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Abstract
Non-reciprocal devices are key components in both classical and quantum electronics. One
approach to realizing passive non-reciprocal microwave devices is through capacitive coupling
between external electrodes and materials exhibiting non-reciprocal conductance. In this work,
we develop an analytic framework that captures the response of such devices in the presence of
dissipation while accounting for the full AC dynamics of the material. Our results yield an effect-
ive circuit model that accurately describes the device response in experimentally relevant regimes
even at small dissipation levels. Furthermore, our analysis reveals counterpropagating features
arising from the intrinsic AC response of the material that could be exploited to dynamically
switch the non-reciprocity of the device, opening pathways for tunable non-reciprocal microwave
technologies.

1. Introduction

Non-reciprocal devices are widely used to efficiently route signals and are essential in electronics,
microwave photonics, and emerging quantum technologies [1]. Non-reciprocal effects have been pro-
posed and realized in diverse platforms, including magnonics [2, 3], optomechanics [4–6], and heat
transport [7]. More recently, superconducting non-reciprocal devices, for example based on the super-
conducting diode effect [8–15] or multi-terminal devices [16–20], have been suggested as a means to
reduce power consumption in classical information processing [21, 22], as well as to provide new build-
ing blocks for quantum information systems [23–27]. Coherent non-reciprocal devices are being con-
sidered as candidates for encoding logical qubits when coupled to superconducting qubits [23] and can
offer ways to entangle semiconducting qubits over long distances [28–32]

In current quantum technologies, low-loss microwave circulators are indispensable for directing the
flow of quantum information and suppressing thermal noise [33]. State-of-the-art devices are typic-
ally passive components that exploit interference effects in combination with magnetic materials [34].
However, achieving microwave operation in the GHz regime restricts these devices to centimeter-scale
footprints, which poses challenges for scalability and integration. Active non-reciprocal devices based on
reservoir engineering [35] and metamaterials [36] have also been explored, but they require continuous
external pumping, increasing complexity and heat. Combining phase delay and switches is also been act-
ively studied as a way to enable circulation [37–39].

To overcome these limitations, compact passive devices have been proposed that rely on low-loss
two-dimensional materials with intrinsic non-reciprocal conductance capacitively coupled to external
leads [40]. Notable examples include topological materials in the quantum Hall regime [41–44], where
non-reciprocal transport emerges under a strong perpendicular magnetic field, as well as anomalous
quantum Hall systems that realize similar effects without large external fields [45–48]. These emer-
ging material platforms open pathways to scalable, low-loss, and tunable non-reciprocal microwave
technologies.

In this work, we present a general analytical description of this type of passive non-reciprocal devices
that, in contrast to existing approaches [40, 49, 50], fully incorporates the effects of dissipation. We

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2633-4356/ae20ea
https://crossmark.crossref.org/dialog/?doi=10.1088/2633-4356/ae20ea&domain=pdf&date_stamp=2025-11-26
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4035-9654
mailto:s.bosco@tudelft.nl


Mater. Quantum Technol. 5 (2025) 046202 S Bosco

consider the generic architecture sketched in figure 1(a), comprising a material with non-reciprocal
conductance capacitively coupled to external driving electrodes. Our model is based on a semiclassical
treatment of a Hall material subject to a magnetic field, where both non-reciprocity and losses are cap-
tured through the Hall angle θH [51]. This parameter interpolates between the reciprocal and dissipative
regime (θH = 0) and the quantum Hall regime (θH = π/2), where transport is fully non-reciprocal and
lossless.

Our model directly describes the response of devices implemented in several materials including
e.g. gallium arsenide (GaAs) [40] and germanium [52], and allows us to describe a practically relevant
regime of sub-Tesla magnetic fields where the quantized Hall plateaus are not fully developed and resid-
ual resistivity is finite. Moreover, our results also can be generalized to materials in the anomalous Hall
phase [45] and graphene [53], that display low diagonal resistivity at low magnetic field [54] and room
temperature [55], respectively.

Building on this framework, we derive an effective circuit model, shown in figure 1(b), which accur-
ately captures the device response in the experimentally relevant limits of low losses and low frequencies.
Our model can be generalized to incorporate the effect of the intrinsic AC response of the material, as
well as additional sources of dielectric losses. For example, by including a finite kinetic inductance, our
model reveals the presence of counterpropagating resonances. These features provide opportunities to
selectively control the propagation direction of signals, offering a new route to dynamically tunable non-
reciprocal microwave devices.

2. Microscopic model

We consider a semiclassical model of the device in figure 1(a), where the response of a two-dimensional
system in the plane r= (x,y) is governed in the frequency domain by the coupled equations for the
excess charge density ρ, scalar potential V, and current density j [56, 57]:

V(r) = V̄(r)+

ˆ
dr ′G(r,r ′)ρ(r ′) , (1a)

iωρ(r) =∇· j(r) , (1b)

j(r) =−σ (r) ·∇V(r) . (1c)

Here, equation (1a) represents the inverted three-dimensional Poisson equation with the electrostatic
Green’s function G evaluated at the position of the two-dimensional electron gas, including the effect of
an external drive V̄. Equation (1b) is the continuity equation, while equation (1c) expresses Ohm’s law,
relating current density to the electric field through the local conductivity tensor.

When a perpendicular magnetic field B is applied, the Hall effect is captured by an antisymmetric
local conductivity tensor. For concreteness, we restrict to a circular device of radius R characterized by

σ (r) = σ0n(r)

(
cos(θH) sin(θH)
− sin(θH) cos(θH)

)
, (2)

and work in cylindrical coordinates r= (r,φ). To account for spatial inhomogeneity, we introduce a
dimensionless function n(r), with support on r ∈ [0,R], that interpolates from n(0) = 1 in the bulk of
the material to n(R) = 0 at the edge over a characteristic length scale l.

Our results are applicable to the wide class of materials described by equation (2), which includes
the family of quantum Hall [58] and anomalous Hall materials [59]. To more concretely and quantitat-
ively estimate the AC response and losses in these devices, we consider the AC Drude model for a GaAs-
etched droplet analogous to [41, 44]. This yields the conductivity scale and Hall angle

σ0 =
e2nSτ

m∗
1√

(1− iωτ)2 +ω2
c τ

2

, (3a)

θH = arctan2(ωcτ,1− iωτ) , (3b)

where nS is the bulk electron density, τ a characteristic scattering time, m∗ the effective mass, and
ωc = eB/m∗ the cyclotron frequency. Explicitly for high-mobility GaAs [41] with effective mass m∗ =
0.067m0, at magnetic field B= 1 T, density nS = 1011 cm−2, and mobility µ= eτ/m∗ = 5× 106 cm2/Vs,
we find the cyclotron frequency ωc/2π ≈ 420GHz and the scattering time τ ≈ 0.19 ns. At low frequency
ω/2π ≪ 33 GHz and low magnetic field, the conductivity prefactor is real-valued, i.e. σ0 ≈ σ0(ω = ωc =
0) = e2nSτ/m∗ ≈ 1/12.5 Ω−1.

2
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Figure 1. Device and circuit model. (a) Sketch of a device comprising a non-reciprocal material capacitively coupled to external
electrode of angular length Lφi with potential V̄i applied to a common ground. (b) The response of this device can be interpreted
via a simple circuit model comprising an ideal circulator with characteristic impedance Zc coupled to lossy stubs, i.e. transmission
lines terminated in open circuits, with frequency dependent impedance Zi(ω).

Combining equations (1b) and (1c), we obtain a differential equation relating ρ and V :

− iωρ= σ0

[
n ′
(
sinθH

∂φ

r + cosθH∂r
)
+ ncosθH∇2

]
V . (4)

This equation reveals that without additional bulk charges, V satisfies the two-dimensional Laplace
equation in the bulk of the material and the chiral dynamics of the excess charge along the perimeter
is restricted to a small region close to the boundary where n ′ = ∂rn ̸= 0.

Substituting equation (4) into equation (1a) yields an integro-differential equation for the poten-
tial V [51]. This equation admits exact solutions in certain limits. In particular, for an infinitely sharp
boundary and without external driving, Volkov and Mikhailov showed that a chirally propagating edge
charge density (often referred to as edge magneto-plasmons) is redistributed into the bulk by long-range
Coulomb interactions, over a length scale set by the kinetic inductance Im[σ0 cosθH] [60]. For smoother
edges, multiple edge-charge modes can emerge, each propagating with a distinct velocity [61].

3. General solution

3.1. Driven potential
The problem simplifies considerably under the local capacitance approximation [62], where the three-
dimensional Poisson equation is replaced by the local relation

V≈ V̄+
ρ

c
, (5)

with capacitance per unit length c. If we also restrict ourselves to sharp interfaces with l→ 0, we find
that ρ∝ n ′ ≈−δ(r−R) and the bulk potential satisfies the Laplace equation

∇2V= 0 , (6)

complemented by the capacitive boundary condition at r=R [40]

iω (V− V̄(φ)) = ωR (sinθH∂φ +RcosθH∂r)V , (7)

where we introduce the characteristic frequency

ωR =
σ0

cR
. (8)

The driving potential V̄ is a function of the angle φ along the edge and in general it can be decomposed
into Fourier harmonics as

V̄(φ) =
∑
m

v̄me
imφ . (9)

Equation (7) shows that at θH = π/2, the boundary potential becomes decoupled from the bulk
potential, and the device response is entirely governed by boundary plasmons that propagate chirally
along the edge [40]. In contrast, at θH = 0, edge plasmons are absent, and since the boundary potential
remains coupled to the bulk, the device response is determined by the bulk potential.

3
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We find an exact analytic solution for this set of equations for arbitrary driving V̄(φ) by first con-
sidering that the solution of the Laplace equation, non-diverging at r= 0, is an analytic function of the
form

V(r,φ) =
∑
m

vme
imφ
( r

R

)|m|
. (10)

The coefficients vm are determined by the boundary condition in equation (7) and are given by

vm =
ωv̄m

ω−mωRei(θH−π/2)m/|m| . (11)

We now turn to a concrete example in which the boundary potential is defined by N electrodes.
Each electrode j has angular length Lφj and extends from φj to φj+1 = φj + Lφj , with φ1 = 0 and φN+1 =
2π. The applied boundary potential can then be written as

V̄(φ) =
N∑

j=1

[
Θ
(
φ−φj

)
−Θ

(
φ−φj+1

)]
V̄j , (12)

where V̄j is the potential applied to electrode j relative to a common ground. This potential has Fourier
coefficients

v̄m =−i
N∑

j=1

e−imφj − e−imφj+1

2πm
V̄j . (13)

The potential V is then found by combining equations (10), (11), and (13). We note that the summa-
tion over Fourier harmonics can be performed exactly.

Here, we assumed the entire perimeter is covered by electrodes and neglect plasmon delays in
ungated regions. This approximation is justified in the local capacitance approximation, where interac-
tions in ungated segments are unscreened and plasmon velocities formally diverge [57]. More physic-
ally, the plasmon delay can be mimicked by smoothing the capacitance profile [40] instead of using step
functions or by introducing fictitious grounded electrodes in ungated regions [49].

3.2. Microwave response
To evaluate the device response, we calculate the current Ii collected at electrode i when a potential V̄j

is applied to electrode j while all other electrodes are grounded. The current is obtained by integrating
the time-dependent boundary charge density iωρ along the angular extent of electrode i. This procedure
yields the terminal admittance matrix element

Yij =
Ii
V̄j

= iωσ0

∑
m̸=0

ei(θH−
π
2 )sign(m)

(
eimφi − eimφi+1

)(
e−imφj − e−imφj+1

)
2πm

(
ω−mωRei(θH−π/2)sign(m)

) (14a)

= σ0

[
F

(
ω

ωR
, δφij,θH

)
+ F

(
ω

ωR
, δφij + Lφi − Lφj ,θH

)
− F

(
ω

ωR
, δφij + Lφi ,θH

)
− F

(
ω

ωR
, δφij − Lφj ,θH

)]
, (14b)

F(ω,φ,θ) =
eiφΦ

(
eiφ,1,1−ωe−i(θ−π/2)

)
+ log

(
1− eiφ

)
i2π e−i(θ−π/2)

−
e−iφΦ

(
e−iφ,1,1+ωei(θ−π/2)

)
+ log

(
1− e−iφ

)
i2π ei(θ−π/2)

,

(14c)

where we introduced the angular distance δφij = φi −φj and Φ(a,b, c) is the Hurwitz-Lerch trascendent
function.

We will now discuss various limits of this general result.

3.2.1. No Hall effect
When θH = 0, the Hall effect is absent. In this case the material preserves time-reversal symmetry, and
the response is fully reciprocal, such that the terminal admittance matrix satisfies Yij = Yji.

Although equation (14) can be evaluated directly at θH = 0, further insight can be gained by expand-
ing the response at small frequencies ω < |ωR|. In this regime, the function F takes the form

F(ω,φ,0) =−
∞∑
k=1

(iω)k
Re
[
Li1+k

(
eiφ
)]

π
, (15)

4
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where Lik(x) is the polylogarithmic function.
This expression shows that F(0,φ,0) = 0, i.e. the system does not transmit DC signals. This behavior

is consistent with the capacitive coupling at the boundary, which inherently blocks static responses and
effectively decouples all terminals at ω= 0. At finite but small ω, the system response acquires both real
and imaginary parts, corresponding respectively to dissipative and reactive contributions. Importantly,
in this regime the response is non-universal and its precise value depends on the detailed geometry and
edge profile of the Hall material [40].

3.2.2. Quantum Hall limit
An important regime of the terminal admittance matrix corresponds to the large magnetic field and
low dissipation limit, defined by ω ≪ ωc and ωcτ →∞. This regime mimics the quantum Hall effect,
where θH → π/2, the diagonal elements of the conductivity tensor vanish, and the off-diagonal com-
ponent reduces to σ0 = e2ν/h, with filling factor ν = hnS/eB [58]. We restrict ourselves to a positive
magnetic field. In this limit, the plasmonic characteristic frequency becomes purely real-valued, yeilding
ωR = e2ν/hcR. For typical values of capacitance cR≈ 0.1 pF [41] in GaAs, the characteristic frequency is
in the microwave regime ωR ≈ ν× 0.4 GHz and increases at lower magnetic field values.

The exact solution for the terminal admittance matrix takes the form [49, 51]

Yij =− σ0

2

[
1+ icot

(
πω

ωR

)](
1− e

iωL
φ
i

ωR

)
(16a)

×



(
1− e

iω(2π−L
φ
i )

ωR

)
i = j(

1− e
iωL

φ
j

ωR

)
e

−iωδφ
œ
ji

ωR i ̸= j

, (16b)

where δφœ
ji denotes the angular separation between the right edge of electrode j (φj+1) and the left edge

of electrode i (φi), measured in the clockwise direction.
Since at θH = π/2 the boundary dynamics are completely decoupled from the bulk potential (see

equation (7)), this solution is universal and independent of the precise geometry of the quantum Hall
material [40].

3.2.3. Circuit model for small dissipation
The lossless quantum Hall admittance matrix Y ij in equation (16a) admits a simple interpretation in
terms of an effective circuit model, see figure 1(b) [49, 51]. The device behaves as an ideal anticlockwise
circulator with characteristic impedance

Zc =
1

2σ0
, (17)

and scattering matrix

Sö =

 0 1 0
0 0 1
1 0 0

 , (18)

which encodes the chirality of plasmon propagation, connected to each external terminal j via a stub
impedance

Zj (ω) =
i

2σ0
cot

(
ωLφj
2ωR

)
, (19)

that accounts for the phase delay of plasmons due to their finite propagation velocity.
This circuit model provides an intuitive interpretation of the resonances observed in Hall effect

devices. Beyond sharp edges, it also remains accurate for smoother boundary profiles emerging in
electrostatically-defined edges [63, 64]. Moreover, it can be systematically generalized to capture slower
plasmonic modes [57, 61] by introducing additional equivalent circuits connected in parallel, with
appropriately rescaled values of σ0 and ωR in both Zc and Zj(ω) [51, 57].

We also emphasize that the proposed circuit model can be readily extended to include the finite plas-
mon delay time between electrodes that occur in real devices where metal gates are not covering the full
perimeter. This extension can be implemented by introducing additional delay stubs with appropriately

5
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chosen effective lengths (shorter than the physical distance between the edges of the electrodes) which
capture the faster plasmon propagation along the unscreened edges [49, 51].

For small deviations of θH from the ideal quantum Hall limit π/2, the equivalent circuit can be
extended to account for dissipation by introducing complex-valued parameters,

σ0 → σ0e
i(θH−π/2)sign(ω) and ωR → ωRe

−i(θH−π/2)sign(ω) . (20)

This modification incorporates losses both in the plasmon propagation, through the dissipative stubs,

Zj (ω) =
ie−i(θH−π

2 )sign(ω)

2σ0
cot

(
ωLφj
2ωR

ei(θH−
π
2 )sign(ω)

)
, (21)

and in the circulation itself, via the complex-valued impedance

Zc =
1

2σ0
e−i(θH−π

2 )sign(ω) . (22)

Finally, we remark that the capacitance per unit length is c∝ ϵS, where ϵS is the dielectric constant.
Additional dielectric losses in the system can be incorporated within the our theoretical framework
by introducing a complex-valued permittivity ϵS → ϵ ′S − iϵ ′ ′S , rendering the characteristic frequency ωR

complex-valued, in analogy to the effect of a finite longitudinal conductivity when θH ̸= π/2.

4. Microwave devices

We now turn to concrete devices that serve as illustrative examples of equation (14).

4.1. Reciprocal two-terminal devices
To interpret the terminal admittance matrix in equation (14), we begin with the simplest geometry, that
is a two-terminal device in which only two electrodes are coupled to the Hall material. This configura-
tion is fully reciprocal, which can be intuitively understood from the circuit model of figure 1(b): with
only two stubs present, no chirality-induced asymmetry arises.

The terminal admittance matrix in this case takes the general form

Y= Y2

(
1 −1
−1 1

)
. (23)

For symmetric electrodes of equal length Lφ1 = Lφ2 = π, the explicit expression becomes

Y2
σ0

=

Φ

(
−1,1,1+ ωe

i(θH−π
2 )

ωR

)
− log(2)−H

ωe
i(θH−π

2 )
ωR

iπ ei(θH−
π
2 )

−

Φ

(
−1,1,1− ωe

−i(θH−π
2 )

ωR

)
− log(2)−H

−ωe
−i(θH−π

2 )
ωR

iπ e−i(θH−π
2 )

, (24)

where Hx is the xth harmonic number.
We now restrict to real-valued ωR and σ0. Figure 2(a) shows the real (dashed curves) and imagin-

ary (solid curves) parts of Y2 as functions of frequency, for different values of the Hall angle θH. In the
quantum Hall limit (θH = π/2, black curves), the expression simplifies to [40]

Y2 (θH = π/2) =−i tan

(
πω

2ωR

)
. (25)

The response is then purely imaginary, with resonances at ω = ωR(2n+ 1) and zeros at ω = ωR(2n). This
behavior can be directly interpreted from the circuit of figure 1(b): the two-terminal admittance Y2 =
1/Z1 + 1/Z2 reduces to the series combination of identical stubs Z1 = Z2 (equation (19)), which act as
short circuits at resonance and open circuits at the zeros.

When small dissipation is included (blue curves), the sharp resonances broaden and their amplitude
decreases with increasing frequency. When the Hall angle approaches zero (red curves), these resonant
features vanish altogether, reflecting the absence of chiral plasmon propagation along the boundary in
this limit.

6
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Figure 2. Reciprocal dissipative response. (a) Frequency dependence of Y2 for varying Hall angle. We show real and imaginary
components with dashed and solid lines. In the quantum Hall regime θH = π/2 (black curves) the system has resonances at
ω = ωR. These resonances are smoothed by dissipation, when the Hall angle decreases (blue curves), and are completely removed
when θH = 0 (no Hall effect). (b) For small dissipation (θH = 0.9π/2) and low frequency, the response is accurately captured
by our generalized dissipative circuit model (black solid and gray dashed line). (c) The error of this approximation is shown as
a function of θH for varying frequency, ranging from ω = 0.5ωR (blue curve) to ω = 5.5ωR (red curve) and varied with steps
of ωR.

In figure 2(b), we compare the exact analytic expression with the approximate dissipative circuit
model of figure 1(b), using the substitutions in equation (20). For weak dissipation and low frequencies,
the lossy stub model reproduces the smoothened resonances with high accuracy, and deviations appear
only at higher-order resonances.

Moreover, in figure 2(c) we quantify the error as a function of θH for different frequencies. The res-
ults confirm that the lossy stub circuit provides a quantitatively reliable description over a wide range of
frequencies, provided dissipation and Hall angle remains small.

Finally, from the two-port admittance in equation (23), we can find corresponding scattering matrix
through the textbook relation [65]

S= (I+Z0Y)
−1

(I−Z0Y) , (26)

where Z0 is the characteristic real-valued impedance of the external circuit. Explicitly, defining the
dimensionless complex-valued quantity y= Z0Y2, we obtain

S=
1

1+ 2y

(
1 2y
2y 1

)
. (27)

In lossy systems, the scattering matrix is generally not a unitary matrix and the variation from unitarity
are physically related to the power dissipated. In this case, we find

I− S†S=
Re(y)

|y|2 +Re(y)+ 1/4

(
1 −1
−1 1

)
, (28)

confirming that, as expected, the S-matrix is unitary, i.e. the system is lossless, at θH = π/2 since y is
purely imaginary (see equation (25)), while dissipation caused by the real part of Y2 is finite at θH ̸=
π/2, see figure 2.

4.2. Non-reciprocal three-port devices
We now turn to the response of non-reciprocal devices, focusing on the three-terminal geometry
sketched in figure 1. For concreteness, we restrict here to symmetric electrodes of equal angular length
Lφ1 = Lφ2 = Lφ3 = 2π/3, and evaluate equation (14) for this configuration. Although we emphasize the
symmetric three-terminal case, our framework equally applies to multi-terminal devices with N > 3 as
well as asymmetric electrode arrangements, such as the self-matched gyrator proposed in [50] and more
recently realized in [44].

7
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4.2.1. Symmetric gyrator
We first consider the gyrator [66]. An ideal gyrator is a two-port device characterized by the scattering
matrix

SG = eiϕ
(

0 −1
1 0

)
. (29)

where ϕ is an arbitrary phase.
Such a device can be implemented from our three-terminal Hall device simply by grounding one

of the electrodes, e.g. electrode 3 [50]. Starting from the general terminal admittance matrix Y ij in
equation (14), which relates applied potentials to the resulting currents at all electrodes, we obtain a
two-port admittance matrix by restricting Y ij to the active electrodes i, j ∈ 1,2 while taking electrode 3
as grounded.

From this two-port admittance, the corresponding scattering matrix is obtained by using
equation (26). In what follows, we assume that the Hall device is impedance-matched, i.e. Z0 = 1/(2σ0).
In the quantum Hall regime this condition is difficult to satisfy due to the large value of the resistance
quantum (1/σ0 ≈ 1/ν× 1/25 kΩ), but this requirement can be relaxed by operating at lower magnetic
fields with large filling factors ν (a regime that is well-described by our model) or by appropriate geo-
metrical modifications enabling self-matching [44, 50]. We delay an in-depth discussion on impedance
matching to section 4.2.2.

From the scattering matrix, we define the standard non-reciprocity parameters

∆± =
S12 ± S21

2
and ∆0 =

S11 + S22
2

. (30)

Here, the gyration parameter ∆− quantifies the degree of non-reciprocity, being nonzero only in non-
reciprocal devices [50]. In contrast, ∆+ vanishes either for an ideal non-reciprocal device or when the
device is fully reflective, i.e. when the relaxation parameter |∆0|= 1.

Figure 3(a) shows the frequency dependence of these parameters in the symmetric gyrator. We com-
pare the dissipationless limit (dashed lines) to the case of finite dissipation (solid lines). At low fre-
quency, the device is always purely reflective. This behavior also recurs at ω = 3nωR. In contrast, at
ω = (3n+ 1/2)ωR the device behaves as an ideal gyrator, with perfect non-reciprocity.

This behavior admits a simple circuit interpretation, see figure 1(b). At ω = 3nωR, all three stubs
Z1 = Z2 = Z3 behave as open circuits, so the device is reflective. At ω = 3(n+ 1/2)ωR, the stubs instead
act as short circuits, yielding an ideal non-reciprocal device.

For finite Hall angle (solid curves), the overall resonance pattern is unchanged, but part of the signal
is lost and the amplitude of both transmitted and reflected components is reduced. The lowest-frequency
resonances are less affected by dissipation, while higher-frequency ones are strongly suppressed. Finally,
as shown in figure 3(a), the lossy circuit model obtained using equation (20), reproduces this behavior
accurately (see dotted curves), capturing both the resonance structure and the dissipative smoothing.

4.2.2. Self-matched gyrator
High-impedance devices in quantum technologies can be advantageous in enabling the compact integra-
tion of part of the microwave circuitry directly on-chip, as well as potentially facilitating quantum coher-
ent interfaces with small semiconducting systems such as quantum dots [29, 31]. However, when these
devices are connected to standard external circuits where typically Z0 ∼ 100 Ω, the impedance matching
condition Z0 = 1/(2σ0) can be challenging to meet. In these cases, impedance matching techniques are
required [65], for example by utilizing LC-circuits [41] and magnetic-field-resilient varactors [67].

An alternative approach is to design quantum Hall effect devices with a self-matched behavior [44,
50]. These devices not only do not require external impedance matching, but can intrinsically acts as on-
chip impedance matchers for other high-impedance devices. The simple design for a self-match gyrator,
requires the grounded electrode to be twice as long as the others, i.e. Lφ3 = 2Lφ1 = 2Lφ2 [44, 50].

Figure 3(b) shows the parameters ∆± in equation (30) as functions of frequency for the self-
matched device. For concreteness, we consider here an impedance mismatch of 2σ0Z0 = 1/5, which cor-
responds for example to a realistic GaAs device at magnetic field B= 0.5 T and nS = 1011 cm−2, such
that ν= 8, matched with an external circuit with characteristic impedance Z0 ≈ 300 comparable to the
vacuum impedance; moreover in this device, considering cR≈ 0.1 pF [41], we find ωR ≈ 3.2GHz. We
note that as expected from [50, 51], at θH = π/2, there are two ideal gyrating and one reflective peaks at
low frequency. Finite Hall angles introduce losses that decreases the amplitudes of these peaks, a feature
that is nicely captured by our effective lossy circuit model.
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Figure 3. Non-reciprocal dissipative response. In (a), (c), we consider a device with three equal terminals impedance-matched
with the external electrodes, i.e. Z0 = 1/2σ0. We operate the symmetric device as a two-port gyrator by grounding one electrode
in (a) and as a three-port circulator in (c). In (b), we consider a self-matched gyrator with Z0 = 1/10σ0 with one grounded elec-
trode twice as long as the others. We show relevant combinations of the scattering parameters as a function of ω. A finite Hall
angle (solid curves) causes dissipation that decreases the amplitude of the transmitted signal as compared to the ideal quantum
Hall device (dashed curves). The dampening of resonances is lower at low frequency where is well captured by our approximate
dissipative circuit model (dotted curves).

4.2.3. Circulator
We now consider the three-port circulator [40, 41, 46], which is directly realized in the three-terminal
Hall device by measuring the potential at each terminal with respect to a common ground. From the
full three-dimensional terminal admittance matrix, the corresponding scattering matrix can be obtained
using equation (26). As before, we focus on a matched device with Z0 = 1/2σ0.

To quantify the circulator’s performance, we define the following parameters:

Qö =
S12 + S23 + S31

3
, (31a)

Qœ =
S21 + S32 + S13

3
, (31b)

Q0 =
S11 + S22 + S33

3
. (31c)

Here, Qö (Qœ) equals one for an ideal counterclockwise (clockwise) circulator (see equation (18)),
while Q0 quantifies reflection, reaching unity only for a fully reflective device.

Figure 3(c) shows these parameters as functions of frequency. The behavior mirrors that of the
gyrator: the device is fully reflective at ω = 3nωR, while ideal non-reciprocal circulation is achieved at
ω = 3(n+ 1/2)ωR. For finite Hall angles, the amplitude of the circulating signals decreases, reflecting the
dissipative losses, but the overall resonance pattern remains unchanged. As with the gyrator, this dissip-
ative behavior is well captured by our lossy circuit model.

4.3. AC response of material
Our general model, and in particular the terminal admittance matrix in equation (14), not only cap-
tures dissipation but also includes the intrinsic AC response of the material. This originates from the
fact that the conductivity tensor generally has a reactive component, for example due to kinetic induct-
ance, leading to complex-valued σ0 and θH (see equation (3)). In our non-reciprocal device this modifies
ωR ∝ σ0, which itself becomes complex (see equation (8)).

In figure 4, we analyze how the intrinsic AC response modifies the operation of the three-port sym-
metric circulator. Specifically, we plot the Q parameters defined in equation (31) as functions of both

9
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Figure 4. Intrinsic AC response. We consider the response of a three-port dissipative circulator, and show relevant combinations
of scattering parameters against frequency (ω/ω0

R) and magnetic field (ωcτ ∝ B). To capture the effect of an increasing mag-
netic field, the external electrodes are impedance-matched with the zero-frequency and zero-field characteristic impedance of the
device, i.e. Z0 = 1/2σ0(ω = ωc = 0). In analogy, we normalize ω over ω0

R = σ0(ω = ωc = 0)/cR, and the Hall angle is varied as
θH = arctan2(ωcτ,1−ωτ). In rows (a), (b), and (c), we show the effect of an increasing value of the kinetic inductance of the
device, parametrized by an increasing the product ω0

Rτ . Row (a) shows the response for negligible kinetic inductance, where we
identify the typical∝ 1/B resonance lines. As we increase the kinetic inductance, in row (b), additional counter rotating reson-
ances∝ B begin appear, that become sharp resonances at large kinetic inductance in row (c).

the frequency ω and the cyclotron frequency ωc ∝ B, normalized by the scattering time τ . To capture
the full dependence on the magnetic field B, we normalize frequencies by ω0

R, defined as ωR evaluated
at σ0(ω = ωc = 0). Similarly, we assume the external circuit to be matched to the real-valued resistance
Z0 = 1/2σ0(ω = ωc = 0) =m∗/2e2nSτ .

The intrinsic AC response of the material is encoded in the frequency dependence of σ0(ω) and
θH(ω), both of which depend on the scattering time τ . At low frequencies, this dependence results
in a kinetic inductance that renders the diagonal components of the conductivity tensor complex, i.e.
σxx ≈ σxx(1− iωτ) [60]. To explore this effect, we vary τ normalized by ω0

R.
In figure 4(a), we focus on the small kinetic inductance case. Here, we recover the expected ωR ∝

σ0 ∝ 1/B scaling of the resonance lines [41]. Here, we neglect the flattening of the resonances caused
by quantum Hall plateaus. Dissipation suppresses higher-order resonances, leaving only the lowest
ones visible. These results are consistent with previous numerical results for static dissipation in Hall
devices [68].

At intermediate kinetic inductance, τ ∼ ω0
R in figure 4(b), we observe a smoothening of the low-

frequency, low-field counterclockwise resonance. At the same time, more resonant features begin to
emerge in the clockwise circulation and in the reflection response.

At large kinetic inductance, in figure 4(c), these features evolve into sharp resonances with an
opposite (clockwise) circulation compared to the expected chirality of the plasmons. Remarkably,
these counter-circulating resonances scale ∝ B, in contrast to the 1/B scaling of the direct plasmonic
resonances.
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We emphasize that while extrinsic circuit elements (such as parasitic capacitances) can also generate
counter-circulating signals [41, 51], they typically retain the same 1/B scaling as the primary plasmonic
resonances. The distinct B-scaling observed here clearly distinguishes these additional resonances arising
from the intrinsic reactive response of the material.

Importantly, even in the lossy regime these counter-resonances remain as strong as the direct cir-
culating features. This suggests a potentially practical route to selectively control the direction of signal
propagation in Hall-effect based circulators.

5. Conclusion

In summary, we have developed a general analytic framework describing the microwave response of
passive non-reciprocal devices, which naturally incorporates dissipation, geometric effects, and the
intrinsic AC response of the underlying material. Our analytic solution provides clear physical inter-
pretation of the system response in terms of a lossy stub circuit model, which we show accurately cap-
tures the device response in the experimentally relevant regime. Furthermore, by extending the model to
include frequency-dependent conductivities, we revealed features, such as counter-circulating resonances
with distinct magnetic field scaling, that are not captured by extrinsic circuit elements. Altogether, our
results establish a unified description of microwave devices based on non-reciprocal materials, bridging
microscopic material response and macroscopic circuit performance, and providing practical guidelines
for designing next-generation compact non-reciprocal components.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

We thank David DiVincenzo for stimulating discussions. We are also grateful to Aldo Tarascio, Rafael
Eggli, Miguel Carballido, Yiqi Zhao, and Dominik Zumbühl for constant insights and for sharing experi-
mental data prior publication. This work was supported by NCCR Spin (Grant Number 225153).

ORCID iD

Stefano Bosco  0000-0002-4035-9654

References
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