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Linear Shrinkage-Based Hypothesis Test )
for Large-Dimensional Covariance Qe
Matrix

Taras Bodnar, Nestor Parolya, and Frederik Veldman

Abstract The chapter is concerned with finding the asymptotic distribution of the
estimated shrinkage intensity used in the definition of the linear shrinkage estimator
of the covariance matrix, derived by Bodnar et al. (J Multivar Anal 132:215-228,
2014). As a result, a new test statistic is proposed which is deduced from the linear
shrinkage estimator. This result is a ready-to-use multivariate hypothesis test in
the large-dimensional asymptotic framework and constitutes the main result of the
chapter. The theoretical findings are compared by means of a simulation study with
existing tests, in particular with the commonly used corrected likelihood ratio test
and the corrected John test, both derived by Wang and Yao (Electron J Stat 7:2164—
2192, 2013).

1 Introduction

Estimating and testing the structure of the covariance matrix are import problems
that have many applications in different fields of science, especially in economics
and finance. For example, the covariance matrix plays a significant role in portfolio
theory (see Markowitz 1952), where it is important to understand the relation and
the variability of different assets included in a portfolio.

Challenging problems arise for estimating and testing the structure of the
covariance matrix when the dimension p of the random sample (yi,y2, -, ¥n)
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is of similar order of even larger than the sample size n, where y; € R? for
all i € {0,---,n}. This is because commonly used estimators and tests, such
as the likelihood ratio test (see Anderson 1984) or John’s test (see John 1971),
are constructed under the assumption that the dimension p of a random sample
stays fixed. However, it has been pointed out by numerous authors (see Wang and
Yao (2013); Paul and Aue (2014); Yao et al. (2015); Bodnar et al. (2019), among
others) that the assumption of a fixed dimension does not yield precise distributional
approximations for commonly used statistics and that better approximations can be
obtained considering the dimension p go to infinity as well. This leads to a new
area in asymptotic statistics where the dimension p is no longer fixed, but tends
to infinity together with the sample size n, i.e., % — ¢ < oo when n — o0 and
p — oo. This framework is called the large-dimensional asymptotics (see Bai and
Silverstein, 2010).

Many statistical tools that used to work for a fixed dimension did not work
properly anymore in the large-dimensional asymptotic framework and needed to
be altered. Moreover, new statistical tests have been developed and are still being
developed. For instance, the likelihood ratio test and John’s test are extended by
Wang and Yao (2013) to work properly in the large-dimensional case. In addition,
new estimators are proposed for the population covariance matrix because it is well
known that the commonly used sample covariance matrix does not perform well
and produces large errors in the large-dimensional case. To tackle this issue, new
estimators are developed to better approximate the actual population covariance
matrix in this setting. One of the commonly used approaches is the shrinkage
estimator originally proposed by Stein (1956) for the mean vector of a normal
distribution and extended in different directions. One of the most important among
the existing estimators of the covariance matrix is the linear shrinkage estimator
developed by Ledoit and Wolf (2004), further improved and generalized by Bodnar
etal. (2014).

For numerous applications in finance one should perform a hypothesis test on
large-dimensional covariance matrices. For example, one can test whether a large
number of assets in a portfolio can be assumed to have the same risk profile or
testing if the assets can be assumed to be independent of each other based on a
large set of historical returns. The latter corresponds to testing the null hypothesis
Hy : ¥, = &1 versus the alternative hypothesis H; : X, # &I for some £2 > 0,
where X, is the population covariance matrix of asset returns and I the identity
matrix.! This type of tests is called the sphericity test. Similarly, it can be of interest
to explore if a large set of assets have a certain dependence structure, thus testing
whether the population covariance matrix can be assumed to be equal to a prior

! The subindex 1 by the population covariance matrix X, arises because of the large-dimensional
framework, i.e., p/n — ¢ > 0. Here it is implicitly assumed that the dimension p is a function of
the sample size n, namely, p = p(n).
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believe X of the population covariance matrix. This corresponds to testing the
hypotheses

Hy: XY, =%y against H;:X,# Xy. (D)

Such a hypothesis test is an important tool in multivariate statistics and a lot of
research has been conducted to extend the classical multivariate tests to work under
the large-dimensional framework. This is also the goal of this chapter, namely, to
construct a new hypothesis test for the population covariance matrix in the large-
dimensional asymptotic framework based on the linear shrinkage estimator.

The new test that will be constructed in the chapter will be based on the linear
shrinkage estimator. This is because it has been pointed out by Bodnar et al. (2014)
that the linear shrinkage estimator performs very well in estimating the population
covariance matrix in the large-dimensional case. This makes it interesting to explore
whether linear shrinkage-based hypothesis tests also perform well, in terms of size
and power, in the large-dimensional asymptotic framework.

Before the new test will be presented at the end of Sect. 2, we discuss the linear
shrinkage estimator of the covariance matrix proposed in Bodnar et al. (2014) and
derive the asymptotic distribution of the estimated shrinkage intensities. After this
theoretical part, a simulation study to assess the finite-sample performance of the
new test and to compare it with the already existing approaches will be conducted
in Sect. 3. The already existing tests that will be used in the simulation study are the
corrected likelihood ratio test (CLRT) and the corrected John test (CJ), both derived
by Wang and Yao (2013). The test of Ledoit and Wolf (2002) will not be considered
in the chapter because it is less powerful than the CJ test and therefore irrelevant to
use in the comparison. The comparison will be made using the empirical size and
the empirical power. Final remarks are provided in Sect. 4.

2 New Test Based on the Shrinkage Approach

In this section we present the linear shrinkage estimator of the covariance matrix and
develop the framework used in the derivation of the test statistic and its asymptotic
distribution.

2.1 Linear Shrinkage Estimator of the Covariance Matrix

Lety € R? be a random vector of dimension p and let n denote the sample size
of a random sample (y1, y2,--- ,¥s). Assume that ¢, = % — ¢ € (0, 400) when
n — oo and p — oo. The data matrix Y, = [y1,¥y2, - ,¥Yn] is assumed to be a
realization from the following stochastic model:

Y, = X°x,. 2)
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In (2), ¥, denotes the population covariance matrix and the matrix X,, explains
the randomness of the model. Since under the null hypothesis in (1) we have that
¥, = Xy, we rescale the data matrix Y, by ?n =X 5 y 2Yn. In addition, the
following assumptions on the stochastic model (2) are imposed:

* (A1) The population covariance matrix ¥, is a nonrandom p-dimensional
positive definite matrix.

* (A2) X, is an p x n matrix where the entries are independent and identically
distributed (i.i.d.) random variables with mean zero, unit variance, and finite
fourth moment equal to E[|x,-,j|4] = B+ 1+ k < oo, where k = 2 in case of
real variables and x = 1 in case of complex variables, and also E [xZ j] =0in
case of complex variables.

1
* (A3) One only observes Y,, where Y,, = X7 X,,.

These assumptions are maintained throughout this chapter. We further assume that
X, € RP*"; therefore, x = 2. However, to keep the results as general as possible we
present the results as a function of «.

The sample covariance matrix is defined by

1
S, = -Y, Y.
n

It is the most commonly used estimator of the covariance matrix which possesses
nice distributional properties in the classical asymptotic regime. However, that is
no longer the case in the large-dimensional setting and improved estimators are
suggested in the literature.

The linear shrinkage estimator presents a widely spread approach for the
estimation of the population covariance matrix in the large-dimensional framework.
This estimator was first derived in Ledoit and Wolf (2004) and improved by Bodnar
et al. (2014). The general linear shrinkage estimator ) GLSE 1s expressed as

Y6LSE = @Sn + r 22, 3)

where £2 is the shrinkage target which is assumed to be a matrix with bounded
trace norm. The parameters «, and B, are called the shrinkage intensities because
they basically shrink the matrices which they are multiplied with. Thus, ¥ GLSE 18
essentially a linear combination between the sample covariance matrix S, and the
prior belief of the population covariance matrix £2.

The optimal shrinkage intensities are found by minimizing the squared loss
function given by

L% =|1ZeLse — Zall7

where ||-||% is the squared Frobenius norm. The loss function L?c measures the

distance between the estimator ¥ GLse and the population covariance matrix X,.



Linear Shrinkage-Based Hypothesis Test 243

For the estimator to be working properly, this distance, thus the loss function, should
be as small as possible. Bodnar et al. (2014) minimize this loss function sz and
found that the optimal shrinkage estimators are equal to
_w(S, X217 — (X, 2)u(S,2)
- 2
ISa 1171122117 — (xS, £2))
(X, 2)[ISu]17 — (S, Z)tr(S, 2)
= 5 .
1SulI7112117 — (tr(S,$2))

o) (2

“4)

B (£2)

®)

Corollary 3.1 in Bodnar et al. (2014) presents the deterministic asymptotic
equivalents to ¢;s (£2) and B (£2) given by

C
;Hznu?rlmui

ot (R)=1- , ©6)
(1Zal2 + ;Hznnﬁ)nszn% — (r(Z,2))°
.2 .
@) = S22 (1 _ory), ™)
2112

where ||A][;- is the trace norm of matrix A, while their consistent estimators in
the large-dimensional framework are expressed as (see Section 4 in Bodnar et al.
(2014))

1
o 1Sll5 112117

&) =1 , (8)
ISalZ1121% — (1(S,2))°
A S, 2 .
@) = SO (1 _r2y). ©)
12112

2.2 Test Statistics and Its Large-Dimensional Distribution
Under the Null Hypothesis

Since the aim of the chapter is to derive a new statistical test for the hypotheses in (1)
and, as such, the null distribution of the test statistic is needed for the decision rule,
1

we consider the sample covariance matrix for the normalized sample Y, =% L '
defined by
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while the population covariance matrix corresponding to the sample T(n is the
identity matrix under the null hypothesis in (1). For this reason, it is obvious to
choose (1/p)I as the shrinkage target in the linear shrinkage estimator (3) for the
population covariance matrix related to the normalized sample Y,,. The factor 1/p is
needed due to the assumption of the bounded trace norm imposed on the shrinkage
target. Moreover, it holds that
.k ( ! ) _
o =a"|-1)=0,
p

under the null hypothesis in (1), which is consistently estimated by

A
P18 — ()"

Moreover, since B*(£) and ﬁ*(ﬂ) in (6) and (8) are functions of «*(£2) and
a*(82), respectively, it is sufficient to determine the large-dimensional asymptotic
distribution of the latter to derive a statistical test on the structure of X',,.

The eigenvalues of the sample covariance matrix are a central object in large-
dimensional statistics. Let {A1,---,A,} be the set of eigenvalues of S,. For the
sake of notation we omit the subscript n in the notations of eigenvalues. It can be
seen in (10) that &* is completely determined by the squared Frobenius norm ||S, | |%7
and the trace tr(gn) which are functions of {A1, --- , A,}. Namely, it holds that

14
QS (12 2: 2
||Sn||F= )L,'
i=1

Ak _

(10)

and
- 4
wSy) =) A
i=l1

The joint large-dimensional asymptotic distribution of ||§n | |% and tr(§,,) is derived
in Lemma 2.2 from Wang and Yao (2013). We formulate this result as Lemma 1
below.

Lemma 1 (Lemma 2.2 in Wang and Yao (2013)) Assume that conditions (Al)—
(A2) hold. Then, under the null hypothesis in (1), we get that

P2
(Z ka Ap(ljc”)) N (1. V1) (11)
i=1"
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where

w = ((K - 10+ ,B)C> (12)

and

v, = (2/{02 +4( + B) (c+ 22+ ¢3) 2(c + B) (c+c2)> . (13)

20+ B) (e +¢?) (k + B)c

Since @* is only a function of ||§,, | |% and tr(§n) whose joint large-dimensional
asymptotic distribution is given in Lemma 1, then the large-dimensional asymptotic
distribution of &@* can be deduced by applying the delta method, which is Theorem 1
from Doob (1935). For the completeness of the presentation we present this theorem
as Lemma 2.

Lemma 2 (Theorem 1 in Doob (1935)) Let X = (X4,..., Xk)—r be a random
vector and g : R* — R? be a differentiable function with derivative Vg(a) at
a € RX. If we have for some b > 0 and p — oo

X —a} 3y,
then

PP {e(X) — g@)} > [Ve@]”Y.

The delta method says essentially that if a random vector converges to a
multivariate normal distribution in the limit, then differentiable functions of that
random vector are also normally distributed. The application of the delta method
to &* which is a differentiable function of ||S,1||fF and tr(S,,) leads to the following
result:

Theorem 1 Assume that conditions (Al)—(A2) hold. Then, under the null hypothe-
sis in (1) we get

T = pa* g N(u, o), (14)
with

2

u=«k—1+p and o°=2k. (15)
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Proof The application of Lemma 1 leads to

IS:1% —pl+0)\ _ (3 Xfam -0+ b [u
< r(Sy) — p )"’( It i—1 ) 7 L

withu ~ N (1, Vi) where o and V| are defined in (12) and (13), respectively.
Defineb = 1,a=[1+c1]7, and

ct?
f — t2
Then,
1 1 2 ¢ (% tr (Sn))2
g = 1Sull7. (—tr(sn>) =1- >
? g LISl — ($wsn)
. c-ztr<sn>2 —a
P ISullz — (tr (Sp))
and
@=g(l+c, =1 ¢
= C, = _——m—
sl =¢ I fc—1
Moreover, we get
8_g _ i B ct22 _ ct22
8tl 8tl f — 2‘22 (tl _ l‘22)2
8_g_i:1_ ct22 }__ 2ct1p
- 2( — 2°
ot ot fr — t2 (ll _ t22)

and, hence,

C(lz) . l
c—(12 c
Ve(@) = _(lzc(l(ic)))l = (_ 2(l+c)) )

(1+e=(12))*

The delta method of Lemma 2 now implies that

u= —-uy —
C C

uz,
c c

nw D |:1 2(1+c)] 1 2(1+¢)
pa*t = | -
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which is a normal distribution with mean
1 2(1
n=E <_u1 _ ﬂM)
c c

2(1+c¢)
—

=%(K—1+,3)C— O=k—-14+p

and variance

1 2(1
o2 = Var (—u1 _ ﬂuz)
c c

Cov (uy, uz)

2
= %Var(ul) + (_M) Var (uz) — 2 - lM
c c c c

2
Clz (4(x +8) (c3 +2¢% + c) + 2xc2) + (@) (k + B)(c)

12049, 1 g (+c) =2
C Cc

This concludes the proof. O

The result of Theorem 1 is also present in Versteegh (2020) and Nilsson (2021),
while we prove it in another way. It also should be noted that the limiting distribution
in (14) is the same as the one obtained for the statistic of the corrected John test
derived by Wang and Yao (2013).

To visualize the results presented in Theorem 1, the histograms of the centralized
random variable W = (T — p)/o are depicted in Fig.1 for p = 128 and
n = 256 together with the standard normal distribution, the large-dimensional
asymptotic distribution of W = (T — w)/o. The left-hand-side plot corresponds

0ds Empirical Distribution - N(0,1) data 045 Empirical Distribution - ,2)-2 data
[ Exact [0 Exact
0.4 —— Asymptotic 0.4 —— Asymptotic

0.35

=) o o
S 9 ¢
o O e &

o e

Relative Frequency
(8]

Relative Frequency

o
&

, 0
A

-4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
Fig. 1 Histograms together with the large-dimensional asymptotic density of the centralized
random variable W = (T — p)/o calculated for random samples drawn from N(0,1) (left) and
Gamma(4,2) — 2 (right) distributions for p = 128 and n = 256
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to the case when samples from the standard normal distribution are drawn, while
the Gamma (4, 2) — 2 distribution is used in the right-hand-side plot. For the second
figure the Gamma(4,2) — 2 distribution is chosen because this gives § = 3/2
instead of B = 0 (for the standard normal distribution), although it has still
zero mean and unit variance. The figures are created by using 10° independent
replications. We observe in both plots of Fig. 1 that both histograms are very well
approximated by the density function of the standard normal distribution. Therefore,
we can conclude that the large-dimensional asymptotic distribution derived in
Theorem 1 provides a good approximation already for moderate sample sizes. More
importantly, W is a ready-to-use test statistic in the large-dimensional case that is
based on the linear shrinkage estimator.

3 Simulation Study

In this section the linear shrinkage (LS) test will be compared with some well-
known tests in large-dimensional statistics, such as the corrected likelihood ratio
test (CLRT) and the corrected John test (CJ) both derived by Wang and Yao (2013).

Before we start off with the simulation study, it should be noted that the CLRT
and CJ tests are one-tailed tests and that the LS test is a two-tailed one. It is known
that one-tailed tests can be transformed to two-tailed tests without any changes.
This will also be done in this simulation study to compare all the tests equally.
Furthermore, it should be noted that the CJ and the LS test statistics have the
same limiting distribution. Moreover, one should bear in mind that the limiting
distribution of the CLRT test statistic depends on c. In particular, it depends on
the log(1 — ¢), so it is expected that this test will break down when ¢ increases to 1
and will not work when ¢ > 1.

The three tests are compared with each other in terms of the empirical size and
the empirical power. The calculation of the empirical size and empirical power is
performed similarly. Recall that the size of a test is equal to the probability of
rejecting the null hypothesis when it is true, while the power of a test is equal
to the probability of rejecting the null hypothesis when the alternative is true.
In the simulation study both probabilities are approximated by their empirical
counterparts, which are computed in the following way:

(i) Draw a sample from the data-generating model.
(i1) Calculate the sample covariance matrix from the generated data.
(iii) Compute the value of the test statistic.
(iv) Using the decision rule of the test and the computed value of the test statistic,
make a decision about the rejection of the null hypothesis.
(v) Repeat steps (i)—(iv) many times and compute the relative frequency of
rejecting the null hypothesis.

If the data-generating model corresponds to the null hypothesis, the algorithm
will produce the empirical size of the test; otherwise we get the empirical power.
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If the number of repetitions is relatively large, following the law of large numbers,
the empirical size and the empirical power will provide a good approximation of the
true size and the true power.

3.1 Empirical Size Comparison

In this section we compare the three tests in terms of their size properties. The
empirical sizes of the CLRT, CJ, and LS tests performed at 5% significance level
are computed by using 10000 independent repetitions. In each repetitions the
samples are drawn from the standard normal distribution and the Gamma (4, 2) — 2
distribution as described at the end of Sect. 2. The results of the simulation study are
depicted in Table 1.

It can be seen in Table 1 that all the empirical sizes computed for samples
generated from the standard normal distribution are close to the desired rejection
level @ = 0.05. This conclusion holds for almost all values of p and n considered
in the simulation study. As such, since all empirical sizes are close to the rejection
level «, it does not really matter which combination of (p, n) to take in the empirical
power comparison. This is because the three tests possess similar size properties and
a fair comparison can be made in terms of power.

Unfortunately, this is not the case for the empirical sizes computed for the
samples generated from the Gamma(4, 2) — 2 distribution. It can be seen in Table 1
that the empirical sizes of the LS test behaves quite well. However, for the CJ test
this only holds for higher combinations of (p, n). It looks like that the empirical

Table 1 Empirical sizes of the CLRT, CJ, and LS tests at 5% significance level based on 10000
independent repetitions. The samples are drawn from N(0,1) (left) and Gamma(4, 2) — 2 (right)
distributions for several values of p and n
(p,n) CLRT CJ LS (p,n) CLRT CJ LS
(8, 128) 0.0565 0.0581 0.0661 (8,128) 0.2518 0.1178 0.0808
(16,128) 0.0539 0.0552 0.0479  (16,128) 0.2619 0.0911 0.0513
(32,128) 0.0518 0.0525 0.0432  (32,128) 0.2588 0.0750 0.0468
(64,128) 0.0536 0.0538 0.0479  (64,128) 0.2197 0.0645 0.0460
(96,128) 0.0547 0.0540 0.0484  (96,128) 0.1643 0.0537 0.0423
(112,128) 0.0538 0.0553 0.0516 (112,128) 0.1329 0.0601 0.0514
(120,128) 0.0522 0.0524 0.0485 (120,128) 0.1105 0.0598 0.0515
(16,256) 0.0544 0.0531 0.0473  (16,256) 0.2777 0.0861 0.0531
(32,256) 0.0519 0.0502 0.0433  (32,256) 0.2849 0.0723 0.0471
(64,256) 0.0499 0.0499 0.0437  (64,256) 0.2654 0.0625 0.0467
(128,256) 0.0516 0.0541 0.0504 (128,256) 0.2252 0.0591 0.0513
(192,256) 0.0542 0.0503 0.0488 (192,256) 0.1695 0.0572 0.0513
(224,256) 0.0505 0.0512 0.0495 (224,256) 0.1384 0.0554 0.0510
(240,256) 0.0517 0.0513 0.0480 (240,256) 0.1164 0.0547 0.0490
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sizes of the CJ test approaches « from above. This means that when (p, n) is low,
the empirical distribution has heavier tails than it should be. On the other side, if both
p and n increase, then the corresponding large-dimensional asymptotic distribution
is becoming a better approximation. Thus, the CJ test relies more on the limiting
aspect in this case. The empirical sizes for the CLRT test are behaving quite pure
for every combination of (p, n). They are approximately five times larger than
the desired significance level « = 0.05. As p and n increase, the performance is
becoming better although still we have all empirical sizes being larger than 0.1.
From this observation it can be concluded that when the data are drawn from the
Gamma(4, 2) — 2 distribution, then the large-dimensional asymptotic distribution
of the CLRT test does not provide a good approximation. Therefore, it will be
difficult to make a fair empirical power comparison when the data are taken from
the Gamma(4, 2) — 2 distribution because not all the tests will have the same size
properties. So, the empirical power comparison will only be based on the standard
normal distribution.

3.2 Empirical Power Comparison

In this subsection the empirical powers for the three tests will be compared. The
comparison will be performed only for the samples drawn from the standard normal
distribution because the empirical sizes in the case of the Gamma(4,2) — 2
distribution are not all close to the desired significance level @ = 0.05 and it
will lead to unfair comparison. In this simulation study we calculate the empirical
powers based on the Bernoulli experiment as described at the beginning of Sect. 3.
The following three types of the covariance matrices will be considered under the
alternative hypothesis:

(1) Hi: compound symmetry relation
(2) H;: autoregressive relation
(3) Hi: heteroscedasticity relation

The dimensions used in the comparison are (p,n) = (32,128), (p,n) =
(64, 128), (p,n) = (96, 128), and (p,n) = (120, 128). This results in ¢ = 1/4,
c=1/2,c =3/4, and ¢ = 15/16, respectively. All computations of the empirical
powers are based on 1000 repetitions.

3.2.1 Compound Symmetry

The first alternative hypothesis that will be used to make a power comparison is a
compound symmetry relation. The compound symmetry means that every variable
of the underlying data has variance equal to 1 and covariance equal to Cov(y;, y;) =
p for every i # j. This means that for p # 0 the underlying variables of the
data are correlated and thus dependent. The compound symmetry alternative can be
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represented as a linear combination of the identity matrix and a matrix of all ones.
So, for p € (0, 1), the covariance matrix under the alternative hypotheses is defined
as

10 ---0 11 ---1 1 p-p
01 : 11 : 1
Sio=0-p |, el =17
0--- 1 1--. 1 o - 1

In the simulation p runs from O to 1. So as p increases, the alternative hypothesis
X, becomes less like the identity matrix I or the null hypothesis. To compare
the different empirical powers for each test, a power plot is used. The power plot
will be constructed as follows: the Bernoulli experiment will be executed for each
p separately, and because each p gives a different alternative hypothesis, different
empirical powers are obtained for each p. Plotting the calculated empirical power
against the corresponding p results in the required power plot. The quicker a test
reaches the power of 1, the better the test is, since the power is the probability that
a false null hypothesis is correctly rejected. The results of the simulation study are
presented in Fig. 2.

Power plot q is 1: (p,n) = (32,128) 1 Power plot q is 1: (p,n) = (64,128)
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Fig. 2 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with Xo =1
and X, = X, , where p € (0, 1). The computations are based on 1000 independent repetitions
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In Fig.2 it can be seen how the three tests perform in terms of the empirical
power for different combinations of ¢. For p > 0.08 all tests have power close 1
and as expected the CJ test and the LS test behave nearly the same. This is due to
the fact that they have the same limiting distribution. Most noticeable in Fig.?2 is
that the CLRT test breaks down when p is getting closer to n. This is again what
is expected since the limiting distribution depends on log(1 — ¢). Overall, the CJ
and the LS tests perform best and they are the first to reach a power of 1 for every
combination of (p, n).

3.2.2 Autoregressive Relation

The second alternative hypothesis is the autoregressive relation. The autoregressive
relation is based on an autoregressive model, which is a popular type of univariate
time series. The autoregressive model specifies that the output variable depends
linearly on its own previous values and on a stochastic error term. Under the
autoregressive relation, the covariance matrix under the alternative hypothesis is
specified by

1 s 82 ...s071
§ 1 8 ...8072

Yos=1| 8> &

sp—lsgp—2... 5 1

for § € (—1,1). The simulation study is organized in the same way as for the
previous alternative hypothesis. As § goes away from 0 in both directions, this
could be seen as moving away from the null hypothesis Hy : ¥, = I because the
alternative hypothesis matrix becomes less like the population covariance matrix.
Then for every & the Bernoulli experiment is carried out and the empirical power is
computed. The results of the simulation study are presented in Fig. 3.

It can be seen in Fig. 3 that for p = 32 and p = 64 the CJ, LS, and CLRT tests
perform quite the same. Still the CJ test performs best but the other two are not far
behind. Then, when p gets larger, the CJ and LS tests are still outperforming the
CLRT test, whose power becomes worse as p increases. This is in line with the
observations from the previous simulation for the compound symmetry alternative.

3.2.3 Heteroscedasticity Relation
The third alternative hypothesis corresponds to the case when a fixed ratio r of the

variables has a variance equal to 1 + y, while the variance of the rest variables is
one. In econometrics such a relation is called heteroscedasticity. For any r € (0, 1)
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Power plot q is 2: (p,n) = (32,128) 1 Power plot il is 2: (p,n) = (64,128)

—cs | ;
—1Ls —Ls

0
-02 -015 -01 -005 O 005 01 015 02 -02 -015 -01 -005 O 005 01 015 02
Delta Delta

Power plot q is 2: (p,n) = (96,128) Power plot alternative is 2: (p,n) = (120,128)

—CJ

—LS

0 = 0
-02 -0.15 -0.1 -0.05 0 005 0.1 015 0.2 -0.2 -0.15 -0.1 -0.05 0 005 0.1 015 0.2
Delta Delta

Fig. 3 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with X =1
and ¥, = ¥, s where § € (—1, 1). The computations are based on 1000 independent repetitions

and y > —1, we define

0" . :
Z‘n,r,y: 1+J/ s
0-- 14y

which presents the covariance matrix under the alternative hypothesis used in the
third simulation study. If it happens that r - p is not a whole number, it will be
rounded down. In the simulation study y will run from —1 to 1. This can again be
seen as departing from the null hypotheses Hy : X, = I when y goes away from
0 in both directions. For every y € (—1, 1) we will compute the empirical powers
which are depicted for r = 1/2 in Fig. 4, for r = 1/4 in Fig. 5, and for r = 3/4 in
Fig. 6.

It can be seen in Fig. 4 that the CJ, LS, and CLRT tests are again quite comparable
for small values of c. However, when p increases, the CLRT gets worse and worse
for the same reason as in the previous simulations. Moreover, it should be noted that
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Power plot q is 3: (p,n) = (32,128) Power plot il is 3: (p,n) = (64,128)
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Fig. 4 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with ¥ =
Iland ¥, = ¥,,, where y € (—1,1) and r = 1/2. The computations are based on 1000
independent repetitions

the empirical powers of all the tests are not symmetric around zero. The powers of
the three tests increase much faster for negative values of y than for positive values.

In Figs. 5 and 6 it can be seen that all tree tests perform better when r decreases,
especially when y is positive. This behavior can be explained by the fact that the null
hypothesis, which is actually tested, is whether the population covariance matrix is
equal to a multiple of the identity matrix. This means that for r = 1/2 the alternative
hypothesis is furthest away from the null hypothesis, and we observe the highest
powers in this case. Therefore, it can be concluded that the CJ, LS, and CLRT
tests are invariant under multiples of the identity matrix what is expected from the
expressions of their test statistics.

4 Summary

In many statistical applications one would like to perform hypothesis tests on the
structure of large-dimensional covariance matrices. In particular, sphericity testing
and testing for certain dependence structure of the covariance matrix are important
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Power plot q is 3: (p,n) = (32,128) 1 Power plot il is 3: (p,n) = (64,128)
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Fig. 5 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with Xo =
land ¥, = X, ,, where y € (—1,1) and r = 1/4. The computations are based on 1000
independent repetitions

problems in economics and finance. Therefore, this chapter presents a new approach
to construct such a hypothesis test in the large-dimensional framework.

The new test statistic is based on the linear shrinkage estimator and on the
shrinkage intensities used in its construction. In the derivation of the large-
dimensional limiting distribution of the test statistics, the asymptotic properties
of linear spectral statistics are used. Even though linear shrinkage test statistic is
different from the corrected John test statistic, they still have the same limiting
distribution. The construction provides some new inferential procedures for large-
dimensional data analysis using a connection between estimators and test statistics.

The theoretical results are illustrated by means of a simulation study. The
proposed new test is compared with the corrected John test and the corrected
likelihood ratio test. It was found that the linear shrinkage test behaves nearly the
same as the corrected John test in terms of the empirical power. The differences in
the powers of these two tests are explained by the fact that the linear shrinkage test
depends more on the limiting aspect than the corrected John test does. Moreover,
both the linear shrinkage test and the corrected John test outperform the corrected
likelihood ratio test.
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Fig. 6 Empirical powers of the CLRT, CJ, and LS tests for the testing hypotheses (1) with ¥y =
Iand ¥, = ¥, ,, where y € (—1,1) and r = 3/4. The computations are based on 1000
independent repetitions
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