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A B S T R A C T

This paper presents a novel approach to data-driven time-dependent origin–destination (OD)
estimation using a joint origin–destination-path choice formulation, inspired by the well-known
equivalence of doubly constraint gravity models and multinomial logit models for joint O–D
choice. This new formulation provides a theoretical basis and generalizes an earlier contribution.
Although including path choice increases the dimensionality of the problem, it also dramatically
improves the quality of the data one can directly use to solve it (e.g. measured path travel times
versus coarse centroid-to-centroid travel times); and opens up possibilities to combine different
assimilation techniques in a single framework: (1) fast shortest path set computation using static
(e.g. road type) and dynamic (speed, travel time) link properties; (2) predicting a ‘‘prior OD
matrix’’ using the resulting path-shares and (estimated or measured) production and attraction
totals; and (3) scaling/constraining this prior using link flows (informative of demand). If the
resulting system of equations has insufficient rank, we use principal component analysis to
reduce the dimensionality, solve this reduced problem, and transform that solution back to
a full OD matrix. Comprehensive tests and sensitivity analysis on 7 networks with different
sizes and characteristics give an empirical underpinning of the extended equivalence principle;
demonstrate good accuracy and reliability of the OD estimation method overall; and suggest
that the method is robust with respect to major assumptions and contributing factors.

1. Introduction

In this paper we discuss a new method for time dependent OD matrix estimation for congested road networks. The estimation
of such time dependent origin–destination matrices is important for many applications over the entire transportation domain, from
operations, control and management; to planning and policy assessment. The key challenge in estimating OD matrices is that,
particularly for large congested networks, the problem is severely underdetermined, a fact that was recognized in the early days of
the OD estimation literature (e.g. Van Zuylen and Willumsen (1980), Cascetta (1984), Bell (1991)) and is emphasized in virtually
all contemporary OD estimation research still. This underdeterminacy relates to the fact that the number of unknown OD flows,
i.e. the size of the OD matrix, grows quadratically with the number of OD zones (a subset of all network nodes); whereas the
number of independent equations from which the unknown OD matrix 𝐗 can be inferred (using whatever data �̃� available) typically
grows no more than linearly with network size (i.e. the number of links, nodes, zones). For small networks the resulting system of
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Fig. 1. OD prediction and reconstruction: (a) forward and (b) reverse data assimilation problems.

equations may still be solvable, for larger networks the OD matrix may become unobservable without additional constraints and/or
assumptions (Krishnakumari et al., 2020) This is particularly true in congested networks, in which case link flows downstream of
saturated bottlenecks are no longer proportional to demand but to queue discharge flow. This exacerbates how fast OD matrices
become underdetermined with increasing network size. The more a network is congested, the worse the observability problem
becomes.

OD matrix estimation is a data assimilation process, in which data that are directly or indirectly related to OD flows are combined
with transportation models — or other models that codify relations between OD flows and observable quantities — to infer the
unknown OD matrix, either in the sense of (a) predicting an OD matrix in the near or distant future; or (b) reconstructing (or estimating)
a historical or prevailing OD matrix (Kalman, 1960; Hazelton, 2001). Fig. 1 schematically outlines both assimilation problems and
sketches the semantics of the variables involved (in the form of a graph representation) and the type of data involved. In the ‘‘forward
assimilation’’ or prediction problem, OD matrices are inferred from demand data and models that describe the relationship between
activities; land use; and the resulting OD flows. These demand models range from macroscopic trip-production models (Anas, 1983;
Scheffer et al., 2017; Cantelmo et al., 2015) to detailed disaggregate activity based (AB) models (e.g. Kitamura et al. (2000), Bhat
and Zhao (2002), Arentze and Timmermans (2009) and Arentze et al. (2011)). As illustrated in Fig. 1 (i–iii), activity patterns are
walks on a graph of activity locations/zones; production and attraction are properties of these locations/zones; and OD flows are
properties of the connections between them. The data used are typically demographics and land use data in combination with
e.g. trip length distributions, and survey and diary data. As in any prediction model, how well demand models perform, relates to
the number of assumptions and the evidence for them. More complexity (degrees of freedom) means more explanatory power but
also more ways to get it wrong.

The second assimilation problem, the OD matrix reconstruction or simply estimation problem,1 involves ‘‘reversely engineering’’
the most likely OD matrix that has resulted from observed traffic patterns, typically link counts and speeds (on a graph that represents
the physical infrastructure). This is also recognized as the network tomography problem, a term coined by Vardi (1996), within the
broader context of network studies. A key challenge is that (largely) unobserved route choice patterns (Fig. 1-iv), form the causal
link between the OD matrix and observed traffic patterns (Fig. 1-v). There is a long record of OD estimation methods that fall in this
‘‘reverse engineering’’ category (e.g. Van Zuylen and Willumsen (1980), Cascetta (1984), Cremer and Keller (1987), Bell (1991),
Yang et al. (1992), Tebaldi and West (1998), Ashok and Ben-Akiva (2000), Zhou and Mahmassani (2007), Castillo et al. (2012),
Cascetta et al. (2013), Cantelmo et al. (2014), Cipriani et al. (2014), Hazelton (2015) and Antoniou et al. (2016) to name a few
in chronological order). These OD matrix estimation approaches are typically formulated as optimization problems (Cascetta et al.,
2013; Lundgren and Peterson, 2008; Cascetta and Postorino, 2001); or as sequential (recursive) estimation problems (Okutani and
Stephanedes, 1984; Van Der Zijpp, 1997; Zhou and Mahmassani, 2007; Djukic et al., 2012a; Carrese et al., 2017), in which an
objective function is minimized that typically has two components. The first (𝑓1) expresses the distance of the estimated matrix to
a prior OD matrix �̃�, whereas the second (𝑓2) expresses the distance between the traffic data observed, and the data predicted by
the OD matrix (Cascetta and Marquis, 1993)—which results from assigning the OD matrix to routes over the network:

�̂� = argmin𝐗 𝑓1(𝐗, �̃�) + 𝑓2(𝐲(𝐗), �̃�), (1)

1 We will use the terms (OD matrix) estimation and reconstruction as synonyms in this paper.
2 
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in which

𝐲(𝐗) = A(𝐗,𝜽) (2)

represents an assignment (simulation) model with 𝜽 depicting all assumptions (parameters, inputs) related to route choice and
driving behavior. The distance function 𝑓1(𝐗, �̃�) acts as a regularization term that penalizes dissimilarity of the estimated OD matrix
with this prior OD matrix.

As evident from Fig. 1, these two assimilation problems typically apply to different contexts in the transportation domain.
Forward assimilation techniques are used in short- and long term OD demand prediction, e.g. in ex ante analyses of network
interventions and/or transport (policy) measures using (strategic) simulation models. Reverse assimilation techniques are applied
in ex post analyses, e.g. in estimating prevailing or historical OD patterns from whatever direct and indirect evidence (data,
information) available. Clearly, OD matrices inferred using such estimation methods are in turn critically important as input to
simulation models in both short- and long term (traffic) prediction tasks. Conversely, as we show in Krishnakumari et al. (2020)
and in this paper, prediction models offer substantial added value in OD estimation methods since they assimilate different data
(e.g. land use and demographic data, surveys) then typically used in estimation methods (e.g. traffic counts, travel times). Combining
different assimilation techniques and multiple data sources allows one to maximize the evidence for the final reconstructed OD
matrix.

There are various ways to fuse such different pieces of (assimilated) evidence. The soft constraint (𝑓1) in Eq. (1) is one approach,
which forces the OD matrix estimate 𝐗 to stay close to the OD matrix inferred by whatever means from other evidence (e.g. predicted
by a gravity model or reconstructed using surveys Bierlaire and Toint, 1995; travel diaries Scheffer et al., 2017; vehicle identification
systems Kim et al., 2014; Zhou and Mahmassani, 2006 GSM or GPS traces Ge and Fukuda, 2016; Alexander et al., 2015; Gadzinski,
2018). It can also be approached statistically, with Bayesian inference being a common choice for integrating evidence with a prior
distribution to derive a likely (posterior) OD/path estimate (Maher, 1983; Spiess, 1987; Tebaldi and West, 1998; Hazelton, 2008,
2010). Favoring solutions similar to an OD matrix predicted or estimated from alternative evidence is an intuitive, but nonetheless
debatable, assumption. First, it is not self-evident how one should weigh the prior OD matrix and what — under different conditions
— the effects of this are in terms of estimation accuracy. This clearly depends on how reliable this prior is and how much evidence
there is that the prevailing OD matrix indeed ‘‘looks like’’ the prior.

Second, similarity is not a clear-cut criterion and a proper choice of the distance function 𝑓1 is crucial. Standard distance metrics
(L2 norm, RMSE) may not necessarily steer the estimation in a direction that favors similarity in spatio-temporal structure, for
which other metrics such as the structure similarity index (SSI) (Djukic et al., 2013) or Levenshtein distance (Behara et al., 2020)
may be more appropriate. These however, may increase the non-linearity of the solution space spun by Eq. (1) and increase the
computational effort needed to find plausible minima in it.

The alternative approach is to encode additional evidence as hard constraints to narrow down the solution space of the OD
estimation problem, in the same way as non-negativity of flows, and consistency of path- and link flows are imposed as constraints
to reduce the solution space. This essentially is the approach taken in Krishnakumari et al. (2020). In that work we put forward a
data driven OD estimation method that relaxes the idea that OD path flows should be consistent (should equilibrate) with (perceived)
path travel times. Instead, since we use actual observations, travel times along paths between the same OD pairs may be significantly
different, and the idea of a Nash equilibrium can be replaced with a heuristic that — in some behaviorally plausible way consistent
with observations — distributes the OD flows over these paths. To this end, Krishnakumari et al. (2020) combine forward and reverse
assimilation techniques in an attempt to reformulate the problem as a (large) linear system of equations that is (directly) solvable.
This approach has three key ingredients: (1) a behavioral heuristic in the form of a (simple) path-size logit model, with path choice
inversely proportional to observed path travel times; (2) a constant shortest path choice set size 𝑁∗ (we used 5 for all OD pairs); and
(3) a path flow equation in which link counts are used to constrain the path flow totals. In this conservation equation only those
link counts are used which are informative of demand, which implies that counts upstream of active bottlenecks are excluded. For
small networks these data and assumptions indeed result in a directly solvable system of equations. For large networks, however,
the problem (again) becomes under-determined, which in Krishnakumari et al. (2020) is solved by reducing the dimensionality of
the solution space through principal component analysis (PCA), which exploits the fact that temporal patterns of production and
attraction are typically similar across the network. This PCA approach allows one to reduce the solution-space-dimensionality as
much as needed, given the available data. Although the results show promise in recovering the ground truth OD matrix in a toy
network and a large network, a theoretical foundation for the assumptions in the method lacks.

In the current paper we provide this theoretical foundation and generalize the method. We show that, in line with the well-
known equivalence of doubly-constrained gravity models and multinomial logit models for origin–destination choice (Anas, 1983),
the model proposed in Krishnakumari et al. (2020) is a special case of a combined origin–destination-path choice estimator, with
specific parameter choices and a fixed-size choice set for all OD pairs. By relaxing these assumptions we derive a generic and more
powerful formulation that allows one to assimilate any data that provide evidence for the OD matrix (and underlying path-flows)
we seek to estimate. We illustrate through examples with both synthetic (i.e. a ground-truth OD matrix which we perturb) and
validated simulation data the sensitivity of the method to different assumptions, choices of parameters and data availability. Our
main contributions are

1. New joint O–D-path choice formulation for dynamic OD estimation in congested networks
2. New solution methodology in which multiple sources of heterogeneous data (trip production, path travel times, link flows,

network properties) are fused
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3. Extensive sensitivity analysis on multiple networks to validate major assumptions and test various components

The paper is organized as follows. Section 2 revisits and expands upon the equivalence established by Anas (1983) to formulate
the problem as a joint origin–destination-path estimator, and a generic solution method is proposed. The test scenarios are described
in Section 3 and findings are presented in Section 4. Finally, Section 5 provides concluding remarks and a discussion on potential
future research directions.

2. Methodology

In this section we recall the equivalence of doubly constraint gravity models and multi-nominal logit models (MNL) for combined
OD choice. We then show that by adding the (dynamic) path-choice dimension, we obtain an OD matrix estimation method, of
which the data-driven OD estimation method in Krishnakumari et al. (2020) is a special case. In the final section we elaborate on
the solution methodology of the generic method.

2.1. Equivalence combined origin–destination choice & gravity models

Consider a directed graph 𝐺( , ) with nodes (vertices) 𝑣𝑖 ∈  , 𝑖 = 1,… , 𝑁𝑣 and links (edges) 𝑒𝑎 ∈  , 𝑎 = 1,… , 𝑁𝑎. The set  ⊂ 
describes the 𝑁𝑥 origin and destination zones in this network, and an OD matrix with elements 𝑥𝑖𝑗 describes the OD flows between
𝑣𝑖, 𝑣𝑗 ∈  . Finally, 𝑃𝑖 and 𝐴𝑗 depict the production and attraction of origin and destination zones 𝑖, and 𝑗 respectively. Let

𝑓𝑖𝑗 = exp(𝑈𝑖𝑗 ) (3)

describe a ‘‘deterrence’’ function between zones 𝑖, 𝑗, with 𝑈𝑖𝑗 a utility function with attributes 𝑋𝑖𝑗
𝑏 (e.g. cost, travel time) and weight

parameters 𝛼𝑏, which reads

𝑈𝑖𝑗 =
∑

𝑏
𝛼𝑏𝑋

𝑖𝑗
𝑏 . (4)

Then

𝑥𝑖𝑗 = 𝑎𝑖𝑏𝑗𝑃𝑖𝐴𝑗 exp(𝑈𝑖𝑗 ) , (5)

𝑎𝑖 =
1

∑

𝑗 𝑏𝑗𝐴𝑗 exp(𝑈𝑖𝑗 )
, (6)

𝑏𝑗 =
1

∑

𝑖 𝑎𝑖𝑃𝑖 exp(𝑈𝑖𝑗 )
, (7)

escribe a doubly constrained gravity model, in which 𝑎𝑖, 𝑏𝑗 are adjustment factors consolidating zone production and attraction
otals. Anas (1983) rigorously proves the equivalence of this gravity model with an MNL model for combined origin–destination
hoice (e.g. commuters choosing home and work locations).

To understand this equivalence, consider that the OD flow computed from the MNL model can be expressed as

𝑥𝑖𝑗 = 𝛽𝑖𝑗
∑

𝑖′
𝑃𝑖′ , (8)

r

𝑥𝑖𝑗 = 𝛽𝑖𝑗
∑

𝑗′
𝐴𝑗′ , (9)

n which the fraction of travelers choosing destination 𝑗 from origin 𝑖

𝛽𝑖𝑗 =
exp(𝑈𝑖𝑗 )

∑

𝑖′

∑

𝑗′
exp(𝑈𝑖′𝑗′ )

(10)

represents the scaled (dis)utility for simultaneously choosing origin 𝑖 and destination 𝑗. The scaling relates to the underlying perceived
(dis)utility 𝑈𝑖𝑗 = −(�̃�𝑇 𝑇𝑖𝑗 + 𝜖𝑖𝑗 ), in which 𝜖𝑖𝑗 is an IID Gumbel distributed ‘‘error’’ term (over the population) with mode 𝜇 = 0, and
variance 𝜎2 = 𝜆2𝜋2∕6, so that 𝛼 = (𝜋2∕6𝜆2)1∕2�̃�. For further details we refer to Anas (1983) and the wealth of literature discussing
MNL models before and thereafter. In this paper we just use the resulting ‘‘market share’’ computation using (10), in this case for
a particular OD alternative {𝑖, 𝑗}.

It is not difficult to see that Eqs. (5) to (7) and Eq. (8) or (9) describe the same OD prediction model, up to what Anas (1983) calls
‘‘aggregation errors’’. Put simply, both models use (assume) the same utility function but utilize a different computing procedure.
This results in the same OD flow pattern, safe for differences that emerge due to the fact that the MNL model uses a sample of
microscopic data, whereas the gravity model uses aggregated flows. More precisely, in the gravity formulation (Eqs. (5) to (7)), the
parameters (𝛼) are typically a-priori modeling choices, and the balancing factors 𝑎𝑖, 𝑏𝑗 are found through optimization (e.g. entropy
maximization or information minimization) with macroscopic data such as OD travel times 𝑇𝑇𝑖𝑗 and (cordon) counts 𝑦𝑎. Conversely,
in the MNL formulation (Eq. (8) or (9)), the parameters {..., 𝛼𝑏,…} in utility specification (4) result from a utility maximization
process using a sample of microscopic data (individual choices) from e.g. surveys or diaries. The ‘‘balancing’’ factors 𝛽𝑖𝑗 now follow
directly from this choice model and observed (dis)utility components 𝑋𝑖𝑗 such as average OD travel time observations 𝑇𝑇 .
𝑏 𝑖𝑗

4 
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Fig. 2. Examples of path overlap in the joint OD-path estimation problem.

2.2. Extension to (dynamic) path-choice

It is straightforward to extend this model to one that, for a given departure time period 𝑘 = 1, 2,… , 𝑁𝑘, describes joint origin–
destination-path choice, which analogously to above (in ‘‘gravity modelling terms’’) equates to predicting OD-path flows 𝑥𝑘𝑖𝑗𝑛 over
path-sets 𝑘

𝑖𝑗 ⊂ 𝑘 ⊂  containing (shortest) paths 𝑝𝑘𝑖𝑗𝑛 ∈ 𝑘
𝑖𝑗 , 𝑛 = 1,… , 𝑁𝑖𝑗 between OD pairs {𝑖, 𝑗}, for each departure time period

𝑘. We depict the full set of shortest paths (i.e. over all OD pairs) per departure period 𝑘 with 𝑝𝑘𝑟 ∈ 𝑘, 𝑟 = 1, 2,… , 𝑁𝑝 in which
𝑁𝑝 =

∑

𝑖
∑

𝑗 𝑁𝑖𝑗 . Note that we will use the shorthand index 𝑟 to run over all paths between all origins and destinations whenever
possible to avoid a large number of subscripts. We first discuss a few prior considerations.

The first is that, although this extension implies estimating path-flows 𝑥𝑘𝑖𝑗𝑛; the primary objective is (still) to find the most
likely OD matrix 𝑥𝑘𝑖𝑗 =

∑

𝑛 𝑥
𝑘
𝑖𝑗𝑛. Expanding OD estimation with multiple paths per OD pair enhances realism by using actual travel

data and topology constraints. Access to path travel times reduces reliance on assumptions, simplifying the estimation process.
This approach offers superior evidence for OD matrix estimation compared to traditional methods. By streamlining computation, it
improves efficiency while maintaining reliability. Overall, it provides a more accurate and practical model for understanding travel
patterns. Put simply, extending the OD estimation problem with paths improves the quality of the evidence dramatically. The price
we pay for this improved evidence is an increase of solution space dimensionality from 𝑁𝑥 to 𝑁𝑥×𝑁∗

𝑖𝑗 (with 𝑁∗
𝑖𝑗 the average

number of paths per OD pair). However, as proposed in Krishnakumari et al. (2020) and discussed below, we can in turn reduce the
solution space dimensionality considerably — without significant loss of estimation accuracy — by estimating just those OD flows
that explain most of the temporal variance by applying PCA on production and attraction data.

The second remark is that departure time is not considered as a choice dimension. Rather, discrete time 𝑘 is added as a label
because the set of shortest paths 𝑘 usually changes over time due to changing traffic conditions. The estimator can thus be invoked
over consecutive time periods using dynamic data such as time series of zone productions 𝑃 𝑘

𝑖 and attractions 𝐴𝑘
𝑗 , link counts 𝑦𝑘𝑎 ,

travel times 𝑇𝑇 𝑘
𝑖𝑗𝑛, etc. We return to this point further below. Third, there is no hierarchy implied in the choice dimensions which

are considered, i.e. origin–destination-path. Instead of choosing between OD trips at average (path) costs, travelers now choose from
a larger choice set of trips, which encompasses multiple origin, destination and path options per trip.

Finally, for all this to work, it is imperative to take into account path-overlap (e.g. Ben-Akiva et al. (2012)), not just for paths
between the same OD pairs, but for all paths, since travelers in this joint OD-path choice problem consider all these options
simultaneously. Herein there is no conceptual difference between path overlap for paths between e.g. a single OD pair; paths that
share an origin or destination; or paths that share common links only—Fig. 2 gives three examples in case. It may seem far-fetched
that travelers consider multiple OD and path choice options simultaneously, particularly in case of commuting, in which the O–D
dimensions represent long(er) term decisions and path choice more flexible short term decisions. However, in line with the argument
in Anas (1983), we are not interested in which order individuals make their choices, but much rather, in the net combined result
of all those choices in a population of travelers.

These considerations lead to a joint Path Size Logit (PSL) origin–destination-path choice model with the following generic
(dis)utility specification (Ben-Akiva and Bierlaire, 1999):

𝑈𝑟 = −

[

𝛼𝑟0 +
∑

𝑏
𝛼𝑏𝑋

𝑟
𝑏

]

+ 𝛼𝑝𝑠 ln𝑃𝑆𝑟 , (11)

in which 𝛼𝑟0 is a path specific utility constant (PSC, we return to it in the next section); [… , 𝑋𝑟
𝑏 ,…], 𝑏 = 1,… , 𝐵 is the vector of

path-specific cost components (travel time, etc.); [… , 𝛼𝑏,…] is a vector with associated weights, and 𝑃𝑆𝑟 a (distance-based) path
size factor with 𝛼𝑝𝑠 the penalization weight (Ben-Akiva and Bierlaire, 1999; Ben-Akiva et al., 2012).

𝑃𝑆𝑟 =
𝑁𝑎
∑

𝑎=1

(

𝑙𝑎
𝐿𝑟

)

1
∑

𝑟 𝛿𝑎𝑟
, (12)

that corrects for inflated utility differences between overlapping paths. In (12)𝑁𝑎 depicts the number of links on path 𝑟, 𝑙𝑎 depicts
the length of link 𝑒𝑎; 𝐿𝑟 the length of path 𝑝𝑟 and 𝛿𝑎𝑟 is the link-path incidence variable which equals one if link 𝑎 is on path 𝑟 and
zero otherwise. Analogously to (8) the resulting path flows can now be expressed as

𝑥𝑘 = 𝑎 𝑏 𝑃 𝑘𝐴𝑘 exp(𝑈 ) , (13)
𝑖𝑗𝑛 𝑖 𝑗 𝑖 𝑗 𝑖𝑗𝑛

5 
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Fig. 3. Schematic overview of the combined OD-path flow estimation solution methodology. For clarity, the time superscript 𝑘 is omitted.

in which the fraction of travelers simultaneously choosing path 𝑟, i.e. the 𝑛th path from origin 𝑖 towards destination 𝑗, equals

𝛽𝑖𝑗𝑛 = 𝛽𝑟 =
exp(𝑈𝑟)

∑

𝑟′
exp(𝑈𝑟′ )

, (14)

Eqs. (11), (12), (13), and (14) describe a doubly constrained path-based gravity model, with a decreasing deterrence function.
The data driven OD estimation method proposed in Krishnakumari et al. (2020) is a special case of this model, in which an implicit
choice is made for the path utility specification in (11) so that

𝑈𝑘
𝑟 = −𝑇𝑇 𝑘

𝑟 (1 − 𝑃𝑆𝑟) ,

in which only path travel time 𝑇𝑇 𝑘
𝑟 is considered as cost component; an implicit assumption is made about the associated weight

(i.e. 𝛼 = 1); and no path-specific constants are considered. Note that also the pathsize factor in Krishnakumari et al. (2020) is
formulated slightly differently — multiplicative instead of additive and without logarithmic scaling — compared to the general
utility formulation we present in Eq. (15) further below. Additionally, in Krishnakumari et al. (2020) an assumption is made on
the path choice set size, which is considered equal for all OD pairs, that is, 𝑁𝑖𝑗 = 𝑁∗,∀ 𝑖, 𝑗. Put differently, for all OD pairs the
same number of used shortest paths are assumed. Finally, in Krishnakumari et al. (2020) the ‘‘𝛽’s’’ in Eq. (14) are normalized per
OD pair, rather than over the entire choice set. This means the formulation in Krishnakumari et al. (2020) is not strictly equivalent
to a corresponding joint MNL model for OD-path choice (but it is in principle). In the next section we elaborate on some specific
choices and assumptions related to utility specification (11) and we propose a methodology for solving this generic model.

2.3. Generic solution for OD matrix estimation

Solving the combined OD-path gravity model, and by implication the OD matrix estimation problem, implies formulating
sufficient constraints for the unknown OD-path-flows to construct a solvable (i.e. full-rank) system of equations, or, if this is not
possible, to reduce the dimensionality of the solution space so that a solvable system can be constructed. In doing so, we aim
to reconcile the available evidence from different data sources, i.e., path travel times 𝑇𝑇 𝑘

𝑖𝑗𝑛; link counts 𝑦𝑘𝑎 ; time series of zone
production 𝑃 𝑘

𝑖 and attraction 𝐴𝑘
𝑗 totals, and, importantly, the dynamic graph 𝐺( ,  , 𝑘) describing the (infrastructure) network,

including dynamic edge weights (e.g. speeds) and static characteristics such as road type, length, etc. The main steps in the
methodology are summarized below and schematically outlined in Fig. 3.

Assumptions The starting point of the methodology are assumptions, e.g., a choice for the (initial) path set sizes 𝑁𝑖𝑗 , and
specification (calibration) of the utility function (11).

Step 1 Compute path sets 𝑖𝑗 with 𝑁𝑖𝑗 shortest paths — shortest in the sense of maximum utility (11) — for all OD pairs 𝑖, 𝑗. From
these, compute path shares 𝛽𝑘𝑖𝑗𝑛(14) and the corresponding ‘‘prior’’ path flows �̃�𝑘𝑖𝑗𝑛(13). In Section 2.3.2 we will describe two
alternative shortest path algorithms (LP and ESX) used in this step and discuss the computational costs associated with them.

Step 2 Construct a system of equations 𝐂𝐗 = 𝐛,𝐗 ≥ 0 (see below) and solve for OD flows 𝑥𝑘𝑖𝑗 . If the system has sufficient rank
solve the equations to obtain the posterior OD flows, and the corresponding posterior path flows �̂�𝑘𝑖𝑗𝑛, which follow from
re-normalizing the 𝛽’s per OD pair. If the system is not solvable go to step 3.
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Step 3 Apply PCA to the prior OD flows �̃�𝑘𝑖𝑗 — which in matrix notation reads �̃� — to reduce the dimensionality. Using PCA the
unknown matrix is approximated as a linear combination of the largest eigenvectors �̃� = 𝐙𝐕𝑇 + 𝜇�̃�. Then convert and solve
the system equations 𝐂′𝐙 = 𝐛′. Expand solution using principal components to recover the full OD matrix.

2.3.1. Assumptions and considerations
The starting point for computing the 𝑁𝑖𝑗 ‘‘shortest’’ (i.e. minimum disutility) paths between all OD pairs {𝑖, 𝑗} is to choose 𝑁𝑖𝑗 . For

example, in Krishnakumari et al. (2020) the best results are reported with 𝑁𝑖𝑗 = 5,∀𝑖, 𝑗, but any reasonable — possibly OD-specific —
assumption is possible. The optimal ‘‘cut-off’’ number of shortest paths will depend on network topology and management/control
policies. Second, a (dis)utility specification (i.e., Eq. (11)) is required, which will result in the most likely distribution of trips
over these paths given the available data. This utility model encodes assumptions about behavioral preferences and physical or
regulatory constraints that govern how attractive or costly a specific path alternative between an OD pair is. In very specific cases,
e.g. large-scale events with clearly identifiable and mandatory paths between specific OD pairs, large path-specific constants (PSC)
could be used to encode mandatory choices for these paths, regardless of high travel time or other costs along it. Without loss of
generality, however, in this paper we do not consider PSC’s, i.e. 𝛼𝑟0 = 0, but an OD-specific constant 𝛼𝑖𝑗0 is considered instead which
functions as a balancing factor to address disparities in order of magnitude. This adjustment is a consequence of the combination of
origin–destination-path choice, as opposed to treating each OD pair independently in conventional approaches. Consequently, the
costs attributed to different OD pairs inherently vary in orders of magnitude, and the OD-specific constant aids in equalizing these
discrepancies.

The key requirement for the utility specification is that it supports (efficient) shortest path algorithms in 3D (network × time)
graphs 𝐺( ,  , 𝑘), that is, graphs with dynamic link speeds 𝑢𝑘𝑎 , flows 𝑞𝑘𝑎 , or other properties 𝑤𝑘

𝑎 through which paths between a given
OD pair {𝑖, 𝑗} starting in period 𝑘 can be constructed (for brevity, here we use index 𝑎 as a shorthand of link 𝑒𝑎 to discuss on the
utility function specifications). Most importantly, this requires that the (generalized) costs along a path are additive, that is, equal
to the sum of the link costs along the path. To this end, we propose two main utility components, 𝑤𝑘

𝑟 and 𝜏𝑘𝑟 . The former encodes
unctional properties of the path 𝑝𝑘𝑟 , which may be static (e.g. road type) or dynamic (e.g. tidal lanes, capacity restrictions); the
atter represents (generalized) travel time, respectively. This yields the following general (dis)utility specification:

𝑈𝑘
𝑟 = −

(

𝛼𝑖𝑗0 + 𝛼𝑤𝑤
𝑘
𝑟 + 𝛼𝜏𝜏

𝑘
𝑟

)

+ 𝛼𝑝𝑠 ln𝑃𝑆𝑖𝑗𝑛 , (15)

Since we consider a dynamic network, in the limit of infinitely small time periods (𝛥𝑡 ↓ 0, i.e. continuous time), both utility
omponents represent path-integrals over 𝑝𝑘𝑟 , that is, 𝑤𝑘

𝑟 = ∫𝑝𝑘𝑟 𝑤(𝑠)𝑑𝑠; and 𝜏𝑘𝑟 = ∫𝑝𝑘𝑟 𝜏(𝑠)𝑑𝑠, respectively. In the discrete case, with
onstant link properties 𝑤𝑘

𝑎 and 𝜏𝑘𝑎 during each discrete period 𝑘 of typically one or a few minutes, the computations become simple
ummations along path 𝑝𝑘𝑟 , that is,

𝑤𝑘
𝑟 =

𝑁𝑎
∑

𝑎=1
𝛿𝑎
𝑝𝑘𝑟
𝑤𝑘

𝑎 (16)

𝜏𝑘𝑟 =
𝑁𝑎
∑

𝑎=1
𝛿𝑎
𝑝𝑘𝑟
𝜏𝑘𝑎 . (17)

Generalized route travel time (𝜏𝑘𝑟 ) in turn is computed using link length (𝑙𝑎), dynamic link speed (𝑢𝑘𝑎), link costs 𝑐𝑘𝑎 (e.g. tolls),
nd value of time (VoT) 𝜂𝜏 , that is,

𝜏𝑘𝑎 =
𝑙𝑎
𝑢𝑘𝑎

+
𝑐𝑘𝑎
𝜂𝜏

. (18)

We emphasize that, since link speeds and costs are given (observed), both functional link properties (16) and generalized link
ravel times (17) can be pre-computed through linear combination (i.e. ∑𝑎[𝛼𝑤𝑤𝑘

𝑎 + 𝛼𝜏𝜏𝑘𝑎 ]) to construct the 3D graph 𝐺( ,  , 𝑘) and
hus to incrementally compute shortest paths in the sense of maximum utility (i.e., minimum disutility) according to (15). Note
hat in the simplified case of travel time cost only (Krishnakumari et al., 2020), constructing path travel time in a 3D network boils
own to applying a piece-wise constant speed-based trajectory method (Van Lint, 2010).

Two final assumptions are required to solve the OD estimation problem using this path-flow formulation. The first is that to map
ath-flows to link-flows, we discretize observed travel times using the observation period duration 𝛥𝑡—more on this further below.
he second is that FIFO (first-in-first-out) applies to all links. Link 𝑒𝑎 satisfies the FIFO property if for each pair {𝑡, 𝑡′} of times with
< 𝑡′, 𝑇𝑇 𝑡

𝑎 + 𝑡 ≤ 𝑇𝑇 ′
𝑎 + 𝑡′. The FIFO property further implies that no utility can be gained from waiting at a node before traversing

he link of interest. This implies that the key requirement for a suitable shortest path algorithm in our case is similar to that of any
hortest path problem on a graph with given link weights: computational efficiency.

.3.2. Step 1: shortest paths computation
A major assumption in Krishnakumari et al. (2020) is the ‘‘cut-off’’ number of shortest path 𝑁∗

𝑖𝑗 for all OD pairs. A constant
alue 𝑁∗

𝑖𝑗 = 𝑁∗,∀𝑖, 𝑗 disregards variations in network structure and management policies across different OD pairs. To address this
imitation, we employ two alternative shortest path algorithms that endogenously determine the appropriate number of shortest paths
or each OD pair. Additionally, both algorithms incorporate mechanisms that limit path overlap—this is crucial because in the joint

D-path formulation this path overlap problem increases dramatically. We provide detailed explanations of both algorithms below.
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The first algorithm, referred to as the link penalty (LP) algorithm, adopts a penalization mechanism for searching shortest
aths (Cheng et al., 2019). In this approach, given a specified number of shortest paths 𝐾, the algorithm iteratively applies the

Dijkstra algorithm, while artificially increasing costs on reused links. In the first iteration, the Dijkstra algorithm finds the actual
shortest paths based on the original cost. In subsequent iterations, for each link already utilized, the link cost is multiplied by a
weight 𝜆 to increase it. Increasingly, new paths computed on this ‘‘penalized’’ network may already exist in the set of previously
computed paths, enabling the algorithm to determine an appropriate number of feasible (in the sense of costs) shortest paths.

The second algorithm, known as ESX, is a heuristic shortest path algorithm that addresses path overlap in a different
way (Chondrogiannis et al., 2020). Instead of applying penalties to used links, the ESX algorithm progressively removes links
altogether. Similar to the LP algorithm, the ESX algorithm first identifies the actual shortest path using the Dijkstra algorithm.
It then removes links with the highest link cost and conducts the Dijkstra search on the pruned network. Due to the link removal
mechanism, in networks with lower connectivity, the number of feasible shortest paths can be lower than the expected 𝐾, thus
endogenously determining the appropriate number of shortest paths.

Compared to typical K-shortest path algorithms (e.g., Yen’s algorithm) that compute exactly 𝐾 paths, both the LP and ESX
algorithms can determine OD-specific numbers of shortest paths, but use different considerations to arrive at these. The LP algorithm
penalizes previously used links by increasing their costs with a fixed coefficient, allowing penalized paths to still be labeled as
‘‘shortest’’. Consequently, a new path is only discovered when previously used paths become excessively costly. Conversely, the
ESX algorithm adopts a more direct approach by progressively removing links from the network to search for new paths. Our
major interests in terms of the differences between both algorithms pertain to two questions: (1) do they generate a reasonable set
of (indeed) shortest paths; and (2), can this path-set be computed fast enough to make it a feasible option for our OD estimation
method. We evaluate the two algorithms in Section 4 on both aspects. For more in-depth technical information about the algorithms
and their implementation, we refer to Cheng et al. (2019) and Chondrogiannis et al. (2020).

The shortest paths  computed from either algorithm above will result in the (time-dependent) OD-path market shares (the 𝛽’s),
i.e.

𝛽𝑘𝑖𝑗𝑛 =
exp(𝑈𝑘

𝑖𝑗𝑛)
∑

𝑖′

∑

𝑗′

∑

𝑛′
exp(𝑈𝑘

𝑖′𝑗′𝑛′ )
, (19)

n which 𝑈𝑘
𝑖𝑗𝑛 is computed according to utility specification in Eq. (15). These in turn allow us to compute a corresponding set of

a-priori) path flows �̆�𝑘𝑖𝑗𝑛, which read

�̆�𝑘𝑖𝑗 =
∑

𝑛

(

𝛽𝑘𝑖𝑗𝑛
∑

𝑖′
𝑃 𝑘
𝑖′

)

=
∑

𝑛

(

𝛽𝑘𝑖𝑗𝑛
∑

𝑗′
𝐴𝑘
𝑗′

)

(20)

An a-posteriori estimate �̂�𝑘𝑖𝑗 of the OD matrix can now be constructed by adding constraints using link counts (and possibly other
ata), which scales and restructures the prior towards observed link flow totals.

.3.3. Step 2: full system of equations
We now construct a system of equations to estimate the full dynamic OD matrix 𝑥𝑘𝑖𝑗 ,∀ 𝑖, 𝑗, 𝑘. First consider link counts 𝑦𝑚𝑎 , which

are fully informative of demand, i.e. of the set of path flows 𝑘≤𝑚
𝑎 that go through link 𝑒𝑎 in period 𝑚 ≥ 𝑘. This is the case if (and

for the first two points — only if)

1. link 𝑒𝑎 is not congested in period 𝑚;
2. none of the links on the paths 𝑝𝑘𝑟 ∈ 𝑘≤𝑚

𝑎 upstream of 𝑒𝑎 were congested during period [𝑘, 𝑚]; and
3. the travel time 𝑇𝑇 𝑘

𝑟|𝑎 on route 𝑟 up to link 𝑎 starting in period 𝑘 is (approximately) equal to the time difference between the
link count and the departure of the path flow, that is, (𝑇𝑇 𝑘

𝑟|𝑎∕𝛥𝑡) − (𝑚 − 𝑘) ≊ 0

The first two requirements are needed because otherwise 𝑦𝑚𝑎 is — at least partially — composed of queue discharge flows and
hus not informative of demand. The third requirement follows from the FIFO assumption and observed travel times. As a result we
an now write

𝑦𝑚𝑎 =
𝑚
∑

𝑘=𝑚−⌊𝑇𝑇𝑚𝑎𝑥∕𝛥𝑡⌋

∑

𝑟∈𝑘
𝑎

𝛿𝑚𝑘𝑟|𝑎𝑥
𝑘
𝑟 . (21)

n which 𝑇𝑇 𝑚𝑎𝑥 is the maximum travel time from any of the origin nodes 𝑖 towards 𝑒𝑎 (a pragmatic choice would be a sufficiently
igh travel time suitable for all links), and

𝛿𝑚𝑘𝑟|𝑎 =

{

0, |

|

|

(𝑇𝑇 𝑘
𝑟|𝑎∕𝛥𝑡) − (𝑚 − 𝑘)||

|

≥ 𝜖𝑇𝑇 ,

1, else ,
(22)

he dynamic path/link flow indicator variable, in which 𝜖𝑇𝑇 is a small number to account for travel time round-off errors. By
witching LHS (left-hand-side) and RHS (right-hand-side) of (21), and reformulating as a sum over paths per OD pair {𝑖, 𝑗}, we
ave:

∑∑

𝑚
∑

𝑁𝑖𝑗
∑

𝛿𝑚𝑘𝑟|𝑎𝛽
𝑘
𝑖𝑗𝑛𝑥

𝑘
𝑖𝑗 = 𝑦𝑚𝑎 . (23)
𝑖 𝑗 𝑘=𝑚−⌊𝑇𝑇𝑚𝑎𝑥∕𝛥𝑡⌋ 𝑛=1
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Eq. (23) represents the connection between the link count 𝑦𝑚𝑎 and the various time-dependent path flows 𝑥𝑘𝑟 that potentially
raverse link 𝑒𝑎 during time 𝑚 ≥ 𝑘. Next, we expand (13) into:

∑

𝑗

𝑁𝑖𝑗
∑

𝑛=1
𝛽𝑘𝑖𝑗𝑛𝑥

𝑘
𝑖𝑗 = 𝑃 𝑘

𝑖 (24)

∑

𝑖

𝑁𝑖𝑗
∑

𝑛=1
𝛽𝑘𝑖𝑗𝑛𝑥

𝑘
𝑖𝑗 = 𝐴𝑘

𝑗 (25)

The set of Eqs. (23), (24), and (25) form a large system of equations when expanded for all origins 𝑖 = 1, 2,… , 𝑁𝑥, destinations
= 1, 2,… , 𝑁𝑥, and time periods 𝑘 = 1, 2,… , 𝑁𝑘. The unknown OD matrix 𝑥𝑘𝑖𝑗 can be solved by transforming this system into a

matrix equality

𝐂𝐗 = 𝐛, 𝐗 ≥ 𝟎; (26)

where 𝐗 represents the OD matrix 𝑥𝑘𝑖𝑗 , while 𝐂 and 𝐛 denote the matrix and vector containing the market shares, link-flow
proportions, and the RHS elements of Eqs. (23)–(25), respectively.

The matrix equality represented by Eq. (26) can be solved as a bound-constrained minimization problem (Branch et al., 1999)
with a lower bound constraint set at 0 to ensure the non-negativity of the solution. By incorporating this constraint, the estimated
origin–destination (OD) matrix is guaranteed to contain only non-negative values.

2.3.4. Step 3: reduced system of equations
The number of OD flows grows quadratically with the number of production and attraction zones. However, the increase in the

number of rows in matrix Eq. (26) is linear with respect to the number of zones in Eqs. (24) and (25), and the number of link flow
constraints in Eq. (23). Consequently, in large networks with limited link flow constraints, the linear system represented by Eq. (26)
becomes severely underdetermined. To solve the OD matrix estimation problem for such large networks, we use insights from prior
research (Djukic et al., 2012b; Zhou and Mahmassani, 2007) which suggest that a substantial portion of demand flow variance can
be ascribed to dominant temporal patterns. These patterns primarily pertain to daily and weekly seasonal fluctuations, whereas
deviations from these patterns and random fluctuations constitute minor components (Djukic et al., 2012b).

Krishnakumari et al. (2020) assume a similar phenomenon holds for the production and attraction flow totals 𝑃 𝑘
𝑖 and 𝐴𝑘

𝑗 , and
se PCA to reduce the dimensionality of these time series. In doing so, the dominant production and attraction zones are identified
nd a reduced OD set is constructed. Solving the system of equations of this reduced OD flow set only provides an upper bound for
he same (dominant) OD flows in the original system of equations. In this way, the solution space is constrained sufficiently to find
reliable solution. However, as will be presented in the results, this upper bound may not always be valid — e.g. the actual values
ay be larger than the upper bound — and therefore may introduce errors in the final solution.

So, instead of providing an upper bound when solving the original equations, we propose to use PCA to directly on the (prior)
D matrix as in Djukic et al. (2012b), which also reduces the dimensionality of the system described by (26). The rationale in this
aper is thus similar to Krishnakumari et al. (2020), but with a few key adjustments: (a) we compute the principal components on
he prior OD matrix (computed with the 𝛽’s obtained from the shortest path algorithm in Eq. (20)) instead of applying PCA on the
roductions and attractions time series; (b) we do not solve the original system of equations but transform Eq. (26) to a reduced
ersion 𝐂′𝐘 = 𝐛′, where 𝑑𝑖𝑚(𝐘) ≪ 𝑑𝑖𝑚(𝐗); and (c) we then ‘‘inversely transform’’ the reduced solution �̂� to a full (and final) solution

�̂� by linear combination of the principal components.
We emphasize that PCA is a linear procedure that re-structures the solution space in terms of orthogonal directions of decreasing

(co)variance. Cutting off the transformed solution-space beyond some arbitrary amount of explained variance may inadvertently
remove relevant non-linear correlations—we discuss this and other limitations in Section 4.4.

Below we outline the main procedure; for further details on the PCA method, refer to e.g. Jolliffe (2002).
Consider the prior OD flow computed with Eq. (20) in the form of matrix

�̃� = [⋯ , �̃�𝑇𝑘 ,…] =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�011 … �̃�0𝑖𝑗 …
⋮ ⋱ ⋮ ⋱
�̃�𝑘11 … �̃�𝑘𝑖𝑗 …
⋮ ⋱ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎦

(27)

where each column vector �̃�𝑘 is the set of OD flows at time period 𝑘. Let 𝝁�̃� depict the mean matrix of �̃�. By applying PCA with
𝑁𝑝 components (or 𝑛𝑝% variance explained), we have

�̃� = 𝐙𝐕𝑇 + 𝝁�̃� (28)

where the column vectors of 𝐙 are a set of orthogonal uncorrelated variables, i.e., principal components. In Eq. (28) the original
matrix is approximated using a linear combination of 𝑁𝑝 principal components. If 𝑁𝑝 is large, the approximation is near-perfect; if
it is small, we disregard some of the temporal variations in the multi-variate ‘‘OD signal’’ (and accept some error-variance in the
reconstruction later on). Elementwise, Eq. (28) can be written as

�̃�𝑘𝑖𝑗 =
𝑁𝑝
∑

𝑧𝑘𝑝𝑣
𝑝
𝑖𝑗 + 𝜇𝑖𝑗 (29)
𝑝=1
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Finally, we replace the original OD flow variables in Eqs. (23) to (25) with the PCA approximation in Eq. (29), so that the
riginal problem with unknowns 𝑥𝑘𝑖𝑗 is transformed into a reduced problem with unknowns 𝑧𝑘𝑝 , which we can write as

∑

𝑖

∑

𝑗

𝑚
∑

𝑘=𝑚−⌊𝑇𝑇𝑚𝑎𝑥∕𝛥𝑡⌋

𝑁𝑖𝑗
∑

𝑛=1

𝑁𝑝
∑

𝑝=1
𝛿𝑚𝑘𝑟|𝑎𝛽

𝑘
𝑖𝑗𝑛𝑣

𝑝
𝑖𝑗𝑧

𝑘
𝑝 = 𝑦𝑚𝑎 −𝑁𝑘

∑

𝑖

∑

𝑗
𝑁𝑖𝑗𝜇𝑖𝑗 . (30)

∑

𝑗

𝑁𝑖𝑗
∑

𝑛=1

𝑁𝑝
∑

𝑝=1
𝛽𝑘𝑖𝑗𝑛𝑣
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For brevity, the reduced problem can be written in matrix form as 𝐂′𝐙 = 𝐛′. By this transformation, the dimension of the original
problem is reduced from 𝑁𝑘 × 𝑁𝑥 × 𝑁𝑥 to 𝑁𝑘 × 𝑁𝑝, which is now potentially an overdetermined system as 𝑁𝑝 ≤ 𝑁𝑘. By applying
ordinary least squares, we can find a unique solution �̂� to the reduced system of equations. The full solution can then be obtained
via Eq. (29). Furthermore, to ensure non-negativity in the final OD estimates, we employ a heuristic approach to set any negative
values to zero.

2.3.5. Summary of method and relation to literature
Our method has some similarities with existing data driven path-flow estimators (e.g. Ma and Qian (2018), Rao et al. (2018),

Wei and Asakura (2013) and Wu et al. (2018)) but it differs in terms of the combination of data sources it uses and in the methods
and underlying assumptions it applies to fuse these data. Specifically, we use four data sources, that is, (1) link speeds from which
we derive path travel times 𝜏𝑟 and functional path properties 𝑤𝑟 (i.e. fraction of the path over motorways); (2) estimated utility
weights (the 𝛼’s in utility function (15)) to trade off these choice dimensions and compute the OD-path-market shares (the 𝛽’s) which
in turn are combined with (3) zone production and attraction totals 𝑃𝑖, and 𝐴𝑗 to construct a prior OD matrix; and finally, (4) link
ounts, which are used to scale this prior to a full posterior estimate of the OD matrix.

It is important to emphasize that we use a path-flow estimation method because this allows us to use superior evidence for this
osterior OD matrix, i.e. observed path travel times versus average zone to zone travel times. The consequence of using observed
ravel times, is that we do not (have to) consider (stochastic) equilibrium assignment principles as in Abareshi et al. (2017) and Wei
nd Asakura (2013). Rather, we formulate the problem as a large system of equations constraint by the data as in Ashok and Ben-
kiva (2002), Nie et al. (2005), and apply a (plausible link-additive) utility function as a heuristic to derive a plausible distribution
f trips over all OD-path alternatives. A further difference of our method with respect to other methods is that we utilize (two
lternative) shortest path algorithms to endogenously compute OD-specific path choice sets, thereby generalizing (Krishnakumari
t al., 2020). In computing the OD-path-flow ‘‘market shares’’, we furthermore assume that the equivalence of the doubly constraint
ravity model and the MNL formulation (Anas, 1983) also holds for joint OD-path choice, not just theoretically but also empirically—
his is an assumption we will test further below. Finally, we explicitly exclude link counts which are not informative of demand
nd use PCA to reduce the dimensionality of the prior OD matrix in case the problem becomes underdetermined. We then solve the
educed problem, and transform that solution back to a full posterior OD matrix.

Also, one may find that our prediction–correction mechanism appears similar to Bayesian inference methods (prior-posterior).
lthough our approach is not explicitly Bayesian, it does share certain conceptual parallels. In our method for dynamic OD estimation

n congested networks, we employ a combination of heuristics and models carefully chosen to transform the estimation problem into
solvable linear system. For instance, the MNL model facilitates the computation of plausible OD-shortest path sets from travel times
nd other additive cost components, allowing us to construct a prior OD matrix. This matrix, combined with trip productions, serves
s a foundation for our prediction–correction mechanism. Through successive steps of refinement, such as incorporating link flow
onstraints and applying PCA to filter out noise, our method iteratively updates this prior to what could be informally considered as
posterior, although not in a strictly Bayesian sense. The use of PCA, in particular, highlights a level of ‘‘degeneracy’’ in our prior

hat varies depending on the complexity of demand dynamics, demonstrating how our method adapts to different scenarios. While
ur approach may not fit neatly into traditional Bayesian frameworks, its conceptual alignment with aspects of Bayesian inference
nderscores the sophistication and flexibility of our methodology.

In summary, we use a mix of data sources and assimilation methods (both forward and reverse as illustrated in Fig. 1) and
ake just those assumptions needed to fuse these data. If the resulting system of equations is nonetheless below rank, we reduce

ts dimensionality until it is solvable.

. Case setup

This section describes the case setup, in which we present the configuration of (7) different networks and describe the experiments
onducted on each of them. The overall setup is summarized in Table 1.

As shown in Table 1, the first 5 networks are well-known transportation networks widely used for studying static traffic
ssignment problems. The data for these are publicly available,2 and contain network topology, static OD demand, and assigned

2 For example at https://github.com/bstabler/TransportationNetworks.
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Table 1
Case study setup.
Networks Nodes Links OD pairs Validation of . . . Varying with . . .

Sioux falls 24 76 576 – Path set generation algorithms
Anaheim 416 914 1406 – Path set generation algorithms
Winnipeg 1052 2836 4345 – Path set generation algorithms
Barcelona 1020 2522 7922 – Path set generation algorithms
Chicago-Sketch 933 2950 142,890 – Path set generation algorithms

Four-pairs 7 9 4 Extended equivalence PSL utility functions
The proposed method Levels of demand

Santander 1630 4205 13,689 Extended equivalence Path set generation algorithms
The proposed method Number of shortest paths

Degrees of noise in PSL
Usage of PCA
Number of principal components in PCA

Fig. 4. Four pairs network and demand.

static link flow. In order to provide a comprehensive analysis, the two algorithms (LP and ESX) that generate a set of 𝐾 shortest paths
with limited overlap are qualitatively and quantitatively compared on these ‘‘classic’’ networks, which vary in scale. It is important
to note that the validation of the overall OD estimation cannot be performed on these networks due to the absence of dynamic OD
matrices and observations in the available data. The comparative analysis primarily focuses on three key aspects: computation time,
the path set cost, and the spatial distribution of the paths.

To validate the complete method proposed in this paper we use two simulation networks, Four-pairs and Santander, and we use
Aimsun Next software (Aimsun, 2017) as a ground-truth platform for our validations and tests.

The first network, referred to as the Four-pairs network, is a toy network consisting of two origins and two destinations. Fig. 4(a)
provides a visual representation of the network. It is important to note that only one link is equipped with a loop detector to measure
the link flow. Despite the network’s limited size, the system remains underdetermined under this configuration, as the number of
observations (one) is smaller than the number of unknowns (four). The OD demand for the four OD pairs is generated using a
combination of sine functions with random noise, as depicted in Fig. 4(b). The demand generation process has a time granularity
of 10 min, and the total duration of the test period is two hours. During the OD estimation process, the demand is aggregated into
5-minute time intervals, resulting in a total of 24 time periods. Given the simplicity of route choice on this network, no assumptions
were tested regarding the shortest path algorithms (as path enumeration on this network is straightforward). We first examine the
validity of the extended equivalence by comparing the path flow computed from the doubly-constrained gravity model with that
obtained from the PSL model. Subsequently, we establish a baseline case to validate the OD estimation method, and further evaluate
the sensitivity of OD estimation performance to different forms of the PSL utility function and varying levels of demand. The utility
functions used in this case read

𝑈𝑘
𝑖𝑗𝑛 = −(𝛼𝜏𝜏𝑘𝑖𝑗𝑛) + 𝛼𝑝𝑠 ln𝑃𝑆𝑖𝑗𝑛 (𝑡𝑡𝑜𝑛𝑙𝑦) (33)

𝑈𝑘
𝑖𝑗𝑛 = −(

2
∑

𝑤=1
𝛼𝑤𝑤

𝑘
𝑖𝑗𝑛 + 𝛼𝜏𝜏

𝑘
𝑖𝑗𝑛) + 𝛼𝑝𝑠 ln𝑃𝑆𝑖𝑗𝑛 (𝑚𝑢𝑙𝑡𝑖) (34)

𝑈𝑘
𝑖𝑗𝑛 = −(𝛼0𝑖𝑗𝑛 +

2
∑

𝑤=1
𝛼𝑤𝑤

𝑘
𝑖𝑗𝑛 + 𝛼𝜏𝜏

𝑘
𝑖𝑗𝑛) + 𝛼𝑝𝑠 ln𝑃𝑆𝑖𝑗𝑛 (𝑝𝑠𝑐), (35)
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Fig. 5. Santander network.

Table 2
Metrics of the generated path set (𝐾 = 10).

Metric Algorithm Sioux falls Anaheim Winnipeg Barcelona Chicago sketch

Computation time
Yen’s 1.91 59.19 798.60 – –
ESX 3.18 73.08 570.26 805.54 11 771.55
LP 0.47 14.15 120.73 217.48 3929.15

Mean cost ESX 25.54 19.53 27.94 12.90 75.89
LP 12.74 14.76 17.86 10.13 68.77

Detour ratio ESX 3.22 1.75 2.21 1.66 1.39
LP 1.24 1.10 1.14 1.13 1.07

wherein 𝑤𝑖𝑗𝑛 depicts the mileage fraction of two different road classes (arterial and secondary) on the path, 𝜏𝑘𝑖𝑗𝑛 depicts the dynamic
path travel time, and 𝛼0𝑖𝑗𝑛 depicts the path-specific constants (PSC). For brevity, we refer to these three different forms of the utility
function as ttonly, multi and psc.

The second network is a large and validated (with actual data) network of Santander, Spain. This network, depicted in Fig. 5,
comprises 4205 links belonging to 4 different road classes. Among these links, 295 are equipped with loop detectors to measure
link counts. The test period spans 4 h during peak periods, divided into 48 5-minute time periods. On the Santander network,
we also begin by examining the extended equivalence as described earlier. Following this, we proceed with several tests using
the calibrated demand. These tests include investigating different path set generation algorithms, the impact of the number of
shortest paths (parameter 𝐾) specified in the algorithms, the two different usages of PCA mentioned in Section 2.3.4, the number of
principal components in PCA, and the effect of noise in the PSL utility parameters. For this case study, the utility function employed
corresponds to the psc form used in the Four-pairs network setting. The specific form of the utility function is as follows:

𝑈𝑘
𝑖𝑗𝑛 = −(𝛼0𝑖𝑗𝑛 +

4
∑

𝑤=1
𝛼𝑤𝑤

𝑘
𝑖𝑗𝑛 + 𝛼5𝜏

𝑘
𝑖𝑗𝑛) + 𝛼𝑝𝑠 ln𝑃𝑆𝑖𝑗𝑛 (36)

Based on this utility function, we calibrate the weight parameters and compute 20 shortest paths for each OD pair, thereby
constructing the path set. These paths are then used to compute the dynamic path shares.

4. Case study results

4.1. Comparison of path set generation algorithms

Our hypothesis in Section 2.2 is that extending the OD estimation problem with path choice improves the quality of the evidence
we can use. However, it does complicate the problem considerably. First it requires a plausible set of chosen paths per OD pair. In
this section we assess the efficacy of two path set generation algorithms (ESX and LP). We examine the computational characteristics
of these algorithms and the quality of the resulting path sets. Further below we discuss the impact on the overall OD estimation
performance.

We first compare the computation time of the ESX and LP algorithms on the 5 aforementioned ‘‘classic’’ networks, using Yen’s K
shortest path algorithm as a benchmark. All tests are performed on a personal computer equipped with a 12-core Intel Core i7-9750H
CPU and 32 GB of RAM. The computation time, measured in total time spent (in seconds), is presented in Table 2. As indicated in
the table, both the LP and ESX algorithms exhibit superior performance and scalability compared to Yen’s algorithm, with the LP
algorithm performing fastest.

Second, we assess the mean path cost of the generated path sets, which is computed by averaging the path costs of all the paths
within the set. Assuming both algorithms find the same actual shortest paths (both use Dijkstra), higher average path cost indicate
12 
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Fig. 6. Example of detour on the network of Chicago Sketch.

more diversity amongst the set. The results are presented in Table 2. As evidenced by the table, the mean path cost computed by
the ESX algorithm is significantly higher than that of LP (with a cost reduction ranging from 20% to 50% for the first four networks
and a reduction of 9.4% for the largest network). This disparity is expected since the ESX algorithm employs a ‘‘harder’’ mechanism
in which links are removed from the network.

Lastly, we examine the spatial distribution of the path sets based on the detour ratio. The detour ratio is computed by dividing
the path mileage by the shortest mileage between each OD pair and then taking average across the entire path set. The results are
presented in Table 2. As can be observed in the table, the detour ratio computed from ESX is also higher than that of LP, partially
accounting for the higher cost reported in Table 2. Additionally, the LP algorithm demonstrates a relatively stable detour ratio across
different networks, whereas the ESX algorithm yields a fluctuating detour ratio (with a maximum of 3.22 and a minimum of 1.39).
Fig. 6 provides an illustrative example on the Chicago Sketch network, showcasing how the ESX algorithm generates a path set with
a high detour ratio comparing with the LP algorithm.

These results suggest that the LP algorithm outperforms the ESX algorithm on all counts, i.e., in terms of computational cost,
path cost, and detour ratio.

4.2. Validation of the extended equivalence

As described in Section 1, MNL models for joint OD choice and doubly-constrained gravity models are mathematically
equivalent (Anas, 1983) safe for aggregation errors. This equivalence serves as the foundational premise for all subsequent
computations within our proposed methodology. Therefore, in this subsection, we empirically show this equivalency indeed holds
in the case of joint OD-path choice. We validate the equivalency on both the Four-pairs network and Santander network.

On the Four-pairs network, we use all three different forms of the utility function (ttonly (33), multi (34) and psc (35)) and
examine their equivalence to the resulting path flows from gravity model, and also the impact on the estimation of path flows. The
equivalence under different utilities is presented in Fig. 7. As evident, a perfect fit between the path flow computed from the PSL
and the one derived from the gravity model is consistently observed, regardless of the utility function employed. The results are
further presented in Fig. 7, which provides a visual representation of the results, showing the comparison between the estimated path
flows and the true path flows. It is evident from the plot that the psc function produces path flows that closely align with the true
values—i.e. the values available to us in the test network data. Nonetheless, the path flows generated by the other two utility function
forms also deviate no more than slightly from the true values on most paths. Based on these findings, we can tentatively conclude
that the extended equivalence principle still holds given the utility function captures drivers’ route choice behavior sufficiently well.
The close resemblance between the path flows obtained using the psc utility function and the true values is likely due to the extra
degree of freedom this utility function offers to accommodate drivers’ preferences and behavior in this case.

On the Santander network, we also examine the extended equivalence by comparing flows generated from the gravity model
and the route choice model. Based on the calibrated utility function, we iteratively adjust the 𝑎𝑖, 𝑏𝑗 to balance the production and
attraction totals. After four iterations, the relative error is below 0.01%, and Fig. 8 presents the regression results of the estimated
and ground truth OD flows in the Santander case. The virtually perfect fit shows that, indeed, the gravity model produces an excellent
approximation of the ground truth OD flows, given the correct utility (PSL) specification is known. This of course will not be the case
in real-life.
13 
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Fig. 7. Extended equivalence on Four pairs network.

Fig. 8. Extended equivalence on Santander network.
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4.3. Validation and benchmark of the overall OD estimation method

In this subsection, we examine the base case performance of the proposed method on the two simulation networks and benchmark
t against a similar methods reported in the literature (Krishnakumari et al., 2020; Ma and Qian, 2018). In the section hereafter we
nalyze the sensitivity of our method to variations of the utility function, different demand levels and other aspects that may affect
erformance. We denote the base case demand level as 1.0 (100%), and utilize the PSL utility function in the ‘‘psc’’ form. To add
ome realism, we add (around 20%) noise to the sampled data with which we calibrate the PSL parameters to mimic a sampling
ias in doing travel surveys.

We first discuss the base case performance of our method presented here. On the Four-pairs network, the test reveals a Root Mean
quare Error (RMSE) of ≈12 vehicles per 5 min and a Mean Absolute Percentage Error (MAPE) of ≈22%, indicating a reasonably

accurate estimation performance—this MAPE is in the same order as the measurement noise. To provide a visual representation of
the results, we present the regression plot in Fig. 9(a), which illustrates the relationship between the estimated OD flows and the
true OD flows obtained from the simulator. The plot demonstrates a satisfactory level of agreement between the estimated and true
OD flows, with the majority of the points closely aligning along the diagonal line. In the four-pairs network we observe a slight
overestimation of OD flows. Overall, however, the estimated OD flows closely match the true OD flows, validating the effectiveness
of the estimation method in capturing the underlying traffic patterns.

The base case for the Santander network is similar to the one used in Krishnakumari et al. (2020), in which the choice set
size is 𝑁∗ = 1, implying the two shortest paths algorithms compute the same path set. In the dimensionality reduction step, we
use only the first principal component, which in this simulated case explains almost 100% variance in the prior OD flow. This no
coincidence, the OD matrix is generated by multiplying a static OD matrix with a time series model, so that the dynamics of all
OD flows in this network are similar. This degree of predictability is an idealization. It implies that the reduced problem has only
48 decision variables, whereas the number of equations equals 48 × (334 + 295) = 25,392: a now severely over-determined problem.
The consolidated solution of the reduced problem is then expanded as the final estimate.

The results are presented in Fig. 9(b). The corresponding RMSE and MAPE of the estimates are 0.14 veh/5 min and 23.5%,
indicating a generally satisfactory performance for estimating dynamic OD flow in the granularity of 5 min. These correspond with
the results in Krishnakumari et al. (2020). In contrast to the Four-pairs network, in the Santander case, particularly the larger OD
flows appear to be slightly underestimated by our method.

We now compare our proposed method to a second data driven time-dependent origin–destination (OD) estimation method
proposed in Ma and Qian (2018). Also this method uses high-granular (5 min) traffic data (link counts and speeds) and uses machine
learning techniques to enhance the estimation. In Ma’s method, K-shortest paths is used to generate path sets, and a Logit-based
route choice model is used to map the OD flows to paths. A data-driven method for estimating the dynamic assignment ratio (DAR)
is then proposed. The method solves the dynamic OD estimation problem by solving an ordinary least square (OLS) problem that
minimizes the deviation between flow counts and mapped OD flows, in which the only constraint is flow non-negativity. Like our
method, this method combines a wide variety of methods that formulates and solves the problem as a linear system, it requires
observations only without the need for a prior OD matrix or the notion of an equilibrium assignment.

To rigorously compare methods, we conduct experiments on both the Four-Pairs network and the Santander network. Within the
implementation of the benchmark method, Yen’s K shortest path algorithm is applied to generate 5 shortest paths per OD pair, and
the conventional Logit route choice model with path travel time as the only attribute is used to compute the path shares. Finally an
iterative method is applied to solve the OLS. According to the results, the method from Ma and Qian (2018) produced estimates with
RMSE of 16.26 and MAPE of 27.27% on the Four-Pairs network, which is close to but slightly worse than our proposed method. The
advantage of our method seems to come from the usage of path sets with less overlap and a slightly better ‘‘assignment’’ (a utility
function that better matches the one that generated the data). On the Santander network, the differences are significant: without
the usage of PCA, the OLS method now has to solve a severely underdetermined linear system: there are 295 + 334 independent
equations for no less than 13,689 unknowns. In this case, this leads to overestimation of the OD flows, whereas our method produces
a reasonable estimation. The comparison is illustrated in Fig. 9.

Not unexpectedly, these results suggest that particularly a dimension reduction technique is critically important to reliably
estimate OD matrices using a data driven method. Our approach in this sense is robust: it generates a reliable prior OD flow based
on the extended equivalence, and the use of PCA subsequently enables us to solve even a severely underdetermined problem on
large-scale networks.

4.4. Sensitivity analysis

Based on the performance presented in base case experiments, in this section, we analyze the OD estimation performance
by varying factors such as demand levels, and critical variables within each methodological component, including shortest path
algorithm parameter, utility configuration and calibration noise in PSL, PCA usage and number of components to be used.

First, on the Four-pairs network, we assess the impact of different PSL utility function forms and demand levels on the estimation
accuracy. This analysis examines the variations in estimation error while jointly considering different utility function forms with
varying numbers of attributes and three different demand levels. The results of the sensitivity analysis are presented in Fig. 10,
which consists of three sub-figures, each representing one demand level. The demand level in base case is level 2, and the level
1 and 3 case is formed by multiplying the demand curve in Fig. 4(b) by 0.75 and 1.25, respectively. From Fig. 10 we observe

that the choice of utility function form has a minor impact on the estimation error, with the ‘‘psc’’ utility function form performing
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Fig. 9. Base case regression plots on the simulated networks.

slightly better than the other two forms, ‘‘ttonly’’ and ‘‘multi’’. However, the overall differences in estimation error among the utility
function forms are relatively small. As the demand level increases, the estimation error exhibits a mild and generally linear increase,
indicating a positive correlation between demand level and estimation error.

The differences in estimation error between the utility function forms become more pronounced as the demand level rises.
Under the highest demand level of 3 (factor 1.25), where a bottleneck link in the (Four-pairs) network causes congestion and queue
build-up, the estimation performance remains stable and satisfactory. The estimation error, as measured by MAPE, ranges from 25%
to 40% for different utility functions.

Considering the marginal differences in estimation error between the different utility function forms, we omit this test on the
Santander network and focus on varying with other variables.

Specifically, on the Santander network, we compare the model performance using different shortest path algorithms (i.e., LP and
ESX) as well as different sizes of the path set (i.e., different 𝐾 parameter). This test is not conducted on the Four-pairs network as
the path set generation is too simple there. Fig. 11 presents the errors with respect to different number of shortest paths for each
algorithm. Fig. 11(a) shows that the RMSE of LP slightly decreases with more shortest paths included, whereas that of ESX remains
stable. However, the vertical axis range is small, and the performance decrease in terms of RMSE for a 2000% increase in 𝑁∗ (from
1 to 20) is less than 0,2%, which demonstrates its scalability. In terms of relative OD flow errors the picture is opposite: Fig. 11(b)

∗
shows that the MAPE of LP increase almost an order (10 times) over the same (20-fold) 𝑁 increase, whereas ESX remains stable in
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Fig. 10. Sensitivity on PSL utility function and demand level on the Four-pairs network.

Fig. 11. Comparison of different shortest path algorithms.

terms of MAPE for 𝑁∗ > 5. This is because the ESX algorithm uses a link removal mechanism, which increasingly reduces network
connectivity and naturally results in a smaller number of viable shortest paths than LP. When specifying 𝐾 equals to 20 for each OD
pair, the average number of paths generated per OD by ESX is 5.5, whereas that of LP is 17.1. In general, we can conclude that the
two algorithm do not show significant differences in terms of estimation accuracy, which is partly due to the overdetermination.
In practice, choosing either algorithm is workable from a computational perspective, so we recommend also weighing in which
algorithm entails more realistic path choice behavior for a given network.

Next, we test the effect of noise in PSL parameters also on the Santander network. Fig. 12 shows the combined results in terms
of two error metrics, RMSE and MAPE. Fig. 12(a) shows that the RMSE increases with the noise level (horizontal axis), whereas
it fluctuates with different number of shortest paths (vertical axis). There is a clear mutual effect in that both mean and variation
in RMSE over different choice set sizes are proportional to noise level. Fig. 12(b) shows that the relative error (MAPE) produces a
more monotonic error surface over the two factors (noise vs number of shortest paths).

Combining the above results, we can see that the increased number of shortest paths worsens the estimation accuracy on ODs
with small flows, which causes the extremely high MAPE values for combinations where RMSE values remain small. These results
suggest that the method is less sensitive to the number of shortest paths than to errors in the PSL specification. This is reasonable
since different numbers of shortest paths changes the coefficient matrix of an overdetermined system like the one here. In such an
17 
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Fig. 12. Sensitivity on number of shortest path and PSL noise.

overdetermined system, the effect (whether positive or negative) of errors in path set sizes will be averaged. This leads to a fairly
robust response in OD estimation quality. In contrast, the noise due in the PSL specification (i.e. the errors in our assumptions on
how travelers trade off paths) is not averaged but simply added when expanding the reduced solution to a full solution.

Subsequently, we test the usage and parameters in the PCA algorithm on the Santander network. In the base case, we apply PCA
on the prior OD flow (Eq. (20)) to transform the under determined problem into an over determined problem. The error induced by
this direct PCA procedure can be attributed to disregarding principal components that explain only minor portions of the variance
in this multivariate prior OD ‘‘signal’’. The fewer components we choose to retain, the more variance we potentially disregard (this
depends of course on the complexity of the dynamics!).

As discussed in Section 2.3.4, in Krishnakumari et al. (2020) PCA is applied on the production and attraction time series (rather
than on the prior OD), and we will refer to this procedure here as ‘‘bounding PCA’’. This approach differs from ‘‘direct PCA’’ as it
does not directly reduce the rank of the equation matrix but rather provides an upper bound to constrain the solution space. The
error associated with bounding PCA (i.e. an incorrect upper bound) differs from that of direct PCA. To support this claim, Fig. 13
illustrates the evidence through a cumulative plot. The x-axis represents the difference between the provided upper bound and
the true value, while the 𝑦-axis represents the cumulative percentage of all dynamic OD flows. The plot clearly demonstrates that
approximately 72% of the dynamic OD matrix elements are incorrectly bounded, indicated by instances where the upper bound is
lower than the true value (i.e., upper bound minus true value is less than zero). Although nearly 50% of the inaccurately bounded
elements exhibit errors of less than 1 veh/5 min, the cumulative effect can be significant. Under conservation constraints, errors in
the upper bound will transfer to other elements and lead to a more biased estimation. Therefore, we conclude that the bounding
PCA procedure computes bounds that are in many cases too tight to recover the true OD flows.

Finally, the impact of different number of principal components (1∼5) when performing PCA is also examined. As shown in
Fig. 14, our two error metrics both increase when using more principal components. This is a network specific result. In the
Santander case, the temporal dynamics are highly predictable, since the OD matrix is ‘‘dynamised’’ by imposing common seasonal
patterns for all OD pairs. This implies that the added principal components add little explained variance, whereas the number of
decision variables double for each additional principal component. Put differently, more principal components reduce the over
determinancy of the reduced system. This naturally decreases estimation accuracy since there is more ‘‘wiggle room’’ to consolidate
the (unnecessary additional) constraints.

So counter-intuitively, less information yields more accurate results in this specific case.
Sensitivity analyses on more realistic large(r) scale networks are needed to scrutinize the conditions under which this is valid.

Such analysis must also include sensitivity to the dimensionality reduction technique itself (PCA) and its assumptions. First, as
mentioned in Section 2, PCA is a linear dimension reduction technique, which may inadvertently lead to loss of relevant information.
In real networks, many possible sources of non-linearities (disregarded by PCA) exist, including traffic management and control,
heterogeneous demand dynamics (e.g. due to mixing of commuting, business and leasure trips, short and long trips), mode-captivity
due to specific network topology, land use and demographics, and there may exist strong limitations in the observability of all these
(and other) factors.

Second, PCA — due to its close relation to LS — is highly sensitive to outliers, which may exacerbate such biases. Moreover,
PCA may is not a favorable dimension reduction technique for multi-variate time series with large differences in magnitude, as is
the case with OD flows (few large ones, many small ones). There are, however, many possibilities to ‘‘robustify’’ PCA, e.g. Mateos
and Giannakis (2012), and there is a wide variety of other — more sophisticated — dimension reduction techniques that could be
applied (Velliangiri et al., 2019; Krishnakumari et al., 2020).
18 
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Fig. 13. Cumulative density of the difference between computed upper bound using the ‘‘bounding PCA’’ method, and the actual upper bound for all OD flows.

Fig. 14. Sensitivity on number of principal components.

5. Conclusions

This paper presents a novel approach to data-driven time-dependent origin–destination (OD) estimation by introducing a joint
origin–destination-path choice formulation, which provides a theoretical foundation for and generalizes an earlier data driven OD
estimation method. We demonstrate that the equivalency between the multinomial logit model for combined O–D choice and the
doubly constrained gravity model, also extends to this combined O–D-path choice model. The advantage of this extended equivalence
principle is that it allows us to combine different assimilation techniques in a single framework: (1) shortest path set computation
using static and dynamic link and network properties (2) predicting a ‘‘prior OD matrix’’ using path-shares production and attraction
totals, and (3) scaling/constraining this prior using link flows.

The paper also introduces a generic and powerful solution for OD estimation that assimilates and reconciles different data sources,
allowing for the construction of sufficient constraints to estimate the target OD matrix. The solution is applicable to large networks
and utilizes dimensionality reduction techniques when necessary. The performance and sensitivity of the proposed methodology are
comprehensively evaluated on various networks:

• We test two K shortest path algorithms, LP and ESX, on five classical and publicly available networks of varying scales. The
results indicate that LP generally scales better and outperforms ESX.

• We empirically validate the extended equivalency on two simulation networks — a toy network (Four-pairs), and a large
validated network of the Spanish city Santander — thus confirming the methodology’s theoretical foundation.

• On the same two networks we demonstrate that the overall OD estimation framework shows good accuracy and reliability.
• Sensitivity analysis reveals that the framework is not overly sensitive to the methodology’s major assumptions, that is, the

complexity of the utility function, and the number of shortest paths. This is amongst other things due to the inherent ability
of the applied algorithms (ESX and LP) to determine the number of paths on an OD-specific basis.

• We finally compare two ways of applying principal component analysis — one proposed in this paper and one proposed in a
previous contribution — to reduce the complexity and solve the OD estimation problem for large networks. The results suggest
the new method is superior.

We see several interesting directions for further research. First, we need to validate and scrutinize all assumptions under a wider
array of network sizes, topologies and characteristics, degrees of congestion, demand scenarios, and data availability scenarios, to
name just a few dimensions. Second, since the path sets produced by LP and ESX shortest path algorithms produce such different
19 
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Table 3
List of Notations and Variables.

Variables Meaning

𝐗 (Dynamic) OD matrix
�̃� Observational data for inferring OD matrix
𝐲(𝐗) Mapping function of OD matrix to network observations
𝑓1(⋅, ⋅) Distance function expressing the distance of the estimated matrix to a prior OD matrix
𝑓2(⋅, ⋅) Distance between the traffic data observed and the data predicted by the OD matrix
A Abstract assignment (simulation) model
𝜃 Parameter of assignment model depicting assumptions
 Set of links (edges) in the network 𝑒𝑎 ∈ 
 Set of nodes (vertices) in the network 𝑣𝑖 ∈ 
 Set of origin and destination nodes  ∈ 
𝐺( , ) Directed graph with nodes (vertices)  and links (edges) 
𝑃𝑖 Production of origin zone 𝑖
𝐴𝑗 Attraction of destination zone 𝑗
𝑓𝑖𝑗 Deterrence function between zone 𝑖, 𝑗
𝑈𝑖𝑗 Utility function between zone 𝑖, 𝑗
𝑋𝑖𝑗

𝑏 Utility attribute 𝑏 between zone 𝑖, 𝑗
𝛼𝑏 Weight for attribute 𝑏 in utility function
𝑥𝑖𝑗 OD flow between zone 𝑖, 𝑗
𝑥𝑘𝑖𝑗 OD flow between zone 𝑖, 𝑗 during interval 𝑘
𝑥𝑘𝑖𝑗𝑛 Flow of path 𝑛 between zone 𝑖, 𝑗 during interval 𝑘
𝑎𝑖 , 𝑏𝑗 Adjustment factors in doubly-constrained gravity model
𝛽𝑖𝑗 Fraction of travelers choosing destination 𝑗 from origin 𝑖
𝑇 𝑇𝑖𝑗 Travel time between zone 𝑖, 𝑗
𝜖𝑖𝑗 Gumbel distributed error in Logit model
𝑘 Index for time periods
𝑁𝑎 Number of links on path 𝑟
𝑁𝑖 Number of origin zones
𝑁𝑗 Number of destination zones
𝑁𝑗 Number of paths between zone 𝑖, 𝑗
𝑁𝑘 Number of time periods
𝑁𝑝 Number of principal components used in PCA
𝑁𝑥 Number of OD zones
𝑘
𝑖𝑗 Path set between zone 𝑖, 𝑗 in interval 𝑘

𝛼𝑟
0 Path-specific utility constant (PSC)

𝛼𝑝𝑠 Penalization weight for path size factor
𝛼𝑤 Weight of link property attribute in utility function
𝛼𝜏 Weight of travel time attribute in utility function
𝑃𝑆𝑖𝑗𝑛(𝑃𝑆𝑟) Path size factor with 𝛼𝑝𝑠 the penalization weight
𝑙𝑎 Length of link 𝑒𝑎
𝐿𝑟 Length of path 𝑟
𝛿𝑎𝑟 Link-path incidence variable
𝐂,𝐂′ Coefficient matrices of (reduced) system of equations
𝐛,𝐛′ Right-hand side constants of (reduced) system of equations
𝐙 Principal component matrix
𝐕 Principal component loading matrix
𝜇𝐗 Mean vector of the original data
𝑤𝑘

𝑎 , 𝑤
𝑘
𝑟 Link, route properties during interval 𝑘

𝜏𝑘𝑎 , 𝜏
𝑘
𝑟 Link, route travel time during interval 𝑘

𝑢𝑘𝑎 Link speed during interval 𝑘
𝜂𝜏 Value-of-time
𝜆 Weight used in the ESX algorithm for link removal

detour ratio’s and average costs they arguably correspond to different underlying behavioral mechanisms. For example, a possible
behavioral interpretation of the ESX algorithm (which progressively prunes the network of already considered links) is that travelers
consider alternative partial paths — or conversely, consider avoiding specific links —, rather than consider a set of full paths, as
rguably is the case for the LP algorithm. To the best of our knowledge there is no evidence for either hypothesis, so this might be
n interesting question to explore. Although LP is faster, both algorithms are computationally feasible for large networks.

Additionally, we could explore the idea of dynamic path sets (in which different choice set sizes may apply over time). Along the
same lines, we could explore the effects of more diverse utility formulations. We could even explore multi-modal extensions of the
method. A final methodological avenue of research lies in the dimension reduction (feature selection) techniques we use to reduce
the OD solution space. In this paper we compare two alternative ways to use principal component analysis for this purpose, one
on the prior OD matrix and the other on the production and attraction data time series. There are many other more sophisticated
dimension reduction techniques than PCA to explore and test under different scenario’s of demand dynamics and data availability.
While this paper introduces and validates the core ideas and methodology using simulation data, we are committed to further

examining how variations in data quality, including empirical data, will affect our method in subsequent studies.
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ppendix. Variables and notations

Throughout the paper, we use normal lower case to represent scalars and variables, and upper case for certain special variables
e.g., 𝑇𝑇 for travel time, 𝑃 ,𝐴 for production and attraction). Bold lower case and upper case denote vectors and matrices,
espectively. Calligraphic upper case letters are used to represent sets (see Table 3).
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