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A dispersion of stiff and thin (‘rigid line’) inclusions (RLIs) in a matrix material may result beneficial for
stiffening in the elastic range, but might be detrimental to strength, as material instabilities may be trig-
gered by inclusions when the matrix is brought to a viscoplastic-damaging state. This dual role of RLIs is
investigated by means of the embedded reinforcement model. Validated against available analytical pre-
dictions, this numerical model is employed to assess the roles of RLIs’ orientation, interaction, volume
fraction, and distribution, considering up to 1500 inclusions. When the matrix material deforms inelas-
tically, RLIs produce stress concentrations that promote the nucleation of shear bands. These are charac-
terized at collapse for many distributions of RLIs, showing that their effects range from almost negligible
to a disrupting alteration of the dominant failure mechanism. In the latter case, it is shown that the dom-
inant shear bands can be fragmented by RLIs into a mosaic of tiny localization bands. These results offer
new insights into energy dissipation mechanisms of reinforced materials, as they are promoted or inhib-
ited by the interactions of rigid line inclusions.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biological nanocomposites with stiff minerals embedded in a
relatively soft protein-based bulk material (Landis, 1995), polymer
nanocomposites with platelet-like clay particles (Kojima et al.,
1993), cermets (Clyne and Withers, 1995), and graphene-based
composite materials (Stankovich et al., 2006; Hu et al., 2014) are
some instances of composites where the reinforcing agents are so
thin and so much stiffer than the hosting material that they can be
effectively modeled as rigid-line elements. Such composites and
the roles of the highly stiff phase on their mechanical responses
can, in principle, be studied with available numerical models.
However, these analyses would face inevitable limitations con-
nected to the computational complexity stemming from the large
number of arbitrarily-oriented inclusions. A computationally
affordable method is employed here to overcome this limitation
and to reveal the complex mechanical interactions and the conse-
quent localized patterns characterizing failure of ductile materials
containing rigid inclusion dispersions.
The numerical analysis of composites characterized by realistic
volume fractions of inclusions with high aspect ratio has been
mainly hindered by the requirement of conformal discretizations,
an issue strictly inherent to classical finite element methods. A fur-
ther complication arises when the interface between inclusion and
matrix material is regarded as imperfect – namely, involving dis-
continuities in relative displacements which may be represented
by means of interface elements requiring ad hoc meshing proce-
dures. Broadly speaking, aspects such as large number of inclusions
and interfacial conditions can be adequately addressed with the
standard finite element method (FEM), only when the number of
inclusions is moderate. In contrast, these FEMmethodologies reach
their limits at high inclusion density, as the simulation cost can
become very high (an example of such a situation with perfectly
bonded fibers discretized as cylinders in a three-dimensional space
can be found in Lusti and Gusev (2004)). With reference to platelet-
shaped inclusions, simplifying modeling assumptions rely on vari-
ous dimensional reduction procedures, the most common being
the two-dimensional projection of the problem geometry, fol-
lowed, when possible, by a further dimensional reduction due to
the high aspect ratio of the projection. The former is an accepted
simplification in the numerical analysis of polymer–clay nanocom-
posites, where the elongated rectangular cross section of clay
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platelets is discretized by means of a conformal two-dimensional
mesh (Sheng et al., 2004). The latter simplification consists in the
reduction of the narrow two-dimensional rectangular projection
into a one-dimensional line inclusion, as conveniently done by
Sanborn and Prévost (2008). This approach is also pursued in rigid
line inclusion (RLI) models, which essentially are two-dimensional
analytical models describing a rigid inclusion embedded in a
deformable planar matrix (Wang et al., 1985; Baranova et al.,
2020; Atkinson, 1973; Chen, 1986; Chen, 1991; Wang et al.,
2019). Incidentally, it is worth noting the three-dimensional ana-
lytical work by Chaudhuri and Chiu (Chaudhuri, 2012; Chaudhuri
et al., 2012) dealing with planar rigid inclusions.

In a two-dimensional setting, to which the present work is lim-
ited, line inclusions can be discretized by means of finite elements
traditionally employed for the analysis of (fiber-) reinforced con-
crete or composites (for example, a bar or a beam element sur-
rounded by continuum elements) in an adequate manner. In
doing so, however, a problem arises from the conformal discretiza-
tion of matrix and inclusion, an issue that has been addressed with
a number of different strategies: (i.) embedded reinforcement
models (Zienkiewicz et al., 1972; Balakrishnan and Murray,
1986; Elwi and Hrudey, 1989; Barzegar and Maddipudi, 1997;
Hartl, 2002; Cunha et al., 2012; Zhang et al., 2020), (ii.) lattice mod-
els (Bolander and Saito, 1997; Kozicki and Tejchman, 2010; Cusatis
et al., 2011), (iii.) boundary integral equation formulations and
boundary element methods (Nishimura and Liu, 2004; Chatterjee
et al., 2008; Dong and Lee, 2005), (iv.) partition of unity enrichment
techniques (Pike et al., 2015; Pike et al., 2015; Radtke et al., 2010),
(v.) non-matching immersed methods (Alzetta et al., 2020), (vi.)
interface-constraint methods (Auricchio et al., 2017), and (vii.)
other mesh-free approaches (Barbieri et al., 2015; Yaghoobi et al.,
2015). A characterizing feature of all these methods is that line
inclusions can be placed in the computational domain indepen-
dently of the matrix domain discretization, thereby overriding
the need for conformal discretizations. Among these approaches,
embedded reinforcement models are the closest to a classical
FEM technique in terms of implementation and offer a good com-
promise between accuracy and computational burden, making
them ideal tools for the characterization of dense inclusion
distributions.

This article shows that the mechanics of composites with dense
RLIs’ distributions can be adequately modeled by means of the
cited embedded reinforcement approach. This approach is intro-
duced in Section 2.2 with reference to elastic inclusions imper-
fectly connected to the matrix material (detailed in Section 2.3).
The study reported in Section 2.4 indicates that RLIs can be prop-
erly represented by tuning the interfacial and inclusion stiffness
parameters, showing in this way that linear elastic fields predicted
by analytical solutions (Wang et al., 1985; Atkinson, 1973; Chen,
1986; Chen, 1991) can be correctly approximated. Analogies and
distinctive features are highlighted with the corresponding fields
relevant to cracks (Dal Corso et al., 2008; Noselli et al., 2010;
Bigoni et al., 2008; Misseroni et al., 2014). Sections 3 and 4 show
that rigid line inclusions can be subject to conditions of stress anni-
hilation and neutrality (Atkinson, 1973; Wang et al., 1985; Dal
Corso et al., 2016; Dal Corso et al., 2016). These examples are com-
plemented in Sections 3 and 4 by a detailed micromechanical anal-
ysis on the role of inclusion orientation and interaction.

This work also addresses another important aspect related to
RLIs. A common manifestation of failure in a ductile material is
through the nucleation and growth of shear bands, which repre-
sent localized regions of intense shearing strain, typically occurring
at severe plastic deformation. This phenomenon is an example of
material instability (a problem thoroughly investigated by H. Pet-
ryk (Bigoni et al., 2002; Petryk, 2020; Petryk, 2000; Petryk, 1997;
Petryk, 1992; Petryk, 1991; Petryk, 1989; Petryk et al., 2012), to
256
whom this article is dedicated) and may be theoretically explained
in terms of the loss of ellipticity of the incremental constitutive
tensor which, in a continuous deformation path, is detected when
the acoustic tensor (corresponding to the loading branch of the
constitutive operator) loses positive definiteness (Bigoni, 2012).
Both experimental evidence (Misra and Mandal, 2007; Özturk
et al., 1991) and theoretical modelling (Bigoni et al., 2008; Argani
et al., 2013) demonstrate that, compared to the situation of a uni-
form material, inhomogeneities in the form of rigid inclusions
induce in the surrounding material a severe stress concentration,
which strongly promotes the nucleation and growth of shear bands
and changes the failure mechanisms. Therefore, if on the one hand
inclusions stiffen the overall response of a solid, on the other they
may become even detrimental to strength in the case of brittle
matrices. This effect has been experimentally evaluated for brittle
matrix material in Noselli et al. (2010),Misseroni et al. (2014), and
Dal Corso et al. (2008) on resin specimens reinforced with thin
metal laminae, where the latter were shown to induce premature
failure. In composites with complex distributions of several inclu-
sions it is expected that the presence of the latter influences not
only the nucleation of shear bands, but also their growth. In fact,
the presence of a shear band strongly modifies the mechanical
state, and, in particular, the state of stress and strain tend to, say,
‘propagate’ along it, up to a long distance from the nucleation site.

Influenced by the geometry of the inclusions’ distribution and,
at the same time, by the strong directionality and symmetry of
the shear band phenomenon, networks of shear bands with higher
or smaller degree of regularity are expected to form, affecting the
response of the material at failure through overall ductility and
dissipation mechanisms that are different from those measured
in the matrix material. An important objective of the present study
is to investigate the formation of shear bands networks when the
matrix material is ductile and complex distributions of a large
number of RLIs are present. Shear band formation and interaction
is analyzed in Section 4 in an elastic-viscoplastic-damage material
matrix containing various distributions of rigid line inclusions. As
anticipated, the interest in this analysis lies in the fact that exper-
imental and analytical evidences indicate that the role of a RLI
changes from reinforcing agent into source of material instability
(Bigoni et al., 2008; Misra and Mandal, 2007; Özturk et al., 1991;
Dal Corso and Bigoni, 2009) nucleating strain localization which
in turn leads to the definition of a failure mechanism. The analyses
proposed in this work show how shear bands are generated near
the tips of inclusions and ‘self-organize’ in ‘mosaic’ geometric pat-
tern, which can promote or limit the near failure energy
dissipation.
2. Method of analysis

The main assumptions, the numerical and constitutive models
employed in this study are summarized. In particular, the
dimensionally-reduced model representing the rigid line inclu-
sions is validated against representative analytical results.

2.1. Domain and inclusion approximations

Consider a solid with uniform properties across its thickness h,
embedding M thin, elongated, and rigid inclusions, all with a

2a k½ � � d k½ � � h parallelepiped shape (the index k ¼ 1; . . . ;M selects
the specific inclusion). All inclusions’ edges of length h are aligned
parallel to the out-of-plane direction z. The solid thickness h may
be small or large, so that a plane stress or plane strain condition
prevails in the x� y plane, respectively. The planar section of the
solid is depicted in Fig. 1. In order to be representative of a RLI,

the thickness d k½ � is much smaller than the length 2a k½ �; in this



Fig. 1. Two-dimensional schematic of a solid containing rigid line inclusions.
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way the inclusion retains a volume (2a k½ �d k½ �h) and the RLI volume

fraction can be defined. The 2a k½ � � d k½ � rectangular cross section
of an inclusion in the x� y plane is shown in the inset of Fig. 1,
inclined at an angle h k½ � with respect to the x-axis and centered at
x k½ � and y k½ �. In this plane, the k-th inclusion is therefore approxi-

mated by a segment occupying the one-dimensional domain X k½ �

X k½ � ¼ x; y x ¼ x k½ � þ r cos h k½ �; y ¼ y k½ � þ r sin h k½ �; r 2 �a k½ �; a k½ �� ���� �
;

ð1Þ
where r is the inclusion local coordinate with origin at the inclusion
midpoint.

Each inclusion interacts with the surrounding bulk material
through its major interfacial surface, composed by the two largest
lateral surfaces, each with contact area 2a k½ � h. The minor lateral

surface, with total area 2d k½ � h, is neglected as it yields a negligible
contribution. For simplicity, a unit out-of-plane thickness (h ¼ 1)
will be henceforth assumed.

2.2. Embedded reinforcement model with slip

The embedded reinforcement model employed in this study is
based on the formulation proposed by Goudarzi and Simone
(2019). In embedded models, the inclusion is represented by
means of an independent discretization that is superimposed to
the domain discretization and equipped with a dedicated kine-
matic field. Next, the embedded reinforcement model is summa-
rized with reference to a single (M ¼ 1) inclusion; its extension
to multiple (M > 1) inclusions can be readily obtained following
Hartl (2002).

2.2.1. Kinematic field
In the embedded reinforcement model by Goudarzi and Simone

(2019) their Section 3.1.1 the inclusion is not perfectly bonded to
the surrounding bulk material. The displacement of a line inclusion
consists therefore of two components: the displacement of the sur-
rounding material and the displacement relative to it. The latter

component is defined by the sliding displacement u k½ �
s , also referred

to as ‘slip’ in the literature, which defines a discontinuity in the dis-
placement field across the interface between the k-th inclusion and
the bulk material. The displacement u in the composite material is
therefore defined as

u ¼ ub in X;

ub þ u k½ �
s e k½ � for x; yf g 2 X k½ �;

(
ð2Þ
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where ub represents a continuous displacement field within the
composite domain, and e k½ � ¼ cos h k½ �; sin h k½ �� �

is a unit vector tan-
gent to the k-th inclusion line. The inclusion continuous (non-slip)
component ub � e k½ � is also referred to as ‘concrete’ (Balakrishnan
and Murray, 1986), or ‘duct’ (Hartl, 2002) displacement in the
literature.

The relative displacement u k½ �
s between bulk material and the k-

th inclusion calls for the definition of an appropriate interfacial
constitutive law apt to describe the perfect bond between a rigid
line inclusion and the surrounding bulk material; this aspect is dis-
cussed in Section 2.4.2.

2.2.2. Governing equations
With reference to the displacement field u, Eq. (2), and consid-

ering small deformations, the principle of virtual work for a plane
solid body X of unit thickness (Fig. 1) containing a single inclusion
can be expressed as

Z
XnX 1½ �

rsdub : rb dXþ d 1½ �
Z a 1½ �

�a 1½ �
dub � e 1½ �� �

;rr
1½ � dr ¼

Z
Ct

dub � �t dCt; ð3aÞ

d 1½ �
Z a 1½ �

�a 1½ �
du 1½ �

s;rr
1½ � dr þ 2

Z a 1½ �

�a 1½ �
du 1½ �

s t 1½ � dr ¼ 0; ð3bÞ

where the subscript ‘; r’ denotes the derivative with respect to r, rs

and d are the symmetric gradient and the first variation operators,
respectively, rb is the stress tensor in the bulk material, and the sca-
lar r 1½ � is the axial stress along the inclusion. Moreover, �t is the trac-
tion vector acting along the solid boundary Ct # @X, and t 1½ � is the
interfacial tangential traction, acting along the inclusion-matrix
interface.

Eq. (3a) defines the virtual work done by the displacement field
ub in the whole body, with the exception of the inclusion-matrix
interface contribution. On the left-hand side, the first term repre-
sents the usual contribution of the bulk material, while the second
accounts for the corresponding work in the one-dimensional inclu-
sion domain by the duct (axial) deformation, with the factor before

the integral representing the cross-sectional area d 1½ � h (with thick-
ness h=1). The term on the right-hand side of Eq. (3a) is the work
done by the tractions applied on the boundary. Eq. (3b) represents
the virtual work done by the slip component of the inclusion dis-
placement. The first term defines the work done at the boundary
of the inclusion, with the factor before the integral representing

the inclusion cross-sectional area d 1½ � h. The second term accounts
for the work done at the inclusion-matrix interface, defined by
the two major lateral surfaces, each with area 2ah. The work done

across the two ends of an inclusion, each with surface d 1½ � h, is

neglected because d 1½ � � a 1½ �.

2.2.3. Discretization and linearizations
The discretized version of Eq. (3) at the element level for the

bulk material is obtained by expressing the displacement ub and
strain rsub fields as

ub ¼ Nbb and rsub ¼ Bbb; ð4Þ
where Nb collects finite element nodal shape functions, Bb the cor-
responding derivatives according to the displacement–strain rela-
tion, and vector b contains nodal displacements.

The bulk material and the line inclusion are discretized by
means of two non-conforming discretizations. For convenience,
the inclusion is discretized by a sequence of 2-node inclusion seg-
ments obtained from the intersection of inclusion and bulk mate-
rial discretizations. The quantities below are expressed with
reference to an inclusion segment with endpoints i and j. The inclu-
sion non-slip component ub and its derivative ub;r are computed
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from the displacement field of the bulk material elements crossed
by the inclusion as

ub � e 1½ � ¼ N 1½ �
d H 1½ �b and ub;r � e 1½ � ¼ B 1½ �

d H 1½ �b; ð5Þ

where the expressions for the matrices N 1½ �
d ;B 1½ �

d , and H 1½ � are

reported by Goudarzi and Simone (2019). The slip component u 1½ �
s

and its derivative u 1½ �
s;r can be approximated as

u 1½ �
s ¼ N 1½ �

s s 1½ � and u 1½ �
s;r ¼ B 1½ �

s s 1½ �; ð6Þ

where s 1½ � ¼ si; sj
� �T is the vector of endpoint slips, while

N 1½ �
s ¼ Ni Nj

� �
and B 1½ �

s ¼ Ni;r Nj;r
� � ð7Þ

contain inclusion shape functions and their derivatives,
respectively.

The discretized displacements, Eqs. (4)–(6), are introduced in
the weak form (3) and the resulting equations can be interpreted
as the equilibrium conditions

f int;b ¼ �fext;b and f 1½ �
int;s ¼ �f 1½ �

ext;s ð8Þ
representing a balance between internal and external forces, related
to the contributions from the bulk material and the inclusion,
with

f int;b ¼ RXnX 1½ � BT
brb dXþ d 1½ � R a 1½ �

�a 1½ � H 1½ �TB 1½ �T
d r 1½ � dr;

�fext;b ¼ RCt
NT

b
�t dCt;

f 1½ �
int;s ¼ d 1½ � R a 1½ �

�a 1½ � B 1½ �T
s r 1½ � dr þ 2

R a 1½ �

�a 1½ � N 1½ �T
s t 1½ � dr;

�f 1½ �
ext;s ¼ 0;

ð9Þ

where it is assumed, as shown in the last equation, that the inclu-
sion is not subject to external forces.

The linearized version of the discretized weak form is obtained
by expressing the constitutive relations for bulk and inclusion in
rate form, with rate quantities identified by a superimposed dot,
_�ð Þ. The stress rate for the bulk material is therefore expressed in
terms of nodal displacement velocities as

_rb ¼ Db Bb
_b; ð10Þ

where Db relates the stress and strain rates in the bulk material. The
rate _r 1½ � of the (axial) stress along the inclusion and the rate _t 1½ � of
the interfacial tangential traction are defined as

_r 1½ � ¼ E 1½ �
i B 1½ �

d H 1½ � _bþ B 1½ �
s
_s 1½ �

	 

; _t 1½ � ¼ K 1½ �

btN
1½ �
s
_s 1½ �; ð11Þ

where a linear elastic behavior is assumed for the inclusion and the

inclusion-matrix interface, with E 1½ �
i the Young’s modulus of the

inclusion and K 1½ �
bt the interfacial stiffness. Because of the nonlinear

constitutive relation of the bulkmaterial, summarized in Section 2.3,
the governing equations are solved using an incremental-iterative
procedured by means of the linearized relation reported below
obtained following standard procedures (Zienkiewicz and Taylor,
1989). With reference to a generic load increment, the discrete gov-
erning system of nonlinear equations is solved using the Newton–
Raphson iterative solution scheme for the iterative displacements
db and ds 1½ � according to

Kj�1
bb K 1½ � j�1

bs

K 1½ � j�1
sb K 1½ � j�1

ss

" #
dbj

ds 1½ � j

" #
¼

�f jext;b
0

" #
� f j�1

int;b

f 1½ � j�1
int;s

2
4

3
5; ð12Þ

where j is the iteration number, and the sub-matrices read, drop-
ping the superscript j for clarity:
258
Kbb ¼ RXnX 1½ � BT
bDbBb dXþ E 1½ �

i d 1½ � R a 1½ �

�a 1½ � H 1½ � TB 1½ � T
d B 1½ �

d H 1½ � dr;

K 1½ �
bs ¼ E 1½ �

i d 1½ � R a 1½ �

�a 1½ � H
1½ � TB 1½ � T

d B 1½ �
s dr;

K 1½ �
sb ¼ E 1½ �

i d 1½ � R a 1½ �

�a 1½ � B 1½ � T
s B 1½ �

d H 1½ �dr;

K 1½ �
ss ¼ E 1½ �

i d 1½ � R a 1½ �

�a 1½ � B
1½ � T
s B 1½ �

s dr þ 2K 1½ �
bt

R a 1½ �

�a 1½ � N
1½ � T
s N 1½ �

s dr:

ð13Þ

The integrals over X nX 1½ � in Kbb (13) and f int;b (9) are computed
with reference to the domain X. This computational strategy
implies that the contribution along the inclusion line is counted
twice because of the second integrals in Kbb and f int;b. Nevertheless,
these contributions turn out to be negligible because inclusions are
assumed to be numerically equivalent to rigid as discussed in
Section 2.4.2.

2.3. Constitutive models for the bulk material

For the linear elastic analyses reported in Sections 2.4 and 3, the
incremental stiffness for the bulk material corresponds to the ten-

sor of linear isotropic elasticity (Db ¼ Del
b ).

In the numerical simulations presented in Section 4, bulk mate-
rial degradation is described by means of the rate-dependent iso-
tropic elastoplastic-damage model proposed by Simone and Sluys
(2004, their Section 2) and derived from the class of models pro-
posed by Ju (1989). The coupling of damage and plasticity is intro-
duced by means of the effective stress concept and the hypothesis
of strain equivalence. The effective stress concept allows a simple
algorithmic treatment of the coupled elastic-viscoplastic-damage
model. The algorithmic procedure hinges on the definition of the
effective stress tensor ~rb, the algorithmic tangent moduli ~Dp, and
the equivalent plastic strain ~j, where a superscript tilde indicates
a quantity defined in the effective stress space. Accordingly, the
rate-dependent effective stress tensor ~rb is expressed as

~rb ¼ rb

1�x
¼ Del

b : eel ¼ Del
b : eb � evpb
� �

; ð14Þ

where rb is the stress tensor, eb is the total strain, evpb is the vis-
coplastic strain,x is a scalar damage parameter (0 6 x 6 1) defined
as

x ¼ a 1� e�b~j� �
; ð15Þ

with a and b being dimensionless parameters governing the growth
of damage and subject to the constraints 0 6 a 6 1 and b P 0.

Note that the damage parameter x, Eq. (15), will systematically
be used in the following to visualize strain localization and trace
shear band patterns.

Assuming small strain viscoplasticity, the total strain rate _eb is
additively decomposed into elastic _eelb and viscoplastic _evpb
contributions:

_eb ¼ _eelb þ _evpb : ð16Þ

Under plastic flow (~f P 0, where ~f is the yield function), the vis-
coplastic strain rate is expressed in the associative form according
to the model introduced by Perzyna as

_evpb ¼ 1
s

~/ ~f
	 


~f r; ð17Þ

where s is the relaxation time and ~f r ¼ @~f=@~rb.

The overstress function ~/ ~f
	 


is expressed in the power-law

form

~/ ~f
	 


¼
~f
�r0

 !N

; ð18Þ



Fig. 2. The two elastic boundary value problems used for the validation of the
numerical model: (a) One RLI is embedded in an infinite elastic domain, and (b) the
same RLI lies within a square domain of side L. The analytical solution of the elastic
boundary value problem in panel (a) is used to validate the numerical model
applied to the boundary value problem in panel (b). The unit vector
e ¼ cos h; sin h

� �
is aligned parallel to the inclusion line.
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where N (N P 1) is a real number and �r0 is the initial yield stress.
The softening rule governing the yield stress is described by means
of the relation

�r ~jð Þ ¼ �r0 1þ cð Þe�b~j � ce�2b~j� �
; ð19Þ

where b and c are dimensionless model parameters.
Following standard procedures, detailed by Simone and Sluys

(2004) their Section 2, the consistent tangent operator Db for the
elastic-viscoplastic-damage model can be expressed as

Db ¼ 1�xð Þ~Dp � @x
@~j

~rb � ~r; ð20Þ

where the consistent tangent for the viscoplastic contribution
assumes the form

~Dp ¼ ~R �
~R : ~f r � ~f r : ~R

~f r : ~R : ~f r � ~f j~jk þ s= Dt~/~f

	 
 ð21Þ

with

~R ¼ Iþ D~kDel~f rr
	 
�1

Del; ð22Þ

where ~f rr ¼ @~f r=@~rb, ~f j ¼ @~f=@~j, ~jk ¼ @~j=@~k, being ~k the plastic
multiplier, Dt the time increment, and I the fourth-order sym-
metrization tensor, Iijkl ¼ 1

2 dikdjl þ dildjk
� �

.
Finally, the second-order tensor ~r, introduced in Eq. (20), is

defined as

~r ¼
~R : ~f r

~f r : ~R : ~f r � ~f j~jk þ s= Dt~/~f

	 
 : ð23Þ

2.4. Validation of the numerical model in linear elasticity

The numerical model is validated in linear elasticity. To this
end, the elastic constitutive parameters for the inclusion are cali-
brated to reproduce the analytical solution of a single RLI embed-
ded in an unbounded linear elastic domain. The procedure is
then validated against a representative case with two collinear RLIs
having the same length. Henceforth, the superscript indicating the
inclusion number is omitted for clarity.

2.4.1. A summary of linear elastic analytical results
Basic concepts and analytical solutions in plane elasticity are

briefly reviewed for RLIs. For convenience, a local reference system
x̂� ŷ is introduced, centered at the midpoint of the RLI and with
the x̂-axis defined by the unit vector e aligned parallel to the inclu-
sion as shown in Fig. 2(a).

Asymptotic stress field and stress intensity factors Fig. 2(a) shows a
RLI embedded in an infinite elastic isotropic domain. The asymp-
totic stress field near the tip of an inclusion is expressed as
(Atkinson et al., 1995)

rx̂x̂ q;/ð Þ¼ K
eð Þ
I

j
ffiffiffiffiffiffiffi
2pq

p cos/
2

3þj
2 � sin/

2 sin
3/
2

� �þ K
eð Þ
II

j
ffiffiffiffiffiffiffi
2pq

p sin/
2

3�j
2 þcos/

2 cos
3/
2

� �
;

rŷŷ q;/ð Þ¼� K
eð Þ
I

j
ffiffiffiffiffiffiffi
2pq

p cos/
2

j�1
2 �sin/

2 sin
3/
2

� �þ K
eð Þ
II

j
ffiffiffiffiffiffiffi
2pq

p sin/
2

1þj
2 �cos/

2 cos
3/
2

� �
;

rx̂ŷ q;/ð Þ¼ K
eð Þ
I

j
ffiffiffiffiffiffiffi
2pq

p sin/
2

1þj
2 þcos/

2 cos
3/
2

� �þ K
eð Þ
II

j
ffiffiffiffiffiffiffi
2pq

p cos/
2

j�1
2 þ sin/

2 sin
3/
2

� �
;

ð24Þ
where q is the distance from the inclusion tip, / is the counterclock-
wise polar angle measured from the inclusion axis x̂;j is the Kolo-
sov constant (j ¼ 3� 4m for plane strain and j ¼ 3� mð Þ= 1þ mð Þ for
plane stress, with m the Poisson’s ratio), and K

eð Þ
I and K

eð Þ
II are,

respectively, the mode I and mode II RLI stress intensity factors
(SIFs) defined as (Noselli et al., 2010)
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K
eð Þ
I ¼ 2llim

q!0

ffiffiffiffiffiffiffiffiffiffi
2pq

p
ex̂x̂ q;/ ¼ 0ð Þ and

K
eð Þ
II ¼ 4jl

j� 1
lim
q!0

ffiffiffiffiffiffiffiffiffiffi
2pq

p
ex̂ŷ q;/ ¼ 0ð Þ; ð25Þ

where l is the elastic shear modulus, and the superscrit eð ) high-
lights that the stress intensity factor is based on a strain measure,
instead of a stress measure as in fracture mechanics. The asymptotic
expansion (24) displays a square-root singularity in the radial direc-
tion from the inclusion tip.

J-integral Introduced by Cherepanov (1967) and Rice (1968) in
fracture mechanics, the J-integral,

J ¼
Z
C

U dŷ� T � @u
@x̂

ds
� 

; ð26Þ

turns out to be path-independent also when computed for a RLI. In
this expression, U is the elastic strain energy density, T is the sur-
face traction vector, u is the displacement vector, and C is any
closed counterclockwise contour enclosing the inclusion tip. With
the asymptotic expansions (24), the J-integral expression reduces to



Fig. 3. Convergence of the mode I stress intensity factor evaluated numerically to
that estimated analytically. The two values are calculated with reference to the two
boundary value problems depicted in Fig. 2 on the right (for L = 10a) and on the left,
respectively. The numerical solution differs from the theoretical prediction by less
than 1% when Eid= E2D

b a
	 


> 100 (blue line, with Kbt a=E
2D
b ¼ 2:5� 104) or when

Kbt a=E
2D
b > 250 (red line, with Eid= E2D

b a
	 


¼ 104).
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J ¼ �1þ j
8jl

K
eð Þ
I

	 
2
þ K

eð Þ
II

	 
2� �
; ð27Þ

which, unlike the J-integral for fracture problems, is always non
positive (with the physical meaning that a reduction in length of
the RLI would lead to a decrease of the total potential energy). It
is therefore interesting to investigate the vanishing condition for
the J-integral as it defines ‘neutral RLI orientations’ that correspond
to a homogeneous stress state, in which case the RLI leaves the
stress field unperturbed. Such a condition is defined by

neutrality condition : K
eð Þ
I ¼ K

eð Þ
II ¼ 0 () J ¼ 0: ð28Þ

A single inclusion embedded in an infinite elastic domain subject to
uniform remote stress condition Consider a single RLI of half-length
a. The inclusion is inclined at an angle �h with respect to the x axis
and is embedded in an infinite elastic domain subject to a uniform
remote stress field with components r1

xx;r1
yy and r1

xy (Fig. 2(a)). The
stress field ahead of the RLI has been obtained by Atkinson (1973)
using a complex potentials technique and reads as, for jx̂j > a,

rx̂x̂ x̂; ŷ ¼ 0ð Þ ¼ � jþ 3ð Þ l e1
x̂x̂
j 1� jx̂jffiffiffiffiffiffiffiffiffi

x̂2�a2
p

	 

;

rŷŷ x̂; ŷ ¼ 0ð Þ ¼ j� 1ð Þ l e1
x̂x̂
j 1� jx̂jffiffiffiffiffiffiffiffiffi

x̂2�a2
p

	 

;

rx̂ŷ x̂; ŷ ¼ 0ð Þ ¼ r1
x̂ŷ;

ð29Þ

with

e1x̂x̂ ¼
jþ 1ð Þr1

x̂x̂ þ j� 3ð Þr1
ŷŷ

8l
;

r1
x̂x̂ ¼ r1

xx cos
2 �hþ r1

yy sin
2 �hþ r1

xy sin 2�h;

r1
ŷŷ ¼ r1

xx sin
2 �hþ r1

yy cos
2 �h� r1

xy sin 2�h;

r1
x̂ŷ ¼ � r1

xx � r1
yy

	 

sin �h cos �hþ r1

xy cos 2�h:

ð30Þ

Using the above expressions, the SIFs (25) at the RLI tips can be
expressed as (Noselli et al., 2010)

K
eð Þ1
I ¼ 2le1x̂x̂

ffiffiffiffiffiffi
pa

p
; K

eð Þ1
II ¼ 0; ð31Þ

where the superscript ‘1’, added to K
eð Þ
I and K

eð Þ
II , highlights the

reference to an unbounded elastic domain.
Neutral inclusion orientations It is evident that the inclusion does

not perturb a mechanical field whenever it lies along a zero-
elongation line of an unperturbed field. In the case of an
unbounded domain subject to a remote uniaxial stress state,
obtained by imposing r1

yy ¼ �r as the only non-null stress compo-
nent (r1

xx ¼ r1
xy ¼ 0), the J-integral (27) reduces to

J ¼ �j 1þ jð Þpa�r2

128l
1� 1þ 2 cos 2�h

j

� �2
; ð32Þ

and therefore the inclinations (with respect to the x-axis) �h ¼ �hn
correspond to neutrality of the RLI when the J-integral vanishes, a
condition leading to

�hn ¼ �1
2
arccos

j� 1
2

� 
ð33Þ

and implying r1
ŷŷ ¼ � jþ 1ð Þ= j� 3ð Þr1

x̂x̂ and e1x̂x̂ ¼ 0.

2.4.2. Calibration of inclusion model parameters for the numerical
approximation of a RLI

The embedded reinforcement model with interfacial slip
described in Section 2.2 enables the mechanical description of an
imperfectly-bonded and axially compliant line inclusion in a
two-dimensional domain. As such, it could be used to examine
the influence of axial and bond stiffnesses. In this study we are
however interested in the analysis of rigid line inclusions that
260
are perfectly bonded to the bulk material, a situation that can be
theoretically attained when Ei;Kbtf g ! 1. From the computational
point of view, by analyzing the stiffness matrix (13), this limit sit-
uation can be reached at sufficiently large values of the dimension-

less parameters Eid= E2D
b a

	 

and Kbt a=E

2D
b , respectively related to

the axial and bond stiffness. Here and in the following the Young’s
modulus is defined with reference to generalized plane elasticity,
E2D
b , which corresponds to Eb under plane stress conditions or

Eb= 1� m2b
� �

under plane strain conditions, where Eb is the three-
dimensional elastic modulus.

The calibration of the two dimensionless parameters Eid= E2D
b a

	 

and Kbt a=E

2D
b , needed to obtain results pertinent to RLIs, is assessed

through a comparison between K
eð Þnum
I , the Mode I stress intensity

factor numerically derived from the J-integral (evaluated along a
circular path of radius 0.1a and centered at the inclusion tip),

and its analytical counterpart K eð Þ1
I . To this purpose, a single hor-

izontal (�h ¼ 0) RLI of half-length a is considered, embedded in a lin-
ear elastic domain subject to a uniaxial remote stress r1

ŷŷ ¼ �ryy, so

that Eq. (31)1, referred to Fig. 2(a) with �h ¼ 0, simplifies to

K
eð Þ1
I ¼ j� 3ð Þ�ryy

ffiffiffiffiffiffi
pa

p
4

: ð34Þ

The predictions obtained with Eq. (34) are compared to results from
numerical simulations referred to the boundary value problem rep-
resented in Fig. 2(b), where �ryy is applied as a traction on the upper
boundary of a square domain of size L ¼ 10a. The domain is dis-
cretized with a sufficiently fine uniform mesh of bilinear elements.
Plane strain conditions with Poisson’s ratio mb ¼ 0:2 are assumed to
prevail, together with d ¼ 0:1L (note that this value is immaterial
since it acts as an amplification factor to Ei in the discrete set of
equations). Since the inclusion is neither rigid nor perfectly bonded
to the bulk material, the numerical evaluation of the J-integral (26)
does not display path-independency; hence comparison with the
analytical results becomes meaningful only in the case of large val-
ues for inclusion and interfacial stiffnesses.

Fig. 3 shows the SIF ratio K
eð Þnum
I =K

eð Þ1
I as a function of either

Eid= E2D
b a

	 

(blue line, with Kbt a=E

2D
b ¼ 104) or Kbt a=E

2D
b (red line,
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with Eid= E2D
b a

	 

¼ 2:5� 104). The comparison shows a relative

error lower than 5% when the values of these two parameters are

sufficiently large, Eid= E2D
b a

	 

> 10 or Kbt a=E

2D
b > 25. The error

reduces to less than 1% when these values are above 100 and
250, respectively. With these parameter values, the inclusions
can be considered as rigid in numerical simulations.

As a final remark, by assuming a sufficiently large value for the
dimensionless elastic bond stiffness Kbt a=E

2D
b between bulk mate-

rial and inclusion, the embedded reinforcement model with imper-
fect interface practically reduces to the classical embedded
reinforcement model with perfect interface (Zienkiewicz et al.,
1972), whose implementation is available in standard FEM pack-
ages for the analysis of reinforced concrete structures (for instance,
DIANA, ABAQUS, ANSYS).
2.4.3. Reliability assessment of the numerical model
The numerical model is validated against analytical estimates

related to a single RLI embedded in a finite elastic domain and a
pair of collinear RLIs in an infinite elastic domain. The case of mul-
tiple RLIs, discussed, for example, in Dong and Lee (2005), is not
considered in this reliability assessment exercise. For the numeri-
cal evaluations, the inclusions are embedded in a domain of size
L and the dimensionless parameters discussed in the previous sec-

tion assume the values Eid= E2D
b a

	 

¼ 104 and Kbt a=E

2D
b ¼ 2:5� 104,

while the other parameters and boundary conditions are identical
to those employed for the calibration of inclusion and interfacial
stiffnesses. Unless otherwise stated, the computational domain of
the bulk material is discretized by a sufficiently fine uniform mesh
of bilinear elements.

Effects of the finiteness of the domain on the SIF The stress inten-
sification at the tips of a RLI of half-length a centered in a square
elastic domain of size L is evaluated by varying the ratio a=L. The
numerical results have been obtained with a structured mesh of
bilinear elements, locally refined around the inclusion. Fig. 4 shows
the excellent agreement between numerical results and the semi-
analytical predictions by Chen (1991) obtained with an eigenfunc-
tion expansion variational method. Worth noting is the reduction
in the stress intensification at increasing values of the ratio a=L
due to the interaction with the free edges. The figure also indicates

that the analytical SIF value for the infinite domain K
eð Þ1
I is well

captured when a 	 0:1L.
Fig. 4. Effect of the finiteness of the domain size on the stress state at the tip of a
RLI. The SIF for a single inclusion in a finite-size domain (Fig. 2(b)) deviates from
that related to a single inclusion in an infinite domain (34) (Fig. 2(a)) when the
inclusion half-length a is increased relatively to the square domain side L.
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Pair of collinear inclusions The proposed embedded method is
validated towards its exploitation in the micromechanical study
of composites with large inclusion volumes, where it becomes cru-
cial to capture interaction effects between inclusions that are
otherwise neglected in available analytical estimates of elastic
properties (e.g., Halpin (1969)). Although regions of stress amplifi-
cation are smaller for RLIs than for cracks (Pingle et al., 2008),
interactions can be quite severe for RLIs when these are placed suf-
ficiently close to each other. Based on the duality between solu-
tions of cracks and rigid line inclusions (Ni and Nemat-Nasser,
1996), Pingle et al. (2007) derived a relation to express the ampli-
fication of the stress intensity factors for the case of multiple RLIs
embedded in an elastic unbounded domain and subject to a uni-
form remote stress field (with components r1

xx;r1
yy, and r1

xy).
Two collinear (non-intersecting) inclusions are considered. The

inclusions have the same half-length a and are aligned with the x-
axis (which is now superimposed to the x̂-axis because �h ¼ 0), with
their centers separated by a distance Dþ 2a. In this case, consider-
ing symmetry, the SIFs, Eqs. (25), at the four RLI tips are given by

K
eð Þ
I �a;Dð Þ¼le1xx

ffiffiffi
a
p

p R 1
�1 1þg n;D=að Þ½ �

ffiffiffiffiffiffi
1�n
1
n

q
dn and K

eð Þ
II �a;Dð Þ¼0;

with gðn;D=aÞ¼ 1

2�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ6D

a þD2

a2

q
�
ffiffiffiffiffiffiffiffiffi
2D
a þD2

a2

q	 
 nþ2þD
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ2þD
að Þ2�1

q ;

ð35Þ
where x ¼ �a refers to the inner tips, namely the two closest to
each other, and x ¼ þa relates to the outer tips. The analytical pre-
dictions of the two mode I SIFs (made dimensionless through divi-

sion by the mode I SIF K
eð Þ1
I , Eq. (34), relative to a single inclusion

embedded within an unbounded domain as in Fig. 2(a)) are
reported in Fig. 5(a) as functions of the offset ratio D=a. The numer-
ical results are also reported in the figure, obtained considering the
two inclusions placed in the middle of a square domain of size L
(Fig. 2(b)). The domain has been discretized with a very fine mesh
of bilinear elements, locally refined along the inclusion’s axis. The
numerical results are obtained with reference to two inclusion-
domain size ratios (a=L ¼ 0:05; 0:1f g). The corresponding inclusion
sizes have been used for the analytical predictions.

Fig. 5(a) shows a good agreement between the numerical
results and the analytical prediction by Pingle et al. (2007). Because
of the influence of the finite size of the domain used in the numer-
ical simulations, small inclusions (a ¼ 0:05L) yield a better agree-
ment between numerical and analytical results. In particular, the
two inner tips show a threefold amplification of the stress intensity

factorK eð Þ
I (label A) with respect to the theoretical valueK

eð Þ1
I cor-

responding to the case of a single inclusion of half-length a within
an infinite plane. Finally, Fig. 5(b) shows the amplification of the
numerical von Mises stress field rvM around the tips of the RLIs
for an offset ratio D=a ¼ 0:01.
3. Rigid line inclusions as reinforcing elements: Elastic
stiffening

The effective response of an elastic medium containing various
distributions of up to 1500 embedded rigid line inclusions is inves-
tigated by considering RLIs distributions representative of bucky-
paper (i.e., carbon nanotube sheets) (Hall et al., 2008) or clay
platelet (Sheng et al., 2004) nanocomposites.

Unless otherwise stated, and according to the results presented
in the previous section, rigid line inclusions are modeled with

Eid= E2D
b a

	 

� 100 and Kbta=E

2D
b � 250. All the inclusions have the

same size, with thickness d ¼ 0:0385a and half-length a ¼ 0:02L,
and are embedded in a square unit cell of size L. The mechanical
properties are extracted using a computational homogenization



Fig. 5. Interaction between two collinear rigid line inclusions aligned parallel to the
x-axis and subject to a uniaxial stress field of intensity �ryy: (a) numerical and
analytical stress intensity factor amplification with respect to the theoretical value
K

eð Þ1
I for a single inclusion of half-length a at varying offset distance D between

inclusions; (b) numerical von Mises stress field rvM around the inclusion tips for
D=a ¼ 0:01 normalized through division by the applied stress �ryy .

ig. 6. A square 50a� 50a unit cell made up of an isotropic elastic matrix material
Young’s modulus E2D

b ), containing a random distribution of 1000 equally-inclined
igid line inclusions of length 2a (panel (a)), leads to an equivalent cubic symmetric
olid, characterized by an in-plane Young’s modulus E2D

eff ;y parallel to the (vertical) y-
xis. This equivalent stiffness is shown in panel (b) as a function of the inclination �h
f the inclusions and for various values of the Poisson’s ratio mb of the bulk material.
eutrality of multiple inclusions emerges at the orientation defined by Eq. (33),
btained for a single inclusion embedded in an infinite. elastic domain.

M. Goudarzi, F. Dal Corso, D. Bigoni et al. International Journal of Solids and Structures 210–211 (2021) 255–272
procedure (Suquet, 1985) in which periodic boundary conditions
are imposed on the two-dimensional unit cell in terms of the three
average strain components representative of plane problems. The
fact that a small but finite value for the RLI thickness d is retained,
allows to define the volume fraction of the inclusions, which turns
out to be equal to 4.62% for 1500 inclusions.
3.1. The roles of RLI orientation

The effects of RLI orientation are investigated by considering the
effective response of an elastic medium characterized by a unit cell
containing 1000 embedded RLIs, all inclined at the same angle �h
and with their midpoints randomly distributed in the domain as
shown in Fig. 6(a). This RLIs’ distribution defines an equivalent
cubic symmetric solid (with cubic symmetry axes inclined at 45�

with respect to the x̂-axis aligned parallel to the RLI).
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Fig. 6(b) shows the effective in-plane Young’s modulus E2D
eff ;y par-

allel to the y-axis, normalized through division by the in-plane
Young’s modulus E2D

b of the bulk material, as a function of inclusion
orientation �h for various values of the Poisson’s ratio mb of the bulk
material, under conditions of plane stress or plane strain.

As expected, the highest value of the stiffness E2D
eff ;y is attained

when the inclusions are aligned parallel to the y axis (�h ¼ 90�),
with the (normalized) stiffest effective response when the bulk
material has a null Poisson’s ratio, mb ¼ 0. In addition, the effective
response of the composite is stiffer than that of the bulk material
for all but one specific inclination, which depends on the bulk
matrix Poisson’s ratio mb. This inclination coincides with the neu-
trality angle �h ¼ �hn mbð Þ of a single inclusion, Eq. (33), so that the
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effective in-plane Young’s modulus of the composite (E2D
eff ;y)

becomes exactly that of the bulk material (E2D
b ). Such property fol-

lows from the neutrality condition, which automatically holds for
any number of equally-inclined inclusions whenever it is satisfied
for a single inclusion with that inclination.

For the special case of a nearly incompressible bulk material
(with mb ¼ 0:49) under plane strain conditions, the neutral orienta-
tion �hn approaches 45�. This implies that the cubic elastic material
under consideration approaches biaxially neutrality so that the
effective longitudinal and transverse Young’s moduli tend to the
value of the bulk material (i.e., E2D

eff ;x ¼ E2D
eff ;y � E2D

b ). This observation
is in line with the results reported in Liu et al. (2006), where signif-
icantly stiffened staggered biocomposites in both longitudinal and
transverse directions were generated by increasing the Poisson’s
ratio of the soft matrix towards its incompressibility limit value.

It is finally remarked that the stiffening in the effective response
for small values of the RLI inclination is significant only under both
plane strain conditions and nearly incompressible bulk material,
while it becomes negligible in all other cases.

3.2. The roles of RLI distribution and volume fraction

The influence of RLIs’ distributions is assessed by investigating
its effects on the effective in-plane Young’s modulus, parallel to
the y-axis E2D

eff ;y (reported normalized through division by E2D
b in

Fig. 8), considering the geometrical patterns of 1500 RLIs (volume
fraction of 4.62%) shown in Fig. 7, with reference to the 50a� 50a
square unit cell. In particular, the following RLIs’ distributions are
analyzed (Fig. 7) when a plane stress condition prevails with Pois-
son’s ratio mb ¼ 0:2:
Fig. 7. The roles of RLIs’ distribution and volume fraction on the composite mechanical pr
vertical direction, E2D

eff ;y . The figure shows typical RLIs’ distributions for the case with 1500
volume fraction of 4.62%: (a) horizontal, (b) vertical, and (c) random uniformly distribu
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 Uniform patterns of randomly distributed inclusions, referred to
as ‘exfoliated’: parallel to the x-axis, panel (a), to the y-axis,
panel (b), or randomly inclined, panel (c);

 Clusters of parallel inclusions arranged in a chessboard configu-
ration, referred to as ‘intercalated’ and akin to distributions of
clay platelets in polymer–clay nanocomposites (Liu et al.,
2006): aligned parallel to the y-axis with more, panel (d), or
less, panel (e), regularity or randomly oriented clusters, panel
(f).

The normalized effective Young’s modulus, E2D
eff ;y=E

2D
b , is reported

in Fig. 8 as a function of the volume fraction of RLIs (panel (a)) and

of the ratio Eid= E2D
b a

	 

(panel (b)), for the various geometries

shown in Fig. 7. Analytical predictions due to Voigt (Clyne and
Hull, 2019), Halpin and Tsai (Halpin, 1969), and Mori and Tanaka
(1973) are also reported for comparison in Fig. 8(b).

The results reported in Fig. 8 show that, among all the consid-
ered RLIs’ distributions, the distribution of vertical inclusions
(panel (b)) displays the stiffest response, with a stiffening factor
of 3.8, while a negligible stiffening is observed for horizontal distri-
butions (panel (a)).

The stiffening is reduced for clustered distributions, with an
increase factor of 2 and 1.5 for the vertical distributions in panels
(d) and (e), respectively. As a side remark, analytical micromechan-
ical approaches (Halpin, 1969) and two-step homogenization
schemes (Pierard et al., 2004) are insensitive to the RLIs’ distribu-
tion and yield identical estimates, not reported for brevity, for
composites with exfoliated and intercalated inclusions such as
those reported in panels (b) and (d), respectively. Random inclu-
sion orientations yield much softer composites, with an increase
operties are assessed through the estimation of the effective Young’s modulus in the
inclusions of length 2a embedded in a square 50a� 50a unit cell, corresponding to a
ted RLIs; (d, e) vertically intercalated and (f) randomly intercalated RLIs.



Fig. 8. Predicted effective Young’s modulus E2D
eff ;y of a composite (a) with an

increasing number of RLIs for distributions similar to those shown in Fig. 7 and (b)
for 1500 vertical inclusions (oriented along the y axis, Fig. 7(b)) as a function of the
ratio Eid= E2D

b a
	 


. Analytical micromechanical estimates (Voigt, Halpin-Tsai (H-T),
and Mori–Tanaka (M-T)) are also included.
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factor of 1.6 observed for the exfoliated distribution in panel (c)
and 1.16 for the intercalated distribution in panel (f). Inclusions
inclined at the neutral angle �h � 24:09�, in distributions similar
to those reported in panels (a) or (b), leave the effective in-plane
Young’s modulus unaltered (E2D

eff ;y ¼ E2D
b ). When the vertical distri-

bution in Fig. 7(b) is considered, a marked nonlinear increase in
the elastic stiffness of the composite is displayed (Fig. 8(a), blue
line) as an indication that the interaction between inclusions is
maximized for this particular distribution.

Panel (b) in Fig. 8 compares numerical predictions with analyt-
ical micromechanical estimates (Voigt, Halpin-Tsai (H-T), and
Mori–Tanaka (M-T)) for the distribution of 1500 vertical inclusions

shown in Fig. 7(b) for various ratios Eid= E2D
b a

	 

. The agreement

between numerical and analytical estimates is generally accept-
able for soft inclusions. For stiff inclusions, the Voigt estimate is
the less reliable and overestimates the numerical predictions and
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the other estimates. The numerical predictions are found in a rela-
tively better match with Halpin-Tsai estimates, although all analyt-
ical micromechanical models are found to overestimate the
effective stiffness for stiff inclusions.
4. RLIs as instability triggers: nucleation and growth of shear
bands

Shear bands emergence and propagation are numerically inves-
tigated in this section. The analysis is reffered to an elastic-
viscoplastic-damage bulk material, whose constitutive model is
summarized in Section 2.3 and enables an objective, mesh inde-
pendent analysis when strain localization occurs. In the following,
shear bands are identified by highly localized damage regions as
they offer a clear evidence of strain localization. In this section
‘damage localization’ is used interchangeably with the term ‘shear
band’.

Quasi-static damage evolution and failure mechanisms are sys-
tematically investigated for various RLIs’ distributions embedded
in a square domain of size L under plane stress conditions, with
Poisson’s ratio mb ¼ 0:2. Following the calibration performed in

Section 2.4.2, RLIs are modeled by assuming Eid= E2D
b a

	 

¼ 100

and Kbta=E
2D
b ¼ 250. Material degradation is described by means

of a J2 material response with von Mises yield stress
�r0 ¼ 10�4E2D

b , an exponential softening rule governing the cohesion
capacity of the material (Eq. (19) with b ¼ 200 and c ¼ �1), and an
exponential damage law (Eq. (15) with parameters a ¼ 0:99 and
b ¼ 300). The viscoplastic model of the Perzyna type is character-
ized by exponent N ¼ 1 in the power-law overstress function
(18) and ratio s=Dt ¼ 8000 in Eq. (21).

Shear bands patterns are examined and compared for various
RLIs’ distributions and under different boundary conditions when
the load-carrying capacity of the specimens is almost exhausted,
which represents the situation when failure is attained.
4.1. Only one RLI

One RLI of half-length a ¼ L=13, centered in a square domain, is
analyzed at various inclinations. The bottom edge of the domain is
constrained as in Fig. 2(b) so that at all points (except at the left-
most corner where the displacement in both directions is pre-
scribed to be null) the vertical displacement is constrained and
the tangential tractions are set to zero. The lateral edges of the
domain are left unloaded, and the top edge is displaced vertically
(in the direction of the y-axis) through the imposition of a constant
displacement rate _�uy, until the final displacement U ¼ 0:0015L is
reached in 200 equal time-steps. The tangential tractions at the
top edge are set to zero.

Fig. 9 shows the damage field, expressed through parameter x
defined by Eq. (15), at an imposed displacement �uy ¼ U for the two
inclusion angles, �h ¼ 0� (panel (a)) and �h ¼ 45� (panel (b)). A sym-
metric shear band formation is clearly visible, emanating from the
tips of the RLI and showing two equivalent localization directions
in panel (a), while shear bands are more pronounced in a specific
direction when symmetry is lost (panel (b)). In the latter case,
the shear band with the inclination closest to the inclusion axis
is the most intense, when compared to the other conjugate direc-
tion. The numerical predictions are in agreement with analytical
findings referred to the incremental theory of J2-deformation the-
ory of plasticity (Dal Corso et al., 2008) and experimental results
showing that deformation localizes along narrow regions in soft
matrix materials, where nucleation occurs at the tips of hard inclu-
sions. These experiments have been performed on Cu-W laminates



Fig. 9. Localization of damage, parameter x defined by Eq. (15), in a specimen
subject to tensile stretching with an embedded rigid line inclusion inclined at
angles �h ¼ 0 (a) and �h ¼ 45� (b) with respect to the horizontal axis. Shear bands
exhibit a double symmetry in (a), while the shear bands closer to the inclusion axis
are the most intense in (b).

M. Goudarzi, F. Dal Corso, D. Bigoni et al. International Journal of Solids and Structures 210–211 (2021) 255–272
(Özturk et al., 1991), PMMA (Misra and Mandal, 2007) or epoxy
resin (Bigoni et al., 2008) matrices containing metal inclusions.

Shear bands formation and growth from a RLI inclined at the
angle of neutrality, �h ¼ �hn � 24:09�, for purely elastic behaviour
and with Poisson’s ratio mb ¼ 0:2, is analyzed in Fig. 10, where
the damage field x is shown at three stages of imposed displace-
ments �uy ¼ 0:065; 0:085; 1f gU (increasing from left to right). As a
consequence of the elastic neutrality, the inclination of the inclu-
sion is such that stress singularities are not activated during the
elastic response and therefore the solution field remains homoge-
neous (Fig. 10(a)) until the yield stress is simultaneously reached at
every point of the domain. Remarkably, the inelastic and incre-
mentally anisotropic response of the material induces a stress con-
centration at each inclusion tip (Fig. 10(b)), promoting a non-
symmetric shear-band formation (Fig. 10(c)).
4.2. Two interacting RLIs

Shear bands that originate from the interaction of two RLIs of
equal half-length a ¼ L=13 and inclined at different reciprocal
angles are analyzed. Boundary conditions and material parameters
are the same as those specified in Section 4.1. Results in terms of
maps of the damage parameterx are reported in Fig. 11. Two cases
Fig. 10. Evolution of the damage field x in a specimen containing a single inclusion, in
elastic state is unaffected by the inclusion up to just before damage initiation (�uy ¼ 0:065U
damage initiation (�uy ¼ 0:085U); and (c) a complex shear band pattern has emerged at
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with only one RLI are included in this figure (panels (d) and (f)) as a
reference to facilitate the discussion on the influence of a second
RLI.

As shown in Fig. 11, each inclusion is centered in the corre-
sponding vertical half of the square domain, therefore the distance
between their midpoints is equal to L=2. The RLIs’ inclination is
selected from a set of various angles: �h ¼ 90� (i.e. parallel to the
y-axis), �h ¼ 0� (i.e. parallel to the x-axis), �h ¼ �hn � 24:09� (corre-
sponding to the angle of elastic neutrality), and �h ¼ 50�. At variance
with the rest of the analyses presented in this section,
�r0=Eb ¼ 3� 10�4 has been assumed.

The following conclusions can be drawn from an analysis of
Fig. 11.

 All panels show localization of damage arranged into narrow

zones with dominant inclinations h �ð Þ
sb � �37� (these are also

the inclinations of the shear bands emanating from an imper-
fection as shown in Fig. 12).

 Panels (g) and (i) show the shear band patterns for the symmet-
ric cases of two inclusions either vertical or horizontal. In both
cases the shear bands geometries in each vertical half domain
closely resemble those in the corresponding half domain of
the reference panels (d) and (f).

 Panels (b) and (h) display an inclusion inclined at �h ¼ 50� inter-
acting, respectively, with another vertical or horizontal inclu-
sion. In both cases, a strong damage localization arises at the
tips of the inclined inclusion. The widths of the bands is compa-
rable to that of the bands arising from the vertical inclusion in
panel (b), but considerably wider than that of the horizontal
inclusion in panel (h).

 Panels (a) and (c) show the effect of an inclusion placed at the
elastic neutrality angle, �h ¼ �hn � 24:09�, interacting, respec-
tively, with another vertical or a horizontal inclusion. In panel
(a) the inclined inclusion is ‘shielded’ by two strong shear bands
emanating from the vertical inclusion so that the inclined inclu-
sion leaves the pattern generated by the other inclusion almost
unperturbed (compare with panel (d)). The situation is different
for panel (c), where the inclined inclusion ‘attracts’ one of the
shear bands originating from the horizontal inclusion so that
the global pattern results modified with respect to that related
to panel (f).

 Consider the two cases with a single RLI in panels (d) and (f) and
the corresponding vertical halves of the square domain contain-
ing the RLI. The shear bands emanating from the RLI in these
halves are approximately comparable to the shear bands ema-
nating from similarly-oriented RLIs in their corresponding
clined at the angle �h ¼ �hn � 24:09� and corresponding to elastic neutrality: (a) the
); (b) inelastic strain initiates damage concentration at the tips of the inclusion after
the final imposed displacement �uy ¼ U.



Fig. 11. Localization of damage x showing shear bands originating from the interaction of two RLIs at various inclinations: (a) vertical (�h ¼ 90�) and at neutral inclination
(�h ¼ �hn � 24:09�), (b) vertical (�h ¼ 90�) and inclined at �h ¼ 50� , (c) neutral (�h ¼ �hn � 24:09�) and horizontal (�h ¼ 0�), (d) only one vertical inclusion is considered, (e) vertical
and horizontal, (f) only one horizontal inclusion is considered, (g) both vertical, (h) inclined at �h ¼ 50� and horizontal, (i) both horizontal. The two cases in panels (d) and (f)
with only one inclusion have been included for comparison purposes. The color scale is the same as in Fig. 9.

Fig. 12. Map of damage field x revealing shear bands as nucleated from an
imperfection symmetrically placed along the left-hand boundary of the specimen
(where RLIs are not present). The shear bands are inclined at the conjugate angles of
h �ð Þ
sb � �37� with respect to the x-axis. The color scale is the same as in Fig. 9.
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halves in all other panels. This indicates that, for the considered
RLIs dimension and distance, the shear band pattern of each RLI
is locally preserved. For example, panel (e) shows a shear band
pattern that can be closely approximated by superimposing
results taken from the halves containing the RLI in reference
panels (d) and (f). This observation is strictly related to the pres-
ence of RLIs with comparable length. Indeed, as shown later in
Section 4.4, when RLIs with different lengths are present, shear
bands emerging from longer RLIs prevail over those related to
shorter ones.
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4.3. Shear bands nucleated from an imperfection and their interaction
with RLIs

This section is dedicated to the study of the interaction of the
shear bands nucleated from an imperfection with the surrounding
RLIs, where the imperfection can be interpreted as an agent dis-
turbing an otherwise uniform specimen. We consider the cases of
one, two, and 1500 RLIs. The imperfection is introduced as a rect-
angular region (0:0425L� 0:09L) whose material is characterized
by reduced values of yield stress r0 and Young’s modulus E2D

b with
respect to bulk material values, and is symmetrically placed along
the left-hand boundary of a square domain of size L. The bulk
material properties are defined at the beginning of Section 4, and
the square domain is subject to the boundary conditions specified
in Section 4.1. The imperfection generates a symmetric damage
field that defines a set of reference shear bands inclined at the con-

jugate angles of h �ð Þ
sb � �37� with respect to the x-axis (Fig. 12).

4.3.1. Interaction with one or two RLIs
Changes in the damage fields are investigated when one or two

RLIs, with varying inclination and length, are placed approximately
at the middle of one of the reference shear bands.

Fig. 13 shows the effect of a single inclusion of half-length
a ¼ 0:08L at different inclinations (�h 1½ � ¼ 0; 37; �53; 90f g� from
panel (a) to (d)). The shear band fields in panels (a), (c), and (d)
show that damage weakens along the localization line which inter-



Fig. 13. Maps of damage field x revealing interaction of the shear bands nucleated from an imperfection (located at the middle of the left edge of the boundary) with a RLI
placed at varying inclinations. The color scale is the same as in Fig. 9.
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sects the inclusion, while it strengthens along the other shear band
direction. Conversely, when the RLI is aligned with the localization
line (panel (b)) the corresponding damage region remains almost
unaltered, while the damage field in the other direction is almost
completely deactivated.

The effect of two symmetric inclusions is shown in Fig. 14,
where symmetry allows to report only the upper half of the spec-
imen. The two inclusions are inclined at �h 1½ � ¼ ��h 2½ � ¼ 37� (panels
(a) to (d)) and �h 1½ � ¼ ��h 2½ � ¼ �53� (panels (e) to (h)), and have dif-
ferent half-lengths a ¼ 0:02; 0:04; 0:08; 0:16f gL in panels (a) and
(e), (b) and (f), (c) and (g), (d) and (h), respectively. As shown in
the upper row of Fig. 14, an inclusion aligned with and located
on a shear band causes only a modest reduction of the shear band
thickness. Differently, RLIs that orthogonally cross an unperturbed
shear band direction (Fig. 12) give rise to a splitting of the shear
band in two smaller shear bands nucleating from the inclusion tips
(panels (e) and (f)).

Non-symmetric cases for the imperfection interacting with a
pair of RLIs with varying lengths and inclinations are presented
in Fig. 15. Two RLIs with the same half-length,
a ¼ 0:02; 0:04; 0:08; 0:16f gL, and inclination, �h 1½ � ¼ 37� and
�h 2½ � ¼ �53�, are shown in panels (a) to (d). The inclusion aligned
with the unperturbed shear band direction (in the upper half of
each panel) slightly alters the damage field similarly to the corre-
sponding symmetric case (panels (a) to (d) in Fig. 14). Conversely,
the effect of the other inclusion (shown in the lower half of each
panel) ranges from a split of the lower shear band into two smaller
shear bands (for a ¼ 0:02L, panel (a), similar to the symmetric case
in Fig. 14(e)), to an annihilation of the shear band (for a ¼ 0:16L,
panel (d)).

Specimens with two RLIs of the same length but increasing from
left to right are shown in the upper part of Fig. 15, where one RLI
lies on the upper shear band direction and the other is orthogonal
to the conjugate direction. The lower part of the figure reports the
Fig. 14. Maps of damage field x revealing interaction of the shear bands nucleated fr
inclinations. Due to symmetry, only the upper half of domain is reported. The color sca

267
case of two RLIs of equal length (a ¼ 0:08L), one lying along one
shear band (�h 1½ � ¼ 37�) and the other crossing the other shear band
at different inclinations (�h 2½ � ¼ �37; 0; 37; 90f g�). As in the previ-
ous case, the RLI lying on the shear band leaves the latter unper-
turbed (compare panels (e) to (h) in Fig. 15 with the mirror of
the upper half in panel (c) of Fig. 14), while the shear band cut
by the RLI is almost annihilated, except when the RLI lies on the
shear band (�h 2½ � ¼ �37�), similar to the upper shear bands.

4.3.2. Interaction with a large number of RLIs
The failure mechanism of composites with a large number of

RLIs (all with the same half-length a ¼ 0:02L) is investigated by
considering five of the six distributions of 1500 RLIs reported in
Fig. 7 and a random distribution of 1500 RLI equally-inclined at
the neutral angle. These distributions generate the shear bands
patterns illustrated in Fig. 16 and are used later for comparison
purposes. The strong influence of the RLIs’ distribution is evident,
with the generation of partially organized shear band patterns.
Shear band lengths comparable to the unit cell size are observed
for all but the vertical distribution (panel (c)) where these become
more fragmented.

When an imperfection is also present in the specimen as in
Fig. 12, the two shear bands emanating from the imperfection
are ‘fragmented’ to varying degrees by the RLIs, as shown in
Fig. 17. The fragmentation ranges from moderate (panels (a) and
(b)) to severe (panels (d) and (f)), with cases of annihilation and
shielding (panels (c) and (e)), leading to shear band geometries
similar to the percolation patterns found for highly anisotropic
solids (Bigoni and Noselli, 2010; Bigoni and Noselli, 2010;
Gourgiotis and Bigoni, 2016). In all cases, the imperfection and
the RLIs’ distributions have a marked influence on the final shear
band patterns. Even if the inclusions perturb the reference shear
bands by fragmenting them, panels (a), (b), (d), and (f) show that
influence regions are determined by the reference shear bands.
om an imperfection with two symmetric RLIs of different lengths and at different
le is the same as in Fig. 9.



Fig. 15. Maps of damage field x revealing interaction of the shear bands nucleated from an imperfection with two RLIs with varying lengths and inclinations. The color scale
is the same as in Fig. 9.

Fig. 16. Maps of damage field x revealing shear bands formation from 1500 RLIs at various distributions. RLIs are: (a) horizontal as in Fig. 7(a); (b) inclined at neutral angle
�h � 24:09� (in a random distribution akin to Fig. 6(a)); (c) vertical as in Fig. 7(b); and (d) randomly inclined as in Fig. 7(c); (e) intercalated vertically as in Fig. 7(d); and (f)
intercalated randomly as in Fig. 7(f). The color scale is the same as in Fig. 9.
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Fragmentation of the shear bands in the remaining two cases, pan-
els (c) and (e), is so strong that the final shear band fields result
markedly different from the two macro shear bands visible in
Fig. 12 and referred to a sample without RLIs. Note also that the
neutral angle distribution of RLIs in panel (b) appears to be the less
disruptive for the development of the macro shear bands, while the
vertical distributions in panels (c) and (e) provide the maximum
shielding to shear band growth.

To appreciate the RLIs’ influence on the global response of the
composite, the normalized stress–strain curves are reported in
Fig. 18 for the cases just analyzed. The figure includes also the nor-
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malized stress–strain curve for a specimen with an imperfection on
the left edge and without RLIs (the final damage map is reported in
Fig. 12). Table 1 conveniently lists the corresponding effective in-
plane Young’s modulus, maximum stress, and toughness UT. These
quantities are normalized with respect to the corresponding quan-
tities (denoted with a star) obtained from the specimen without
RLIs. The toughness value UT for a specific RLI distribution is
defined as the measure of the area under the stress–strain curve
from the unloaded state to �u=L ¼ 10�3.

RLIs’ distributions affect the global response at various levels. In
all examined cases, and compared to the response of the specimen



Fig. 17. As for Fig. 16, except that now an imperfection is present on the left edge of the domain as that reported in Fig. 12, where RLIs are not present. RLIs completely change
the ‘double shear band geometry’ visible in Fig. 12 even if the latter still defines, in panels (a) to (d), influence zones for the clusters of shear bands nucleated near the RLIs. The
color scale is the same as in Fig. 9.

Fig. 18. Influence of RLIs’ distributions on the global stress/strain response for the
square samples analyzed in Fig. 17. A stress normalization is introduced through
division by the maximum stress �r0 referred to the sample without RLIs.
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without RLIs (Fig. 12), inclusions are responsible for an increase of
the effective in-plane Young’s modulus (in the vertical direction)
and maximum stress values, together with a reduction of the
toughness. The only exception is represented by the neutral distri-
bution for which the effective in-plane Young’s modulus is practi-
Table 1
Values of effective in-plane Young’s modulus, maximum stress, and toughness obtained fro
with a star) obtained on a specimen with an imperfection but without RLIs.

RLI distribution E2Deff;y
.
E2D

�
eff ;y

max

Horizontal, Fig. 17(a) 1.034
At neutral angle, Fig. 17(b) 1.005
Vertical, Fig. 17(c) 4.288
Randomly inclined, Fig. 17(d) 1.617
Intercalated (vertical), Fig. 17(e) 2.138
Intercalated (random), Fig. 17(f) 1.126
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cally unaffected, in analogy with the observed growth of shear
bands documented in Fig. 10 (the small deviation of the maximum
stress from unity is due to round-off errors in the numerical eval-
uation). The two vertical distributions lead to highest stiffness and
maximum stress values and to the lowest toughness values,
although the response of the intercalated (vertical) distribution
(Fig. 7(d)) is very similar to that of the other distributions.

The normalized stress–strain curves in Fig. 18 also indicate that
the higher the maximum stress, the steeper the softening branch,
leading to some considerations on the shear band patterns as dis-
cussed next. A visual comparison of the stress–strain curves and
the corresponding shear band networks in Figs. 12 and 17 shows
that the shear bands forming for RLIs aligned parallel to the neutral
inclination, panel (b), are the closest to the shear bands emanating
from the defect in the specimen without RLIs; the two correspond-
ing stress–strain curves are also very close to each other. Sorting
the remaining RLIs’ distributions by increasing values of the max-
imum stress (or corresponding decreasing softening slope) yields
the following list (with indication of the shear band pattern, as vis-
ible in the panels of Fig. 17): (i.) intercalated (random), panel (f);
(ii.) horizontal, panel (a); (iii.) randomly inclined, panel (d); (iv.)
intercalated (vertical), panel (e); (v.) vertical, panel (c). The
sequence of the shear band patterns shows a clear evolution from
the localized pattern in panel (b), corresponding to the neutral dis-
tribution, to the very diffuse pattern in panel (c), related to the ver-
tical distribution.
m the stress-strain curves in Fig. 18 normalized by the corresponding values (denoted

rð Þ=max r�ð Þ UT=U
�
T

1.073 0.920
1.010 0.929
1.458 0.911
1.085 0.892
1.131 0.879
1.013 0.910
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4.4. Periodic distributions of RLIs

The analyses in Section 4.3 indicate that RLIs can be very effec-
tive in disrupting shear band patterns emanating from a large
defect. In analogy with those analyses, their ‘disruptive capacity’
is now analyzed for a family of small (‘micro’) RLIs with respect
to the shear bands emanating from a large (‘macro’) RLI. To simu-
late the behaviour of an infinite domain, the RLIs are embedded in
a square L� L unit cell subject to periodic boundary conditions.
Small RLIs are characterized by a half-length am ¼ L=40 and one
hundred of these is analyzed at different inclinations
(�hm ¼ 0; 24:09; 50; 90f g�) while one large RLI with half-length
aM ¼ L=4 is added, in either the horizontal (�hM ¼ 0�) or vertical
(�hM ¼ 90�) direction. The bulk material properties are defined at
the beginning of Section 4.
Fig. 19. Maps of damage field x revealing shear band patterns in a unit square cell (o
different RLIs’ distributions. Upper row: one large (or ‘macro’) RLI (a ¼ L=4); Second row
horizontal RLI inside a periodic distribution of small RLIs at different inclinations (�h ¼ 0f
color scale is the same as in Fig. 9.
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The RLIs are embedded in a square unit cell of size L under peri-
odic boundary conditions (Suquet, 1985). The cell is subject to
macroscopic straining in the vertical direction obtained by apply-
ing a constant displacement rate using the same parameters
employed in Section 4.1.

The shear bands generated by one large RLI placed at different
inclinations in the center of the unit cell are visible in the upper
row of Fig. 19. The second row shows the shear band patterns gen-
erated by RLIs’ distributions obtained by the horizontal and vertical
stacking of the corresponding distributions in the upper row (with
a scale factor 0.1). Because of the periodic boundary conditions and
the homothetic relation between unit cells in the upper and second
rows, the shear band patters in the second row can be recon-
structed from those in the upper row by means of the same proce-
dure used to generate the RLIs’ distributions.
f side L) subject to macroscopic straining in the vertical direction and containing
: a periodic distribution of small (or ‘micro’) RLIs (a ¼ L=40); Third row: one large
; 24:09; 50; 90g�); Lower row: as in the third row, but the large RLI is vertical. The
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As in the cases discussed earlier, the inclination of the RLIs dra-
matically influences the shear band patterns. In particular, sym-
metric networks involving the two conjugate shear band

inclinations h �ð Þ
sb can be observed in panels (a) (�h ¼ 0�) and (d)

(�h ¼ 90�), while the other two inclinations in panels (b) and (c)
generate non-symmetric networks, with localization developing

mainly at inclination h þð Þ
sb . A third further shear band inclination

is visible in panel (c), close to that of the RLI.
The interaction between micro and macro RLIs is illustrated by

considering a macro RLI placed at the center of the unit cell and
inclined at �hM, while surrounded by arrays of micro RLIs inclined
at �hm. Maps of damage localization are reported for eight
combinations of micro and macro RLIs in the third (�hM ¼ 0�) and
fourth (�hM ¼ 90�) row of Fig. 19. These fields clearly show the
strong mutual influence between micro and macro inclusions. In
particular, the array of micro RLIs generates a fragmentation of
the macro-pattern shear band fields in a manner specific to each
micro RLI inclination. This consideration does not hold for the
micro RLIs at the neutral inclination �h ¼ 24:09�, where the shear
band fields closely resemble those related to the macro RLI (cases
�h ¼ 0� and 90� in the upper row). In all the considered cases, the
macro RLI shields the micro RLIs inside the rhomboidal domain
defined by the intersection of the shear bands nucleated from
the macro RLI tips. In this domain damage is practically zero, with
very low damage levels observed around the micro RLIs close to
the delimiting shear bands. Outside the shielded rhomboidal
domain, the damage fields reveal micro-shear banding around
the micro RLIs (except for the neutral inclination case). This
observation suggests that shear bands emanating from longer RLIs
prevail over those emanating from shorter RLIs, in contrast with
the limit case of RLIs of equal length (Fig. 11), where the shear
bands emanating from each RLI are in ‘equilibrium’ and none pre-
vails over the other one.
5. Summary

Simulations performed with a two-dimensional model for the
analysis of dispersions of stiff and thin platelets embedded in a
ductile matrix have revealed the complex shear banding patterns
leading a material to failure. The model is based on the rigid line
inclusion concept, which has been applied in a visco-plastic-
damaging material matrix and implemented through an embedded
reinforcement approach. The embedded approach adopted in this
study, based on the formulation proposed by Balakrishnan and
Murray (1986), enables an accurate and computationally afford-
able analysis of composites with any distribution and at any vol-
ume fraction of rigid line inclusions. Thanks to the individual
representation of each inclusion by means of an appropriate kine-
matic description, RLIs’ interaction and orientation effects are
properly accounted for in the prediction of local stress fields in lin-
ear and nonlinear regimes, allowing for damage accumulation and
localization at the level of each RLI.

The following results have been obtained by running analyses,
with up to 1500 RLIs, for random, periodic, or clustered RLIs’
distributions.

 In the elastic range, RLIs lead to a stiffening of the elastic
response, with the exception occurring when the inclination of
the RLIs with respect to the applied stress is sufficiently close
to the ‘neutrality condition’ expressed by Eq. (33). The stiffening,
as expected, depends on the geometry of the RLIs’ distribution.

 Neutrality does not hold when the matrix material enters the
inelastic regime, and therefore RLIs always have an important
effect on the overall mechanical response.
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 When inelastic deformation occurs and damage tends to local-
ize into shear bands, the tips of the RLI promote, with their
stress concentration, localization nucleation and growth and,
at the same time, may hinder, slow down, and even stop a local-
ization growing from a defect larger than the RLI. In the former
case, shear bands form networks of more or less pronounced
regularity, characterized by a fine texture modulated by the
RLIs’ and shear band geometries. In the latter case, the thick
shear bands that would nucleate and grow from the large defect
are ‘fragmented’ into a cascade of tiny lines of concentrated
damage, often following a path coherent with the thick, unde-
veloped underlying shear bands.
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