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a b s t r a c t

Sampling in control applications is increasingly done non-equidistantly in time. This includes applica-
tions in motion control, networked control, resource-aware control, and event-based control. Some of
these applications, like the ones where displacement is tracked using incremental encoders, are driven
by signals that are only measured when their values cross fixed thresholds in the amplitude domain.
This paper introduces a non-parametric estimator of the impulse response and transfer function of
continuous-time systems based on such amplitude-equidistant sampling strategy, known as Lebesgue
sampling. To this end, kernel methods are developed to formulate an algorithm that adequately takes
into account the bounded output uncertainty between the event timestamps, which ultimately leads
to more accurate models and more efficient output sampling compared to the equidistantly-sampled
kernel-based approach. The efficacy of our proposed method is demonstrated through a mass–spring
damper example with encoder measurements and extensive Monte Carlo simulation studies on system
benchmarks.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

In system identification and control design, it is common to as-
ume that the signals are sampled equidistantly in time. However,
t is now well known that event-based sampling schemes can lead
o improvements in control performance, as well as in resource
fficiency (Åström & Bernhardsson, 2003). In particular, one of
he most popular event-based sampling methods is Lebesgue
ampling. The event associated with this sampling scheme is
he crossing of fixed thresholds in the amplitude domain of
he continuous-time signal of interest. Such type of sampling
an be found in incremental encoders (Merry, van de Molen-
raft, & Steinbuch, 2013), and also in networked control systems,
here the goal is to reduce resource utilization without affecting
etwork throughput (Liu, Wang, He, & Zhou, 2014).
The Lebesgue sampling paradigm provides knowledge on what

mplitude band the signals are located in at each instant of time.
n this sense, this type of sampling is related to quantization,
ince a measurement (or lack of) at any instant in time that
oes not correspond to an event can be viewed as a quantized

✩ The material in this paper was partially presented at the 22nd IFAC
World Congress (IFAC 2021), July 9–14, 2023, Yokohama, Japan. This paper was
recommended for publication in revised form by Associate Editor Tianshi Chen
under the direction of Editor Alessandro Chiuso.
∗ Corresponding author.

E-mail addresses: r.a.gonzalez@tue.nl (R.A. González), k.tiels@tue.nl
K. Tiels), t.a.e.oomen@tue.nl (T. Oomen).
ttps://doi.org/10.1016/j.automatica.2024.111648
005-1098/© 2024 The Authors. Published by Elsevier Ltd. This is an open access artic
measurement. There has been extensive work on how to iden-
tify systems based on quantized measurements. The maximum
likelihood estimator based on the Expectation–Maximization al-
gorithm (EM) has been derived for finite impulse response (FIR)
systems in Godoy, Goodwin, Agüero, Marelli, and Wigren (2011),
while Chen, Zhao, and Ljung (2012) develop a regularized FIR
estimator for binary measurements. An approximate maximum
likelihood approach is studied in Risuleo, Bottegal, and Hjal-
marsson (2019), and Bottegal, Hjalmarsson, and Pillonetto (2017)
propose a kernel-based method for estimating FIR models. Other
approaches have been pursued for the identification of IIR sys-
tems (Piga, Mejari, & Forgione, 2021; Pouliquen, Pigeon, Gehan, &
Goudjil, 2019), ARX systems (Agüero, González, & Carvajal, 2017),
and event-based sampling of FIR models with binary observa-
tions (Diao, Guo, & Sun, 2018).

The problem that is addressed in this paper is the estimation of
non-parametric continuous-time models from Lebesgue-sampled
output data. To this end, we seek estimators that can (1) provide
a continuous-time impulse or transfer function estimate from
possibly noisy and short data records, and (2) exploit the entirety
of the output information contained in the irregular sampling
instants and the bounded intersample behavior. Our interest in
continuous-time models stems from the fact that they can pro-
vide physical interpretability, which is relevant when dealing
with applications such as the identification of positioning systems
with incremental encoder sensing (Strijbosch & Oomen, 2022).
Furthermore, direct identification of continuous-time systems can
deal with non-uniformly sampled data, which can be the case
le under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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or event-based sampling schemes, and they can incorporate the
ull continuous-time input information in the construction of the
stimators (González, Rojas, Pan, & Welsh, 2021), which solves
he bias problems encountered in discrete-time when the inter-
ample behavior of the input is misspecified (Schoukens, Pintelon,
Van Hamme, 1994).
Although there has been recent work on non-parametric iden-

ification for continuous-time systems using kernel methods that
se non-equidistantly sampled data (Pillonetto & De Nicolao,
010; Scandella, Mazzoleni, Formentin, & Previdi, 2022), these
orks do not incorporate the intersample behavior information
rovided by a Lebesgue sampling framework, i.e., the lower and
pper bounds on the unsampled output in between the time-
tamps are not exploited. In Kawaguchi, Hikono, Maruta, and
dachi (2016) and Pouliquen, Goudjil, Gehan, and Pigeon (2016),
ontinuous-time systems with Lebesgue-sampled and binary out-
uts are considered, although such results are only valid for para-
etric models with fixed model structures. On the other hand,

he approaches in Bottegal et al. (2017), Chen, Zhao, and Ljung
2012) and Risuleo et al. (2019) for identification with quantized
ata might be used for obtaining a non-parametric discrete-
ime representation that can later be converted into continuous-
ime. However, this conversion is in many cases ill-defined or
ll-conditioned, which drives the need for directly estimating a
ontinuous-time system from the input–output data (Garnier &
oung, 2014).
In summary, the main contributions of this paper are:

(C1) We introduce a loss function (in terms of the continuous-
time impulse response to be estimated) that incorporates
the intersample information we obtain through Lebesgue
sampling. This loss function, after regularization, has an
optimum that can be characterized by the generalized
representer theorem (Schölkopf, Herbrich, & Smola, 2001;
Wahba, 1990), and is related to a maximum a posteriori
(MAP) optimization problem for Lebesgue-sampled data.

(C2) Once the kernel-regularized estimator is written as a finite
linear combination of representers, we propose an itera-
tive procedure that delivers the associated weights based
on the MAP Expectation–Maximization (MAP-EM) method.
We also contrast this procedure with a midpoint approach
for identification with quantized data (Risuleo et al., 2019).

(C3) The hyperparameters that describe the kernel and noise
variance are computed from an Empirical Bayes (EB) ap-
proach. We make the high-dimensional integral optimiza-
tion problem tractable by

(C3.1) Providing closed-form expressions for the kernel ma-
trix in terms of the input samples and the kernel
hyperparameters, which is made explicit for the
stable-spline kernels, and

(C3.2) Proposing an EM algorithm that iteratively com-
putes the optimal hyperparameter vector. Such algo-
rithm is presented in a matrix-inversion-free form by
leveraging Cholesky and QR factorizations. While the
noise variance estimate has a closed-form expression
for its iterations, the other two hyperparameters
are computed via a simple non-convex optimization
step.

(C4) We obtain a closed-form expression for the estimated
continuous-time transfer function in terms of the repre-
senter weight vector, the input samples, and an integrated
version of the kernel in the frequency domain.

(C5) The proposed method is tested via Monte Carlo simula-
tions.
2

Fig. 1. Lebesgue sampling of a signal z(t) with threshold amplitude h = 1. The
red dots indicate the sampling instants and thresholds being crossed, and the
dashed gray rectangles show the regions where z(t) is known to be located.

The remainder of the paper is organized as follows. In Sec-
tion 2, the problem of interest is stated, and practical aspects of
Lebesgue-sampled system identification are covered. Section 3 in-
troduces the ideas and notation behind non-parametric continuou
time system identification using kernel methods. Section 4 con-
tains the main contribution of this paper, namely, the derivation
of a kernel-based estimator for continuous-time, linear and time-
invariant (LTI), Lebesgue-sampled systems. Numerical studies
are presented in Section 5, while Section 6 provides concluding
remarks.

Preliminary results related to the current manuscript are pre-
sented in González, Tiels, and Oomen (2023). The present paper
substantially extends these results by (1) providing a MAP inter-
pretation to the novel cost function being minimized for identifi-
cation, (2) introducing an initialization for the MAP-EM approach,
(3) proposing more computationally efficient optimization prob-
lems for the hyperparameters and (4) deriving the estimated
transfer function description in closed form. Additional simula-
tion setups are tested and presented in this paper, and all proofs
can be found in the Appendix.

2. Setup and problem formulation

2.1. System and setup

Consider the following LTI, asymptotically stable, strictly causal
continuous-time system

x(t) =
∫
∞

0
g(τ )u(t − τ )dτ , (1)

where u is the input, which is assumed to be a causal function in
t (i.e., u(t) = 0 for t < 0) that is deterministic and exogenous,
and g is the impulse response of the LTI system. The transfer
function of the LTI system, defined as the Laplace transform of
the impulse response g , is denoted as G(s), where s denotes
he Laplace complex variable. The frequency response function
ssociated with g is given by evaluating G(s) at s = iω.
The input u(t) is assumed to be perfectly known, i.e., there

is no noise in its measurement. The output x(t) is corrupted by
additive noise v(t), which results in a continuous-time signal
z(t) = x(t)+ v(t). Assume that we have access to NL data points
of the Lebesgue-sampled version of z(t), as in Fig. 1. That is,
given the threshold amplitude h > 0 and the continuous-time
ignal z(t), we have at disposal the sampled sequence {yL(tl)}

NL
l=1

that satisfies yL(tl) = z(tl). The sampling times (or time-stamps)
t , l = 1, 2, . . . ,N , are the instants in time at which z(t) crosses
l L
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fixed threshold hml, with ml ∈ Z. Formally, we characterize the
ime-stamps by

tl = min {τ ∈ (tl−1,∞) : z(τ ) = mh for some m ∈ Z} ,
ml = z(tl)/h.

Without loss of generality and for simplicity only, we assume
that t1 = 0. The goal is to obtain an estimate of the continuous-
time system g using the continuous-time input {u(t)}t∈[0,tNL ] and
the Lebesgue-sampled output data {yL(tl)}

NL
l=1.

2.2. Practical framework for Lebesgue-sampled system identification

Incremental encoders operate on this kind of sampling princi-
ple (Merry et al., 2013). In practice, a light source emits a beam
directed towards a slotted disk or strip, and the output of two
light detectors are recorded. These two signals allow the encoder
to detect the direction of the rotation. These signals are evaluated
at a high sampling rate compared to that of the input sequence,
typically generated by a zero-order-hold (ZOH) device (Strijbosch
& Oomen, 2019). The quantity h represents the uncertainty in
the measurements of the incremental encoder, which is inversely
proportional to its resolution. In low-resolution incremental en-
coders, the quantization effect produced by h, in conjunction
with the non-equidistant nature of the sampling mechanism,
can impact the performance and design of iterative learning
control (Strijbosch & Oomen, 2022) or repetitive control (Kon,
Strijbosch, Koekebakker, & Oomen, 2021).

With this context in mind, we define ∆ > 0 as the (equidis-
tant) sampling period of the amplitude detection mechanism. The
following assumption is set in place:

Assumption 1. For every time instant t = i∆, the lower and
upper threshold levels associated with the unsampled output
z(t) are known. The lower bound at each time instant t = i∆
is denoted as ηi, and it can be deduced unambiguously from
{yL(tl)}

NL
l=1.

Thus, a set-valued signal y(i∆) can be defined as

y(i∆) = Qh{z(i∆)} := [ηi, ηi + h) (2)

for i = 0, 1, . . . ,N , with N := ⌊tNL/∆⌋ + 1. To simplify our
notation, we denote {z(i∆)}Ni=0 as the vector z0:N , and we define
the set describing the output measurements as

Y1:N =
{
[z1, . . . , zN ]⊤ ∈ RN

: zi ∈ y(i∆), i = 1, . . . ,N
}
. (3)

Assumption 1 eradicates possible inconsistencies that could occur
if z(t) is tangential to one of the threshold levels. Note that we do
not assume that each time-stamp tl is a multiple of ∆. Although
such assumption is commonly used in intermittent sampling se-
tups (Kon et al., 2021), and is well justified if the sampling period
∆ is sufficiently small, we do not require it for the proposed
method.

Assumption 2. The sampled disturbance v(i∆) affecting the out-
put z(i∆) is an additive discrete-time independent and identically
distributed (i.i.d.) Gaussian noise of zero mean and variance σ 2

(see Fig. 2).

The noise variance is not known beforehand, and the user
may decide on estimating it from the data or selecting a value
according to expert knowledge. For the former approach, it is
possible to estimate the noise variance from other tools from
identification with quantized measurements (Godoy et al., 2011),
or to include it as an extra hyperparameter to be estimated in the
proposed kernel approach.
3

Fig. 2. Block diagram of the Lebesgue sampling scheme. Note that Qh delivers
a set-valued signal y, which is used for identification.

2.3. Problem formulation

Taking into consideration Assumptions 1 and 2, the prob-
lem we are interested in is as follows: Assume that the causal
continuous-time input {u(t)}t∈[0,tNL ] is perfectly known, i.e., there
is no noise in its measurement, and that we have access to
{y(i∆)}Ni=0, i.e., the upper and lower threshold bounds of z. The
goal is to estimate the underlying continuous-time impulse re-
sponse g (or its transfer function G(s)) from the input and output
data.

Remark 1. In many cases, the input in an identification experi-
ment is generated by a zero-order-hold device of sampling period
∆u, with ∆u ≫ ∆. When ∆u is a multiple of ∆, we may consider
the sampled input signal {u(i∆)}Ni=0, instead of a fully continuous-
time description for u. Clearly both viewpoints describe the same
nput and are thus equivalent if the intersample behavior of
he sampled input is known and correctly incorporated in the
onstruction of the algorithms.

emark 2. We will only consider the output data that are
roduced by the input starting from t = 0. Since the system to be
dentified is assumed strictly causal, we discard the first output
easurement y(0).

. Kernel-based continuous-time system identification: Pre-
iminaries

This section provides the essential tools behind non-parametric
ontinuous-time system identification using kernel methods, as
etailed in, e.g., Dinuzzo (2015), Pillonetto, Dinuzzo, Chen, De
icolao, and Ljung (2014). In particular, we introduce the nota-
ion that is subsequently employed in formulating the proposed
on-parametric estimator for Lebesgue-sampled systems.
For unquantized data, estimating the continuous-time impulse

esponse g in a kernel-based framework equates to solving a
inimization problem of the form

min
g∈G

(
N∑
i=1

L
(
z(i∆), (g ∗ u)(i∆)

)
+ γ ∥g∥2G

)
, (4)

here G is a Hilbert space of functions, L(·) is a loss function of
hoice (not necessarily convex (Schölkopf et al., 2001)), and γ is
positive scalar regularization parameter. If the input signal and
he space G are such that all the pointwise evaluated convolutions
re bounded linear functionals, then there exist unique represen-
ers ĝi such that (g ∗ u)(i∆) = ⟨g, ĝi⟩G . With this in mind, the
epresenter theorem (Dinuzzo & Schölkopf, 2012; Schölkopf et al.,
001) indicates that any optimal solution of (4) can be expressed
s a finite linear combination of the form

ˆ (t) =
N∑

ciĝi(t), (5)

i=1
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here the optimal vector of coefficients ĉ := [c1, c2, . . . , cN ]⊤ is
btained by

ˆ = argmin
c∈RN

(
N∑
i=1

L
(
z(i∆),K⊤i c

)
+ γ c⊤Kc

)
, (6)

nd Ki denotes the (i + 1)th column of the kernel matrix K.
his matrix is assumed to be non-singular. More explicitly, the
epresenters can be described in terms of the kernel function
: R+ × R+ → R, which fully characterizes the Reproducing
ernel Hilbert Space (RKHS) G. Indeed,

ˆi(t) =
∫
∞

0
u(i∆− τ )k(t, τ )dτ ,

nd the entries of the kernel matrix are given by

ij =

∫
∞

0

∫
∞

0
u(i∆− ξ )u(j∆− τ )k(ξ, τ )dτdξ . (7)

One degree of freedom in this framework is the selection of
the RKHS space G, which is equivalent to choosing a suitable
kernel k with hyperparameters β. There are several kernels for
ontinuous-time impulse response estimation (Pillonetto et al.,
014). For example, the stable-spline one of order q ∈ N is

defined as

k(t, τ ) = sq(e−βt , e−βτ ),

where the hyperparameter β is a strictly positive scalar, and sq
is the regular spline kernel of order q, given by Scandella et al.
(2022, Prop. 2.1)

sq(e−βt , e−βτ ) =
q−1∑
r=0

γq,r

{
e−β(2q−r−1)te−rβτ if t ≥ τ ,

e−β(2q−r−1)τ e−rβt if t < τ,
(8)

where

γq,r =
(−1)q+r−1

r!(2q− r − 1)!
.

In practice, the hyperparameters β, the positive gain γ in (4),
and in some cases the noise variance σ 2, are tuned according
to some fitting criteria such as cross validation, the SURE ap-
proach (Pillonetto & Chiuso, 2015) or Empirical Bayes (Pillonetto,
Chen, Chiuso, De Nicolao, & Ljung, 2022).

Remark 3. The regularization problem in (4) admits a proba-
bilistic interpretation in terms of MAP estimation. Under such
perspective, the impulse response g is modeled as a Gaussian
rocess with covariance being described by the kernel k. This
nterpretation is extended in Section 4.1 of this work to the con-
ext of Lebesgue sampling. For more details on the probabilistic
nterpretation for LTI systems, see Pillonetto et al. (2022, Chap.
).

. Non-parametric estimation using Lebesgue-sampled data

In this section, the non-parametric estimator for systems with
ebesgue-sampled data is developed. We divide this section in six
arts, which are enumerated next:

(1) The Representer theorem for Lebesgue-sampled systems
and its MAP interpretation;

(2) A method for initializing the computation of the weights
related to each representer;

(3) The computation of the optimal weights using the MAP-EM
algorithm;

(4) The kernel-hyperparameter optimization;
(5) A transfer function description for the impulse response

estimate; and

(6) The full algorithm written in pseudocode.

4

4.1. Representer theorem for Lebesgue-sampled systems

The first goal, which constitutes Contribution C1 of this paper,
is to derive a loss function L for estimating the impulse response
via (4) which incorporates the set knowledge of the output, and to
show how it relates with a MAP estimation problem. With that in
mind, a Bayesian interpretation of kernel-based methods (Kimel-
dorf & Wahba, 1970; Pillonetto et al., 2022) involves computing
the MAP estimate

ĝMAP(t) = argmax
g

(
ℓ(g)+ log p(g)

)
, (9)

where p(g) is the prior distribution of g , which is assumed to
be a zero-mean Gaussian process with covariance E{g(t)g(s)} =
k(t, s)/γ , and ℓ(·) denotes the log-likelihood function

ℓ(g) = log p(Y1:N |g).

Intuitively, the MAP estimator (9) is related to the optimization
problem in (4) by letting thea priori probability density of g be
proportional to exp(−γ ∥g∥2G), and letting L in (4) be the negative
log-likelihood of the measured output data. The main issue that
is addressed in this paper is that this argument does not directly
hold for g in our case, since the probability density of g is not
well defined as it belongs to an infinite-dimensional function
space (Bogachev, 1998). To this end, a key idea taken here is that
it is possible to formalize this intuition by considering the MAP
estimator of any finite set of samples (g ∗ u)(ti) that contains the
(noiseless) observation set {(g ∗ u)(i∆)}Ni=1. The following lemma
uses this insight to provide a formal justification to the choice
of L needed for estimating Lebesgue-sampled continuous-time
systems.

Lemma 1. Suppose that Assumptions 1 and 2 hold, and that g is
a zero-mean Gaussian process that is independent of {v(i∆)}Ni=0 and
has covariance E{g(t)g(s)} = k(t, s)/γ . Let {ti}N+Mi=1 be a finite set
f real values such that ti = i∆ for i = 1, 2, . . . ,N, and where
{ti}N+Mi=N+1 are arbitrary. Define the vector of noiseless output values

x = [(g ∗ u)(t1), (g ∗ u)(t2), . . . , (g ∗ u)(tN+M )]⊤.

urthermore, define ğ as the solution of the optimization problem

min
g∈G

(
−2

N∑
i=1

log
[∫ ηi+h

ηi

e
−1
2σ2

[
zi−(g∗u)(i∆)

]2
dzi

]
+ γ ∥g∥2G

)
, (10)

here ∥ · ∥G is the RKHS norm induced by the kernel k. Then, the
AP estimate of x given Y1:N is

ˆ = [(ğ ∗ u)(t1), (ğ ∗ u)(t2), . . . , (ğ ∗ u)(tN+M )]⊤.

roof. For the following analysis, define the first N elements in
x as x1. The analysis with the first N elements is the relevant and
non-standard step, since the MAP estimator of the last M −N el-
ments in x can be derived with a similar methodology to that in
roposition 5 of Aravkin, Bell, Burke, and Pillonetto (2014), and is
herefore omitted. We first must compute the likelihood function
og p(Y1:N |x1). To this end, the probability density function of the
output prior to sampling z1:N = [z(∆), . . . , z(N∆)]⊤ (conditioned
on x1) is given by

p (z1:N |x1) =
1

(2πσ 2)
N
2

N∏
i=1

e−
1

2σ2

[
z(i∆)−(g∗u)(i∆)

]2
,

where we have used the fact that the additive noise is Gaus-
sian and i.i.d. by Assumption 2. Therefore, the probability mass
function of Y1:N is

p Y |x
( 1:N 1)
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= P
(
z(∆) ∈ [η1, η1 + h), . . . , z(N∆) ∈ [ηN , ηN + h)|x1

)
=

1

(2πσ 2)
N
2

N∏
i=1

∫ ηi+h

ηi

e−
1

2σ2

[
zi−(g∗u)(i∆)

]2
dzi. (11)

From (11), the log-likelihood function ℓ(x1) can be written as

ℓ(x1) =
N∑
i=1

log
[∫ ηi+h

ηi

e−
1

2σ2

[
zi−(g∗u)(i∆)

]2
dzi

]
+ C,

where C is a known constant. On the other hand, x1 is zero-mean
and normally distributed with covariance that has entries given
by

E{(g ∗ u)(i∆)(g ∗ u)(j∆)}

= E
{∫

∞

0
u(i∆− τ )g(τ )dτ

∫
∞

0
u(j∆− ξ )g(ξ )dξ

}
=

∫
∞

0

∫
∞

0
u(i∆− τ )u(j∆− ξ )E{g(τ )g(ξ )}dτdξ

= Kij/γ . (12)

This leads to the following MAP estimator for x1:

x̂1 = argmax
x1

(
ℓ(x1)+ log p(x1)

)
= argmax

x1

(
N∑
i=1

log
[∫ ηi+h

ηi

e
−1
2σ2

[
zi−(g∗u)(i∆)

]2
dzi

]
−

γ x⊤1 K
−1x1

2

)
,

nder the representation (g ∗ u)(i∆) = K⊤i c for i = 1, 2, . . . ,N ,
we obtain that x̂1 = Kĉ, where

ĉ = argmax
c∈RN

(
N∑
i=1

log
[∫ ηi+h

ηi

e
−1
2σ2

(
zi−K⊤i c

)2
dzi

]
−

γ c⊤Kc
2

)
. (13)

his is precisely the optimal weighting of the representers that
escribe the solution of (10) via the representer theorem. This
ompletes the proof. □

Lemma 1 provides a relation between the impulse response
inimization problem in (4) and the MAP estimator in a Lebesgue-
ampling framework. More precisely, we have shown that the
ollowing choice of loss function for when the output is Lebesgue-
ampled(
y(i∆), (g ∗ u)(i∆)

)
= 2

N∑
i=1

log
[∫ ηi+h

ηi

e
−1
2σ2

[
zi−(g∗u)(i∆)

]2
dzi

]
leads to a MAP estimator of the noiseless output of the system
prior to Lebesgue sampling. Since the integer M in Lemma 1 is
arbitrary, (ğ ∗ u)(t) represents a MAP estimator of the noiseless
output for any time instant t ∈ [∆, ∆N].

The following subsections are focused on how to compute the
minimizer of (10), and how to choose a specific kernel accord-
ing to the Lebesgue-sampled data. The optimization problem in
(10) does not have an explicit form as the Riemann sampling
counterpart, i.e., the point-valued output case, Pillonetto et al.
(2022). However, the representer theorem indicates that any
optimal solution of (10) can anyway be expressed as a finite
inear combination of the representers ĝi of the form (5) with
ĉ being given by (13). Next, we cover how to compute ĉ, the
ptimal weighting of the representers ĝi, for a fixed kernel k and
yperparameters γ and σ 2.

.2. Optimal weights with MAP-EM

In this subsection, we present a MAP-EM algorithm to obtain
n iterative procedure that computes (13). The derivation of this
 P

5

iterative procedure, which ensures the computation of a local
maximum of the cost in (13) under general conditions as a gen-
eralization of the standard EM approach (McLachlan & Krishnan,
2007; Wu, 1983), constitutes Contribution C2 of this paper. The
approach consists of relating (13) to the MAP of a specific FIR
model in discrete-time, to later apply the EM algorithm (Demp-
ster, Laird, & Rubin, 1977) tailored for MAP estimation. This
relation is made evident in the following lemma.

Lemma 2. Consider the following model

z(i∆) = K⊤i c+ e(i∆), (14a)

(i∆) = Qh{z(i∆)}, (14b)

here e(∆), . . . , e(N∆) are i.i.d. Gaussian with variance σ 2, and
i, i = 1, 2, . . . ,N, is assumed known. Assume that c in (14a) has a
aussian prior distribution, with zero mean and covariance (γK)−1.
hen, the MAP estimator for c is given by ĉ in (13).

roof. See Appendix A.1. □

By Lemma 2 we can view the computation of the weights
ˆ in a MAP-EM framework if we set the unquantized data z1:N
s our hidden variable. In other words, we can optimize the a
osteriori density for c, which is exactly the objective function in
13), by iteratively (1) computing the conditional expectation of
he log complete-data posterior density given the set measure-
ents Y1:N and the current estimate of ĉ (i.e., the E-step), and

ater (2) performing a maximization step (M-step). These two
teps are outlined in Algorithm 1. Note that this method departs
rom the standard EM method in the objective function of the
aximization step, which here includes the log prior density. The
-step is computed using a result from quantized FIR maximum
ikelihood estimation, while the M-step including the log prior
ensity is presented in Theorem 1.

Algorithm 1 MAP-EM algorithm for the computation of ĉ in (13)
1: Select an initial estimate ĉ(1), a maximum number of

iterations Miter, and a tolerance factor ϵ

2: j← 1, flag← 1
3: while j ≤ Miter and flag = 1 do
4: E-step: Compute the expectation

Q (c, ĉ(j))=E
{
log p(z1:N,Y1:N |c)|Y1:N, ĉ(j)

}
. (15)

5: M-step: Solve the optimization problem

ĉ(j+1) = argmax
c∈RN

(
Q (c, ĉ(j))−

γ c⊤Kc
2

)
. (16)

6: if
∥ĉ(j+1) − ĉ(j)∥2
∥ĉ(j)∥2

< ϵ then

7: flag← 0
8: end if
9: j← j+ 1

10: end while

Lemma 3 (Godoy et al., 2011, Lemma 5). Consider the discrete-time
model (14). The Q function in (15) satisfies

Q (c, ĉ(j)) =
−1
2σ 2

N∑
i=1

∫ ηi+h

ηi

(zi − K⊤i c)
2p(zi|y(i∆), ĉ(j))dzi + C,

here C is a constant.

roof. See Godoy et al. (2011). □
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heorem 1. The M-step in (16) is equivalent to

ĉ(j+1) = (K+ γ̃ I)−1z̃(j), (17)

here γ̃ = γ σ 2, and with the ith entry of z̃(j) being given by

z̃(j)i = K⊤i ĉ
(j)
+

√
2
π
σ

(
exp

{
−(b(j)i )2

}
− exp

{
−(b(j)i +

h
√
2σ

)2
})

erf
[
b(j)i +

h
√
2σ

]
− erf

[
b(j)i
] ,

(18)

here b(j)i := (ηi − K⊤i ĉ
(j))/(
√
2σ ), and the error function erf[x] is

defined by

erf[x] =
2
√

π

∫ x

0
e−t

2
dt.

Proof. See Appendix A.2. □

Theorem 1 reveals that the optimal weights ĉ can be computed
from successive regularized least squares expressions. These have
the same form as the standard solution for the optimal weights
for unquantized data (Pillonetto et al., 2022, Theorem 7.3), but
with an iteration-varying output vector z̃(j). Interestingly, z̃(j)i can
be interpreted as the conditional mean of z(i∆) given the avail-
able quantized data and the current weight vector ĉ(j); see Eq. (38)
of Appendix A.2 for this interpretation.

Remark 4. The iterations provided by the M-step in Theorem 1
require an initial estimate ĉ(1). To this end, by noting that z̃(j)i ∈

[ηi, ηi+h) for all i = 1, 2, . . . ,N , we may follow a best worst-case
approach and set

ĉ(1) = (K+ γ̃ I)−1z̃(0), (19)

with the ith entry of z̃(0) being the midpoints of each quantization
level, i.e., z̃(0)i = ηi + h/2. This initialization coincides with
the approach suggested in Risuleo et al. (2019) for constructing
an approximate maximum likelihood estimator under quantized
data.

4.3. Kernel hyper-parameter optimization

Here we consider the marginal likelihood method for com-
puting an appropriate hyperparameter vector, also known as the
Empirical Bayes approach. This approach, which has been proven
useful in other contributions on kernel system identification (Bot-
tegal et al., 2017; Pillonetto & De Nicolao, 2010; Pillonetto et al.,
2014; Scandella et al., 2022), proposes to estimate the hyper-
parameter vector ρ = [β⊤, γ , σ 2

]
⊤ by solving the maximum

likelihood problem

ρ̂EB = argmax
ρ∈Γ

p(Y1:N |ρ), (20)

where Γ denotes the admissible space of hyperparameters, which
must consider γ , σ 2 > 0. To describe such optimization problem
more explicitly, we first compute the probability density function
of the output prior to Lebesgue sampling. This expression can be
obtained directly by exploiting the fact that the additive noise is
Gaussian and independent of g (which is also assumed Gaussian,
and satisfies (12)), thus leading to

z1:N |ρ ∼ N (0,Kβ/γ + σ 2I), (21)

where we have made explicit the dependence of the kernel
matrix K on the kernel hyperparameter vector β. Therefore, the
Empirical Bayes estimator for ρ is given by

ρ̂EB = argmax
1√

2
ρ∈Γ det(2π [Kβ/γ + σ I])
6

×

∫
z∈Y1:N

exp
{
−

1
2
z⊤(Kβ/γ + σ 2I)−1z

}
dz, (22)

where Y1:N is defined in (3). This non-convex optimization prob-
lem involves an N-dimensional integral, which is hard to compute
in general (see, e.g., Bottegal et al., 2017; Chen, Zhao, & Ljung,
2012). The intractability is here solved by optimizing (22) with
EM along similar lines as in the previous subsection. For brevity,
we derive the EM iterations jointly (both E and M steps) in
Theorem 2.

Theorem 2. The following iterative procedure is guaranteed to
converge with probability 1 to a (local or global) maximum for the
cost in (22):

ρ̂
(j+1)
= argmin

ρ∈Γ

(
log det(Sρ)+ tr{S−1ρ Q̄(j)

}
)
, (23)

where Sρ := Kβ/γ+σ 2I, and Q̄(j) is the second moment of z1:N given
the data and the jth iteration of ρ̂, i.e.,

Q̄(j)
= E{z1:Nz⊤1:N |Y1:N , ρ̂

(j)
}. (24)

Proof. See Appendix A.3. □

Remark 5. The Q̄(j) matrix in (24) cannot be computed in closed-
form in general. In this paper, we extract samples of a multi-
variate truncated Gaussian distribution using the minimax tilting
algorithm in Botev (2017) and we approximate the expectation
in (24) via Monte Carlo integration.

The iterations in (23) to solve (22) can possibly be ill-
conditioned and computationally costly to compute. In particular,
the kernel matrix K, with elements described in (7), is known to
be difficult to compute for continuous-time system identification
due to the presence of integrals instead of sums in the discrete-
time case (Dinuzzo, 2015; Scandella et al., 2022). Here we provide
the necessary details to explicitly write the elements of this
matrix for any kernel k in terms of samples of an input with
zero-order hold intersample behavior (recall Remark 1), which is
later used in Theorem 3 for constructing more computationally
efficient iterations for solving (22). The following lemma and its
corollary (Corollary 1) constitute Contribution C3.1 of the paper.

Lemma 4. Consider the kernel matrix K with entries described in
(7). If u(t) is constant between the time instants t = 0, ∆, 2∆, . . . ,

N∆, then K admits the decomposition

Kβ = ΦOβΦ
⊤, (25)

where Φ is given by

Φ =

⎡⎢⎢⎣
u(0) 0
u(∆) u(0)

...
. . .

u([N − 1]∆) u([N − 2]∆) · · · u(0)

⎤⎥⎥⎦ , (26)

nd the matrix Oβ ∈ RN×N has entries

Oβ,ij =

∫ ∆i

∆[i−1]

∫ ∆j

∆[j−1]
k(ξ, τ )dτdξ . (27)

Proof. See Appendix A.4. □

Corollary 1. Consider the kernel matrix K with entries described in
(7), with k being the stable-spline kernel of order q in (8). If u(t) is

constant between the time instants t = 0, ∆, 2∆, . . . ,N∆, then K
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dmits the decomposition Kβ = ΦOβΦ
⊤, where Φ is given by (26)

nd the matrix Oβ ∈ RN×N has entries

Oβ,ij =

q−1∑
r=0

γq,re−β∆(2q−1)max{i,j}

β2r(2q− r − 1)

{
a(β) if i = j,
bi−j(β) if i ̸= j,

where

a(β) =
2[(2q− r − 1)+ reβ∆(2q−1)

− (2q− 1)eβ∆r
]

(2q− 1)
,

i−j(β) = e−β∆r(1−|i−j|)(eβr∆
− 1)(eβ∆(2q−1)

− eβ∆r ).

roof. Direct from replacing k(ξ, τ ) in (27) for (8) and solving
he integrals. □

emark 6. The continuous-time setting provides substantial
reedom compared to discrete-time approaches for incorporating
he intersample behavior of the input signal. Although Lemma 4
nd Corollary 1 are exact only for zero-order hold inputs, these
esults can be extended in exact form (at the expense of more
omputations but avoiding numerical integration techniques), to
ny input with a specified intersample behavior (e.g., first-order
old, or B-splines used in a generalized hold framework Arria-
ada & Yuz, 2008). Throughout this paper, only ZOH is consid-
red; extensions to other interpolation schemes are conceptually
traightforward.

The description for K in Lemma 4 is now used to rewrite the
terations in (23) by considering an adequate QR factorization
f the data at hand. For the following, we consider the change
f variable γ̃ = γ σ 2 and compute the Cholesky factorizations
β/γ̃ = LρL⊤ρ and Q̄(j)

= C(j)C(j)⊤, where Lρ and C(j) are up-
er triangular matrices with non-negative diagonal entries. We
ntroduce the QR factorization[
ΦLρ C(j)

I 0

]
= Qρ

[
R1,ρ R2,ρ
0 R3,ρ

]
, (28)

here Qρ is an orthogonal matrix (not to be confused with Q̄(j) in
24)), and R1,ρ , R3,ρ are upper triangular matrices of dimension
× N . Without loss of generality, we assume that they have

ositive diagonal entries. Note that the following identities are
atisfied:

R⊤1,ρR1,ρ = L⊤ρ Φ⊤ΦLρ + I, (29a)

R⊤1,ρR2,ρ = L⊤ρ Φ⊤C(j), (29b)
⊤

2,ρR2,ρ + R⊤3,ρR3,ρ = C(j)⊤C(j). (29c)

heorem 3 provides a straightforward implementation for com-
uting the EM iterations of Theorem 2, which constitutes Contri-
ution C3.2 of this paper.

heorem 3. The iterative procedure in (23) for computing ρ̂EB in
22) is equivalent to[
ˆ̃γ (j+1)

β̂
(j+1)

]
= argmin

γ̃ ,β

(
N log

(
∥C(j)
∥
2
F − ∥R2,ρ∥

2
F

)
+ 2 log det(R1,ρ)

)
, (30)

ˆ
2(j+1)

=
1
N

(
∥C(j)
∥
2
F − ∥R2,ρ̂(j+1)∥

2
F

)
, (31)

here ∥ ·∥F is the Frobenius norm, R1,ρ and R2,ρ are computed from
28), and C(j) is the Cholesky factor of Q̄(j) in (24).

roof. See Appendix A.5. □
 (

7

emark 7. The expressions derived in Theorem 3 are related to
he Empirical Bayes hyperparameter estimator computations for
egularized least-squares in Chen and Ljung (2013) and González,
ojas, and Hjalmarsson (2021). In fact, in the absence of Lebesgue
ampling, we would have Q̄(j)

= z1:Nz⊤1:N , C
(j)
= z1:N , and the

QR factorization in (28) is now a thin QR factorization (Horn &
Johnson, 2012, Thm 2.1.14) that provides alternative closed-form
expressions for computing the hyperparameter estimator in one
iteration using similar formulas to (30) and (31). Contrary to the
Riemann-sampling case, this work requires the EM algorithm to
make the Empirical Bayes optimization tractable.

4.4. Transfer function description

The final theoretical contribution of this paper (Contribution
C4) is the derivation of a more explicit expression for the esti-
mated transfer function. Explicit expressions for general stable-
spline kernels have been reported in Scandella et al. (2022) for
unquantized output data with fully continuous-time inputs:

Proposition 1. The transfer function associated to the minimizer
of (10) can be written as

Ĝ(s) =
N∑
l=1

ĉlĜl(s), (32)

where {ĉl}Nl=0 is computed from (13), and

Ĝl(s) =
∫
∞

0
K (s; τ )u(l∆− τ )dτ , (33)

ith K (s; τ ) being the Laplace transform of the kernel function
(t, τ ).

roof. See Scandella et al. (2022). □

A similar expression to (32) also holds for this framework, as
he only difference can be observed in the computation of the
eights and the hyperparameters of the kernel (but not of the
tructure of the kernel itself). However, under the zero-order hold
ssumption on the input signal, we can provide an alternative
epresentation of (32) for which the software implementation
s easier and that does not rely on approximations of the in-
ersample behavior of the input. This representation is stated in
emma 5.

emma 5. Consider the optimization problem in (10), where G is
he RKHS induced by a kernel k. The transfer function associated to
he minimizer of (10) can be written as

ˆ (s) = ĉ⊤ΦK(s),

here ĉ is computed from (13), Φ is defined in (26), and K(s) is a
ector of size N with entries Kl(s) given by the Laplace transform of
he integrated kernel, i.e.,

l(s) =
∫
∞

0

(∫ ∆l

∆[l−1]
k(t, τ )dτ

)
e−stdt. (34)

roof. See Appendix A.6. □

orollary 2. If the RKHS G is induced by the stable-spline kernel
f order q, then the transfer function associated to the minimizer of
10) can be written as Ĝ(s) = ĉ⊤ΦK(s), where ĉ is computed from

13), Φ is defined in (26), and K(s) is a vector of size N with entries
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l(s) given by

Kl(s) =
q−1∑
r=0

γq,re−lβ∆(2q−r−1)(eβ∆(2q−r−1)
− 1)

β(s+ rβ)(2q− r − 1)

+
(−1)qβ2q−1e−l∆(s+β[2q−1])(e∆(s+β[2q−1])

− 1)

(s+ β[2q− 1])
∏2q−1

k=0 (s+ kβ)
.

Proof. Direct from replacing k(t, τ ) in (34) for (8) and solving the
integrals. □

In summary, the estimated transfer function of the Lebesgue-
sampled continuous-time system of interest can be computed
in a straightforward manner after the hyperparameter vector ρ

and representer weighting vector ĉ are obtained. Both of these
quantities have been proven to be computable from separate EM
iterations in Theorems 3 and 1, respectively.

4.5. Algorithm

To conclude this section, the full algorithm for non-parametric
identification of Lebesgue-sampled continuous-time systems is
described in Algorithm 2. For simplicity we replace the hyperpa-
rameter γ for γ̃ in the description of the hyperparameter vector
ρ.
Algorithm 2 Kernel-based non-parametric identification for
Lebesgue-sampled continuous-time systems

1: Input: u0:N−1,Y1:N , initial hyperparameter estimate ρ̂
(1)
=

[ ˆ̃γ (1), β̂
(1)⊤

, σ̂ 2(1)
]
⊤, maximum number of MAP-EM iterations

Miter
2: Form Φ as in (26)
3: for j = 1, 2, . . . ,Miter do
4: Compute Q̄(j) from (24) using the minimax tilting algo-

rithm in Botev (2017)
5: Factor Q̄(j)

= C(j)C(j)⊤ and O
β̂
(j)/ ˆ̃γ (j)

= L
ρ̂(j)L⊤

ρ̂(j)

6: Perform the QR factorization in (28)
7: Obtain ρ̂

(j+1)
= [ ˆ̃γ (j+1), β̂

(j+1)
, σ̂ 2(j+1)

]
⊤ from (30) and (31)

8: end for
9: Compute initial estimate ĉ(1) from the midpoint approxima-

tion in (19)
10: for j = 1, 2, . . . ,Miter do
1: Obtain ĉ(j+1) from (17) with K, γ̃ and z̃(j) computing using

ρ̂
(Miter + 1)

12: end for
13: Output: estimated transfer function Ĝ(s) = ĉ(Miter+1)⊤ΦK(s),

with K(s) computed from (34) using β̂
(Miter+1).

Remark 8. Similarly as in lines 2 to 10 of Algorithm 1, instead of
performing a fixed number of iterations, the iterations could be
stopped after a stopping criterion is satisfied (line 6 in Algorithm
1). In case of the loop in lines 3 to 8 in Algorithm 2, this stopping
criterion is defined as ∥ρ̂(j+1)

− ρ̂
(j)
∥2/∥ρ̂

(j)
∥2 < ϵ, while in case

f the loop in lines 10 to 12 in Algorithm 2, it is defined as
ĉ(j+1)−ĉ(j)∥2/∥ĉ(j)∥2 < ϵ, where the values of ϵ could be different

in each stopping criterion.

5. Simulations

The performance of the novel non-parametric estimator is
tested on a series of extensive Monte Carlo simulations.
8

Fig. 3. Input and output signals of the system (35) corresponding to 8 [s] of
one Monte Carlo run.

5.1. Practically relevant example

We consider a mass–spring–damper system with transfer
function given by

G(s) =
1

ms2 + ds+ k
, (35)

ith mass m = 0.05 [kg], damping coefficient d = 0.2 [Ns/m],
nd spring constant k = 1 [N/m]. The output is sensed with
eriod ∆ = 0.1 [s], and h = 1 [m]. The input is a Gaussian
hite noise sequence of standard deviation 5 [N] passed through
zero-order hold device with period ∆u = 3 [s]. The output
rior to the Lebesgue sampling is computed using the lsim com-
and in MATLAB with sampling time 0.1[s], which delivers exact
oiseless output values since the input is a zero-order hold signal.
ne hundred Monte Carlo runs are performed with a varying
nput and an additive Gaussian white noise prior to the Lebesgue
ampling with standard deviation 0.05[m]. Each run has a total
ime duration of 30 [s] (i.e., 300 data points are sensed prior to
ebesgue sampling), and on average NL = 69 output samples are
btained after sampling per run.
Three estimators are tested: the kernel-based continuous-time

on-parametric estimator with equidistantly-sampled data (Pil-
onetto & De Nicolao, 2010; Scandella et al., 2022) using the
table-spline kernel of order 1 and the midpoint estimate z(i∆) ≈
i + h/2 as output data (ĝrie), this same estimator but using the
oisy output z(i∆) prior to Lebesgue sampling as output data
ĝor), and the proposed approach (Algorithm 2 of this paper,
ˆleb). Note that the oracle estimator ĝor cannot be implemented
n practice, since we do not have direct knowledge of the sys-
em output before the event-sampler. This estimator is different
rom the commonly-denominated oracle estimator that uses the
nattainable kernel k(τ , ξ ) = g(τ )g(ξ ) (Chen, Ohlsson, & Ljung,
012). We measure the performance of each estimator with the
it metric

it = 100
(
1−
∥x̂j − x∥2
∥x− x̄1∥2

)
,

where x is the noiseless output sequence (prior to Lebesgue
sampling), x̂j is the simulated output sequence using the jth
impulse response estimate, and x̄ is the mean value of x. The
proposed estimator uses the stable-spline kernel of order 1 with a
maximum number of EM iterations Miter = 40, and 1000 samples
of a multivariate truncated Gaussian distribution are obtained to
compute Q̄(j) in (24).

A typical data set is shown in Fig. 3. Note that the task of
the proposed estimator is particularly challenging, since the over-
shoot of the output signal z is rarely captured in the y signal band
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Fig. 4. Boxplots of the fit metric for the case study, Section 5.1. The Lebesgue-
sampling-based estimator ĝleb achieves a better performance than the Riemann
pproach ĝrie .

ue to the coarse grid produced by the threshold level h. To show
he statistical performance of each estimator, we present the
oxplots of the fit metric for each estimator in Fig. 4. A graphical
llustration of the proximity of the estimated frequency responses
o the frequency response of the true system is presented in Fig. 5,
hich shows 20 Bode magnitude plots of the frequency response
stimates (obtained via Corollary 2) of each method, obtained
rom 20 noise realizations. As expected, the proposed approach
chieves on average a better fit than the estimator that only uses
he midpoint values ηi+ h/2 as output. The ĝleb estimator is only
lightly outperformed by the oracle estimator, despite having a
ow resolution for the output measurement mechanism and a 77%
eduction in output data samples on average.

emark 9. An additional test has been conducted to assess the
ecessity of EM iterations for computing the optimal weights
ˆ. Under the same experimental conditions as above, we have
ompared the fit of the Lebesgue approach employing the initial
stimate (19) for the weight vector against the fit achieved with
he estimator computed from the EM iterations outlined in Theo-
em 1. We have observed that incorporating EM iterations for the
eight vector has led to a better fit in 96 out of 100 Monte Carlo
uns. This suggests that performing EM iterations for computing
he weight vector is crucial for achieving the best performance.

.2. Effect of the threshold amplitude h

The threshold amplitude plays an important role in the ac-
uracy of any system identification method, since it is directly
elated to the size of the set uncertainty of the output measure-
ent. The system in (35) is identified under the same experimen-

al conditions as Section 5.1, but now with 0.1[m] as standard
eviation of the additive noise. Six different values of h are tested,
nd for each value, one hundred Monte Carlo runs are recorded.
The boxplots in Fig. 6 show that the performance of the stan-

ard (Riemann) non-parametric estimator severely deteriorates
s the threshold amplitude h grows. In sharp contrast, the pro-
osed estimator remains accurate even when h is large compared
o the amplitude range of the unsampled output. In Table 1, we
ave registered the average number of effective samples that
re obtained for each simulation study. These numbers confirm
he advantage of Lebesgue sampling over equidistant sampling
n terms of resource efficiency, since the correct utilization of the
et-uncertainty in the Lebesgue sampling strategy can lead to a
 d

9

Fig. 5. Bode magnitude plots of 20 Monte Carlo runs (black), compared to the
true frequency response (red). Upper plot: equidistantly-sampled approach (Pil-
lonetto & De Nicolao, 2010); middle plot: proposed method; lower plot: oracle
method (unattainable). The Bode plots of the Lebesgue-sampling approach,
obtained via Lemma 5, show much less variability than the Riemann approach
over the Monte Carlo runs, and are comparable to the estimates produced by
the oracle method. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Average number of output samples retrieved from the Monte Carlo experi-
ments for each threshold distance h. For reference, the number of samples
for the equidistantly-sampled estimator is 300.
h [m] 1 1.2 1.5 1.8 2 2.5

Samples 79.5 69.2 59.7 51.7 47.5 38.5

sevenfold reduction in output data used in the identification pro-
cess (from 300 to 38.5) with only minor performance detriment
compared to Riemann sampling with h = 1.

5.3. Other benchmark systems

To show that the proposed estimator also performs well un-
der different system setups, the next tests consider three more
systems:

GA(s) =
−6400s+ 1600

s4 + 5s3 + 408s2 + 416s+ 1600
,

GB(s) =
27
20

−2000s3 − 3600s2 − 2095s− 396
1350s4 + 7695s3 + 12852s2 + 7796s+ 1520

,

GC(s) =
−3.025s3 − 15.676s2 − 32.802s− 88.827

s4 + 16.52s3 + 65.534s2 + 235.01+ 292.948
,

all of which have been used as benchmarks in other works on
continuous-time system identification methods (Scandella et al.,
2022). In particular, the Rao–Garnier system (GA(s) in this work)
as been tested in numerous works (Garnier, 2015; Ljung, 2009;
ao & Garnier, 2002), and is particularly challenging to identify
ue to its damped step response and stiffness. All systems have
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Fig. 6. Boxplots of the fit metric for different values of threshold amplitude h, Section 5.2. Riemann sampling (left), Lebesgue sampling (right). While the estimator
sing the Riemann-sampling approach severely deteriorates its performance for coarser threshold grids, the proposed method produces excellent results for all values
f h in this study.
Fig. 7. Bode magnitude plots of the three systems in Section 5.3. From left to right: GA(s),GB(s) and GC(s).
c

Table 2
Experimental conditions for each system studied
in Section 5.3.

∆ h σ SNR [dB]

GA(s) 0.01 2.5 0.3 28.79
GB(s) 0.03 0.2 0.03 22.82
GC(s) 0.03 0.2 0.03 17.69

been excited by a Gaussian white noise of unit variance passed
through a ZOH with period ∆u = 3[s]. The Bode plots of these
systems are given in Fig. 7, and the experimental conditions that
are tested can be found in Table 2, where we have also included
the signal to noise ratio (SNR) between the output previous to
Lebesgue sampling, z, and the additive noise, v. In Fig. 8, we
ompare the fit metric of the proposed estimator to the Riemann
nd oracle estimators described in Section 5.1 using 100 Monte
arlo runs. The results show that the Lebesgue sampling-based
stimator outperforms the approach with equidistant sampling in
ll the systems considered in this study. Note that although the
xperimental conditions for GA(s) give a better SNR, the perfor-
ance is affected by a large threshold amplitude h compared to

he other cases.

. Conclusions

The approach developed in this paper allows one to accu-
ately identify Lebesgue-sampled systems based on input and
10
output data. The main idea is to use all the available informa-
tion for identification and control when dealing with Lebesgue-
sampled signals. The proposed identification method, which is
inspired by MAP estimation, kernel methods, and the EM al-
gorithm, exploits the set uncertainty information in the out-
put measurements to deliver more accurate models than the
Riemann-sampling approach, while needing much fewer output
samples. Thus, our method can enable systems with incremental
encoders or with intermittent observations to be operated over
less stringent sampling conditions (i.e., larger threshold ampli-
tudes) without a severe loss in modeling accuracy. We have
confirmed the advantages of the proposed algorithm in terms
of statistical performance and resource efficiency in a series of
extensive Monte Carlo simulations.

Acknowledgment

This work is part of the research program VIDI with project
number 15698, which is (partly) financed by the Netherlands
Organization for Scientific Research (NWO).

Appendix

A.1. Proof of Lemma 2

Proof. The MAP estimator for c is computed by

ˆMAP = argmax p(Y1:N |c) p(c)

c∈RN
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Fig. 8. Boxplots of the fit metric for the three systems in Section 5.3. The proposed Lebesgue-sampling approach leads to an important gain in model fit compared
to the Riemann approach in all the benchmark systems of this study.
= argmax
c∈RN

(
−

N
2

log(2πσ 2)−
log det(2πK−1/γ )

2

+

N∑
i=1

log
[∫ ηi+h

ηi

e
−1
2σ2

(
zi−K⊤i c

)2
dzi

]
−

γ c⊤Kc
2

)
, (36)

here we have used the same derivation as for ℓ(x1) in Sec-
ion 4.1 for computing the log-likelihood term. By comparing (36)
o (13), we find that ĉ in (13) is simply the maximuma posteriori
stimate of c within the model in (14). □

.2. Proof of Theorem 1

roof. Since the Q function provided by Lemma 3 is concave in
, it is sufficient to obtain the point(s) which make the gradient
f the objective function equal to zero. The gradient of Q (c, ĉ(j))−
c⊤Kc/2 is given by

∂

∂c

(
Q (c, ĉ(j))−

γ c⊤Kc
2

)
=
−1
σ 2

N∑
i=1

∫ ηi+h

ηi

Ki(K⊤i c− zi)p(zi|y(i∆), ĉ(j))dzi − γKc.

Setting the gradient to zero yields

ĉ(j+1) =

(
N∑
i=1

KiK⊤i + γ σ 2K

)−1 N∑
i=1

Kiz̃
(j)
i , (37)

here we have defined the conditional mean z̃(j)i as

z̃(j)i =

∫ ηi+h

ηi

zip(zi|y(i∆), ĉ(j))dzi, (38)

nd where we have used the fact that, for all i = 1, 2, . . . ,N ,∫ ηi+h

ηi

p(zi|y(i∆), ĉ(j))dzi = 1.

The iterations in (17) are obtained from (37) by rewriting the sum
related to z̃(j)i conveniently and using the fact that
N∑
i=1

KiK⊤i = K2,

which holds since K is symmetric. Finally, the explicit expression
for z̃(j)i in (18) can be obtained directly from expanding the fol-

lowing alternative expression for (18) based on applying Bayes’
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theorem on the conditional expectation in (38):

z̃(j)i =

∫ ηi+h
ηi

zi exp
(
−1
2σ2 [zi − K⊤i ĉ

(j)
]
2
)
dzi∫ ηi+h

ηi
exp

(
−1
2σ2 [zi − K⊤i ĉ(j)]2

)
dzi

. □

A.3. Proof of Theorem 2

Proof. We seek to derive the EM iterations for computing the
maximum likelihood estimate in (20). By setting the latent vari-
able as z1:N , we must compute the following Q function

Q (ρ, ρ̂
(j)) = E

{
log p(z1:N ,Y1:N |ρ)|Y1:N , ρ̂

(j)
}

,

where it can be shown that (cf. Eq. (19) of Godoy et al. (2011))

p(z1:N ,Y1:N |ρ) =
{
p(z1:N |ρ) if z1:N ∈ Y1:N ,

0 otherwise,

which, by exploiting (21), leads to

−2Q (ρ, ρ̂
(j)) =

log det(2πSρ)+ E{z⊤1:NS
−1
ρ z1:N |Y1:N , ρ̂

(j)
}.

The iterations in (23) follow from applying the commutativity
property of the trace function to the expectation above.

The minimization of −2Q (ρ, ρ̂
(j)) with respect to ρ provides

the M-step of the EM iterations for computing a maximum of
the likelihood of interest, which in turn is equivalent to solving
(locally or globally) the optimization problem in (22). □

A.4. Proof of Lemma 4

Proof. Consider the zero-order hold representation (valid for
t ∈ [0, ∆N)),

u(t) =
N−1∑
k=0

u(k∆)1(∆k ≤ t < ∆[k+ 1]), (39)

with 1(·) being the indicator function (i.e., 1 if (·) is satisfied, and
0 otherwise). Thus, we compute

u(i∆− ξ )u(j∆− τ ) =
N−1∑
k=0

N−1∑
l=0

u(k∆)u(l∆)

× 1(∆[i− k− 1] < τ ≤ ∆[i− k] ∧∆[j− l− 1] < ξ ≤ ∆[j− l]).

(40)



R.A. González, K. Tiels and T. Oomen Automatica 164 (2024) 111648

S

I
u
i
s

K

A
U
r

w

t

T
a

t

w
l

ρ

S

f
c

A

P
t
t

G

G

G

G

H

K

K

K

L

ince the integral of interest ranges from 0 < τ, ξ < ∞, the
elements of (40) for i − k ≤ 0 and j − l ≤ 0 can be discarded.
n other words, within the domain of integration, we can write
(i∆ − ξ )u(j∆ − τ ) as (40) but with summation upper limits
− 1 and j− 1 instead of N − 1, respectively. Thus, interchanging
ummation and integration yields

ij =

i−1∑
k=0

j−1∑
l=0

u(k∆)u(l∆)
∫ ∆[i−k]

∆[i−k−1]

∫ ∆[j−l]

∆[j−l−1]
k(ξ, τ )dτdξ .

lternatively, we can write this entry of the kernel matrix as
⊤

j OβUi, where Uj and Ui are the jth and ith columns of Φ⊤,
espectively, and Oβ has entries that are given by (27). Since Oβ

does not depend on i nor j, it is possible to describe the complete
matrix K by stacking the column vectors Uj and Ui, leading to
(25). □

A.5. Proof of Theorem 3

Proof. Let us first rewrite the log det term in (23). Thanks to the
Weinstein–Aronszajn identity (Horn & Johnson, 2012, 1.3.P28),
we have

log det(Sρ) = log det(σ 2I)+ log det(ΦLρL⊤ρ Φ⊤ + I)

= N log σ 2
+ log det(L⊤ρ Φ⊤ΦLρ + I)

= N log σ 2
+ 2 log det(R1,ρ), (41)

where the identity in (29a) has been used in the last step. We now
study the trace term in (23). Note that, by the matrix inversion
lemma,

S−1ρ = σ−2I− σ−2ΦLρ(L⊤ρ Φ⊤ΦLρ + I)−1L⊤ρ Φ⊤,

hich leads to

r{S−1ρ Q̄(j)
} = tr{C(j)⊤S−1ρ C(j)

}

=
tr{Q̄(j)

}

σ 2 −
tr{C(j)⊤ΦLρ(L⊤ρ Φ⊤ΦLρ + I)−1L⊤ρ Φ⊤C(j)

}

σ 2 .

his expression, when written in terms of R1,ρ and R2,ρ via (29a)
nd (29b), is simply

r{S−1ρ Q̄(j)
} =

tr{Q̄(j)
− R⊤2,ρR2,ρ}

σ 2

=
∥C(j)
∥
2
F − ∥R2,ρ∥

2
F

σ 2 , (42)

here we have used the definition of the Frobenius norm in the
ast line. By combining the results in (41) and (42), we reach

ˆ
(j+1)
= argmin

ρ∈Γ

(
N log σ 2

+ 2 log det(R1,ρ)+
∥C(j)
∥
2
F − ∥R2,ρ∥

2
F

σ 2

)
. (43)

ince both R1,ρ and R2,ρ depend on Lρ , which in turn is already
factored by a scalar variable 1/γ , the dependence on σ in the
R matrices is redundant for the optimization above. Therefore,
we can concentrate the cost function by minimizing (43) over σ 2

irst, which leads to (31). Replacing (31) in (43) and neglecting
onstant terms leads to (30), which concludes the proof. □

.6. Proof of Lemma 5

roof. Under the zero-order hold intersample behavior assump-
ion, the input description in (39) permits rewriting the convolu-
ion in (33) as

ˆ l(s) =
l−1∑

u(k∆)
∫ ∆[l−k]

K (s; τ )dτ .
k=0 ∆[l−k−1]

12
Interchanging the integrals above leads to Ĝl(s) being equal to
the lth row of Φ multiplied by K defined in (34). This fact,
together with the representer theorem description (32), leads to
the desired result. □
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