
Delft Center for Systems and Control

Linear Robust Model Predictive

Control for Urban Traffic Net-

works

Dik Jansen

M
a
s
t
e
r

o
f

S
c
i
e
n
c
e

T
h
e
s
i
s





Linear Robust Model Predictive
Control for Urban Tra�c Networks

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft

University of Technology

Dik Jansen

December 14, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this survey is the result of a collaboration with Swinburne University of Tech-
nology

Copyright c• Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

In the last decades there has been a significant increase of tra�c demand in urban areas
due to the development of the economy and the increase of population. The increase in
tra�c demand leads to a more congested road network. Congestion causes unwanted delays,
resulting in higher travel costs, noise, and pollution. Popular methods to resolve the problem
of congestion are, for instance, to improve the use of the existing infrastructure or to extend
the current infrastructure. Most of the time the latter is not possible, because there is no
space for extension of road network.
To improve the use of the existing infrastructure, the available capacity should be utilized
as e�ciently as possible. In an urban road network tra�c travels from intersection to in-
tersection. Hence, the intersections are influenced by each other with some time delay, and
therefore it would be useful to predict the evolution of the tra�c demands. For this reason
an Model Predictive Control (MPC) strategy will be suitable for controlling tra�c. However,
this is to realize in practice due to the long computation time and the presence of uncertainty
in tra�c.
The goal of this thesis is to develop a predictive model-based urban tra�c controller that
accounts for uncertainty while not losing performance in every tra�c regime and while re-
maining real-time feasible. The aim of the controller is to improve the throughput of an urban
tra�c network by aggregating the tra�c dynamics to (several) tens of seconds, and this is
evaluated by means of simulation.
In order to reach this goal, a literature survey is conducted to identify the possibilities in urban
tra�c control in combination with robust control. In this literature survey it is shown that
there are di�erent types and sources of uncertainty in urban tra�c control. There are various
control approaches that can handle uncertainties, while robust MPC is an approach that
can also take into account predicted future tra�c dynamics. Robust MPC shows promising
results in terms of performance when uncertainty is present. However, the main disadvantage
of robust MPC is the computation time.
The control strategy that is developed will be based on the linear MPC controller proposed
by Van de Weg et al. (2016a). The reason for this is that the controller of Van de Weg et al.
(2016a) is real-time feasible and has promising performance in each tra�c regime. There are
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two ways to extend the controller of Van de Weg et al. (2016a) to account for uncertainty:
(1) by using existing robust MPC strategies, or (2) by redefining the control strategy so
that it avoids tra�c situations that are sensitive to uncertainty. It is expected that the first
option may yield a real-time infeasible controller. Therefore, in this thesis the second option
is explored to develop a robust urban tra�c controller.

The MPC controller of Van de Weg et al. (2016a) consists of three main components: the
prediction model, the objective function, and the optimization algorithm. To account for
uncertainty the proposed extension adjusts the objective function by introducing an extra
variable. It is expected that uncertainty has a greater impact in the saturated and over-
saturated tra�c regime, because spill-back is more likely to occur then. The extra variable
is used as a penalty that describes the number of vehicles that exceeds a given threshold for
each link at each time step. The value of the penalty increases with an increasing number
of vehicles when the threshold is exceeded. By minimizing the penalty the controller tries
to avoid that the number of vehicles exceeds this threshold, and therefore the controller
incorporates a safety margin in every link.

The proposed extension does not require any additional measurements compared to the con-
troller of Van de Weg et al. (2016a). However, the implementation of the penalty does require
an extra state variable and two extra constraints per link. Thus, the optimization problem
will become larger than the optimization problem of Van de Weg et al. (2016a). Nevertheless,
the optimization problem is kept linear. Hence, it is expected that the proposed extension is
real-time feasible.

The control strategy is evaluated by means of simulation. Four di�erent case studies have
been conducted on a network consisting of two intersections. The four case studies evaluate
the performance of the controller when there is uncertainty in the demand, turn fractions,
bottleneck capacity, or in the model. These evaluations show that the controller does not
increase the performance for uncertainty in the demand. In contrast, the controller can
increase the performance for uncertainty in the turn fractions, bottleneck capacity, or in the
model. However, the performance increase is not due to the avoidance of spill-back, but due
to the placement of more vehicles at the exits of the network. This causes the outflow of the
network to be less a�ected by the uncertainty. During the first three cases the computation
time of the optimization problem is tracked, which shows that the controller needs up to 18%
more computation time.

Concluding, a control strategy has been developed that can improve the throughput of an
urban tra�c network when uncertainty is present. However, the performance improvement
is due to a non-foreseen reason. Further research has to be conducted with more suitable
case studies to verify the concept. It is expected that the performance of the controller can
be further improved by tailoring the control parameters for individual links. It would be
interesting for future research to evaluate the controller for more realistic uncertainties and
for more complex and larger tra�c networks.
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Chapter 1

Introduction

In the last decades there has been a significant increase of tra�c demand in urban areas,
due to the development of the economy and the increase of population. The increase in
tra�c demand leads to a more congested road network. Congestion causes unwanted delays,
resulting in higher travel cost, noise, and pollution. A growing queue can even become so
large that it reaches a neighboring intersection, the so-called spill-back of a queue. Spill-back
will lead to a waste of green time at the intersection itself and at neighboring intersections,
because vehicles cannot enter the street with the spilled back queue.

Another drawback of congestion is the clockwise hysteresis loop as shown by Gayah and
Daganzo (2011) and the clockwise hysteresis loop can be seen in Figure 1-1. Gayah and
Daganzo (2011) show that tra�c networks tend to recover more slowly from very congested
areas, compared to from less congested areas. Especially when drivers do not act adaptively
to disturbances in tra�c, tra�c networks are more unstable as they recover from congestion
than when they are loaded. This instability causes clockwise hysteresis loops to appear in
the macroscopic fundamental diagram. The clockwise hysteresis is better known for freeway
tra�c and causes the so-called capacity drop.

Methods to resolve the problem of congestion are, for instance, to improve the control of the
existing infrastructure or to extend the current infrastructure. Most of the time, the latter
is not possible because there is no space for extension of the road network. Therefore, the
most convenient way to resolve the problem is to make the use of intersections as e�cient as
possible.

The e�ciency of tra�c control is not only of great importance for congested tra�c, because
unwanted delays can also occur when there is no congestion at the intersection in case of the
lack of e�cient control. Consider, for example a situation in which there are two incoming
roads at a single intersection, one with a queue and the other without a queue. It would
be very ine�cient if the road without the queue gets green. Hence, for both congested and
free-flow tra�c situations tra�c use should be e�cient and should not lead to unwanted
delays.

To improve the use of the existing infrastructure, the available road capacity should be utilized
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2 Introduction

k

q

qcapacity

Figure 1-1: Fundamental diagram where q [veh/h] is the flow and k [veh/m] the density. The
solid line represents the loading of the tra�c network and the dashed line represents the recovery
from congestion of the tra�c network.

as e�cient as possible. In an urban road network tra�c travels from one intersection to an-
other. Hence, the intersections are influenced by each other with some time delay. Therefore,
it would be useful to predict the tra�c to utilize the road capacity as e�ciently as possible.

1-1 Challenges in urban tra�c control

Already a lot of research has been done in the field of urban tra�c control. However, there
are still a lot of opportunities for improvement, because the urban tra�c control problem is a
very complex problem. This complexity is due to the several requirements a tra�c controller
has to satisfy when implemented in practice. The most important requirements are:

1. The ability to improve the network throughput in the di�erent tra�c regimes (e.g. in
the under-saturated, saturated, and over-saturated regime);

2. The computation time required by the controller should be less than the real-time
sampling time (so the controller should be real-time feasible);

3. The ability to control signal timings and signal plans (e.g. green times, o�sets, cycle
times, etc.);

4. The ability to control an intersection, while subjected to heterogeneous tra�c, such as
vehicles, cyclists, pedestrians, public transport, and emergency vehicles;

5. The ability to improve the network throughput when noise, disturbance, and uncertainty
are influencing the dynamics of tra�c.

It can be a very challenging task to design an urban tra�c controller that satisfies all the
above mentioned requirements. Hence, this research is only focused on improving throughput
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1-2 Research objective 3

in the di�erent tra�c regimes while subjected to uncertainty and while remaining real-time
feasible.

Why should we account for uncertainty in urban tra�c controller design? Tra�c is by its
nature influenced by uncertainty. In modern-day tra�c vehicles are still controlled by humans.
Humans can make their own decisions, and therefore they can act unpredictable. Note that
not only humans can be unpredictably but unexpected events can happen as well, such as a
change of weather, accidents, or unexpected road works. Furthermore, some tra�c controllers
use sensors to measure queue lengths. These sensors (e.g. induction loops) are not very
reliable, because they are easily broken and they are not always very accurate. Thus, it can
be very di�cult to determine the exact queue length with the use of induction loops. As the
previous examples show, there can be various uncertainties in tra�c. However, the question
remains whether we should account for uncertainty in urban tra�c control.

1-2 Research objective

The main objective of this thesis is the development of an urban tra�c controller that improves
the tra�c network throughput while subjected to uncertainty and remaining real-time feasible.
In order to reach such a design, five design requirements are specified:

1. The ability to improve the network throughput when noise, disturbance, and uncertainty
are influencing the dynamics of tra�c;

2. The ability to improve the network throughput in the various tra�c regimes;

3. The computation time required by the controller should be less than the real-time
sampling time;

4. The ability to control signal timings by controlling green times;

5. The ability to control an intersection with only vehicular tra�c.

In order to reach this objective, the design process is subdivided in the following steps:
analysis, development, and evaluation. First, the literature is studied to analyze where the
major opportunities lie in the field of robust urban tra�c control. More specifically, the
following objectives are stated for the literature survey:

• create an overview of relevant existing urban tra�c controllers;

• identify the di�erent causes of uncertainty in urban tra�c control;

• create an overview of existing urban tra�c controllers that explicitly account for uncer-
tainty.

The identified opportunities will form the basis for the development of the controller. During
the evaluation, the impact of the di�erent uncertainties on the performance for not accounting
for uncertainty is assessed first. Subsequently, the proposed controller will be assessed on its
ability to improve the throughput.
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4 Introduction

1-3 Research scope

The focus in this thesis lies on developing a controller that satisfies the five design requirements
that are mentioned in the previous section. This section tries to make the requirements more
concrete and discuss their limitations.

Focus on various sources of uncertainty

Section 1-1 lists some of the reasons why there is uncertainty in urban tra�c control. There
are many ways to mathematically describe these uncertainties such that they can be used for
controller design. The focus in this thesis lies on uncertainties that fluctuate around a known
and given mean. However, this mathematical description of uncertainty may not be the most
realistic representation of uncertainty.

Focus on the characteristics of urban tra�c

When designing an urban tra�c controller it is important to realize what the characteristics
of urban tra�c are and what the challenges are when controlling urban tra�c. In this thesis a
potential undesired e�ect in particular, spill-back of a queue is identified that causes additional
delays. The phenomenon of spill-back may be prevented for one arterial by distributing the
tra�c more evenly or by introducing a safety margin in every link.

Focus on a model-based predictive control approach

This thesis focuses on improving the network throughput by means of Model Predictive
Control (MPC), the reason being that in a road network tra�c travels from intersection
to intersection. Hence, the intersections are influenced by each other with some delay, and
therefore it would be useful to predict the tra�c. Model-based approaches, such as MPC,
are able to predict the future tra�c dynamics, and therefore are able to improve network
throughput in all three tra�c regimes. However, one of the challenges of an MPC strategy is
its long computation time. Another challenge of MPC strategies is that to accurately predict
the future tra�c dynamics there is the need for a suitable model and suitable measurements,
which are not always available in practice.

Focus on a small network and vehicular tra�c

This thesis evaluates the proposed control framework on a network with only two intersections,
while in reality a tra�c network may consist of hundreds of intersections. Furthermore,
the network is only considered for one type of tra�c: vehicles, whereas in reality tra�c
consists of multiple participants (e.g. cyclists, public transport, lorries). The reason for
this is that it is more important to demonstrate that the concept of the newly developed
control framework works as expected than assessing the performance on a very realistic tra�c
situation. Considering a more realistic tra�c situation is more relevant when the concept has
proven itself to avoid the phenomena of spill-back, and therefore account for uncertainty.
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1-4 Relevance 5

Evaluation criteria

For the evaluation of the proposed control strategy multiple case studies should be conducted,
where a di�erent uncertainty source is applied to each case study. Every case study should
provide insights into the impact of every uncertainty, the quantitative behavior, qualitative
behavior of the control strategy. In this thesis, the following indicators will be evaluated:

• The impact of di�erent uncertainties is evaluated for various demands. The demands
with the most significant impact can then be used to assess the proposed control strategy
specifically for those regions;

• This impact consist of the throughput decrease or increase obtained by the controller
of Van de Weg et al. (2016a) compared to the situation without uncertainty;

• The Total Time Spent (TTS) and the computation time of the optimization algorithm
are used as performance indicators. The TTS is commonly used to evaluate the perfor-
mance of tra�c control strategies that aim at improving tra�c throughput. The TTS
is the sum of the time spent by all vehicles in the network (including the origin queues)
during a certain time interval. The computation time is used to evaluate whether the
control strategy will be real-time feasible;

• The qualitative behavior can provide insights into the behavior of the control strategy.
This behavior should be in accordance with the expectations that are presented during
the development of the control strategy.

1-4 Relevance

The main contributions of the research presented in this thesis are

• the impact analysis of the di�erent sources of uncertainty on the controller of Van de
Weg et al. (2016a). This provides insight in how the performance of the controller of
Van de Weg et al. (2016a) is a�ected due to uncertainty;

• a robust urban tra�c control approach with an e�cient formulation that tries to avoid
spill-back ;

• the proposed controller is able to increase performance when uncertainty in the turn
fractions, uncertainty in the outflow constraint or model uncertainty is present.

• this work is extension of the work of Van de Weg et al. (2016a), and therefore this
extension makes the control strategy of Van de Weg et al. (2016a) a step closer to
future implementation.

1-5 Outline

This report consists of five chapters. The structure of this report and relations between the
chapters are illustrated in Figure 1-2. Chapter 2 introduces the challenges in robust urban
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6 Introduction

tra�c control that are identified by means of a literature survey. Chapter 3 describes the
control framework that is proposed in thesis. This includes details on the control strategy of
Van de Weg et al. (2016a), its potential sources of uncertainty, and the proposed extension.
Chapter 4 presents the simulations that have been conducted to evaluate the proposed frame-
work and the framework of Van de Weg et al. (2016a) for di�erent sources of uncertainty.
Chapter 5 presents the conclusions and recommendations for future research.

Chapter 1

Introduction and Main Objective

Chapter 3

The design of the robust
urban tra�c controller

Chapter 2

Literature Survey on robust
urban tra�c control

Chapter 4

Evaluation of the robust
urban tra�c controller

Chapter 5

Conclusions and Recommendations

Figure 1-2: Overview of this thesis
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Chapter 2

Literature survey on robust urban
tra�c control

This chapter provides an overview of the research related to robust urban tra�c control. It
does so by discussing relevant nominal tra�c controllers in Section 2-2. After that, di�erent
sources of uncertainty in urban tra�c control are discussed in Section 2-3-1. In Section 2-3-2
conventional methods to explicitly account for uncertainty (e.g. robust control theory) are
presented. Finally, in Section 2-3-3 provides an overview of existing urban tra�c controllers
that explicitly account for uncertainty. The literature survey is concluded in Section 2-4.

2-1 Introduction

In recent years the development of model-based control strategies (e.g. Model Predictive
Control (MPC)) for urban tra�c has greatly increased; mainly due to their ability to predict
the impact of input settings in the future. The ability to predict in urban tra�c is useful,
because the outflow of one intersection can a�ect the outflow of neighboring intersections
in the future. Hence, model-based control strategies can be very suitable for urban tra�c
control.
However, as pointed out in the introduction in Section 1-1 the urban tra�c control problem
is a very complex problem, due to the several requirements an urban tra�c controller has
to satisfy. Therefore, it is expected that in literature no model-based approaches yet exists
that satisfies all requirements of an urban tra�c controller. This literature survey focuses on
providing insights in (robust) urban tra�c control for the development of an urban tra�c
controller. To find the necessary insights, this literature survey is divided into four parts.
First, in Section 2-2 an overview is created of relevant existing urban tra�c controllers.
This overview shows a wide variety of di�erent solutions to the tra�c control problem. The
controllers are divided into: fixed-time control, tra�c-responsive control, and model-based
tra�c-responsive control. Fixed-time controllers are discussed because robust fixed-time con-
trollers will be discussed in Section 2-3-3. The division between tra�c-responsive control with
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8 Literature survey on robust urban tra�c control

and without prediction may show the potential benefits of using model-based approaches. The
controllers are assessed and compared on the following characteristics: the computation time,
performance in every tra�c regime, and the ability to handle uncertainty.

Thereafter, the di�erent causes of uncertainty in urban tra�c control are identified in Sec-
tion 2-3-1. In order to account for uncertainty, it has to be clear with what kind of uncertainty
the controller should not lose too much performance. Subsequently, an overview of di�erent
robust controllers that can explicitly handle uncertainty is given in Section 2-3-2.

Section 2-3-3 provides an overview of existing urban tra�c controllers that explicitly account
for uncertainty. The controllers are further distinguished into: robust fixed-time control,
stochastic tra�c-responsive control, and robust tra�c-responsive control. Each of these cat-
egories has its own benefits.

2-2 Tra�c controllers

Tra�c controllers can be used to improve the performance of an urban tra�c network. Al-
ready a lot of research has been done in the field of urban tra�c control, which resulted
in a wide variety of di�erent tra�c controllers. Inspired by Papageorgiou et al. (2003), the
discussed control strategies are categorized into two categories, namely, fixed-time and tra�c-
responsive control. In this literature survey the controllers are assessed on the performance
in each tra�c regime, the computation time, and on deterioration of performance when sub-
jected to uncertainty or noise.
Fixed-time control involves o�ine optimization of cycle time, splits, and o�-sets between
nearby intersections. Contrary to fixed-time control, tra�c-responsive control uses online
measurements from road detectors (e.g. induction loops, cameras) to optimize the signal tim-
ings. Four tra�c-responsive control strategies (SCOOT, SCATS, TUC, and Back-Pressure)
will be discussed in Section 2-2-2. These strategies are discussed to show potential advantages
and drawbacks of not using a model-based strategy.

According to Van de Weg et al. (2016a) there are three types of tra�c regimes: under-
saturated, saturated, and over-saturated in urban tra�c control. In the under-saturated
regime queues will dissolve totally during their green phase. There is no queue left when
the tra�c light turns to red. Secondly, in the (over-)saturated regime queues will not dis-
solve completely during their green phase. There is still a queue left when the tra�c light
turns to red. However, in the over-saturated regime the queues will spill-back to upstream
intersections.

2-2-1 Fixed-time control

Fixed-time control can be divided into isolated methods and coordinated methods. According
to Osorio and Bierlaire (2008), there exists a trade-o� between isolated and coordinated
strategies. The isolated strategies consider in detail the tra�c dynamics at an intersection,
but this is at the expense of not fully capturing the dynamics between intersections.
The isolated methods can be further distinguished into stage-based and phase-based control
strategies. Stage-based strategies determine the optimal splits and cycle time, whereas phase-
based strategies also optimize the stage sequence. According to Papageorgiou et al. (2003)
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this may be important for more complex situations. The computation time of fixed-time
controllers will not be a problem, because calculations are performed o�-line.
Coordinated fixed-time control strategies were introduced to capture tra�c dynamics between
intersections. Two well known examples of coordinated control strategies are: MAXBAND
and TRANSYT.

MAXBAND

Little et al. (1981) proposed the tra�c control strategy MAXBAND, which can create green
waves in the under-saturated tra�c regime. It does so by optimizing the bandwidth. The
bandwidth is the proportion of the cycle time for which it is possible for a vehicle to travel from
one end of a arterial to the other end without stopping. Several variations of the MAXBAND
control strategy have been proposed, such as Gartner et al. (1991) proposed MULTIBAND,
which is a more tailored approach for an arterial with segments with di�erent capacities.
There will be a strong interaction between queues, if tra�c becomes congested. The band-
width strategies MAXBAND and MULTIBAND fail to describe this phenomena. Another
drawback of this technology is that it is not based on actual tra�c flows, and therefore it
is insensitive for variations in flow. Furthermore, both strategies are based on the idea that
platoons of vehicles do not fall apart while they travel along a link. This is in contrast to the
reality, where platoon dispersion does take place.

TRANSYT

TRANSYT is proposed by Robertson (1969). According to Robertson and Bretherton (1991);
Papageorgiou et al. (2003) the tra�c network study tool (TRANSYT), is well known and
is frequently applied in practice, and is often used as an uno�cial standard. TRANSYT
calculates the optimal signal settings for di�erent demands. The demand is assumed to be
constant for specific parts of the day, and is based on historical data. TRANSYT is divided
into two main parts: the tra�c model and the optimization procedure. These two parts are
then used in a iterative way. For given decision variables (e.g. signal settings) the model
calculates the corresponding performance index, which is then fed back into the optimization
procedure. The optimization procedure uses a heuristic hill climbing optimization algorithm
that introduces small changes to the decision variables. After that, the decisions variables are
then fed back into to the model, and so forth, until the procedure finds a (local) minimum.
Unlike MAXBAND, TRANSYT uses a platoon dispersion model to describe the evolution of
tra�c platoons traveling on links at known speed with some dispersion. Therefore, TRANSYT
describes the dynamics between intersections more accurately than MAXBAND. TRANSYT
uses a vertical queuing model to describe the dynamics of the queue. Therefore, TRANSYT
cannot determine the queue length appropriately in congested tra�c conditions.

2-2-2 Tra�c-responsive control

The main drawback of fixed-time control strategies, is that they are based on historical data
rather than on real-time data. Signals timings can become outdated, because demands can
vary over of a day, a week, etc. Contrary to fixed-time control, the decisions of tra�c-
responsive control strategies are based on real-time data. The tra�c-responsive control
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strategies use on-line measurements from road detectors (e.g. induction loops, cameras)
to determine the signal timings.

SCOOT and SCATS

The Split Cycle O�set Optimization Technique (SCOOT) is proposed by Robertson and
Bretherton (1991) and shares some of its basic concepts with TRANSYT. The main objectives
of SCOOT are minimizing the sum of average queues and minimizing the number of stops. It
does so by controlling the splits, o�sets, and cycle time. Every 4 seconds SCOOT measures
the flow, which is used to estimate the queue length and clearance time. Furthermore, SCOOT
uses the same platoon dispersion model as TRANSYT. Hence, SCOOT is able to describe the
dynamics between intersections as accurate as TRANSYT. It is assumed that the cruising
speed of these platoons is known with some dispersion. This cruising speed is still to be
determined by the use of historical tra�c data. Every cycle the algorithm assesses whether
or not the cycle time, splits, and o�sets should be altered by 4 seconds to further decrease
the objective function. Thus, SCOOT can only change its control input incrementally.
The Sydney Coordinated Adaptive Tra�c System (SCATS) is proposed by Lowrie (1982)
and works on a combination of tra�c-responsive control and fixed time plans. The ratio
of demand to saturation flow is used to assess the congestion level. The congestion level is
then used to choose a fixed-time plan from a library of plans. SCATS divides the network of
intersections into sub-networks. Therefore, the control is divided into a top layer and a lower
layer. The upper level generates o�set plans between the sub-networks by time of day with
the use of historic data. The lower level optimizes splits, cycle times, and o�sets between
signalized intersections of the individual sub-networks. The optimization is based on the flows
of the previous cycle, which are measured using detectors at the stop lines. Therefore, SCATS
is not fully responsive to unpredictable arrival of flows.
Both SCOOT and SCATS can respond to both short-term local peaks in tra�c demand, as
well as following trends over time. However, the optimization procedure only allows a small
change in control input. Then SCOOT and SCATS could be constraint by this during a
sudden change in flow. However, Quan et al. (1993) show a case study where SCOOT is
still able to increase performance during rapidly tra�c conditions compared to a fixed-time
controller. For this reason, SCOOT and SCATS lack a tra�c-responsive behavior during
rapidly changing tra�c conditions according to Dion and Yagar (1996).

TUC

The tra�c-responsive urban control (TUC) strategy is proposed by Diakaki et al. (2002), and
is based on feedback control theory. TUC tries to minimize the relative occupancy in the links
and optimizes the control input by controlling the green times. The green times are adjusted
every cycle, based on the queue lengths in the tra�c network. The use of feedback control
theory is made possible by the use of the store-and-forward modeling of the tra�c network.
The store-and-forward model introduces a model simplification that enables the description
of the tra�c flow process without the use of binary variables. This simplification causes the
tra�c flow to be continuous when the demand is assumed to be su�cient; the demand is
su�cient when the tra�c network is in the (over-)saturated tra�c regime. The consequences
of using the store-and-forward model is that the sampling time cannot be shorter than the
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cycle time. Thus, decisions cannot be taken more frequently than every cycle. Furthermore,
the oscillations of vehicles queues in the links due to green and red switching of tra�c light
is not captured by the model.
In order to operate in real time, TUC has to measure the occupancy of links. TUC is
implemented in practice (e.g. UK, Greece, and Brazil). TUC shows high e�ciency and
performs especially well in the saturated tra�c regime. However, TUC does not account for
the capacity (number of vehicles) of downstream roads and spill-back dynamics. Although
TUC tries to avoid the over-saturated tra�c regime by minimizing the relative occupancy, it
still may lose performance in the over-saturated tra�c regime.
Avoid, but if there is going to spill-back, if its inevitable. TUC does not capture the spill-back
dynamics during the over-saturated tra�c regime.

Back-Pressure

The TUC strategy is a form of centralized tra�c control, whereas Back-Pressure is a form of
decentralized, local tra�c control. Decentralized control has the advantage of not having the
cost of a communication infrastructure. The control decisions of Back-Pressure are based on
the di�erence in tra�c load: the di�erence in queue length upstream and downstream of the
intersection. In contrast, most other control strategies only base their decisions on the (ex-
pected) number of vehicles upstream of the intersection during the next cycle. Furthermore,
Back-Pressure does not require any a priori knowledge of the demand as stated by Le et al.
(2015). However, the turn ratios are assumed to be known, which is not always the case in
reality.
The Back-Pressure algorithm does not account for spill-back e�ects and free-flow dynamics.
In other words, it is only applicable to the saturated tra�c regime. Gregoire et al. (2015)
proposed a capacity-aware Back-Pressure algorithm that accounts for the capacity of a link;
instead of the pressure they use a normalized pressure. The capacity-aware Back-Pressure al-
gorithm outperforms the original Back-Pressure algorithm in the over-saturated tra�c regime
and performs equally well in the under-saturated and saturated regime. Both Back-Pressure
algorithms do not explicitly consider delays of waiting vehicles and are fully queue-length
based. Hence, vehicles can be waiting for a very long time. Furthermore, no research has yet
been performed on potential uncertainties in the measurement of queue lengths or uncertain
parameters used by the algorithms.

2-2-3 Tra�c-responsive control: Model-based strategies

The previously discussed control strategies are not capable of accounting for future tra�c
dynamics. Not accounting for tra�c flow dynamics in the future can lead to myopic control
decisions of the tra�c controller. A way to improve this, is the use of model-based strategies.
Model-based strategies make use of a tra�c model to find the optimal signal settings over
a given time horizon. The main drawback of these strategies is that they have no real-
time feasibility when implemented in an urban tra�c network, due to their computational
burden. However, by omitting some detail of the tra�c model, model-based approaches can
become real-time feasible. From Section 2-2-3 untill Section 2-2-3 various types of model-based
approaches are discussed, which show a wide variety of di�erent solutions to the urban tra�c
control problem. The discussed model-based approaches are referred to as MPC strategies.
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Lo (1999)

Lo (1999) introduces an MPC controller that minimizes the total network delay by controlling
the green times and the initial o�set of the major approaches. The prediction model is the
Cell Transmission Model (CTM) of Daganzo (1995), which can capture every tra�c regime.
However, the CTM used here does not capture the dynamics of turning movements. Therefore,
the controller only produces a signal plan for through-going tra�c. To capture the e�ect of
tra�c light switching and thereby the fluctuating flows on an intersection a mixed-integer
programming technique is used. In the under-saturated regime the controller is consistent
with a controller like MAXBAND, as it creates green waves for the arterials of the tra�c
network. However, there is no further comparison with other urban tra�c controllers and the
results are based on limited computational experiences. Furthermore, the controller was only
tested on a network of two intersections, and even then the computation time of 50 seconds is
significant. Hence, the computational complexity remains a major problem for the controller
proposed by Lo (1999).

Lin et al. (2011, 2012)

Lin et al. (2012) propose a macroscopic tra�c model: the S-model. The model is used as
a prediction model for MPC control. The S-model uses a sampling time of one cycle time,
whereas the model of Van den Berg et al. (2007) uses a sampling time of one second. There-
fore, the computation time of the S-model is much lower than the computation time of the
model of Van den Berg et al. (2007). The objective function that is minimized is the Total
Time Spent (TTS) in the network. Therefore, the optimization problem features a nonlinear,
non-convex objective function subject to nonlinear, non-convex constraints.
However, in Lin et al. (2011) the S-model (Lin et al., 2012) is reformulated into a mixed-
integer linear model. The resulting Mixed-Integer Linear Programming (MILP) problem can
be solved more e�ciently than the nonlinear non-convex optimization problem of Lin et al.
(2012). The MILP solver used inLin et al. (2011) can e�ciently find a global optimum rather
than a local optimum found by Sequential Quadratic Programming (SQP). However, one
may argue whether comparison between the SQP solver and the MILP solver is fair in the
case of urban tra�c control, because the SQP algorithm is not very suitable for discontinuous
optimization problems.
Furthermore, the S-model can be reformulated into the S*-model. In the S*-model the over-
saturated tra�c regime is implemented by adding extra constraints. This S*-model can also
be recasted into a mixed-integer linear model. This new model can then be used for a new
MILP optimization problem, where the number of auxiliary variables is reduced in half com-
pared to the MILP optimization problem with the S-model. The MPC controller with the
S-model and S*-model tend to perform less in low demand regions than the MPC controller
with the SQP algorithm. This is mainly because the free flow travel time is assumed to be
constant over time in the S-model and S*-model.
The MILP problem can be solved very fast by an MILP solver, when compared to an SQP
solver. The CPU time is significantly reduced from hundreds of seconds to a few. However,
the computation time of MILP still increases exponentially as a function of the problem size.
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Aboudolas et al. (2010)

The tra�c controller proposed by Aboudolas et al. (2010) uses the store-and-forward model
to model tra�c flow, just like the TUC strategy does. The control problem is formulated into
a Quadratic Programming (QP) problem. The QP problem aims at minimizing and balancing
the link queues by controlling the green times. The optimization algorithm is embedded in
a rolling-horizon scheme for the application in real time. Aboudolas et al. (2010) show that
when proper demand knowledge is available, the proposed controller outperforms the TUC
strategy and a fixed-time control strategy in every tra�c regime. The TUC strategy seems
less sensitive to inaccuracies of tra�c parameters than the proposed controller. The use of a
smaller horizon with the proposed controller will lead to a lower sensitivity to the inaccuracies,
because longer model predictions tend to be increasingly less accurate.

Le et al. (2013)

The MPC controller proposed by Le et al. (2013) aims at minimizing the sum of all queue
lengths, by controlling the green times. The control problem is formulated into a QP problem
where the predicted state is penalized quadratically and the control variable is penalized
linearly. The model describes the urban tra�c network with the use of multi-class queuing
networks, where classes relate to di�erent types of network elements. The network state
maintains counts of the number of vehicles at each network element. The maximum number
of vehicles that can go from one network element to another in an unit of time is to be
adjusted by tra�c measurements but are assumed to be known. Hence, the model described
in Le et al. (2013) is very similar to the CTM of Daganzo (1995), only it does not simulate
the shock-wave speed. One could argue that the model described in Le et al. (2013) is just a
simplification of the CTM of Daganzo (1995).

Van de Weg et al. (2016a)

In Van de Weg et al. (2016a) an MPC controller is proposed that tries to optimize the
throughput by minimizing the di�erence between the cumulative inflow and outflow of every
link and origin of the network. The controller does so by controlling the e�ective fractions
of green time. The Link Transmission Model (LTM) of Yperman (2007) is used to model
tra�c. The proposed tra�c model is capable of modeling each tra�c regime. It includes
the free-flow travel time in the under-saturated regime and shock-wave dynamics in the over-
saturated regime.
The performance of the controller is assessed by looking at the total time spent by all vehicles,
and at the computation time of the controller. The performance is compared to performance
of the controllers of Aboudolas et al. (2010) and Le et al. (2013). The MPC controller of
Van de Weg et al. (2016a) can realize a higher throughput than the other two methods. The
methods still yield a comparable amount of computation time.
The MPC controller of Van de Weg et al. (2016a) only controls the e�ective fractions of green
time. It does not come up with a signal plan that can directly be implemented. Furthermore,
the tra�c model is not able to model the fluctuations of flow due to the switching of tra�c
lights.
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2-3 Robust tra�c control

Uncertainties are common when controlling tra�c networks. The controller performance may
deteriorate when uncertainties are not included during the controller design. Control strate-
gies that have been applied in practice, obviously are able to take into account uncertainties
in some way, regardless of whether the performance deteriorates or not. However, the range
of literature dealing with explicit inclusion of uncertainty in the design of urban tra�c con-
trol is limited. In order to gain more insight into this design problem, the di�erent causes of
uncertainty in tra�c have to be investigated first.

2-3-1 Uncertainties in tra�c control

Humans are the main operator when it comes to controlling a vehicle. Every human can act
di�erently to various tra�c situations. Thus, tra�c can be considered to be a stochastic pro-
cess; there is a certain chance that a certain scenario occurs. Moreover, not only humans can
act di�erently. Unexpected events may happen, such as a change of weather, road blockages
due to road work, and accidents. Tra�c controllers should not lose performance when these
unexpected events occur. Furthermore, tra�c-responsive controllers can make wrong control
decisions, because there can be an unknown measurement error. Model-based strategies make
use of a tra�c model, and this model may represent the reality with an error. Hence, there
can be a wide range of uncertainties when controlling tra�c.

Uncertainty in the demand

Most of the controllers mentioned in Section 2-2 all assume that future predictions of the
demand are perfectly known based on historical data and/or current measurement. The use
of nominal demand is a reasonable choice, however it is only an approximation of the demand.
Clearly, from the nature of tra�c it is obvious that in practice fluctuations and unpredictable
events are always present.

Measurement uncertainty

The tra�c-responsive controllers mentioned in Section 2-2 measure the tra�c state to make
the next control decision. The measurements are commonly made with the use of induction
loops or cameras. These sensors can fail, which can result in inappropriate control decisions.
These sensors can also have a standard error, because they are not accurate enough.

Model uncertainty: Dynamic and Parametric

The model-based controllers discussed in Section 2-2-3 make use of tra�c models. In these
model-based approaches an optimization procedure is performed based on the predictions of
the tra�c model. Inaccurate predictions can be made due to a mismatch between the tra�c
model and the reality.
In model-based approaches the computational complexity of the controllers is one of the main
drawbacks. According to Lin et al. (2011) one of the proposed solutions to the computational
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complexity is the simplification of the prediction model. A less detailed prediction model
should take less computation time to solve than a more detailed model. For instance, ag-
gregated tra�c flows can be used in a tra�c model. The aggregated tra�c flow models
deliberately omit some details for the sake of simplicity. Hence, the controllers that use these
tra�c models choose to have some uncertainty.
The uncertainty due to modeling can be distinguished into dynamic uncertainty and pa-
rameter uncertainty. Dynamic uncertainty is uncertainty in the model, that is caused by
a di�erence between the dynamics of the model and the dynamics of the to be controlled
process. For instance, some (unknown) non-linear dynamics of the process may be too com-
plicated to model. These dynamics can be omitted by introducing an uncertainty term in the
model. Hence, the model becomes an approximation of the process, and therefore there can
be uncertainty in the dynamics of the model.
Parameter uncertainty is uncertainty in (some) parameters of the model. When modeling
tra�c, it is mainly assumed that tra�c parameters (e.g. saturation flow and turn ratios)
are known and constant. Most of the time these parameters are based on historical data.
Therefore, such tra�c parameters are an approximation of their real values. Hence, there can
be uncertainty in the parameters of the tra�c model.
It can be argued whether these uncertainties have a considerable impact on the performance
of the controllers. No research has yet been performed on the impact of these uncertainties
on the performance.

Unexpected events

Network flows are influenced by abnormal events that a�ect the network characteristics and
capacity. Tra�c networks should be designed to cope with normal fluctuations by allowing
alternative routes, but accounting for abnormal events is much more di�cult. The potential
sources of disruption to transportation networks are numerous, ranging from natural to man-
made disasters (e.g. earthquakes, flood, landslides, terrorist attacks, and major accidents).
There are also more regular disruptions due to bridge openings, public transport, and emer-
gency transport with priority. The scale, impact, frequency, and predictability of such events
vary enormously. The impact of these abnormal events is yet unclear. In order for a controller
to handle these abnormal events, the uncertainty has to be described in a mathematical form.
There is not yet been any extensive research on the consequences of abnormal events with
respect to tra�c control.

2-3-2 Robust control theory

In the previous section di�erent types of uncertainty were discussed. The main goal of robust
control theory is to take these uncertainties into account when designing a controller. Three
di�erent conventional robust control strategies are discussed in this section. To assess whether
the robust control strategies are suitable for the design of an urban tra�c controller, the
control strategies in this section are discussed with respect to the following points: 1. Type
of uncertainty it accounts for; 2. Real-time feasibility; 3. The use of prediction.
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LQG control

The Linear Quadratic Gaussian (LQG) control problem (see e.g. Anderson and Moore (1990))
tries to find an optimal feedback law for an uncertain linear system that is perturbed by
additive Gaussian white noise. The Gaussian white noise is added as a state and output
disturbance. The optimal feedback law is found by minimizing a quadratic cost function. The
LQG control strategy only makes use of static state feedback control; hence the controller will
not be computationally demanding. Furthermore, according to Skogestad and Postlethwaite
(2005) the LQG controller has good stability and robustness properties for a Single Input
Single Output (SISO) system subjected to white noise. However, the controller does not
necessarily provide these properties for a Multiple Input Multiple Output (MIMO) system. A
drawback of this approach is that uncertainty cannot always be properly represented by white
noise. Furthermore, not all types of uncertainties can be described through a combination of
state and output disturbances.

HŒ control

In HŒ control (see e.g. Skogestad and Postlethwaite (2005)) uncertainty is described in a
di�erent way than the uncertainty description of LQG control. In the HŒ control problem
uncertainty is captured in a matrix of stable perturbations (e.g. by defining a minimum and
maximum value for the uncertainty). The HŒ control problem tries to minimize the impact
of disturbances on the output of a Linear Time Invariant (LTI) system. It does so by finding a
feedback controller that minimizes the HŒ norm of the transfer function from the disturbance
to the output. The resulting feedback controller is not computationally demanding, although
the derivation of the gains of the feedback controller can be computationally demanding. HŒ
control is a control method designed for continuous-time systems, but there exist methods
to use it for discrete-time systems as well as shown in Stoorvogel (2000). However, the HŒ
control problem becomes di�cult to solve for discrete-time systems, and analysis and synthesis
of the robustness properties becomes hard.

Robust MPC

The framework of a robust MPC controller is the same as the framework of a nominal MPC
controller. However, a robust MPC controller explicitly accounts for uncertainty. Bemporad
and Morari (1999) show that di�erent descriptions of uncertainty are used in the literature,
which are mainly time domain representations. With robust MPC there can be useful descrip-
tions of measurement and model uncertainty. In both types of uncertainty the actual value
is given by a known set of values or plants. According to Xie and Li (2007) the robust MPC
can take these uncertainties into account by: (1) using the Min-Max approach, which takes
into account the boundaries of uncertainty (e.g. the worst-case scenario) and (2) a chance
constrained approach, in which uncertain variables are described as stochastic variables with
known probability distribution functions.
According to Bemporad and Morari (1999) the robust analysis of an MPC control strategy is
much more di�cult than its synthesis. Already in the nominal case, it is nearly impossible to
analyze the stability of a closed loop MIMO system with multiple constraints. However, this
is possible for the linear case. The synthesis of a robust MPC control strategy can be done
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in various ways, but every method will yield extra calculations. Hence, robust MPC will be
more computationally demanding than nominal MPC.

2-3-3 Robust urban tra�c control

In literature di�erent strategies have been proposed to account for uncertainty in urban tra�c
controller design. This section provides some of the di�erent types of robust urban tra�c
control strategies. The strategies can be divided into robust fixed-time control strategies,
robust tra�c-responsive control strategies, and robust model-base strategies.

Robust fixed-time control

Robust fixed-time control involves o�-line optimization of the cycle time, the split, and the
o�-set between nearby intersections. The o�-line optimization takes the variability of e.g.
the demand into account. Therefore, the performance should deteriorate less when this vari-
ability is present compared to a fixed-time controller where the variability is not taken into
account. Heydecker (1987) shows that if the degree of variability of the demand is significant,
optimizing signal plans - with respect to the average demand - may cause additional delays,
whereas algorithms that take this variability into account do not have these additional de-
lays. However, the use of the average demand in tra�c control will only lead to small losses
in average performance when the degree of variability is low.
In Yin (2008) three di�erent approaches are discussed for determining robust optimal signal
timings, which minimize the mean of delays per vehicle under (day-to-day) varying demand
as well as maintain a stable performance under this varying demand. The major problem
for these strategies is that they are optimal for a certain nominal demand, just like nominal
fixed-time controllers are. Yin (2008) shows that when the nominal demand shifts, the robust
fixed-time controllers are not optimal anymore, although they lose less performance compared
to the nominal fixed-time controllers.

Stochastic tra�c-responsive control

Ukkusuri et al. (2010) propose a robust signal control strategy where the future demand is
assumed to be uncertain. The uncertain demand is defined by a set demand realizations
where each demand has its own probability. Ukkusuri et al. (2010) conclude that introducing
uncertainty in the demand has a significant e�ect on the performance measure. The impact of
uncertainty in the demand on the network performance is underestimated when only a nominal
demand is used during optimization of the signal timings. The computational complexity of
the proposed control method can become a problem, when applied to larger tra�c networks.
Furthermore, 30 scenarios is the maximum amount of scenarios that could be implemented,
due to computational limits. There is no conclusive evidence on the optimal number of
scenarios for robust signal design.

Robust tra�c-responsive control

In Tettamanti et al. (2014) a store-and-forward tra�c model is extended with a norm-bounded
demand and queue uncertainty. The objective function is minimized by finding the optimal
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green time sequence for the worst prediction scenario. The worst prediction scenario can be
found e.g. by the use of historical data. The same objective function is used as with the
TUC strategy. The algorithm works only in saturated and over-saturated conditions, the
under-saturated condition is not investigated.
According to Tettamanti et al. (2014) the minimax approach in an MPC framework proposed
by Löfberg (2003) is certainly one of the most e�cient techniques to deal with the uncertainty
problem. A drawback of this method is that the computation time increases exponentially if
the size of the network or the prediction horizon increases linearly. Therefore, the problem
statement is relaxed into a convex minimization problem and reformulated in a form of linear
matrix inequalities. However, in order to obtain this form it is assumed that the uncertainty
is unknown but bounded. According to El Ghaoui et al. (1998) these problems can be solved
in polynomial time with e.g. primal-dual interior-point methods.
The performance of the robust MPC controller relative to a nominal MPC controller becomes
better with more congested and more varying tra�c. However, in the situation when there is
no uncertainty in the demand, the performance of the robust MPC controller becomes worse
compared to the nominal MPC controller, particularly under congested and varying tra�c
conditions. Hence, this confirms the sensitivity of the robust performance with respect to the
estimation of the uncertainty. The robust solution may have worse performance compared to
the nominal case if there is no uncertainty in the tra�c (e.g. perfect nominal and known
conditions).
For the robust MPC controller there is no straightforward improvement of the performance by
increasing the prediction horizon, due the uncertainty which leads to uncertain predictions.
These uncertain predictions lead to conservatively chosen green times.

2-4 Discussions and Conclusions

Literature on tra�c controllers has been studied to obtain insight in robust urban tra�c
control, to form the basis for the remainder of this MSc thesis project. The goal of this MSc
thesis to design an urban tra�c controller that is able to improve network throughput in all
tra�c regimes, while remaining real-time feasible and being subjected to uncertainty.

One of the design requirements of an urban tra�c controller is to improve network throughput
in all tra�c regimes. Not every considered nominal urban tra�c controller is able to improve
the network throughput in all tra�c regimes. Some of the model-based control strategies
are able to improve network throughput in all tra�c regimes. This is due to their ability to
predict the future tra�c dynamics. However, the main drawback of model-based strategies
is their real-time (in)feasibility. By omitting some detail in the tra�c model, some model-
based approaches (e.g. the approach of Van de Weg et al. (2016a)) are able to become
real-time feasible while maintaining a reasonable performance. Although the control strategy
proposed by Van de Weg et al. (2016a) shows promising results in terms of performance and
computation time, it still needs several assumptions to achieve this performance. Van de Weg
et al. (2016a) assume, for instance, that the turn fractions and the demand are known, which
may not be the case when the control strategy is implemented in practice.

All discussed nominal urban tra�c controllers - except for the model-based approaches - are
able to determine their signal timings within the real-time sampling time. Therefore, they are
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real-time feasible. However, they are not able to improve throughput in all tra�c regimes,
which makes them less suitable for the remainder of this research.
In literature there is little research to find on the sensitivity to uncertainty of the considered
nominal urban tra�c controllers. The only discussed method that is tested with respect to
the impact of a specific uncertainty or disturbance is TUC. TUC showed low sensitivity to
measurement disturbances according to Diakaki et al. (2003). Despite that, it remains hard
to conclude whether the performance of tra�c controllers does deteriorate in presence of
uncertainty compared to the ideal case. Hence, further investigation should be needed.
It can be agreed that there are a lot di�erent uncertainties in tra�c, and therefore it is tried to
categorize the uncertainties. However, not all events in tra�c may be categorized in a single
category of uncertainty. There is not yet been any extensive research on what the impact will
be of such an event on the performance of urban tra�c controllers.
The presented robust controllers were assessed on three characteristics, the results of the
assessment are shown in Table 2-1. Both LQG and HŒ control show promising results in
terms of computation time. However, both control methods are based on feedback control, and
therefore these methods are unable to anticipate on future estimated or predicted disturbances
(e.g. the demand). Hence, this makes LQG and HŒ control less suitable for the remainder of
this research. Robust MPC is able to predict, and is very flexible in terms of choosing di�erent
types of uncertainties to account for. However, Robust MPC requires more computations than
nominal MPC. This is due to the incorporation of the uncertainty. The computation time is
already the main problem of MPC strategies in urban tra�c control. Hence, it probably will
become more of a problem when robust MPC is used for urban tra�c control.

LQG HŒ RMPC
Type of uncertainty X X
Computation time X X
Predictive X

Table 2-1: Overview of the requirements for urban tra�c control fulfilled by a robust control
strategy.

Some of the considered robust urban tra�c control strategies show an improvement of the
network throughput, while subjected to uncertainty (e.g. in the demand or queue length).
However, there still exist several open issues in the field of robust urban tra�c control.
It is yet unclear what the impact of some uncertainties is on the controllers’ performance.
Furthermore, the question remains whether the design of a robust urban tra�c controller is
really necessary. Although, Ukkusuri et al. (2010) and Tettamanti et al. (2014) show that in
their particular case it can be relevant to account for uncertainty in tra�c controller design.
Even though accounting for uncertainty is relevant for urban tra�c control, it still remains
the question what the optimal way is to account for uncertainty in urban tra�c.
The control strategy that will be developed will be based on the linear MPC controller pro-
posed by Van de Weg et al. (2016a). The reason for this is that the controller of Van de Weg
et al. (2016a) is real-time feasible and has promising performance in each tra�c regime. How-
ever, there are also some challenges. Several assumptions are made, which may be relaxed by
introducing an uncertainty or disturbance. There are two ways for the controller of Van de
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20 Literature survey on robust urban tra�c control

Weg et al. (2016a) to account for uncertainty: (1) using existing robust MPC strategies, and
(2) redefining the optimization problem. It is expected that the first option may yield a
real-time infeasible controller. Therefore, in this thesis the second option is used to develop
a robust urban tra�c controller. Note that the definition of robust may not be applicable to
this controller anymore.
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Chapter 3

The design of the robust urban tra�c
controller

In this chapter the design of the urban tra�c controller is explained. The urban tra�c
controller tries to optimize throughput in all tra�c regimes while remaining real-time feasible
and being subjected to uncertainty. The controller is based on the linear Model Predictive
Control (MPC) controller of Van de Weg et al. (2016a). First, there is a brief introduction on
MPC. After that, the assumptions are introduced. Subsequently, the linear MPC strategy
will be elaborated in Section 3-2. In Section 3-3 the main potential sources of uncertainty
for the linear MPC strategy are discussed. Subsequently, the redefinition of the optimization
problem is proposed in Section 3-4. Finally, this chapter will be concluded in Section 3-5.

3-1 Introduction

In the literature survey it is discussed that accounting for uncertainty in urban tra�c con-
troller design can be beneficial for the performance. It is also discussed that using MPC in
urban tra�c control can lead to a controller that optimizes throughput in all tra�c regimes
while remaining real-time feasible. In this chapter it is tried to integrate these two observa-
tions into a new urban tra�c controller.

The second observation is already established by the controller proposed by Van de Weg
et al. (2016a). It does so by using an aggregated tra�c flow model with constant free-flow
speed and constant shock wave speed speed as prediction model. Therefore, the optimization
problem becomes a Linear Programming (LP) problem. As a results, the controller is real-
time feasible. Hence, the integration with the first observation should also lead to an LP
problem. Then the resulting controller is more likely to be real-time feasible.

It is expected that uncertainty has a more negative e�ect on the throughput of the tra�c net-
work in the over-saturated tra�c regime than in the under-saturated or saturated regime. In
the over-saturated tra�c regime there is spill-back, which causes a direct interaction between
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22 The design of the robust urban tra�c controller

intersections. The direct interaction between intersections can cause the uncertainty, which is
present at one intersection, to influence neighboring intersections. In the under-saturated and
saturated tra�c regime there is no spill-back, thus a less direct interaction. Hence, spill-back
should be avoided when uncertainty is present.

Thus, the main idea of the approach that is described in this chapter is to avoid the phe-
nomenon of spill-back. It does so by penalizing the number of vehicles on the links of the
tra�c network. It is expected that this approach yields a more conservative control signal, and
realizes better throughput when uncertainty is present in the over-saturated tra�c regime.

Note that this work is an extension of the work Van de Weg et al. (2016a) and for completeness
some of it is repeated in this chapter. Throughout the chapter it will be indicated what is
the extension and what is the work of Van de Weg et al. (2016a). In particular, the theory
in Section B-2 and Section 3-2 is repeated from the original linear MPC strategy of Van de
Weg et al. (2016a).

3-1-1 MPC

The concept of MPC can be exploited in urban tra�c control, because using MPC can lead to
a controller that optimizes throughput in all tra�c regimes while remaining real-time feasible.
In this section the framework of an MPC strategy is briefly explained.

The MPC control strategy repeatedly uses a prediction model to optimize the future control
actions over a finite time horizon and only implements the first control action. The framework
of an MPC controller can be seen in Figure 3-1 and the control process consists of three parts:

1. Prediction model. On the basis of a model a prediction of the future evolution of the
state is made, which is based on: the current measured state, the predicted future
disturbance, and the future control inputs. The prediction is made over a certain time
horizon. The predicted state evolution is then used to evaluate the objective function
and find the optimal control signal for the future performance by means of optimization.

2. Optimization. An optimization algorithm will be applied to compute an optimal con-
trol signal that minimizes the performance index over a finite horizon subject to the
given constraints. There can be constraints on the control, state, and output signals,
motivated by e.g. safety and environmental reasons.

3. Rolling horizon principle. When the optimal control input is derived, only the first
sample of the control sequence uú(k) is implemented. Subsequently, in the next time
step the whole procedure is repeated.

3-1-2 Assumptions

In the previous section the concept of MPC is briefly explained. Both the controller of Van de
Weg et al. (2016a) and the proposed controller with penalty make use of MPC. Furthermore,
they also have some of their assumptions in common. The following assumptions, which are
based on the work Van de Weg et al. (2016a), are made for both control methods:
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Figure 3-1: Framework MPC controller.

• Aggregated tra�c dynamics are considered by choosing a sampling time of 10 sec-
onds instead of a sampling time of 1 second. Hereby, the number of time steps for
the prediction of tra�c dynamics is decreased. Hence, the computation time for the
same prediction horizon will be lower for a sampling time of 10 seconds compared to a
sampling time of 1 second, because less computations have to be performed.

• Signal plans are not considered by the linear MPC strategy, which simplifies the
optimization problem. Furthermore, other properties of signal plans, such as minimum
green times and maximum red times are not included.

• Turn fractions are assumed to be known and constant.

• Demand and outflow constraints are assumed to be known with no disturbances
or uncertainties.

• Network parameters, such as saturation flows, free-flow speeds, shock wave speeds,
and maximum link densities are known.

• Measurements of the cumulative inflows and outflows are assumed to be available
with no errors.

In this thesis the control methods are considered in discrete time. The time step k [≠] and
process model sampling time T [s] refer to the time period [Tk, T (k + 1)) [s]. The sampling
time of the measurements is assumed to be equal to T . The prediction model has a time step
kc [≠] and sampling time T c [s], where it holds that T c = ‘cT with the factor ‘c œ Z+.

3-2 Current control framework

Now the framework of MPC and the assumptions of the linear MPC strategy of Van de
Weg et al. (2016a) are described. This section describes how Van de Weg et al. (2016a)
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24 The design of the robust urban tra�c controller

fill in the di�erent parts of their linear MPC strategy: the prediction model and the linear
optimization problem formulation. First, the prediction model (Link Transmission Model
(LTM)) is explained in Section 3-2-1. Subsequently, in Section 3-2-2 the linear optimization
problem is formulated. For completeness it must be noted that the theory of this section is
repeated from the work of Van de Weg et al. (2016a).

3-2-1 Prediction model: the LTM

The linear MPC strategy that is developed by Van de Weg et al. (2016a) uses the LTM of
Yperman (2007) as the prediction model. The LTM is capable of modeling all three tra�c
regimes. It models free-flow dynamics, saturated dynamics, and shock wave dynamics. The
LTM has two more advantages: (1) it can describe the tra�c state with only two states, and
(2) Van de Weg et al. (2016a) show that it can be used in a linear MPC strategy. From the
LTM three elements are used: nodes, links, and origins. All three elements are illustrated in
Figure 3-2. As can be seen at link 3 in the figure, there is the possibility to constrain the
outflow at exits of the network.

Origin 1

Origin 2

Vertical queue

Vertical queue

Link 1 Link 2

Link 3Link 4
qout,max

3

÷
4,3

÷
4,2

÷
1,2

÷
1,3

Figure 3-2: Network elements of the LTM

Introduction to LTM

The LTM of Yperman (2007) describes the link dynamics via 2 tra�c states: the cumulative
inflow N in

i

(kc) [veh] and cumulative outflow Nout
i

(kc) [veh] of every link i [≠] in the network
at discrete-time step kc [≠]. The LTM has two main advantages compared to models that
divide the link into segments (e.g. the Cell Transmission Model (CTM)):

• the LTM requires less states than e.g. the CTM. Segment-based approaches divide the
link into segments, which requires more tra�c states to describe the link dynamics than
when the link is considered as one segment;
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• The numerical stability of segment-based approaches requires a smaller time step than
e.g. the LTM due to the Courant-Friedrichs-Lewy (CFL) condition. The segments
of segment-based approaches are usually smaller than with the LTM. Therefore, the
simulation often needs to have a smaller time step than the LTM. Hence, the longer
the computations will take.

The following assumptions are made for the LTM:

1. the free-flow speed vfree
i

[km/h] for every link i is known and constant;

2. a vehicle cannot exit the link i before the time tfree
i

[h] that it requires to travel through
link i with vfree

i

[km/h];

3. in the saturated tra�c regime, the link outflow is equal to the saturation outflow
qsat

i

[veh/h], which is known and constant;

4. the shock wave speed vshock
i

[km/h] for every link i is known and constant.

Figure 3-3 illustrates the cumulative inflow and outflow of a link with the corresponding
vehicle trajectories in the time-space diagram. The vehicles travel from the bottom to the
top of the time-space diagram. Through Figure 3-3 the assumptions of the LTM will be
explained in more detail. Assumptions 1 and 2 are illustrated by the trajectory of vehicle 6.
Assumption 4 can also be seen in Figure 3-3, where the shock wave starts when vehicle 7 exits
the link. Subsequently, vehicle 13 can only enter the link after the shock wave travel time
tshock
i

[h]. Hence, it can be concluded that the maximum link outflow depends on the link
inflow in the past, due to the first two assumptions. Assumption 4 implies that the maximum
link inflow depends on the outflow of the link in the past. The next section will use these
observations to formulate the LTM into linear state equations and constraints.

Linear state equations of the LTM

The dynamics of the LTM are modeled using linear state equations of the cumulative curves
and linear constraints. This is possible due to the use of e�ective fractions of green time.
The control variables are the e�ective fractions of green time bL,e�

i

(kc) [≠] and bO,e�
j

(kc) [≠],
respectively for every link i and for every origin j. The e�ective fraction of green time for a
link is defined as the realized link outflow qrealized

i

(kc) [veh/h] divided by the link saturation
flow:

bL,e�
i

(kc) = qrealized
i

(kc)
qsat

i

. (3-1)

The cumulative outflow of link i is updated as follows:

NL,out
i

(kc + 1) = NL,out
i

(kc) + bL,e�
i

(kc)qsat
i

T c, (3-2)
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Figure 3-3: Time-space diagram (bottom) and plot of the cumulative curves (top).

where bL,e�
i

(kc) is used to limit the outflow when there is no queue. Furthermore, the free-flow
dynamics can be modeled using the following inequality constraint:

NL,out
i

(kc + 1) Æ “c,fr
i

NL,in
i

(kc ≠ kc,free
i

+ 2) + (1 ≠ “c,fr
i

)NL,in
i

(kc ≠ kc,free
i

+ 1), (3-3)

where kc,free
i

= Átfree
i

/T cË [≠] is the discrete free-flow travel time, and the fraction “c,fr
i

=
kc,free

i

≠ tfree
i

/T c [≠] the residual of a sampling time step that the free-flow travel time is
exceeded by kc,free

i

. The mathematical operator Á·Ë rounds the argument to the next larger
integer. This constraint causes the cumulative outflow curve to lie below the cumulative
inflow curve shifted by the free-flow travel time. The cumulative inflow curve shifted by the
free-flow travel time is illustrated the dashed line in the cumulative curves plot of Figure 3-3.
Note that kc,free

i

Ø 2 to guarantee CFL conditions.
The maximum outflow of a link is modeled as an external process disturbance. Therefore,
a (temporal) bottleneck can be included in the framework. To implement a bottleneck at
an exit link of the network, the outflow of that link is constrained by the maximum outflow
qout,max

i

(kc) [veh/h]:

bL,e�
i

(kc)qsat
i

Æ qout,max
i

(kc) ’i œ IExit, (3-4)

where IExit is the set of exits links. The cumulative inflow of link i is updated as follows:
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NL,in
i

(kc + 1) =NL,in
i

(kc) +
ÿ

i

usœI

in
i

3
÷

i

us
,i

(kc)bL,e�
i

(kc)qsat
i

T c
4

+
ÿ

jœJ

in
i

3
÷

j,i

(kc)bO,e�
j

(kc)qsat
j

T c
4

,

(3-5)

where I in
i

is the set of all links directly upstream of link i and J in
i

is the set of all origins
directly upstream of link i. The turn fraction from link ius to i is indicated by ÷

i

us
,i

(kc) [≠],
and the turn fraction from origin j to link i is indicated by ÷

j,i

(kc) [≠]. The shock wave
dynamics are included by a constraint on the cumulative inflow of link i:

NL,in
i

(kc + 1) Æ“c,sh
i

NL,out
i

(kc ≠ kshock
i

+ 2)
+(1 ≠ “c,sh

i

)NL,out
i

(kc ≠ kshock
i

+ 1) + Nmax
i

,
(3-6)

where kc,shock
i

= Átshock
i

/T cË [≠] is the discrete shock wave time, and the fraction
“c,sh

i

= kc,shock
i

≠ tshock
i

/T c [≠] the residual of a sampling time step that the shock wave time
is exceeded by kc,shock

i

. This constraint causes the cumulative inflow curve to lie below the
cumulative outflow curve shifted by the shock wave travel time. The cumulative outflow curve
shifted by the shock wave travel time is illustrated the dotted line in the cumulative curves
plot of Figure 3-3. Note that kc,shock

i

Ø 2 to guarantee CFL conditions.
The origins are modeled using a vertical queue model. In a vertical queue model the queue
occupies no space. The cumulative outflow of origin j is updated as follows:

NO,out
j

(kc + 1) = NO,out
j

(kc) + bO,e�
j

(kc)qsat
j

T c, (3-7)

which is bounded by:

NO,out
j

(kc + 1) Æ NO,in
j

(kc + 1), (3-8)

where is NO,in
j

(kc + 1) is the cumulative inflow of origin j and is updated as follows:

NO,in
j

(kc + 1) = NO,in
j

(kc) + qin
j

(kc)T c. (3-9)

The control variables bL,e�
i

(kc) [≠] and bO,e�
j

(kc) [≠] should be constrained to represent splits:

0 Æ bL,e�
i

(kc) Æ 1, (3-10)
0 Æ bO,e�

j

(kc) Æ 1, (3-11)
ÿ

iœI

conflict
y

bL,e�
i

(kc) Æ 1, (3-12)
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where Iconflict
y

is the set of signals which are in conflict with each other. The first two con-
straints cause the e�ective fractions of green times to vary between 0 and 1. The third
constraint causes the sum of e�ective fractions of green times of each intersection to be equal
or less than 0. Hence, the e�ective green times are distributed over the conflicting links.

3-2-2 Linear optimization problem formulation

The linear MPC strategy tries to maximize the network throughput over the prediction hori-
zon KpT c [s]. Maximizing the network throughput is realized by minimizing the Total Time
Spent (TTS) of the network, while it is assumed that the network inflow is not a�ected by the
control actions. The TTS of the network is minimized by optimizing the e�ective green times
used by the tra�c streams in the network. This optimization problem can be formulated into
an LP problem. In order to do so, the linear dynamic tra�c equations of the previous section
have to be rewritten into state space form:

x(kc + 1) = Ax(kc) + B(kc)u(kc) + Cd(kc), (3-13)

where the state x(kc) œ Rn

states◊1 given by:

x(kc) =
51

xL
1 (kc)

2€
· · ·

1
xL

n

L(kc)
2€ 1

xO
1 (kc)

2€
· · ·

1
xO

n

O(kc)
2€

6€
, (3-14)

and where the state xL
i

(kc) œ Rn

L,s
i ◊1 of link i has the following structure:

xc,L
i

(kc) =
Ë
NL,out

i

(kc) · · · NL,out
i

(kc ≠ kc,shock
i

) NL,in
i

(kc) · · · NL,in
i

(kc ≠ kc,free
i

)
È€

.

(3-15)

The number nL,s
i

= kc,shock
i

+ kc,free
i

+ 2 denotes the length of the vector. Similar to the state
of each link i, the state xc,O

j

(kc) œ Rn

O,s
j ◊1 of an origin j has the following structure:

xc,O
j

(kc) =
Ë
NO,out

j

(kc) NO,in
j

(kc)
È€

. (3-16)

The number nO,s
j

= 2 denotes the length of this vector, and the number nstates =
q

iœi

L
nL,s

i

+
q

jœI

O
nO,s

j

denotes the length of the state vector x(kc).

The input vector u(kc) œ Rn

inputs◊1 is given by:

u(kc) =
Ë
bL,e�

1 (kc) · · · bL,e�
n

L (kc) bO,e�
1 (kc) · · · bO,e�

n

O

È€
, (3-17)

Dik Jansen Master of Science Thesis



3-2 Current control framework 29

where ninputs = nL+nO is the number of inputs. Finally, the disturbance vector d(kc) œ Rn

O◊1

is given by:

d(kc) =
Ë
qin

1 (kc) · · · qin
n

O(kc)
È€

. (3-18)

The objective function of the linear MPC strategy is:

J(x) =
k

c+Kpÿ

k0=k

c
T c

; ÿ

iœi

L

3
NL,in

i

(kc) ≠ NL,out
i

(kc)
4

+
ÿ

jœI

O

3
NO,in

j

(kc) ≠ NO,out
j

(kc)
4<

. (3-19)

The minimization of the objective function with respect to x can be formulated as an LP
problem of the following form:

min
ū(kc)

ZB̃ū(kc) + Z(Ãx(kc) + C̃d̄(kc))

s.t. M ineqū(kc) Æ V ineq,
(3-20)

where the vector ū(kc) contains all the inputs that should be optimized, and the vector d̄(kc)
contains the prediction of the demand over the prediction horizon. The vector Z œ R1◊Kpn

states

is used to compute the value of the objective function by multiplication with the future
predicted state. The matrix B̃(kc), initial state matrix Ãx(kc), and initial disturbance matrix
C̃d(kc

0) are used to compute the prediction of the states x̄(kc). The matrix M ineq and the
vector V ineq contain the inequality constraints of the optimization problem e.g. (3-3), and
(3-6).
The state x(kc + n) for an arbitrary time step kc + n is given by:

x(kc + n) = Anx(kc) +
nÿ

i=1
An≠1(B(kc + i ≠ 1)u(kc + i ≠ 1) + Cd(kc + i ≠ 1)). (3-21)

The vector ū(kc) œ Rn

in,tot◊1 – with nin,tot = Kp(nL + nO) – is defined as:

ū(kc) =
51

u(kc
0)

2€
· · ·

1
u(kc

0 + Kp ≠ 1)
2€

6€
, (3-22)

and the vector d̄(kc) œ RKpn

O◊1 is defined as:

d̄(kc) =
51

d(kc
0)

2€
· · ·

1
d(kc

0 + Kp ≠ 1)
2€

6€
. (3-23)

By defining the matrix Ã œ Rn

states
Kp◊n

states as:
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Ã =
Ë
A A2 · · · AKp

È€
, (3-24)

and the matrix B̃(kc) œ Rn

states
Kp◊n

in,tot as:

B̃(kc) =

S

WWWWU

B(kc) 0 · · · 0
AB(kc) B(kc + 1) · · · 0

...
... . . . ...

AKp≠1B(kc) AKp≠2B(kc + 1) · · · B(kc + Kp ≠ 1)

T

XXXXV
, (3-25)

and the matrix C̃ œ Rn

states
Kp◊Kpn

O as:

C̃ =

S

WWWWU

C 0 · · · 0
AC C · · · 0

...
... . . . ...

AKp≠1C AKp≠2C · · · C

T

XXXXV
, (3-26)

a prediction of the evolution of the states is given by the following linear equation:

x̄(kc) = Ãx(kc
0) + B̃ū(kc) + C̃d̄(kc), (3-27)

with the vector x̄(kc) œ RKpn

states◊1 containing the extended tra�c states at every time step
x(kc + n) from time step kc

0 to kc
0 + Kp defined as:

x̄(kc) =
51

x(kc
0 + 1)

2€
· · ·

1
x(kc

0 + Kp)
2€

6€
. (3-28)

Linear inequality constraints

All the constraints of the optimization problem in (3-20) are included in the matrix M ineq

and vector V ineq. The constraints make sure that the tra�c flow modeling is in accordance
with the LTM, which is specified in Section 3-2-1. The inequality matrix M ineq and vector
V ineq consists of various parts:

M ineq =
Ë
M ineq

1 · · · M ineq
7

È€
,

V ineq =
Ë
V ineq

1 · · · V ineq
7

È€
.

(3-29)

These parts are used to model the following:
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3-3 Analysis of uncertainty in the current control framework 31

• The first part is used to model the free-flow dynamics according to (3-3).

• The second part is used to the spill back dynamics according to (3-6).

• The third part is used to constrain the outflow out of an origin according to (3-8).

• The fourth part is used to include the constraints (3-4) on the maximum outflow of the
number nE of exits in the network

• The fifth and sixth part are used to limit the control signals according to (3-10) and
(3-11).

• The seventh part takes care of the conflicts (3-12).

Dimension of optimization problem

The computation time, i.e. the time it takes to solve the optimization problem, is influenced
by the size of the optimization problem. The size is dependent on the size of the input vector
and on the number of constraints. For linear programming the worst-case CPU time is of
the form 0(nm), where n is the size of the input vector and m is the number of equality
constraints. The input vector ū(kc) contains (nL + nO)Kp elements. Furthermore, there are
(4nL + 3nO + nE + ncon)Kp inequality constraints are required, where ncon is the number of
conflicts in the network.

3-3 Analysis of uncertainty in the current control framework

The previous section showed the structure of the control framework proposed by Van de Weg
et al. (2016a). The framework is built upon certain assumptions, which may not hold in
reality. With future implementation in mind some of these assumptions may be relaxed by
introducing an uncertainty, e.g. the assumption of a known demand can be relaxed into an
unknown disturbance on the demand. The unknown disturbance on the demand can be a
better representation of the demand in reality. This section points out the di�erent sources
of uncertainty. It does so by dividing the sources into di�erent groups and discussing the
di�erent groups one by one.

In Figure 3-4 the framework of the MPC controller of Van de Weg et al. (2016a) is shown. The
potential sources of uncertainty have a dashed line: uncertainty in the measurement of the
state, uncertainty in the measurement of the disturbance, and uncertainty in the prediction
model.
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Disturbance

Process Prediction model

Objective function

Optimization

Stopping criterion

Measurements of disturbance

Predicted
state

Performance

Optimal control signal

Control
signal

Measurements

Figure 3-4: Framework MPC controller with sources of uncertainty have or are encircled with a
dashed line.

The various uncertainties/disturbances are summarized below:

• Model uncertainty

• Parameter uncertainty

– Saturation flow
– Free-flow travel time
– Shock wave travel time
– Maximum density

• Measurement error

– Cumulative inflow
– Cumulative outflow

• Disturbance

– Turn fractions
– Demand
– Outflow constraint

3-3-1 Uncertainty in the measurement of the state

The measurement of the state consists in measuring the cumulative inflow and outflow of
every link and origin of the network. When there is an error in the estimation of the state,
the MPC strategy will not yield an optimal solution. It is expected that an error in the
measurement of the state will have a direct e�ect on the performance of the controller, since
the measurement of the state is used as the initial value for the prediction of future states.

3-3-2 Uncertainty in the measurement of the disturbances

The measurement of the disturbances consists in measuring the demand at the origins, the
maximum outflow at the exits, and the turn fractions. The turn fractions are assumed to be
known, and therefore the linear optimization problem is an LP problem. Furthermore, the
demand and outflow constraint are assumed to be known.
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3-3 Analysis of uncertainty in the current control framework 33

It is expected that uncertainty in the demand has the least significant e�ect on the perfor-
mance of the controller of Van de Weg et al. (2016a). Uncertainty in the demand has a
direct e�ect on the cumulative inflow and outflows of the origins, from where the e�ect will
propagate through the rest of the network. It is expected that through the receding horizon
principle the controller of Van de Weg et al. (2016a) is able to notice the fluctuations in the
demand, because the propagation of the demand uncertainty will take some time. Note that,
it is assumed that there are no internal origins (e.g. a parking area). Internal origins can
a�ect the flows within the network.

On the contrary, it is expected that uncertainty in the turn fractions has a more significant
e�ect on the performance than demand uncertainty. Uncertainty in the turn fractions will
have a direct e�ect on the cumulative inflows and outflows of a link and on the cumulative
inflow of downstream links and on the cumulative outflow of upstream links. This e�ect will
be present throughout the network. Therefore, the controller of Van de Weg et al. (2016a) is
less able to notice the fluctuations in the turn fractions, because the uncertainty in the turn
fractions has a more direct e�ect than the demand uncertainty.

It is expected that uncertainty in the outflow constraint (e.g. a bottleneck) has a higher
impact on the performance than demand uncertainty. The uncertainty is now originated
at the exits instead of the origins, and therefore will have a direct e�ect on the cumulative
inflow and outflow of the exits. The throughput of a tra�c network is directly related to the
cumulative outflow of the exits. Hence, the uncertainty in the outflow constraint is expected
to influence the throughput more than demand uncertainty.

3-3-3 Uncertainty in the prediction model

A prediction of the state over a certain time horizon is made on the basis of a tra�c model,
which is based on: the current measured state, the predicted future disturbance, and the
future control inputs. The predicted state is then used to evaluate the objective function
and to find the optimal control actions for the future through optimization. Uncertainty
in the prediction model can be further distinguished in model uncertainty and parameter
uncertainty.

A model-based controller bases its control decisions on the prediction of the prediction model.
Uncertainty in the prediction model can have the e�ect that the controller makes the wrong
control decision, which can result in a significant decrease in performance.

Model uncertainty

In the linear MPC strategy of Van de Weg et al. (2016a) a linear tra�c model (LTM) with
green fractions and aggregated tra�c flows is used for prediction. The linearity of the model
is an advantage, because of its low computation time. The linearity of the tra�c model is
partly obtained by introducing green fractions and aggregated tra�c flows. However, the
green fractions and aggregated tra�c flows are a simplification of the situation in reality.
The control of intersections by tra�c lights is actually a non-linear process, due to the signal
plans and switching between red, yellow, and green light. The tra�c flows are simulated
with aggregated tra�c flows by interpolating the cumulative inflows and outflows of every
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34 The design of the robust urban tra�c controller

link with a sampling time of 10 seconds. The cumulative flows do not capture the interaction
between individual vehicles in a link. Hence, the controller of Van de Weg et al. (2016a) has
a model-reality mismatch when implemented in practice. This model-reality mismatch can
be seen as a model uncertainty.

Parameter uncertainty

The linear tra�c model uses certain parameters that are assumed to be known and constant
for every link of the network: saturation flow, free-flow travel time, shock wave travel time,
and the maximum density. The assumptions that these parameters are constant and known
may not hold in reality. The free-flow travel time may vary for individual vehicles. One may
argue whether an average value for these parameters may be su�cient for accurate prediction
of the future state.

3-4 Extension of the control framework

In this section the optimization problem of the control strategy of Van de Weg et al. (2016a)
will be redefined. The proposed adjustment should yield a real-time feasible controller, which
optimizes throughput in all tra�c regimes, while accounting for uncertainty. In order to
keep the controller real-time feasible the optimization problem is kept linear. Furthermore,
it is expected that uncertainty has greater impact on the performance in a more saturated
situation than a less saturated situation. Therefore, it is tried to avoid phenomena, such as
spill-back, to minimize the impact of the uncertainty.

3-4-1 General idea

The general idea of the proposed extensions is to let the MPC strategy find a more conservative
control decision. To realize this more conservative control decision, a penalty is introduced in
the objective function. The value of the penalty depends on the number of vehicles that can
fit in a link. The number of vehicles that can fit in a link is a function of the link capacity
minus the cumulative inflow and plus the cumulative outflow delayed by the shock wave travel
time.

In the LTM the cumulative inflow NL,in
i

(kc) [veh] is constrained by the maximum cumulative
inflow N in,max

i

(kc) [veh]:

N in,max
i

(kc) = Nmax
i

+ “c,sh
i

NL,out
i

(kc ≠ kshock
i

+ 1) + (1 ≠ “c,sh
i

)NL,out
i

(kc ≠ kshock
i

). (3-6)

In the saturated and over-saturated tra�c regimes the MPC strategy will fully utilize the
constraint (3-6), in other words: NL,in

i

(kc) = N in,max
i

(kc). However, this may cause the
uncertainty to have a greater impact on the performance, because spill-back is more likely
to occur. To make sure that uncertainty does not cause any spill-back, a safety margin
N safety

i

(kc) [veh] can be introduced: NL,in
i

(kc) = N in,max
i

(kc) ≠ N safety
i

(kc). In Figure 3-5
the e�ect of a safety margin on the maximum cumulative inflow is shown with corresponding
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Figure 3-5: Plot of the cumulative curves with and without safety margin (middle), space-time
diagram without safety margin (top), and space-diagram with safety margin (bottom).

space-time diagram with and without safety margin. The e�ect is that less vehicles are allowed
onto the link.

There can be two ways of introducing such a safety margin: either by implementing a con-
straint or by implementing a penalty. A drawback of using a constraint is that the op-
timization problem can become infeasible, because the controlled process may violate this
constraint. Another drawback is that a constraint is less flexible than a penalty, because the
importance of the penalty can be indicated in the objective function. The penalty can be
weighted relative to the other performance index (e.g. throughput). This cannot be done for
a hard constraint. Note that a hard constraint can be relaxed into a soft constraint by using a
penalty function. Hence, it is chosen to introduce a penalty P

i

(kc) [≠] to represent the safety
margin for every link i œ IL, where IL is the set of all link indices.

How does this penalty represent the safety margin? The penalty is equal to zero when the
number of vehicles in a link is below a certain threshold. If the number of vehicles surpasses
the threshold, the penalty will increase constantly until the number of vehicles reaches its
maximum. The penalty is at its maximum when the number of vehicles is at its maximum.
The penalty of every link is accumulated and minimized via the objective function. Thus,
the MPC strategy tries to maximize throughput and minimize the penalty simultaneously.
Hence, the proposed extension tries to avoid the links of the network of getting too full, while
not losing too much throughput.

In the remainder of this section the proposed extension of the control framework of Van de
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36 The design of the robust urban tra�c controller

Weg et al. (2016a) is explained in further detail by by deriving the mathematical formulation
of the penalty, introducing some assumptions, and by presenting the extended optimization
formulation.

3-4-2 Mathematical formulation

The mathematical formulation of the extension is explained in this section. The extension
is a function of the state and two control parameters. The state consists of the cumulative
inflows and outflow of every link plus the cumulative inflow and outflow of every origin.
The value of P

i

(kc) depends on the additional number of vehicles that can fit in link i at
discrete time step kc [≠]. Given NL,in

i

(kc) and N in,max
i

(kc), the additional number of vehicles
N remaining

i

(kc) [veh] that can fit in link i at time step kc is represented by:

N remaining
i

(kc) = N in,max
i

(kc) ≠ NL,in
i

(kc). (3-30)

The value of P
i

(kc) œ [0, —
i

] is calculated in the following way:

P
i

(kc) = max
A

0, —
i

≠ —
i

N remaining
i

(kc)
–

i

Nmax
i

B

, (3-31)

where the threshold –
i

œ [0, 1] is a tuning parameter for each link i and —
i

œ R is the maximum
value of the penalty. In Figure 3-6 a graph of P

i

(kc) can be seen as function of N remaining
i

.

N

remaining
i = N

max
i–iN

max
i

Pi

0

—i

Figure 3-6: The penalty P
i

as function of N remaining

i

.

Combining all the state variables from (3-30), the following is defined:

�N
i

(kc) = NL,in
i

(kc) ≠ “c,sh
i

NL,out
i

(kc ≠ kshock
i

+ 1) ≠ (1 ≠ “c,sh
i

)NL,out
i

(kc ≠ kshock
i

). (3-32)

The physical interpretation of �N
i

(kc) can be seen in Figure 3-7. When �N = Nmax, the
space of a link is fully utilized. So then there is either a shock wave passing through the
link, or the link is at its maximum density. By filling in (3-30) in (3-31), P

i

(kc) can also be
expressed as a function of �N

i

(kc), Nmax
i

, —
i

, and –
i

:

P
i

(kc) = max
A

0,
—

i

�N
i

(kc)
–

i

Nmax
i

+ —
i

(–
i

≠ 1)
–

i

B

. (3-33)

In Figure 3-8 a graph of P
i

(kc) can be seen as function �N
i

.
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Figure 3-7: Plot of cumulative flows with �N pointed out.

�Ni = N

max
i

(1 ≠ –i)Nmax
i

Pi

0

—i

—i(–i≠1)
–i

Figure 3-8: The penalty P
i

as function of �N
i

.

3-4-3 Additional Assumptions

For the extended control method the assumptions of Section B-2 also hold. Nevertheless,
there are some additional assumptions compared to the control method of Van de Weg et al.
(2016a). The assumptions apply to the control parameters –

i

[≠] and —
i

[≠] of the extended
control method. The control parameter –

i

is chosen to be constant over time for the sake
of simplicity. The physical interpretation of –

i

causes –
i

œ [0, 1]. Furthermore, the control
parameter —

i

œ R is chosen to be constant.

3-4-4 Linear optimization formulation

Objective function

Minimizing the penalty P
i

(kc) may lead to a more conservative reference. Therefore, P
i

(kc)
is included in the original objective function of the MPC strategy. The original objective
function has the aim of minimizing the TTS of all vehicles in the network over the prediction
horizon Kptc [h]. By including the penalty, the extended objective function becomes:
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Jext(x) =
k

c+Kpÿ

k0=k

c
T c

; ÿ

iœi

L

3
NL,in

i

(kc) ≠ NL,out
i

(kc)
4

+
ÿ

iœi

L

3
P

i

(kc)
T c

4

+
ÿ

jœI

O

3
NO,in

j

(kc) ≠ NO,out
j

(kc)
4<

.

(3-34)

Note that when P
i

(kc, —
i

= 0) = 0 ’ kc, ’ i œ IL the linear optimization problem remains
the original linear optimization problem of Van de Weg et al. (2016a). However, it does have
an extra state per link. The objective function can be formulated as a linear optimization
problem of the following form:

min
û(kc)

ZextB̃extû(kc) + Zext(Ãextxext(kc) + C̃extd̄(kc))

s.t. M ineq
ext û(kc) Æ V ineq

ext ,
(3-35)

where the vector û(kc) contains all the inputs that should be optimized. The vector Zext is
used to compute the value of the objective function by multiplication with the future predicted
extended state. The matrices Ã

ext

, B̃
ext

, C̃
ext

, and disturbance vector d̄(kc) and initial state
vector xext(kc) are used to compute the prediction of the states x̄ext(kc). The matrix M ineq

ext
and the vector V ineq

ext contain the inequality constraints of the extended optimization problem.

State

The original state xc,L
i

(kc) of link i has the following structure:

xc,L
i

(kc) =
Ë
NL,out

i

(kc) · · · NL,out
i

(kc ≠ kc,shock
i

) NL,in
i

(kc) · · · NL,in
i

(kc ≠ kc,free
i

)
È€

,

xc,L
i

(kc) œ Rn

L,s
i ◊1,

(3-36)

where nL,s
i

= kc,shock
i

+ kc,free
i

+ 3 is the length of the vector. To implement P
i

(kc) for each
link i the penalty is added to the state, and then the extended state becomes:

xc,L
i,ext(kc) =

51
xc,L

i

(kc)
2€

P
i

(kc)
6€

,

xc,L
i,ext(kc) œ Rn

L,s
i,ext◊1,

(3-37)

where nL,s
i,ext = kc,shock

i

+ kc,free
i

+ 3 becomes the length of the vector.
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System matrices

By creating a vector û(kc) œ Rn

in,tot◊1 – with nin,tot = Kp(nL + nO) – defined as:

û(kc) =
51

ũ(kc)
2€

· · ·
1
ũ(kc + Kp ≠ 1)

2€
6€

, (3-38)

and defining the matrix Ãext œ Rn

states
Kp◊n

states , B̃ext œ Rn

states
Kp◊n

in,tot , and
C̃ext œ Rn

states
Kp◊n

O as:

Ãext =
Ë
Aext A2

ext · · · A
Kp
ext

È€
,

B̃ext(kc) =

S

WWWWU

Bext(kc) 0 · · · 0
AextBext(kc) Bext(kc + 1) · · · 0

...
... . . . ...

A
Kp≠1
ext Bext(kc) A

Kp≠2
ext Bext(kc + 1) · · · Bext(kc + Kp ≠ 1)

T

XXXXV
,

C̃ext =

S

WWWWU

Cext 0 · · · 0
AextCext Cext · · · 0

...
... . . . ...

A
Kp≠1
ext Cext A

Kp≠2
ext Cext · · · Cext

T

XXXXV
,

(3-39)

a prediction of the evolution of the states is given by the following linear equation:

x̄ext(kc) = B̃ext(kc)ū(kc) + Ãextxext(kc) + C̃extd̄(kc), (3-40)

with the vector x̄ext(kc) œ RKpn

states◊1 containing the extended tra�c states at every time
step xext(kc + n) from time step kc

0 to kc
0 + Kp defined as:

x̄ext(kc) =
51

xext(kc
0 + 1)

2€
· · ·

1
xext(kc

0 + Kp)
2€

6€
. (3-41)

Constraints

The constraints of the original optimization problem have to be altered to make them com-
patible with the extended state xc,L

i,ext(kc). Furthermore, the max operator in (3-33) can be
replaced by two inequality constraints:

P
i

(kc) Ø —
i

�N
i

(kc)
–

i

Nmax
i

+ —
i

(–
i

≠ 1)
–

i

, (3-42)

P
i

(kc) Ø 0. (3-43)
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This is only allowed since P
i

is minimized through the objective function (3-34). These
inequality constraints are added to the optimization problem. The first constraint can be
rewritten into standard form:

M ineq
8 ûext(kc) Æ V ineq

8 , (3-44)

with the matrix M ineq
8 œ Rn

L
Kp◊n

in,tot and vector V ineq
8 œ Rn

L
Kp◊1 given as:

M ineq
8 = M̄ ineq

8 B̃,

V ineq
8 = V̄ ineq

8 ≠ M̄ ineq
8 (Ãx(kc) + C̃d̄(kc)),

(3-45)

where the matrix V̄ ineq
8 œ Rn

L
Kp◊1 is given by:

V̄ ineq
8 =

Ë
—1(1≠–1)

–1
· · · —i(1≠–i)

–i

È€
. (3-46)

The matrix M̄ ineq
8 œ Rn

L
Kp◊n

states
Kp is given as:

M̄ ineq
8 =

S

WWU

. . . 0
M8

0 . . .

T

XXV , (3-47)

with the matrix M8 œ Rn

L◊n

states given as:

M8 =

S

WWWWU

. . . 05
0 · · · 0 ≠ “

c,sh
i —i

–iN
max
i

≠ (1≠“

c,sh
i )—i

–iN
max
i

—i
–iN

max
i

0 · · · 0 ≠1
6

0 . . .

T

XXXXV
. (3-48)

The second constraint can be rewritten into standard form:

M ineq
9 ûext(kc) Æ V ineq

9 , (3-49)

with the matrix M ineq
9 œ Rn

L
Kp◊n

in,tot and vector V ineq
9 œ Rn

L
Kp◊1 given as:

M ineq
9 = M̄ ineq

9 B̃,

V ineq
9 = ≠M̄ ineq

9 (Ãx(kc) + C̃d̄(kc)).
(3-50)
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HGere, the matrix M̄ ineq
9 œ Rn

L
Kp◊n

states
Kp is given as:

M̄ ineq
9 =

S

WWU

. . . 0
M9

0 . . .

T

XXV , (3-51)

with the matrix M9 œ Rn

L◊n

states given as:

M9 =

S

WWWU

. . . 0Ë
0 · · · 0 ≠1

È

0 . . .

T

XXXV . (3-52)

3-5 Conclusions and discussions

This chapter has introduced an extension to the work of Van de Weg et al. (2016a). The
theory behind the proposed extension is described in this chapter. The MPC controller of
Van de Weg et al. (2016a) consists of three main parts: the prediction model, the objective
function, and the optimization algorithm. The proposed extension adjusted the objective
function by introducing an extra term. The extra term is a penalty applied to each link. The
penalty is a function of the number of vehicles that can fit in a link and the control parameters
–

i

and —
i

.

The proposed extension should yield a better controller performance than the controller of
Van de Weg et al. (2016a) when uncertainty is present. The uncertainty is expected to have a
greater impact on the performance in the saturated and over-saturated tra�c regime, because
spill-back is more likely to occur. A safety margin can be introduced to avoid spill-back. The
safety margin is established by finding a more conservative control decision. This control
decision is made more conservative by introducing a penalty.

The proposed extension does not require any additional measurements compared to the con-
troller of Van de Weg et al. (2016a). However, the implementation of the penalty does require
an extra state variable per link, and two extra constraints. Thus, the optimization problem
has become bigger than the optimization problem of Van de Weg et al. (2016a). Nevertheless,
the optimization problem is a still a linear programming problem. Hence, it is expected that
the proposed extension is real-time feasible. However, it should be investigated whether the
grown size of the optimization problem has a significant impact on the computation time.

The control parameters –
i

and —
i

respectively represent the threshold and the maximum value
of the penalty respectively for link i. The parameters should be chosen in such a way that the
highest throughput is realized. It is expected that the optimal values for these parameters
may vary for various demands, di�erent types and magnitude of uncertainty. For future field
implementation the values for –

i

and —
i

should be determined by deterministic rules or by
simulation. It is recommended to derive the values gradually during field implementation
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to improve the performance, since there are not yet any deterministic rules to determine
(sub)optimal –

i

and —
i

. In this research –
i

and —
i

are assumed to be constant over time.
However, this may not be optimal for the performance of the controller.

In the under-saturated regime it is expected that the proposed controller does not have any
e�ect on the performance when –

i

is assumed to be small enough. The tra�c network
remains on the free-flow branch of the macroscopic fundamental diagram, when it operates in
the under-saturated tra�c regime. On the free-flow branch of the macroscopic fundamental
diagram the vehicles density is relatively low. Hence, the number of vehicles in a link will
probably not pass the threshold value of the penalty function. The threshold value, which is
a function of –

i

, will be high when the value of –
i

is low. Hence, the proposed controller is
expected to not influence the performance in the under-saturated tra�c regime.
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Chapter 4

Evaluation of the robust urban tra�c
controller

In this chapter the proposed urban tra�c controller will be evaluated by means of simulation.
First, the di�erent case studies are introduced. After that, the common features of the
simulation set-up are described. Subsequently, the case specific simulation set-up and results
of each case study will be presented. The results will be divided into quantitative findings and
qualitative findings. Finally, this chapter will be concluded. In the remainder of this chapter
the controller of Van de Weg et al. (2016a) is denoted as the LP (Linear Programming)
controller, and the proposed extension is denoted as the LPP (Linear Programming with
Penalty) controller.

4-1 Introduction

The goal of this chapter is the evaluation of the proposed extension on the work of Van de
Weg et al. (2016a). The evaluation consists of two parts: (1) the quantitative analysis, which
is based on the Total Time Spent (TTS) and the computation time of the LPP controller,
and (2) the qualitative analysis, which is based on the behavior of the LPP controller. The
desired behavior of the LPP controller consists of two tasks:

1. Perform better than the LP controller when uncertainty is present in the over-saturated
and saturated tra�c regime;

2. Do not perform worse than the LP controller when uncertainty is present in the under-
saturated regime

It is expected that di�erent types of uncertainty have di�erent impacts. Therefore, the di�er-
ent types of uncertainty, which were discussed in Section 3-3, should be investigated separately.
For the sake of simplicity only uncertainty in the disturbances and the model are evaluated.
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The evaluation of uncertainty in the state is expected to be much more complex, because the
proposed controller makes use of the state to determine the penalty. Hence, the following
cases are considered:

• case study 1 evaluates the impact of the LPP controller on the TTS by comparing it
to the LP controller when the tra�c network is subjected to a demand with noise. The
LPP controller is only provided with the average value of this demand;

• case study 2 evaluates the impact of the LPP controller on the TTS by comparing it
to the LP controller when the tra�c network is subjected to turn fractions with noise.
The LPP controller is only provided with the average value of these turn fractions;

• case study 3 evaluates the impact of the LPP controller on the TTS by comparing
it to the LP controller when the exits of the tra�c network are subjected to outflow
constraints with noise. The LPP controller is only provided with the average value of
these outflow constraints;

• case study 4 evaluates the impact of the LPP controller on the TTS by comparing it
the controller of Van de Weg et al. (2016b) for di�erent demands when model uncertainty
is present. The model uncertainty is explained in more detail in Section 4-6.

4-2 Simulation set-up

The simulation set-up for the first three cases can be seen in Figure 4-1. The Link Trans-
mission Model (LTM) of Yperman (2007) is chosen as the process model (i.e. it represents
the “real” world) and as the prediction model. However, the simulation sampling time step
of the process model is set to 1 second while the sampling time step of the prediction model
is set to 10 seconds. The process model and prediction model are chosen to be the same,
because the evaluations should show the e�ect of the LPP controller while only one specific
type of uncertainty is present. This is the case when the process model and the prediction
model are the same. Note that the prediction model and the process model are not the same
in case study 4, due to a nonlinearity in the process model. This will be elaborated in the
case-specific simulation set-up of case study 4.

Link Transmission Model

Process model
Sampling time 1 s

Measurements

Tra�c state
Update every 60 s

Model Predictive Controller

Sampling time 10 s
Prediction horizon 300 s

Control horizon 300 s

Disturbances

Demand
Turn fractions

Outflow constraints

Control signal

Update every 60 s

Noise

Figure 4-1: Overview of the simulation set-up
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In every case study another type of uncertainty is investigated. It is assumed that during
a case study the controller performance is not a�ected by the remaining potential sources
of uncertainty. Thus, the controller has no exact predictions of the future demand available
in case study 1. The controller has no exact prediction of the turn fractions available in
case study 2. Furthermore, the controller has no exact prediction of the outflow constraints
available in case study 3. Finally, in case study 4 the optimized green fractions are not
directly applied to the “real world” as in the first three case studies but are translated to
signal timings, which then are implemented to the “real” world. In every case study it is
assumed that the controller has perfect measurements of the tra�c states available.
The simulations are carried out using Matlab R2015b on a computer with a 3.1 GHz processor
and 8 GB RAM. The standard linear optimization function linprog of Matlab implemented
with the ’dual-simplex’ algorithm is used to solve the linear optimization problem. The
computation time required by the optimization problem at every time step and the time
needed to formulate the optimization problem at every time step are used for comparison
between the di�erent cases.

4-2-1 Timing parameters

The timings parameters that are used in the case studies are summarized in Table 4-1 and
are based on results found by Van de Weg et al. (2016a). Their work shows that a controller
sampling time between 2 seconds and 20 seconds does not influence the TTS for a prediction
horizon of 300 seconds. Furthermore, they show that a controller update interval larger than
60 seconds has a negative e�ect on the TTS. Throughout the work of Van de Weg et al.
(2016a) the control horizon is set the same as the prediction horizon. Thus, for the case
studies it is chosen to have a controller update interval of 60 seconds, and a prediction and
control horizon of 300 seconds, which corresponds to 5 steps with a control sampling time of
60 seconds. The timing parameters for case study 4 are based on results found by Van de
Weg et al. (2016b) and are presented in Section 4-6-1.

Parameter Value Parameter Value

Simulation sample time 1 s Prediction horizon 300 s
Control sample time 10 s Control horizon 300 s

Update interval MPC 60 s

Table 4-1: Timing parameters of case study 1, 2, and 3.

4-2-2 Network

The tra�c network as illustrated in Figure 4-2 is used for evaluation. It consists of 2 inter-
sections, with 3 origins and 3 destinations in total. Link 7 is one of the destinations and it is
modeled as a bottleneck, which is introduced to model all tra�c regimes. It is chosen to use
a small network, because it is expected that a small network can give better understanding
of the qualitative behavior of the controller.
The network consists of 15 links, each of which represents a one-lane road. Every main road
(e.g. link 1, 4, 8, and 12) splits into a left or right-turning link and a through-going link. The
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Figure 4-2: Network of two intersections considered in the case studies.

links 1, 8, and 12 represent the origins of the network, and links 7, 11, and 15 represent the
exits, where link 7 has an outflow constraint of 1000 veh/h. The saturation flow qsat

i

[veh/h]
of every link is set to 2000 veh/h. Furthermore, the maximum density and length of every
link are set to 0.4 veh/m and to 200 m respectively. Thus, the maximum number of vehicles
Nmax of every link is 80 vehicles. The free-flow speed vfree is set at 10 m/s, which yields a
free-flow travel time tfree of 20 seconds. The shock wave speed vshock is set at 5 m/s, which
yields a shock wave travel time tshock of 40 seconds. The characteristics of every link are
summarized in Table 4-2.

Parameter Value Parameter Value

Maximum density 0.4 veh/m Length 200 m
Saturation flow 2000 veh/h Maximum number of vehicles 80 veh
Free-flow speed 10 m/s Free-flow travel time 20 s
Shock wave speed 5 m/s Shock wave travel time 40 s

Table 4-2: Link characteristics of the network considered in every case study.

The turn fractions of the network are shown in Table 4-3. When the same demand is applied
to every origin of the network, the turn fractions will yield the same demand at the bottleneck
as the demand at the origins. For example, if a demand of 1100 veh/h is applied to every
origin (link 1, 8, and 12), the demand with a destination into link 7 is 1100 veh/h. The
simulation time of every simulation is set to 3600 seconds.

Turn fractions

÷1,2 = 0.4 ÷4,5 = 0.67 ÷8,9 = 0.6 ÷12,13 = 0.33
÷1,3 = 0.6 ÷4,6 = 0.33 ÷8,10 = 0.4 ÷12,14 = 0.67
÷2,4 = 1 ÷5,7 = 1 ÷9,4 = 1 ÷13,7 = 1
÷3,11 = 1 ÷6,15 = 1 ÷10,11 = 1 ÷14,15 = 1

Table 4-3: Turn fractions of the network
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4-3 Case Study 1: Uncertainty in the demand 47

4-3 Case Study 1: Uncertainty in the demand

This section presents the results of evaluating the impact of demand uncertainty on the per-
formance of the LPP controller. The resulting performance is compared with the performance
of the LP controller. In Section 4-3-1 the set-up of the simulations is presented. After that,
Section 4-3-2 presents the quantitative results and Section 4-3-3 the qualitative results.

4-3-1 Case study 1 - evaluation set-up

Case study 1 consists of two parts, namely, 1A and 1B. The first part (1A) consists of
evaluating the TTS of the LP controller for di�erent demands and for di�erent levels of
uncertainty in the demand. The second part (1B) consists of evaluating the performance of
the LPP controller for di�erent demands for a significant level of uncertainty. The level of
the uncertainty is determined in case study 1A.

The uncertainty in the demand is created by a di�erence between the actual demand qin,act(k)
[veh/h] and the nominal demand qin,nom(k) [veh/h], with a maximum di�erence of “qin percent
of qin,nom(k). The actual demand is applied to the tra�c network, while the nominal demand
is used for prediction of future tra�c dynamics. The actual demand is determined as follows:

qin,act(k) = [1 + “qin�qin(k)]qin,nom(k), (4-1)

where �qin(k) is a random variable between -1 and 1 with a uniform distribution. Hence,
the actual demand fluctuates around the nominal demand every 10 seconds with a uniform
distribution. The nominal demand is taken to be constant over time and the same for every
origin.

Case 1A and 1B are both evaluated for 16 di�erent demands varying between 100 veh/h
and 1600 veh/h with intermediate steps of 100 veh/h. Furthermore, the various levels of
the uncertainty are according to Table 4-4. Hence, there are 224 simulations, which are all
repeated ten times with a di�erent random seed. The values of the TTS for each demand and
level of uncertainty will be averaged over these ten experiments.

Case 1A 1 2 3 4 5 6 7 8 9 10 11 12 13 14
“qin 0 0.02 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4-4: Case 1A: di�erent levels of the uncertainty.

For the second part (1B) of case 1 the performance of the LPP controller will be evaluated.
The LPP controller has two control variables: the threshold for the penalty – and the height
of the penalty —. It is not clear how to choose – and — in order to find an optimal performance.
Therefore, the performance of the LPP controller is evaluated for various combinations of –
and —. It is expected that this will lead to additional insights on the behavior of the LPP
controller. The penalty is applied to every link. The values for – and — vary between 0 and
1 with intermediate steps of 0.1. The level for the uncertainty is determined at case 1A.
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48 Evaluation of the robust urban tra�c controller

In case 1A the LP controller is subjected to demand uncertainty. The demand uncertainty
will influence the accuracy of the prediction, and therefore the demand uncertainty will have
an impact on the TTS. It is expected that for increasing “qin the TTS increases. However,
it is expected that the increase will be less significant for the saturated and over-saturated
tra�c regime. In the under-saturated tra�c regime the vehicles in the network will drive
with the free-flow speed. In the network the origins and intersections are two links apart.
Thus, a vehicle will take twice the free-flow travel time of a link, which is 20 seconds and
40 seconds in total, to travel from an origin to an intersection. In the saturated and over-
saturated regime this origin to intersection travel time will even be longer. Furthermore, the
update interval of the control signal is set to 60 seconds. Hence, the demand uncertainty will
propagate relatively slowly through the network compared to the update interval. Therefore,
the LP controller is likely to notice the uncertainty in the demand due to the receding horizon
principle. Hence, the LP controller is expected to lose less of its performance in the saturated
and over-saturated tra�c regime compared to the under-saturated tra�c regime when demand
uncertainty is present.

In case 1B the LPP controller is subjected to demand uncertainty for various combinations of
– and —. The demand uncertainty and the various combinations will influence the TTS. The
performance of the LPP controller is compared to the performance of the LP controller. It is
expected that the LPP controller will only lead to little or no decrease in TTS in every tra�c
regime, compared to the LP controller. This is expected because the LP controller is likely
to be able to anticipate to the demand uncertainty due to the receding horizon principle.
The update frequency of the control signal is set to 60 s. The uncertainty in the demand
has to travel at least 40 s - twice the free-flow travel time of one link - to reach the nearest
intersection. Hence, the controller is likely to be able to anticipate to the demand uncertainty.

4-3-2 Case study 1 - quantitative results

Figure 4-3 presents the performance of the LP controller for three di�erent demands with dif-
ferent levels of uncertainty. The performance is expressed as a percentage of the performance
when the demand is fully known and no uncertainty is present. As expected it can be seen
that the relative impact of uncertainty is more significant for lower demands. For example,
the relative impact for a demand of 1100 veh/h and 1200 veh/h is less significant than for a
demand of 500 veh/h or 1000 veh/h. The reason for this is that for demands higher than 1000
veh/h the tra�c network becomes congested, and the uncertainty propagates slower through
the network. Hence, the LP controller is able to lose less performance due the receding horizon
principle.

For the second part (1B) of the first case the level for the uncertainty is set at “qin = 0.4.
This is the lowest level of uncertainty where the impact of the uncertainty on the performance
reaches 1 % for a demand of 900 veh/h and 1000 veh/h. The absolute values for the TTS are
summarized in Table 4-5.

Figure 4-4 presents a part of the quantitative results of the first case study. Four demand
scenarios are considered here: 900 veh/h, 1000 veh/h, 1100 veh/h, and 1200 veh/h. Although
sixteen di�erent demand scenarios have been evaluated, the most significant scenarios are
discussed here. These scenarios are the most significant, because they illustrate the transition
from the under-saturated tra�c regime to the over-saturated tra�c regime.
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Figure 4-3: Case 1A: % TTS increase compared to no uncertainty situation vs “q

in for the
demands 900, 1000, 1100, and 1200 veh/h.

Perfect knowledge Without perfect knowledge
Demand [veh/h] TTS [veh·h] TTS [veh·h] % of perfect knowledge
900 54.4 55.3 1.6%
1000 64.7 65.5 1.3%
1100 112.9 113.8 0.8%
1200 165.8 167.0 0.7%

Table 4-5: Overview of the TTS of the LP controller with and without perfect demand knowledge
for four demand patterns at “q

in = 0.4.

0 0.5 1
α [−]

0

500

1000

1500

2000

T
T
S
[v
eh
·
h
]

(a) TTS vs α for β = 0.1

900 veh/h

1000 veh/h

1100 veh/h

1200 veh/h

0 0.5 1
α [−]

-10

0

10

20

%
T
T
S

(b) % TTS vs α for β = 0.1

0 0.5 1
β [−]

-0.4

-0.2

0

0.2

0.4

0.6

%
T
T
S

(c) % TTS vs β for α = 0.1

Figure 4-4: Case 1B: TTS vs – and — for the demands 900, 1000, 1100, and 1200 veh/h.

Figure 4-4 shows that, as expected, for demands lower than the bottleneck capacity, the LPP
controller has little to no e�ect on the TTS for low values of – (e.g. – œ [0, 0.7]). For increasing
demands that exceed the bottleneck capacity, the LPP controller has an increasingly negative
e�ect on the performance. This e�ect becomes less negative when the values of – decreases.
Furthermore, it can be observed that di�erent values for — have no di�erent e�ect on the
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performance.

4-3-3 Case study 1 - qualitative results

The purpose of the qualitative results is to get insight in the behavior of the controller when
demand uncertainty is present. In order to assess the behavior of the LPP controller, this
section looks at how the vehicle flows propagate through the tra�c network. In this section
the focus lies on two specific cases: (1) a case that shows that the behavior of the LPP
controller is the same as the LP controller in the under-saturated tra�c regime and (2) a case
that shows that the behavior of the LPP controller is not the same as the LP controller in
the saturated and over-saturated tra�c regime.
During the quantitative analysis it is observed that for demands lower than the bottleneck
capacity, the LPP controller has almost no e�ect on the TTS for low values of –. Furthermore,
it is also observed that for increasing demands that exceed the bottleneck capacity, the LPP
controller has an increasingly negative e�ect on the performance. To analyze these phenomena
and the corresponding behavior of the LP controller, a closer look is taken into the movement
of the vehicle streams. For the first case the demand is set at 1000 veh/h and – and — are set
to 0.5 and 0.1, respectively. For the second case the demand is set at 1200 veh/h and – and —
are set to 0.5 and 0.1 respectively. According to Figure 4-4 the LPP controller yields a 0.1%
and 13.8 % increase in TTS for the first and second case, respectively. Figure 4-5 shows the
number of vehicles in several links for the first case. Figure 4-6 shows the number of vehicles
in several links for the second case.
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Figure 4-5: Case 1B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1000 veh/h and (–, —) = (0.5,0.1)

The first case has a demand of 1000 veh/h that is applied to every origin. Due to the topology
of the network (e.g. placement of origins and turn fractions) the demand with a destination to
link 7 is also 1000 veh/h. Hence, the capacity of the bottleneck link 7, which is 1000 veh/h, is
not exceeded. There is almost no queue build up during the whole simulation time of 3600 s,
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except for link 13. This is due to the random demand fluctuations, which cause the demand
to exceed the bottleneck capacity for some time. The behavior of both controllers is almost
the same, because the number of vehicles does not exceed the threshold. However, there are
some small fluctuations in the build up of the queue of link 13, 5, and 7. This is probably
due to the fact that the linear optimization problem has multiple solutions. Hence, there are
a variety of ways that lead to the same TTS.
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Figure 4-6: Case 1B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1200 veh/h and (–, —) = (0.5,0.1)

The second case has a demand of 1200 veh/h that is applied to every origin. Due to the
topology of the network (e.g. placement of origins and turn fractions) the demand with a
destination to link 7 is also 1200 veh/h. Hence, the capacity of the bottleneck link 7, which is
1000 veh/h, is exceeded. Since the demands at link 4 and 12 are equal and the turn fraction
from link 12 to 13 is smaller compared to the turn fraction from link 4 to 5, the LP controller
gives priority to link 5 and lets the number of vehicles increase in link 13.
Around time 1500 s link 13 is almost full and the controller starts to increase the number of
vehicles in link 5. At time 2500 s link 5 is almost full, and the controller starts to increase the
number of vehicles in link 7 until it is almost full too at 3600 s, which is where the simulation
stops.
The penalty of the LPP controller starts for N in

i

(k) ≠ Nout
i

(k ≠ kshock) Ø Nmax
i

(1 ≠ –
i

) for
each link i. The LPP controller tries to minimize the penalty, and therefore it tries to keep
the number of vehicles in the link below the threshold. As expected the LPP controller
starts to increase the number of vehicles in the links in the same order as the LP controller
(e.g. first link 13, then link 5 and 7). However, the LPP controller does not increase the
number of vehicles until the link is almost full, but it increases the number of vehicles to
almost (1 ≠ –

i

)Nmax
i

. The number of vehicles increases not exactly to (1 ≠ –
i

)Nmax
i

, because
Nout

i

(k ≠ kshock) is used to calculate the number of vehicles in the link instead of Nout
i

(k).
The main advantage of using Nout

i

(k ≠ kshock) is that the penalty also takes into account the
shock wave dynamics.
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After the LPP controller has filled link 13, 5, and 7, it starts filling other links, such as link
2, 4, and 9. Even link 8 is filled, which results in the queue spilling back to the origin. Hence,
the LPP controller distributes the vehicle throughput due to the penalty and the high value
of –

i

.

Summarizing, the evaluation shows that the LPP controller acts as expected. The behavior of
the LP and LPP controller is almost the same in the under-saturated tra�c regime. The small
di�erence in behavior is probably due to the fact that the linear optimization problem has
multiple solutions. Hence, there are a variety of ways that lead to the same TTS. However,
more investigation is needed to proof this statement. In the saturated and over-saturated
tra�c regime the LPP controller is able to reduce the number of vehicles in every link up to
the threshold. However, this causes the vehicles to be placed somewhere else in the network,
which even results in spill-back to one of the origins.

4-4 Case Study 2: Uncertainty in the turn fractions

This section presents the results of evaluating the impact of uncertainty in the turn fractions
on the performance of the LPP controller. The resulting performance is compared with the
performance of the LP controller. In Section 4-4-1 the set-up of the simulations is presented.
After that, Section 4-4-2 presents the quantitative results and Section 4-4-3 the qualitative
results.

4-4-1 Case study 2 - Evaluation set-up

Case study 2 consists of two parts, namely, 2A and 2B. The first part (2A) consists in
evaluating the TTS of the LP controller for di�erent demands and for di�erent levels of
uncertainty in the turn fractions. The second part (2B) consists in evaluating the performance
of the LPP controller for di�erent demands for a significant level of uncertainty in the turn
fractions. The level of the uncertainty in the turn fractions is determined in case study 2A.

The uncertainty in the turn fractions is created by a di�erence between the actual turn
fraction ÷act(k) [≠] and the nominal turn fraction ÷nom(k) [≠], with a maximum di�erence of
“÷ percent of ÷nom(k). The actual turn fractions are applied to the tra�c network, while the
nominal turn fractions are used for prediction of future tra�c dynamics. The calculation of
the turn fractions for link 1 to link 2 and 3 are shown as an example to illustrate how the
actual turn fractions are determined:

÷act
1,2 (k) = max(min([1 + “÷�1,2(k)]÷nom

1,2 (k), 1), 0)
÷act

1,3 (k) = 1 ≠ ÷act
1,2 (k),

(4-2)

where �1,2(k) is a random variable between -1 and 1 with a uniform distribution. The min
and max operator are there to ensure that the physical constraint 0 Æ ÷ Æ 1 is satisfied. The
nominal turn fractions are constant over time. Note that for high values of “÷ the distribution
is not uniform anymore, due to the min and max operator.
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Case 2A and 2B are both evaluated for 16 di�erent demand patterns varying between 100
veh/h and 1600 veh/h with intermediate steps of 100 veh/h and 14 di�erent levels of uncer-
tainty as indicated in Table 4-4. Hence, there are 224 simulations, which are all repeated
ten times with a di�erent random seed. The values of the TTS for each demand and level of
uncertainty will be averaged over these ten runs.

For the second part (2B) of case 2 the performance of the LPP controller will be evaluated.
Just as case 1B the performance of the LPP controller is evaluated for various combinations
of – and —. The penalty is applied to every link. The values for – and — vary between 0 and
1 with intermediate steps of 0.1. The level for the uncertainty is determined at case 2A.

In case 2A the LP controller is subjected to uncertainty in the turn fractions. The uncertainty
in the turn fractions will influence the accuracy of the prediction, and therefore the uncertainty
in the turn fractions will have an impact on the TTS. It is expected that for increasing “÷ the
TTS increases. Moreover, in contrast to case 1A, it is expected that the increase will be more
significant for the saturated and over-saturated regime. The uncertainty in the turn fractions
will probably have a more direct e�ect on the performance than demand uncertainty. The
uncertainty in the turn fractions is applied to every turn fraction in the network. Therefore,
it will a�ect the whole network directly. Hence, the LP controller is expected to lose more
performance for uncertainty in the turn fractions in each tra�c regime than for demand
uncertainty. Furthermore, the impact is expected to be more significant in the saturated and
over-saturated tra�c regime than in the under-saturated tra�c regime.

In case 2B the LPP controller is subjected to uncertainty in the turn fractions for various
combinations of – and —, which will influence the TTS. The performance of the LPP controller
is compared to the performance of the LP controller. It is expected that the LPP controller
will lead to a decrease in TTS in the saturated and over-saturated tra�c regime. The LPP
controller is designed so that it will not act di�erently than the LP controller in the under-
saturated tra�c regime. Hence, in general it is expected that the more conservative control
signal provided by the LPP controller will yield a better performance than the LP controller
in the saturated and over-saturated tra�c regime.

4-4-2 Case study 2 - quantitative results

Figure 4-7 presents the performance of the LP controller for four di�erent demand patterns
when uncertainty in the turn fractions is present. The performance is expressed as a per-
centage of the performance when the turn fractions are fully known and no uncertainty is
present. It can be seen that there is a small relative impact of uncertainty on the TTS in the
under-saturated regime. When the demand at the bottleneck reaches the capacity, the im-
pact of the uncertainty increases significantly with the highest impact around “÷ = 0.7. The
impact of the uncertainty increases when the demand increases further after it has exceeded
the capacity. The reason for this is that the fluctuations of the flows in the network become
larger when the demand increases. The controller is not able to anticipate on the fluctua-
tions, because they are unknown. However, after approximately “÷ = 0.6 the impact of the
uncertainty starts decreasing for a demand of 1100 veh/h and 1200 veh/h. This is probably
due to the physical constraint on the turn fractions (e.g. the min and max operator), which
causes the distribution of the uncertainty to lack uniformity for “÷ Ø 0.5. For example, a
turn fraction of 0.6 loses its uniform distribution for “÷ > 2/3, because for those values of “÷
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turn fractions higher than 1 can be generated. The turn fractions that are higher than 1 are
then altered to 1 due to the physical constraint (e.g. the min operator).
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Figure 4-7: Case 2A: % TTS increase compared to no uncertainty situation vs “÷ for the demands
900, 1000, 1100, and 1200 veh/h.

For part 2B two di�erent levels of uncertainty are evaluated: (1) “÷ = 0.4, and (2) “÷ = 0.2.
Both levels do not cause any deterioration of the uniformity. The absolute values for the TTS
are summarized in Table 4-6.

“÷ = 0.2 “÷ = 0.4
Demand [veh/h] TTS [veh·h] % of FK TTS [veh·h] % of FK
900 55.1 1.2% 55.9 2.7%
1000 68.0 11.8% 75.3 24.0%
1100 119.8 69.3% 125.3 85.4%
1200 171.4 45.7% 174.3 127.8%

Table 4-6: Overview of the TTS of the LP controller without full knowledge of the actual turn
fractions for “÷ = 0.2 and “÷ = 0.4 and four demand patterns. The percentages show the
increase of the TTS compared to the LP controller with full knowledge (FK) of the actual turn
fractions for the given “÷.

Figure 4-8 presents the evaluation results of the quantitative analysis of the second case study
for “÷ = 0.2 and “÷ = 0.4, respectively. In Table 4-7 the most optimal settings for the LPP
controller are shown. As in the previous case, four demand scenarios are considered here: 900
veh/h, 1000 veh/h, 1100 veh/h, and 1200 veh/h. Although sixteen di�erent demand scenarios
have been evaluated, the most significant scenarios are presented here. These scenarios are
the most significant, because they illustrate the transition from the under-saturated tra�c
regime to the over-saturated tra�c regime.
Figure 4-8 shows that, as expected, for demands lower than the bottleneck capacity, the LPP
controller has no e�ect on the TTS for low values of –. When the value of – increases it will
eventually a�ect the TTS. At a demand of 1000 veh/h the impact of the uncertainty is the
greatest. Therefore, the LPP controller is able to reach the highest performance increase at
this demand. This e�ect weakens when the demand is increased further.
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For a demand of 1200 veh/h there is a relatively high negative impact on the performance
for higher values of –. At “÷ = 0.2 and “÷ = 0.4 the impact is almost exclusively negative.
However, at “÷ = 0.4 a slight TTS decrease of 0.4% can be obtained for – = 0.1.

It can also be observed that the LPP controller can perform relatively better for “÷ = 0.4
than for “÷ = 0.2. This is probably due to the higher impact of “÷ = 0.4 on the performance
of the LP controller as can be seen in Table 4-7.
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Figure 4-8: Case 2B: TTS vs – and — for “÷ = 0.2 (top) and “÷ = 0.4 (bottom) for the demands
900, 1000, 1100, and 1200 veh/h.

LP LPP, — = 0.1
Demand [veh/h] “÷ TTS [veh·h] TTS [veh·h] % of LP – [-]
900 0.2 55.1 55.1 0.0% [0.1;0.8]
1000 0.2 68.0 64.8 -4.7% 0.7
1100 0.2 119.8 116.6 -2.7% 0.5
1200 0.2 171.3 171.3 0.0% 0.1
900 0.4 55.9 55.9 0.0% [0.1;0.7]
1000 0.4 75.1 67.1 -10.6% 0.7
1100 0.4 125.1 118.2 -5.5% 0.6
1200 0.4 174.4 173.6 -0.4% 0.1

Table 4-7: Overview of four demand patterns with their minimum TTS with corresponding value
of – at “÷ = 0.2 and “÷ = 0.4, with and without demand uncertainty respectively.
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4-4-3 Case study 2 - qualitative results

The purpose of the qualitative results is to get insight in the behavior of the controller when
uncertainty in the turn fractions is present. In order to assess the behavior of the LPP con-
troller, this section looks at how vehicle flows propagate through the tra�c network. Table 4-7
shows the optimal settings for the LPP controller. It would be interesting to determine where
the performance increase for a demand of 1000 veh/h and 1100 veh/h comes from. This per-
formance increase at high values of – is not as expected. However, the performance increase
at – = 0.1 is as expected. Therefore, in this section the focus lies on two specific cases:

1. A case that shows the behavior of the LPP controller compared to the LP controller for
– = 0.1 for a demand of 1000 veh/h and 1100 veh/h;

2. A case that shows the behavior of the LPP controller compared to the LP controller for
the optimal values of – for a demand of 1000 veh/h.

For the first case the demand is set at 1000 veh/h and at 1100 veh/h; – and — are set to 0.1
and 0.1, respectively. According to Figure 4-8 the LPP controller yields a 1.7% decrease in
TTS for a demand of 1000 veh/h and a 2.6 % decrease in TTS for a demand of 1100 veh/h.

Figure 4-9 shows the number of vehicles in several links for a demand of 1000 veh/h. The
threshold for the penalty is not reached during the simulation time of 3600 s. This implies
that the controllers should yield the same TTS, however this is not the case. The reason for
this is that the LPP controller places more vehicles in link 7 than in link 13 compared to
the LP controller, because the linear optimization problem probably has multiple solutions.
However, more investigation is needed to proof this statement. Due to the extra number of
vehicles in link 7, the outflow of link 7 is less a�ected by the fluctuations of the turn fractions.
Hence, the LPP controller is able to maintain a slight higher flow in the bottleneck, which
results in a better performance than the LP controller.

Figure 4-10 shows the number of vehicles in several links at a demand of 1100 veh/h. The
demand of 1100 veh/h exceeds the bottleneck capacity. Thus, the LP controller starts to
increase the number of vehicles again in link 13. At around 2300 s link 13 is full, and the LP
controller starts to build a queue in link 5. It can also be observed that around 2300 s, 3100
s, and 3400 s there is some spill-back from link 13 to link 12.

The LPP controller also starts to increase the number of vehicles in link 13. At around 2200 s
the threshold of the penalty is reached for link 13 and the LPP controller starts to increase the
number of vehicles in link 5. The queue in link 5 starts to build up earlier than it does with
the LP controller. The LPP controller also stores some vehicles in link 7 at approximately
2300 s and 3100 s. It can also be observed that there is no spill-back from link 3 to link 12,
which leads to better throughput in link 12. Hence, the better throughput of link 12 and the
larger number of vehicles in link 7 lead to an increase in performance for the LPP controller.

For the second case the demand is set at 1000 veh/h. According to Table 4-7 the optimal value
for – for a demand of 1000 veh/h is 0.7, where the LPP controller yields a 10.6% increase
in TTS compared to the LP controller. Figure 4-11 shows the number of vehicles in several
links. It can be observed that the LP controller starts to increase the number of vehicles in
link 13 due to the fluctuations of the turn fractions, whereas the LPP controller increases the
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Figure 4-9: Case 2B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1000 veh/h and (–, —) = (0.1,0.1)
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Figure 4-10: Case 2B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1100 veh/h and (–, —) = (0.1,0.1)

number of vehicles in link 5, 7, and 13. Hence, the outflow in link 7 is again a�ected less by
the uncertainty in the turn fractions, which results in an increase in performance for the LPP
controller.

Master of Science Thesis Dik Jansen



58 Evaluation of the robust urban tra�c controller

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

20

40

60

80

N
u
m
b
er

of
ve
h
ic
le
s
[v
eh
] (a) LP - Number of vehicles in the link

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

20

40

60

80

N
u
m
b
er

of
ve
h
ic
le
s
[v
eh
] (b) LPP - Number of vehicles in the link

Link 5

Link 7

Link 13

(1 − α)Nmax

Figure 4-11: Case 2B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1000 veh/h and (–, —) = (0.7,0.1)

4-5 Case Study 3: Uncertainty in the outflow constraint

This section presents the results of evaluating the impact of uncertainty on the outflow con-
straint on the performance of the LPP controller. The resulting performance is compared
with the performance of the LP controller. In Section 4-5-1 the set-up of the simulations is
presented. After that, Section 4-5-2 presents the quantitative results and Section 4-5-3 the
qualitative results.

4-5-1 Case study 3 - Evaluation set-up

Case study 3 consists of two parts, namely, 3A and 3B. The first part (3A) consists of evaluat-
ing the TTS of the LP controller for di�erent demands and for di�erent levels of uncertainty
in the outflow constraint. The second part (3B) consists of evaluating the performance of the
LPP controller for di�erent demands for a significant level of uncertainty. The level of the
uncertainty is determined in case study 3A.

The uncertainty in the outflow constraint is only applied to link 7, which is the bottleneck
of the network. The uncertainty is created by a di�erence between the actual bottleneck
capacity qbn,act(k) [veh/h] and the nominal bottleneck capacity qbn,nom(k) [veh/h], with a
maximum di�erence of “qBN percent of qbn,nom(k). The actual bottleneck capacity is applied
to the tra�c network, while the nominal bottleneck capacity is used for prediction of future
tra�c dynamics. The actual bottleneck capacity is determined as follows:

qbn,act(k) = [1 + “qBN�qBN(k)]qbn,nom(k), (4-3)
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4-5 Case Study 3: Uncertainty in the outflow constraint 59

where �qBN(k) is random variable between -1 and 1 with a uniform distribution. Hence,
the actual bottleneck capacity fluctuates around the nominal bottleneck capacity every 10
seconds with a uniform distribution. Link 7 is the only link with a bottleneck. The nominal
bottleneck capacity at every simulation is constant over time and is only applied to link 7.
Case 3A and 3B are both evaluated for 16 di�erent demands varying between 100 veh/h and
1600 veh/h with intermediate steps of 100 veh/h. and 14 di�erent levels of uncertainty as
repeated in Table 4-4. Hence, there are 224 simulations, which are all repeated ten times with
a di�erent random seed. The values of the TTS for each demand and level of uncertainty will
be averaged over these ten experiments.
For the second part (3B) of case 3 the performance of the LPP controller will be evaluated.
Just as case 1B and 2B the performance of the LPP controller is evaluated for various com-
binations of – and —. The penalty is applied on every link. The values for – and — vary
between 0 and 1 with intermediate steps of 0.1. The level for the uncertainty is determined
in case 3A.
In case 3A the LP controller is subjected to uncertainty in the bottleneck capacity. The
uncertainty in the bottleneck capacity will influence the accuracy of the prediction, and it
will therefore have an impact on the TTS. It is expected that there is no impact of the
uncertainty in the under-saturated tra�c regime, because the uncertainty in the bottleneck
capacity has no e�ect on situations where the demand is lower than the bottleneck capacity.
Furthermore, the impact is expected to be more significant in the saturated and over-saturated
tra�c regime than in the under-saturated tra�c regime. It is also expected that the impact
of the uncertainty is the highest when the demand is equal to the bottleneck capacity and
that for increasing “qBN the impact on the TTS increases. This is the case for a demand of
1000 veh/h, where there is no congestion in the network without uncertainty. When “qBN is
increased, the fluctuating actual demand will exceed the bottleneck capacity and therefore
create congestion, which causes an increase in the TTS. It is expected that the impact will be
less for demands patterns where the nominal demand already exceeds the bottleneck capacity,
because congestion is already present then.
In case 3B the LPP controller is subjected to uncertainty in the turn fractions for various
combinations of – and —, which will influence the TTS. The performance of the LPP controller
is compared to the performance of the LP controller. It is expected that the LPP controller
will lead to a decrease in TTS in the saturated and over-saturated tra�c regime and that
there will be no e�ect on the TTS in the under-saturated tra�c regime.

4-5-2 Case study 3 - quantitative results

Figure 4-12 presents the performance of the LP controller for four di�erent demand patterns
when uncertainty in the bottleneck capacity is present. The performance is expressed in a
percentage of the performance when the bottleneck capacity is fully known and no uncertainty
is present. It seems that there is a linear relation between the relative impact and the level
of the uncertainty. Furthermore, it can be seen that the impact is the highest for a demand
of 1000 veh/h. The reason for this is that the bottleneck capacity is equal to 1000 veh/h. So
the demand of 1000 veh/h can still be served by the bottleneck without causing congestion.
However, a tiny disturbance can cause the tra�c to break down, which cannot be solved
because there is no capacity left. Figure 4-12 also shows that the impact is lower for a
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demand of 1100 veh/h and 1200 veh/h compared to the impact for a demand of 1000 veh/h.
In both situations the tra�c is already broken down, and therefore the uncertainty in the
bottleneck has less e�ect on the TTS.
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Figure 4-12: Case 3A: % TTS increase compared to no uncertainty situation vs “q

BN for the
demands 900, 1000, 1100, and 1200 veh/h.

Another observation can be made from Figure 4-12. It can be seen that for a demand of 900
veh/h there is almost no impact of uncertainty on the TTS for “qBN Æ 0.5. For “qBN Ø 0.5
there is an increase in impact on the TTS. The reason for this is that the fluctuations in
the bottleneck capacity become so high that the demand exceeds the bottleneck capacity too
often, which causes a breakdown. This will result in an increasing number of vehicles in the
links, and therefore an increase in the TTS.

For part 3B two di�erent weights of uncertainty are evaluated: (1) “qBN = 0.2, and (2)
“qBN = 0.4. The absolute values for the TTS and relative impact are listed in Table 4-8 for
these values of “qBN .

“qBN = 0.2 “qBN = 0.4
Demand [veh/h] TTS [veh·h] % of FK TTS [veh·h] % of FK
900 54.5 0.0% 55.0 0.2%
1000 73.9 15.7% 87.3 29.8%
1100 126.6 10.3% 139.1 19.9%
1200 178.2 6.0% 188.6 11.5%

Table 4-8: Overview of the TTS of the LP controller without full knowledge of the bottleneck
capacity for “q

BN = 0.2 and “q

BN = 0.4 and four demand patterns. The percentages show
the increase of the TTS compared to the LP controller with full knowledge (FK) of the actual
bottleneck capacity for the given “q

BN .

Figure 4-13 presents the evaluation results of the quantitative analysis of the third case
study for “qBN = 0.2 and “qBN = 0.4. In Table 4-9 the most optimal settings for the LPP
controller are shown. As in the previous cases, only four demand scenarios are considered
here: 900 veh/h, 1000 veh/h, 1100 veh/h, and 1200 veh/h. Although sixteen di�erent demand
scenarios have been evaluated, the most significant demand scenarios are discussed here.
These scenarios are the most significant, because they illustrate the transition from the under-
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saturated tra�c regime to the over-saturated tra�c regime.
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Figure 4-13: Case 3B: TTS vs – and — for “÷ = 0.2 (top) and “÷ = 0.4 (bottom) for the
demands 900, 1000, 1100, and 1200 veh/h.

Figure 4-13 shows that, as expected, for demands lower than the bottleneck capacity, the
LPP controller has no e�ect on the TTS for low values of –. When the value of – increases it
will eventually a�ect the TTS. At a demand of 1000 veh/h the impact of the uncertainty is
the greatest. Therefore, the LPP controller is able to reach the highest performance increase
at this demand. This e�ect weakens when the demand is increased further.

LP LPP, — = 0.1
Demand [veh/h] “÷ TTS [veh·h] TTS [veh·h] % of LP – [-]
900 0.2 54.5 54.5 0.0% [0.1;0.8]
1000 0.2 73.9 71.2 -3.6% 0.7
1100 0.2 127.0 122.8 -3.0% 0.5
1200 0.2 178.4 176.8 -0.8% 0.1
900 0.4 55.0 55.0 0.0% [0.1;0.8]
1000 0.4 87.1 79.2 -9.3% 0.7
1100 0.4 139.6 130.5 -6.0% 0.6
1200 0.4 189.0 185.0 -1.8% 0.1

Table 4-9: Overview of four demand patterns with their minimum TTS with corresponding value
of – at “÷ = 0.2 and “÷ = 0.4, with and without demand uncertainty respectively.

For a demand of 1200 veh/h there is relatively high negative impact on the performance for
higher values of –. At “÷ = 0.2 and “÷ = 0.4 the impact is almost exclusively negative.
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However, at “÷ = 0.4 a slight TTS decrease of 1.8% and 0.8% for “÷ = 0.2 can be obtained
for – = 0.1.

It can also be observed that the LPP controller can perform relatively better for “÷ = 0.4
than for “÷ = 0.2. This is probably due to the higher impact of “÷ = 0.4 on the performance
of the LP controller as can be seen in Table 4-7.

4-5-3 Case study 3 - qualitative results

The purpose of the qualitative results is to get insight into the behavior of the controller
when uncertainty in the bottleneck capacity is present. In order to assess the behavior of the
LPP controller, this section investigates at how vehicle flows propagate through the tra�c
network. Table 4-9 shows the optimal settings for the LPP controller. It would be interesting
to determine where the performance increase for a demand of 1000 veh/h, 1100 veh/h, and
1200 veh/h comes from. This performance increase at high values of – is not as expected.
However, the performance increase at – = 0.1 is as expected. Therefore, in the following
section two specific cases are investigated:

1. A case that shows the behavior of the LPP controller compared to the LP controller for
– = 0.1 for a demand of 1100 veh/h and 1200 veh/h;

2. A case that shows the behavior of the LPP controller compared to the LP controller for
the optimal values of – for a demand of 1000 veh/h and 1100 veh/h.

For the first case the demand is set at 1100 veh/h and at 1200 veh/h; – and — are set to
0.1 and 0.1, respectively. According to Figure 4-13 the LPP controller yields a 2.6% decrease
in TTS for a demand of 1100 veh/h and a 1.8 % decrease in the TTS for a demand of 1200
veh/h.

Figure 4-14 shows the number of vehicles in several links for a demand of 1100 veh/h. The de-
mand of 1100 veh/h exceeds the bottleneck capacity. Hence, both controllers start increasing
the number of vehicles in links 13 and 5. The LPP controller starts to increase the number
of vehicles earlier in link 5 than the LP controller. It also increases the number of vehicles
more in link 7 than the LP controller, which is the reason for the performance increase of the
LPP controller. Thus, the LPP controller is able take advantage of the unknown fluctuations
of the bottleneck capacity.

Figure 4-15 shows the number of vehicles in several links for a demand of 1200 veh/h. The
demand of 1200 veh/h exceeds the bottleneck capacity. Hence, both controllers start increas-
ing the number of vehicles in links 13, 5, and 7. The reason for the performance increase of
the LPP controller is that it increases the number of vehicles in link 7 earlier than the LP
controller. Therefore, the LPP controller is able take advantage of the unknown fluctuations
of the bottleneck capacity. However, the performance increase of the LPP conroller is lower
for a demand of 1200 veh/h than for a demand of 1100 veh/h. The reason for this is that the
LPP controller causes spill-back from link 5 to link 4. In the figure there is a small increase
in the number of vehicles in link 4 for the LPP controller, which results in a decrease of flow
from link 4 towards link 6. Hence, the performance increase of the LPP controller becomes
less.
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Figure 4-14: Case 3B: Number of vehicles in the links over time for the LP controller (a) and
the LPP controller (b) for a demand of 1100 veh/h and (–, —) = (0.1,0.1)
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Figure 4-15: Case 3B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1200 veh/h and (–, —) = (0.1,0.1)

Figure 4-16 shows the number of vehicles in several links for a demand of 1100 veh/h. The
reason for the performance increase of the LPP controller is the same as the previously
discussed cases. The LPP controller places more vehicles in link 7, and therefore it is able to
take advantage of the bottleneck capacity fluctuations.
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Figure 4-16: Case 3B: Number of vehicles in the link over time for the LP controller (a) and the
LPP controller (b) for a demand of 1000 veh/h and (–, —) = (0.7,0.1)

4-6 Case Study 4: Model uncertainty

This section presents the results of evaluating the impact of model uncertainty on the perfor-
mance of the LPP controller. The resulting performance is compared with the performance
of the LPP controller. In Section 4-6-1 the set-up of the simulations is presented. After that,
Section 4-6-2 presents the quantitative results and Section 4-6-3 the qualitative results.

4-6-1 Case study 4 - Evaluation set-up

Van de Weg et al. (2016a) propose a linear Model Predictive Control (MPC) framework, where
a simplified tra�c model (LTM) is used. The proposed control strategy tries to optimize the
TTS of the network, by controlling the fractions of green time. In order for the control
strategy to be implemented in practice, the fractions have to be translated into red and green
times. Van de Weg et al. (2016b) propose a two-layer control framework, which can be seen
in Figure 4-17. The first layer (network layer with MPC) generates an optimal cumulative
outflow reference for each controlled link. The second layer (local layer) tries to follow the
reference, by minimizing the error between the realized cumulative outflow and the reference
at each individual intersection. Note that the MPC controller used for the first layer is
the same as the LP controller. The error between the realized outflow and the reference is
inevitable. The error depends on several parameters and variables, and may have a significant
impact on the controller performance.

The prediction model does not model the local layer. Hence, there is some mismatch between
what is predicted by the prediction model and what actually happens in the simulation model
(e.g. reality). Case study 4 consists in evaluating the performance of the LPP controller for
di�erent demands when subjected to this model uncertainty.
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Figure 4-17: Overview of the simulation set-up for case study 4

The timing parameters that are used in case study 4 are summarized in Table 4-10 and are
based on results found by Van de Weg et al. (2016b). Their work shows that an update
interval of the MPC controller of 60 seconds has a negative e�ect on the TTS. Therefore, the
update interval of the MPC controller is set at 300 seconds. Furthermore, they show that the
prediction horizon should then be increased to 600 seconds.

Parameter Value Parameter Value

Simulation sample time 1 s Prediction horizon 600 s
Control sample time 10 s Control horizon 600 s
Update interval local control 10 s Update interval MPC 300 s

Table 4-10: Timing parameters of case study 4.

Figure 4-18 shows the performance of the controller of Van de Weg et al. (2016b) compared
to the performance of the LP controller. It can be observed that the impact of the local layer
is the most significant for a demand equal to the bottleneck capacity. The reason for this is
that the local layer makes an error in the tracking of the outflow reference, which is provided
by the LP controller. The tracking error causes the tra�c to break down at a demand of 1000
veh/h, whereas the LP controller itself was able to prevent breakdown. This tracking error
is caused by the fluctuations in tra�c flow, due to the switching from red to green light and
vice versa.

Another observation can be made from Figure 4-18. It seems that there is a linear relation
between the demand and the TTS. However, the gradient of this relation di�ers for demands
that do not exceed the bottleneck capacity and for demands that do exceed the capacity.
Furthermore, it can be seen that the impact has a slight increase for an increasing demand
that does not exceed the bottleneck capacity. Moreover, the impact seems to decrease towards
0% for an increasing demand that does exceed the bottleneck capacity. The reason for this is
that the tracking error has less e�ect on the outflow of the network, because the congestion
in the network causes the tracking error to propagate more slowly through the network.
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Figure 4-18: Case 4: TTS comparison between no uncertainty (LP) and model uncertainty
(LPL). In (a) the absolute values of the two situations can be seen for di�erent demands. In
(b) the % TTS increase of the uncertainty situation compared to the no uncertainty situation
is plotted. It can can be observed that the most significant impact occurs where the demand is
equal to the bottleneck capacity.

In the remainder of case study 4 the focus lies on assessing the performance and behavior
of the LPP controller for demands that are around the bottleneck capacity. It is expected
that the LPP controller is able to increase performance in the saturated and over-saturated
tra�c regime. However, for high demands there may be less improvement because there is
less impact by the local control layer.

4-6-2 Case study 4 - quantitative results

Figure 4-19 presents the evaluation results of the quantitative analysis. As in the previous
cases, only four demand scenarios are considered here: 900 veh/h, 1000 veh/h, 1100 veh/h,
and 1200 veh/h. Although sixteen di�erent demand scenarios have been evaluated, the most
significant demand scenarios are discussed here. These scenarios are the most significant,
because they illustrate the transition from the under-saturated tra�c regime to the over-
saturated tra�c regime.
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Figure 4-19: Case 4B: TTS vs – and — for T local = 10 s for the demands 900, 1000, 1100, and
1200 veh/h.
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Figure 4-19 shows that, as expected, for demands lower than the bottleneck capacity, the LPP
controller has little to no e�ect on the TTS for low values of –. When the value of – increases
it will eventually a�ect the TTS. At a demand of 1000 veh/h the impact of the uncertainty is
the greatest. Therefore, the LPP controller is able to reach the highest performance increase
at this demand. This e�ect weakens when the demand is increased further.

For a demand of 1200 veh/h there is a relatively high negative impact on the performance
for higher values of –. The impact is exclusively negative. It can also be observed that there
is no significant improvement in the performance for a demand of 1100 veh/h.

4-6-3 Case study 4 - qualitative results

Figure 4-20 shows the number of vehicles in several links for a demand of 1000 veh/h when –
and — are both set to 0.1. The threshold for the penalty is not reached during the simulation
time of 3600 s. This implies that the controllers should yield the same TTS, however this
is not the case. The LPP controller yields a decrease of 1.6% in the TTS. The reason for
this is that the LPP controller places more vehicles in link 7 compared to the LP controller,
because the linear optimization problem probably has multiple solutions. Due to the extra
vehicles in link 7, the outflow of link 7 is less a�ected by the local control layer. Hence, the
LPP controller is able to maintain a slightly higher flow in the bottleneck, which results in a
better performance than the LP controller.
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Figure 4-20: Case 4B: Number of vehicles in the links over time for the LP controller (a) and
the LPP controller (b) for a demand of 1000 veh/h and (–, —) = (0.1,0.1)

4-7 Computation time

In the first 3 case studies the computation time of the LPP controller and the LP controller
is tracked. The computation time reported here consists of the computation time required
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Demand
100 veh/h 1000 veh/h 1600 veh/h

ACPU [s] of LP controller 0.108 0.096 0.104
ACPU [s] of LPP controller 0.116 (+7.0%) 0.114 (+17.9%) 0.120 (+15.3%)

Table 4-11: Overview of the average CPU time used by the optimization algorithm of the LP
controller and LPP controller for di�erent demands.

by the linear optimization problem at every time step and the time needed to formulate the
optimization problem at every time step. In Table 4-11 the average CPU time is presented
for (–, —)=(0.1,0.1). It can be observed that every computation time of the LPP controller is
higher than that of the LP controller.

4-8 Conclusions and recommendations

This section presents the conclusions and recommendations for the cases studies.

• Conclusions regarding the impact of the various uncertainties on the TTS of the LP
controller:

1. The impact of demand uncertainty is the highest for low demands that do not
exceed the bottleneck capacity. The impact decreases for an increasing demand
that exceeds the bottleneck capacity. The reason for this is that the uncertainty
propagates slower through the network if there is congestion;

2. Uncertainty in the turn fractions has a more direct e�ect on the tra�c dynamics
compared to demand uncertainty. The impact of uncertainty in the turn fractions
is the highest for high demands that exceed the bottleneck capacity. The reason
for this is that higher demand causes higher fluctuations in flow. The controller is
not able to correct for these fluctuations, resulting in a worse performance;

3. The impact of uncertainty in the bottleneck capacity is the highest for a demand
that is equal to the bottleneck capacity. The uncertainty causes a breakdown that
cannot be solved because there is no capacity left, whereas without the uncertainty
the tra�c will not break down in the first place. This also explains why there is less
impact for demands that exceed the bottleneck capacity, because tra�c already
has undergone a breakdown due to the higher demand;

4. The impact of the model uncertainty is the highest for a demand that is equal
to the bottleneck capacity. For low demands the impact is almost constant. For
an increasing demand that exceeds the bottleneck capacity, the impact decreases
because the relative share of TTS due to the uncertainty decreases compared to
the TTS caused by the higher demand.

• Conclusions regarding the quantitative results of the LPP controller on the various
uncertainties:
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1. The LPP controller is able to improve performance for every type of uncertainty,
except for the demand uncertainty;

2. Higher uncertainty levels result in an increased improvement, but also result in a
higher absolute value for the TTS;

3. The controller parameter — does not have a significant e�ect on the TTS when
demand uncertainty is present. For the other uncertainties there is a small decrease
in TTS for — = 0.1. Higher values of — have very little e�ect on the performance.

4. The controller parameter – has a significant e�ect on the TTS. For demands that
do not exceed the bottleneck capacity – has no e�ect on the performance, except
for high values of –.

5. The LPP controller can reach the highest performance improvement for a demand
that is equal to the bottleneck capacity.

6. For a demand that exceeds the bottleneck capacity, the LPP controller yields little
to no positive impact on the performance;

7. The LPP controller needs up to 18% more computation time than the LP controller.

• Conclusions regarding the qualitative results of the LPP controller on the various un-
certainties:

1. The LPP controller yields a more conservative control signal. It makes the links
in the network less full, and therefore distributes the tra�c more evenly over the
network.

2. Additional case studies should be developed to check whether the LPP controller
can prevent spill-back and therefore cause less delay.

3. The performance improvement of the LPP controller is mainly due to the placement
of more vehicles in the bottleneck link. Therefore, the outflow of the bottleneck
link is less influenced by the uncertainties.

• The network that is used in the case studies consists of 2 intersections and is provided
with a constant demand. The problem with the constant demand is that there is only a
small region for which the controller is able to increase performance. For the simulations
where the demand is higher than the bottleneck capacity the phenomenon of spill-back
is inevitable. Thus, spill-back will not be avoided, and therefore the LPP controller is
not able to reach its full potential. Hence, the following changes may improve the case
studies for additional evaluation of the LPP controller:

1. use a di�erent demand pattern, such as a time varying demand pattern rather than
a demand pattern that is constant over time;

2. apply the bottleneck only for a certain period of time.

• The following points could be used for further evaluation of the LPP controller:

1. not every source of uncertainty is considered during the evaluation, for instance
uncertainty in the state. The uncertainties that were not considered during this
evaluation should also be investigated in the future;
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2. it should be verified what most realistic types of uncertainty are and they should
be implemented in the simulations;

3. in the case studies it is assumed that there is only one source of uncertainty present.
However, in the “real” world it is likely that there are multiple sources of uncer-
tainty present at once. Hence, the controller should be evaluated for multiple
sources of uncertainty at once;

4. for the case studies the same timing parameters (e.g. the prediction horizon, control
horizon, and update frequency) were used, and they were based on the work of
Van de Weg et al. (2016a). Due to uncertainty and di�erences in case study the
optimal values for these parameters may have changed, and therefore it should be
investigated whether these optimal values have changed and could be adjusted for
the given situations.

Dik Jansen Master of Science Thesis



Chapter 5

Conclusions and recommendations

A linear robust Model Predictive Control (MPC) strategy is developed for urban tra�c that
is specifically designed to avoid the phenomenon of spill-back. The controller is designed so
that it only accounts for uncertainty in the saturated and over-saturated tra�c regime. It
is shown by simulation that this control strategy can improve the network throughput when
uncertainty is present. This holds for uncertainty in the turn fractions, uncertainty in the
bottleneck capacity, and model uncertainty. In this chapter the conclusions of this research
are presented first. After that, the recommendations for further research will be presented.

5-1 Conclusions

The conclusions on the MSc thesis project will be presented according to the three design
steps presented in Section 1-2:

• Analyze where the major opportunities lie in the field of robust urban tra�c control;

• Develop a linear robust MPC strategy that improves the tra�c network throughput
when subjected to uncertainty and remaining real-time feasible;

• Evaluate the impact of the di�erent uncertainties on the performance for not account-
ing for uncertainty, and assess the proposed controller on its ability to improve the
throughput.

5-1-1 Conclusions on the literature survey

Literature on tra�c controllers has been studied to obtain insights in robust urban tra�c
control. Chapter 2 presents the findings on this literature. These findings will be briefly
summarized here.
One of the goals of an urban tra�c controller is to improve network throughput in all tra�c
regimes. However, not every urban tra�c controller that is considered in the literature survey
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is able to improve the network throughput in all tra�c regimes. Some of the model-based
control strategies are able to improve network throughput in all tra�c regimes. This is due
to their ability to predict future tra�c dynamics. However, before these types of controllers
can be implemented, there are some challenges to overcome. One of these challenges is that
the controllers are not always real-time feasible. The approach of Van de Weg et al. (2016a)
is able to become real-time feasible while maintaining a reasonable performance. It does so
by omitting some detail in the prediction model of tra�c. However, by omitting some detail
Van de Weg et al. (2016a) choose to have some model-reality mismatch. Furthermore, they
assume that perfect knowledge is available of the measurements and disturbances.

There are various control approaches that can handle uncertainties. Both Linear Quadratic
Gaussian (LQG) and HŒ control are considered and show promising results in terms of
computation time. However, both control methods are based on feedback control only, and
therefore these methods are unable to anticipate on future estimated or predicted disturbances
(e.g. the demand). In contrast, robust MPC is also considered and it can anticipate on the
future. Robust MPC shows promising results in term of performance when uncertainty is
present. However, one of the challenges of robust MPC is the computation time.

Some of the considered robust urban tra�c control strategies show an improvement of the
network throughput when subject to uncertainty (e.g. in the demand or queue length). How-
ever, there still exist several open issues in the field of robust urban tra�c control, such as it is
yet unclear what the impact of some uncertainties is on the controllers’ performance and the
question whether the design of a robust urban tra�c controller is really necessary remains.

5-1-2 Conclusions on the development of the control strategy

Based on the findings of the literature survey a control strategy is developed in Chapter 3
based on the linear MPC controller of Van de Weg et al. (2016a). The goal of the controller
is that it should be robust and real-time feasible. Van de Weg et al. (2016a) assume that the
measurement of the state and the disturbances are fully known. These assumptions may not
hold in the “real” world, thus these assumptions may have to be relaxed. This could be done
by introducing noise or an uncertainty. In this thesis the MPC strategy is redefined to come
up with a linear robust urban tra�c controller.

The proposed robust controller only accounts for uncertainty in the saturated and over-
saturated tra�c regime by avoiding spill-back, where other robust urban tra�c controllers
focus on every tra�c regime. The reason for this is that it is expected that the impact of
uncertainty is significantly higher in the saturated and over-saturated tra�c regime than in
the under-saturated tra�c regime. Thus, the controller is designed so that in the under-
saturated tra�c regime it does not account for uncertainty. Accounting for uncertainty

This should result avoid a too conservative input resulting in a too high decrease in per-
formance. Hence, the proposed controller di�ers from other robust tra�c controllers. In
the under-saturated regime the proposed controller should yield the same behavior as the
controller of Van de Weg et al. (2016a).

From tra�c flow theoretical considerations it is expected that uncertainty has a greater impact
on the performance in the saturated and over-saturated tra�c regime. The reason for this
is that spill-back is more likely to occur in those regimes and spill-back causes additional
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delays. The uncertainty causes controllers to make less optimal control decisions because
the controller is misinformed. Hence, this increases the likelihood of spill-back. A safety
margin can be introduced to avoid spill-back. The safety margin is established by penalizing
the number of vehicles that violate this safety margin. The penalty describes the number of
vehicles for each link at every time step that exceed a given threshold multiplied by a given
constant. The value of the penalty increases with an increasing number of vehicles when
the threshold is exceeded. By minimizing the penalty the controller tries to avoid that the
number of vehicles in a link exceeds this threshold, and therefore the controller incorporates
a safety margin in every link.

The proposed extension does not require any additional measurements compared to the con-
troller of Van de Weg et al. (2016a). However, the implementation of the penalty does require
an extra state variable per link, and two extra constraints. Thus, the size of the optimization
problem is larger than the optimization problem of Van de Weg et al. (2016a). Nevertheless,
the optimization problem is still a linear programming problem. Hence, it is expected that
the proposed extension is real-time feasible.

5-1-3 Conclusions on the evaluation of the control strategy

In Chapter 4 the control strategy is evaluated for di�erent sources of uncertainty by means
of simulation. For every uncertainty category, di�erent case studies are conducted. The
controller of Van de Weg et al. (2016a) has three potential types of uncertainty: uncertainty
in the prediction or estimation of the disturbances, uncertainty in the measurement of the
state, and uncertainty in the prediction model. In this thesis only the uncertainty in the
disturbances and in the prediction model are considered. The evaluation of uncertainty in
the state is expected to be much more complex, because the proposed controller makes use
of the the state to determine the penalty. Section 4-8 provides an extensive overview of the
conclusions, the most important findings will be repeated here:

• accounting for uncertainty is necessary, because almost every considered uncertainty
has a significant e�ect on the performance of the tra�c controller;

• the proposed controller is able to improve performance when subject to uncertainty in
the turn fractions, uncertainty in the bottleneck capacity, and uncertainty in the predic-
tion model when compared to the controller of Van de Weg et al. (2016a). However, the
controller is not able to improve the performance when subject to demand uncertainty.
As expected the performance increase is mainly reached in a small demand region;

• the impact of uncertainty is the most significant on the performance of the controller of
Van de Weg et al. (2016a) when the flow into the bottleneck is equal to the capacity of
the bottleneck. However, this is not the case for uncertainty in the turn fractions;

• the qualitative behavior of the control strategy is similar to the behavior of the controller
of Van de Weg et al. (2016a), in the sense that it has a similar impact on the evolution
of the tra�c dynamics;

• the value of the threshold of the penalty can have a significant e�ect on the performance.
For low demands in combination with low values for the threshold there is no e�ect on
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the performance. However as expected, for high demands there is a significant negative
e�ect on the performance for low values of the threshold;

• the value of the maximum height of the penalty does not have a significant e�ect on the
performance. For one particular value of the maximum height of the penalty there is a
small increase in performance. For higher values of the maximum height there is very
little e�ect on the performance;

• the performance improvement is mainly due to the placement of more vehicles in the
bottleneck link and not by preventing spill-back as the controller is intended. Therefore,
the outflow is less influenced by the uncertainties;

• the cases could be improved to check whether the proposed controller can prevent spill-
back, and therefore cause less delay;

• As expected, the computation time of the proposed controller is higher than for the
controller of Van de Weg et al. (2016a). Evaluations show that the increase is 20% at
maximum for every considered case study.

5-2 Recommendations

There is still a lot to improve in the control strategy that is proposed in this MSc thesis.
Moreover, the concept of using a penalty will have to be evaluated in more detail by defin-
ing additional case studies. Section 5-2-1 will give some recommendations regarding more
extensive case studies. After that, recommendations are presented in Section 5-2-2 on how
the control strategy can be extended and improved in order to obtain a better performance.
Concluding, some directions will be presented in Section 5-2-3 for further research in the field
of robust urban tra�c control.

5-2-1 Further research - extension of the case study

The network that is used in the case studies consists of 2 intersections and is provided with a
constant demand. The problem with the constant demand is that there is only a small demand
region for which the controller is able to increase the performance. For the simulations where
the demand is higher than the bottleneck capacity the phenomenon of spill-back is inevitable.
Thus, spill-back will not be avoided, and therefore the proposed controller is not able to reach
its full potential. Hence, the following points could be used to define additional case studies:

• use a di�erent demand pattern (e.g. a time varying demand pattern) rather than a
demand pattern that is constant over time;

• apply the bottleneck only for a certain period of time;

The following points could also be used to extend the case studies:
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• In the case studies it was assumed that there is only one source of uncertainty present.
In reality there will be multiple sources of uncertainty. Hence, the controllers should be
evaluated for multiple sources of uncertainty at once;

• It should be verified what the most realistic types of uncertainty are and they should
be implemented in the simulations;

5-2-2 Further research - improvements and extensions on the control strategy

The following can be investigated to extend the control strategy or to improve its performance
in terms of computation time and Total Time Spent (TTS):

• The optimal values for the control parameters could be dependent on the demand or on
other tra�c parameters. Since the demand and some tra�c parameters are di�erent for
every link, the values of the control parameters could be adjusted for individual links
to increase the performance of the controller;

• To reach the full potential of the proposed controller the optimal values for the threshold
and the maximum value of the penalty should be found. A brute force grid search would
not be suitable for that. Hence, it is recommended to use a more sophisticated method,.
Furthermore, it is expected that the threshold is a function of some tra�c parameters,
such as the demand, shock wave speed, and so forth. This function may be found by
analytic or numerical derivation, or the function may be empirically determined with
experiments.

• It should be investigated whether accounting for uncertainty by avoiding spill-back is
more beneficial than accounting for uncertainty by di�erent approaches, such as the
approach of Tettamanti et al. (2014);

• For the case studies the same timing parameters (e.g. the prediction horizon, control
horizon, and update frequency) were used, and they were based on the work of Van de
Weg et al. (2016a). Due to the uncertainty and the di�erences in case study the optimal
values for these parameters may have changed, and therefore could be adjusted in the
given situation;

• It should be investigated whether the increased size of the optimization problem of the
proposed controller has a significant impact on the computation time.

• For the improvement of the computation time the penalty could be imposed only on
the links that are influenced by uncertainty instead of imposing the penalty on every
link. Note that for each link not imposed with a penalty this would save Kp variables
and 2Kp inequality constraints in the optimization problem;

5-2-3 Further research - regarding robust urban tra�c control

The following can be investigated to obtain more insights into the field of robust urban tra�c
control:
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• This thesis showed that almost every considered uncertainty has a significant e�ect on
the performance of the tra�c controller. Hence, accounting for uncertainty is necessary;

• It is shown that the performance increase is mainly due to the distribution of vehicles
to other links. This may also be realized by minimizing the relative occupancy of links
as is done by Aboudolas et al. (2010). Combining this together with maximizing the
throughput, could lead to better controller performance. However, this turns the linear
programming problem into a quadratic programming problem, which costs more compu-
tation time. It is expected that the computation time is still doable as the computation
time would increase polynomially with respect to the size of the optimization problem,
since a quadratic programming problem is also convex;

• The proposed control strategy may not be the most optimal strategy for accounting for
uncertainty. Therefore, the performance - in terms of throughput and computation time
- of the proposed controller should be extensively compared with other robust urban
tra�c controllers;

• In future research the introduction of more incidental sources of uncertainty should be
introduced such emergency vehicles, priority vehicles, accidents, and unexpected road
work.

• Eventually urban tra�c controllers are designed to be implemented in the “real” world.
Microscopic simulation models can provide us with more realistic tra�c scenarios. In
future research these models can then be used to show whether robust control is still
necessary for urban tra�c control.

5-2-4 Further research - regarding urban tra�c control

In Section 1-2 it is mentioned that the tra�c control problem is a very complex problem,
because the tra�c controller has to satisfy several requirements when implemented in practice.
The linear robust urban tra�c controller does not satisfy all these requirements, thus there
are still some challenges. These challenges will be listed below. Note that Van de Weg et al.
(2016a) also indicate various challenges which have some overlap with the recommendations
listed below.

• Robust urban tra�c control could in further research be extended to heterogeneous
tra�c. It should be investigated to what extent heterogeneous tra�c will a�ect the
performance of the controller. Furthermore, it should be studied whether there are
other uncertainties present for the di�erent tra�c participants.

• The proposed control strategy does not consider cycle times, clearance times, minimum
green times, and o�sets. These variables should be included in future work. These
variables could be included but at the cost of a more complex optimization problem.
However, these variables may also be introduced by translating the aggregated tra�c
flows to signal plans.

• Due to the proliferation of in-vehicle technologies, information of individual vehicles may
be used to determine tra�c parameters, such as turn fractions, demands, and speed of
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individual vehicles. Future research could consists of using this information to make
more accurate predictions of the future tra�c dynamics.

• In this thesis only the improvement of the throughput is studied. In future research other
objective functions may be studied. Furthermore, the various sources of uncertainties
could have di�erent impacts for other objective functions. Further research is required
to study other objective functions and their relation to uncertainty.
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Appendix A

Specification of control matrices

In this appendix a detailed description is given of the matrices used in Section 3-2-2 and
Section 3-4-4. In Section A-1 the matrices of the control method proposed by Van de Weg
et al. (2016a) are given. Note that the text in Section A-1 is equivalent to the text of Van de
Weg et al. (2016a). The matrices of the extended control method are slightly di�erent from
the matrices of Section A-1, and are therefore given in Section A-2.

A-1 Matrices of current control method

A-1-1 Specification of the objective function matrices

The matrix A œ Rn

states◊n

states is a matrix consisting of the matrices AL
i

œ Rn

L,s
i ◊n

L,s
i and

AO
j

œ Rn

O,s
j ◊n

O,s
j of the links and origins respectively on its diagonal:

A =

S

WWWWWWWWWU

AL
1

. . .
AL

n

L

AO
1

. . .
AO

n

O

T

XXXXXXXXXV

, (A-1)

with the matrix AL
i

of link i is given by:
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AL
i

=

S

WWWWWWWWWWWWWWU

1
1

. . .
1 0

1
1

. . .
1 0

T

XXXXXXXXXXXXXXV

, (A-2)

and the matrix AO
j

of origin j is given by:

AO
j

=
C
1 0
0 1

D

. (A-3)

The matrix B(kc) œ Rn

states◊(nL+n

O) is defined as follows:

B(kc) =
Ë
BL

1 (kc) · · · BL
n

L(kc) BO
1 (kc) · · · BO

n

O(kc)
È€

, (A-4)

where the matrix BL
i

(kc) œ Rn

L,s
i ◊(nL+n

O) of link i is given by:

BL
i

(kc) =
Ë
BL

i,1(kc) BL
i,2(kc)

È
, (A-5)

with BL
i,1(kc) œ Rn

L,s
i ◊n

L is given by:

BL
i,1(kc) =

S

WWWWWWWWWWWWU

0 · · · 0 qsat
i

T c 0 · · · 0
0 · · · 0 0 0 · · · 0
... · · ·

...
...

... . . . ...
÷1,1(kc)qsat

1 T c · · · ÷1,(i≠1)(kc)qsat
(i≠1)T

c 0 ÷1,(i+1)(kc)qsat
(i+1)T

c · · · ÷1,n

L(kc)qsat
n

L T c

0 · · · 0 0 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 0 0 · · · 0

T

XXXXXXXXXXXXV

,

(A-6)

and BL
i,2(kc) œ Rn

L,s
i ◊n

O is given by:
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BL
i,2(kc) =

S

WWWWWWWWWU

0 · · · 0
... . . . ...

÷(w,1),i(kc)qcap
w,i

T c · · · ÷(w,n

O),i(kc)qcap
w,i

T c

0 · · · 0
... . . . ...
0 · · · 0

T

XXXXXXXXXV

. (A-7)

The matrix BO
j

(kc) œ Rn

O,s
j ◊(nL+n

O) of origin j is given by:

BO
j

(kc) =
Ë
BO

j,1(kc) BO
j,2(kc)

È
, (A-8)

with BO
j,1(kc) œ Rn

O,s
j ◊n

L
is given by:

BO
j,1(kc) = 0, (A-9)

and BO
j,2(kc) œ Rn

O,s
j ◊n

O
is given by:

BO
j,2(kc) =

C
0 · · · 0 qcap

w,j

(kc)T c 0 · · · 0
0 · · · 0 0 0 · · · 0

D

. (A-10)

The matrix C œ Rn

states◊n

O is given by:

C =
Ë
CL

1 · · · CL
n

L CO
1 · · · CO

n

O

È€
, (A-11)

where the matrix CL
i

œ Rn

L,s
i ◊n

O of link i is given by:

CL
i

= 0, (A-12)

and the matrix CO
j

œ Rn

O,s
j ◊n

O
of origin j is given by:

CO
j

=
C
0 · · · 0 0 0 · · · 0
0 · · · 0 T c 0 · · · 0

D

. (A-13)
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The vector Z œ R1◊Kpn

states is used to compute the value of the objective function by multi-
plication with x̄(kc). The vector Z is defined as:

Z = T c
Ë
Z

k

· · · Z
k

È

Z
k

= T c
Ë
ZL

1 · · · ZL
n

L ZO
1 · · · ZO

n

O

È
,

(A-14)

with the vector ZL
i

œ R1◊n

L,s
i of link i defined as:

ZL
i

=
Ë
≠1 0 · · · 0 1 0 · · · 0

È
, (A-15)

and the vector ZO
j

œ R1◊2 of origin j defined as:

ZO
j

=
Ë
≠1 1

È
. (A-16)

A-1-2 Specification of the inequality constraints

The first matrix M ineq
1 œ Rn

L
Kp◊n

in,tot and vector V ineq
1 œ Rn

L
Kp◊1 are used to model the

free-flow dynamics according to (3-3). This constraint is applied to the predicted state x̄(kc):

M̄ ineq
1 x̄(kc) Æ 0,

M̄ ineq
1 (Ãx(kc) + B̃ū(kc) + C̃d̄(kc)) Æ 0,

M̄ ineq
1 B̃ū(kc) Æ ≠M̄ ineq

1 (Ãx(kc) + C̃d̄(kc)),
(A-17)

which can be represented in the standard form:

M ineq
1 = M̄ ineq

1 B̃,

V ineq
1 = ≠M̄ ineq

1 (Ãx(kc) + C̃d̄(kc)),
(A-18)

here, the matrix M̄ ineq
1 œ Rn

L
Kp◊n

states
Kp is given as:

M̄ ineq
1 =

S

WWU

. . . 0
M1

0 . . .

T

XXV , (A-19)

with the matrix M1 œ Rn

L◊n

states given as:
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M1 =

S

WWWU

. . . 0Ë
1 0 · · · 0 ≠“c,fr

i

≠(1 ≠ “c,fr
i

)
È

0 . . .

T

XXXV . (A-20)

The matrix M ineq
2 œ Rn

L
Kp◊n

in,tot and matrix V ineq
2 œ Rn

L
Kp◊1 are used to model the spill

back conditions according to Eq. (3-6). This constraint is applied to the predicted state x̄(kc)
:

M̄ ineq
2 x̄(kc) Æ V̄ ineq

2 ,

M̄ ineq
2 (Ãx(kc) + B̃ū(kc) + C̃d̄(kc)) Æ V̄ ineq

2 ,

M̄ ineq
2 B̃ū(kc) Æ V̄ ineq

2 ≠ M̄ ineq
2 (Ãx(kc) + C̃d̄(kc)),

(A-21)

which can be represented in standard form:

M ineq
2 = M̄ ineq

2 B̃,

V ineq
2 = V̄ ineq

2 ≠ M̄ ineq
2 (Ãx(kc) + C̃d̄(kc)),

(A-22)

here, the matrix M̄ ineq
2 œ Rn

L
Kp◊n

states
Kp is given as:

M̄ ineq
2 =

S

WWU

. . . 0
M2

0 . . .

T

XXV , (A-23)

with the matrix M2 œ Rn

L◊n

states given as:

M2 =

S

WWWU

. . . 0Ë
0 · · · 0 ≠“c,sh

i

≠(1 ≠ “c,sh
i

) 1 0 . . . 0)
È

0 . . .

T

XXXV , (A-24)

The vector V̄ ineq
2 œ Rn

L
Kp◊1 given as:

V ineq
2 =

Ë
Ṽ ineq

2 · · · Ṽ ineq
2

È€
, (A-25)

with Ṽ ineq
2 œ Rn

L◊1:
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Ṽ ineq
2 =

Ë
Nmax

1 · · · Nmax
nL

È€
, (A-26)

The third matrix M ineq
3 œ Rn

O
Kp◊n

in,tot and vector V ineq
3 œ Rn

O
Kp◊1 are used to constrain

the outflow of an origin according to (3-8). This constraint is applied to the predicted state
x̄(kc):

M̄ ineq
3 x̄(kc) Æ 0,

M̄ ineq
3 (Ãx(kc) + B̃ū(kc) + C̃d̄(kc)) Æ 0,

M̄ ineq
3 B̃ū(kc) Æ ≠M̄ ineq

3 (Ãx(kc) + C̃d̄(kc)),
(A-27)

which can be represented in standard form:

M ineq
3 = M̄ ineq

3 B̃,

V ineq
3 = ≠M̄ ineq

3 (Ãx(kc) + C̃d̄(kc)),
(A-28)

here, the matrix M̄ ineq
3 œ Rn

O
Kp◊n

states
Kp is given as:

M̄ ineq
3 =

S

WWWWWWWWWU

. . . 0S

WWWU

. . . 0Ë
0 · · · 0 1 ≠1

È

0 . . .

T

XXXV

0 . . .

T

XXXXXXXXXV

, (A-29)

The matrix M ineq
4 œ Rn

E◊n

in,tot and vector V ineq
4 œ Rn

E
Kp◊1 are used to constrain the outflow

of an exit according to (3-4) and can be represented in standard form:

M ineq
4 ū(kc) Æ V ineq

4 , (A-30)

here, the matrix M ineq
4 and the vector V ineq

4 are given as:

M ineq
4 =

S

WWWWWWWWWU

. . . 0S

WWU

. . . 0
M4

0 . . .

T

XXV

0 . . .

T

XXXXXXXXXV

,

V ineq
4 =

C
qout,max

1 (kc
0)

qsat
1

. . .
qout,max

n

E (kc
0)

qsat
n

E
. . .

qout,max
1 (kc

0 + Kp)
qsat

1
. . .

qout,max
n

E (kc
0 + Kp)

qsat
n

E

D€

,

(A-31)
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where the matrix M4 œ Rn

E◊n

L is a zero matrix except for the diagonal elements that are
related to exits, which are set to 1.
The fifth and sixth matrices M ineq

5 œ R(nL+n

O)◊n

in,tot and M ineq
6 œ R(nL+n

O)◊n

in,tot and vectors
V ineq

5 œ R(nL+n

O)◊1 and V ineq
6 œ R(nL+n

O)◊1 are used to constrain the control signals according
to (3-10) and (3-11) and are given as:

M ineq
5 =

S

WWU

. . . 0
I

0 . . .

T

XXV ,

V ineq
5 = 1,

M ineq
6 = ≠M ineq

5 ,

V ineq
6 = 0.

(A-32)

The matrix M ineq
7 œ Rn

con
Kp◊n

in,tot and vector V ineq
7 œ Rn

con
Kp◊1 take care of the conflicts

according to (3-12) and are given as:

M ineq
7 =

S

WWU

. . . 0
M̄ conflict

0 . . .

T

XXV ,

V ineq
7 = 1,

(A-33)

where the conflict matrix M̄ conflict œ Rn

con◊n

L is a matrix, where every row represents a
conflict so that element M̄ conflict

i,j

= 1 for every link j in the set Iconflict
i

of conflict i. All the
other entries of M̄ conflict are set to 0.

A-2 Matrices of extended control method

A-2-1 Specification of the objective function matrices

The matrix Aext œ Rn

states◊n

states is a matrix consisting of the matrices AL
ext,i œ Rn

L,s
i ◊n

L,s
i and

AO
j

œ Rn

O,s
j ◊n

O,s
j of the links and origins respectively on its diagonal:

Aext =

S

WWWWWWWWWU

AL
ext,1

. . .
AL

ext,nL

AO
1

. . .
AO

n

O

T

XXXXXXXXXV

, (A-34)
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with the matrix AL
ext,i of a link i given by:

AL
ext,i =

S

WWWWWWWWWWWWWWWWU

1
1

. . .
1 0

1
1

. . .
1 0 0

0 1

T

XXXXXXXXXXXXXXXXV

, (A-35)

The vector Zext œ R1◊n

in,tot is used to compute the value of the extended objective function
by multiplication with x̄ext(kc). The vector Zext is defined as:

Zext = T c
Ë
Z

k

... Z
k

È
(A-36)

Z
k

= T c
Ë
ZL

ext,1 · · · ZL
ext,nL ZO

1 · · · ZO
n

O

È
, (A-37)

with the vector ZL
ext,i œ R1◊n

L,s
i of link i defined as:

ZL
ext,i =

Ë
≠1 0 · · · 0 1 0 · · · 0 ≠ 1

T

c

È
, (A-38)

and the vector ZO
j

œ R1◊2 of origin j defined as:

ZO
j

=
Ë
≠1 1

È
. (A-39)
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Appendix B

Local control strategy

In this appendix a detailed description is given of the control framework of Van de Weg et al.
(2016b) used in Section 4-6. Note that the text in this appendix is equivalent to the text of
Van de Weg et al. (2016b).

B-1 Control framework

The hierarchical control framework can be seen in Figure B-1 and consists out of two layers:

1. The first layer is the network coordination layer. This layer uses a prediction model to
optimize the network performance every T ref seconds. The produced control signal only
consists out of splits. Therefore, the control signal is not directly applicable to tra�c
signal controllers. The network coordination layer derives a reference trajectory (the
prediction of Nout ’ links) from the optimized control signal. T ref is in the range of one
or several minutes and where it holds that

2. The second layer is the local intersection layer. This layer consists out of a controller per
intersection. The aim of the local controller is to track the reference signal. Every T local

the possible stages are evaluated. The stage with the smallest error to the reference
trajectory in the next T local seconds is actuated.

According to Van de Weg et al. (2016b) the advantage of using this framework is that there
is no need for a computationally demanding optimization. However, the local intersection
controllers are still capable of realizing improvement of the networks’ performance, due to the
tracking of the optimized reference. Section B-2 shows the various assumptions that are made.
Section B-3 elaborates the network coordination strategy and its features, and Section B-4
shows the theory behind the local intersection layer.
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Process
Tra�c Network Simulation

Tra�c demand

Control signal Measurements

Individual intersection controllers
- Reference tracking
- Actuation of stages

Reference trajectory
Network coordination controller
- Optimize througput
- Output: reference trajectory

T local

T ref

Figure B-1: Schematic overview of the control strategy

B-2 Assumptions

• Decentralized control of signal timings: it is chosen not to explicitly optimize the
signal timings using a centralized optimization algorithm. The reason for this is that it
results in a non-linear optimization problem with a very large dimension;

• Centralized control of aggregated tra�c dynamics: in order to improve the
performance of the entire urban network, prediction is required though. Hence, it is
chosen to optimize the network performance centrally under the assumption of aggre-
gated tra�c dynamics. Aggregated here means that the sampling time step of the tra�c
prediction model is increased to (several) tens of seconds. Additionally, the model does
not consider binary decision variables that are needed to tra�c lights but instead works
with the percentage of green time allocated to a tra�c stream;

• Signal timings: a non-sequence based signal system is assumed. This means that the
sequence in which stages are being served is not fixed. Clearance times are included
in the approach. The inclusion of other properties, such as, minimum green times,
maximum red times, and fixed sequence structures are left for further research. The
framework is designed in such a way that strategies that do consider these constraints
can be included;

• Tra�c: the current approach is designed for vehicular tra�c only;

• Noise and uncertainties: it is assumed that no noise and uncertainties are present.
In practice, accurate predictions of the demand may not be available. The controller
performance should not deteriorate too much when subject to noise or uncertainties;

• Control objective: the paper focuses at minimization of the Total Time Spent (TTS)
of all the vehicles in the network. In the case that the network inflow cannot be a�ected
by the control strategy, minimizing the TTS is equal to maximizing the throughput;
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B-3 Network control 89

• Measurements: it is assumed that perfect measurements are available so that there
is no need for the design of an observer.

Discrete timing is considered in this paper. The time step k (-) and sampling time T ( refer to
the period t œ

#
Tk, T (k+1)

"
(h). It is assumed that the samplingh) time of the measurements

is equal to T . The prediction model has a sampling time step kc (-) and sampling time T c

(h). It holds that T c = ‘cT with the factor ‘c œ I+. The control signal is updated every
controller sampling time step klocal (-) with controller sampling time step T local for which it
holds that T local = ‘localT with the factor ‘local œ I+.
The main task of the tra�c control strategy is to select, based on the measurements from
time step k ≠ 1, at every controller sampling time step klocal (-) and every intersection iinter

the stage pú
i

inter(klocal|k ≠ 1) with index is (-) that will be actuated for the coming period
tlocal =

#
klocalT local, (klocal+1)T local" that minimizes the TTS of all the vehicles in the network

over a time horizon Np:

pú
i

inter(klocal|k ≠ 1) = arg min
isœP(pú

iinter (klocal≠1))
JTTS(x0(k ≠ 1), is, u, d) , (B-1)

where the set P(pú
i

inter(klocal ≠ 1)) is the set of stages that can be reached from the currently
active stage is at intersection iinter.

B-3 Network control

The reference trajectory

The outcome of the optimization problem (3-20) is the vector ūú(kc) (-):

ūú(kref) = arg min
ū(kref)

ZÃū(kref) . (B-2)

As noted before, this signal cannot be directly applied to the local intersection controllers
due to the aggregated nature of the tra�c flow model that is used to formulate the linear
optimization problem. Instead, a reference trajectory is derived from the optimized signal
ūú(kref).
To realize this, note that a prediction of the tra�c states x̄(kref) can be obtained by multi-
plying ū(kref) with the matrix Ã:

x̄(kref) = Ãū(kref) . (B-3)

The prediction of the state x̄(kref) consists of the tra�c states x(kc) at time steps kc =
kref + 1 : · · · : kref + Np + 1:

x̄ =
Ë
x(kref + 1) . . . x(kref + Np + 1)

È€
. (B-4)

In its turn, the state x(kc) consists of the states of the links xL
i

L(kc) and origins xL
I

O(kc) at
time step kc:

x(kc) =
Ë
xL

1 (kc) . . . xL
n

L(kc) xO
1 (kc) . . . xO

n

O(kc)
È€

. (B-5)
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Finally, the state of link xL
i

L(kc) and origin xO
I

O(kc) are defined as:

xL
i

L(kc) =
Ë
Nout

i

L (kc) . . . Nout
i

L (kc ≠ kc,shock
i

L ) N in
i

L (kc) . . . N in
i

L (kc ≠ kc,free
i

L )
È€

, (B-6)

xO
I

O(kc) =
Ë
NO,out

I

O (kc) NO,in
I

O (kc)
È€

. (B-7)

(B-8)

Now, from x̄(kref) a reference cumulative outflow trajectory Nout,ref
i

L (k̂ref) is derived for every
controlled link iL œ Icontrolled:

Nout,ref
i

L (kref) =
Ë
Nout

i

L (kref) Nout
i

L (kref + 1) . . . Nout
i

L (kref + Np + 1)
È€

. (B-9)

(B-10)

where k̂ref = kref : · · · : kref + Np + 1.

Since, T c = ‘cT , the signal Nout,ref
i

L (k̂ref) has to be resampled. This is done via the following
procedure:

N̂out,ref
i

L (k̂) = (1 ≠ “ref(k̂))Nout,ref
i

L (k̂ref,p(k̂)) + “ref(k̂Nout,ref
i

L (k̂ref,p(k̂) + 1) , (B-11)
k̂ref,p(k̂) = Âk̂/T cÊ , (B-12)

“ref(k̂) = k̂ ≠ k̂ref,p(k̂)
T c , (B-13)

’k̂ œ kref‘ref : · · · : (kref + Np + 1)‘ref . (B-14)

B-4 Local control

In this paper a greedy reference tracking policy is chosen. This is realized by selecting at
every time step klocal the stage that is expected to minimize the reference tracking error
during the next T local seconds. The reason that a greedy policy is chosen is that it requires
limited computation time. Additionally, including longer horizon predictions is not trivial and
requires further theoretical extensions. For instance, when the prediction horizon exceeds the
free flow link travel time, it may become necessary to include intersection interaction e�ects.

The greedy policy is computed for every intersection separately. So, for every intersection the
following steps are computed:

1. For every stage that may be actuated:

(a) predict the potential cumulative outflow of every link in the intersection when
actuating the stage (see Section B-4);

(b) compute the resulting reference tracking error (see Section B-4);

2. Actuate the stage that is expected to realize the smallest reference tracking error (see
Section B-4).

Dik Jansen Master of Science Thesis



B-4 Local control 91

Potential cumulative outflow prediction

The first step is to predict, for every intersection and possible stage, the potential cumulative
outflows
Nout,p

i

L (k̂|k, p
i

s
,i

inter(klocal)) (veh) (inflows N in,p
i

L (k̂|k, p
i

s
,i

inter(klocal)) (veh)) of the links ius
i

inter (
ids
i

inter )directly upstream (downstream) of the intersection when actuating the stage is for the
time steps k̂ = k + 1 : · · · : k + ‘local + 1. Note that not every stage can be actuated at
every time step due to conflicts between stages. This depends on the currently active stage
p

i

s
,i

inter(klocal≠1). Hence, denote with Preach(p
i

s
,i

inter(klocal≠1) the set of stages at intersection
iinter that can be reached from stage p

i

s
,i

inter(klocal ≠ 1).

When it holds that:

T local < tfree
i

L ’iL œ ius
i

inter , (B-15)
T local < tshock

i

L ’iL œ ids
i

inter , (B-16)

the potential cumulative outflows and inflows at a next time step can be computed as:

Nout,p
i

L (k̂ + 1|k, p
i

s
,i

inter(klocal)) =

min
;

Nout,p
i

L (k̂|k, p
i

s
,i

inter(klocal)) + qsat
i

L Tb
i

L(k̂, Nout,free
i

L (k̂ + 1), Nout,sb
i

L (k̂ + 1)
<

’iL œ ius
i

inter ,

(B-17)
N in,p

i

L (k̂ + 1|k, p
i

s
,i

inter(klocal)) = N in,p
i

L (k̂|k, p
i

s
,i

inter(klocal)) + . . .

ÿ

j

sœi

us
iinter

÷
j

s
,i

L(k̂)
3

Nout,p
i

L (k̂ + 1|k, p
i

s
,i

inter(klocal)) ≠ Nout,p
i

L (k̂|k, p
i

s
,i

inter(klocal))
4

’iL œ ids
i

inter .

(B-18)

In this equation, the number of vehicles Nout,free
i

(k + 1) (veh) is given as:

Nout,free
i

L (k + 1) = “fr
i

LN in
i

L (k ≠ kfree
i

L + 2) + (1 ≠ “fr
i

L)N in
i

L (k ≠ kfree
i

L + 1) . (B-19)

The maximum possible cumulative outflow caused by spillback from a downstream link js œ
ids
i

L is given as:

Nout,sb
i

L (k + 1) = Nout,p
i

L (k) + “sh
j

s Nout
j

s (k ≠ kshock
j

s + 2) + (1 ≠ “sh
j

s )Nout
j

s (k ≠ kshock
j

s + 1) + Nmax
j

s ≠ N in,p
j

s (k) ,

(B-20)

where it is assumed that at an intersection one link leads to just one downstream link and it
is never the case that two links have an outflow to the same link at the same time step. This
assumption is mainly included for simplicity.

Reference tracking error

Now that the predictions of the link outflows are available when actuating the di�erent stages,
the expected reference tracking error ē

i

s
,i

inter(klocal) can be computed. This reference is com-
puted as the square of the area between the reference outflow êa

i

s
,i

inter(klocal) and the predicted
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outflow combined with the error between the total intersection reference outflow and total
predicted intersection outflow êb

i

s
,i

inter(klocal).

The first error is computed as follows:

êa
i

s
,i

inter(klocal) =
k+‘

local+1ÿ

k̂=k+2

ÿ

i

Lœi

us
iinter

3
N̂out,ref

i

L (k̂) ≠ Nout,p
i

L (k̂)
42

. (B-21)

The second error is computed as follows:

êb
i

s
,i

inter(klocal) =
k+‘

local+1ÿ

k̂=k+2

----

3 ÿ

i

Lœi

us
iinter

N̂out,ref
i

L (k̂) ≠
ÿ

i

Lœi

us
iinter

Nout,p
i

L (k̂)
4---- . (B-22)

Now, the total reference tracking error is computed by adding the two errors multiplied with
the tuning parameter “e (-):

ē
i

s
,i

inter(klocal) = “eêa
i

s
,i

inter(klocal) + (1 ≠ “e)êb
i

s
,i

inter(klocal) . (B-23)

The parameter “e is introduced to trade o� the current reference tracking cost and the final
reference tracking costs.

Stage actuation

The final step is the actuation of the stage pú
i

s
,i

inter(klocal) that leads to the smallest expected
reference tracking error:

pú
i

s
,i

inter(klocal) = arg min
pis,iinter œPreach(pis,iinter (klocal≠1)

ē
i

s
,i

inter(klocal) . (B-24)
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Glossary

List of Acronyms

MPC Model Predictive Control

LQG Linear Quadratic Gaussian

LTM Link Transmission Model

CTM Cell Transmission Model

TTS Total Time Spent

QP Quadratic Programming

LP Linear Programming

SQP Sequential Quadratic Programming

MILP Mixed-Integer Linear Programming

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

LTI Linear Time Invariant

CFL Courant-Friedrichs-Lewy

List of Symbols

Variables
– [-] control variable - threshold for the penalty
bL,e� [-] e�ective fraction of green time
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98 Glossary

bO,e� [-] e�ective fraction of green time of an origin
— [-] control variable - maximum value of the penalty
� [-] random variable between -1 and 1 with uniform distribution
÷

j,i

[-] turn fraction from link j to link i

÷act [-] nominal turn fraction
÷nom [-] actual turn fraction
“ [-] uncertainty weight
kc,free [-] discrete free-flow travel time sampled with kc

kc,shock [-] discrete shock wave travel time sampled with kc

N in [veh] cumulative inflow
NO,in [veh] cumulative inflow of an origin
Nmax

i

[veh] maximum number of vehicles in link i

Nout [veh] cumulative outflow
NO,out [veh] cumulative outflow of an origin
qbn,act [veh/h] actual bottleneck link outflow
qbn,nom [veh/h] nominal bottleneck link outflow
qin

j

[veh/h] inflow of origin j

qin,act [veh/h] actual inflow
qin,nom [veh/h] nominal inflow
qout,max [veh/h] maximum link outflow
qrealized [veh/h] realized link outflow
qsat [veh/h] saturation outflow
“c,fr [-] residual of a sampling time step that the free-flow travel time is exceeded by

kc,free

“c,sh [-] residual of a sampling time step that the shock wave travel time is exceeded
by kc,shock

tfree [s] free-flow travel time
tshock [s] shock wave travel time
vfree [km/h] free-flow speed
vshock [km/h] shock wave speed
N [veh] number of vehicles

Timing
kc [-] control time step
T c [s] control sampling time
k [-] simulation time step
T [s] model sampling time

Indices and sets
Iconflict

y

[-] set of conflicts for intersection y
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IExit [-] set of exit links
I in

i

[-] set of all directly upstream links of link i

J in
i

[-] set of all origins directly upstream of link i

I [-] set of links
i [-] link index
J [-] set of origins
j [-] origin index
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