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ABSTRACT

 

Simultaneous velocity measurements were taken using Particle Image 

Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp 

open-channel bend with an immobile gravel bed. The PIV measures 3D velocity 

vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas the 

ADVP measures 3D velocity vectors in a vertical profile with a frequency of 31.25 

Hz. The paper reports simultaneous measurements with both instruments positioned 

in the same location. Both instruments resolve accurately spatial structures of the 

complex mean flow fields characterized by small velocities of the order of 0.01 ms
-1

, 

such as the outer-bank secondary flow cell and the secondary flow cell in the zone of 

flow separation at the inner bank. PIV measurements of the mean velocities are of 

better quality near the flow boundaries and the spatial distribution of data allows 

investigation of the temporal behaviour of secondary flow structures. Power spectra 

and time-series of quasi-instantaneous velocities demonstrate that the ADVP 

measures turbulence accurately, whilst PIV measurements of turbulence suffer from 

the lower temporal resolution and the higher noise levels. The results presented in 

this paper demonstrate that the combined application of PIV and ADVP allows 

investigation complex 3D flows in greater detail than is possible from a single 

instrument.  
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INTRODUCTION

This paper combines the use of three-dimensional Particle Image Velocimetry (PIV) 

with an Acoustic Doppler Velocity Profiler (ADVP) to examine the spatial structure 

of a complex flow field. The flow examined is at a cross-section in a sharp meander 

bend with flow separation at the inner bend over an immobile rough gravel bed. Both 

instruments were deployed simultaneously at the same cross-section in the flow. 

ADVP measurements were obtained from ten vertical profiles whilst the PIV was 

used to traverse the same cross-section with eight overlapping flow maps to cover the 

entire cross-section. 

The aim of this paper is to compare the performance of the two different 

instruments and to assess the advantages and disadvantages of each technique. 

Comparison will be made between the spatial resolution and coverage of the two 

instruments, the mean flow structure, and key measures of flow turbulence. 

PIV has the advantage that three-dimensional velocities can be obtained from 

a large measurement plane simultaneously. In this case each measurement plane 

covered almost half the channel width. However, in comparison to the ADVP the 

temporal resolution of the PIV measurements is significantly lower and measurement 

accuracy depends on many complex factors such as flow seeding. These factors 

combined have important consequences for measuring the turbulent flow parameters. 

 

EXPERIMENTAL SET-UP AND CONDITIONS 

The experiments were undertaken in the Total Environment Simulator flume at Hull 

University. The working section of the flume is 6m wide and 11m long. Within this 

area a flow channel with two sharp bends was constructed as shown in Figure 1. The 

walls of the curved central section of the flow channel were constructed from clear 

Perspex to enable imaging through the channel sidewalls. The areas of the flume 

outside the flow channel were also flooded with water to enable the PIV system to 

view into the channel without any refractive effects. The channel bed was filled with 

coarse bed material with a D50 of 11.8mm and an average downstream slope of 

0.002. 

 

Figure 1. Schematic drawing of the flume set-up. The flow channel was 1m wide 

and the dotted line shows the location of the measurement section. 
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Acoustic Doppler Velocity Profiler (ADVP).  Non-intrusive velocity measurements 

were made with an ADVP developed at EPFL (Lemmin and Rolland 1997, Hurther 

and Lemmin 1998). It consists of a central emitter surrounded by four receivers 

(Figure 2), placed in a water-filled housing that touches the water surface. In this 

configuration, the ADVP measures vertical profiles of the three-dimensional velocity 

vector, which are divided into identical bins with a height of 3.75 mm. Three 

receivers would be sufficient to measure the three-dimensional velocity vector, but 

the addition of a fourth receiver improves turbulence measurements (Hurther and 

Lemmin 2001, Blanckaert and Lemmin 2006). The flow was seeded with hydrogen 

bubbles generated by means of electrolysis (Blanckaert and Lemmin 2006) in order 

to guarantee a sufficient acoustic scattering level. An ADVP configuration was 

adopted with the four receivers symmetrically surrounding the emitter and at angle of 

45° with respect to the measured cross-sections. Due to the physical dimensions of 

this ADVP configuration it was not possible to measure closer than 0.18 m to the 

inner and outer banks. This is not an inherent limitation of the ADVP, however, and 

an asymmetrical ADVP configuration with all four receivers placed at the same side 

of the emitter has already been applied to measure within 0.02 m from vertical banks 

(Blanckaert 2002). Measurements were taken in 10 vertical profiles for at least 6 

minutes at each location at a measuring frequency of 31.25 Hz. Patterns of flow 

quantities across the entire measuring grid are obtained by interpolation in-between 

measured profiles. Blanckaert and de Vriend (2004) estimate the uncertainty in the 

experimental data at 4% in the magnitude of the time-averaged velocity, 10% in 

time-averaged secondary flow components, 15% in the turbulent shear stresses, 20% 

in the turbulent normal stresses and the turbulent kinetic energy. The accuracy in the 

ADVP measurements is reduced near the flow boundaries. At the water surface, the 

ADVP housing perturbs the flow up to 15 mm below the water surface. In a region 

up to 15 mm from solid boundaries, the ADVP appears to underestimate turbulent 

characteristics, which is tentatively attributed to the high velocity gradients within 

the measuring volume and/or to parasitical echoes from the solid boundary (Hurther 

and Lemmin 2001). 

 

RESULTS

Time-averaged flow patterns.  Figure 3 shows the time-averaged magnitude of the 

velocity vector measured using the ADVP and PIV. In general the data show a good 

correlation between the measured velocities in the core of the flow domain, however, 

the magnitude of the velocities measured by the PIV are slightly lower than those 

measured by the ADVP. The flow perturbation induced by the ADVP housing at the 

water surface is visible in the PIV and ADVP measurements. The PIV measurements 

provide better data near the bed, where the ADVP measurements are perturbed. 

Moreover they allow measuring the near-bank regions, which are still poorly 

understood in spite of their importance with respect to bank protection, bank 

erosion/accretion and river planform evolution.

The velocity pattern suggests the existence of complex three-dimensional 

flow patterns. The core of high velocities shown by both instruments at y � 0.2m -

0.4m and z/H � 0.5-0.8 and the inclination of the velocity isolines in the central part 
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of the cross-section indicate the existence of a curvature-induced central secondary 

flow cell. This cell advects high near-surface velocities outwards in the upper part of 

the water column, and low near-bed velocities inwards in the lower part of the water 

column. The bulging of the isolines near the outer-bank measured with the PIV 

suggests the existence of a counter-rotating outer-bank secondary flow cell. This cell 

advects low velocities originating from the outer-bank boundary layer towards the 

core of the flow domain near the water surface, and high velocities originating from 

near the water surface towards the outer bank. PIV measurements also show a zone 

of low velocities near the inner bank that widens towards the water surface. 

Pronounced velocity gradients occur along a layer that is steeply inclined from about 

y � 0.2 m near the surface to the bed at the inner bank. These features are 

characteristic of flow separation at the inner bank. 

 

 
 

 
Figure 3. Pattern of the magnitude of the velocity vector. Distance from the 

inner bank on the horizontal axis and normalized flow depth on the vertical 

axis. Undistorted scale. (top) interpolated from ADVP measurements in vertical 

profiles indicated by dashed lines; (bottom) 3D PIV measurements. 

 

Flow separation at the inner bank, the outer-bank secondary flow cell and the 

centre-region secondary flow cell leave a clear footprint on the velocity pattern. 

These observations indicate the important role of secondary flow structures with 

respect to the (re)distribution of momentum and boundary shear stress in complex 

three-dimensional flows. In laboratory investigations, secondary flow is usually 

defined as the flow component in cross-sections perpendicular to the channel 

centreline. However, the orientation of the measured cross-section is not 

perpendicular to the centreline which complicates the visualisation of the secondary 

flow pattern. A clear indication of the secondary flow pattern is given by the vertical 

velocities as shown in Figure 4. The patterns measured with the ADVP and PIV are 

qualitatively in very good agreement, although some quantitative differences exist 

that can largely be attributed to slight differences in vertical alignment of both 

instruments. Both instruments are able to measure and visualize secondary flow 

structures characterized by small velocities of the order of 0.01 ms
-1

.  

These vertical velocity patterns confirm the findings based on the magnitude 

of the velocity vector and clearly show three secondary flow cells. The typical 

curvature-induced centre-region cell is situated in the zone y = 0.20m – 0.85m and 
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has maximum vertical velocities of about 0.03ms
-1

. The maximum downwelling 

velocities are found about one flow depth away from the outer bank, which indicates 

the existence of an outer-bank cell. A secondary flow cell that co-rotates with the 

centre-region cell is discernable in the flow separation zone near the inner bank.  

 

 
 

 
Figure 4. Pattern of the vertical velocity. (top) ADVP measurements in vertical 

profiles indicated by dashed lines; (bottom) 3D PIV measurements. 

 

Turbulence.  Figure 5 shows the measurement of turbulent kinetic energy (TKE). 

The spatial distribution and magnitude of TKE measured with the PIV and ADVP 

show a number of differences that highlight the different capabilities of the 

instruments as well as the complex nature of the flow being investigated. PIV and 

ADVP measurements show similar trends in the central zone, although PIV 

measurements are consistently higher. Measurements from the PIV show very high 

TKE within the flow separation zone identified from mean flow measurements above 

whereas ADVP measurements show the opposite trend. It is likely that PIV 

measurements in this area are significantly affected by noise due to the seeding 

density which is difficult to control in the flow separation zone. ADVP 

measurements have proven to be reliable under similar flow conditions (Zeng et al. 

2008). The power spectra and cumulative power spectra (Figure 6) at mid-depth from 

y = 0.3 m confirm the good quality of the ADVP measurements: they show an inertial 

sub-range characterized by a -5/3 slope for frequencies higher than about 5Hz and a 

tendency towards isotropy for frequencies higher than about 10 Hz. 

 

 
 

 
Figure 5. Pattern of the turbulent kinetic energy. (top) ADVP measurements in 

vertical profiles indicated by dashed lines; (bottom) 3D PIV measurements. 
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Figure 6. Power spectra (left) and cumulative power spectra (right) of the 

velocity fluctuations along x ,y ,z measured in the point at y = 0.3m at mid-depth. 

 

The temporal resolution of the PIV measurements does not allow detailed 

investigation of turbulent coherent structures, but it is expected to be sufficient for 

the investigation of the temporal behaviour of secondary flow cells, which is 

characterized by lower frequencies of the order of 1Hz (Blanckaert and de Vriend 

2005). 

A 5 second time-series of the quasi-instantaneous streamwise-vertical 

velocity components in the vertical plane at 0.3m from the inner bank, shown in 

Figure 7, illustrates that the spatial (vertical axis) and temporal (horizontal axis) 

resolution of the ADVP measurements is considerably higher than that of the PIV 

measurements. Hurther et al. (2007) have demonstrated that the temporal and spatial 

resolutions of the ADVP measurements allow detailed investigation of turbulent 

coherent structures.  

 

  

 
Figure 7. Pattern of instantaneous streamwise-vertical velocity components in 

the vertical plane at 0.3m from the inner bank based on the Taylor hypothesis of 

frozen turbulence. (top) ADVP measurements; (bottom) 3D PIV measurements. 

Illustrated time series were not measured simultaneously. 
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CONCLUSIONS AND DISCUSSION 
 

The results presented in this paper demonstrate that the combined application of PIV 

and ADVP produces greater detail than is possible from a single instrument. Both 

instruments are able to measure spatial structures of complex 3D mean flow fields 

characterized by small velocities of the order of 0.01 ms
-1

. PIV measurements are of 

better quality near the flow boundaries, whilst ADVP appears to be considerably 

better for turbulence measurements where PIV suffers from lower temporal 

resolution and higher noise levels. 

The simultaneous application of PIV and ADVP in complex three-

dimensional flows allows exploiting the strengths and circumventing weaknesses of 

both instruments. The temporal resolution of PIV measurements allows investigating 

the time-averaged flow patterns as well as the temporal behaviour of secondary flow 

cells (not shown in the paper). Simultaneous ADVP measurements allow 

investigating in more detail turbulence characteristics as well as coherent turbulent 

structures. 
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