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Abstract
We are concerned with the efficiency of stochastic gradient estimation methods for large-scale nonlinear optimization in
the presence of uncertainty. These methods aim to estimate an approximate gradient from a limited number of random
input vector samples and corresponding objective function values. Ensemble methods usually employ Gaussian sampling
to generate the input samples. It is known from the optimal design theory that the quality of sample-based approximations
is affected by the distribution of the samples. We therefore evaluate six different sampling strategies to optimization of a
high-dimensional analytical benchmark optimization problem, and, in a second example, to optimization of oil reservoir
management strategies with and without geological uncertainty. The effectiveness of the sampling strategies is analyzed
based on the quality of the estimated gradient, the final objective function value, the rate of the convergence, and the
robustness of the gradient estimate. Based on the results, an improved version of the stochastic simplex approximate gradient
method is proposed based on UE(s2) sampling designs for supersaturated cases that outperforms all alternative approaches.
We additionally introduce two new strategies that outperform the UE(s2) designs previously suggested in the literature.

Keywords Robust optimization · Ensemble methods · Approximate gradient · Sampling strategies

1 Introduction

A continuous increase over recent decades in computing
power, accompanied by improvements in numerical algo-
rithms, has led to increasing use of simulation models to
obtain optimal operating strategies for complex systems.
Simulation of these models may be very computation-
ally demanding and will therefore require highly efficient
numerical optimization workflows. One domain in which
computational demands are continuously challenging the
efficiency of optimization workflows is the management
of subsurface hydrocarbon reservoirs. This problem can be
characterized by large-scale multiphase and compositional
flow models; by high-dimensional control (input) spaces;
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and by large geological, economical, and operational uncer-
tainty. The presence of significant uncertainty, even after
years of data gathering, motivates the optimization of the
expected value of the objective function, an approach that is
sometimes referred to as robust optimization [35].

Controls may include the number of wells to be drilled
(10–100s), their locations and trajectories, the drilling order,
the well type (injector or producer), and operational controls
such as well rates or pressures over a period of several years.
The total number of variables to be optimized can easily be
in the order of 1000s. Gradient-based methods have been
shown to be the most efficient techniques to find optimal
solutions for these complex problems [3, 16, 17, 32]. In
many practical cases of interest, the types of controls (e.g.,
integer or categorical) and lack of access to the numeric
model code prevent use of efficient gradient estimation by
means of the adjoint method.

In such scenarios, approximate gradient methods that
require a limited number of test simulations with perturbed
controls as input have been proven to be quite useful. An
advantage of this approach is that it treats the model as
a black box, and therefore offers great flexibility in terms
of the type of controls that can be considered. The main
challenge associated with this approach is to ensure that
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the approximate gradients are accurate enough to enable
sufficient increases in the objective function at reasonable
computational cost. Since test simulations can be performed
in parallel (assuming the availability of a parallel computing
facility), this challenge translates into choosing the control
perturbation set (ensemble) in such a way that the gradients
can be estimated with minimal error.

Various methods exist for gradient approximation.
Deterministic methods include finite differences and the
simplex gradient [7], both of which are computationally
unattractive for large numbers of controls since they require
as many perturbation tests runs as there are controls.
Stochastic approaches based on a limited number of random
perturbations include simultaneous perturbation stochastic
approximation (SPSA) [33] and stochastic noise reaction
(SNR) [26], both of which are based on averaging, and
ensemble optimization (EnOpt) [6] and a modified version
coined stochastic simplex approximate gradient (StoSAG)
[10, 11, 14], which are both based on least squares linear
regression. Do and Reynolds [10] discussed the relationship
between some of these methods in a deterministic context.

The sampling strategy (for example, the distribution) used
to generate the ensemble of controls is extremely important.
The SPSAmethod, for example, utilizes control perturbations
sampled from the Bernoulli distribution instead of Gaussian
sampling. The impact of sampling strategy on the performance
of ensemble methods, on the other hand, has so far received
rather little attention. The impact of ensemble size on the qua-
lity of the ensemble gradient was investigated for the Rosen-
brock function and for an oil reservoir model [12]. It was
also shown that the perturbation size (the standard deviation
of a multivariate Gaussian distribution) has a significant
impact on the gradient quality. A method called CMA-
EnOpt to adaptively adjust the perturbation size through cova-
riance matrix adaptation (CMA) was found to improve the
performance of ensemble gradients [13]. The impact of alter-
native distributions was considered by Sarma and Chen [31]
who investigated the impact of a quasi-random sampling
method (Sobol sampling, [25]) that avoids clustering of sam-
ples on SNR gradient estimates. They found Sobol sampling
to lead to a faster rate of convergence relative to Gaussian
sampling when applied to a deterministic reservoir optimiza-
tion problem. The performance of Sobol sampling strategies
in a robust optimization context was not investigated.

Considering that the number of controls (N) for the
problems of interest will normally be much larger than
the feasible number of test simulations (M), we will be
dealing here exclusively with the underdetermined (super-
saturated) case. Specifically, we will address the question
which sampling strategy for the supersaturated case leads to
optimal performance of the approximate gradient estimation
methods within large-scale nonlinear optimization prob-
lems under uncertainty. We investigate three categories of

sampling: quasi-random (low-discrepancy) sequences, strat-
ified sampling, and sampling designs motivated by optimal-
ity criteria. All sampling methods are applied in combina-
tion with the StoSAG gradient estimation method.

In the remainder of this paper, we first provide a brief
review of ensemble optimization for both deterministic and
robust cases in Section 2, followed by a discussion of the va-
rious sampling strategies used in this paper (Sobol sampling,
Latin hypercube sampling (LHS), UE(s2)-optimal super-
saturated design) and the motivation for considering them
in Section 3. Here we also introduce two new variants of
UE(s2)-optimal supersaturated design. Finally in Section 4,
the sampling strategies are applied in conjunction with the
StoSAG method first to the extended Rosenbrock optimiza-
tion test function [9] and subsequently to a synthethic 3D
reservoir model of realistic complexity (for both determin-
istic and robust cases) followed by a detailed analysis.

2 Ensemble-based gradient estimation

Chen [6] proposed a stochastic gradient estimation method
for use within an ensemble-based optimization workflow
referred to as EnOpt. Later modifications for deterministic
and robust optimization problems [10, 11] addressed
approximation errors associated with the use of ensemble
means. The modified method has since been referred to as
stochastic simplex approximate gradient (StoSAG) [14] to
highlight the relationship with the simplex gradient [20].
While the simplex gradient estimation method is a full-rank
deterministic method, the StoSAG method is a low-rank
stochastic method based on random perturbations. With
low-rank, we mean that the estimation typically involves
fewer equations than unknowns. Consider the objective
function J (u, m) of the control vector u = [u1, . . . , uN ]T
and of model parameter vector m. Given an ensemble
of control perturbation vectors U = [δu1 . . . δuM ]T and
corresponding objective function values anomalies j =
[J (u+δu1, m)−J (u, m), . . . , J (u+δuM, m)−J (u, m)]T,
a first-order Taylor expansion of J around u leads to the
linear system of equations

Ug ≈ j , (1)

from which we wish to estimate the gradient g = ∇uJ . If
the model is considered uncertain, one may choose to define
an expected objective function J (u) = 1

Nr

∑Nr

i=1 J (u, mi ).
An expected gradient can be obtained similarly as the
sum of Nr individual gradients, which can be computed
using Eq. 1 using M/Nr control perturbation vectors each.
Theoretical and numerical studies [6, 14] in which a ratio
equal to 1, that is M = Nr , was used, have shown that the
expected gradient g = ∇uJ can alternatively be estimated
by solving a single system like (1) with j replaced by
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j̃ = [J (u+ δu1, m1)− J (u, m1), . . . , J (u+ δuM, mM)−
J (u, mM)]T,
Ug ≈ j̃ . (2)

In the following, we will refer to the optimization problem
withNr = 1 as deterministic, and to the case withNr > 1 as
robust optimization. For robust optimization with M/Nr =
1, we will use Eq. 2, and for higher ratios, we will use
the mean of individual gradients computed each by solving
Eq. 1. In all cases, the number of unknowns is N and
the number of model simulations required to evaluate the
required gradient is M .

Taking as example the deterministic case Eq. 1, the
normal equations can be formulated by pre-multiplying with
UT, leading to

UTU g ≈ UT j . (3)

The matrix UTU has dimension N × N . Since the number
of perturbations M that we can afford to evaluate (i.e., the
number of equations) is typically less than N , the number
of controls, the N × N matrix UTU is rank deficient and
its inverse does not exist. A unique solution is normally
obtained by imposing a minimum norm constraint and can
be computed from the generalized pseudoinverse as

ĝ = U†j = (UTU)† UT j . (4)

A regularized gradient estimate can be obtained by pre-
multiplication of the above gradient by a positive definite
matrix B. A common choice is B = Cu where Cu is a
block-diagonal covariance matrix prescribing correlations
between controls, for example, over time.

It can be shown [34] that if {zi}Mi=1 with zi = u + δui =
ui is an i.i.d. sample from the multivariate Gaussian density
N (u, Cu), the ensemble gradient (4) has the following
convergence property (in the almost sure sense) for M →
∞

ĝ = (UTU)†UTj = (
1

M
UTU)†

1

M

M∑

i=1

(zi

−u)(J (zi ) − J (u)) (5)
a.s.→ C−1

u

∫

(J (z) − J (u)) (z

−u) N (z|u, Cu)dz (6)

=
∫

J (z) ∇u N (z|u, Cu)dz (7)

In other words, the ensemble gradient (4) is a Monte
Carlo (i.e., random sampling-based) approximation of a
probability-weighted integral of the function values J (ui )

over all possible values of ui . The convergence properties of
such an approximation will depend strongly on the chosen
sampling strategy [4].

3 Sampling strategies

In the context of estimation, the matrix U is known as
the design matrix and the matrix S = (UTU) as the
information matrix. The choice for a set of samples is
that for a particular design and can be motivated by the
desired statistical properties of the solution of Eq. 3. These
properties generally depend on properties of the matrix S or,
equivalently, of its inverse, known as the dispersion matrix,
and lead to a number of optimality criteria which will be
discussed later in this section. IfM ≥ N and the rank ofU is
equal to or greater than N , the solution (4) is the best linear
unbiased estimator (BLUE) and has variance proportional to
S−1. In the case that M < N , which is most relevant here,
the solution (4) is the minimum bias estimator. If M = N

and the elements Sij = 0 for all i �= j , the design is called
orthogonal.

3.1 Random sampling

Random sampling (or Monte Carlo sampling) is the
conventional approach to generate control perturbations for
ensemble-based gradient estimation. A generic approach
to generating samples is to obtain random combinations
of basis vectors that are obtained by factorization of
a perturbation covariance matrix Cu, for example, by
Cholesky decomposition Cu = LT L, such that δui =
L ri , where ri is a number from a pseudo-random
sequence as can be generated by random number generators
available with any computer code. The standard distribution
used for ensemble gradient estimation is the Gaussian
distribution, i.e., r ∝ N (0, Cu). If perturbations are
uncorrelated, Cu = σ 2 IN . In some cases, for example,
when the controls represent long time series discretized
in short intervals (as is typical for the oil reservoir
well control problem), a regularized solution may be
obtained by imposing time correlation between subsequent
controls. In this case, Cu will be a block-diagonal
matrix.

3.2 Quasi-Monte Carlo sampling

Consider the N-dimensional half-open unit cube I
N =

[0,1)N , N ≥1. Let f be a real integrable function over IN .
The Monte Carlo approximation of an integral of f over IN

is

∫

IN

f (x)dx ≈ 1

M

M∑

i=1

f (xi) (8)

where x1, x2, .., xM are random points in I
N [28]. The

strong law of large numbers ensures the convergence of
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the approximation. Furthermore, the expected integration
error is bounded by O( 1√

M
), with the interesting fact

that it does not depend on dimension N . We have
already seen that the ensemble gradient estimation is
equivalent with a Monte Carlo integration (also known
as quadrature). The quasi-Monte Carlo (QMC) method
[23] is an alternative to the Monte Carlo (MC) method
for calculating this approximation using quasi-random
(deterministic) sequences with higher convergence rate than
obtained with (pseudo) random sequences. The improved
convergence originates from the uniformity of the quasi-
random sampling distribution. The uniformity is quantified
by the so-called discrepancy which measures the relative
density of samples in each sub-volume of the sampled
domain. Low-discrepancy sequences have good uniformity
properties [4]. Examples of low-discrepancy quasi-random
sequences are the Sobol and Halton sequences. More
detailed discussion of quasi-random sequences and their
properties is provided by, e.g., Niederreiter [24]. Given
their low-discrepancy properties, which avoid clustering
of samples in subvolumes, they are good candidates for
generating space-filling designs [4]. In this work, we will
present results obtained with the Sobol sequence which
tends to produce lower correlations in high dimensions
than Halton sampling [5, 23]. Successful application of
Sobol sequences in problems of dimension ∼ 300 has been
reported in the literature [29].

3.3 Stratified sampling

A number of approaches that directly address the error
variance of the Monte Carlo estimate are discussed by
Caflisch [4]. Stratification is a variance reduction technique
that, like low-discrepancy sampling, attempts to avoid the
clustering of samples. Latin hypercube sampling (LHS)
[22] is perhaps the best known stratified sampling method
that is suitable for higher dimensions and settings where
M < N [28]. LHS divides the input (design) space equally
into M strata (subdomains), an arrangement known as Latin
squares, and places a sample randomly in each stratum.
Theoretical considerations [22, 27] suggest that LHS can
be much better than MC sampling and it cannot be much
worse. However, it has been reported that LHSmethods may
produce clustering of samples in high dimensions [8].

Figure 1 shows examples of Gaussian and uniform
(pseudo) random, quasi-random (Sobol), and stratified
(LHS) sample distributions for a simple 2-control example
and 100 samples, that is, N = 2 and M = 100. While
this is different from the M < N case of interest, the
figure serves as a simple illustration of the motivation
for considering sample distributions other than Gaussian.
In order to enable comparison of the sample spread, the
standard deviation was normalized to 1 in both directions for
all four distributions. Gaussian sampling produces relatively
dense sampling around the center, as expected. LHS appears

Fig. 1 Example of 2D sample
distributions with standard
deviation 1. a Gaussian. b
Uniform. c Sobol. d LHS
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to produce sampling distributions that are very similar to
uniform sampling, at least for the case M > N , with some
clustering and under-sampled intervals. Sobol sampling
can be seen to produce a uniform space-filling sample
distribution.

3.4 Optimal supersaturated designs

The theory of Design of Experiments (DOE) distinguishes
saturated (M = N) and nonsaturated (M > N) designs.
It furthermore defines a number of design criteria and
techniques to obtain designs that satisfy these criteria. Here
we are interested primarily in designs for the supersaturated
case (M < N) based on the E(s2) criterion which defines
an approximate orthogonality measure [2]. An extension,
the so-called UE(s2)-optimal supersaturated designs [19],
adds an effective design optimality criterion (D-optimality).

For a supersaturated design, the information matrix S

becomes rank deficient and hence its inverse does not exist.
A natural approach in this case is to find a design that is
nearly orthogonal, that is, the design in which the absolute
values of the off-diagonal elements of the matrix S are
small in some sense. Two alternative approaches have been
suggested [2] to obtain near-orthogonal designs. The first is
to choose a design with minimum maxi �=j |sij | and among
all such designs to choose one with the fewest sij that
achieve this maximum. The second approach is to choose a
design in which the sum of the squares of the off-diagonal
elements is minimum, that is, a design that minimizes

E(s2) = 2

(N − 1)(N − 2)

∑

i<j

s2ij , (9)

which is called the E(s2) criterion. A design is E(s2)-
optimal if it satisfies the following conditions:

1. s1j = 0 ∀j = 2, ..., N
2. among all those designs that satisfy 1, the design should

minimize E(s2) given in Eq. 9.

There are various methods for construction of E(s2)-
optimal supersaturated designs [15], but we will consider
only the methods using Hadamard matrices [21, 36].

Optimal designs are experimental designs for which
the solution of the estimator satisfies particular statistical
optimality criteria. Generally, these statistical criteria are
formulated in terms of the (generalized) variance of the
solution, for example, minimum trace of the covariance
of ĝ (A-optimality), minimum maximum eigenvalue of
the covariance of ĝ (E-optimality), or minimum product
of non-zero eigenvalues of the covariance of ĝ (D-
optimality) [1]. The E(s2) design can be made more
theoretically strong and efficient by adding such traditional
design optimality criteria. UE(s2)-optimal designs are

designs for the supersaturated case that are near-orthogonal
but exchange the first constraint above for D-optimality.
UE(s2)-optimal supersaturated designs could therefore be
described as producing minimum bias-minimum variance
estimates (for details about algorithms for their construction
from Hadamard matrices, we refer to Jones and Majumdar
[19]). A brief summary of the general procedure and
variants is provided here.

A Hadamard matrix H ∈ R
N×N is a square matrix

whose columns are orthogonal to each other and for which
holds that HH T = H TH = N IN where IN is the identity
matrix of size N × N . It consists of elements ±1 and it is
generally available for order N equal to 1, 2 and multiples
of 4. Procedures for constructing a UE(s2)-optimal design
matrix U ∈ R

M×N with M < N from Hadamard matrices
are discussed by [19], who also review modern methods to
construct Hadamard matrices of the required orders. Four
situations can be distinguished based on the remainder of N

when divided by 4 that are referred to as T0, T1, T2, and T3.
In the following, N = a(mod 4) means a is the remainder
when N is divided by 4.

1. T0: If N = 0(mod 4), 2 ≤ M ≤ N-1. Start with a
normalized Hadamard matrix of order N , HN . U can
be formed by selection of any M rows of HN .

2. T1: If N = 1(mod 4), 2 ≤ M ≤ N-1. Start with a
normalized Hadamard matrix of order N-1, HN−1. Let
V be a M × (N − 1) matrix formed by any M rows
of HN−1 and let φ be an (arbitrary) M × 1 vector with
entries 1 or -1. U = (V , φ).

3. T2: If N = 2(mod 4), 2 ≤ M ≤ N-2.
(a) M is even, M = 2p. Start with a normalized

Hadamard matrix of order N − 2, HN−2. Let U∗ be
the M × (N − 2) matrix formed by any M rows of
HN−2. Let X1 be a M × 2 matrix with each of the first
p rows either (1,1) or (−1,−1) and each of the last p

rows either (1,−1) or (−1,1). Then U = (U∗, X1).
(b) M is odd, M = 2p + 1. Start with a normalized

Hadamard matrix of order N −2, HN−2. Let U∗ be the
M × (N − 2) matrix formed by any M rows of HN−2.
Let X2 be a M × 2 matrix with each of the first p rows
either (1,1) or (−1, −1) and each of the last p + 1 rows
either (1, −1) or (−1, 1). Then U = (U∗, X2).

4. T3: If N = 3(mod 4), 2 ≤ M ≤ N-1. Start with a
normalized Hadamard matrix of order N + 1, HN+1.
Let U∗ be the M × (N + 1) matrix formed by any
M rows of HN+1. Suppose the last column of U∗ is
denoted by φ andU∗ = (U , φ). ThusU can be obtained.

Given that there is some freedom in constructing the
Hadamard matrices, we will consider three variants for
constructing U denoted as M1, M2, and M3 as explained
below. M1 is the conventional approach, while M2 and M3
are new variants that we introduce here.
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1. M1: This is the approach suggested by Jones and
Majumdar [19]. In the construction of UE(s2)-optimal
designs of types T0 to T3, it is suggested to take M

arbitrary rows of a Hadamard matrix. By choosing the
rows randomly in each iteration of the optimization,
variation in the samples can be achieved without loss
of UE(s2) optimality. Thus, the method becomes
stochastic.

2. M2: This approach is similar to type M1 except that
the row of the Hadamard matrix containing only values
of +1 is always picked. When type M1 is used, this
row may not always be picked. Experiments presented
below showed that in those instances, gradient quality
was significantly reduced. The M2 variant avoids this
but remains stochastic.

3. M3: In this approach, the first M rows of the Hadamard
matrix (including the row with all values equal to
+1) are always selected for each iteration of the
optimization. This variant is therefore deterministic.

We finally note that the near-orthogonality and D-
optimality of UE(s2)-optimal designs do not hold for the
case N = 3(mod 4) where M >

(N+5)
2 . However, by

choosing M properly, the design can be made D-optimal for
this case as well [19].

4 Numerical experiments

The various sampling strategies and designs are first applied
to gradient estimation in a simple toy problem for which
exact gradients can be computed analytically. This enables
us to determine the impact of the sampling strategy on the
accuracy of the stochastic gradients.

We determine the gradient accuracy separately for
two sets of control test points. In order to explain the
composition of these two sets, we refer to the red
line in Fig. 6 which represents a typical example of
the evolution of the objective function as a function of
iteration of an optimization process. The iterative objective
function increase during optimization can be commonly
characterized by fast improvements during early iterations
when objective function values are far from the optimum
(the objective function curve is steep), and very slow
improvement towards convergence (the objective function
curve is nearly flat). In our example (Fig. 6), the first stage
would consist of roughly the first 10 iterations, while the
second stage would consist of iterations 10 to 35. The
separation between the two stages can simply be defined
by, for example, a threshold rate of improvement in the
objective function. We propose this procedure to identify
points that are expected to lie relatively far away from
the optimum (visited during the first stage) and points that

are expected to lie in a part of the control space that is
connected to the optimum through pathways along which
the objective function is only very weak sloping (visited
during the second stage). We are interested in determining
the quality of gradient estimates during both stages of the
optimization process separately since it may be expected
that for a given perturbation size, the gradient quality is
lower during the second stage than during the first stage.
One hundred conventional robust optimization experiments
were conducted with the extended Rosenbrock function for
one hundred different starting controls.

4.1 Analytical toy problem

We use an extended version of the well-known Rosenbrock
benchmark function which is characterized in 2D by
a curved valley, with a minimum at coordinates (1, 1)
located in one of the two branches of the valley. In order
to mimic the high dimensionality typically encountered
in subsurface reservoir problems, we use the extended
Rosenbrock function [9]. In addition to a large number of
controls we want to investigate the impact of uncertainty in
the model properties. Therefore, uncertainty is introduced to
mimic the geological uncertainty following [12],

J (u1, ..., uN , c
j

1 , c
j

2) =
N/2∑

i=1

−(sin c
j

2)(1 − u2i−1)
2

−100(cj

1 u2i − u22i−1)
2 , (10)

where (c
j

1 , c
j

2) with j = 1, . . . , 100 are samples from
N (0, I 2) representing Nr = 100 model realizations. N

is the number of controls which we set here to 320. The
gradient of Eq. 10 can be derived analytically for any set of
controls.

Using a simple objective function increase criterion solu-
tions obtained at subsequent iterations of the optimization
process were classified as belonging to either the first or sec-
ond stage as discussed above. The gradient at each of these
test points was estimated using different sampling strate-
gies. For sampling strategies involving random numbers, the
gradient computation was repeated 100 times, after which
an average angle error α100 was computed by comparison
with the analytical gradient direction and further averaging
over all 50 test points. The standard deviation of the con-
trol perturbation magnitude was set to 0.01 in all cases. The
angle error is estimated for different ratios M/Nr . If the
ratio equals 1, we use the same number of perturbations as
there are model realizations, while for a ratio of for exam-
ple 3, three different perturbed controls are applied to each
model realization. Figure 2 shows the angle error alpha 100
for 3 ratios and for different sampling strategies averaged
over the first 50 test points and Fig. 3 shows the average
angle error for the second set of 50 test points.
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Fig. 2 Mean gradient direction error α100 at points with objective
function values relatively far from the optimum for ratios M/Nr 1 to 3
and different sampling strategies using a standard deviation σ of 0.01.
The true and estimated gradients represent the expected values over
100 different model realizations

For control points far away from the optimum, the
Gaussian, Sobol, LHS, and UE(s2)-M1 sampling strategies
provide a similar gradient quality when the ratio equals
1 (Fig. 2). A slight difference is seen when the ratio is
increased to 3 with UE(s2)-M1 and Sobol performing
slightly better on average than the Gaussian and LHS
strategies. For a 1:1 ratio, UE(s2)-M2 and UE(s2)-M3
provide the best gradient quality, with angle errors that are
5◦ to 30◦ lower than for the other strategies.

Gradient errors are significantly larger for points closer
to the optimum as seen in Fig. 3. Otherwise, the results
are more or less consistent with those for the early
stage except that the differences between UE(s2)-optimal
designs of types M2 and M3 and Gaussian, Sobol, LHS, and
UE(s2)-optimal design of type M1 are relatively smaller. In
conclusion, for the high-dimensional Rosenbrock function
with uncertainty, UE(s2)-optimal designs of types M2 and
M3 provide significantly better expected gradients than the
other sampling strategies, especially in the early stages of
the optimization process when solutions are far from the
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Fig. 3 Mean gradient direction error α100 at points with objective
function values relatively close to the optimum for ratios M/Nr 1 to 3
and different sampling strategies using a standard deviation σ of 0.01.
The true and estimated gradients represent the expected values over
100 different model realizations

optimum. In the following, we will only present robust
optimization results for a ratio of 1.

4.2 Oil reservoir case

In this section, we will investigate the impact of the
different sampling strategies on an optimization process
for a small, but realistically complex, reservoir test case.
The 3D reservoir model used here is the “Egg” benchmark
model [18, 35]. Figure 4 shows the permeability field of one
model realization and the position of eight injection wells
(blue) and four production wells (red). The egg model is a
channelized reservoir model with seven vertical layers and
a total of 18,553 active cells.

The permeability values are not conditioned to values at
the wells, and the porosity is assumed to be constant. The
producers are operated at constant bottom hole pressure,
while the injectors are rate-controlled between 10 and 79.5
m3/day. Production of the field is simulated for a period of
3600 days that is discretized into 40 control time intervals
of 90 days. This results in a total of 40 × 8 = 320 injection
rate controls. The objective function used in this work is
the undiscounted net present value (NPV), i.e., the sum of
revenues and costs induced over the production period. We
use an oil price of 126 $/m3 and costs of 19 $/m3 and 6 $/m3

for water production and injection respectively. The fully
implicit black oil simulator OPM flow is used for the model
simulations and the objective function is computed based on
the simulator output. We investigate both the deterministic
and robust optimization cases, where the model realizations
are taken from a set of 100 permeability realizations. Six of
these realizations are shown in Fig. 5. More details on the
model can be found in Jansen et al. [18].

4.2.1 Deterministic optimization

In deterministic optimization, there is no uncertainty in
the model, and therefore only a single model realization

Fig. 4 Example permeability field of the Egg reservoir model with 8
injector wells (blue) and 4 producer wells (red)
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Fig. 5 Six randomly chosen model realizations, taken from [18],
characterizing the uncertainty in the permeability

is used in this section (i.e., Nr = 1). All optimization
experiments are run for a fixed number of iterations (35)
and use a steepest ascent update with a normalized gradient
(that is, the norm of the gradient vector is 1) and a fixed
step size of 0.1. The convergence will thus be affected
primarily by the quality of the gradient. The initial control
vector consists of equal values of 79.5 in units of m3/day
which corresponds to the maximum injection rate. M =100
perturbation vectors are generated to estimate the gradients
by solving (4). Figures 6 and 7 show the objective function
curves over all iterations for different sampling strategies
with the number of perturbation vectors M=100 and M = 30
respectively.

The curves for UE(s2) designs of types M2 and M3
flatten after 14 iterations. The curve for Sobol sampling
approaches the same final objective function value at a
slightly slower rate. These methods also produce high
convergence rates and final objective function values when
the ensemble size is very small (30). From the results of the
Rosenbrock function, it was observed that UE(s2) designs
of type M1 provides inferior gradient quality compared with
M2 and M3 at poor control points (steep section of the
objective function curve). This is also observed in Figs. 6
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Fig. 6 NPV as a function of optimization iteration using Eq. 1 with
Nr = 100 and M = 100 for different sampling strategies
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Fig. 7 NPV as a function of iteration for different sampling strategies.
Gradients are estimated from Eq. 1 with Nr = 1 and M = 100

and 7. The curve for M1 shows iteration intervals for which
convergence is extremely slow, alternated by intervals with
steep increases in the objective function. Upon inspection, it
was discovered that these intervals correspond to iterations
in which the row of the Hadamard matrix containing only
+1 values was either not included (slow improvement) or
was included (fast improvement). This behavior actually
motivated the creation of the new schemes M2 and M3 in
this paper. In general, both M2 and M3 perform slightly
better than Sobol sampling which tends to produce objective
function curves that flatten a bit earlier. Since the curves
for Gaussian and LHS sampling have not yet flattened after
35 iterations, it is not possible from these results to draw
conclusions about the final objective function value that can
be reached. Given the high computational cost associated
with simulating large and complex reservoir models, it is
reasonable to consider the performance of different methods
for a limited number of iterations (or function evaluations).
It appears that LHS does not perform better than Gaussian
sampling for the number of controls considered in these
experiments.

The optimal control strategies for one of the injectors
obtained after 35 iterations are shown in Fig. 8.

The choice of sampling method clearly has a significant
impact on the character of the resulting control strategy.
While Sobol sampling produces a strategy with frequent
and large changes in the injection rate, the UE(s2)

designs tend to produce fairly smooth low-rate profiles.
Highly dynamic control strategies are generally undesirable
from an operational point of view. Regularization of the
gradients is often proposed as a means to produce smooth
control profiles. One way to achieve this is by imposing
correlations over time between the control perturbations,
i.e., between the samples. The impact of this approach on
the optimization process for different sampling methods
is illustrated in Fig. 9, where a correlation length of 15
control intervals was applied (the total number of intervals
is 40).
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Fig. 8 Control strategy representing the injection rate of one of the injectors as a function of time at the final iteration (35) obtained with 6
different sampling strategies, Nr = 1 and M = 100

Correlation clearly benefits the convergence properties
for all sampling methods except Sobol sampling. Gaussian
sampling, LHS, and UE(s2) designs all produce very
similar objective function profiles. Gaussian sampling
and LHS produce the highest final objective function
values, while the values obtained for UE(s2) are nearly
identical to those obtained without induced correlation. The
convergence rate for Sobol sampling on the other hand has
decreased notably. We conclude that this latter result must
be related to the loss of uniformity of Sobol distributions
after smoothing.

4.2.2 Robust optimization

In this section, the optimization is aimed at maximizing the
expected NPV as evaluated over Nr = 100 equiprobable
realizations of the model with different permeability fields
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Fig. 9 NPV as a function of iteration for different sampling strategies.
Gradients are estimated from Eq. 1 with M = 100 and perturbation
smoothing

as illustrated in Fig. 5. The gradient of the expected NPV
is computed directly using the formulation of Eq. 2 based
on 100 control perturbation vectors that are paired on a
1:1 ratio basis to the model realizations. The perturbation
standard deviation, random seed, and initial controls are the
same for all experiments and identical to those used in the
deterministic case. The optimization process is performed
for a fixed number of 25 iterations (gradient evaluations). A
lower value than used for the deterministic case was chosen
to limit the computational cost; 100 simulations are now
required to determine the expected objective function value
for a proposed control update, whereas only 1 simulation
is required in a deterministic setting. The results from
experiments without and with time correlations between
controls are shown in Figs. 10 and 11 respectively.

The results indicate that the performance of the different
sampling methods in the robust optimization case is similar
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Fig. 10 Expected NPV evaluated over 100 model realizations as a
function of iteration for different sampling strategies. Gradients are
estimated from Eq. 2 with M = Nr = 100
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Fig. 11 Expected NPV evaluated over 100 model realizations as a
function of iteration for different sampling strategies. Gradients are
estimated from Eq. 2 with M = Nr = 100 and perturbation smoothing

to that in the deterministic case. The main differences are
observed if time correlation is imposed on the samples.
While in the deterministic setting all methods except Sobol
performed similarly, in the setting with model uncertainty,
UE(s2) designs of type M2 clearly perform better than all
other methods. Sobol sampling still performs worse than
all other methods. The use of time correlation leads to
improved objective function values when Gaussian, LHS
and UE(s2) sampling of type M1 is used, and to reduced
objective function values when UE(s2) sampling of type
M3 or Sobol sampling is used. The results for UE(s2)-M2
are hardly affected.

The optimal control strategies obtained after 25 iterations
are shown in Fig. 12 for all sampling strategies. A similar
behavior can be observed as in the deterministic case.
When using Sobol sampling, the water injection rate

jumps between near-minimum and near-maximum values.
This is close to what is known as a bang-bang strategy,
which is an optimal strategy for certain linear problems
and is characterized by solutions that attain only the
minimum and maximum allowable control values. The
solutions obtained with Gaussian sampling and LHS tend
to vary around an intermediate average control value, while
the UE(s2) solutions consistently suggest near-minimum
injection rates. The solutions for this well are characteristic
also for those of the other wells, with UE(s2)-based
injection rates mostly in the range of 10–30 m3/day.

4.3 Sensitivity of results

The optimization experiments presented here were per-
formed with the same constant perturbation size which is
the standard approach in approximate gradient applications.
It has been observed in experiments with different perturba-
tion sizes [12] that smaller perturbations may be preferred
during the later stages of the optimization process. One
way to improve the quality of gradient estimates at different
stages of the optimization process is to adjust the perturba-
tion size [30]. This was found to be an effective solution
when the traditional Gaussian sampling strategy is used.
Here we investigate to what extend the sampling strategy
affects the sensitivity to perturbation size. Experiments were
performed with the Egg reservoir model with different sam-
pling strategies for both deterministic and robust settings.
Figure 13 shows robust optimization results for three dif-
ferent fixed perturbation sizes and all sampling strategies
considered in this paper. The results suggest that the perfor-
mance forUE(s2) designs of type M2 is much less sensitive
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Fig. 12 Robust control strategy representing the injection rate of one of the injectors as a function of time at the final iteration (25) obtained with
6 different sampling strategies and M = Nr = 100
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Fig. 13 Expected NPV evaluated over 100 model realizations as a function of iteration for three robust optimization experiments with different
perturbation sizes (σ )

to the perturbation size than that for Gaussian and Sobol
sampling or LHS designs.

Some of the considered sampling strategies, including
Sobol sampling and UE(s2) designs of type M3, are
deterministic and therefore will produce the same result
each time. Strategies based on pseudo-random numbers
(Gaussian, LHS), or on random selection of perturbations
from a fixed set (UE(s2) designs of types M1 and M2)
may produce different results for different random number
generator seeds. In Fig. 14, we present robust optimization
results obtained with UE(s2) designs of type M1 and type
M2 for five different initial random seeds. The sensitivity
of the gradient quality and convergence with respect to the
initial seed is very large for UE(s2) designs of type M1, but
almost negligible for designs of type M2. This is another
benefit of the UE(s2)-type M2 designs proposed here.

5 Conclusions

The standard practice of using Gaussian sampling to gen-
erate random perturbations for use in approximate gra-
dient estimation procedures is compared against various
alternative sampling strategies. The alternative strategies
include two space-filling designs, namely Sobol sampling
and LHS, based on low-discrepancy concepts as achieved
by quasi-Monte Carlo approaches and stratification respec-
tively. A second class of methods is based on the E(s2)

near-orthogonality concept for supersaturated designs and
D-optimal reduction of the generalized variance of the gra-
dient estimate (E(s2)-optimal designs). Two new variants
of E(s2)-optimal designs were proposed. The sampling
strategies were applied to high-dimensional analytical test
problem to evaluate their impact on the gradient quality.
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In a second example, they were applied to an oil reservoir
case with realistic complexity in terms of number of con-
trols and uncertainty in parameter values to test their impact
on optimization performance. The main conclusions can be
summarized as follows.

– Sobol sampling and UE(s2) designs outperform
random sampling and stratified experimental designs in
terms of gradient quality and convergence properties
in all cases when no smoothing is performed on the
samples prior to gradient estimation.

– When samples are smoothed over time, the performance
of Sobol sampling strongly deteriorates.

– The sampling strategy is found to have a significant
impact on the character of the resulting control strategy.
Sobol sampling tends to produce highly dynamic
strategies, while UE(s2) designs produce fairly smooth
strategies, also when no smoothing is explicitly applied.

– The new UE(s2) design referred to here as M2 was
observed to outperform the optimal supersaturated
design method previously suggested (M1), as well
as a third variant (M3), in terms of performance of
the optimization and in terms of sensitivity to the
perturbation size and initial random seed.

– UE(s2)-optimal supersaturated designs perform well
in all situations that were investigated for both
deterministic and robust cases and are therefore
recommended for gradient approximation schemes
where the number of samples is less than the number of
unknowns.
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