> " & v«:&-»
o s

e Although we don’t see a direct linear correlation, the multiple regression with cdaas Cycletime tstl prd reveals interesting leading
metrics for this variable. The other two CDaa$S variables are not strongly and significantly correlated with the response variable

e When average story points per story raises then also the cycle time increases (seems obvious)

e Squads that remaining time left after they finished the planned work in the sprint, show a decrease in cycle time.

TUD-SERG-2017-010

23

Strong Agile Metrics SERE
Appendix A - Technical Report
3.10 Focus on CDaaS variables only

Definition: Time from first test deployment after last production has been done until the next production deployment.

Model: This variable against only the two other CDaaS variables.

summary (dt$cdaas_cycletime tstl prd)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4137 11.2100 17.2200 17.9600 25.1800 46.5200

stepmodel (cdaas_cycletime tstl prd ~ cdaas_mtb_prd lst90days + cdaas_numberofdeploymentsprd , data=dt)
cdaas_cycletime tstl prd

Regression Coefficients for cdaas_cycletime_tst1_prd Rescaled regr. coeff. (-1 to 1) for cdaas_cycletime_tst1_prd
- o 1.00000
o = 7

0.31939 -
g _ =]
© |
o~ o
o
= |
o
s o
o
o |
2 i
® &5
e i
Result:

Similar to the linear regression. cdaas_mtb_prd_Ist90days is most strongly correlated to the response variable.
The set of CDaaS variables is not complete yet. Much more variables must be retrieved from the system.

24 TUD-SERG-2017-010

SERXE Strong Agile Metrics

Appendix A — Technical Report

4 Combining the models in one model corrplot

4.1 Impact of the leading variables on the lagging variables

And finally after analyzing all lagging variables we can put them all together in one diagram to see the impact of each leading variable on the
lagging variable candidates.

The following two variables are lagging candidates within the current data set.

Response variable Remark

1 sprint_plannedstoriescompletionratio Obvious. We want to know what influences our planned work. If we base it on
the number of stories than it excludes the influence of scope growth in value of
this ratio, so that it stays within the range 0 - 100%.

2 sprint_plannedpointscompletionratio Obvious. We want to know what influences our planned work

3 sprint_pointscompletionratio this is a model with all the completed points including the unplanned work

Although the following variables are not considered lagging, we wanted to know the influence of other variables.

Response variable Remark

4 sprint_numberofepicslastsprint We had the idea that working on multiple epics would distract the member
focus and would negatively impact the completion rate. so let’s test it

5 sprint_averageleadtime Is there anything that influences the Leadtime?

6 sprint_remainingtimeratio What is influencing the amount of remaining time after all planned stories are
completed

7 sprint_unplannedexistingpointscompletionratio Added to prove that this sprint_remaingtimeration is a predictor to this variable

8 cdaas cycletime tstl prd Test if we can already see some interaction between cdaas and backlog

management data

Impact of the leading variables on the lagging variable

cl <- stepcoeffs(sprint_plannedstoriescompletionratio ~ . -sprint_pointscompletionratio
-sprint_plannedpointscompletionratio, data=dt)

c2 <- stepcoeffs(sprint plannedpointscompletionratio ~ . -sprint pointscompletionratio -
sprint_plannedstoriescompletionratio, data=dt)

c3 <- stepcoeffs(sprint pointscompletionratio ~ . =-sprint plannedpointscompletionratio -
sprint_plannedstoriescompletionratio, data=dt)

c4 <- stepcoeffs(sprint numberofepicslastsprint ~ ., data=dt)

c5 <- stepcoeffs(sprint_averageleadtime ~ . -sprint pointscompletionratio -
sprint_plannedpointscompletionratio, data=dt)

c6 <- stepcoeffs(sprint remainingtimeratio ~ . , data=dt)

c7 <- stepcoeffs(sprint unplannedexistingpointscompletionratio ~ . -sprint pointscompletionratio ,
data=dt)

c8 <- stepcoeffs(cdaas_cycletime tstl prd ~ ., data=dt)

mar.before <- par ("mar")
par(mar=c(2,7,7,2)+0.1)
ctest <- combinecoeffs(list(cl,c2,c3,c4,c5,c6,c7,c8),data=dt)

corrplotll (ctest, leadinglagging=TRUE, tl.cex=0.7, cl.cex=0.6, tl.srt=50, bg="pink4", cl.ratio=0.8,
cl.lim = c(-1,1), insig="blank", plotCI="n")

mar <- mar.before

TUD-SERG-2017-010 25

Strong Agile Metrics SERE

Appendix A - Technical Report

A modification of the existing corrplot function (see package corrplot) has been created to combine the models in one diagram.

cdaas_cycletime_tst1_prd
cdaas_mtb_prd_Isto0days |
cdaas_numberofdeploymentsprd
sprint_averageleadtime
sprint_averagepointsperstory
sprint_duration

sprint_numberofchangemembers
sprint_numberofepicslastsprint [
sprint_numberofsquadmembers
sprint_plannedpointscompletionratio
sprint_plannedstoriescompletionratio

sprint_pointscompletionratio
sprint_remainingtimeratio
sprint_scopegrowth

4.2 Whatdo you see?

For each lagging variable you see what the impact is of the leading variable.

Blue means a positive impact and red means a negative impact on the lagging variable.

The strongest leading variable (neg or pos) has the largest circle.

Same size circles on the same row do not mean they are equal.

Empty squares means the coefficient was 0.

e Crossed out variables are excluded from the lagging model. Usually this is done to avoid collinearity (independent variables that are
highly correlated).

e For each lagging variable the leading variables are calculated using multiple linear regression.

e All multiple linear regression coefficients are then rescaled on a scale of -1 to 1.

4.3 What can we tell?

Using the leading/lagging diagram we can tell more about the interaction of the variables in the model.

1. Higher average story points have a negative impact on the planned completion ratio (either points or stories) and the total
completion ratio. This is the story of the jar filled with rocks instead of pebbles. Smaller pieces of work can easier be finished
within the sprint time frame. Large chunks of work can flow to the next sprint, even if only half a day is necessary to finish it.

2. Higher average story points decrease the number of epics in a sprint decrease. Pebbles and rocks again. The larger the average
story points are, the lesser stories you probably have, since they also have to fit within the sprint. This statistically reduces the
chance that they belong to multiple epics.

3. Planned Stories Completion Rate: If this ratio goes up, then also the number of epics increases. at the same time unplanned
backlog work (unplanned existing) reduces.

4. Planned Stories Completion Rate: if this ratio goes up, the number of epics decreases.

It was expected that it would have the same tendency as Planned Stories Completion Rate. This needs further study. Perhaps
with a larger data set, we will see more details.

20

26 TUD-SERG-2017-010

SE

Strong Agile Metrics

Appendix A — Technical Report

5. Remainingtimeratio: If there is time left after all planned work is done, than we see that squad pickup backlog work.

6. However, when Unplanned new work (forgotten to specify, or incidents) pops up it has a negative impact on the planned work
and the ability to pick up backlog work. Also the number of epics decreases as well as the average lead time.

7. Average lead-time is negatively impacted by new unplanned work, possibly because it delays planned work that was already
started in the current sprint or earlier and can’t finish in the planned time. Average lead-time is not tightly linked to a sprint, but
more to a user story.

8. No significant impact is caused in these models by the other variables.

4.4 Conclusions
There are two candidates for the lagging variable:

e sprint_plannedstoriescompletionratio
e sprint_plannedpointscompletionratio

Sprint_plannedstoriescompletionratio is chosen as the lagging variable.

Both ratios focus on the completion of planned work.

Sprint_plannedstoriescompletionratio has the advantage that scope growth (measured in points) has no influence on the ratio value.
The leading variables are:

e sprint_unplannednewpointscompletedratio
e sprint_unplannedexistingpointscompletedratio

Unplanned new work (and also unplanned existing work) has a negative influence on the planned work and leads to delay. A squad should dig
into the nature of the unplanned work, and think out ways to prevent unplanned work. The average points should be small enough to reduce the
impact on the sprint_plannedstoriescompletionratio.

Currently roughly 10% finish all the work that they plan at the start of the sprint.

Dashboarding:
Currently we don’t have a variable to calculated the planned points completed versus the total completed points. This would come in handy
when creating the dashboard.

1. Can we also use sprint_pointscompletionratio instead? No, it includes incidents and fill up work. Working on incidents or filling up
buffers is not what squads should target for.

2. Remaining time It was suggested in an article written by Jeff Sutherland that improving teams always have a little spare time left
after the planned work was done. [Teams that Finish Early Accelerate Faster: A Pattern Language for High Performing Scrum
Teams, Jeff Sutherland e.a., 2014] In the current dataset the remainingtimeratio is a low 3% and only 11% of the squads finish all the
planned work. The remaining is not predictor for sprint_plannedpointscompletionratio.

Recommendation for model improvement *

1. We currently used the sprint_averagepointsperstory for completed user stories in the sprint. It would be better to calculate the
average point per story for the user stories as present at the sprint change (Day 1). That gives a better idea of how large the average
stories are that a squad has.

2. Sprint_remainingtimeratio currently includes weekend days for remaining days and for the sprint duration. In the datamart model the
working days will be excluded.

21

TUD-SERG-2017-010

27

Strong Agile Metrics SE

Appendix A - Technical Report

5 Outliers and Distribution

Outliers are not taken out of the dataset yet.

5.1 Theoretical Background
DRAFT:
https://www.r-bloggers.com/outlier-detection-and-treatment-with-r/

Outliers in data can distort predictions and affect the accuracy, if you don’t detect and handle them appropriately especially in regression
models.

https://explorable.com/statistical-outliers:
Statistical outliers are data points that are far removed and numerically distant from the rest of the points. Outliers occur frequently in many
statistical analyses and it is important to understand them and their occurrence in the right context of the study to be able to deal with them.

An outlier can be a chance phenomenon, measurement error or due to an experimental error. It can also occur in special cases that have a heavy
tail distribution, in which cases the assumption of a normal distribution may not hold.

Certain statistical estimators are able to deal with statistical outliers and are robust, while others cannot deal with them. A typical example is
the case of a median, that can deal with outliers well, since it would not matter whether the extreme point is far away or near the other data
points, as long as the central value is unchanged.

The mean, on the other hand, is affected by outliers as it increases or decreases in value depending on the position of the outlier.

One should be careful while dealing with outliers and not mistake them for experimental errors or exceptions at all times. outliers can indicate
a different property and may indicate that they belong to a different population.

Many times, outliers should be given special attention till their cause is known, which is not always random or chance. Therefore a study needs
to be made before an outlier is discarded.

Statistical outliers are common in distributions that do not follow the traditional normal distribution. [ING: And such is the case in our dataset]
For example, in a distribution with a long tail, the presence of statistical outliers is more common than in the case of a normal distribution.

In case of a normal distribution, it is easy to see that at random, about 1 in 370 observations will deviate by more than three times the standard
deviation from the mean. This ratio decreases drastically for more distant values. Therefore if there is a more than frequent case of data away
from the mean, then the cause needs to be examined.

For example, if out of 1000 data points, 5 points are at a distance of four times the standard deviation or more, then these outliers need to be
examined.

5.1.1 Detect Outliers

Univariate approach
For a given continuous variable, outliers are those observations that lie outside 1.5 * IQR, where IQR, the ‘Inter Quartile Range’ is the
difference between 75th and 25th quartiles. Look at the points outside the whiskers in below box plot.

http://www statistics4u.com/fundstat_eng/cc_outlier tests.html :

#par (mfrow=c(3,2))
for(i in seq(l,ncol(dt),1l)) qggnorm(dt([,i], main=colnames (dt) [i])

22

28 TUD-SERG-2017-010

SERE

Appendix A — Technical Report

Sample Quantiles

Sample Quantiles

Sample Quantiles

23

TUD-SERG-2017-010

20 30 40

10

60 80

40

20

200

50

cdaas_cycletime_tst1_prd

cdaas_mtb_prd_lst90days

cdaas_numberofdeploymentsprd

00

MD
— O 0 © 0O0QoOO

T T T T
-2 -1 0 1

Strong Agile Metrics

29

Strong Agile Metrics

Appendix A - Technical Report

24

30

Sample Quantiles

Sample Quantiles

Sample Quantiles

120 140

60 80 100

20 40

0

04 0.6 0.8 1.0

0.2

20 25

15

sprint_averageleadtime

sprint_averagepointsperstory

o
DDUD
o DODDM
T T T T
-2 -1 0 1
sprint_duration
o000

Theoretical Quantiles

SERE

TUD-SERG-2017-010

SERE

Appendix A — Technical Report

25

TUD-SERG-2017-010

Sample Quantiles

Sample Quantiles

Sample Quantiles

12 14

10

15 20 25

10

12 14

10

sprint_numberofchangemembers

[o}=]

oo

(=]

Theoretical Quantiles

sprint_numberofepicslastsprint

000
o
o
000
e+
w
faius]
fetiatis)
an
mn
o
a0
feeziaa)
Qoo
000000
oo
(= =
T T T T
-2 -1 0 1
Theoretical Quantiles
sprint_numberofsquadmembers
o
000
o
Co000
Q00000000
fuiiariieg
e
00000
000000
o 000
T T T T
-2 -1 0 1

Theoretical Quantiles

Strong Agile Metrics

31

Strong Agile Metrics

Appendix A - Technical Report

sprint_plannedpointscompletionratio

S — oooo o0 o
ooo®
Eh M
o
w
o
£ o =
@ (=]
5 0
) el
2 = J oF
E © 00
U(g =}
g — Oooo
=]
o
S 4o
T T T T T
2 =1 0 1 2
Theoretical Quantiles
sprint_plannedstoriescompletionratio
3 | pococo o ©
000
@ d
s of
o
w
° pnfp
E @ |
[(=]
3 M
o &
a Y
g
@ o
o~
o 7] o
0 00°®
gle ’
I I 1 1
-2 -1 0 1 2
Theoretical Quantiles
sprint_pointscompletionratio
w
- s}
@
2 oo
g
a ‘O_ = 000
4 W
[=%
£ M
]
2 A -
°
GOU
oo®
o O
Q i (-]
(=] T T T T T
-2 -1 0 1 2

26

32

Theoretical Quantiles

SERE

TUD-SERG-2017-010

SERE

Appendix A — Technical Report

27

TUD-SERG-2017-010

Sample Quantiles

Sample Quantiles

Sample Quantiles

0.00 005 010 0.15 0.20 0.25 0.30

-1

06 0.8

0.4

0.2

0.0

sprint_remainingtimeratio

o o
o
O © O 0 000000000D0n 000000000000 O
T T T T T
-2 -1 0 1 2
Theoretical Quantiles
sprint_scopegrowth
o
o
0 O O 0000O0CoDCCININEINEHFFNINNOO0CO0000000 O O
=]
T T T T T
-2 -1 0 1 2

Theoretical Quantiles

sprint_unplannedexistingpointscompletionratio

O ©O D 0 00000OCOINNmD

-2 -1 0 1 2

Theoretical Quantiles

Strong Agile Metrics

33

Strong Agile Metrics

34

Appendix A - Technical Report

sprint_unplannednewpointscompletionratio

0.8

0.6

o
o
0g2°

Sample Quantiles
0.4
1

02
OD

e

- o © © 0O ©©000CCCooICINIINIT
T T T T T

-2 -1 0 1 2

0.0

Theoretical Quantiles

1 All histograms

— Echo is set to off. Code is displayed. JPG files are created for use in PowerPoint files.

SERE

cn <- colnames (dt)
mybreaks <- c¢(100, 200, 50, 100, 50, NULL,100, 100, 100, 100,100,100,100,100,100,100,100)
z <- 1
par (mfrow = c((ncol(dt)+1)/2, 2))
repeat {
jpeg(filename=paste ("HIST " , cn[z], ".jpg", sep=""), width = 400, height=300)

hist(x=dt[,z] , xlab= cn[z], col="lightbluel", main=cn[z], breaks = mybreaks[z])

abline (v=median(dt[,z]), col="magenta", lwd=2)

abline (v=mean(dt[,z]), col="blue", lwd=2)

(

legend ("topright", legend=c("Median", "Mean"),
fill = c("magenta", "blue"), 1lty=1:2, cex=0.8,
box.1lty=0)
dev.off ()
z = z+1
if (z > ncol(dt)){
break

}
}
graphics.off ()

udf singlehist(colname = "average leadtime sprint" , data=dt, breaks = 50)
[1] "average leadtime sprint does not exists as column name in data"
udf singlehist(colname= "average story points", data=dt, breaks = 25)
[1] "average_story points does not exists as column name in data"
udf singlehist(colnum = 3, data=dt, breaks = 10)

udf_singlehist(colnum = 4, data=dt, breaks=60)

udf singlehist(colnum = 5, data=dt, breaks=60)

udf singlehist(colname="sprint plannedpointscompletionratio", data=dt)
summary (dt$sprint plannedpointscompletionratio)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.4721 0.7241 0.6492 0.8258 1.0000

There are only 10 squads out of 306 that have 0 points completed.
35 squads, roughly 10% finish all the work that they plan.

udf singlehist(colname="sprint remainingtimeratio", data=dt)
summary (dt$sprint remainingtimeratio)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.00000 0.00000 0.01425 0.00000 0.30770

28

TUD-SERG-2017-010

SE[lE Strong Agile Metrics

Appendix A — Technical Report

The sprint_remainingtimeratio has a low 3% in this data set. This is as expected for a dataset where only 11% ends its planned work. Maybe it
can’t be measured well enough. It might well be that user stories are put to completed at the end of the sprint.

More histograms will be included in the nearby future.

29

TUD-SERG-2017-010 35

Strong Agile Metrics

36

Appendix A - Technical Report

6 External links
The initial setup of this statistical part of the project follows the receipt as described in:

https://ww?2.coastal.edu/kingw/statistics/R -tutorials/multregr.html

and was later adapted to insights from other websites

7 System Environment

SERE

R version 3.3.2 (2016-10-31)

Platform: x86_ 64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1
##

locale:

[1] LC_COLLATE=Dutch Netherlands.1252 LC_CTYPE=Dutch Netherlands.1252

[3] LC MONETARY=Dutch Netherlands.1252 LC NUMERIC=C
[5] LC TIME=Dutch Netherlands.1252

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base
#4#

other attached packages:

[1] fpc 2.1-10 cluster 2.0.6

[3] kmeans.ddR 0.1.0 reshape2 1.4.2

[5] psych 1.7.5 RODBC 1.3-15

[7] coefplot 1.2.4 ggplot2 2.2.1

[9] texreg 1.36.23 PerformanceAnalytics 1.4.3541
[11] xts 0.9-7 zoo_1.7-14

[13] markdown 0.7.7 rmarkdown 1.3

[15] xtable 1.8-2 knitr 1.15.1

[17] corrplot 0.77

#4#

loaded via a namespace (and not attached) :

[1] modeltools 0.2-21 kernlab 0.9-25 lattice 0.20-34
[4] colorspace 1.3-2 htmltools 0.3.5 stats4 3.3.2

(7] yaml_2.1.14 foreign 0.8-67 DBI_0.6

[10] prabclus_2.2-6 plyr 1.8.4 robustbase 0.92-7
[13] stringr 1.2.0 munsell 0.4.3 gtable 0.2.0

[16] mvtnorm 1.0-6 evaluate 0.10 flexmix 2.3-13
[19] parallel 3.3.2 class 7.3-14 DEoptimR 1.0-8
[22] trimcluster 0.1-2 Rcpp 0.12.9 scales 0.4.1

[25] backports_1.0.5 diptest 0.75-7 ddrR 0.1.2

[28] useful 1.2.1 mnormt_1.5-5 digest 0.6.12
[31] stringi 1.1.2 dplyr 0.5.0 grid 3.3.2

[34] rprojroot 1.2 tools 3.3.2 magrittr 1.5

[37] lazyeval 0.2.0 tibble 1.2 MASS 7.3-45

[40] assertthat 0.1 R6_2.2.0 mclust 5.2.3

[43] nnet 7.3-12 nlme 3.1-131

30

TUD-SERG-2017-010

TUD-SERG-2017-010 S E(I
ISSN 1872-5392

