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and Bart van Arem1

Abstract
The present study aims to add to the literature on driver workload prediction using machine learning methods. The main
aim is to develop workload prediction on a multi-level basis, rather than a binary high/low distinction as often found in litera-
ture. The presented approach relies on measures that can be obtained unobtrusively in the driving environment with off-the-
shelf sensors, and on machine learning methods that can be implemented in low-power embedded systems. Two simulator
studies were performed, one inducing workload using realistic driving conditions, and one inducing workload with a relatively
demanding lane-keeping task. Individual and group-based machine learning models were trained on both datasets and evalu-
ated. For the group-based models the generalizing capability, that is the performance when predicting data from previously
unseen individuals, was also assessed. Results show that multi-level workload prediction on the individual and group level
works well, achieving high correct rates and accuracy scores. Generalizing between individuals proved difficult using realistic
driving conditions but worked well in the highly demanding lane-keeping task. Reasons for this discrepancy are discussed as
well as future research directions.

Research into driver workload has been conducted for at
least three decades (1, 2). Recently, research efforts have
shifted to using powerful machine learning (ML) meth-
ods, giving promising results (3, 4). ML methods have
been used for other driver-related classification prob-
lems, such as driver distraction (5), driver interruptibility
(6) or driver identification (7). The present study aims to
fill the gaps in the existing research on predicting driver
workload using ML methods in several ways, as will be
explained in the next paragraphs.

First, ML studies into predicting driver workload
often focus on a binary classification problem (high
workload versus low workload). A more fine-grained
prediction of workload may be desirable to enable adap-
tive interfaces for in-vehicle advice systems (IVIS), sys-
tems that may simplify their content (8), or driver
assistance systems that may incrementally increase their
level of support based on the level of driver workload.
The experiments described in this paper attempt to pre-
dict workload on 7- and 10-point workload scales.

Second, studies to date often use intrusive sensors or
measure variables (e.g., electroencephalogram, EEG)
that are not practical in the driving environment [see for
example (3, 4)]. Additionally, it is unknown how well

results obtained by the high-grade intrusive sensors used
in experiments translate to low-cost sensors. This work
uses low-cost sensors that can be integrated into the real-
world driving environment, and uses measures that can
be obtained non-intrusively. This is important, because
especially low-cost sensors are likely to be integrated into
the driving environment in real-world applications.

Lastly, the models generated in most studies are not
generally publicly available for use by the research com-
munity. The models developed in this study will be made
available for scientific use after publication of results
(https://github.com/paulvangentcom).
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Research Objectives

The previous section outlined the main research gaps
and ways to add to the present literature. This led to the
formulation of three criteria for predicting driver work-
load in the present work. The main goal is to develop a
workload algorithm that (a) has usable accuracy when
predicting multiple workload levels, while generalizing
among individuals; (b) uses data that can be measured
with available low-cost sensors that can be integrated
into the driving environment; and (c) is implementable
on embedded hardware (for example in a smart steering
wheel).

The first criterion (a), predicting workload at a higher
resolution than the binary low/high found in previous lit-
erature, while generalizing among individuals, is
addressed in the experimental design and data analysis
presented in subsequent sections.

The second criterion (b) entails using sensor inputs
from readily available, low-cost sensors that are easy to
implement in the driving environment. By using low-cost
sensors, which are likely to present more noise in the sig-
nal compared with high-end sensors, results will give a
better reflection of real-world performance compared
with studies using high-end sensors. Apart from having
been used successfully in other workload prediction stud-
ies, selected variables should be measurable non-
intrusively in the driving environment. This led to the
selection of heart rate, skin response, blink rate and sev-
eral performance measures [for an overview of the selec-
tion process, see (9)]. This criterion ensures that any
results are directly applicable to in-car settings at a low
cost, and that results obtained are likely to translate well
to real-world applications.

Criterion (c), ensuring the model is implementable on
an embedded system, means it must be efficient both in
memory use and in computational requirements. Two
ML algorithms were selected that can satisfy this criter-
ion: ‘‘Random Forest’’ and ‘‘Support Vector Machine’’
algorithms. Random Forests (10) are computationally
efficient (11) but can have a large memory footprint.
Solutions have been proposed that allow embedded
implementations while maintaining performance (12),
making this a suitable algorithm to use. Support Vector
Machine (13) implementations can suffer from computa-
tional complexity, as well as high memory footprint for
more complex models. Methods have been proposed,
however, that achieve remarkable efficiency increases
without sacrificing performance (14, 15), making SVMs
also a suitable candidate algorithm.

Two experiments were conducted to evaluate the fea-
sibility of the previously defined criteria. First, a simula-
tor experiment was performed, in which workload was
induced using realistic driving situations. Results of this
experiment were explored further using a dataset

obtained from another driving simulator experiment that
induced workload with a demanding lane-keeping task.
At the end of this paper, the results of both experiments
are discussed and future steps are outlined.

Estimating Workload in a Realistic Driving
Scenario Study

To assess the feasibility of predicting driver workload in
realistic driving settings, a simulator study was per-
formed. The main goal was to evaluate the prediction of
multi-level driver workload in realistic driving
conditions.

Methods

Equipment. The study was performed in a fixed-base,
medium-fidelity driving simulator. A dashboard mockup
with three 4K-displays (resolution 4096 * 2160 px) pro-
vided roughly 180� vision. Actuators consisted of a
Fanatec steering wheel and pedals, and a custom blinker
control. The simulation ran in Unity3D. The simulated
vehicle had an automatic gearbox and a top speed of 165
km/h. Figure 1a illustrates the setup.

Physiological data were recorded at 100 Hz, using
low-cost sensors powered by an Atmel ATMega328p
embedded processor board. Heart rate was recorded
using a photoplethysmographic (PPG) method (16) at
the left index finger. Skin response was recorded at the
middle and ring finger of the same hand (see Figure 1b).
Additionally, blink data were recorded using a GoPro
HERO+ camera on the dashboard, running at 1080p
at 30 Hz. Simulator data were logged at 50 Hz.

Simulator Scenarios. Two scenarios were created in
Unity3D, one scenario with situations likely to induce
high workload (‘‘high workload’’ scenario) and one with
situations that are not likely to induce high workload
(‘‘low workload’’ scenario). Road geometry was based
on a part of the Cooperative-ITS (C-ITS) corridor in the
Netherlands: the A67, a two-lane highway between
Eindhoven and Venlo with a speed limit of 130 km/h.
Three weather conditions were designed for each sce-
nario: clear weather, and two levels of fog with visibility
of approximately 150 m (‘‘light fog’’) and below 25 m
(‘‘heavy fog’’). This gave a total of six scenarios.

To accurately design the road geometry, CAD draw-
ings of the road segments were secured from the open
data program of the Dutch government (https://data.o-
verheid.nl). Using Autodesk 3DS Max, the data in the
CAD files were converted to 3D models and textured.
The surrounding terrain was generated using height map
data obtained from the Microsoft Bing Maps API
(https://www.bingmapsportal.com/). Canals and wooded
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Figure 1. Figure showing (a) the simulator setup, (b) physiological sensors, (c) the merging of a platoon of trucks in dense fog, (d) the
accident site at the end of the ‘‘high workload’’ scenario, (e) examples of the raw signal data, (f) the concepts of window size and overlap
factor, and (g) an example of the facial landmark detection and the resulting process of analysing the blink rate signal.
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areas were extracted automatically from satellite ima-
gery, and adjusted by hand if necessary. The location,
shape, and content of traffic signs were inferred from
Google Street View, designed in 3DS Max and manually
placed at the corresponding locations in the scenario.

The ‘‘high workload’’ scenario was 15.9 km in length,
and ran between Eindhoven and Someren. Participants
would encounter several workload-inducing ‘‘events’’
spread out across the scenario. After accelerating across
an on-ramp, the first event was encountered: participants
had to merge into a dense platoon of trucks (4–5 m head-
way, Figure 1c), a maneuver shown to increase workload
on the driver (17). The second event was encountered 2
km downstream and consisted of a segment of slow-
moving traffic in the right lane, designed to nudge the
participants to drive in the left lane. While passing the
slow-moving traffic, an ambulance approached from
behind exhibiting auditory and visual signals, traveling
at the maximum speed legally allowed in the Netherlands
(170 km/h, a maximum of 40 km/h difference from other
traffic). This placed the participant in the demanding sit-
uation of quickly having to find a gap in the much slower
moving lane to the right and perform a merging maneu-
ver. The third event was a game of ‘‘20 questions’’ (18),
intended to simulate an engaging (phone) conversation.
By asking at most 20 polar (yes/no) questions, partici-
pants had to guess which animal, object, or person the
experimenter had in mind. The final event came near the
end of the scenario. The right lane was closed off because
of an accident, with slow-moving (\15 km/h) traffic in
the left lane (Figure 1d). The 20 questions game was
played until the accident site was reached. If participants
finished early, the game was restarted with a different
subject. After this, participants took the next exit and
stopped the car.

The ‘‘low workload’’ scenario consisted of self-paced
driving in light traffic for 20.5 km. The simulated road
was a replica of the A67 road between Someren and
Venlo. There were no events. Participants drove until
reaching a designated exit, where they stopped the car.

Experimental Procedure. Approval for the study was
obtained from the ethics committee at Delft University
of Technology. Participants drove the six scenarios
spread out over three separate days, each day driving
one randomly assigned ‘‘high workload’’ and one ‘‘low
workload’’ scenario. This approach was taken because
physiological measures can vary from day to day, as well
as to avoid a fatigue effect from asking participants to
drive six 10–15-min scenarios consecutively.

In the ‘‘high workload’’ scenario, participants were
asked to rate their experienced mental effort and task dif-
ficulty on a seven-point scale after each event, leading to
six workload data points per run. In the ‘‘low workload’’

scenario, the questions were asked at fixed positions in
the scenario, leading to four workload data points per
run. The exact questions were ‘‘How much mental effort
did the driving task take in the last few moments, on a
scale of 1–7?’’ and ‘‘How difficult was the driving task in
the last few moments, on a scale of 1–7?’’. Scale labels ran-
ged from very low/easy, to very high/difficult, and were
explained to participants before the experiment started.
Note that the study did not use a standardized workload
scale such as the NASA Task Load Index (TLX) or
Rating Scale Mental Effort (RSME), because the intent
was to keep interaction time with and demands on the
driver to a minimum.

Participants who registered for the experiment
received a copy of the informed consent. It was signed
and brought to the first session. After being seated in the
simulator, a relaxation period of 3 min was given to the
participants. This was to allow the physiological mea-
sures of each participant to return to their baseline.
Sensors were attached, after which the signal quality was
checked. A physiological baseline was recorded first.
After the baseline, it was briefly explained to the partici-
pant that there would follow a drive on a segment of the
A67 highway. Participants were instructed to drive at
their own pace, but not exceed the speed limit as indi-
cated on roadside signs. If a participant was unfamiliar
with ‘‘20 questions,’’ a test round was played to familiar-
ize them with the game.

Data Analysis

Participants were asked to rate their mental effort and
driving task difficulty on a seven-point scale. Because
querying the driver might influence workload, the ‘‘high
workload’’ scenario was constructed in such a way that
there was at least 1 min of driving between each two
events, to allow signals to return to baseline. The data
recorded between two events were not used in the analy-
sis. In the case of the ‘‘low workload’’ scenario, 1 min of
data following each question was excluded from the
analysis.

Preprocessing of Physiological Data. An algorithm was devel-
oped to extract the most commonly used features from
the measured heart rate signal (19, 20), using a sliding
window approach (see Figure 1f). The output measures
are divided into time-domain (21) and frequency-
domain measures (22). In the time domain, the measures
included are BPM (beats per minute), IBI (interbeat
interval), MAD (median absolute deviation of intervals
between heart beats), SDNN (standard deviation of
intervals between heart beats), RMSSD (root mean
square of successive differences between neighboring
heart beat intervals), SDSD (standard deviation of
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successive differences between neighboring heart beat
intervals), and the pNN50 and pNN20 (proportion of
differences between successive heart beats greater than
50 ms and 20 ms, respectively). In the frequency domain,
included measures are LF (the low frequency band:
0.04–0.15 Hz), which is related to short-term blood pres-
sure variation, and HF (the high frequency band: 0.16–
0.5 Hz), which reflects breathing rate, and the LF/HF
ratio, a measure of sympathetic–parasympathetic bal-
ance (22, 23).

Skin response consists of a tonic and phasic compo-
nent (24). Tonic represents the long-term, slow variation
in the signal, indicative of general psycho-physiological
arousal (25). Phasic reflects relatively quick responses to
discrete external stimuli, occurring generally 1–3 s after
stimulus onset (25). Power in the frequency spectrum of
skin response between 0.03 Hz and 0.5 Hz has been
linked to short-term workload changes (26). The mean,
max-min difference, MAD (median absolute difference),
and 0.03–0.5 Hz frequency spectrum were extracted from
the GSR (galvanic skin response) signal, using the same
window approach as for heart rate. Frequency spectra
were extracted using a trapezoidal integration of the area
under corresponding frequency bands in the power
spectrum.

Blink data were detected offline from recorded video
data. An algorithm was developed to extract blink num-
ber, blink duration, and interblink interval. It functioned
by detecting 68 ‘‘facial landmarks’’ (27), then calculating
eyelid distance for each frame. Blinks were detected in
the resulting signal by finding large slopes, then finding
the lowest point of reversal. The process is displayed
visually in Figure 1g.

Driver Performance Data. Performance measures reflect
how the control the driver exerts over the vehicle varies
across conditions. The study included steering wheel
angle, steering wheel reversals, speed, variation in lateral
and longitudinal position, and headway and time to col-
lision when available (for more information, see [9]).

Generating Machine Learning Sets. Machine learning sets
were generated from the raw data and labeled based on
self-report data, by varying window size and overlap fac-
tor. Window size refers to how much data is used for the
calculation of features, and overlap factor refers to how
much data any window Wi shares with the previous win-
dow Wi-1. Both concepts are visualized in Figure 1f.
Window sizes of 5, 10 and 30 s, and overlap factors of
0% and 50% were used, leading to a total of six sets.

Model Development and Evaluation. Two different ML algo-
rithms were used: a Random Forest Regressor (RFR),

and a Support Vector Machines Regressor (SVR). The
RFR creates an ensemble (forest) of regression trees in
which each tree is trained on a random subset of the fea-
tures. They have been used in, for example, (28). Support
Vector Machines function by mapping the data to a
higher dimensional space, and solving an optimization
problem to identify a set of hyperplanes that separate the
training data into classes. They have been used in for,
example, (5, 7). With the SVR, the Polynomial kernel
[SVR(poly)], and the Radial Basis Function kernel
[SVR(rbf)] were evaluated. Algorithms that were used
are taken from the SciKit-Learn repository (29).

The resulting models were evaluated using several
metrics. Model error was evaluated using mean absolute
error (AEm) and median absolute error (AEm1/2), both
measures of the accuracy of the predictions. The coeffi-
cient of determination (R2) was also computed as a
goodness-of-fit measure. Performance for class-based
predictions was also evaluated, expressed as correct rate.

Results

Participants. Nineteen participants took part in the experi-
ment. Data from one participant were excluded because
of a failure to understand some tasks, caused by a lan-
guage barrier. This left 18 participants, of whom 12 were
males and six were females. The average age was 34.56
years (SD 10.09). Of the 18 participants, 12 owned a car
and reported using it three to four times a week on aver-
age, and traveling between 2,500 and 15,000 km annu-
ally. All participants held a valid driver’s license. No
simulator sickness severe enough to terminate a driving
session was reported. Reported mental effort and per-
ceived difficulty correlated with weather conditions and
with scenario type independently and in line with expec-
tations, although no interaction effect was present (9).

Individual Models. The training and testing sets for the
individual models were generated by dividing the dataset
of each driver into training and testing sets with an 80%
to 20% split ratio, respectively. This split ratio was cho-
sen to ensure sufficient training data, as individual data-
sets were relatively small.

The results indicated that the models functioned well,
with the RFR outperforming the SVR. For all individual
models with a window size of 5 s and overlap of 0%, the
AEm was 0.343, the AEm1/2 was 0.129, R

2 was 0.679, and
Correct Rate (CR) was 76.30% when predicting discrete
classes, and 93.80% when miss-by-one errors were
allowed (CR+/21). This indicated that, on average,
predictions were off by 0.343, and that half the predic-
tions had an error of less than 0.129, from a total scale of
seven classes. See Table 1 for an overview of all results.
Model performance increased with a larger overlap

van Gent et al 5



factor. This was expected, because a larger overlap cre-
ates a larger training set to fit the model to, and because
a larger overlap factor indicates more shared variance
between adjacent samples. Interestingly, an inverse rela-
tionship between window size and model performance
was observed, contrary to what has been reported previ-
ously (3). Miss-by-one errors indicate predictions that
are ‘‘almost correct,’’ and still contain enough informa-
tion about the true workload states. For example, if
workload is predicted as ‘‘6’’ but the true value is ‘‘7,’’ the
information in the prediction is still useful: in either case
workload is on the high end.

Group Models. The second step was to estimate the model
performance within the entire group. The dataset con-
taining data from all drivers was split into training and
testing sets with a 60% to 40% split ratio. Because the
size of the group dataset was much larger compared with
the individual dataset, a more stringent split ratio could
be chosen while maintaining a sufficiently large training
set.

Results indicated group models performed well. The
AEm for the model with window size 5 s and 0% overlap
was 0.605, the AEm1/2 0.406, R

2 0.661, CR 57.40%, and
CR+/21 90.60%.

Generalizing Group Models. The last step was to assess how
models would perform in a realistic setting, such as a set-
ting in which workload from an unknown driver is

predicted based on data from a pool of other drivers. To
achieve this, data were sampled using a k-fold approach,
with k = Nparticipants. For every ki, the training set con-
sisted of all data except the held out participant ki.
Workload for participant ki was then predicted and
model performance evaluated. This method simulated
how the trained models would perform when predicting
data from previously unseen individuals. This obtained
performance measure reflects real-world settings, in
which it is impractical for models to be trained on all pos-
sible drivers and generalizing power is thus preferable.

Results showed that models did not perform well
when generalizing to unknown drivers. The AEm for all
individual models with window size 5 s and 0% overlap
was 1.522, AEm1/2 was 1.163, R2 was 20.538, CR
20.07%, and CR+/21 55.18%. The strongly negative
coefficient of determination suggests unsatisfactory per-
formance (the mean of the data is a better predictor than
the trained model). The relatively low (though above
chance level, not satisfactory) absolute error rates given
R2 are explained by a class imbalance in the dataset, in
which two classes (workload levels 1 and 2) dominate.
To assess whether this was a possible cause for the poor
performance of the models, data were resampled using
SMOTE (Synthetic Minority Over-Sampling Technique)
(30). This had little discernible effect on the model per-
formance, and it was concluded that low performance
was not caused by the class imbalance in the dataset. It
was also observed that R2 increases slightly with increas-
ing window size, in accordance with earlier studies (3)

Table 1. Performance Metrics RFR Models

Window size 5 s 10 s 30 s

Overlap factor 0% 50% 0% 50% 0% 50%

Individual model
AEm 0.343 0.219 0.431 0.280 0.613 0.492
AEm1/2 0.129 0.565 0.296 0.109 0.490 0.291
R2 0.679 0.8716 0.590 0.794 0.071 0.306
CR 76.30% 85.21% 67.88% 80.77% 49.68% 60.82%
CR + /2 1 93.80% 97.61% 92.93% 96.13% 85.81% 89.55%

Group model
AEm 0.605 0.455 0744 0.553 0.898 0.801
AEm1/2 0.406 0.250 0.565 0.344 0.628 0.652
R2 0.661 0.774 0.564 0.709 0.372 0.504
CR 57.40% 69.57% 46.12% 62.48% 40.47% 43.82%
CR + /2 1 90.60% 93.81% 87.02% 91.42% 80.60% 84.56%

Generalizing model
AEm 1.522 1.536 1.457 1.519 1.375 1.424
AEm1/2 1.163 1.201 1.199 1.253 1.174 1.230
R2 –0.538 –0.623 –0.460 –0.602 –0.299 –0.396
CR 20.07% 20.05% 19.81% 20.21% 20.21% 20.47%
CR + /2 1 55.18% 55.19% 55.46% 54.94% 57.21% 55.89%

Note: The table displays the mean (m) and median (m1/2) absolute error metrics, the coefficient of determination (R2), the correct rate (CR), and the miss-

by-one correct rate (CR + /21).
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and contrary to the individual and group models in the
present study.

Conclusion

The results of this study showed that predicting self-
reported workload in a simulated realistic environment
was possible at the individual and group level, but
proved difficult when generalizing to unknown drivers.
Several causes can be identified. The simulated scenarios
might not have induced sufficient workload to be mea-
surable with performance or physiological measures.
Indeed, most participants indicated that driving in the
simulator felt very different from actual driving, and was
not that difficult at all. Because a self-report measure
was used, which is a subjective measure, it is possible
that different participants had biased response tenden-
cies. Lastly, it might also be the case that different phy-
siological response patterns to workload exist, in which
case the sample size of 18 could have been too small to
account for all occurring patterns.

This raises the question of whether workload predic-
tion is at all possible on non-binary scales, while general-
izing across drivers. To further explore this possibility, a
dataset from a study with a lane-keeping task was
obtained. This study and the results are discussed in the
next section.

Estimating Workload in a Forced-Pace
Simulator Study

A dataset was re-used from a previously executed study
by Melman et al. (31) to further assess multi-level work-
load prediction in drivers. The study featured a challen-
ging lane-keeping task, which had the potential to induce
higher workload than the previous study. The same phy-
siological and performance measurements were used as
in the previously described simulator study.

Method

Equipment. The study was performed in a fixed-base driv-
ing simulator at the faculty of Aerospace Engineering,
Delft University of Technology. The simulator consisted
of a mockup dashboard with three LCD projectors
(BenQ W1080ST 1080p) that provided roughly 180�
vision. The simulated vehicle had an automatic gearbox
and a top speed of 210 km/h.

Physiological data were logged using a biosignalsPlux
wireless hub at 1000 Hz. Heart rate was recorded using
three pregelled Ag/AgCl (silver/silver chloride) electrodes
at the heart’s v3-node. Skin response was measured using
the same pregelled electrodes, placed inside the palm and

on the wrist of both hands. Simulator data were logged
at 100 Hz.

Scenarios. The scenarios used to induce workload in driv-
ers each consisted of a 25-km long, single-lane road. The
road was divided into four 6-km sections of different
lane width (3.6 m, 2.8 m, 2.4 m, 2.0 m). Each section had
seven curves, five with an inner radius of 750 m and two
with a 500-m radius. Transitions between sections of dif-
ferent width always took place in a 750-m radius curve,
and were preceded by a road sign indicating a narrowing
road. The four sections were identical, with the exception
that the curves of segments 2 and 4 four were mirrored
with respect to sections 1 and 3.

Cones were placed 8 m apart on the road markings on
both sides of the road. The main task was to hit as few
cones as possible. A cone hit was indicated to the partici-
pant visually by a red dot on the side of the car where
the cone was hit, and by a loud auditory beep. Extra dif-
ficulty in lane keeping was induced by a perturbation
added to the vehicle’s lateral motion. This perturbation
was an unpredictable multi-sine signal with five frequen-
cies between 0.067 Hz and 0.25 Hz, with a maximum
summed amplitude of 1,000 N. Without the perturba-
tion, lane keeping (especially on straight segments) was
not considered challenging enough. The width of the
simulated vehicle was 1.8 m.

Three runs were driven with the aim of inducing dif-
ferent levels of workload: a self-paced run and two
forced-pace runs of 90 km/h and 130 km/h. In the self-
paced run, participants had full longitudinal control over
the car and could drive at their own pace. In the forced-
pace conditions, however, the car’s speed was automated
and kept constant at 90 km/h and 130 km/h. This would
push participants into curves at high speeds, with the
goal of raising their workload significantly. The three
runs were presented to the participants in randomized
order.

Procedure. Participants read and signed an informed con-
sent form, informing them of the purpose and procedure
of the study. Participants were instructed that the main
task was to minimize the total number of cone hits.
Furthermore, participants were informed that during the
experiment, a beep would sound every 20 s. At the sound-
ing of this beep, participants were asked to verbally
answer the question ‘‘From 0 to 10, how much effort does
the current driving task take you?’’ with 0 being ‘‘no
effort,’’ 5 being ‘‘moderate effort,’’ and 10 being ‘‘a lot of
effort.’’

Before the experiment started, participants were famil-
iarized with the simulator and the procedure by driving
two 3.7-km trial runs. The first trial run was self-paced,
the second was forced-pace with a speed of 110 km/h.
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After the trial run, any question the participant had was
answered. The electrodes were attached, and a 1-min
baseline was recorded.

Analysis

Participants rated their mental effort on a scale of 0–10,
every 20 s. This rating was annotated by the experimenter
and added to the dataset. What data were logged, data
preprocessing, ML set generation, model development,
and evaluation are identical to what has been described
in the previous study.

Results

Participants. In total 24 participants took part in the
experiment (17 male, seven female). The average age was
24.6 years (SD 2.4). Participants reported driving multi-
ple times a week (11 participants), at least once a month
(7 participants), or less than one month (6 participants).
All participants held a valid driving license. Reported
mental effort was sensitive to the lane width variations,
although with respect to speed only to the 130 km/h
forced-pace condition (31).

Individual Models. As in the previous study, training and
testing sets for the individual models were generated by
dividing the dataset into two stratified sets. More data
per participant were collected than in the previous experi-
ment, so data were split with the more stringent 60% to
40% split ratio.

Results were similar to the previous study, and indi-
cated that the models performed well, with RFR outper-
forming SVR. An inverse relationship between model
performance and overlap factor was observed, as well as
increasing performance with increasing overlap factors,
both as in the previous experiment. For all individual
models with a window size of 5 s and overlap of 0%, the
AEm was 1.046, the AEm1/2 0.662, R

2 0.635, CR 40.74%,
and CR+/21 77.31%. The relatively larger absolute
errors, compared with individual models in the previous
study, might have resulted from the wider workload
scale, the different nature of the driving task, or the more
frequent reporting of mental workload. More informa-
tion is displayed in Table 2.

Group Models. To evaluate performance at the group
level, data were split with a 60% to 40% split ratio.
Results indicated group models attained high perfor-
mance. For the model with window size 5 s and 0% over-
lap, the AEm was 0.904, the AEm1/2 0.638, R

2 0.774, CR
41.61%, and CR+/21 82.30%. Table 2 displays the full
results. Performance increased with larger overlap fac-
tors, and again a (weak) inverse relationship between
performance and window size was observed.

Generalizing Group Models. Model performance when gen-
eralizing to unknown individuals was then assessed,
which had not performed well in the first simulator
experiment. Data sampling methods were identical to the
previous study.

Table 2. Performance Metrics RFR Models

Window size 5 s 10 s 30 s

Overlap factor 0% 50% 0% 50% 0% 50%

Individual model
AEm 1.046 0.823 1.213 0.853 1.127 0.870
AEm1/2 0.662 0.511 0.833 0.518 0.959 0.694
R2 0.635 0.763 0.600 0.675 0.561 0.735
CR 40.74% 50.31% 33.93% 45.83% 20.83% 40.28%
CR + /21 77.31% 84.34% 70.83% 81.94% 65.83% 81.48%

Group model
AEm 0.904 0.730 0.984 0.808 1.084 0.876
AEm1/2 0.638 0.482 0.722 0.546 0.792 0.663
R2 0.774 0.830 0.740 0.802 0.718 0.811
CR 41.61% 51.30% 35.12% 46.44% 34.22% 37.87%
CR + /21 82.30% 88.18% 80.32% 85.88% 73.21% 82.41%

Generalizing model
AEm 1.878 1.988 1.988 1.989 1.809 1.717
AEm1/2 1.831 1.844 1.718 1.741 1.680 1.568
R2 0.118 0.079 0.196 0.177 0.411 0.433
CR 14.09% 13.45% 12.62% 13.44% 15.72% 15.21%
CR + /21 41.92% 40.70% 44.15% 42.29% 47.16% 46.32%

Note: The table displays the mean (m) and median (m1/2) absolute error metrics, the coefficient of determination (R2), the correct rate (CR), and the miss-

by-one correct rate (CR + /–1).
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Results indicated models performed moderately well.
For the best performing model with window size 30 s and
50% overlap, the AEm was 1.717, the AEm1/2 1.568, R2

0.433, CR 15.21%, CR+/21 46.32%. Although model
absolute error was relatively large, the coefficient of
determination indicated a moderate relationship between
model and data. Figure 2 displays the predicted and true
values for the first four participants. Individual model
performance varied, with workload being predicted well
for some participants, whereas for others it showed a cor-
rect trend but with a constant offset error. These offset
errors inflated the absolute error rates and deflated the
predictive accuracy despite good model performance. In

general, a decreased performance with increased overlap
factor was observed (except for the largest window size
of 30 s), as well as increased performance with increased
window size. The effect is similar to results for the model
generalization step in the previous study, but more pro-
nounced. The effect also corresponds with what has been
reported before (3).

Conclusion

The results of this study show similarities with the previ-
ous study for individual and group-based models. In
addition, this second experiment shows that, when

Figure 2. The top four windows (a–d) show plots from the first four participants, indicating that the models performed well, with the
relatively large absolute errors likely to have resulted from individual scaling problems in the predictions. These offset errors are indicated
in (d): the general trend is predicted well but there is a constant offset error. The last two windows (e–f) show box plots, further
exploring the generalizing models from both studies.
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predicting multi-level workload (11 classes), generalizing
performance was satisfactory, although still with room
for improvement.

This study seems to indicate that indeed non-binary
workload prediction that generalizes to unknown indi-
viduals is possible using ML methods. Although models
generalizing between individuals showed variations in
performance based on which individual’s workload was
being predicted, including constant offset errors in sev-
eral participants, overall performance was promising.

Overall Conclusions and Discussion

The present study tried to model driver workload using
ML techniques that can run on embedded systems, with
data collected from low-cost sensors. Results showed
that individual models and within-group models func-
tioned well in both a realistic driving setting and an arti-
ficial lane-keeping task setting. When generalizing to
unknown drivers, only the lane-keeping study produced
usable results. As displayed in Figure 2, e and f, in the
first study the generalized model learns to predict values
around the mean to optimize accuracy, whereas in the
second study the model learns to predict based on the
reported workload.

Because the data gathered in the study are time-series
human physiological and performance data, they are
likely to exhibit strong autocorrelation from one sample
to the next. This might be a potential explanation for the
higher performance in the individual and group models
in both studies because, with random sampling, shared
variance between samples from the training set and the
prediction set might bias the classifier toward a higher
accuracy. To better assess performance, training cases
were included for which the models had to generalize to
unknown individuals. These give a more accurate indica-
tion of performance, as with this approach there is no
shared variance between training set (all participants
minus participant k) and the testing set (participant k).
As such, only the generalizing training case offers a reli-
able index of performance. This is an important distinc-
tion, because it shows that although using ML to predict
driver workload can lead to promising results, care must
be taken when interpreting the results. Without care in
selecting the sampling techniques used, model perfor-
mance might be inflated.

Possible reasons for the discrepancy in generalizing
performance between the two studies could include the
workload induced in the realistic settings being too low
to be reflected in the physiological or performance sig-
nals, or the workload induced by artificial tasks being
more easily measurable than that induced by more realis-
tic tasks. It could also be that different physiological
response patterns to workload might exist and that the

sample in the first study was either too small or con-
tained too much individual variation.

Possible limitations of the present study are that a
self-report measure was employed as ground truth of the
experienced mental workload of the drivers. The study
did not employ standardized workload scales such as
NASA TLX, to keep interaction time and demand with
the driver to a minimum. However, this may have con-
tributed to lower model performance through participant
response tendencies, and leaves some doubt as to the
degree to which the data captures workload. In addition
to this, the study did not look at compensatory behavior
drivers might employ to manage their workload, such as
reducing speed in complex or demanding situations.

Future directions are planned. These include feature
space normalization of the dataset to attempt to reduce
the offset errors observed in some individuals, as well as
exploring additional feature extraction methods. After
this, on-road testing is planned to explore model perfor-
mance in real-world driving settings. Lastly, development
of an embedded variant of the model is planned.
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