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ABSTRACT

This MSc thesis aims to develop a management solution for historical Au-
tomatic Identification Structure (AIS) data by finding a suitable database
and data(base) structure for an effective extraction of historical AIS data to
support Spatial-Temporal analyses. The work-flow the thesis proposes fo-
cusses on the selection of a database, the organization of the data inside this
database and the effectiveness of the extraction of information that can be
used in Spatial-Temporal analyses.

AIS data, vessel movement data, has a complex structure consisting of 27

different kind of encoded messages. These messages hold their own unique
and similar data and are related to each other by their vessel-ID number
(MMSI). The update rate of the messages, the data, is dynamic, different for
each kind of message. Storing and structuring historic AIS data should be
able to handle the data features.

Based on the comparison between the AIS data features, the requirements
that the database has to meet which are set by Rijkswaterstaat and related
literature and documentation is MongoDB a suitable database to manage
AIS data. The requirements that are set by Rijkswaterstaat are based on
three use cases; location, trajectory and bounding box. Extraction of the in-
formation, that can answer the use cases, from the historic AIS data that is
stored within the database, should be effective.

To ensure this, two data(base) organizations are developed, one storing AIS
data in a way that it will support the Spatial-Temporal analyses of the spec-
ified use cases and one storing AIS data in a way that it will support all
possible spatial-temporal use cases. The first will store only the four de-
coded attributes that are necessary to answer the use cases together with
the original encoded AIS message. The second will store all decoded at-
tributes an AIS message holds.
To enhance the performance of MongoDB holding AIS data in one of the
two data(base) organization, four indexes on individual attributes and one
4D Morton code index are developed. A 4D Morton code index based on
latitude, longitude, MMSI and date-time is developed to enhance the ef-
fectiveness of the extraction of the information from the database that will
answer the three use cases.

A comparison between the two data(base) organizations and the five indexes
by measuring their effectiveness while executing three, on the by Rijkswa-
terstaat specified use cases based, queries, concludes on a suitable manage-
ment solution for historical AIS data which will support Spatial-Temporal
analyses.
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1 INTRODUCT ION

’We are drowning in information, but starving for knowledge’

The claim made by Naisbitt and Cracknell [1982] is nowadays relevant to
how is being dealt with Automatic Identification System (AIS) data.

1.1 background
AIS enables the identification, tracking and monitoring of vessels. It is the
most frequently used marine system around the world. This system, AIS,
provides rich real-time vessel movement data and information to identify
other vessels, and provides extra information including vessel name and
number, the speed of the vessel, the destination etc. AIS is widely used
around the world to avoid vessel collisions, for security, for efficiency of nav-
igation, for communication between vessels and between vessel and shore,
for information and for safety. AIS is mainly used by Vessel Traffic Ser-
vice (VTS) due to the provision of real-time positions and other interesting
information of surrounding vessels.

AIS data consist of digital messages which vessels and base stations sent
to each other. Vessels are able to sent 27 different kind of AIS messages all
NMEA-0183 encrypted 1 and containing unique and similar data. Where as
certain messages contain the vessel position (dynamic information), others
contain the vessels static and voyage related information such as the name
and destination. There is not one message that contains all available infor-
mation of a vessel.
The data these AIS messages contain are generated by sensors, Global Po-
sitioning System (GPS) or are manually provided by the vessels owner. All
sea-going vessels larger than 300 gross tons, all commercial and recreational
vessels larger than 20 meters, and CEMT 2 class 1 or higher are according
to the International Maritime Organization and Dutch regulations obliged
to have an AIS system on board which consist of sensors, transponders, re-
ceivers and soft- and hardware[AISM and IALA, 2005; Tetreault, 2005].

Vessels sent their messages according to an update rate, which differs per
message type. The update rate of AIS messages containing the vessels posi-
tion depends on the speed of the vessel. The highest update rate for these
messages is once every two seconds. For the messages containing static or
voyage related data as ship name and destination, this update rate is much

1 NMEA-0183 is a standardized data specification for communication between different marine
electronics. Encrypted; decoding is necessary to extract the information these NMEA 0183

encrypted messages contain
2 CEMT, Conference Euopeenne des Ministres de Transport define classes for vessels, Vessels

are divided in classes based on the dimensions of the vessel
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lower, once every 3 to 6 minutes depending on if the vessel is moving.
AIS data is sent from vessels, shore to vessels, and shore across two maritime
mobile radio frequencies. Two channels (161.976MHz and 162.025MHz) are
used to avoid interference problems. Each channel allows multiple vessels to
sent their messages. Sharing a channel with multiple users is done with the
use of a Time Division Multiple Access (TDMA) scheme. This TDMA scheme
divides the signal into time slots. On each of the two channels there are 2250

time slots available per 60 seconds for each base station. Vessels sent their
messages to one of these time slots. Each time slot can contain exactly one
message. The way time slots are used depends on the class of AIS system
on board of the vessel. Class A AIS systems reserve space in the slot map
and messages are sent into these reserved time slots (Self-Organized Time
Division Multiple Access (SOTDMA)). Class B AIS systems scan for available
space in the slot map and their messages are sent towards the found free
time slots (Carrier Sense Time Division Multiple Access (CSTDMA)).
It might be the case that more messages are sent to the slot map than avail-
able time slots. Then the closest vessels are more likely to be transmitted
since messages from vessels that are further away are possibly sent to a
timeslot of another base station as well.

1.2 problem statement
AIS is originally developed to support VTS, this is why AIS’s main use is by
VTS. For VTS, all different AIS messages are important, especially the ones
containing vessel positions, safety related messages or messages containing
information on for example dangerous cargo. Of course only the most re-
cent messages, positions and information are used since what happens right
now on the waterways is most important. This means that ’old’ messages,
positions and information is no longer relevant for VTS and is often ’deleted’
from memory. This deletion of data is a great loss since the ’old’ positions,
the historic AIS data, is very useful for many different applications.
Ristic et al. [2008]; Wijaya and Nakamura [2013] for example examine the
possibility to use AIS data for ship movement behaviour prediction. Ristic
et al. [2008] uses statistical analysis of AIS data for the detection of possi-
ble anomalies in vessels motions. When the normal behaviour of a vessel
is assumed, a predication of future vessel motions shall be made. Wijaya
and Nakamura [2013] predict the future position of a vessel by finding the
K-Nearest Neighbours (K-NN) from historical positions of vessels which are
of similar type, have a similar navigational status and draught that have
already visited the current position of the vessel of interest. The research of
Wang et al. [2008] focusses on anomaly detection within vessels movement.

The above mentioned studies have especially focused on the use of AIS data,
they neglect the storage of the data prior to the ability to perform statistical
or other kinds of analyses. Related studies focussing on moving objects3,
do cover this part. Hecht and Jablonski [2011]; Hussien [2012]; Indrawan-
Santiago [2012]; Moniruzzaman and Hossain [2013]; Wolfson et al. [1998]
examine the subject of using databases for the storage of moving objects
data and the existence of multiple different kinds and types of databases
which have features that others do or might not have. Chen et al. [2008a];

3 Moving objects can be defined as people, animals, cars, plains, vessels and other ”objects” that
change their position in relation to time

4



Meng and Chen [2011]; Mokbel et al. [2003b]; Nguyen-Dinh et al. [2010];
Park et al. [2013] elaborate on the use of databases for the storage of AIS

data by their researches on storage performance optimization methods for
efficient management of moving objects.
The moving objects data that these researches apply, often consist of or fo-
cus on just the latitude, longitude and time. AIS data contains much more
interesting and important data than these four attributes. Therefore the
question arises; Will the methods and techniques provided by research on
the management of moving objects be applicable and evenly sufficient for
historical AIS data. This MSc thesis therefore will present a research to-
wards a management solution for historic AIS data intended to encourage
further spatial-temporal analysis. The method provided searches for a suit-
able database and develops a data(base) organization. The research ques-
tions this research will answer will be presented in section 1.3.

To come back at the statement of Naisbitt and Cracknell [1982] at the be-
ginning of this introduction; the large amount of vessels equipped with an
AIS will, when storing this data, let us eventually drown in information due
to the large amount of vessels (in Europe there are already around 21.000

vessels) and the high update rate of the data. Knowledge on how to manage
this historic AIS data, though, remains quite unknown.

1.3 research questions
This MSc thesis aims to provide a management, storage, and structuring
solution for historic AIS data to support spatial-temporal analysis. The fol-
lowing question will be answered:

How can historic AIS data be managed, stored, and structured to support spatial-
temporal data analyses?

To answer the main question five sub questions have been specified:

• What is AIS data, what are its features?

• What kind of spatial-temporal analyses with historic AIS data is inter-
esting (for Rijkswaterstaat)?

• What database should store historic AIS data?

• How should this database store the historic AIS data?

• Which indexing technique is suitable to provide efficient historic spatial-
temporal data requests?

1.4 motivation
There is great demand for AIS data available by government, companies and
researchers. Providing a solution for the management of historic AIS data
will provide an answer to this demand, the possibility to use the data for
multiple different applications and spatial-temporal analysis.
The development of applications that would benefit from the storage of mov-
ing objects make this topic widely researched. The fact that this data can be
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used for many different purposes is becoming more well-known, thence the
rising interest in the topic of moving objects data management. The focus,
though, seems to be on real-time applications and data management where
seconds ’old’ data is not relevant. The management of historical moving
objects does however deserves attention. This research on the management
of historical AIS data aims at giving this topic the attention. Storing moving
objects is indicated as difficult due to the fact that the data needs to be kept
up-to-date. The management of AIS data is indicated as not yet widely re-
searched due to researches focussed on the use of AIS data and therefore are
negligent on how to store it. This MSc research aims at bridging these gaps
of the management of historical moving objects data and AIS data.

1.5 scope
This research is, as the main research question already implies, focussed on
the management of historic AIS data. The real-time update of AIS data will
be taken into account when developing a suitable cluster or index technique
but it will not be tested in this research.
The kind of spatial-temporal data analysis for which an AIS management
structure will be defined are described by different people of the CIV de-
partment of Rijkswaterstaat.
The used AIS data within this research is delivered by Rijkswaterstaat and
consists of AIS data from the Dutch waterways only.
Privacy is the main reason why AIS data is not efficiently stored. The privacy
issues concerning the storage of AIS data are not taken into account in this
research, though this research will properly deal with this privacy sensitive
data and will therefore not publish information that can be related to pivate
matters.

1.6 thesis outline
Chapter 2 presents the related work. Available research related to the man-
agement, storing and structuring of moving objects data is discussed in this
chapter. Chapter 3 describes the aspects of the methodology that is used to
create a suitable solution for the management; storing and structuring of AIS

data. The chapters 4, 5 and 6 then will explain the implementation of the
followed methodology. Where chapter 7 presents the results and analysis of
the executed tests. Chapter 8 then concludes on the AIS data management
solution which will support spatial-temporal analysis. This chapter will also
give directions for future work.
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2 RELATED WORK

Several areas of research are relevant for this thesis. The following chapter
provides an overview of the related works. The first part, section 2.1 will
address the researches related to the management; storing and structuring
of moving objects. A clear distinction existing in this researches is indicated
and the researches on data management of historical positions of moving
objects will be highlighted. The second part, section 2.2 is focussed on
the accessible tools for the management and section 2.3 will explain the
different possibilities for an efficient storage and structuring of a database
for the management of historical positions of moving objects, namely spatial-
temporal access methods and Section 2.4 will discuss comparing different
indexing, spatial access methods. The chapter will end with queries that are
most likely to be asked to databases storing moving objects (section 6.2.2)

2.1 moving objects data management

Moving objects data management is in this research defined as the storage
and structuring of data from moving objects (vessels) within a database
to support spatial-temporal data analyses. Moving objects are defined as
people, animals, cars, plains, vessels and other ”objects” that change their
position in relation to time. They can be classified into moving points and
moving regions. Moving points are objects that change location over time,
moving regions are objects that change shape/extent over time [Guting and
Schneider, 2005]. The data that can be retrieved from moving objects is
at least a 2D position in combination with a time stamp. Moving objects,
points or regions, therefore can be referred to as multi-dimensional spatial-
temporal data.
Various studies in recent years their focus on moving objects and related
models and algorithms. In general, these studies are interpreted from two
perspectives [Guting and Schneider, 2005; Meng and Chen, 2011]. The stud-
ies on this subject are divided in the two. The first perspective is focussed
on the representation of the current real-time changing positions of mov-
ing objects and their possible future positions. The second perspective is
focussed on the representation of the historic positions of moving objects
[Pfoser et al., 2000; Reiss et al., 2007; Diallo et al., 2015; Frentzos, 2008].

With the focus on current and future positions several algorithms and mod-
els are proposed by various researches. Sistla et al. [1997] proposes the
Moving Objects Spatial-Temporal (MOST) data model. In this model the po-
sition of a moving object is represented as a function of time. Moving objects
are referred to as dynamic attributes which change over time even if its po-
sition is not updated. This means that an assumption is made to the future
position of moving objects. This makes it possible to ask queries that refer
to the future values of these objects.
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Another model is proposed by Chon et al. [2001], the space-time grid model
[Meng and Chen, 2011]. The space-time grid model of states that moving ob-
jects are existing in two-dimensional space on a one-dimensional line (linear
network). This line for example can be defined as a highway with a spec-
ified amount of lanes and a specified amount of cars it can accommodate
before traffic jams occur. These constraints are developed for an efficient
traffic management. Management of the moving objects in this model is
performed by storing the latest arrived positions of moving objects that fit
within a predefined time domain, and meet the constraints, in primary stor-
age. When data is received that has a time stamp beyond the predefined
time domain, the time domain will shift forward and the positions that do
not fit into the time domain any more will be stored into secondary storage
or not even stored at all.
Meng and Chen [2011] proposes two more models for the management
of current and future positions of moving objects, the abstract data types
model Lema et al. [2003] and the linear constraint data model.

2.1.1 The management of historic positions

The management of historic moving objects data for the purpose of spatial-
temporal analysis is often mentioned in research to indicate the existing
division in researches. Often though these researches continue with the in-
vestigation towards management solutions for current and future positions
[Brakatsoulas et al., 2004; Chon et al., 2001; Guting and Schneider, 2005;
Lema et al., 2003; Meng and Chen, 2011]. The management and use of real-
time position data imply above all, that (seconds) ’old’ position data is not
necessary and can be deleted or don’t have to be stored at all.
Performing spatial-temporal analysis on moving objects data though pleads
for the storage of this ’old’ data.

Reiss et al. [2007] and Nittel [2015] imply the management of historic po-
sitions to be difficult due to the fact that the historical data needs to be
up-to-date. Holding historical data up-to-date means updates of new data
every other second depending on the update rate. Management of historical
data therefore is associated with the management of real-time data by the
(real-time) update rate.
Reiss et al. [2007] approaches the management of historical data from a data-
stream point of view and implies on a solution to manage and query current
and historical data at the same time by using bitmap indices. Bitmap indices
is a kind of index that compactly stores the data in bits1. Reiss et al. [2007]
concludes that historical positions of moving objects will not be modified,
only new positions are appended to the existing positions. Therefore bitmap
indices do not have to be sorted, and new records can be easily added.

2.2 databases as the proper management tool

Databases are tools mainly used to efficiently store, structure and retrieve
again all kinds of data. Data that is most commonly structured. Tradi-

1 Bit or binary digit is a basic unit of information within the computing world. They consist of
a 0 or a 1
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tional Relational Databases 2 have been leading within the data manage-
ment, these systems were supposed to be the solution for almost all data
management problems.
The growing amount of data that is acquired these days is becoming more
complex. Storing and analysing this large volumes of complex data while
using a traditional relational database will lead to problems with the data
modelling and horizontal scaling 3 [Moniruzzaman and Hossain, 2013].
The growing volume and complexity of data have pushed the traditional
relational databases to their limits. This has had an effect on the amount of
organizations building their own databases suitable for their needs. These
databases were later defined as NoSQL databases 4 [Lourencco et al., 2015;
Moniruzzaman and Hossain, 2013].
The storage of the positions and other data of moving objects proposes other
challenges (besides the growing volume and complexity of data) to the ex-
isting traditional storage technology. Traditional relational databases are
not well suited for the storage of moving objects due to the fact that these
databases originally are designed for the storage of constant datasets or
datasets with a low update rate since data always needs updates. They
assume that the data is constant until it is explicitly modified, updated.
The spatial-temporal nature of moving object data implies a dynamically
fast growing infinite dataset of the objects positions combined with time
[Rodrı́guez-Tastets, 2005]. Storing such data in a traditional relational data-
base will impose a serious performance overhead since the location of the
moving object is updated frequently [Wolfson et al., 1998].
According Hussien [2012] there are several capabilities that traditional re-
lational databases do not have but are necessary for the management of
moving objects. One of those capabilities is the dealing with the frequent
updates of moving objects data as is explained earlier. Another is the
combination of spatial and temporal entities which with retrieval of data
from the database will be asked together. This has led to the development
of Moving Objects Databases (MOD) or spatial-temporal databases. These
kind of databases often reside to spatial databases which include a tempo-
ral element or temporal databases that try to include a spatial component
[Guting and Schneider, 2005]. The scalability problem traditional relational
databases face have not yet been solved with the development of spatial-
temporal databases of which the base relies on the relational databases.
NoSQL databases were thought off to be the solution to the limitations
the traditional relational database systems encountered. NoSQL databases
though are often specialized for specific needs, the specific needs of a com-
pany. This makes the selection of one most suited for a use case difficult
[Abramova et al., 2014; Hecht and Jablonski, 2011].

2.2.1 Database benchmarking

The rising interest in NoSQL databases does not mean that such a database
is the best suited for all use cases. Each database offers different solutions
for specific cases. For example, just a few databases could be suitable for the
storage of spatial-temporal data since they have a geospatial extension [Baas,
2012]. Depending on the use case there should always be one database

2 Traditional Relational Databases are databases which hold a homogenous data set with exist-
ing relationships among the data, they represent the data as a collection of relations

3 Horizontal scaling means scaling by adding more machines to the resources
4 NoSQL databases are containing different features than traditional relational databases have
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that outperforms the others, therefore there does not exist one database
that fits all cases [Lourencco et al., 2015]. The presence of many different
database benchmarking, database comparison researches as Kashyap et al.
[2013]; Hecht and Jablonski [2011]; Indrawan-Santiago [2012], confirms this
non-existence of one database that fits all use cases. These database bench-
marking researches can divided into three groups, researches that compare
only NoSQL databases Kashyap et al. [2013]; Abramova et al. [2014]; Hecht
and Jablonski [2011], researches that compare NoSQL databases with tradi-
tional relational databases Parker et al. [2013]; Li and Manoharan [2013] and
researches that compare Traditional relational databases.

Several studies use while comparing different databases the Yahoo! Cloud
Serving Benchmarking (YCSB) tool. This tool is set as a standard for compar-
ing databases and randomly generates the data and the operations that has
to be carried out [Kashyap et al., 2013]. Using this YCSB tool by comparing
databases, the outcome should theoretically be applicable to all cases. The
conclusions drawn from researches though often mention the necessity of
database comparison based on certain use cases [Hecht and Jablonski, 2011;
Klein et al., 2015]. Klein et al. [2015] itself proposes a framework for finding
the best suitable database for a use case.

2.3 historical positions data(base) organi-
zation optimization

The development of efficient index structures is an important issue. Efficient
indexing and clustering techniques are effective optimization methods for
these databases storing spatial-temporal or any other kind of data. They
are important for efficient execution of queries 5 involving spatial-temporal
constraints [Park et al., 2013].

2.3.1 Spatial-temporal indexing and cluster methods

There have been numerous researches in developing spatial-temporal in-
dexing methods to support database independent spatial-temporal queries
[Mokbel et al., 2003b; Nguyen-Dinh et al., 2010]. Mokbel et al. [2003b] de-
scribes different spatial-temporal indexing methods researched until 2003

and Nguyen-Dinh et al. [2010] continues the Mokbel et al. [2003b] research
by covering spatial-temporal indexing methods published after the year
2003. It explains new methods and addresses the weaknesses of existing
methods. Both Mokbel et al. [2003b]; Nguyen-Dinh et al. [2010] give meth-
ods for indexing the ’historic’ position, methods for indexing the current
positions and methods for indexing possible future positions.

Indexing the multi-dimensional past

Traditionally spatial-temporal data is indexed using an R-tree or a variant.
The R-tree can be defined as a height balanced indexing structure for multi-
dimensional data. It can organize any-dimensional data. Its main idea is
to group objects that are close to each other and then represent this group

5 Queries are commands given to the database to perform certain actions, which returns poten-
tial data, a selection of data
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of objects with a minimum bounding rectangle. Each node in the R-tree
contains a rectangle, consisting of objects or multiple rectangles depending
on the height of the node in the tree (Figure 2.1). The R-tree is adequate
when requesting data from a finite historical movement dataset. Updates
in the data, which are quite common when dealing with moving objects,
are costly operations since each time the data is updated, the R-tree index
must be updated as well. Xia and Prabhakar [2003] states that therefore the
R-tree should not be proposed for indexing moving objects. Also Meng and
Chen [2011] argues that R-trees are not that capable, especially not when
storing the derived trajectories from the positions of moving objects. With
an R-tree is it according to Meng and Chen [2011] not possible to store
three-dimensional trajectories.

Figure 2.1: R-tree [Meng and Chen, 2011]

An R-tree variant which is able to store also trajectories in an efficient way
is the Spatial-Temporal R-tree (STR-tree). A algorithm is used for finding
the predecessor of each point. Each node then contains a identifier to this
predecessor [Meng and Chen, 2011; Mokbel et al., 2003b].

For an efficient management of moving objects data worth mentioning is
the 2+3 R-tree index method provided by Mokbel et al. [2003b]. This index
aims to index both historic and current real-time position data at the same
time. The 2+3 R-tree does this by using two separate R-trees. One R-tree
is organized for the present positions and one R-tree is organized for the
historical positions. Once the real-time position is updated this position
is inserted into the R-tree for the historical positions and deleted from the
present position R-tree.
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Extending research exist on multi-dimensional spatial-temporal access meth-
ods [Mokbel et al., 2003b]Nguyen-Dinh et al. [2010]Meng and Chen [2011].
In practise though just a few multi-dimensional spatial access methods are
implemented in the mainstream databases [van Oosterom, 1999]. This ex-
plains the extensive use of the R-tree in the storage of moving objects.

Indexing and clustering the multi-dimensional moving past one-dimensional

A Space Filling Curve (SFC) is a popular method for indexing and cluster-
ing moving objects. A SFC can be defined as a mapping of n-dimensional
space into a one-dimensional curve. They deal with the fact that geospa-
tial data has 2 or more dimensions and try to combine these into a single
one-dimensional code. There are numerous kinds of SFC. Figure 2.2 shows
a couple of them used in a two-dimensional space and figure ?? in three
dimensional space. The difference between them is located in their way of
mapping towards one-dimensional space [Mokbel et al., 2003a]. Two of the
most use space filing curves are the Morton order curve and the Hilbert
curve. Both are known to map multi-dimensional data into one-dimension
while preserving the locality.

Figure 2.2: Various SFC 2D [Mokbel et al., 2003a]

Figure 2.3: Various SFC 3D [Mokbel et al., 2003a]

A SFC will store the data, objects, that are close to each other in reality
close to each other on disk. This clustering reduces the number of disk
accesses and improves the response time.
Moon et al. [2001] and Lawder and King [2001] compare different SFC and
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then particularly the Morton and the Hilbert curve. Concluding remarks
from these studies are that the Hilbert curve deserves closer attention. The
Morton order is mostly implemented in comparison with the Hilbert curve.
Implementation and understanding of the Morton curve is less difficult.

Figure 2.4: Hilbert SFC [Campbell et al., 2003]

Figure 2.5: Morton order SFC [Campbell et al., 2003]

A big advantage of using a space filling curve while clustering moving
objects is that each one dimensional data structure can be used for indexing
the data Park et al. [2013].
B-trees are the indexing technique which is most used in combination with
a SFC. The main characteristic of a B-tree is that it is designed to reduce
the number of disc accesses. A B-tree is a tree consisting of three layers;
root, internal and leaf nodes (Figure 2.6 visualizes only root and leaf nodes).
Both the root node and the internal nodes consist of key-pointer pairs. This
means that with the key they distinguish themselves from other nodes and
with the pointer they are linked to their child nodes. The leaf nodes then
have a pointer towards the data record.

Figure 2.6: B-tree

Various research propose variants on this B-tree. Jensen et al. [2004] pro-
poses the Bx-tree which does not store the individual points of a moving
object but the linear function belonging to the movement of the object in
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combination with the time this movement took place. This Bx-tree is ac-
cording to [Chen et al., 2008a] the first effort in adapting the B-tree to index
moving objects. Chen et al. [2008a] itself proposes the ST2B-tree, a tree
which subdivides the regular B-tree into two B-tree’s each assigned a time
interval. When an object updates its position it will be indexed in one of the
B-trees, based on in which time interval it fits. Whenever an object updates
its position again this position then will be indexed in the other B-tree.

2.4 index benchmarking
Benchmarks can be defined as efficient methods to compare the perfor-
mance of different databases for specified use cases. These comparison
techniques can also be used to compare different indexes on a data set to
conclude on the most efficient way to store and query this data set. Indexes
are an important part in efficient data management. Evaluating the use of
the index therefore is therefore a logical step. Chen et al. [2008a] and Dunt-
gen et al. [2009] provide indexing benchmarks for the indexing of moving
objects data. Duntgen et al. [2009] considers the efficiency of the execution
of specified queries as the indicator if an index is useful. Different kind
of queries are to be used in order to create a full understanding on how
this index performs. Queries as known or unknown objects identity, spatial-
temporal dimensions, query interval, condition type and aggregation will
cover the possible types of queries than are asked about moving objects.
Chen et al. [2008a] indicates an indexing benchmark as a tool to extensively
evaluate the aspects of a moving objects index. Four metrics are the aspects
on which the index is evaluated; the number of I/O’s, the CPU time, the
size of an index on disk and the response time of the query execution.

2.4.1 Querying moving objects

Queries are an important part within index benchmarking. There exist
many types of queries that can be asked about moving objects. For exam-
ple it is interesting when, where and how movements changed [Guting and
Schneider, 2005]. Meng and Chen [2011] introduces some ’basic’ querying
types. The point query, range query, the nearest neighbour query and the
density query are defined as the most common ’basic’ queries [Meng and
Chen, 2011; Lin, 2007].
A point query retrieves a point, a moving object, at a certain time or a
certain location. A range query on a moving object database retrieves all
objects within a certain geographical area (rectangle) during a time interval.
This query combines time with spatial. A nearest neighbour query retrieves
all objects nearest to the query position at a certain time. A density query
retrieves the regions with a high density at a certain time.
Pfoser et al. [2000] cites that the nature of the data and the type of queries
are of importance when designing an index method. The effectiveness of an
index relies on how efficient the query is executed using this index. Index
and cluster methods should keep those queries in mind.
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3 METHODOLOGY

This thesis aims to find a way to efficiently store AIS data to support spatial-
temporal data analysis. This chapter will provide and discuss the approaches
and methods used to reach this aim.

A database that fits all cases does not exist. The right database is use
case dependent (section 2.2.1) [Hecht and Jablonski, 2011; Klein et al., 2009;
Lourencco et al., 2015]. Finding the right database to manage; store and
structure AIS data is dependent on the set requirements, especially the re-
quirements that are based on use cases.
Klein et al. [2015] provides a method for finding the right database which
will be used in this research as a guideline not only to find a suitable
database but also an effective and efficient database organization. This
makes this method applicable for all use cases in which a database must
be chosen and organized.
The method is divided in five stages: requirement specification, candidate
database selection, data model design, performance and scalability tests and
a report of the results (Figure 3.1).

Figure 3.1: Database and Database Organization methodology, based on Klein et al.
[2015]

3.1 choosing a proper database

Where [Klein et al., 2015] uses these stages to find the ’perfect’ database
for a use case, in this MSc thesis only the first two stages are used to find
a suitable database for AIS data management (chapter 4). The other stages
are used to structure and optimize the chosen database for the handling of
AIS data (chapters 5 and 6) The next subsections will describe the first two
stages in more detail and additional methods used within those stages are
explained thoroughly.
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3.1.1 Requirement specification

The goal of the specification of the requirements is to indicate the AIS data
features, determine the task the database has to do, in what way the data
will be used and determine what specifications the database should have.

The features of the data that will be inserted into the database are most
important within the selection of a proper database to manage, store and
structure this data in. Data features as real-time, geospatial, and very large
volume, can be the reason a certain database is not suited to store AIS data.

[Klein et al., 2015] explains that besides the data features, stakeholders are
crucial in this stage, they define the database tasks and specifications. The
tasks the database must fulfil in this MSc research will be specified by its
stakeholders, the colleagues of the Centrale Informatie Voorziening (CIV)
department of Rijkswaterstaat. They will design use cases for which they
want to use the database containing historical AIS data for. Requirements
the database than must fulfil are based on these use cases. Examples are the
necessity for fast reads and look-ups and or continuous reads.

3.1.2 Database selection

The aim of this stage is to find a well suited database for the management
of AIS data based on the in the previous stage set requirements. Santos et al.
[2015] states that selecting a database depends on how well this database
handles the use case specific data and how well it performs the most usual
functions and queries the database is expected to execute. The selection of
a database thus depends on the combination of the requirements based on
the data features and the requirements based on the use cases.

The database selection in this MSc thesis will be made by comparing the
specified requirements with database documentation and related literature.
The database that in theory should manage AIS data will be chosen for the
management of AIS data.

3.2 database organization

The following three stages from the on Klein et al. [2015] based method are
used in the matter of structuring, organizing and optimizing the by theory
chosen database efficiently.

3.2.1 Data modelling

Certain databases, like NoSQL databases, might not force one to create a
schema, a model, for the data before insertion into the database. How data
fits together, how data is related is still important though, especially when
querying it. Asking questions to a database is directly proportional to the
data structure. Knowing where the information that is to be queried is sit-
uated within the data is important for the development of the data(base)
organization.
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Modelling the data, the existing relations within the data is effectively done
by creating a model with a Unified Modelling Language (UML). 1 With the
use of UML it is possible to model the AIS data (relationships) independently
from a database type.

3.2.2 Data clustering and indexing

Retrieving fast output from queries makes cluster and index techniques for
smart storage of the data necessary. Different cluster and indexing tech-
niques exist to provide a close storage on disk for related data and a fast
retrieval of this data (section 2.3).
The indexing technique used to locate vessel positions that in reality are
close to each other close, will be first and foremost an on AIS data adjusted
Morton order SFC (Figure 2.5). The Morton order SFC is known to be often
applied to multi-dimensional point data. Indexing or clustering with the
Morton order SFC is a logical first step in the conclusion if such a SFC is effi-
cient in the storage and organization of AIS data. For the Morton SFC though
applies the fact that points that are adjacent according to the curve not al-
ways are close to each other in reality. The Hilbert curve does not have this
unfortunate property. Inserting a Hilbert SFC seems more efficient though
more difficult to implement (Figure 2.4). But if a Morton order SFC can not
organize the AIS data in an efficient, effective, manner there will be no guar-
antee that a Hilbert SFC will. The implementation of the Morton order SFC

thus will be seen in this MSc as a ’proof of concept’.

The Morton order SFC requires an one-dimensional index. The index that
will be used for this is the well known B-tree. This indexing tree is widely
implemented in main stream databases and even though several researches
present an improved version of the B-tree [Chen et al., 2008b; Jensen et al.,
2004], it is a well working index structure for indexing the Morton codes.

3.3 database performance tests
Where database bench-markings are used to define the best performing
database, index bench-markings will evaluate the performance of indexes.
Several index bench markings researches exist, also bench-marks for the
evaluation of moving object indexes Chen et al. [2008a], Duntgen et al.
[2009]. The method used in this MSc thesis to evaluate the performance of
the database organization and indexes will be based on the methods used
by [Duntgen et al., 2009] and or [Chen et al., 2008a].
Where [Duntgen et al., 2009] locate the focus in the benchmark on an inter-
esting range of queries, [Chen et al., 2008a] focusses on four metrics; the
number of I/Os 2, the Central Processing Unit (CPU), the size of the index on
disk and the response time.
To indicate the performance of the database organization the focus will be
on the response time of specified queries, the size of the index and database
on disk and the effectiveness of the used index (how many database records
are searched). A combination of these four metrics will conclude on the
efficient data(base) organization of AIS data.

1 UML is a widely used standard modelling language
2 I/O stands for Inputs and Outputs, it is related to the communication between subsystems of

the computer
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4 IMPLEMENTAT ION : DATABASE
SELECT ION

This chapter is the first of three implementation chapters, each containing
their own stages of the proposed methodology based on [Klein et al., 2015].
This chapter will explain the selection of the database that will be used for
storing the historical AIS data. The first section, section 4.1, defines the by
Rijkswaterstaat and the AIS data itself set requirements which the database
should meet. The second and last section, section 4.2 then explains the
database selection in which the set requirements play the major role.

4.1 database requirement specification
When finding a database suited for a specific use case, in this case the man-
agement of AIS data, the requirements a database must fulfil are leading.
The requirements the database for the management of AIS data must accom-
plish depends on the features of the data and the use cases that are specified
by colleagues of the CIV department of Rijkswaterstaat.
The first part of this section will clarify how the historical AIS database will
be used and what features are necessary to accomplish this use, by describ-
ing use cases and the second part shall specify the data features and the
related requirements.

4.1.1 Use cases

Rijkswaterstaat has the ambition to apply different spatial-temporal and
technical analyses with the AIS data that the historical database will hold
when developed. The different spatial-temporal analyses are briefly ex-
plained by use cases. Multiple different use cases were specified during
personal sessions. The three main use cases, the use cases that all stakehold-
ers, colleagues of the CIV department of Rijkswaterstaat appointed, will be
used in this MSc thesis; Location, Trajectory, Bounding Box.

Location

The first use case is one concerning the location of a vessel. The most basic
information to get from historical AIS data is where was a certain vessel at
a specific time. This question is the base of every other spatial-temporal
question concerning AIS data and therefore is most important.

Trajectory

The second use case concerns the extraction from AIS data to get the histor-
ical trajectories of vessels. These trajectories can be used in several appli-
cations since they answer multiple questions like; Where has a vessel been
the last year? or What routes does this vessel normally take. One of these
applications is route prediction, the prediction of future positions. Based

19



on previous taken routes it is possible to predict the route the vessel will
take next. Knowledge about the destination and the current position of the
vessel is then helpful.

Bounding Box

The next use case concerns a geographical area, namely the amount and
location of the unique vessels that are located within a certain geographical
area at a specified time. The amount of vessels inside a specified area can
give knowledge about the density of specific parts of the inland waterways
at specific times. This density information can be used to improve the traffic
management.

4.1.2 Data features

Section 1.1 already explains shortly the different features of AIS data. This
section will collect the ones which influence the selection of the database.
AIS data can be defined as a combination of messages that vessels sent to-
wards other vessels and to base stations. Table 4.1 gives an overview of the
different messages with a short explanation of what kind of data these mes-
sages hold. These messages, 27 different kinds, contain unique and similar
information. The 27 messages all have their own schema, their own infor-
mation, their own values. Each message type on its own contains the same
values, but due to the fact that there are 27 different ones and the update
rate for each one is different and dynamic, the data will not be considered
structured.
AIS data is real-time data. This real-time nature influences the data volume,
it grows every second. Also the historical AIS data. Historical AIS data must
be kept up to date. To what extent the historical data is to be up-to-date
has to be decided by Rijkswaterstaat. This decision influences the update,
insertion, rate of the data in the database. This MSc research does not test
a real-time update stream of historical AIS data but keeps the necessity for
handling fast updates, inserts, writes in mind for the selection of a database.
Besides the update rate also the volume, which becomes bigger and bigger
is an important feature of AIS data. Where one month of AIS messages al-
ready has a size around 100 Gigabytes, the size of several years will become
Petabytes.

4.1.3 Requirements

The ambition of Rijkswaterstaat to conduct spatial-temporal analyses accord-
ing to the three defined use cases, weights heavily on the necessity of fast ex-
traction of information from the database: fast reads. To conduct up-to-date
reads from the database, writes that update the data are to be performed
before the reads.
Another important issue related to the performance of spatial-temporal anal-
yses is that the database should be able to store and perform operations with
(geo)spatial data with the use of complex queries.
Furthermore the selected database should be able to handle data that is not
considered structured with a possible real-time update rate and a volume
exceeding internal memory without losing the abilities of fast reads and
writes.
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Figure 4.1: List of the 27 different AIS messages

21



4.2 database selection

The question that will be answered in this section is what (kind of) database
should manage AIS data.

4.2.1 NoSQL

Traditional Relational databases are designed to manage relative static and
structured datasets that fit into predefined tables [Hecht and Jablonski, 2011].
Section 2.2 explains the necessary features for storing moving objects and
concludes that traditional relational databases might not be the right choice
to store them. A NoSQL database therefore can be seen as a proper choice
since they are to be the solution to the limitations of traditional relational
databases.

The management of historic AIS data asks for fast reads from the database
while using complex queries. The query possibilities of traditional relational
databases are comprehensive. The Structured Query Language (SQL) used
in these databases make the execution of these queries possible. Fast reads
though are dependent on multiple features besides the ability of executing
complex queries. They are dependent on the data, data volume, structure,
cluster and indexes.
Management of historical AIS data might lead to the thought of the manage-
ment of a finite data set, but the historical AIS data needs to be kept up to
date. The term a finite data set therefore does in reality not apply to histori-
cal AIS data. Trying to store AIS data which is coming from an infinite data
source within a traditional relational SQL database will result in problems
concerning the update rate of the data and scalability problems as explained
by [Moniruzzaman and Hossain, 2013] in section 2.2.
Scaling with a traditional relational database is only possible by adding
more storage space to a computer or just running the database on a more
powerful computer (vertical scaling) Van der Veen et al. [2012]. The technol-
ogy providing these storage option has eventually a limit, there are only so
powerful computers. Horizontal scaling means adding additional servers
and distribute the existing data among these servers. Due to the complex
relations this database can contain it is difficult to store one part of the data
elsewhere. The ways relational databases use to improve their performance
relies on the fact that a complete picture of the data is available. These
performance improvements does not work if half of the data is stored on
another server [Plugge et al., 2015].

NoSQL databases where thought of to be the solution for the limitations of
traditional relational databases [Abramova et al., 2014]. The main features
of NoSQL databases are that they do not use a relational model. Unstruc-
tured data can be stored easily since the database is schemeless [Indrawan-
Santiago, 2012]. NoSQL databases are furthermore designed for horizon-
tal scaling [Abramova et al., 2014]. These features already indicate that a
NoSQL database should theoretically be able to manage the large volume of
historical AIS data. This horizontal scalability affects the readability of the
database when storing large volumes of data. A disadvantage of NoSQL
databases is the fact that they provide less ’tools’. Because they do not
make use of the SQL the query complexity will linger on traditional rela-
tional databases.
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A last important aspect is that AIS data is (geo)spatial-temporal data. The
database must be able to manage, store and perform operations with spatial
data. Not many NoSQL databases are able to do this [Baas, 2012]. Spatial
and or temporal features are widely used by traditional relational databases.

4.2.2 Document store

There exist four types of NoSQL databases; document store, graph based,
key-value and column family databases. These four types of databases are
different in their functionalities and each is specialized in certain use cases
[Hecht and Jablonski, 2011].

Key-value store

Key-value databases have a simple data model containing keys with associ-
ated values which are only retrievable if the key is known [Amirian et al.,
2013]. According to Han et al. [2011], key value stores favour high scala-
bility over consistency. This means that key-values stores are more capable
of handling a growing dataset compared to handling the requirement that
each specified database task has to be performed. Query and analysis func-
tions are therefore often left out of the key-value store capabilities.
The key-value pairs within AIS data are related, within the key-value store
these key-value pairs are independent of each other. Relationships are pos-
sible to insert but only on application level [Hecht and Jablonski, 2011].

Graph database

Within a Graph database the relationships that connects the data are lead-
ing. They are efficient in the handling of linked data. Graph databases
are best suited for data that can be modelled as networks [Amirian et al.,
2013]. The AIS messages are primary linked by Maritime Mobile Service
Identity-number (MMSI), each message sent by the same vessel or base sta-
tion contains an associated MMSI. The messages from one vessel or base
station, associated to one MMSI, which together form a trajectory, should be
possible to store as a network. The MMSI is not the only feature that relate
messages to each other. This makes the storage of AIS data within a network
difficult, but not impossible. Though it is concluded that AIS data should
not be stored within a graph database.

Column family database

Column family databases are systems that are able to store a large amount
of different values within one row. The format of this database type is tabu-
lar like traditional relational databases. The inserted rows do not have to be
constant to each other though. This way semi-structured data can be stored.
The focus within column store databases lies as the name says within the
columns. All data within one column is grouped together (as a family). Be-
cause of this the column family databases can compress the data highly.
A row, the attributes of a AIS message when stored in a column family
database, will be stored in different column families. This means that not
all parts of the AIS message have to be extracted when asking for the value
of one attribute. One critical note is that each value is stored on its own,
although it is possible to store with each value the associated number of the
row and column.

23



Another specification of column store databases is that they are designed to
scale to very large sizes. Also they can handle a high rate of data updates.

Document store database

Document oriented databases make use of the key-value pairs concept but
when compared to key-value stores the difference lies in the fact that the
values and the keys can be queried [Indrawan-Santiago, 2012]). A docu-
ment database exists of one or more collections (data sets) containing one
ore more documents (data records) which contain one or more key-value
pairs (attributes). Document store databases are mainly used due to their
flexibility in data scheme (schemeless), their ability to handle complex data
and their performance and scalability [Abramova et al., 2014; Sullivan, 2015].
Multiple attributes are easily implemented in document and documents can
easily be filtered based on these attributes. These functionalities make doc-
ument store databases a suitable database kind to store AIS data.

4.2.3 MongoDB

As can be concluded from section 4.2.2 document store based NoSQL databases
should be able to manage, store and structure AIS data. From this database
types there is only a select group of different databases that have added
geospatial functionalities.

The database that should be used for the management of AIS data is Mon-
goDB. This is a popular open source NoSQL document oriented database
of which the developers know that it wont be a fit for all uses. MongoDB
is according to Plugge et al. [2015] aware that it is not suitable for each use
case, and the database is not designed for that either.
MongoDB is developed with the knowledge that there are a great deal of
features of traditional relational databases that work good. Such as indexes
and complex queries. These features therefore will work the same in Mon-
goDB as they should work in traditional relational databases. MongoDB has
an expressive query language and the possibility to implement secondary
indexes. Other main features of MongoDB are strong consistency, a flexi-
ble data model, horizontal scalability and high performance. MongoDB is
therefore usable with the storage of complex data and performing analysis
[MongoDB, 2016]. With this features MongoDB meets the set requirements
(section 4.1).

MongoDB stores data as documents. Internally these documents are stored
as Binary JSON (BSON) which compresses the data extensively. The data
in the documents consists of fields in combination with a value (key-value
pairs). The documents are stored into what is called a collection. Within a
collection it is possible to store documents which have similar structures but
this does not have to be the case. A collection can be defined as a selection
of different documents. Documents within a collection do not have to have
the same amount of key-value pairs within them (schemeless)(Figure 4.2).
This feature is important when storing AIS data, it means that it is possible
to store all 27 different AIS messages (which contain of different amounts of
key-value pairs) together in one collection.

Querying stored data in MongoDB can be defined as finding specific
fields with specific values within the documents of a collection. It is pos-
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Figure 4.2: MongoDB; Collection and Documents

sible for these queries to become complex. MongoDB is able to handle
queries comparable to SQL queries, defined in the programming language
from which MongoDB is controlled in combination with the query language
of MongoDB itself. MongoDB is controllable by different programming lan-
guages, it contains different drivers connected to different languages [Mon-
goDB, 2016].
MongoDB also offers a tool for interaction with the database independent
of the drivers; the mongo shell (Figure ??). This is an interactive JavaScript
shell in which the operations that can be performed with the use of drivers
can be executed as well.
Finding the specific fields and values specified within the queries is primar-
ily done by searching all documents within a collection (search without any
index). This feature makes horizontal scalability possible. When the collec-
tion of documents is spread among different servers, each server checks its
documents on the specified keys and values and returns a result.
A quick look up is arranged by the implementation of indexes. Indexes in
MongoDB can be declared on any field in a document. It is possible to im-
plement an index on each field within a document.
When querying documents based on two or more fields which all contain
an index, MongoDB performs query optimization. This means that it will
select the index that executes the query the most optimal way. Choosing
which index is to be used is also possible.

25





5 IMPLEMENTAT ION : DATABASE
ORGAN IZAT ION

This chapter is the second of the three implementation chapters. This chap-
ter will explain the process of organizing the selected database MongoDB.
This process of organizing the database is a central point in this research.
A well arranged database organization is the base to a fast retrieval of data.
The first section of this chapter, section 5.1 will explain AIS data and its
construction. This section will conclude with the way in which the data
should be organized into the database to support the specified use cases
and or spatial-temporal analyses. Section 5.2 then explains the processes
of necessary data transformations to accomplish the in section 5.1 specified
organizations. The chapter then will end with the explanation on how the
AIS data is loaded into MongoDB.

5.1 data model

Even though NoSQL databases do not need a specified data model or scheme,
it is still interesting and useful to look at the relations existing within the AIS

data. These relations clarify the construction of the AIS data. Knowledge on
the construction of the data provides information on where the necessary
data is located.
To support the spatial-temporal analysis by Rijkswaterstaat specific infor-
mation which is concealed in the AIS data is necessary. In order to extract
this information an overview of the structure and the relations between the
data attributes is necessary to get knowledge on where to find this required
information.

5.1.1 AIS messages relations

The relations between the 27 existing different AIS messages are visualized
in Figure 5.1. The central class is the AIS message. All different messages
are connected to this class via inheritance. The attributes of the central class
are the MMSI 1, the repeat indicator and the date-time (Figure 5.2). All AIS

messages contain these three attributes.

Figure 5.2: AIS message Central class

1 The MMSI is the number of the vessel, which is unique for each vessel
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Figure 5.1: The UML diagram of AIS data
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This central AIS message is related to 6 abstract classes (Figure 5.3) which
in there case relate to 21 of the 27 different messages. The AIS message can
be divided into 6 different main message types (abstract classes): Position
messages, metadata messages, acknowledgement messages, defined slot bi-
nary messages, addressed messages and broadcast messages. The position
messages then can be specified by two different kind of position messages:
vessel position messages and other position messages (Figure 5.3).

Figure 5.3: Abstract classes

Six different messages are related to the Vessel Position class, six messages
contain a position of a vessel (Figure 5.4). Two different messages are related
to the Metadata class, this means that two messages contain the additional
information of a vessel such as name and destination. Two messages can be
defined as acknowledgement messages, they are response messages that let
the vessel or base station sending addressed messages know that these were
received. Binary and broadcast messages are subdivided into 4 messages.
The messages directly related to the central message class are messages that
are sent by base stations to vessels to adjust the way their messages are sent.

Figure 5.4: Vessel position messages
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Two data(base) organizations

Taking a close look at the data model and the use cases together it becomes
clear that only a few messages contain the necessary information for answer-
ing the specified use cases. And from these messages only some attributes
are useful, others are not required.
To answer both the location use case and the bounding box use case four at-
tributes are necessary: the latitude, longitude of a vessel position, the MMSI

and the date-time. To answer the trajectory use case only three of those at-
tributes are necessary: the latitude, the longitude and the MMSI

The four different attributes containing the information significant for an-
swering the use cases are all located within the abstract class VesselPosi-
tionMessages (Figure 5.1). Six of the 27 messages contain the necessary
information. The other messages are factual not needed.
To not throw away data when only storing the four previous mentioned at-
tributes, the original encrypted message which hold all information should
be stored as well besides the attributes. From the six messages that contain
the necessary attributes, these extracted attributes in combination with the
original AIS message should be stored. From all other messages only the
storage of the original encoded message will suffice.

The three use cases used in this MSc research are not the only use cases
appointed by Rijkswaterstaat. They give an indication of the bigger pic-
ture concerning spatial-temporal analyses. When organizing the data(base)
focussed only on fast execution of the three specified use cases; location, tra-
jectory and bounding box, the support for spatial-temporal analyses might
not be that effective when other attributes are asked.
The storage of the original AIS message together with the extracted attributes
for fast data extraction to answer the use cases, can also enable spatial-
temporal analyses. Though only when this message is decoded after re-
trieval from the database.

To really support spatial-temporal analyses, another data(base) organization
is proposed, one able to handle all possible spatial-temporal use cases with-
out additional decoding processes. To support spatial-temporal analyses all
attributes existing within the AIS data should be extracted and stored.
With the future in mind, to support not only the specified use cases but fur-
ther spatial-temporal analyses, this division in two database organizations,
use case focussed and focussed on spatial-temporal analyses, seemed im-
minent to find a way to manage, store and structure AIS data.

5.2 data pre-processing

In order for AIS messages, to be readable, usable and storable conversion
is necessary. The extraction of the attributes is not possible when the orig-
inal AIS message is not decoded. AIS data is NMEA-0183 encrypted when
it is received. These encrypted lines of data ask for decoding and reformat-
ting pursuits before implementation in the specified data organization into
MongoDB is possible. Section 5.1.1 concluded on the comparison between
two database organizations, this means two different data preparation pro-
cesses. What remains the same is the decoding process and the loading into
the database (Figure 5.5).
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Figure 5.5: Data preprocessing work flow

5.2.1 Decoding AIS

A received AIS message contains two parts of data. The first part of the
message is the date-time. This date-time is the date and the time on which
the message was received not to be confused with the time the message was
sent. The second part is the NMEA-0183 encrypted sentence and contains
all valuable information apart from the date-time (Figure 5.6). Decoding
this message is necessary to obtain the required information.

Figure 5.6: Date-time and NMEA-0183 Encrypted AIS message

To decode the lines into a readable format a decoding algorithm is used.
This algorithm, written in the python programming language, reads the
encoded messages line per line and for each line decodes the message
and writes an output file with the decoded information (Figure 5.7). The
algorithm uses a library specified to decode AIS messages developed by
[Schwehr, 2015] which is only usable in a Linux environment. The decoding
of the AIS data done by Martijn Meijers and Wilko Quak resulted in a file
containing one month of decoded AIS data.

Figure 5.7: Decoded AIS message; Key-Value pairs
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5.2.2 Data preparation for the Use Case focussed data(base) organization

The use case focussed data organization asks for the storage of only the
MMSI, latitude, longitude and time. Data wastage is not an option therefore
the ”unnecessary” data will be stored by adding the original AIS message.
From the data model (figure 5.1) can be derived the fact that time and MMSI

is present in all AIS messages and the two other metrics; latitude, longitude
can be found within the Vessel Position messages. Only the MMSI does not
say anything about a vessel. Some metadata should be provided, such as
the name, destination, draught, type and cargo just to provide some more
knowledge about the vessel. This information is found within the two Meta-
data messages. The Vessel Position messages and the Metadata messages
are thus most important.
The importance of the two message types led to the division of the AIS data
in three sections or in the terms of MongoDB; collections. One collection con-
taining the Vessel Position messages, one collection containing the Metadata
messages and one collection containing all other messages. The three parts
of AAIS data can be inserted into one collection, but to make the database
understandable and make retrieval of data from the database easy and fast
three collections will be developed, one for each kind. The extraction of the
necessary information from the decoded AIS data and the division into three
collections is done automatically using an algorithm of which the following
pseudo code 5.1 explains how. MongoDB works best with JSON formatted
files therefore the algorithm writes the three collections of messages to three
JSON files.

Algorithm 5.1: Data Pre-processing algorithm Use Case focussed
data(base) organization

Input: Decoded AIS file
1 if the AIS message IS a Vessel Position message (message 1, 2, 3, 18, 19 or

27) then
2 Extract the MMSI, latitude, longitude, time and the original AIS

message.
3 Write for each message the extracted data to a JSON file, one

message per line
4 if the AIS message IS a Metadata message (message 5 or 24) then
5 Extract the MMSI, destination, name, draught, type, cargo and the

original AIS message
6 Write for each message the extracted data to a JSON file, one

message per line
7 if the AIS message IS NOT a Vessel Position OR a Metadata message then
8 Extract the MMSI and the original AIS message
9 Write for each message the extracted data to a JSON file, one

message per line
Output: Three JSON files ready to be implemented into MongoDB

5.2.3 Data preparation for the data(base) organization focussed on Spatial-
Temporal Analyses

A data(base) organization with the focus on the future, on spatial-temporal
analyses needs a fast retrieval of all information that can be retrieved from
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the AIS data. This lead to the assumption that all decoded AIS information
should be stored within MongoDB as related key-value pairs.
As in the data preparation for the use case focussed data(base) organization
(section 5.2.2) a division of the decoded AIS data will be made in message
types. The AIS messages will be divided into three sections: Vessel Position
messages, Metadata messages and all other messages.
The following pseudo code 5.2 will explain the used algorithm which ex-
tracts, reformat and writes the AIS messages to three different JSON files.

Algorithm 5.2: Data Pre-processing algorithm for the data(base) or-
ganization focussed on spatial-temporal analyses

Input: Decoded AIS file
1 if the AIS message IS a Vessel Position message (message 1, 2, 3, 18, 19 or

27) then
2 Extract all the associated attributes
3 Write these extracted attributes to a JSON file, one message per

line
4 if the AIS message IS a Metadata message (message 5 or 24) then
5 Extract all the associated attributes
6 Write these extracted attributes to a JSON file, one message per

line
7 if the AIS message IS NOT a Vessel Position OR a Metadata message then
8 Extract all the attributes
9 Write the extracted attributes to a JSON file, one message per

line
Output: Three JSON files containing al AIS information, ready to be

implemented into MongoDB

5.3 data loading

The data format transformation, data division and re-organization resulted
in two different data(base) organizations each consisting of three JSON files
which are to be imported into MongoDB.
Data loading in MongoDB is done by inserting a mongoimport command in
the MongoShell. As is explained in section 4.2.3 this MongoShell is a tool to
communicate with the database. Such a mongoimport command must con-
tain the name of the database and the name of the collection a file is to be
inserted in as is the directory to this file.
For each data(base) organization three of these commands are necessary to
populate the database, one for each collection.
Each JSON file has on every line a AIS message. Where the whole JSON
file is implemented into a collection is each AIS message transformed into a
document in MongoDB. Figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 visualize how
for each data(base) organization the data (vessel positions, metadata and all
other messages) is stored within the database when the JSON data is loaded
in.
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Figure 5.8: Data(base) organization use case focussed, vessel positions inside Mon-
goDB

Figure 5.9: Data(base) organization spatial-temporal analyses focussed, vessel posi-
tions inside MongoDB

Figure 5.10: Data(base) organization use case focussed, metadata inside MongoDB

Figure 5.11: Data(base) organization spatial-temporal analyses focussed, metadata
inside MongoDB
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Figure 5.12: Data(base) organization use case focussed, all other messages inside
MongoDB

Figure 5.13: Data(base) organization spatial-temporal analyses focussed, all other
messages inside MongoDB
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6 IMPLEMENTAT ION : DATABASE
PERFORMANCE

This third and last implementation chapter will explain the process of opti-
mizing and testing the index and data(base) organization performance. The
first section, section 6.1, will explain the insertion of a 4D Morton order SFC

index for an assumed better performance and how the AIS data is assumed
to be clustered within MongoDB. Section 6.2.2 defines the testing of the per-
formance of the indexes and data(base) organizations by two data volumes
and three designed queries (section 6.2.3).

6.1 indexing and clustering

The AIS data is stored per message, each message is one document belong-
ing either to the vessel positions, metadata or the other messages collection
as explained in section 5.1. The messages are stored either containing all
attributes or containing only four attributes and the encrypted AIS message
itself. The optimization method, the Morton curve, is yet to be implemented.

For the indexing, clustering, of AIS is a 4D Morton curve desired. The desire,
the necessity for a 4D Morton code to manage AIS data lies within the three
use cases which ask specifically for a 2D position, a date-time and a MMSI.
Four attributes of which it will be efficient, for answering the use cases, if
they are located close together.
Longitude and latitude (x and y) are to be stored close together so the loca-
tions of vessels that are geographically close to each other will be close on
disk. This is necessary for the location use case as well as for the bounding
box use case which ask for the location of one or more vessels. It is possible
to apply a 2D Morton curve based on the 2D locations of vessels but because
AIS data is moving objects data where time is equally important as location,
a 2D Morton curve will not do.
Without a notion of the time and looking only at the data, a lot of vessels
will be crashed into each other since they have sailed at the same location.
When adding a notion of time per location it will become clear that a vessel
will have been at the same place as another vessel but at a different moment
in time. The importance of a 2D location in combination with time could
evolve in a 3D Morton curve.
To substantiate the 4D Morton curve the focus is on the trajectory use case.
This use case asks for all historic positions of one vessel. This question
combines four attributes together, the 2D location, the time and the MMSI

of the vessel. Locating the four attributes together then is efficient for the
extraction of the trajectory of a vessel. Figure 6.1 visualizes the AIS data in
4D.
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Figure 6.1: AIS 4D

6.1.1 A 4D Morton code index

There exist already several algorithms that calculate Morton codes. One of
these algorithm is made available by [Psomadaki and Martinez, 2016] under
the Apache Licence 2.0. This algorithm is able to decode and encode a Mor-
ton code for 2D, 3D and 4D data.
The calculation of a Morton code is done through bit-interleaving. 1 At
first the set of four (latitude, longitude, MMSI and date-time) integer values
(they have to be integers) are converted from decimal numbers to binary
and then the values are rearranged. Figure 6.2 gives an example on how
this calculation of a 4D Morton code takes place.

Figure 6.2: Calculating the Morton code (Example)

This example considers the space (X,Y,Z) and time (T) dimensions which
are within this 4D point as equal, it is an integrated space time approach.
When one of the dimensions for example time is treated as superior the
Morton code will be different. Time will come first an then the three other
dimensions. Instead of X-Y-Z-T-X-Y-Z-T etc. you will get a Morton code like
this: T-T-T-T-X-Y-Z-X-Y-Z-X-Y-Z-X-Y-Z.
In this MSc thesis the integrated space time approach will be used, this
means that the space, time and MMSI (id) dimensions will be treated equally,
like they have the same dimensions. The fact that SFCs are based on hyper

1 Bit-interleaving is a method to make data retrieval more efficient by rearranging the data
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cubes, which means that all dimensions in the curve should have a similar
size, substantiates this. Scaling is necessary to to make this possible.

Scaling

Space and Time do not have the same semantics or nature. Space is mea-
sured in degrees, meters, or centimetres where time is measured in years,
months, days, hours, minutes or even seconds. Scaling the two can be de-
fined as the factor of how much time is integrated with how much space.

Vessels have speed limits on the (Dutch) waterways, just as when driving a
car. Their speed limits though are combined with rules sets. For example,
the speed limit for a vessel is 20 kilometres per hour when: they sail within
20 meters of shore, within 50 meters of swimming water, nearby games, par-
ties and or demonstrations, within the harbour and between sundown and
sunrise [Politie, 2016].
In order to comply with the speed of a vessel, space will be transformed into
meters and time into seconds. The latitude and longitude of the position of
a vessel will be conversed to meters by the transformation of the by AIS used
coordinate system WGS 84 2 to the coordinate system of the Netherlands;
(Amersfoort) RD new. The time, now in years, month, days, hours, minutes,
seconds will be converted into UNIX 3 seconds. This means the time is
measured in seconds from the 1st of January 1970 until now. The following
algorithm will explain how these conversions took place in an automated
way, for each vessel position message.

Algorithm 6.1: Space and Time conversions
Input: The latitude, longitude and date-time of each Vessel Position

message
1 foreach longitude and latitude do
2 convert from WGS 84 to Amersfoort RD new

3 foreach date-time do
4 convert from year-month-day-hours-minutes-seconds to an

UNIX time stamp in seconds
Output: The converted space (into meters) and time (into seconds)

ready to be used for the Morton code calculation

A Morton code per vessel position

The 4D Morton code will only be calculated and used by vessel positions.
They contain a latitude, longitude, MMSI and a time all together. Metadata
messages do not contain a latitude or longitude, therefore calculating the
4D Morton code is not possible.
The data preparation of both data(base) organizations consists of several
stages (section 5.2).
The stage in which the Morton code is calculated will be implemented be-
tween the extraction of the necessary data and storing this data in a JSON
file (per message) stage. In this way the Morton code is added to the neces-
sary data before it is stored in a JSON file and loaded into MongoDB (Figure
6.3) .

2 WGS 84 is the reference coordinate system used by the GPS
3 Unix time is a system for describing instants in time defined as the number of seconds elapsed

since 00:00:00 at the first of January 1970
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Figure 6.3: Morton code calculation and addition to the data

This arrangement changes the algorithms 5.1 and 5.2 into the next algo-
rithm where the necessary data is extracted based on the used data(base)
organization and the Morton code is calculated and added towards the mes-
sage before the messages are stored into JSON files (algorithm 6.2)

Algorithm 6.2: Data Pre-processing algorithm with the calculation
and insertion of the Morton code

Input: Decoded AIS file
1 if the AIS message IS a Vessel Position message (message 1, 2, 3, 18, 19 or

27) then
2 Extract the necessary data depending on the chosen data(base)

organization (use case focussed or focussed on Spatial-Temporal
analyses).

3 Transform for each message the latitude and longitude in
Amersfoort RD new meters and the date-time in UNIX seconds.

4 Calculate the 4D Morton Code with the algorithm of Psomadaki
and Martinez [2016] and add the calculated code to the extracted
data. Write the extracted data to a JSON file, one message per
line

5 if the AIS message IS a Metadata message (message 5 or 24) then
6 Extract the necessary data depending on the chosen data(base)

organization (use case focussed or focussed on Spatial-Temporal
analyses)

7 Write the extracted data to a JSON file, one message per line

8 if the AIS message IS NOT a Vessel Position OR a Metadata message then
9 Extract the necessary data depending on the chosen data(base)

organization (use case focussed or focussed on Spatial-Temporal
analyses)

10 Write the extracted data to a JSON file, one message per line
Output: Three JSON files ready to be implemented into MongoDB
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Loading data in MongoDB with the Morton code as id

Loading the data into the database will be at one part differently from the
data loading as explained in section 5.3. The data that per message type is
loaded into a MongoDB collection and per message is loaded into a Doc-
ument consists of key-value pairs. The calculated 4D Morton code will be
inserted into a message, a document, as one of these key-value pairs. The
key name, the field, of the Morton code will be id. But instead of having
”morton” as a key and the code as the value, the key will be id, the value
is the Morton code (Figures 6.4, 6.5).

Figure 6.4: Data(base) organization use case focussed with Morton code inside Mon-
goDB

Figure 6.5: Data(base) organization spatial-temporal analyses focussed with Morton
code inside MongoDB

id is in MongoDB used to mark each document that is inserted into
the database with a unique Key(-Value). When inserting a collection of
documents or one document to an existing collection into MongoDB, the
database will automatically add a unique key(-Value) to each inserted docu-
ment. It is possible to insert your own unique Key(-Value) instead of letting
MongoDB do this automatically. The Key(-Value) must be a unique value
for each document. Inserting the AIS data holding the 4D Morton code is
done by letting the Morton code be id, the unique Key(-Value) of the docu-
ment (Figure 6.4 and 6.5).

The unique Key(-Values) then are automatically indexed by MongoDB with
a B-tree, the data thus is indexed by a B-tree based on the Morton code.

6.1.2 Different indexes

A 4D Morton code index locates the vessels that have the same MMSI and
are close to each other in space and time close together. Within none of the
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three use cases all four attributes are known. The location use case searches
for the location of a known vessel at a known time. The trajectory use case
searches for all locations of a known vessel at a known timespan, and the
bounding box use case searches for the vessels that are located within a
certain bounding box at a certain time. The use cases therefore always ask
for one or even two of the four attributes of which the Morton code exists.
Inserting an index in MongoDB is possible on each and all fields within a
document. To substantiate the performance of the 4D Morton index it is
decided to insert also a B-tree index on the four attributes individually.

6.1.3 Clustering

It was thought that the id value was responsible for the clustering of the
data, how the data is stored on disk, after implementation though it is as-
sumed that the way data is stored on disk depends on how the data is
inserted into the database. But no documentation exist on whether this is
actually true.
Inserting the AIS data with or without the Morton code as id is assumed
to be automatically done based on date-time. The oldest AIS messages are
inserted first. The AIS data therefore is clustered based on date-time.
A clustering on the Morton code is not enforced due to fact that the data
was not sorted based on the Morton code after its calculation and implemen-
tation into the data. Inserting the AIS data holding this Morton code is thus
done based on the date-time.

6.2 performance testing

Two data(base) organizations (two approaches) are developed and five dif-
ferent indexes are implemented. The aim to find an effective data man-
agement solution for AIS data, testing the performance of the developed
solutions therefore is necessary.
Testing the performance is a comparison between the two database organiza-
tion, and the five indexes individually or in combination with the database
organization approach.

6.2.1 Data

The testing of the performance will be done with two different data volumes;
a day of AIS messages and a week. A day of AIS data consist of 15.361.707

messages, and a week of AIS data consist of 83.223.293 messages.
Both for the day and for the week of data, the AIS data is pre-processed
(section 5.2) and inserted (section 5.3) into the database. One database is
organized with one day of data with the focus on the use cases with a Mor-
ton code index, One database is organized with one day of data with the
focus on the use cases without a Morton code index, one database is orga-
nized with one day of data with the focus on spatial-temporal analyses with
a Morton code index and one database is organized with one day of data
with the focus on spatial-temporal analyses without a Morton code index.
This results in 4 different databases with one day of data. This organization
is also done with one week of data which results in a total of 8 different
databases each containing three collections (Figure 6.1).
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Database Organization Volume
Day Use case focussed 1.517 GB
Week Use case focussed 8.298 GB
Day Use case focussed Morton Index 1.654 GB
Week Use case focussed Morton Index 12.195 GB
Day Spatial-temporal analyses focussed 12.619 GB
Week Spatial-temporal analyses focussed 72.440 GB
Day Spatial-temporal analyses focussed Morton Index 15.311 GB
Week Spatial-temporal analyses focussed Morton Index 83.640 GB

Table 6.1: Different data(base) organizations and their volume

Each of those eight databases have a different volume. The one with the
largest volume is the one containing one week of data with a index on the
Morton code. This database has a size of 83.640 Gigabytes. MongoDB there-
fore has compressed the original size of decoded AIS data of a week of 300

Gigabytes with a factor 3. The size of the encoded AIS data though was 96

Gigabytes holding a month of data, which results in around 24 Gigabytes
for one week. Comparing this size to the 83.640 Gigabytes of the database
holding all decoded AIS data with a Morton code, the size has increased with
60 Gigabytes. Although, when just a few decoded AIS data attributes in com-
bination with the encoded AIS messages are stored the size of the database
is about 50% smaller, 12.195 Gigabytes, compared to the 24 Gigabytes.

6.2.2 Query design

The performance of the 8 databases with different data(base) organizations
and indexes will be tested by executing designed queries. Queries are de-
signed per defined use case to test whether implementing an organization
that is based on use cases is that effective. The queries are designed in
python while using a connection to the MongoDB database by pymongo, the
python Application Programming Interface (API) from MongoDB.

Location

The location use case asks for the position of a specific vessel at a specified
time. The input for a query concerning this use case are the MMSI of the
specific vessel and the date-time of which the position is the unknown.
Due to the fact that the update rate of AIS messages are not precisely every
second, is not continuous. Therefore it is not possible to query the position
of a vessel at an exact time. When asking for an exact time, it might be
the case that no message was received and thus no knowledge will exist
in the database about the vessels position at that exact time. Querying
the position of a vessel at a specific time will be done by asking the last
known position of this vessel at the specified time. This position then can
be exactly on the time queried or just a few seconds before.
To connect the vessel position with some metadata a second query is
specified. This query extracts from the associated metadata message the
name and destination of the associated vessel.

The connection between documents of two or more collections in MongoDB
can be made by embedding, referencing or by querying twice or more. Both
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the embedding of documents as the referencing are explained in section
4.2.3. Both options have the characteristic to multiply the amount of data
in one collection by adding data from the other collection to it. To prevent
the size of the database from growing, querying the database multiple
times to extract all necessary information is chosen as solution to connect
the Vessel Position collection with the Metadata collection. Another reason
can be found in the fact that with all three queries at first just the MMSI,
latitude, longitude and time will suffice, only at a later stadium extra vessel
information might be required. Though a combination is tested. Algorithm
6.3 explains the location query. It finds the last known location of a vessel
at a certain time and combines this location with the by vessel associated
metadata.

Algorithm 6.3: Location query
Input: the AIS data from MongoDB

1 foreach position of a vessel before a certain time do
2 Sort the positions date-time descending and limit the output to 1

3 Use the index on MMSI, date-time or no index to execute this
query

4 for the last known position of a vessel at a certain time do
5 Extract the name and destination from the metadata messages

Output: The last known location of a vessel at a certain time linked
with vessel name and destination

This algorithm indicates the use of an index. When an index, MMSI or date-
time, is used then the by MongoDB provided B-tree index is applied to the
MMSI or date-time attributes. More on this subject of indexes is explained in
section 6.2.3 and 6.2.3.

Querying the location using Morton codes

Querying the location using the Morton code is done differently. While
querying algorithm 5 it is not possible to use the index on the 4D Morton
code. Within MongoDB it is only possible to use an index when the
attribute of the proposed index is queried. In order to use the Morton code
index it is necessary to query the Morton codes. To make this possible,
at first the Morton ranges need to be calculated. This means that for the
location query the Morton code ranges need to be calculated that are linked
to the database records holding the position of a certain vessel before a
specified time. These ranges than are to be queried. MongoDB then only
has to search these documents holding a Morton code belonging to those
Morton ranges to find the last known position. the following algorithm 6.4
will explain how these queries using Morton ranges will be executed.

What this algorithm does not suffices to is how to extract the right
Morton code ranges before they can be queried.
[Psomadaki and Martinez, 2016] provides an algorithm that can calculate
the Morton codes. This algorithm also provides the reversed calculation,
instead of encoding a Morton code, it can decode an existing Morton
code into the 2,3 or 4 decimal integers of which it exist. With this ability
of encoding and decoding Morton codes, Morton code ranges can be
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provided.

Algorithm 6.4: Location query using Morton ranges
Input: Morton codes

1 foreach position of a vessel associated to a calculated Morton code do
2 Sort the positions date-time descending and limit the output to 1

3 Use the index on the Morton code

4 for the last known position of a vessel at a certain time do
5 Extract the name and destination from this vessel

Output: The last known location of a vessel at a certain time linked
with vessel name and destination

Even though this algorithm worked well in calculating the Morton code
ranges for the location query. The fact that the output of the algorithm where
the Morton ranges instead of the associated Morton codes, the extraction of
the Morton codes from those ranges to make the output implementable in
the location query was not an optimal fit to the already designed queries.
The focus is on how well the Morton index works, how fast the queries are
executed and how many documents are examined (the whole test plan is
explained in section 6.2.3). Therefore another more suited option to extract
the Morton codes that associate with the Morton ranges is used. The way
to ’calculate’ the right Morton codes associated to the location query (and
also the other queries) in this MSc thesis is done by extracting them from
the data inside the MongoDB database.
Algorithm 6.5 will explain how the Morton codes to query the location
query are extracted from the data in MongoDB.

Algorithm 6.5: Finding the Morton codes associated to the location
query

Input: The Vessel Position messages stored inside MongoDB
1 foreach Morton code within the Vessel Position collection do
2 decode the Morton code

3 if the MMSI of the decoded Morton IS EQUAL to the MMSI of which the
location is wanted AND the date-time of the decoded Morton IS EQUAL
OR SMALLER that the date-time of which the location wanted then

4 insert the codes into the Morton location query ??

Trajectory

The trajectory use case asks for the trajectory a vessel has sailed. In this MSc
research a trajectory of a vessel will be defined as all historic positions of
this vessel. Where other studies interpolate the points of a trajectory with
each other, here just the single historical positions of the vessel will suffice
as historical trajectory. The necessary data entity for a query concerning
this use case is the MMSI of the vessel. Algorithm 6.6 explains how querying
all positions associated to this MMSI will be done
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Algorithm 6.6: Trajectory query
Input: The AIS data from MongoDB

1 foreach position of the specified vessel do
2 Sort the positions date-time ascending
3 Use the index on MMSI or no index to execute this query

Output: All the historic positions of the specified vessel

Querying a trajectory using Morton codes

What applies to querying a location with Morton codes applies also to
querying a trajectory with Morton ranges. The Morton range codes have to
be calculated at forehand and MongoDB only should search the documents
containing the right Morton codes. The next algorithm shows how the
trajectory of a certain vessel is queried using the Morton ranges.

Algorithm 6.7: Trajectory query using Morton ranges
Input: Morton code

1 foreach position of that specific vessel associated to one of the calculated
morton codes do

2 Sort the positions date-time ascending
3 Use the index on the Morton code

4 foreach position within the trajectory do
5 Extract the name and destination of this vessel from the

metadata
Output: All historical positions with a associated time stamp linked

with vessel name and destination of that specified vessel

The input data for the above algorithm which queries the historical trajec-
tory of a vessel by its associated Morton codes is explained in the following
algorithm 6.8.

Algorithm 6.8: Finding the Morton codes associated to the trajectory
query

Input: The Vessel Position messages stored inside MongoDB
1 foreach Morton code within the Vessel Position collection do
2 decode the Morton code

3 if the MMSI of the decoded Morton IS EQUAL to the MMSI of which the
trajectory is wanted then

4 insert the codes into the Morton trajectory query ??

Bounding box

The bounding box use case asks for all unique vessels within a certain geo-
graphical area at a specified time. The necessary data to answer this query
is the latitude, longitude, date-time and MMSI. For the bounding box query
applies the same as when querying the location query, it is not possible to
query an exact time. For the bounding box query therefore it is chosen to
ask for all vessels located within a geographical area at a time interval of
11 seconds. In this case it is possible to select the vessels that are at anchor
which broadcast their position message once every 10 seconds. The follow-
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ing algorithm 3 explains how the query will be executed.

Algorithm 6.9: Bounding Box query
Input: AIS data from MongoDB

1 foreach vessel in a specified geoagraphical area at a certain time do
2 give the position of this vessel
3 Use the x, y, date-time or no index to execute this query

Output: Positions of all vessels inside the sepcified geographical
area

Querying all vessels within a bounding box using Morton codes

What applies to querying a location or a trajectory with Morton ranges
applies also to querying the vessels within a bounding box with Morton
ranges. The Morton range codes have to be calculated at forehand and
MongoDB only should search the documents containing the right Morton
codes. The 6.10 shows how the vessels within a bounding box are queried
using the Morton ranges.

Algorithm 6.10: Bounding Box query using Morton ranges
Input: Morton code ranges

1 foreach position of the vessel inside the specified geographical area at a
certain time associated to a calculated morton codes do

2 Extract the location and the MMSI

3 Use the index on the Morton code

4 foreach vessel within the specified geographical area do
5 Extract the name and destination of this vessel from the

metadata
Output: All vessels with their positions located within the historical

positions at a certain time linked with vessel name and
destination of that specified vessel

The input data for the above algorithm which queries the vessels within a
bounding box by its associated Morton codes is explained in the following
algorithm 4

Algorithm 6.11: Finding the Morton codes associated to the bounding
box query

Input: The Vessel Position messages stored inside MongoDB
1 foreach Morton code within the Vessel Position collection do
2 decode the Morton code

3 if the latitude and longitude of the decoded Morton IS WITHIN the set
bouding box AND the date-time of the decoded Morton IS WITHIN the set
timespan then

4 insert the codes into the Morton bounding box query 3
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6.2.3 Test plan

Testing the performance of the specified and implemented data organiza-
tion and indexes within MongoDB by comparing the examined amount of
documents, the index and database volumes and the response times of the
execution of the in section 6.2.2 designed queries.
The performance of the 8 databases with different data(base) organizations
and indexes will be tested by executing the three designed queries. A query
in combination with a database. For example the execution of the location
query by the database with a data(base) organization focussed on the use
cases holding a day of data is tested on: response time, the amount of examined
documents, and the use of CPU and memory
Even though the execution of the queries while using the index on the Mor-
ton code consists of two parts; extracting the right associated Morton codes
and executing the query, testing the effectiveness of the index on the Morton
codes does not include the time, amount of examined documents, CPU and
memory it takes to extract the Morton code ranges from the database. The
effectiveness is measured based on the time, examined documents, CPU and
memory it takes to execute the queries when the Morton codes are known.

Different indexes

The performance of a query will at first and foremost be compared with the
execution of the same query while using the index on the Morton code. The
focus will be on how well this index on the Morton code performs within
both of the two different data(base) organizations. The effectiveness of this
index therefore is compared to using no index and on using the index on
MMSI, latitude, longitude or time.
Where the index on the Morton code was implemented automatically
when the AIS data was inserted into MongoDB, the other four in-
dexes on the individual attributes were implemented by the command;
database.collection.ensureIndex(field:ascending/descending). This com-
mand creates an index on the specified field. All values within this field
present in the specified collection and database will then be indexed in the
specified ascending or descending order. The comparison of the different
indexes includes as explained the response time of the query, the amount
of documents that is searched, and the size of the index. Table 6.2 shows
these index sizes.

Morton Index MMSI Index Date-time Index X Index Y Index
328761344 84840448 62828544 112398336 97120331

328257536 84815872 62824448 98630085 93372416

1502334976 459837440 340295680 544497664 509812736

1473912832 459751424 340267008 520912896 499400704

Table 6.2: Index Volume (KB).
From top to bottom: Day (spatial-temporal analyses focussed), Day (use case
focussed), Week (spatial-temporal analyses), Week (use case focussed)

In order to test the performance of the index on the Morton order, it will
be compared to using no index, using an index just on the latitude, using
an index just on the longitude, using an index just on the MMSI and using
an index just on the date-time. Comparing the performance of the different
indexes will conclude on the effectiveness of the Morton code index.
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Not all queries are able to use all five indexes. The location query can
make use of the MMSI index, the date-time and the index on the Morton
code. For the location query therefore the performance three indexes and no
index will be compared. For the trajectory query only the performance of
the MMSI index, the index on the Morton code and no index are compared.
The bounding box query can make use of four indexes, the index on the
Morton code, the index on the latitude, longitude and date-time. Therefore
the bounding box query is to be executed five times using a different or no
index.
Table 6.3 visualizes the test plan for executing the queries while using
different databases and indexes. Such table is used for collecting the
response time, the examined documents, the index volume and the CPU
and memory. Each of the queries was executed five times to make sure the
response time was correct.

No Index Morton MMSI Time X Y
Location Day

S-T analyses x x
Day
use case x x
Week
S-T analyses x x
Week
use case x x

Trajectory Day
S-T analyses x x x
Day
use case x x x
Week
S-T analyses x x x
Week
use case x x x

Bounding Day
Box S-T analyses x

Day
use case x
Week
S-T analyses x
Week
use case x

Table 6.3: Test Plan Queries

Different Data(base) organizations

The difference in how well the two data(base) organizations perform while
executing the three specified queries is first and foremost based on the ef-
fectiveness of executing a query while not using any index.

Test and System Environment

All tests, query executions, will be done on one desktop computer which is
situated at the nautical test area at Rijkswaterstaat. The circumstances will

49



be the same for each test run which indicates an equal comparison.
The computer that is used for the tests has a 8.00 GB RAM, an Intel(R)
Core(TM) i7 -2600 CPU @ 3.40gHz, and a 64bit operating system.

The parameters for the three queries stay the same when executing
the query multiple times.
The location query finds the last known location of the vessel with the
name: RWS 16 and MMSI: 244130275 at the first on November 2015 at 13

minutes and 57 seconds past midnight. The trajectory query will find all
historical positions of this same vessel and the bounding box query will
find all vessels situated around Dordrecht on the first of November 2015 at
01:56.
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7 ANALYS IS AND RESULTS

Chapter 6 section 6.2.3 presented a test plan for the comparison of the
different data(base) organizations and usable indexes. This chapter will
present and discuss the results from the executed performance tests. The
first section, section 7.1, will discuss the results associated to the comparison
of the used indexes and section 7.2 discusses the results associated to the
comparison between the different data(base) organizations. The findings
that emerge from these discussions will lead to the conclusion on how to
manage AIS data to support spatial-temporal analysis. This will you read in
chapter 8

The CPU and the use of memory will not be a part of the performance
tests between indexes and data(base) organizations, because both stay with
the execution of the three different queries practically equal. MongoDB
performs its read operations in-memory, only queries on data that is not
in Random Access Memory (RAM) will trigger a read from disk. The use
of memory therefore is high, it uses all at the time available memory. The
CPU therefore stays low.

MongoDB caches data that is extracted by queries that are often used.
When executing a query five times only the first time extracts the data
from storage, the other four times will extract the data from cache. In the
comparison and analysis of the indexes and data(base) organizations by
executing the queries only the response time while executing the queries
the first time of the five is used.

7.1 indexes compared
The different indexes that can be used to improve the performance will be
compared in this section. Most attention will be given to the performance of
the index on the Morton code while execution one of the different queries in
comparison with other indexes or no index. The performance of the indexes
will be tested for each use case; location, trajectory and bounding box.

7.1.1 Location query

The location query (designed in section 6.2.2) will find the last known loca-
tion of a vessel at the first of November 2015 at 13 minutes and 57 seconds
past midnight. The query extracts the latitude, longitude, date-time and
MMSI from the vessel position collection and the name and destination of
the metadata collection. The emphasis is on the extraction of the right posi-
tion using the vessel positions collection. Figure 7.1 visualizes the outcome
of the query in a map.
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Figure 7.1: The output of the location query; The location of vessel 244130275 at
01/11/2015 00:13:57
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The response time of this query executed while using no index on a day
of data with a data(base) organization that would support all possible
spatial-temporal analyses is 617,627 seconds. The amount of examined
documents is 15.361.707 which is the total amount of documents present
in the vessel position collection in the database, a full database scan. The
database thus examines one document for the right values according to the
location query in approximately 40 micro seconds.

Using an index while querying the location query has a great influ-
ence on the response time and the amount of examined documents. Using
the index on the Morton code reduces the response time respectively with
85%-99% depending on the organization of the database (Figure 7.2).

Figure 7.2: Response Time Location Query; No Index vs Morton code Index

The large difference in response time between using no index and using
the index on the Morton code could be related to the amount of examined
documents. While using the index on the Morton code only 427 documents
are examined, using no index means examining all documents within the
vessel position collection which is 15.361.707 documents.

The response time while executing the location query using the differ-
ent indexes (Figure 7.3) varies strongly. Using the index on the MMSI

improves the response time compared to not using any index (Figure
7.2). Comparing its response time with the ones while executing the
location query using the date-time and or Morton code index will conclude
that using the index on MMSI with the execution of the location query is
not optimal. A reason for this appearance is found within the amount
of documents that is searched with the use of the MMSI index. This is
37.535 documents. This amount is compared to the earlier mentioned 427

documents that are searched using the index on the Morton code a lot.
Using the index on the Morton code while querying for the location of a
vessel seems besides the least amount of examined documents also to have
the fastest response time (Figure 7.3).
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Figure 7.3: Response Time Location Query; MMSI Index vs DateTime Index vs Mor-
ton code Index

With the possible existence of a relation between response time and amount
of examined documents is mind, when comparing the response time when
using MMSI index with the response time of using the date-time index,
the amount of documents that are examined with the date-time index
should be much lower than the amount examined for the MMSI index use.
This assumption, though, is not true. The amount of documents that is
examined when the index on the date-time is used is much higher than
the amount examined with the MMSI index, namely 328.153 in comparison
with 37.535. In this case the assumed relation between response time and
amount of examined documents does not add up.
The reason why the response time of the location query while using the
date-time index is that much faster even though the amount of examined
documents is that much higher, lies in the fact that the data is inserted
and thus sorted within MongoDB based on date-time. AIS messages that
are sent within a few seconds of each other are stored close to each other
(assumed clustering, section 5.3). Another point that will substantiate the
fast response time of the date-time index is the fact that when MongoDB
executes the query when no index is manually proposed, it uses the index
that is supposedly the most optimal, which is in this case the date-time
index.

The difference in response time between executing the location query
using the index on the Morton code and using the index on the date-time
is only a few seconds (Figure 7.3). The reason for this can also be found in
above explanation of the difference between the use of MMSI and date-time
index. Only in this case the fact that the amount of examined documents
while using the Morton index is only 427 which makes its response time
fast, the assumed clustering of the messages by date-time make the use of
this index almost equally fast.
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Another explanation of the equally fast response time between a location
query that makes use of the Morton code index and a location query that
makes use of the date-time index can be found within the influence which
the size of the indexes might have on the response time (table 6.2). The
index size of the Morton code index is the largest of the three indexes
(Morton, MMSI and date-time), the index size of the date-time index is
smallest (Figure 6.2). This in combination with the difference between the
amounts of examined documents can imply a definitive influence of the
index size on the response time.

7.1.2 Trajectory query

This query (designed in section 6.2.2) finds all historical positions, that are
available in the database, of one specified vessel. This query extracts the
latitude, longitude, date-time and MMSI for each historical position from the
vessel positions collection of the database and the name and destination of
the vessel are extracted from the metadata collection. Figure 7.4 visualizes
the output of the query.

The response time of the trajectory query when no index is used is slow,
from 30 minutes for a the trajectory of a day to 8 and a half hour to extract
the trajectory of one vessel for a week (Figure 7.5). Using no index lead to
the examination of all documents available in the vessel positions collection
of the database. The larger the amount of documents, the longer it takes to
extract all positions of one vessel. Besides the extraction of the right data
from the documents, writing the extracted data from the database to a file
influence the response time negatively.

Figure 7.5: Response Time Trajectory Query; No Index vs MMSI Index vs Morton
code Index
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Figure 7.4: The output of the trajectory query; all historic positions (for a week) of
vessel 244130275
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Using the index on the Morton code or the MMSI index to execute the
trajectory query accelerates the response time. According to the drop in
the amount of documents that is examined using one of the two indexes
compared to the amount of examined documents when no index is used
(table 7.1), the response time was expected to be faster.

The difference in response time when using the Morton code index
instead of no index is higher for the execution of the location query then for
the trajectory query. The index on the Morton code is thus more effective
when multiple attributes of which a Morton code consist are queried
together. The trajectory query is focused on extracting the data related
to one MMSI where the location query is focussed on extracting the data
related to one MMSI and a date-time.

Database Volume No Index Morton code Index MMSI Index
Day 15361707 3573 3753

(all documents)
Week 83223293 19688 19688

(all documents)

Table 7.1: Amount of Examined documents Trajectory query

Executing the trajectory query using the index on the MMSI takes around the
same time as when the index on the Morton code was used. The amount
of documents that is examined then is the same (table 7.1). The amount of
examined documents is the same because only one attribute is asked which
means that the search for Morton codes is only influenced by one attribute,
the MMSI. All documents containing this specified MMSI are examined both
for the use of the Morton code index as for the use of the MMSI. Only
when the selection of Morton codes, ranges, is influenced by two or more
attributes the amount of documents examined is smaller than when using
an index on one of these two or more attributes.

7.1.3 Bounding Box query

This query (designed in 6.2.2) will find all vessels that are situated around
Dordrecht at a 01:56 past midnight. The query extracts in this case the MMSI,
the latitude and the longitude from the vessel positions collection and the
name and destination from the metadata collection. The query output fifty
unique vessels in the area of Dordrecht at the specified time (Figure 7.6).

Both the location and the trajectory query have a significant faster response
time when the Morton code index is used in comparison with the use of
no index (Figures 7.2 and 7.5). This applies to the bounding box query as
well, as long as one day of data is queried. Executing the bounding box
query using the data volume of one week resulted in response times which
conclude that not using any index while executing the query is faster than
when the index on de the Morton code is used (Figure 7.7). This conclusion
can not be substantiated by the amount of documents that is examined
which is with the location and trajectory use case related to the response time
of the query execution. The amount of documents that is examined when
the index on the Morton code is used is only 171, where when no index is
used all documents within the database are examined.
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Figure 7.6: The output of the bounding box query; 50 unique vessels around Dor-
drecht
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Figure 7.7: Response Time Bounding Box Query; No Index vs Morton code Index

With the execution of the location and the trajectory query the use of the index
on the Morton code made the query most effective in terms of response
time and amount of examined documents. For the bounding box query using
the index on the Morton code does have the lowest amount of examined
documents (171) but does not have the fastest response time (Figure 7.8). It
can be concluded that the response time for the bounding box query using
the date-time index is faster than using the Morton code index. This does
not apply on the data(base) organization where the focus lies on the use
cases and one day of data is implemented though.

Figure 7.8: Response Time Bounding Box Query; date-time Index vs Morton code
Index vs X Index vs Y Index
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The reason for the fast response time of the bounding box query while using
the date-time index is found within the fact that the data is inserted and
thus sorted within MongoDB based on date-time. AIS messages that are
sent within a few seconds of each other are stored close to each other
(assumed clustering, section 5.3). Thi

The differences in response time between the four different indexes
while executing the bounding box query that exist right now where to be
expected. Especially the large difference between the response time when
the date-time index is used in comparison with the response time if the
index on the X value is used. The date-time interval that is asked within the
query is 11 seconds. This 11 seconds is respectively 0.01% of the existing
date-time interval within the AIS data of one day.
The interval of X values (longitude) is respectively 3170 meters, which is
around 1,25% of the total interval of X values (longitude) within the data
(the total width of The Netherlands from East to West).
Because of the difference within the size of the interval according to the
data, it could have been expected that the response time of the bounding
box when queried using the index on the X value (longitude) was slower
than when the date-time index was used.

7.1.4 Concluding remarks compared indexes

Since not one query could be executed by using all five different indexes the
concluding remarks are based on the effectiveness of the indexes querying
the on of more of the three different queries.
The effectiveness of an index is based on the response time of the query, the
amount of documents that is examined, and the volume of the index.
Due to the (assumed) clustering of the data within MongoDB by date-time
is the response time of the location query using the date-time index fast, only
a few seconds slower than when using the index on the Morton code (Fig-
ure 7.3), and is the response time of the bounding box query fastest while
querying it using the date-time index (Figure 7.8). The Size of the date-time
index is smallest compared to the other indexes (table 6.2). Even though the
data within MongoDB is assumed to be clustered according to the date-time
using the index on the Morton code while executing the location and trajec-
tory query has the fastest response time and lowest amount of documents.
Executing the bounding box query while using the Morton code index has
also a fast response time and the least amount of examined documents.
The use of the Morton code index while executing the three designed
queries will therefore be concluded as most effective.

7.2 data(base) organizations compared
The response times of the location and bounding box queries are generally
faster for the data organization within the database that is use case focussed
than for the data organization focussed on the support for spatial-temporal
analyses. This is concluded from the response times of the queries while not
using any index. The queries executed on the use case focussed data(base)
organization are faster than executing the queries on the data(base) organi-
zation focused on broader spatial-temporal analyses (Figure 7.9).

60



Figure 7.9: Response Times using no Index comparing the two data(base) organiza-
tions

The same query on both data(base) organizations examines the same
amount of documents in order to find the right key-value pairs.
In order to find the right key-value pairs, which meet the requirements of
the query, MongoDB researches each key-value pair within the document
in order to find out whether this document contains key-value pairs that
meet the requirements. The amount of key-value pairs within a document
therefore have influence on the time it takes to find out whether it contains
correct pairs.
The vessel positions collection with a data organization based on answering
the use cases contain documents which have only six key-value pairs;
MMSI, latitude, longitude, date-time, the original message and either the
Morton code or an id given by MongoDB. The vessel positions collection
with a data organization for spatial temporal analyses contains documents
with 24 key-value pairs; either the Morton code or id, slot time-out,
sog, repeat indicator, date-time, slot number, utc min, rot over range, id,
sync state, rot, true heading, special manoeuvre, timestamp, MMSI, raim,
spare, utc spare, nav status, utc hour, cog, x (longitude), y (latitude) and
position accuracy. Although this amount depends on the type, id, of the
vessel position message.

The difference that exists within the amount of key-value pairs of a
document between the two data(base) organizations which is equivalent
to the size of both database (section 6.2.1 table 6.1), is proportional to the
difference in response time between the two.

7.2.1 Use case focussed data(base) organization and the Morton code
index

The date(base) organization focussed on the use cases that where specified
can be concluded as most effective in response time. When comparing the
effectiveness of the used indexes while using this data(base) organization
it can be said that using the index on the Morton code while querying the
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location, trajectory or bounding box query is most effective in its response
time and amount of examined documents.

Figure 7.10: Response Times Location and Trajectory query Use Case focussed
data(base) organization using the index on the Morton code

Figure 7.11: Response Times Bounding Box query Use Case focussed data(base) or-
ganization using the index on the Morton code

Concluding remarks

The data(base) organization based on the Use Cases is fast in the extraction
of the information of where the organization is designed for. Extraction of
other AIS information is possible but only by decoding the original NMEA
encoded AIS message.
When the use cases on which the data(base) organization is based are the
only ones or other use cases are also only based on the extraction of the
four pieces of information (latitude, longitude, MMSI and date-time) then
organizing the database according to Use Case Focussed Approach is most
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effective. But effectively querying other information for other use cases
might then desire another data(base) organization, which means that the
AIS data will be stored twice or more times.
AIS data within MongoDB according to the data(base) organization based on
the Spatial-Temporal analyses Approach can easily be used for all available
use cases, no other storage organizations are necessary when new use cases
are presented.
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8 CONCLUS ION

This thesis aimed to provide a management, storage, and structuring solu-
tion for historic AIS data to support spatial-temporal analyses.
Drawing conclusions on a suitable management solution will be done by
first answering the sub research questions followed by the main research
question of this MSc thesis. The conclusion will finish with a discussion on
the methodology and recommendations for future work.

8.1 research questions
Five sub questions and a main research question are posed in this research
(section 1.3).

What is AIS data, what are its features?
AIS data can be referred to as a large and growing volume of semi-structured
data containing out of digital NMEA-0183 encrypted messages vessels sent
towards other vessels and base stations and base stations send to vessels.
Two radio channels especially reserved for AIS are used to sent these mes-
sages. AIS messages can be defined as real-time data, containing real-time
positions of vessels, it is therefore mainly used by VTS.

A vessel can sent 27 different kind of messages of which the update
rate and schema is different. Each message a vessel sent is related to
each other by the MMSI number of the associated vessel. There exist six
types of messages; position messages, metadata messages, addressed
messages, broadcast messages, acknowledgement messages, and defined
slot binary messages. Between the different kind of AIS messages there exist
a difference in update rate. The update rate of the vessel position messages
for example depends on the speed of the vessel, when it reaches a high
speed the vessel position messages will automatically be sent once every
two seconds. For the metadata messages applies another update rate, once
every three to six minutes.

What kind of spatial-temporal analyses with historic AIS data is interesting
(for Rijkswaterstaat)?
Rijkswaterstaat has formulated use cases of which three give an indication
of the bigger picture of spatial-temporal analyses. The first proposed
use case is one concerning the historic location of a vessel. The most
important question among the spatial-temporal analyses is where was
a vessel positioned at a specific time in history. This question, use case,
is the base for further spatial-temporal analyses. The second use case
is an elaboration of the location use case, namely the request for all
historical locations of a specific vessel. This use case is based on the idea
of a historical trajectory. Such as where is a vessel been over the last
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few days, weeks, months. The third use case is also an elaboration on
the location use case. This use case is about finding all vessels that are
positioned at a certain time in a specified bounding box, a geographical area.

Even though these three use cases give an indication on what Rijk-
swaterstaat would like to do with the historical AIS data after it is properly
managed, there exist many more possible use cases. A broader spectra of
spatial-temporal analyses that are able with the historical AIS data should
not be excluded.

What database should store historic AIS data?
A database suitable for the management of AIS should be able to store a
large volume of semi-structured data that is kept up-to-date by frequent
(real-time) updates. Where the traditional relational databases are pushed
to their limits with respect to handling the volume and update rates of the
AIS data, are NoSQL databases designed to handle large volumes of data by
their ability of horizontal scaling and is for these databases the update rate
of the data less of a problem.
There are four kinds of NoSQL databases of which two are able to manage
AIS data, column family and document store databases. From these
two kinds of NoSQL databases seemed MongoDB based on literature
and database documentation as the database that should store AIS data.
MongoDB is a document store database which easily stores large volumes
of data without a fixed scheme. MongoDB is a database which made use
of the features of traditional relational databases it had optimized such as
the ability to create and execute complex queries and the ability to create
multiple secondary indexes. MongoDBs flexibility (with scheme) horizontal
scalability, fast read and multiple write performance and its ability to
execute complex queries make MongoDB suitable to store AIS data

How should this database (MongoDB) store the historic AIS data?
The organization of the data(base) depends primary on the use cases and
the broad spectra of spatial-temporal analysis which is possible to perform
on the historical AIS data, which has led to the implementation of two
data(base) organizations. One especially focussed on the use cases whereby
the addition of the original AIS message the reason is that it is possible
to perform spatial-temporal analyses, and one data(base) organization
focussed on the support for all spatial-temporal analyses including the use
cases. Secondly how this organizations are implemented, is related to the
use cases in combination with the data features.

Storing the AIS data in MongoDB is done by the insertion of JSON
files containing either vessel position messages, metadata messages or all
other kinds of messages into three different collections. This division of AIS

messages is made based on the by the use cases necessary and requested
data. This data is found within the vessel position messages or in the
metadata messages. Because data is not supposed to be wasted a third
collection is made with all other messages.
The data(base) organization focussed on the use cases stores within the
three collections only the MMSI, latitude, longitude, date-time and the origi-
nal AIS messages. The data(base) organization focussed on spatial-temporal
analysis stored within the three collections all available decoded AIS data.
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A comparison between the two data(base) organizations is done by
executing the three designed queries (to support the use cases) and compar-
ing the response time of these queries and amount of examined documents.
The data(base) organization focussed on the use cases can be concluded
the most efficient data(base) organization of the two. The small size of the
database is to be the reason for this outcome.
Storing AIS data in MongoDB should be done according to the data(base)
organization focussed on the three specified use cases.

What indexing technique is suitable to provide efficient historic spatial-temporal
data requests?
The 4D Morton code SFC is used as a ’proof of concept’ and is found quite
effective in the indexing of vessel positions. Even though no complete Mor-
ton SFC based clustering of the AIS was introduced in MongodB (clustering
was based on date-time), the B-tree index on the 4D Morton code enables a
fast look up of the latitude, longitude, MMSI and the date-time of the vessel
positions.
Other B-tree indexes were proposed on the four attributes (latitude, lon-
gitude, MMSI and date-time) individually. While comparing the different
indexes it can be concluded that with the use of the index on the 4D Morton
code all three queries were executed with a fast response time and just a
few documents had to be examined in order to find the right information.
The efficiency of using the index on the date-time though came close to the
efficiency of the 4D Morton code index due to the small intervals of just a
few seconds that were queried and the clustering of the data based on the
date-time values due to the insertion of the data into MongoDB.
Using the index on the Morton code is concluded most effective, but what
must be kept in mind is the fact that before a query can be executed with
the use of the Morton index several steps are to be taken. The extraction or
calculation of the right Morton order codes that are associated to the query
and the design of the query extracting the right information consisting
these Morton codes to be able to use the index based on these codes. To
increase the effectiveness of the Morton code index a clustering of the data
according to this code is desired.

After having answered the five sub questions the main question can
be addressed. How can historic AIS data be managed, stored, and struc-
tured to support spatial-temporal data analyses?
The organization of the data(base) with the focus on answering the by
Rijkswaterstaat specified use cases in combination with an index on the
data based on the calculated 4D (latitude, longitude, MMSI and date-time)
Morton code inside MongoDB is the AIS data management solution this
MSc thesis proposes.

MongoDB allows the AIS messages to be individually stored in doc-
uments which together will form a collection (of AIS messages). The
data(base) organization structures the AIS data into three collections each
containing either MMSI, latitude, longitude, date-time and original AIS

message concerning vessel positions or the original AIS message, the MMSI,
date-time destination, name, draught, type and cargo concerning metadata
messages or the MMSI, date-time and original AIS message of all other
remaining AIS messages. Organizing the data like this in three collections
only containing a few attributes while not throwing away data, keeps the
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size of the database small.
The execution of the queries that are designed to support the specified use
cases therefore is fast and searches a small amount of documents for the
right information when using the B-tree index on the 4D Morton code.

8.2 discussion
This discussion is used to review the methods that are used in this MSc
research. The overall used method based on Klein et al. [2015] shall not be
questioned, only the methods used within the by Klein et al. [2015] defined
stages.
MongoDB was chosen based on literature and database documentation. A
database which should be te right choice on paper does not have to be the
right choice in reality. In this case the choice and use of MongoDB worked
out well. Though, mentioned within the related work (chapter 2), perform-
ing a benchmark research where different databases are tested and com-
pared in practise will substantiate the choice for database based on practice.
The choice for a database based on the outcome of a use case specific bench-
mark research is well substantiated. From a choice for a database based on
literature and database documentation is it not clear before usage whether
it is in practise the right choice as well.
The scope of this MSc research indicates that the real-time update rate of
AIS data must be taken into account in the choice for database and indexing
technique. MongoDB presents itself as a database in which updates do not
have to be that difficult, therefore the ability to handle real-time AIS data is
assumed to be suitable. As is the same with the index on the Morton code.
Te use of the index on the Morton code is not adapted towards the ability to
use it in a historical AIS database with a real-time update. For this, space on
the hyper cube should be reserved for all AIS messages that will go eventu-
ally into the database Psomadaki et al. [2016].
The AIS data that is used consists of one day and one week of data which
is not comparable with the volume of data that the historical database even-
tually will hold. Though this volume is seemed efficient enough to draw
conclusions about the data(base) management, storage and structuring of
AIS data.

8.3 future work
There are several directions for future work which can be derived from this
MSc research. These can be defined as direct extensions of this research.
This section will briefly explain these proposed directions.

Using a Hilbert SFC

The 4D Morton SFC was used as a ’proof of concept’ which has proven to be
an efficient method for the indexing of AIS data. Lawder and King [2001];
Moon et al. [2001] suggest the Hilbert SFC to be more efficient than the
Morton SFC. An improvement to the used method for managing AIS data
therefore could be the use of the Hilbert SFC for cluster/index of the data.
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Using an enhanced version of the B-tree
Section 2.3.1 discusses the by Chen et al. [2008b] proposed Bx-tree which
is seen as the first attempt to adapt the B-tree to the indexing of moving
objects. MongoDB uses the standard implemented B-tree which in this MSc
research is used on a static dataset. An improvement to the used index on
a static dataset would be to use the Bx-tree with a dataset which is updated
in real-time.

Using another database
The discussion (section 8.2) already implies the necessity for a benchmark
research for the purpose of finding the most suitable database to use for
the management of AIS data. To make certain the choice for MongoDB
that was made is respectful, the performance of another database while
storing and structuring AIS data should be tested. A comparison between
the performance of for example the databases CASSANDRA or PostgreSQL
while managing, storing and structuring AIS data and MongoDB could be
an interesting research area.

Clustering with the Morton SFC

The clustering of the data is assumed to have been done on the date-time.
To ensure a more effective data(base) organization the clustering should
accomplish the indexing technique. Which in this case was the 4D Morton
SFC. Ensuring the effectiveness of a cluster will be an interesting next
research.
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