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Linear Shrinkage-Based Hypothesis Test 
for Large-Dimensional Covariance 
Matrix 

Taras Bodnar, Nestor Parolya, and Frederik Veldman 

Abstract The chapter is concerned with finding the asymptotic distribution of the 
estimated shrinkage intensity used in the definition of the linear shrinkage estimator 
of the covariance matrix, derived by Bodnar et al. (J Multivar Anal 132:215–228, 
2014). As a result, a new test statistic is proposed which is deduced from the linear 
shrinkage estimator. This result is a ready-to-use multivariate hypothesis test in 
the large-dimensional asymptotic framework and constitutes the main result of the 
chapter. The theoretical findings are compared by means of a simulation study with 
existing tests, in particular with the commonly used corrected likelihood ratio test 
and the corrected John test, both derived by Wang and Yao (Electron J Stat 7:2164– 
2192, 2013). 

1 Introduction 

Estimating and testing the structure of the covariance matrix are import problems 
that have many applications in different fields of science, especially in economics 
and finance. For example, the covariance matrix plays a significant role in portfolio 
theory (see Markowitz 1952), where it is important to understand the relation and 
the variability of different assets included in a portfolio. 

Challenging problems arise for estimating and testing the structure of the 
covariance matrix when the dimension p of the random sample . (y1, y2, · · · , yn)
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is of similar order of even larger than the sample size n, where .yi ∈ Rp for 
all .i ∈ {0, · · · , n}. This is because commonly used estimators and tests, such 
as the likelihood ratio test (see Anderson 1984) or John’s test (see John 1971), 
are constructed under the assumption that the dimension p of a random sample 
stays fixed. However, it has been pointed out by numerous authors (see Wang and 
Yao (2013); Paul and Aue (2014); Yao et al. (2015); Bodnar et al. (2019), among 
others) that the assumption of a fixed dimension does not yield precise distributional 
approximations for commonly used statistics and that better approximations can be 
obtained considering the dimension p go to infinity as well. This leads to a new 
area in asymptotic statistics where the dimension p is no longer fixed, but tends 
to infinity together with the sample size n, i.e., .p

n
→ c < ∞ when .n → ∞ and 

.p → ∞. This framework is called the large-dimensional asymptotics (see Bai and 
Silverstein, 2010). 

Many statistical tools that used to work for a fixed dimension did not work 
properly anymore in the large-dimensional asymptotic framework and needed to 
be altered. Moreover, new statistical tests have been developed and are still being 
developed. For instance, the likelihood ratio test and John’s test are extended by 
Wang and Yao (2013) to work properly in the large-dimensional case. In addition, 
new estimators are proposed for the population covariance matrix because it is well 
known that the commonly used sample covariance matrix does not perform well 
and produces large errors in the large-dimensional case. To tackle this issue, new 
estimators are developed to better approximate the actual population covariance 
matrix in this setting. One of the commonly used approaches is the shrinkage 
estimator originally proposed by Stein (1956) for the mean vector of a normal 
distribution and extended in different directions. One of the most important among 
the existing estimators of the covariance matrix is the linear shrinkage estimator 
developed by Ledoit and Wolf (2004), further improved and generalized by Bodnar 
et al. (2014). 

For numerous applications in finance one should perform a hypothesis test on 
large-dimensional covariance matrices. For example, one can test whether a large 
number of assets in a portfolio can be assumed to have the same risk profile or 
testing if the assets can be assumed to be independent of each other based on a 
large set of historical returns. The latter corresponds to testing the null hypothesis 
.H0 : Σn = ξ2I versus the alternative hypothesis .H1 : Σn /= ξ2I for some .ξ2 > 0, 
where .Σn is the population covariance matrix of asset returns and . I the identity 
matrix.1 This type of tests is called the sphericity test. Similarly, it can be of interest 
to explore if a large set of assets have a certain dependence structure, thus testing 
whether the population covariance matrix can be assumed to be equal to a prior

1 The subindex n by the population covariance matrix . Σn arises because of the large-dimensional 
framework, i.e., .p/n → c > 0. Here it is implicitly assumed that the dimension p is a function of 
the sample size  n, namely, .p ≡ p(n). 
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believe .Σ0 of the population covariance matrix. This corresponds to testing the 
hypotheses 

.H0 : Σn = Σ0 against H1 : Σn /= Σ0 . (1) 

Such a hypothesis test is an important tool in multivariate statistics and a lot of 
research has been conducted to extend the classical multivariate tests to work under 
the large-dimensional framework. This is also the goal of this chapter, namely, to 
construct a new hypothesis test for the population covariance matrix in the large-
dimensional asymptotic framework based on the linear shrinkage estimator. 

The new test that will be constructed in the chapter will be based on the linear 
shrinkage estimator. This is because it has been pointed out by Bodnar et al. (2014) 
that the linear shrinkage estimator performs very well in estimating the population 
covariance matrix in the large-dimensional case. This makes it interesting to explore 
whether linear shrinkage-based hypothesis tests also perform well, in terms of size 
and power, in the large-dimensional asymptotic framework. 

Before the new test will be presented at the end of Sect. 2, we discuss the linear 
shrinkage estimator of the covariance matrix proposed in Bodnar et al. (2014) and 
derive the asymptotic distribution of the estimated shrinkage intensities. After this 
theoretical part, a simulation study to assess the finite-sample performance of the 
new test and to compare it with the already existing approaches will be conducted 
in Sect. 3. The already existing tests that will be used in the simulation study are the 
corrected likelihood ratio test (CLRT) and the corrected John test (CJ), both derived 
by Wang and Yao (2013). The test of Ledoit and Wolf (2002) will not be considered 
in the chapter because it is less powerful than the CJ test and therefore irrelevant to 
use in the comparison. The comparison will be made using the empirical size and 
the empirical power. Final remarks are provided in Sect. 4. 

2 New Test Based on the Shrinkage Approach 

In this section we present the linear shrinkage estimator of the covariance matrix and 
develop the framework used in the derivation of the test statistic and its asymptotic 
distribution. 

2.1 Linear Shrinkage Estimator of the Covariance Matrix 

Let .y ∈ Rp be a random vector of dimension p and let n denote the sample size 
of a random sample .(y1, y2, · · · , yn). Assume that .cn = p

n
→ c ∈ (0,+∞) when 

.n → ∞ and .p → ∞. The data matrix .Yn = [y1, y2, · · · , yn] is  assumed to be a  
realization from the following stochastic model: 

.Yn = Σ
1/2
n Xn. (2)
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In (2), .Σn denotes the population covariance matrix and the matrix . Xn explains 
the randomness of the model. Since under the null hypothesis in (1) we have that 
.Σn = Σ0, we rescale the data matrix . Yn by .~Yn = Σ

−1/2
0 Yn. In addition, the 

following assumptions on the stochastic model (2) are imposed: 

• (A1) The population covariance matrix .Σn is a nonrandom p-dimensional 
positive definite matrix. 

• (A2) . Xn is an p . × n matrix where the entries are independent and identically 
distributed (i.i.d.) random variables with mean zero, unit variance, and finite 
fourth moment equal to .E[|xi,j |4] = β + 1 + κ < ∞, where .κ = 2 in case of 
real variables and .κ = 1 in case of complex variables, and also .E[x2

i,j ] = 0 in 
case of complex variables. 

• (A3) One only observes . Yn where .Yn = Σ
1
2
nXn. 

These assumptions are maintained throughout this chapter. We further assume that 
.Xn ∈ Rpxn; therefore, .κ = 2. However, to keep the results as general as possible we 
present the results as a function of . κ . 

The sample covariance matrix is defined by 

. Sn = 1

n
YnYT

n .

It is the most commonly used estimator of the covariance matrix which possesses 
nice distributional properties in the classical asymptotic regime. However, that is 
no longer the case in the large-dimensional setting and improved estimators are 
suggested in the literature. 

The linear shrinkage estimator presents a widely spread approach for the 
estimation of the population covariance matrix in the large-dimensional framework. 
This estimator was first derived in Ledoit and Wolf (2004) and improved by Bodnar 
et al. (2014). The general linear shrinkage estimator .Σ̂GLSE is expressed as 

.Σ̂GLSE = αnSn + βnΩ, (3) 

where . Ω is the shrinkage target which is assumed to be a matrix with bounded 
trace norm. The parameters . αn and . βn are called the shrinkage intensities because 
they basically shrink the matrices which they are multiplied with. Thus, .Σ̂GLSE is 
essentially a linear combination between the sample covariance matrix . Sn and the 
prior belief of the population covariance matrix . Ω . 

The optimal shrinkage intensities are found by minimizing the squared loss 
function given by 

. L2
f = ||Σ̂GLSE − Σn||2F ,

where .||.||2F is the squared Frobenius norm. The loss function . L2
f measures the 

distance between the estimator .Σ̂GLSE and the population covariance matrix . Σn.
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For the estimator to be working properly, this distance, thus the loss function, should 
be as small as possible. Bodnar et al. (2014) minimize this loss function . L2

f and 
found that the optimal shrinkage estimators are equal to 

.α∗
n(Ω) = tr(SnΣn)||Ω||2F − tr(ΣnΩ)tr(SnΩ)

||Sn||2F ||Ω||2F − (

tr(SnΩ)
)2 , . (4) 

β∗
n(Ω) = 

tr(ΣnΩ)||Sn||2 F − tr(SnΣn)tr(SnΩ) 

||Sn||2 F ||Ω||2 F −
(

tr(SnΩ)
)2 . (5) 

Corollary 3.1 in Bodnar et al. (2014) presents the deterministic asymptotic 
equivalents to .α∗

n(Ω) and .β∗
n(Ω) given by 

.α∗(Ω) = 1 −
c

p
||Σn||2tr ||Ω||2F

(||Σn||2F + c

p
||Σn||2tr

)||Ω||2F − (

tr(ΣnΩ)
)2

, . (6) 

β∗(Ω) = 
tr(ΣnΩ) 
||Ω||2 F

(

1 − α∗(Ω)
)

, (7) 

where .||A||tr is the trace norm of matrix . A, while their consistent estimators in 
the large-dimensional framework are expressed as (see Section 4 in Bodnar et al. 
(2014)) 

.α̂∗(Ω) = 1 −
1

n
||Sn||2tr ||Ω||2F

||Sn||2F ||Ω||2F − (

tr(SnΩ)
)2 , . (8) 

β̂∗(Ω) = 
tr(SnΩ) 
||Ω||2 F

(

1 − α̂∗(Ω)
)

. (9) 

2.2 Test Statistics and Its Large-Dimensional Distribution 
Under the Null Hypothesis 

Since the aim of the chapter is to derive a new statistical test for the hypotheses in (1) 
and, as such, the null distribution of the test statistic is needed for the decision rule, 

we consider the sample covariance matrix for the normalized sample . ~Yn = Σ
− 1

2
n Yn

defined by 

.~Sn = 1

n
~Yn

~YT
n ,



244 T. Bodnar et al.

while the population covariance matrix corresponding to the sample . ~Yn is the 
identity matrix under the null hypothesis in (1). For this reason, it is obvious to 
choose .(1/p)I as the shrinkage target in the linear shrinkage estimator (3) for the 
population covariance matrix related to the normalized sample . ~Yn. The factor .1/p is 
needed due to the assumption of the bounded trace norm imposed on the shrinkage 
target. Moreover, it holds that 

. α∗ = α∗
(

1

p
I
)

= 0,

under the null hypothesis in (1), which is consistently estimated by 

.α̂∗ = 1 −
p
n

II

II~Sn

II

II

2
tr

p
II

II~Sn

II

II

2
F

− (

tr
(

~Sn

))2
. (10) 

Moreover, since .β∗(Ω) and .β̂∗(Ω) in (6) and (8) are functions of .α∗(Ω) and 
.α̂∗(Ω), respectively, it is sufficient to determine the large-dimensional asymptotic 
distribution of the latter to derive a statistical test on the structure of . Σn. 

The eigenvalues of the sample covariance matrix are a central object in large-
dimensional statistics. Let .{λ1, · · · , λp} be the set of eigenvalues of . ~Sn. For  the  
sake of notation we omit the subscript n in the notations of eigenvalues. It can be 
seen in (10) that . ̂α∗ is completely determined by the squared Frobenius norm . ||~Sn||2F
and the trace .tr(~Sn) which are functions of .{λ1, · · · , λp}. Namely, it holds that 

. ||~Sn||2F =
p

∑

i=1

λ2i

and 

. tr(~Sn) =
p

∑

i=1

λi.

The joint large-dimensional asymptotic distribution of .||~Sn||2F and .tr(~Sn) is derived 
in Lemma 2.2 from Wang and Yao (2013). We formulate this result as Lemma 1 
below. 

Lemma 1 (Lemma 2.2 in Wang and Yao (2013)) Assume that conditions (A1)– 
(A2) hold. Then, under the null hypothesis in (1), we get that 

.

(∑p

i=1 λ2i − p (1 + cn)
∑p

i=1 λi − p

)

D→ N (μ1,V1) , (11)
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where 

.μ1 =
(

(κ − 1 + β)c

0

)

(12) 

and 

.V1 =
(

2κc2 + 4(κ + β)
(

c + 2c2 + c3
)

2(κ + β)
(

c + c2
)

2(κ + β)
(

c + c2
)

(κ + β)c

)

. (13) 

Since . ̂α∗ is only a function of .||~Sn||2F and .tr(~Sn) whose joint large-dimensional 
asymptotic distribution is given in Lemma 1, then the large-dimensional asymptotic 
distribution of . ̂α∗ can be deduced by applying the delta method, which is Theorem 1 
from Doob (1935). For the completeness of the presentation we present this theorem 
as Lemma 2. 

Lemma 2 (Theorem 1 in Doob (1935)) Let .X = (X1, . . . , Xk)
T be a random 

vector and .g : Rk → R
d be a differentiable function with derivative .∇g(a) at 

.a ∈ Rk . If we have for some .b > 0 and . p → ∞

. pb{X − a} D→ Y,

then 

. pb{g(X) − g(a)} D→ [∇g(a)]T Y.

The delta method says essentially that if a random vector converges to a 
multivariate normal distribution in the limit, then differentiable functions of that 
random vector are also normally distributed. The application of the delta method 
to . ̂α∗ which is a differentiable function of .||~Sn||2F and .tr(~Sn) leads to the following 
result: 

Theorem 1 Assume that conditions (A1)–(A2) hold. Then, under the null hypothe-
sis in (1) we get 

.T = pα̂∗ D→ N(μ, σ 2), (14) 

with 

.μ = κ − 1 + β and σ 2 = 2κ. (15)



246 T. Bodnar et al.

Proof The application of Lemma 1 leads to 

. 

( ||Sn||2F − p(1 + c)

tr (Sn) − p

)

= p

(

1
p

∑p

i=1 λ2i − (1 + c)
1
p

∑p

i=1 λi − 1

)

D→ u =
[

u1

u2

]

,

with .u ∼ N (μ1,V1) where . μ1 and . V1 are defined in (12) and (13), respectively. 
Define .b = 1, .a = [1 + c 1]T , and 

. g(t) = g(t1, t2) = 1 − ct22

t1 − t22

.

Then, 

. 

g

(

1

p
||Sn||2F ,

(

1

p
tr (Sn)

)2
)

= 1 −
c ·

(

1
p
tr (Sn)

)2

1
p

||Sn||2F −
(

1
p
tr (Sn)

)2

= 1 − c · tr (Sn)
2

p ||Sn||2F − (tr (Sn))
2 = α̂∗

and 

. g(a) = g(1 + c, 1) = 1 − c

1 + c − 1
= 0.

Moreover, we get 

. 

∂g

∂t1
= ∂

∂t1

{

1 − ct22

t1 − t22

}

= ct22
(

t1 − t22

)2
,

∂g

∂t2
= ∂

∂t2

{

1 − ct22

t1 − t22

}

= − 2ct1t2
(

t1 − t22

)2 ,

and, hence, 

. ∇g(a) =
⎛

⎜

⎝

c
(

12
)

(1+c−(12))
2

− 2c(1+c)·1
(1+c−(12))

2

⎞

⎟

⎠
=

( 1
c

− 2(1+c)
c

)

.

The delta method of Lemma 2 now implies that 

. pα̂∗ D→
[

1

c
,−2(1 + c)

c

]

u = 1

c
u1 − 2(1 + c)

c
u2,
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which is a normal distribution with mean 

. 

μ = E
(

1

c
u1 − 2(1 + c)

c
u2

)

= 1

c
(κ − 1 + β)c − 2(1 + c)

c
· 0 = κ − 1 + β

and variance 

. 

σ 2 = Var

(

1

c
u1 − 2(1 + c)

c
u2

)

= 1

c2
Var (u1) +

(

−2(1 + c)

c

)2

Var (u2) − 2 · 1
c

2(1 + c)

c
Cov (u1, u2)

= 1

c2

(

4(κ + β)
(

c3 + 2c2 + c
)

+ 2κc2
)

+
(

2(1 + c)

c

)2

(κ + β)(c)

− 2
1

c

2(1 + c)

c
2(κ + β)

(

c2 + c
)

= 2κ.

This concludes the proof. ∏⨆
The result of Theorem 1 is also present in Versteegh (2020) and Nilsson (2021), 

while we prove it in another way. It also should be noted that the limiting distribution 
in (14) is the same as the one obtained for the statistic of the corrected John test 
derived by Wang and Yao (2013). 

To visualize the results presented in Theorem 1, the histograms of the centralized 
random variable .W = (T − μ)/σ are depicted in Fig. 1 for .p = 128 and 
.n = 256 together with the standard normal distribution, the large-dimensional 
asymptotic distribution of .W = (T − μ)/σ . The left-hand-side plot corresponds 

Fig. 1 Histograms together with the large-dimensional asymptotic density of the centralized 
random variable .W = (T − μ)/σ calculated for random samples drawn from N(0,1) (left) and 
.Gamma(4, 2) − 2 (right) distributions for .p = 128 and .n = 256
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to the case when samples from the standard normal distribution are drawn, while 
the .Gamma(4, 2)−2 distribution is used in the right-hand-side plot. For the second 
figure the .Gamma(4, 2) − 2 distribution is chosen because this gives . β = 3/2
instead of .β = 0 (for the standard normal distribution), although it has still 
zero mean and unit variance. The figures are created by using .105 independent 
replications. We observe in both plots of Fig. 1 that both histograms are very well 
approximated by the density function of the standard normal distribution. Therefore, 
we can conclude that the large-dimensional asymptotic distribution derived in 
Theorem 1 provides a good approximation already for moderate sample sizes. More 
importantly, W is a ready-to-use test statistic in the large-dimensional case that is 
based on the linear shrinkage estimator. 

3 Simulation Study 

In this section the linear shrinkage (LS) test will be compared with some well-
known tests in large-dimensional statistics, such as the corrected likelihood ratio 
test (CLRT) and the corrected John test (CJ) both derived by Wang and Yao (2013). 

Before we start off with the simulation study, it should be noted that the CLRT 
and CJ tests are one-tailed tests and that the LS test is a two-tailed one. It is known 
that one-tailed tests can be transformed to two-tailed tests without any changes. 
This will also be done in this simulation study to compare all the tests equally. 
Furthermore, it should be noted that the CJ and the LS test statistics have the 
same limiting distribution. Moreover, one should bear in mind that the limiting 
distribution of the CLRT test statistic depends on c. In particular, it depends on 
the log.(1 − c), so it is expected that this test will break down when c increases to 1 
and will not work when .c > 1. 

The three tests are compared with each other in terms of the empirical size and 
the empirical power. The calculation of the empirical size and empirical power is 
performed similarly. Recall that the size of a test is equal to the probability of 
rejecting the null hypothesis when it is true, while the power of a test is equal 
to the probability of rejecting the null hypothesis when the alternative is true. 
In the simulation study both probabilities are approximated by their empirical 
counterparts, which are computed in the following way: 

(i) Draw a sample from the data-generating model. 
(ii) Calculate the sample covariance matrix from the generated data. 
(iii) Compute the value of the test statistic. 
(iv) Using the decision rule of the test and the computed value of the test statistic, 

make a decision about the rejection of the null hypothesis. 
(v) Repeat steps (i)–(iv) many times and compute the relative frequency of 

rejecting the null hypothesis. 

If the data-generating model corresponds to the null hypothesis, the algorithm 
will produce the empirical size of the test; otherwise we get the empirical power.
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If the number of repetitions is relatively large, following the law of large numbers, 
the empirical size and the empirical power will provide a good approximation of the 
true size and the true power. 

3.1 Empirical Size Comparison 

In this section we compare the three tests in terms of their size properties. The 
empirical sizes of the CLRT, CJ, and LS tests performed at . 5% significance level 
are computed by using 10000 independent repetitions. In each repetitions the 
samples are drawn from the standard normal distribution and the . Gamma(4, 2) − 2
distribution as described at the end of Sect. 2. The results of the simulation study are 
depicted in Table 1. 

It can be seen in Table 1 that all the empirical sizes computed for samples 
generated from the standard normal distribution are close to the desired rejection 
level .α = 0.05. This conclusion holds for almost all values of p and n considered 
in the simulation study. As such, since all empirical sizes are close to the rejection 
level . α, it does not really matter which combination of .(p, n) to take in the empirical 
power comparison. This is because the three tests possess similar size properties and 
a fair comparison can be made in terms of power. 

Unfortunately, this is not the case for the empirical sizes computed for the 
samples generated from the .Gamma(4, 2)−2 distribution. It can be seen in Table 1 
that the empirical sizes of the LS test behaves quite well. However, for the CJ test 
this only holds for higher combinations of .(p, n). It looks like that the empirical 

Table 1 Empirical sizes of the CLRT, CJ, and LS tests at . 5% significance level based on 10000 
independent repetitions. The samples are drawn from N(0,1) (left) and .Gamma(4, 2) − 2 (right) 
distributions for several values of p and n 

.(p, n) CLRT CJ LS 

(8, 128) 0.0565 0.0581 0.0661 

(16,128) 0.0539 0.0552 0.0479 

(32,128) 0.0518 0.0525 0.0432 

(64,128) 0.0536 0.0538 0.0479 

(96,128) 0.0547 0.0540 0.0484 

(112,128) 0.0538 0.0553 0.0516 

(120,128) 0.0522 0.0524 0.0485 

(16,256) 0.0544 0.0531 0.0473 

(32,256) 0.0519 0.0502 0.0433 

(64,256) 0.0499 0.0499 0.0437 

(128,256) 0.0516 0.0541 0.0504 

(192,256) 0.0542 0.0503 0.0488 

(224,256) 0.0505 0.0512 0.0495 

(240,256) 0.0517 0.0513 0.0480 

.(p, n) CLRT CJ LS 

(8,128) 0.2518 0.1178 0.0808 

(16,128) 0.2619 0.0911 0.0513 

(32,128) 0.2588 0.0750 0.0468 

(64,128) 0.2197 0.0645 0.0460 

(96,128) 0.1643 0.0537 0.0423 

(112,128) 0.1329 0.0601 0.0514 

(120,128) 0.1105 0.0598 0.0515 

(16,256) 0.2777 0.0861 0.0531 

(32,256) 0.2849 0.0723 0.0471 

(64,256) 0.2654 0.0625 0.0467 

(128,256) 0.2252 0.0591 0.0513 

(192,256) 0.1695 0.0572 0.0513 

(224,256) 0.1384 0.0554 0.0510 

(240,256) 0.1164 0.0547 0.0490
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sizes of the CJ test approaches . α from above. This means that when .(p, n) is low, 
the empirical distribution has heavier tails than it should be. On the other side, if both 
p and n increase, then the corresponding large-dimensional asymptotic distribution 
is becoming a better approximation. Thus, the CJ test relies more on the limiting 
aspect in this case. The empirical sizes for the CLRT test are behaving quite pure 
for every combination of .(p, n). They are approximately five times larger than 
the desired significance level .α = 0.05. As  p and n increase, the performance is 
becoming better although still we have all empirical sizes being larger than . 0.1. 
From this observation it can be concluded that when the data are drawn from the 
.Gamma(4, 2) − 2 distribution, then the large-dimensional asymptotic distribution 
of the CLRT test does not provide a good approximation. Therefore, it will be 
difficult to make a fair empirical power comparison when the data are taken from 
the .Gamma(4, 2) − 2 distribution because not all the tests will have the same size 
properties. So, the empirical power comparison will only be based on the standard 
normal distribution. 

3.2 Empirical Power Comparison 

In this subsection the empirical powers for the three tests will be compared. The 
comparison will be performed only for the samples drawn from the standard normal 
distribution because the empirical sizes in the case of the . Gamma(4, 2) − 2
distribution are not all close to the desired significance level .α = 0.05 and it 
will lead to unfair comparison. In this simulation study we calculate the empirical 
powers based on the Bernoulli experiment as described at the beginning of Sect. 3. 
The following three types of the covariance matrices will be considered under the 
alternative hypothesis: 

(1) . H1: compound symmetry relation 
(2) . H1: autoregressive relation 
(3) . H1: heteroscedasticity relation 

The dimensions used in the comparison are .(p, n) = (32, 128), . (p, n) =
(64, 128), .(p, n) = (96, 128), and .(p, n) = (120, 128). This results in .c = 1/4, 
.c = 1/2, .c = 3/4, and .c = 15/16, respectively. All computations of the empirical 
powers are based on 1000 repetitions. 

3.2.1 Compound Symmetry 

The first alternative hypothesis that will be used to make a power comparison is a 
compound symmetry relation. The compound symmetry means that every variable 
of the underlying data has variance equal to 1 and covariance equal to . Cov(yi, yj ) =
ρ for every .i /= j . This means that for .ρ /= 0 the underlying variables of the 
data are correlated and thus dependent. The compound symmetry alternative can be
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represented as a linear combination of the identity matrix and a matrix of all ones. 
So, for .ρ ∈ (0, 1), the covariance matrix under the alternative hypotheses is defined 
as 

. Σn,ρ = (1 − ρ)

⎡

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0
0 1

...
...

. . .

0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎦

+ ρ

⎡

⎢

⎢

⎢

⎢

⎣

1 1 · · · 1
1 1

...
...

. . .

1 · · · 1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 ρ · · · ρ

ρ 1
...

...
. . .

ρ · · · 1

⎤

⎥

⎥

⎥

⎥

⎦

.

In the simulation . ρ runs from 0 to 1. So as . ρ increases, the alternative hypothesis 
.Σn,ρ becomes less like the identity matrix . I or the null hypothesis. To compare 
the different empirical powers for each test, a power plot is used. The power plot 
will be constructed as follows: the Bernoulli experiment will be executed for each 
. ρ separately, and because each . ρ gives a different alternative hypothesis, different 
empirical powers are obtained for each . ρ. Plotting the calculated empirical power 
against the corresponding . ρ results in the required power plot. The quicker a test 
reaches the power of 1, the better the test is, since the power is the probability that 
a false null hypothesis is correctly rejected. The results of the simulation study are 
presented in Fig. 2. 

Fig. 2 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with . Σ0 = I
and .Σn = Σn,ρ where .ρ ∈ (0, 1). The computations are based on 1000 independent repetitions
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In Fig. 2 it can be seen how the three tests perform in terms of the empirical 
power for different combinations of c. For  .ρ ≥ 0.08 all tests have power close 1 
and as expected the CJ test and the LS test behave nearly the same. This is due to 
the fact that they have the same limiting distribution. Most noticeable in Fig. 2 is 
that the CLRT test breaks down when p is getting closer to n. This is again what 
is expected since the limiting distribution depends on log.(1 − c). Overall, the CJ 
and the LS tests perform best and they are the first to reach a power of 1 for every 
combination of .(p, n). 

3.2.2 Autoregressive Relation 

The second alternative hypothesis is the autoregressive relation. The autoregressive 
relation is based on an autoregressive model, which is a popular type of univariate 
time series. The autoregressive model specifies that the output variable depends 
linearly on its own previous values and on a stochastic error term. Under the 
autoregressive relation, the covariance matrix under the alternative hypothesis is 
specified by 

. Σn,δ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 δ δ2 · · · δp−1

δ 1 δ · · · δp−2

δ2 δ
. . .

...
...

. . . δ

δp−1 δp−2 · · · δ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

for .δ ∈ (−1, 1). The simulation study is organized in the same way as for the 
previous alternative hypothesis. As . δ goes away from 0 in both directions, this 
could be seen as moving away from the null hypothesis .H0 : Σn = I because the 
alternative hypothesis matrix becomes less like the population covariance matrix. 
Then for every . δ the Bernoulli experiment is carried out and the empirical power is 
computed. The results of the simulation study are presented in Fig. 3. 

It can be seen in Fig. 3 that for .p = 32 and .p = 64 the CJ, LS, and CLRT tests 
perform quite the same. Still the CJ test performs best but the other two are not far 
behind. Then, when p gets larger, the CJ and LS tests are still outperforming the 
CLRT test, whose power becomes worse as p increases. This is in line with the 
observations from the previous simulation for the compound symmetry alternative. 

3.2.3 Heteroscedasticity Relation 

The third alternative hypothesis corresponds to the case when a fixed ratio r of the 
variables has a variance equal to .1 + γ , while the variance of the rest variables is 
one. In econometrics such a relation is called heteroscedasticity. For any .r ∈ (0, 1)
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Fig. 3 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with . Σ0 = I
and .Σn = Σn,δ where .δ ∈ (−1, 1). The computations are based on 1000 independent repetitions 

and .γ > −1, we define 

. Σn,r,γ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0

0
. . .

...

1 + γ
...

. . .

0 · · · 1 + γ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which presents the covariance matrix under the alternative hypothesis used in the 
third simulation study. If it happens that .r · p is not a whole number, it will be 
rounded down. In the simulation study . γ will run from . −1 to 1. This can again be 
seen as departing from the null hypotheses .H0 : Σn = I when . γ goes away from 
0 in both directions. For every .γ ∈ (−1, 1) we will compute the empirical powers 
which are depicted for .r = 1/2 in Fig. 4, for  .r = 1/4 in Fig. 5, and for .r = 3/4 in 
Fig. 6. 

It can be seen in Fig. 4 that the CJ, LS, and CLRT tests are again quite comparable 
for small values of c. However, when p increases, the CLRT gets worse and worse 
for the same reason as in the previous simulations. Moreover, it should be noted that
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Fig. 4 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with . Σ0 =
I and .Σn = Σn,r,γ where .γ ∈ (−1, 1) and .r = 1/2. The computations are based on 1000 
independent repetitions 

the empirical powers of all the tests are not symmetric around zero. The powers of 
the three tests increase much faster for negative values of . γ than for positive values. 

In Figs. 5 and 6 it can be seen that all tree tests perform better when r decreases, 
especially when . γ is positive. This behavior can be explained by the fact that the null 
hypothesis, which is actually tested, is whether the population covariance matrix is 
equal to a multiple of the identity matrix. This means that for .r = 1/2 the alternative 
hypothesis is furthest away from the null hypothesis, and we observe the highest 
powers in this case. Therefore, it can be concluded that the CJ, LS, and CLRT 
tests are invariant under multiples of the identity matrix what is expected from the 
expressions of their test statistics. 

4 Summary 

In many statistical applications one would like to perform hypothesis tests on the 
structure of large-dimensional covariance matrices. In particular, sphericity testing 
and testing for certain dependence structure of the covariance matrix are important
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Fig. 5 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with . Σ0 =
I and .Σn = Σn,r,γ where .γ ∈ (−1, 1) and .r = 1/4. The computations are based on 1000 
independent repetitions 

problems in economics and finance. Therefore, this chapter presents a new approach 
to construct such a hypothesis test in the large-dimensional framework. 

The new test statistic is based on the linear shrinkage estimator and on the 
shrinkage intensities used in its construction. In the derivation of the large-
dimensional limiting distribution of the test statistics, the asymptotic properties 
of linear spectral statistics are used. Even though linear shrinkage test statistic is 
different from the corrected John test statistic, they still have the same limiting 
distribution. The construction provides some new inferential procedures for large-
dimensional data analysis using a connection between estimators and test statistics. 

The theoretical results are illustrated by means of a simulation study. The 
proposed new test is compared with the corrected John test and the corrected 
likelihood ratio test. It was found that the linear shrinkage test behaves nearly the 
same as the corrected John test in terms of the empirical power. The differences in 
the powers of these two tests are explained by the fact that the linear shrinkage test 
depends more on the limiting aspect than the corrected John test does. Moreover, 
both the linear shrinkage test and the corrected John test outperform the corrected 
likelihood ratio test.
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Fig. 6 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with . Σ0 =
I and .Σn = Σn,r,γ where .γ ∈ (−1, 1) and .r = 3/4. The computations are based on 1000 
independent repetitions 
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