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ABSTRACT With increasing decarbonisation and accessibility to our energy systems and markets, there is
a need to understand and optimise the value proposition for different stakeholders. Game-theoretic models
represent a promising approach to study strategic interactions between self-interested private energy system
investors. In this work, we design and evaluate a game-theoretic framework to study strategic interactions
between profit-maximising players that invest in network, renewable generation and storage capacity.
Specifically, we study the case where grid capacity is developed by a private renewable investor, but line
access is shared with competing renewable and storage investors, thus enabling them to export energy and
access electricity demand.Wemodel the problem of deducing howmuch capacity each player should build as
a non-cooperative Stackelberg-Cournot game between a dominant player (leader) who builds the power line
and renewable generation capacity, and local renewable and storage investors (multiple followers), who react
to the installation of the line by increasing their own capacity. Using data-driven analysis and simulations,
we developed an empirical search method for estimating the game equilibrium, where the payoffs capture the
realistic operation and control of the energy system under study. A practical demonstration of the underlying
methodology is shown for a real-world grid reinforcement project in the UK. The methodology provides
a realistic mechanism to analyse investor decision-making and investigate feasible tariffs that encourage
distributed renewable investment, with sharing of grid access.

INDEX TERMS Data analysis, energy storage, game theory, leader-follower game, network upgrade,
optimisation, renewable generation, Stackelberg-Cournot game.

NOMENCLATURE
Subscripts

i for players or agents
max maximum value
min minimum value
t time interval/data sample

Roman symbols

A mainland location of remote demand
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approving it for publication was Joao Paulo Catalao .

B renewable location of local demand
BR best response
cG generation cost
cS storage cost
cT transmission cost
D power demand at location A (remote demand)
d power demand at location B (local demand)
EC energy curtailed
ED remote energy demand
Ed local energy demand
EDoth remote demand served by the main grid

or other sources

37752 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6909-8179
https://orcid.org/0000-0002-9280-2072
https://orcid.org/0000-0003-3884-4148
https://orcid.org/0000-0002-1024-3618
https://orcid.org/0000-0002-2105-3051


M. Andoni et al.: Analysis of Strategic Renewable Energy, Grid and Storage Capacity Investments

Edoth local demand served by the main grid or other
sources

EG expected energy produced without curtailment
ES energy stored in storage
ESD remote demand served by storage
ESd local demand served by storage
ESin energy input to storage
IG capital cost (initial investment) for generation

capacity
IT capital cost (initial investment) for transmission

capacity
MG operation and maintenance cost for generation

capacity
MT operation andmaintenance cost for transmission

capacity
N total number of players
n number of samples
PC power curtailed
Pch charging power
PD remote power demand
Pd local power demand
PDoth remote power demand served by other sources
Pdoth local power demand served by other sources
Pdch discharging power
PG expected power produced without curtailment
pG generation tariff price
PL generic demand profile
PLh,s power demand distribution per hour and season
PN rated power of generation capacity
PSD remote power demand served by storage
PSd local power demand served by storage
PSin power input to storage
r power charged/discharged to/from storage
RD residual demand
S storage capacity
sdch self-discharge rate of energy storage
SOC state of charge
T transmission line capacity
tburn burn-in period for Gibbs sampling
w wind speed
xG normalised power generation
zh wind turbine hub height

Greek symbols

α Sigmoid function parameter
β Sigmoid function parameter
δ increment capacity in strategy space
δt duration between two consecutive time intervals
η efficiency of storage system
ηch charging efficiency of storage system
ηdch discharging efficiency of storage system
5 profit or payoff
σ strategy

I. INTRODUCTION
Energy systems are becoming increasingly complex in
response to the need to support decarbonisation of energy,
with increasing integration of multi-vector energy services
and adoption of variable renewable energy sources (RES).
Furthermore, there is the additional challenge of decarbon-
isation of interdependent services, such as transport. As well
as increasing decentralisation of energy systems, to sup-
port tailoring systems to specific community needs, such
as enabling more active participation in energy choices,
increasing self-consumption and resilience, there is also pro-
gressive deregulation of energy markets to encourage more
equitable access and market competition, which has grad-
ually led to the introduction of multiple self-driven actors
shaping the operation and management of energy systems.
Optimal and efficient operation of energy systems relies
increasingly on autonomous and often competitive actions
performed by multiple actors that are often driven by their
own utility-maximising objectives, hence, studying of strate-
gic interactions is to an increasing extent important. Game
theory is a mathematical framework for studying conflict
and cooperation between rational agents, where an agent
represents a smart entity, such as an investor or a com-
puter program that acts on behalf of an entity, and is able
to initiate actions, including optimisation, cooperation and
negotiation, in order to perform a task or achieve an objec-
tive. Therefore, game-theoretic models represent a promising
approach to analyse strategic interplay between self-driven
and self-interested energy system stakeholders. Prominent
examples of research works from the literature that showcase
the use of agents and game theory can be found in [2]–[6].

In this work, we study a power network investment prob-
lem through the lens of game theory. Profit-maximising
agents or players invest in network, renewable generation and
storage capacity. Specifically, we study the case where grid
infrastructure is developed by a private renewable investor,
but line access is shared with rival players investing in renew-
able and storage capacity, which enables them to export
energy and access additional electricity demand. We consider
settings of privately developed and shared grid access.

Traditionally, grid projects are performed by transmis-
sion and distribution network operators and grid access is
allocated via market-based rules or specified in commercial
arrangements between generating units and network oper-
ators. However, attracting private investment [7], possibly
from RES developers [8], is a critical enabler to reduce
costs associated with network upgrades required for RES
integration and further decarbonisation. In the EU alone,
the sustainable transition is estimated to require an invest-
ment of e200b per year for generation, network and energy
efficiency development [9], while $2t in electricity net-
work upgrades will be required by 2030 in the US [10].
Energy policy makers and network operators face a key
knowledge gap on how to incentivise private investment and
shared grid access market models and have trialed several
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strategies to stimulate the market aiming at the reduction
of connection costs and times. To address these challenges,
they are considering novel commercial arrangements, such as
in the Orkney islands Active Network Management (ANM)
scheme (https://www.ssen.co.uk/ANMGeneration/) and the
‘Accelerated Renewable Connections’ (ARC) project [11]
in Scotland. The latter investigated commercial techniques
to couple demand with distributed generation. These tech-
niques include physical private wire systems (connection
between the generation and demand site is achieved through
a privately-owned grid connected to the main distribution
network through a single connection point), virtual private
wire systems (connection between generation and flexible
demand is achieved through themain distribution network but
operation is managed behind a point of constraint), demand
aggregators and local markets.

A relevant business model to make line investment prof-
itable to private investors is the concept of a ‘common access’
private line, built or supported by funds from a RES investor,
but with shared access. Traditionally, a RES generator builds
and pays for a ‘single access’ line (or reinforcement) with a
capacity large enough to meet his own needs. Instead, under
‘common access’, RES investors are incentivised to build
larger capacity lines and may grant access to third-party rival
investors, by setting a payment mechanism for third-party
line usage. This would create a new revenue stream for
RES investors, especially as other renewable financial incen-
tives are being removed. However, the interplay of investors
competing to get access to demand through the shared
transmission line raises strategic behaviour issues, because
decisions on the level of investment and capacities installed
depend on opponent actions. Research works that studied
strategic issues raised by private grid capacity investments
can be found in [12]–[16]. Often, preferred locations for
RES project development are remote areas where primary
renewable resources are favourable and yield high returns
for investors. For example, in the UK such areas are windy
islands or coastal areas, where wind resources are remark-
able, albeit usually local grid capacity cannot accommodate
more renewables. Connection of variable and intermittent
RES generation, such as wind power, has led to multiple
challenges with regards to the safe operation and manage-
ment of power systems [17], [18]. An important conse-
quence is excess RES generation curtailment, i.e., discarding
excess renewable energy in order to guarantee safe oper-
ation of the power system, which entails high costs for
RES developers and energy end-users. Typically, curtail-
ment happens when existing grid infrastructure is insuffi-
cient and energy generated by RES cannot be transported
to areas of high demand [19]–[21], therefore dealing with
this issue is of great importance to support RES investment.
Although, short and middle-term solutions to RES integra-
tion exist, such as smart grid techniques and energy storage,
arguably, the long-term solution is grid reinforcement, usu-
ally publicly funded, but, potentially also supported by private
means.

Motivated by the specific techno-economic challenges
experienced in developing smart local energy systems (SLES)
in remote and distributed communities, this paper considers
a two-location model, where excess RES generation and
demand are not co-located, and where a private RES investor
builds and shares access of a power line with local investors
of renewable energy and storage, who are charged for using
the line. This leads to a noncooperative Stackelberg-Cournot
game between the line investor (single-leader), who builds the
line and RES generation capacity, and rival investors of local
generation and storage (multi-followers), who react to the
installation of the line by increasing their own capacity built.
A Stackelberg game is a mathematical framework for anal-
ysis of sequential hierarchical problems where a dominant
player (leader) plays first and followers play after observing
the leader’s strategy. In contrast, a Cournot game describes
problems where independent rival investors decide simulta-
neously their output quantities. The analysis of this game
and computation of optimal and profit-maximising capacity
decisions present significant challenges.

This paper builds on the authors prior research in several
key ways. Andoni et al. [22] presents an analytical solution
to a simpler stylised deterministic model of a Stackelberg
game between a line investor and local generators. In sub-
sequent work, Andoni et al. [23] develops a formal model
that considers stochastic RES resources and demand. This
work shows how, due to large players’ action sets, a closed-
form solution of the game is not feasible. However, both these
works do not consider the crucial issue of storage, which not
only introduces additional non-linearities, time dependencies
and complexity in the optimisation, but leads to a secondary
Cournot game between local investors (local generators and
storage). Building on previous results, this paper presents a
game-theoretic decision framework, which includes energy
storage players and where payoff enumeration is derived
not by simplified explicit mathematical functions, but from
large-scale, data-driven analysis and simulation that capture
realistic operation and control of the energy system under
study. In detail, the main contributions of the work to the state
of the art are:

- First, we provide a formulation of a single-leader-multi-
follower game that studies strategic decisions on capacity
investments in energy systems, where network, renewable
and storage capacity are privately developed and grid access
is shared.

- Second, we develop an empirical solution for equilibrium
finding where players’ payoffs are directly computed from
large-scale datasets of historical observations and simulations
that realistically represent operation and control in energy
systems. This is an important contribution as according to
the literature survey, very few works deal with techniques
for solving bi-level optimisation and single-leader-multi-
follower games [24].

- Third, we demonstrate the underlying methodology to
a practical application based on the UK Kintyre-Hunterston
grid project [25]. Based on project figures, we perform a
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sensitivity analysis on financial parameters that affect the
game equilibrium and we determine the value of adding
energy storage to the mix of investors.

In summary, our research provides a decision support tool
for investors and energy policymakers that seek to incentivise
private grid capacity projects and explore tariff charges for
energy trading between stakeholders that achieve profitable
investment equilibria.

The remainder of the paper is structured as follows:
Section II discusses relevant literature on network upgrades,
game-theoretic modelling and leader-follower games used
in this work, Section III presents the game formula-
tion and methodology for finding equilibrium, Section IV
demonstrates the underlying methodology in a real-world
application, Section V presents the sensitivity analysis and
parametric exploration results, Section VI discusses the main
findings and Section VII concludes and elaborates on future
work.

II. RELATED WORK
Network upgrades may refer to reinforcement of existing
grid infrastructure or installation of new power lines, and are
usually accomplished by transmission or distribution network
operators. In recent years, adoption of RES technologies
has also introduced private or merchant investors in grid
capacity projects, leading to different and often conflicting
investor objectives depending on their type [26]. Network
operators, which are typically regulated monopolies, aim to
maximise social welfare, while private investors are driven by
self-interest and profit maximisation [16].

The effects of grid capacity increase, include financial
and technical benefits, such as the mitigation of congestion,
reduction of energy curtailment and increasing competition
in electricity markets. With interconnection, generating units
can increase their efficiency [27] and uncertainty in genera-
tion and demand forecasting can be reduced, leading to cost
reduction, lower electricity prices and enhancement of energy
security. Reliability of the power system can also improve as
the probabilities of unserved load or generation breakdown
decrease with interconnections. Future uncertainties such as
varying fuel or carbon prices, costs for transmission or instal-
lation of renewable capacity, demand growth and potential
changes in markets and regulation [28] can add significant
value to grid capacity projects [29], on top of strategic, envi-
ronmental and social value [30].

Utility companies employ long-term load forecasting and
generation capacity planning to efficiently design network
upgrades with the aim to minimise financial and environ-
mental costs, while ensuring safe and reliable operation.
Decisions are typically supported by simulation analyses and
load-flow models [28]. In parallel, research has focused in
game-theoretic models, as a tool to demonstrate and simulate
deregulated energy markets and strategic interplay between
private investors [14]. Game theory is a promising method
to assess market behaviour of energy players in a more
realistic way [31]. An overview of game-theoretic modelling

is presented in [32] including Stackelberg [33] and Cournot
game [34] formulations used in this work.

Techniques based on Stackelberg games have been utilised
in several network upgrade modelling works. In detail, these
works focused on designing network upgrades with social
welfare [27], modelling networks with locational marginal
prices [35] or focused on uncertainties instigated by the
progression of variable renewables [36]. Stackelberg game
analysis has also been used to study energy trading between
microgrids [37], [38], while other works pursued objectives
that minimised power line losses [39] or generation and
transmission costs [40]. More recent works on the renewable
energy domain, use Stackelberg game analysis to model peer-
to-peer energy trading [41]–[43] and demand response [44],
[45]. Lu et al. (2019) modelled residential demand response
as a Nash-Stackelberg game between two leaders and two
followers [46]. Bruninx et al (2020) utilised Stackelberg
game formulations to model the interplay between residential
consumers and aggregators providing demand response and
flexibility services in the day-ahead electricity market [47].
Feng et al. (2020)model the interaction between an electricity
utility company and an aggregator as a leader-follower game
and compute via bilevel optimisation optimal price signals
for demand response [48]. Wei et al. (2017) studied trading
between distributed generators and consumers as a multi-
leader-multi-follower game [49]. Ma et al. (2018) mod-
elled interactions between an energy provider and energy
consumers with demand response potential as a hierarchical
leader-follower game [50]. Li et al. (2018) [51] focused
on optimal bidding strategies for forward and spot electric-
ity markets for demand response and renewable generators
characterised under a Stackelberg-Cournot-Nash game. The
majority of the aforementioned works followed an analyti-
cal approach for solving the game equilibrium, often based
on well-defined (smooth) cost functions. Instead, our work
determines the equilibrium results by virtue of a data-driven
simulation analysis, which considers realistic energy flows
derived by control management schemes of the energy system
under consideration, hence leading to more operationally
compliant and robust model refinement.

Game-theoretic modelling and Stackelberg games have
also been used by several researchers to model optimal capac-
ity investment decisions, similar to the approach undertaken
in this work. For example, Huang et al. (2020) studied storage
capacity investment undertaken by a profit-maximising mer-
chant and a regulated social-welfare-maximising entity under
Stackelberg competition [52]. Zheng et al. (2015) [6] propose
a novel, crowdsourced funding model for renewable energy
investments, using a sequential game-theoretic approach.
Xu et al. (2020) determine the optimal sizing of residential
PV panels, while considering uncertainty parameters [53],
while work presented in [54] studied the development of
electric vehicles infrastructure. Similarly, the work presented
in this paper aims to model optimal investment capacity deci-
sions, but we consider in one model renewable generation,
energy storage and grid capacity investments.
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FIGURE 1. Simplified model schematic of the three-player, two-location game: Remote demand D is located at A, local
demand d , RES generation capacity PN1

built by the line investor, PN2
by local generators and storage S are located

at B, while locations A and B are connected with a power line of T capacity built by the line investor.

Several network upgrade works considered optimisation
including bilevel optimisation [16], [36], stochastic optimi-
sation [13], [30], three-level optimisation with social wel-
fare [26], [27] and a three-stage Nash game that aimed
to model grid capacity expansion at a national level [55].
Other works focused on the expansion of the distribu-
tion grid and incorporated multi-objective optimisation [56],
[57], multi-level optimisation [58] and Monte-Carlo simu-
lations [59]. Research works [60], [61] studied distributed
generation planning with game theory and probabilistic mod-
elling, respectively. Some works considered an integrated
model for both generation and transmission capacity [13],
[62], while [15] studied how generation capacity decisions
impact network planning.

Several works focused on network upgrades undertaken
by private investors. Work in [63] introduced incentives for
private transmission investment, while [16] compared invest-
ments undertaken by network operators or private investors
and showed that social welfare is maximised under the oper-
ator, as private investors benefit from withholding capacity
to increase congestion rents. Coalitional game theory was
used in [12] to coordinate private grid investments and it was
found that if the process is not controlled by the regulator
or network operator, there is a risk of decreasing the power
system efficiency due to an increase in transmission losses.

Several early works considered transmission congestion
management protocols for independent system operators [64]
and compared transmission costs in a pool model based
on nodal pricing and a game-theoretic bilateral model [65].
Other works considered network planning at congested areas,
such as in [66], where a two-node network was studied
and players’ market behaviours and equilibrium prices were
analysed. Paper [67] developed a methodology for design-
ing dynamic tariffs imposed to generators participating in
demand response schemes. These tariffs considered net-
work costs, computed as a trade-off between congestion and

investment costs. Our work uses non-cooperative game the-
ory to study strategic interactions of investors in constrained
areas of the grid, where a network upgrade is required.
Moreover, the work presented in this paper focuses on the
estimation of optimal transmission, generation and storage
capacity investment decisions, as opposed to deriving opera-
tional, market strategies or price formulation in areas where
curtailment occurs.

In summary, prior works have predominantly focused on
optimum investment planning of renewable generation or
network capacity. The area of modelling joint investment
decisions that are undertaken by private investors is underrep-
resented. In particular, to our knowledge, few works consider
private network investment with shared grid access to rival
investors and follow a game-theoretic approach to study the
underlying problem.

III. MODEL AND METHODOLOGY
In this section, we present the game for determination of
optimal capacity decisions and the methodology developed
for finding equilibrium.

A. GAME FORMULATION
To investigate the problem of deducing optimal decisions on
capacity investments undertaken by private investors, we con-
sider a mathematical framework based on game theory. For-
mally, the game consists of a set of N = 3 players. Each
player i is characterised by a set of actions or strategies6i and
a specification of their utilities or payoffs 5i

(
(6i)

3
→ R

)
,

which is a mapping from the combination of strategies 6 for
all players to the set of real numbers. Players act in a two-node
energy system shown in Fig. 1. In detail:
• Location A is a net consumer node, with a net power
demand D and net energy demand ED. Meeting the
demand at A in practice requires energy produced or
imported from other locations. In addition, generation
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TABLE 1. Summary of players acting in the game, their strategies and relevant financial parameters.

may also be present at A, in which case the net demand
D would be equal to the demand minus generation at A.
Location A can be thought of as an area of high demand
with significant population density and industry, which
can be supplied by generation at location B.

• Location B is a net energy producer node with local
demand d that is significantly lower than remote demand
D at A. Location B can be thought of as a region with
considerable potential for RES development. Due to
substantial gains and advantageous RES resources, B is
favoured among RES investors, especially if a connec-
tion line is built to give access to remote demand.

In addition, we consider three investors or type of players
distinguished by the admissible capacity investment deci-
sion (strategy) that falls under their control (brief summary
of players and actions is shown in Table 1):
• Player 1 is a private investor willing to install:
(i) a new power linewith transmission capacity T linking
locations A-B with a per-unit transmission cost of cT =
(IT + MT )/T , where IT represents the costs related to
building the power line or initial investment, andMT the
costs related to operation and maintenance of the line
over a larger time horizon. (ii) renewable generation
capacity of PN1 at B with a per-unit generation cost of
cG1 = (IG1 +MG1 )/EG1 , where IG1 is the initial invest-
ment required to build the RES generation capacity,
MG1 the costs related to operation and maintenance,
and EG1 the generation or energy that can be produced
by PN1 over a large time horizon. RES production can
supply demand at locations A and B and earn a revenue
of pG in £/MWh of loads supplied.
Here, we refer to player 1 as the ‘line investor’ with a
strategy σ1 = 〈PN1 ,T 〉, who can be thought of as a pri-
vate or utility company that has the funds and know-how
to install new network capacity in the form of the line.
Crucially, T provides access to demand at locationA, not
only to the line investor, but also to other investors who
must pay an agreed charge for transmission denoted with
pT in £/MWh of energy transported through the line.

• Player 2 represents all local renewable capacity
investors at B other than the line investor, who are

willing to install generation capacity of PN2 with a gen-
eration capacity cost of cG2 . This second player with a
strategy σ2 = 〈PN2〉, also called ‘local generators’, can
be thought of as investors from the local community at B,
who do not have the technical/financial capacity to build
a line, but may have access to cheaper land, might get an
easier community approval to build RES capacity, hence
may have a lower generation capacity cost cG2 . Indi-
vidual behaviour of local RES investors is considered
negligible and too small to have a considerable effect
in the emerging game. Instead, local generators’ actions
come from a single entity with a cost cG2 , which is the
weighted average cost of all local generators. Aggregate
actions of local generators are capable to exert market
power and have an impact on the outcome of the game.

• Player 3 is a private investor who installs energy storage
of capacity S at B with a per storage unit cost of cS =
(IS + MS )/S, where IS represents the initial capacity
investment andMS the operation and maintenance costs.
Storage purchases excess energy from the RES produc-
ers at B at a price of pS in £/MWh of energy traded,
and discharges when there is a shortage of RES supply.
Player 3 with a strategy of σ3 = 〈S〉 is called the
‘storage investor’ and makes use of RES production
that would otherwise have been curtailed.

All players follow a rational economic behaviour model
and act accordingly to maximise their payoffs. From a strate-
gic interaction viewpoint, the line investor’s position in the
marketplace dominates other players, as only they can build
the line. However, access to the privately built line is also
granted to rival investors at B, who can use the line to trans-
port their energy production and supply remote demand at
locationA. In other words, the line provides ‘common access’
to all investors located at B, thereby provides an opportunity
for rival local investors (generators and energy storage at B)
to increase their capacity and the energy exported. In turn,
capacity installed by local investors affects the line investor,
as all players compete to serve the electricity demand. This
leads to a Stackelberg-Cournot game formed between the
line investor (leader) and local investors (followers), who
in turn play a Cournot game between them by determining
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simultaneously how much capacity to install. A Stackelberg
game is a mathematical framework for analysis of sequential
hierarchical problems where a dominant player (leader) plays
first and followers play after observing the leader’s strategy.
In contrast, a Cournot game describes problems where inde-
pendent rival investors decide simultaneously their output
quantities, here RES generation capacity built by local gen-
erators and storage capacity by the storage investor. Overall,
in the game formed, capacity investment quantities are the
strategic variables that need to be determined by players,
so that their profits are maximised. The solution to the game
is formalised in the following section.

B. STACKELBERG-COURNOT GAME EQUILIBRIUM
SOLUTION
Computing the equilibrium of the Stackelberg-Cournot game
amounts to solving the following bilevel programming prob-
lem with the leader acting in the first level and followers
acting in second level:

max
(σ1,σ2,σ3)∈61×62×63

51 (1)

subject to: σ2 ∈ argmax
σ2∈62

52 (1a)

σ3 ∈ argmax
σ3∈63

53 (1b)

where 5i is the payoff of player i. Constraints (1a)-(1b)
applied in the second-level call for a pair (σ2, σ3) of local
investors’ (followers’) strategies for each strategy σ1 played
by the line investor. These strategies are the solutions that
achieve the Cournot equilibrium between local investors,
induced by the strategy chosen by the line investor (leader).
The Cournot equilibrium is also a Nash equilibrium, as local
investors have no incentive to deviate from their selected
strategy, if their opponent action remains unchanged. For
each σ1, σ2 maximises the payoff 52 over the subset σ3
of the third player strategies. Respectively, for each σ1, σ3
maximises the payoff 53 over the subset σ2 of the second
player. Subject to these constraints, the first level calls for a
triple (σ1, σ2, σ3) that maximises the leader’s payoff function.
Solving the single-leader-multi-follower optimisation

problem stated in Eq. (1) can be challenging. Moreover,
as stated by Basilico et al. [24], leader-follower games with
multiple followers have not been extensively investigated
in the literature, and in addition not many computationally
affordable techniques are available for the analysis task.
A well-known technique for solving the problem is based on
backward induction, i.e., a solution is first derived for the
second-level problem by taking as a given the strategy of the
leader (process is repeated for all possible σ1), then the leader
selects the strategy that maximises her payoff/profit. Assum-
ing that payoffs can be expressed as multivariate functions of
players’ strategies, then the game equilibrium can be found
analytically by the partial derivatives of players’ payoffs
and backward induction. The feasibility of the analytical
solution however relies on the ability to express payoffs
as functions of players’ strategies and the computation of

the partial derivatives. A closer look at payoffs or profits
functions (as shown below), shows that this is not feasible in
practical, large-scale games such as ours, hence we estimate
payoffs by a data-driven approach. Simplification of payoff
functions was not considered due to the complexity of the
power system operation and because it would not lead to a
realistic representation of the system under study.

C. PAYOFF FUNCTIONS
Player’s payoffs are functions of revenues earned by energy
trades and costs that each investor incurs. Revenue is gener-
ated from demand supply and rewarded with a price of pG.
Local demand served by the i-th RES producer is denoted
as Edi , and remote demand as EDi , where i = 1 is the line
investor and i = 2 the local generators. Similarly, demand
served by storage is denoted as ESd and ESD , for local and
remote demand, respectively. RES producers also generate
incomewhen trading excess energywith storageESin,i (energy
in storage from RES producer i) with a tariff of pS . The line
investor earns revenue from local investors using the power
line with a charge of pT . Finally, players incur the costs for
installation of additional capacity cG1 , cT , cG2 and cS :

51 =

revenue︷ ︸︸ ︷
(Ed1 + ED1 )pG︸ ︷︷ ︸

demand

+ (ED2 + ESD )pT︸ ︷︷ ︸
transmission

+ESin,1pS︸ ︷︷ ︸
storage

−

cost︷ ︸︸ ︷
cG1EG1︸ ︷︷ ︸

gen. capacity

− cTT︸︷︷︸
trans. capacity

(2)

52 =

revenue︷ ︸︸ ︷
(Ed2 + ED2 )pG︸ ︷︷ ︸

demand

+ESin,2pS︸ ︷︷ ︸
storage

−

cost︷ ︸︸ ︷
cG2EG2︸ ︷︷ ︸

gen.capacity

− ED2pT︸ ︷︷ ︸
trans. capacity

(3)

53 =

revenue︷ ︸︸ ︷
(ESd + ESD )pG︸ ︷︷ ︸

demand

−

cost︷ ︸︸ ︷
(ESin,1 + ESin,2 )pS︸ ︷︷ ︸

RES trading

− ESDpT︸ ︷︷ ︸
transmission

− cSS︸︷︷︸
stor. capacity

(4)

As shown by Eqs. (2)-(4), players’ payoffs are functions
of energy quantities and financial parameters over the time
horizon of the study, which can be equal to the project lifetime
e.g. 20 years or normalised over the course of a year. For
energy quantities or energy flows, shown in Fig. 1, the fol-
lowing constraints must hold:

EGi = Edi + EDi + ESin,i + ECi (5)

Ed = Ed1 + Ed2 + ESd + Edoth (6)

ED = ED1 + ED2 + ESD + EDoth (7)

where ECi is player’s i curtailed energy, Edoth and EDoth
the local and remote demand supplied from other sources
in the grid, EGi player’s i RES generation supplying local
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demand Edi at B or remote demand EDi at A via the line.
Moreover, RES generators can sell excess energy to stor-
age, as indicated by ESin,i . Any further RES production that
exceeds the demand needs and cannot be stored is curtailed
ECi (Eq. (5)). Local demand (Eq. (6)) and remote demand
(Eq. (7)) are served by the RES generators, storage or other
sources in the grid.

In realistic settings, energy quantities in Eqs. (2-7) also
depend on complex rules associated with the power sys-
tem operation, such as priority of dispatch, energy trading
arrangements between players and market access rules. For
this reason, it is difficult to determine realistic representations
or mathematical formulas for determination of the energy
quantities and payoff estimation that could be used for solv-
ing the game equilibrium analytically. Other challenges for
finding equilibrium analytically are related to non-linearities
introduced by the energy storage system and large action sets
of players. For these reasons, we follow an empirical and
data-driven approach that utilises time-series simulation anal-
ysis to compute the energy flows. The methodology devel-
oped to identify the Stackelberg-Cournot game equilibrium
is described in Section D.

D. EMPIRICAL SOLUTION OF STACKELBERG-COURNOT
GAME
The empirical solution approach proposed in this paper fol-
lows the steps below:
• Step 1: We select to analyse the game for a suitable
time horizon H (e.g. one year or larger time horizon
of 20 years) and an appropriate time step t used for the
time series analysis.

• Step 2:We utilise real renewable production and demand
data to inform modelling of the energy system under
study.

• Step 3: Financial parameters are determined for the esti-
mation of payoffs under different scenarios.

• Step 4: We discretise the players action sets, i.e., we
determine the incremental step that capacities can
increase, as in real-world settings investment options
are often discrete and non-continuous. This means that
instead of solving the general game we instead solve
a reduced game where players have a finite number of
actions they can play.

• Step 5: For every t and discretised action set of play-
ers 〈PN1 ,T ,PN2 , S〉 we compute the power and energy
flows, according to the RES production, demand and
control rules that apply to the energy system under study,
as shown in Fig. 2.

• Step 6: Energy quantities for each t are aggregated for
the whole time period H .

• Step 7 : Payoffs or profit functions are computed from
energy quantities determined in Step 5.

• Step 8: An algorithmic approach is developed to find the
Stackelberg-Cournot game equilibrium based on back-
ward induction and optimisation techniques, as shown
in Algorithm 1.

FIGURE 2. Control algorithm for estimation of aggregate energy flows
(Steps 1-6).

The control rationale and rules for priority of dispatch from
Steps 1-6 are summarised in Fig. 2. For every t and combina-
tion of players’ strategies 〈PN1 ,T ,PN2 , S〉, RES production
and demand are computed from primary renewable resource
and demand data. Next, we estimate the residual demand RD,
which is equal to the total demand minus potential RES pro-
duction. When there is a shortage of RES supply, the control
algorithm estimates how much energy should be discharged
from storage, while honouring technical constraints of the
energy storage system. RES production is firstly used to serve
local demand d and then any remaining energy is used to
serve the remote demand D at A. This is justified by the
energy losses reduction, but also by the fact that transmission
charges are imposed to local investors. Any deficit is covered
by other sources in the system or imports from the main
grid. When there is an oversupply of RES production, RES
generators serve and share the demand equally. Excess energy
from renewables is stored, as long as the storage capacity
and technical constrained are not violated. Finally, any excess
generation that cannot be stored is curtailed. This provides a
methodology to estimate power quantities for every t . Energy
quantities are then computed as the summation of power
quantities over a larger time horizon (Step 6).

Next, energy quantities computed at Step 6 are plugged
into Eqs.(2-4) to estimate the players’ payoffs. From this,
we develop an algorithmic approach to estimate the equilib-
rium of the single-leader-multi-follower game. The search
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FIGURE 3. Stackelberg-Cournot game equilibrium estimation: each plane illustrates the Cournot game played by local investors for any given action of
the leader, who then selects the profit-maximising Cournot game equilibrium.

Algorithm 1 Empirical Game Equilibrium Solution

1: for each
〈
PN1 ,T

〉
∈ 〈{0, . . . ,PNmax}, {0, . . . ,Tmax}〉 do

2: for each S ∈ {0, . . . , Smax} do
3: 5#

2← max
PN2

52(PN2 , S)|〈PN1 ,T 〉

4: PN2
#
← argmax

PN2

52(PN2 , S)|〈PN1 ,T 〉

5: end
6: BR2← (P#N2

, S)|〈PN1 ,T 〉 F Player 2 BR
7: for each PN2 ∈ {0, . . . ,PNmax} do
8: 5#

3← max
S
53(PN2 , S)|〈PN1 ,T 〉

9: S#← argmax
S

53(PN2 , S)|〈PN1 ,T 〉

10: end
11: BR3← (PN2 , S

#)|〈PN1 ,T 〉 F Player 3 BR

12: (PN2 , S)
†
= intersect(BR2,BR3)|〈PN1 ,T 〉 F

Cournot game equilibrium
13: end
14: 5∗1 ← max

(PN1 ,T )
51(PN1 ,T , (PN2 , S)

†) F Player 1 BR

15: (PN1 ,T ,PN2 , S)
∗
← argmax

(PN1 ,T )
51(PN1 ,T , (PN2 , S)

†) F

Stackelberg-Cournot game equilibrium
16: return 〈5∗1,5

∗

2,5
∗

3,P
∗
N1
,T ∗,P∗N2

, S∗〉

for equilibrium is summarised in Alg. 1 and illustrated in
a polymatrix (normal form) in Fig. 3. The σ1 axis repre-
sents the strategy played by the line investor 〈PN1 ,T 〉 (the
two-dimensional action set is collapsed into one-dimensional
vector of combined strategies ), σ2 the strategy played by
local generators 〈PN2〉 and σ3 the strategy of the storage
investor 〈S〉. The approach is an approximation of the ana-
lytical solution of the game discussed in Section III-B and
is based on backward induction. First, for every strategy

σ1 = 〈PN1 ,T 〉 of the leader, the Cournot game equilibrium
between local generators and storage is computed as the inter-
section of local investors’ best responses (a Cournot game
exists for every given σ1, i.e., every 〈σ2, σ3〉 plane formed;
three planes are shown in Fig. 3). The best response of local
generators for strategy choice S of the storage investor is
denoted as PN2

#, i.e., the RES generation capacity they need
to install so that 52 is maximised (see Alg. 1). For the first
plane in Fig. 3, this is highlighted in yellow and corresponds
to finding the maximum52 for each S column (for clarity the
first column is shown in yellow dashed line). Respectively,
the best response of storage for strategy choice PN2 of local
generators is denoted as S#, i.e., the storage capacity they
needs to be install for 53 to be maximised (see Alg. 1).
For the first plane in Fig. 3, this is highlighted in green and
corresponds to finding the maximum 53 for each PN2 row
(for clarity the first row is shown in green dashed line). The
Cournot game equilibrium is given by the intersection of best
responses (PN2 , S)

†, i.e., the row and column location where
the best responses simultaneously occur. The red arrows in
the first plane in Fig. 3 point at the Cournot game equilibrium
capacities found by the intersection of the followers’ best
responses. The process is repeated for all 〈σ2, σ3〉 planes
across the σ1 axis (Cournot game equilibria). The leader
chooses (P∗N1

,T ∗) strategy that maximises51, leading to the
determination of the Stackelberg-Cournot game equilibrium
〈P∗N1

,T ∗,P∗N2
, S∗〉 shown in a thick red square and high-

lighted in pink colour. The red arrows dictate the capacities
that need to be installed to achieve the Stackelberg-Cournot
game equilibrium 〈5∗15

∗

2,5
∗

3〉. Next, we demonstrate how
the search methodology can be applied to practical settings.

IV. PRACTICAL APPLICATION OF UNDERLYING METHOD
This section demonstrates the equilibrium estimation
methodology in a practical application inspired by the
Kintyre-Hunterston grid reinforcement project in the UK
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(see Fig. 4). To accommodate remarkable interest from
renewable developers in the Kintyre peninsula located in
western Scotland, a £230m network upgrade project was
undertaken that led to the connection of the Kintyre, one
of the richest wind regions in the UK, to the Hunterston
substation located in the Scottish mainland, which enabled
150 MW of additional RES generation being connected [25]
with an estimated net lifetime benefit for UK consumers
of £520m [68].

FIGURE 4. Hunterston-Kintyre project map [25].

This project forms the real-world setting laid out to study
the strategic decision-making game. Hunterston represents
the mainland region where demand is located (Location
A) and the Kintyre peninsula represents the region with
favourable renewable resources (Location B). We consider
a private investor (player 1 or line investor) installing wind
generation capacity PN1 at B and a power line linking the two
regions T . As access to remote demand is established, local
investors at B react to the installation of the line by construct-
ing wind generation capacity PN2 (player 2 or local gener-
ators) and storage capacity S (player 3 or storage investor).
Optimal decisions on players’ capacity investments corre-
spond to the equilibrium of the Stackelberg-Cournot game,
computed using real data.

A. DATA COLLECTION AND PROCESSING
To enable accurate estimation of energy quantities and play-
ers’ payoffs, real measurements of wind speed and demand
data were collected. Specifically, we gathered hourly mean
wind speed data from two weather stations in the wider
Kintyre area and from a publicly available dataset (MIDAS
dataset-UK Met Office1), the first station with database ID
of 908 representing wind resources in the location of the line
investor and the second with ID 23417 representing wind
resources in the area of local generators.Wind speed data con-
sist of hourly averages over a 17-year period for which com-
mon data was available. Half-hourly UK national demand
data was also collected for a 10-year period (2006-2015)2

that data was available. National demand data was substituted
with the hourly average and scaled down to generate a generic
demand profile PL . Local demand d was assumed to be

1https://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
2https://www.nationalgrideso.com/balancing-data

Algorithm 2 Gibbs Sampling
1: w1,w2,PL F wind speed 1,2, power demand
2: n F number of samples
3: tburn F burn-in period (samples ignored)
4: 〈w(k)

1 ,w
(k)
2 ,P

(k)
L 〉, k ∈ {1, 2, . . . , kmax} F historic data

5: F(w1,w2) F wind distribution from data
6: G(PLh,s ) F demand distribution (hour-season)
7: t ← 1
8: 〈w(t)

1 ,w
(t)
2 〉 ← sample(w1,w2) F initialise wind

9: 〈P(t)L 〉 ← sample(PLh,s ) F initialise demand
(h = 1,s = 4)

10: repeat
11: w(t+1)

1 ← sample F(w1 |w(t)
2
)

12: w(t+1)
2 ← sample F(w2 |w(t+1)

1
)

13: P(t+1)L ← sample G(PLh,s )
14: t ← t + 1
15: until t > T
16: return 〈w(t)

1 ,w
(t)
2 ,P

(t)
L 〉, t ∈ {tburn, tburn + 1, . . . , n}

about 20% of PL , while remote demand D at A was consid-
ered equal to the demand that can be served by the investors
after the transmission line capacity T is taken into account.

B. DATA SAMPLING
While historical observations can be directly used as inputs to
the simulation analysis, this does not consider uncertainty of
future values of RES production and energy demand. In this
section, we present a data sampling tool based on Gibbs sam-
pling, aMarkov ChainMonte Carlo (MCMC) technique [69].
The importance of the tool developed is twofold, first it
enables the capability to draw multiple data samples and
hence generate multiple future scenarios that can be used for
quantifying uncertainty, and second it helps dealing with data
quality issues, such as data gaps or missing data. Overall,
the tool reinforces the investors’ confidence with regards to
taking optimised capacity decisions.

Gibbs sampling uses the conditional probability distribu-
tions as proposal distributions with acceptance probability
equal to 1 [70] and can be used to generate data observations
that are interdependent and form aMarkov chain (MC). In our
case, the method enables sampling of cross-correlated wind
speed and demand data 〈w1,w2,PL〉 for use in the simulation
analysis. With Gibbs sampling, the obtained Markov Chain
converges to the real distribution, it is ergodic, i.e., all possible
states of the MC are reachable with non-zero probability and
are independent of the starting state, for a sufficiently large
number of samples [70]. Moreover, the method provides a
computationally efficient way to generate a lot of samples
from the underlying distribution.

The process is described in detail in Alg. 2. In summary,
wind speed data were grouped into bins with a step of 1
knot [0, 1), . . . , [47, 48). Data that reside in common time
periods were identified and used to construct the joint wind
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speed probability distribution of the line investor and local
generators. From the joint distribution, we then estimated
each player’s conditional probability distribution of wind
speed for every wind speed value of their opponent. For
every w1 (respectively w2), the corresponding w2 (w1) values
were recorded resulting in 48 subsets that contain w2 (w1)
wind speed data conditional on w1 (w2). A more detailed
analysis is presented in [71]. Demand data was classified
into hour-season distributions (e.g.G(PLh=1,s=4) represents the
demand distribution from 0 : 00 − 00 : 59 in Winter) to
capture daytime and seasonal variations of demand.

Sampling is initialised by randomly selecting a pair of wind
speeds and demand (Lines 8-9), which form the initial state
of the MC produced. Subsequent states of the MC w(t+1)

i
were generated by replacing the value of the wind speed by
a randomly selected value from the conditional F(wi |w−i(t) ).
While, demand sampling followed a procedure that preserved
the daytime dependency alternating the values of h and s to
form a time series of demand data that contains n samples.
For example, if a random sample is drawn from the demand
distribution for h = 1, s = 4, i.e., 1am winter time, then
the consecutive sample was drawn for h = 2 and s = 4.
Finally, a burn-in period was adopted to ensure that sampling
is independent of the starting condition, leading to the first
20% of the data generated not included in the simulation
procedure. The process in Alg. 2 can be repeated to create
multiple MCs, hence multiple future scenarios.

C. SYSTEM ASSETS MODELLING
For every t , the power generated by wind can be expressed
as the product of the rated capacity that a player installs PNi
and the per unit (normalised) wind power generated xGi , given
by a sigmoid function of the wind speed at the project’s
location wi:

P(t)Gi = PNix
(t)
Gi = PNi

1

1+ e−α(w
(t)
i −β)

(8)

Parametersα, β of the sigmoid function are determined by the
power curve and wind turbine characteristics. In this paper,
we assumed a generic wind turbine based on a 2.05 MW
Enercon E823 with a hub height of zh = 85 m and a
rated wind speed of 13 m/s, yielding parameter values of
α = 0.3921 s/m and β = 16.4287 m/s.
For energy storage, we assume a generic model based on

Li-ion batteries, one of the most promising electrochemical
technologies for energy storage [72]. The subscript t is used
to denote variables referring to time step t . Hence, for each t ,
the energy stored in the battery ES,t is given by:

ES,t = ES,(t−δt)(1− sdch)+
(
Pch,tηch −

Pdch,t
ηdch

)
δt (9)

where:
ES(t−δt) is the energy stored in storage device at time (t−δt)

(in the previous state or simulation step)

3http://www.enercon.de/en/products/ep-2/e-82/

δt is the duration of time between two consecutive time
intervals used in the analysis
sdch is the storage system’s self-discharge rate
Pch,t is the charging power at t
Pdch,t is the discharging power at t
ηch is the charging efficiency, which accounts for the

energy losses during the charging process, and
ηdch is the discharging efficiency, which accounts for the

energy losses during the discharging process.
At each t , the storage device can either be in a charging

(Pch,t > 0 and Pdch,t = 0) or discharging mode (Pch,t = 0
and Pdch,t > 0). Assuming negligible energy losses due
to self-discharge sdch = 0 and by substitution of charg-
ing/discharging efficiencies with the round-trip efficiency ηrt ,
Eq.(9) can be further simplified:

ES,t = ES,t−δt + rtηδt (10)

where rt is the power charged or discharged from storage,
i.e., when rt > 0 then rt = Pch,t > 0, else when rt < 0 then
rt = −Pdch,t < 0, η represents the efficiency during charging
η = ηch or discharging η = 1/ηdch. Dynamic restrictions
result in constraints of the power charged or discharged from
the storage device:

0 ≤ Pch,t ≤ Pchmax (11)

0 ≤ Pdch,t ≤ Pdchmax (12)

Moreover, for reasons of capacity retention and prevention
of battery degradation, storage operation is bounded within a
safe range of state of charge SOC :

SOCmin ≤ SOCt =
ES,t
S

100% ≤ SOCmax (13)

In the simulations, we assumed an operational range of
SOCmin = 20% and SOCmax = 100% and a round-trip
efficiency of ηrt = 0.81. Finally, the useful lifetime for
generation and grid capacity was considered to be 20 calendar
years, while for storage, 10 calendar years. Considering the
useful lifetime of each asset, capacity costs for transmission
cT and storage cS were normalised for a single year analysis.
Energy system assets were assumed to be fully depreciated at
the end of their useful lifetime, although for several compo-
nents, such as the transmission line, there is significant value
remaining after the 20 years considered for the analysis.

D. MODEL ASSUMPTIONS AND CHALLENGES
A step-by-step overview of the equilibrium search is shown
in Fig. 5. To enable a thorough and detailed exploration

FIGURE 5. Workflow for empirical equilibrium estimation.
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FIGURE 6. Challenges observed regarding the intersection points and Cournot game equilibrium.

of the equilibrium space, the search was realised for
all possible combinations of players’ strategies T =

[0, 75, 100, 125, 150, 175] MW, PNi = [0 : 1 : 500] MW,
and S = [0 : 1 : 300] MWh leading to 301 × 501 × 3006
or 450 million strategy combinations. Hourly energy values
were estimated for the duration of H = 1 year, leading
to a 8760 magnitude vector for each strategy combination.
In addition to computations above, we performed a sensitiv-
ity analysis on the impact that several financial parameters
(prices, costs) have on the payoff estimation, as explained in
Section V. This analysis required the calculation of profits
for at most 51 values of the financial parameters per case,
increasing even further the computational intensity required.
Hence, simulations were executed in a high-performance
computing facility (Cirrus UK National Tier-2 HPC Ser-
vice at EPCC http://www.cirrus.ac.uk) in a MATLAB
environment with 36 parallel workers. Once payoffs were
enumerated, we estimated the game equilibrium following
the process described in Algorithm 1. We note that while
the computational burden of the analysis is not negligible,
in practical settings a complete exploration of the strategy
space may not be required, as investment decisions of players
may be restricted to fewer options in real-world applica-
tions. Similarly, while financial cost parameters constitute
private information, market conditions may reveal to a signif-
icant extent cost parameters to rival investors, who are then
required to perform the analysis within smaller regions of
underlying parameters and thus improving the tractability of
the problem.

The data-driven approach for payoff estimation followed in
this work meant that a formal proof that shows the existence
of the game equilibrium is not feasible. In reality, the game
consists of continuous action spaces, and in general it is
difficult to solve for an exact equilibrium. The approach
adopted in this work was to discretise the players’ action
sets, however this meant that agents’ best responses are not
continuous, but vectors of pair elements (or arrays), which
in turn lead to a challenge observed with regards to the
intersect function (Line 12 of Algorithm 1). The intersect

function returns the common data found in best responses
BR2 and BR3, however it does not exhaustively search the
payoff space for estimation of the Cournot game equilibrium,
but only in feasible areas where intersections can occur.
This intersection will be a single point in the theoretical
case when the functions are perfectly smooth or when the
computation of profits is performed in the continuum space.
However, due to the discretised and data-driven approach,
the following occurrences were observed. In the majority of
cases, the search for intersection returned exactly one inter-
section point (PN2 , S)

†, which represents the Cournot game
equilibrium (see Fig 6a). In a few cases, multiple (two) inter-
section points occurred, hence the equilibrium was assumed
to be the mean of the intersection points (see Fig. 6b). If the
intersection lies between the best response data recorded,
the Cournot game equilibrium is taken at the intersection
between the line segments formed by the local investors’ best
response curves (see Fig. 6c). It is worth noting that the two
latter cases above only occur due to the discretised strategy
space and large-scale data analysis, as opposed to other works
looking at equilibrium computation, where profits/costs are
mathematical functions and the equilibrium can be derived
analytically, as a closed-form solution.

V. ANALYSIS OF RESULTS
In this section, we perform a sensitivity analysis of the
effect of financial parameters on capacity built and prof-
its. This is achieved by changing one parameter at a time,
while keeping other parameters fixed. First, we analyse the
effect that capacity installation costs have on the equilibrium
(Case I-III), and next the effect of varying trading tariffs
agreed among investors (Case IV and V). Finally, we inves-
tigate the value of coupling RES production with energy
storage, we compare the equilibrium results with and without
storage. Results below are shown for a single MC with a
duration of a year.

A. VARIATION OF CAPACITY COSTS AND EQUILIBRIUM
This section studies how the capacities installed by investors
and their underlying profits vary in the light of varying
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FIGURE 7. Cases I-III: effects of cG1
, cG2

and cS on capacities installed (first row) and profits (second row) at Stackelberg-Cournot game equilibrium.

TABLE 2. Financial parameter assumptions for sensitivity analysis, Case I-III (capacity costs), Case IV-V (trading tariffs costs): in all scenarios revenue
from serving the demand is pG = $74.3/MWh and cost for building transmission capacity ct = $76, 666.67/MW based on a 150 MW transmission line
with a cost of $230m and a project lifetime of 20 years. For the energy storage a cost of $200/kWh of capacity installed was assumed with a useful
lifetime of 10 years leading to cS = $15, 000/MWh of storage capacity installed.

capacity costs, i.e., the generation capacity costs cG1 and
cG2 built by the line investor (Case I) and local genera-
tors (Case II), respectively, and the cost incurred by the
storage player cS for installing storage capacity (Case III).
A summary of the underlying cost parameter assumptions is
shown in Table 2. Parameters are shown as a percentage of
pG for easier interpretation of results.
Case I investigates how investment decisions of capac-

ity built (Fig. 7-1a) and profits (Fig. 7-2a) depend on
varying line investor’s generation cost cG1 . The cost for
building transmission capacity cT and other parameters
were assumed constant (see Table 2). Results in this case
show that the line investor’s cost cG1 increases, her prof-
its and generation capacity installed decrease. This reduc-
tion in the line investor’s generation capacity is partly
replaced by the increase of generation capacity from the
local generators, that also increases their profits, and even
leading to higher profits than the line investor when
cG1 is high. As a consequence, the storage capacity
decreases.
Case II studies the evolution of the game equilibrium as

the generation capacity cost of local generators cG2 increases,
while other parameters remain constant (see Table 2). Results
are as follows: similar to Case I, the increase of cG2 leads
to a decrease of the local generators profits and capacity

installed. In the proposed simulations, the capacity installed
decreases until it is not profitable any more to invest in
renewable generation, which happens for a cost cG2 > 0.5pG
in our simulations. Reduction of local generators’ capacity
is replaced by an increase of the generation capacity by the
line investor and profits. Storage capacity follows the total
generation capacity installed at location B. As the reduction
in the local generators’ capacity is greater than the increase
of the line investor, the storage capacity decreases overall,
along with the the storage investor’s profits. An interesting
observation is that in the region of cG2 = 0.50 − 0.66pG,
while PN2 = 0, PN1 and S decrease gradually and converge
to constant values only for cG2 ≥ 0.66pG. This is a result of
the methodology followed, as for every 〈PN1 ,T 〉, the Cournot
game equilibrium is the intersection of the local investors’
best responses, which depends on profits52 and53. Increas-
ing cG2 makes52 decrease, essentially leading to a different
intersection and Cournot game solution, affecting also the
Stackelberg-Cournot game equilibrium.
Case III studies the effect of the storage capacity cost cS on

optimal capacity investment decisions (Fig. 7-1c) and profits
(Fig. 7-2c), while other parameters remain fixed, as shown
in Table 2. The value of cS = 100% represents current
costs for grid-scale Li-ion batteries. A sensitivity analysis on
storage costs was performed in the range of 30% − 160%
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FIGURE 8. Cases IV-V results: effects of pS and pT on capacities installed (first row) and profits (second row) at Stackelberg-Cournot game equilibrium.

of the present value, to capture further drop of costs in
the future and other storage technologies that are currently
more expensive. Similar to other cases, storage capacity and
profits decrease as cS increases, although the reduction is
not linear indicating that further drop in cS could lead to
massive adoption of storage devices. Generation capacity of
the line investor decreases as cS increases, while PN2 remains
unchanged. Line investor’s profits decrease, while on the con-
trary, the profits for local generators increase slightly when
S decreases, despite PN2 remaining constant, due to more
demand being served by local generators, as less capacity is
built by the line investor.

In all cases, the transmission line capacity T remains
largely unchanged and storage’s profits are significantly
lower than theirs opponents, mostly due to current costs of
storage. Next, we study how equilibrium results depend on
energy trading tariffs between investors.

B. VARIATION OF TARIFF CHARGES AND EQUILIBRIUM
This section shows a sensitivity analysis on energy trading
tariffs between RES producers and storage pS , and energy
transmitted through the line pT .
Case IV investigates how investment decisions on capacity

(Fig. 8-1a) and profits (Fig. 8-2a) depend on varying storage
charges pS , i.e., cost of energy stored and purchased by RES

producers, while other cost parameters remain constant (see
Table 2). The effects of pS on the generation and transmis-
sion capacity built are not significant (only small changes
observed for PN1 and PN2 ). However, S and 53 decrease as
pS increases, until storage investment is no longer profitable
(pS > 40%pG). However, the storage investor purchases
energy that would otherwise have been curtailed, therefore
in real-world settings, very low values of pS can be reached.
With regards to profits, 51 display a slight reduction, while
52 a slight increase with pS .
Case V studies the evolution of the game equilibrium

results, as transmission fee charges pT increase. The capacity
and profits of local generators decrease considerably due to
the increasing cost of the transmission line access, until is
no longer profitable for local generators to invest in RES
generation. On the contrary, the line investor maintains the
same capacity, but his profits increase as long as the local
investors use the transmission line. Finally, the transmis-
sion line capacity is mostly not impacted by the increase in
access fee charges pT . Similar to previous cases, the storage
capacity follows the overall generation capacity installed at
location B, and thus decreases with the transmission line
access fee charges. Results from Case V show that low pT
could incentivise the deployment of renewable generation,
although it would reduce the profitability for the line investor.
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FIGURE 9. Cases I,II and V comparison of game equilibrium results with and without energy storage: effects on capacity installed-row (1), on profits-row
(2), on curtailment-row (3) and demand served by other sources-row (4) at Stackelberg-Cournot game equilibrium for varying cG1

column (a), varying cG2
column (b) and varying pT column (c) .

In the following section, we turn our attention to the role
of energy storage in the investment game.

C. THE ROLE OF STORAGE IN EQUILIBRIUM RESULTS
In this section, we study the special role that energy stor-
age holds in the underlying investment game and its impact
on the evolution of the game equilibrium. In our previous
research [23], we presented a Stackelberg game between the
line investor and local generators, hence it would be use-
ful to compare how the game evolves with the introduction
of storage, which transforms the game into a considerably
more complex, Stackelberg-Cournot game, since it creates
a new revenue stream for RES investors. Hence, we wish
to investigate how storage affects the capacities installed
by investors, their profitability, the underlying curtailment

and participation of RES generators in serving the demand.
Note here that, when there is no storage the game reduces
into a simpler case of a Stackelberg game between the line
investor and the local generators. The comparative results are
shown in Fig. 9 for Case I,II and V.
Fig. 9-1 showcases the capacities built by investors at the

equilibrium of the game with and without storage for varying
cG1 , cG2 and pT . Introduction of energy storage leads to
larger total RES capacity installed at location B, as storage
can absorb excess renewable energy and generate additional
revenue for RES investors. However, the growth observed
is not equally distributed between the RES investors. When
there is sufficient RES supply, RES generators take priority
when serving the load. On the contrary, when there is a
shortage of RES supply, RES producers and storage compete
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and share in equal terms the demand served according to the
control algorithm introduced in Fig. 2. In all cases where
storage investment is profitable, RES capacity (Fig. 9-1) and
profits (Fig. 9-2) achieved by the line investor are larger with
the introduction of storage, who seems to be able to capitalise
on their competitive advantage over other players and benefit
from the introduction of storage. This might give an incentive
for the line investor to invest in storage capacity along with
the transmission line.

Results in the third row of Fig. 9, show the curtailed RES
energy as a percentage of the maximum energy EG that could
have been achieved given the wind resource at location B.
The introduction of storage has not eliminated curtailment,
which is still required when storage reaches its maximum
capacity, however, curtailment is reduced by 5% in average
on all scenarios where investment in storage was profitable.

Finally, results displayed in the fourth row of Fig. 9 show a
significant decrease in both local and remote demand served
by other sources or the main grid. In all cases under study,
introducing energy storage leads to larger penetration of RES
production clearly showing that energy storage can be utilised
for further integration of renewable generation.

VI. DISCUSSION OF RESULTS
Section V presented in detail results from the simulation and
parametric analysis applied to a practical application of a
grid reinforcement project in the UK. The main findings of
the study on the evolution and dynamics of the game are
discussed here.

As shown in Section V, the higher the cost for installing
additional capacity, the less profitable it is to invest in renew-
able generation, leading to a reduction of the installed capac-
ity. Additionally, RES investors compete with each other to
match the optimal RES capacity given the investment costs
and trading fees. In fact, reduction in capacity built by one
RES investor leads to increase in capacity by the rival RES
investor (see Case I-II). Storage capacity follows a similar
trajectory to the total RES capacity installed, as the storage
system relies on the practice of trading excess RES produc-
tion that cannot be absorbed. Generally, transmission capacity
remains unaffected by changes in financial parameters with
the exception of a few step-size increases or decreases that
are aligned with the line investor’s RES capacity trend. This
indicates that the search for optimal T can be reduced in a
smaller region, crucially leading to a significant dimension-
ality reduction with regards to the leader’s strategy.

Charges for transmission pT play a significant part for the
viability of storage and renewable generation built by local
generators (Case V). If pT is set too high, local investors
build less RES capacity and storage, which can inhibit further
adoption of renewable generation. If pT is set low, the leader
can still achieve a profitable investment, as the power line
opens up access to remote demand at location A and gener-
ates new revenue streams from rival investors also using the
line. Negotiation of pT between the line investor and other
investors allows for determination of a suitable range of pT

when transmission, generation and storage capacity invest-
ments are profitable and all investors can mutually benefit
from the installation of the line.

The most disadvantaged player with regards to profitabil-
ity appears to be the storage investor, whose profits are
consistently lower than profits of other investors in all the
cases under study. This can be assigned to a combination
of factors, including high costs for building storage capacity
at the present time cS (a cost of $200/kWh was assumed in
this study), charges for purchasing energy from RES produc-
ers pS , fees that need to be paid to access remote demand
through the power line pT and priority of dispatch. Recall
here that storage has limited market power, as it purchases
energy onlywhen there is RES oversupply and serves demand
only at times of RES deficit. However, results from Case III
indicate that energy storage may become more profitable as
cS continues to fall in the future, leading also to massive
uptake of energy storage. Moreover, a significant advantage
for storage is the position to negotiate low charges for energy
purchased from RES producers pS . As the RES energy traded
between RES investors and storage would otherwise have
been wasted, RES producers would be willing to accept a
low value of pS , which still allows them to improve their
profits and even increase the RES capacity that can be built.
To improve the profitability of energy storage in real world
applications, storage investors need to explore additional rev-
enue streams, such as increasing their profitability by partic-
ipating in flexibility markets and provision of grid services
such as frequency regulation or voltagemanagement, services
which not considered in the present work. Another, solution
could be that the line investor also invests in storage, which
would lead to a new Stackelberg game with two players that
would increase the profits for the line-storage investor.

Introducing storage can bring about technical benefits to
the energy system operation. Specifically, as indicated by
results in Fig. 9-3, storage can increase the part of RES in
the energy consumption, as demand served by other sources
or the main grid is reduced. Larger penetration of RES gen-
eration manifests foremost in the remote demand served by
RES producers, as high levels of local demand served by RES
are already achieved before storage is introduced. As shown
in Fig. 9-4, despite a reduction in curtailment observed, RES
curtailment is not fully eradicated and still happens at times
when profitable storage capacity is too small to store all the
excess production. Complete elimination of curtailment can
only be achieved by massive adoption of storage, which is not
feasible at current cost levels for large-scale electrical battery
storage.

An important question is who benefits from the introduc-
tion of storage. Results displayed in Fig. 9-1 and Fig. 9-2
reveal that the beneficiary is predominantly the line investor,
as in all cases considered in the study the line investor
achieves higher profits. Revenues are increased due to larger
capacity being installed by the line investor, but also due
to additional revenue streams generated by selling surplus
energy to storage and charges for transmission. Despite the
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increased competitiveness from storage when there is a short-
age of supply, the line investor is able to exploit his leader’s
market power to his own advantage. On the contrary, local
generators are susceptible to the competition introduced by
energy storage and market power from the leader, thereby
they achieve lower profits with storage. This is a key finding
caused by the strategic behaviour of investors and trading
rules determined in the game.

Finally, an important observation is that game equilib-
rium results are not always monotonic, the main cause being
that game equilibrium estimation relies on large scale and
data-driven simulation analysis, instead of an analytical solu-
tion that would necessarily have to assume payoff functions
with properties that make such solution achievable. Discre-
tised strategy space and cost parameters search space were
largely dictated by computational limitations. This combined
with non-linearities introduced with storage, had also a sig-
nificant impact on the results observed.

VII. CONCLUSION AND FUTURE DIRECTIONS
This work utilised game-theoretic modelling and optimisa-
tion techniques to study the strategic interaction between
self-interested and profit-maximising investors. Investors or
players differ according to their financial and technical capa-
bility to perform investment decisions and increase their mar-
ket power. Specifically, the first player (line investor) can
invest in RES generation and transmission capacity that links
a location favourable for RES development to a location of
high electric demand. Crucially, access to the power line is
granted to rival investors for a fee, hence the capacity of
the power line installed reflects RES and storage capaci-
ties installed by local generators (second player) and by a
storage investor (third player), respectively. Players’ deci-
sions on how much capacity to install are intertwined and
co-dependent on their opponent actions. We modelled such
behaviours as a bilevel Stackelberg-Cournot game between
the leader (line investor), who has the market power to build
the line, andmultiple followers (local generators and storage),
whose competitive behaviour is studied as a Cournot sub-
game. The complexity of this real application setting means
that the resulting game cannot simply be analysed by deter-
mining analytical expressions of the equilibrium capacity
decisions and underlying profits. Consequently, we devel-
oped a novel empirical and algorithmic approach for game
equilibrium estimation where players’ payoff functions are
directly computed from large-scale and data-driven simula-
tion analysis that is informed by realistic energy systemmod-
els and operation rules. A demonstration of the methodology
was shown for a practical application based on data from a
network upgrade project in the UK. However, our method
could also be applied to other settings and locations where
shared grid access would be beneficial and where demand
and generation are not co-located leading to large curtailment
rates.

In addition, we studied the dynamic behaviour and evo-
lution of the equilibrium results by performing a sensitivity

analysis of the financial parameters that largely determine
the players’ payoff functions. The analysis can assist private
investors and energy system stakeholders to determine suit-
able tariffs for energy trading and transmission so that prof-
itable investments can be attainable by all investors. As results
show, this can be achieved if a relatively low fee is set for
transmission line access. By comparative analysis of the game
equilibrium results with and without storage, we were able to
demonstrate the added value that storage brings in the system
operation, although the profitability for the storage investor
is considerably lower than for other investors. Our findings
indicate that introducing storage can increase the maximum
RES capacity that can be installed at a particular location,
can reduce curtailment and can be utilised to increase RES
adoption.

Future work will focus on extending the model to account
for energy transmission losses, other storage technologies
and their control management and exploring how alternative
ownership models and market structures would affect the
underlying strategic game. For example, RES investors could
build their own storage capacity or cooperate to invest in a
large community storage system [73]. Another extension is to
consider multiple local investors (local generators and energy
storage devices), where each is modelled as an independent
separate entity, leading to new formulations of the game. One
challenge identified with the present work was tractability
and computational cost of estimating the equilibrium of the
game, based on empirical data. Therefore, future work will
focus on finding more efficient ways to compute the equilib-
rium [24], including finding an efficient algorithm for game
equilibrium estimation, investigation of machine learning
techniques to approximate the players’ payoff functions and
reduction of their strategy space.
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