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SUMMARY

Wheels are critical components of trains, and their conditions should be therefore mon-
itored. Wheel defects change the wheel-rail contact and cause high impact forces that
are damaging for tracks and trains. Wheel defects can also cause unexpected failures
that reduce the availability and reliability of the railway system. Several monitoring sys-
tems have been developed to detect and identify the wheel defects. Wheel Impact Load
Detector (WILD) is commonly used to estimate the wheel condition by measuring the
wheel-rail contact force.

WILDs normally measure the contact force by multiple sensors in different locations
to sample from different portions of the wheel circumference. The variation in the forces
measured by the multiple sensors presents the condition of the wheel. Force ratio and
dynamic force are two main indicators using for detecting the defective wheels. Force
ratio is the division of the peak force by the average force and the dynamic force is the
subtraction of the peak force and the average force. Force ratio and dynamic force are
influenced by axle load, and train velocity. In addition, these criteria fail to identify the
defect types. Furthermore, these methods are not useful for monitoring the minor de-
fects.

This thesis aims to develop a monitoring system to accurately estimate the wheel
condition by detecting and identifying its defects. To achieve this purpose, this research
focuses on strain-base WILDs as the widespread systems and develops required data
analysis methods. WILDs usually measure the contact force by multiple sensors in dis-
crete locations. This type of measurement just provides the magnitude of the samples
and misses the pattern of the contact force. Therefore, this thesis explains the configura-
tion of the sensors and the corresponding issue of the partial observation and proposes
a fusion method to fuse the data collected by the multiple sensors. By associating the
samples with their positions over the circumferential coordinate in the space domain, a
new informative signal is reconstructed that represents the wheel geometry and conse-
quently the wheel defect.

The reconstructed defect signal is influenced by different parameters such as train
velocity, axle load, number of sensors, and wheel diameter. This thesis investigates the
influence of these parameters by carrying out a comprehensive parametric study. To
achieve this purpose, VI-Rail as a multi-body dynamics software is used to simulate the
wheel-rail interaction and provide required data. Then, the developed fusion method
is exploited to reconstruct defect signal from the simulated data. This study provides a
detailed insight about the effects of the influential parameters by investigating the vari-
ation of the reconstructed defect signals.

The next step is identifying the wheel defect to estimate the wheel condition by at-
tributing the reconstructed signal to the wheel defect. The influential parameters can be
categorized into two groups. In the first group, the parameters influence the fusion pro-
cess, and make an imperfect measurement and corrupt the signals reconstructed. Mea-
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surement noise, lack of enough number of sensors, and error in estimating the wheel
diameter can be mentioned as the parameters of the first group. In the second group,
the operational parameters such as the train velocity, and axle load change the signals
reconstructed. Variations in the second group parameters lead to variation in the sig-
nals reconstructed even when the defect is kept constant and the fusion process works
perfectly. In spite of having perfect reconstruction, the variation in the operational pa-
rameters is unavoidable. This thesis tackles the challenge of variation in the signals to
attribute the reconstructed signals to the defects. To achieve this purpose, the supervised
pattern recognition methods are used to design the required classifiers to deal with this
classification problem. As a result, a defect identification model is developed to estimate
the defect type and severity by classifying the defective wheels.

In the previous parts, the fusion model and the defect identification model used the
simulated data to generate the dataset and test the model. Hence, this thesis validates
the defect identification model using the data generated by laboratory tests. Due to the
lack of experimental facility, a new test rig is designed and constructed to model the
wheel-rail interaction and to generate the real data required for the data fusion and the
defect identification model. In this test rig, a rotating arm moves a wheel over a circular
rail that is supported by sleepers. Then, six strain sensors are mounted under the rail
with constant intervals to measure the rail bending strain. The strain sensors measure
different portions of the wheel in discrete points. The fusion model reconstructs pat-
terns from the data collected by the multiple strain sensors for different wheel defects.
By reconstructing the informative patterns correlated to the wheel defects, the fusion
model is validated. The results obtained present a great potential for further real field
application by classifying the defects into different classes of types and severities with
less than 5 % errors.



SAMENVATTING

Omdat wielen cruciale treinonderdelen zijn moet hun conditie in de gaten gehouden
worden. Defecten aan wielen veranderen het contact tussen wiel en rail en veroorzaken
grote slagkrachten die schadelijk zijn voor het spoor en treinen. Wielbeschadigingen
kunnen ook onverwachte storingen veroorzaken die de beschikbaarheid en betrouw-
baarheid van het spoorwegnet verminderen. Er zijn verscheidene controlesystemen
ontwikkeld om wielgebreken te ontdekken en te onderscheiden. Vaak wordt een wiel-
krachtbelastingsdetector (Wheel Impact Load Detector, WILD) gebruikt om de conditie
van een wiel te beoordelen; dit measurement de contactkracht tussen wiel en rail.

WILDs meten deze contactkracht normaal gesproken met meerdere sensoren op ver-
schillende locaties om de wielomtrek steekproefsgewijs te kunnen onderzoeken. De va-
riatie in de gemeten krachten zegt iets over de conditie van het wiel. Twee hoofdindica-
toren voor het ontdekken van gebreken bij wielen zijn de krachtverhouding en de dyna-
mische kracht. De krachtverhouding is het quotiënt van de piekkracht en de gemiddelde
kracht; de dynamische kracht is het verschil van de piekkracht en de gemiddelde kracht.
De krachtverhouding en de dynamische kracht worden echter beïnvloed door de asbe-
lasting en de snelheid van de trein. Ook kunnen deze indicatoren de soort beschadiging
niet vaststellen. Bovendien zijn deze methodes niet bruikbaar om kleine beschadigingen
op te sporen.

Het doel in dit proefschrift is een inspectiesysteem te ontwikkelen dat de wielcondi-
tie precies bepaalt door gebreken te herkennen en te identificeren. Om dit te bereiken
ontwikkelt dit onderzoek de benodigde data-analysemethoden voor de veelgebruikte
op vervorming gebaseerde WILDs. WILDs meten de contactkrachten gewoonlijk met
meerdere sensoren op afzonderlijke locaties. Dit type meting geeft alleen de grootte van
de krachten maar mist het patroon van de contactkracht. Dit proefschrift beschouwt
daarom de opstelling van de sensoren en het daaruit voortvloeiende probleem van ge-
deeltelijke observatie en stelt een methode voor om de data van de afzonderlijke sen-
soren te combineren. Door de metingen te combineren met hun positie op de cirkel-
omtrekcoördinaat in het ruimtedomein wordt een nieuw informatief signaal gerecon-
strueerd dat de geometrie van het wiel, en zodoende de beschadigingen aan het wiel,
representeert.

Het gereconstrueerde beschadigingsprofiel wordt beïnvloed door verschillende pa-
rameters, waaronder treinsnelheid, asbelasting, het aantal sensoren en de diameter van
het wiel. Dit proefschrift onderzoekt de invloed van deze parameters door een uitge-
breid parameteronderzoek uit te voeren. Hiertoe wordt de multilichaamsdynamicasoft-
ware VI-Rail gebruikt om de interactie tussen wiel en rail te simuleren en te zorgen voor
de benodigde data. De ontwikkelde combinatiemethode wordt vervolgens gebruikt om
het beschadigingsprofiel uit de gesimuleerde data te reconstrueren. Door de variatie van
de gereconstrueerde beschadigingsprofielen te onderzoeken geeft deze studie een gede-
tailleerd inzicht in de effecten van de relevante parameters.

xiii
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De volgende stap in het bepalen van de wielconditie is het identificeren van het wiel-
gebrek op basis van het gereconstrueerde signaal. De beïnvloedende parameters kun-
nen in twee groepen worden ingedeeld. De parameters in de eerste groep beïnvloeden
het combinatieproces; ze zorgen voor imperfecte metingen en verstoren het gerecon-
strueerde signaal. Meetruis, een tekort aan sensoren en fouten in het bepalen van de
wieldiameter zijn parameters van deze eerste groep. De tweede groep bestaat uit opera-
tionele parameters, zoals treinsnelheid en asbelasting, die de gereconstrueerde signalen
veranderen. Variaties in parameterwaarden van de tweede groep leiden tot variaties in
het gereconstrueerde signaal, ook als het mankement constant is en het combinatiepro-
ces perfect werkt. Zelfs bij men een perfecte reconstructie is, de variatie in operationele
parameters onvermijdelijk. Dit proefschrift pakt het probleem van variatie in de signalen
aan om de gereconstrueerde signalen aan de typen gebreken te kunnen koppelen. Voor
dit classificatieprobleem worden geleide patroonherkenningsmethodes gebruikt om de
benodigde classificatiefuncties te ontwerpen. Dit resulteert in een model om het type en
de intensiteit van het mankement te bepalen door het classificeren van de beschadigde
wielen.

Het hiervoor beschreven combinatiemodel en identificatiemodel gebruikt gesimu-
leerde data om een dataset te genereren en het model te testen. Dit proefschrift valideert
het beschadigingsidentificatiemodel op basis van data die gegenereerd zijn door labora-
toriumtests. Vanwege het ontbreken van een testinrichting wordt een nieuwe testopstel-
ling ontworpen en geconstrueerd om de wiel-railinteractie te boetseren en realistische
data te genereren die nodig zijn voor het combinatie- en identificatiemodel. In deze test-
opstelling beweegt een roterende arm een wiel over een cirkelvormige rail op bielzen.
Zes belastingssensoren zijn op regelmatige afstanden onder de rail vastgemaakt om de
buigspanning te meten. De sensoren meten verschillende delen van het wiel op afzon-
derlijke punten. Het combinatiemodel reconstrueert, voor verschillende wielbeschadi-
gingen, patronen uit de data die door de afzonderlijke sensoren verzameld zijn. Door de
informatieve patronen, gecorreleerd aan de wielgebreken, te reconstrueren wordt het
combinatiemodel gevalideerd. De resultaten laten zien dat classificeren van de gebre-
ken in verschillende types en verschillende mates van intensiteit met minder dan 5%
fouten mogelijk is, waardoor de methode zeer geschikt is voor verdere daadwerkelijke
toepassing.



1
INTRODUCTION

1.1. BACKGROUND
Wheels are critical components of trains, which deteriorate over time due to wear and
fatigue. Wheel defects such as corrugation, flat, spalling and shelling [1] change the con-
tact feature between wheel and rails, and may generate a high impact force. From the
safety point of view, the defects of wheelsets are the main reasons of train accidents [2].
In addition, high impact forces are detrimental to the track and train and increase the
maintenance cost. Unexpected wheel failures also reduce the availability of trains and
cause delay in the transport services that reduces the reliability of the railway system.
Hence, the maintenance of the wheels is a vital task.

The maintenance policies can be generally classified into corrective and preventive
[3]. Corrective maintenance (breakdown or run to failure maintenance) has been a com-
mon policy operated on the wheels. A wheel failure means a severe defect that has an im-
pact force that exceeds a predetermined threshold (e.g., 290 kN in Sweden [4] and 400.3
kN in the US [5]). Furthermore, the wheel maintenance involves a re-profiling procedure
by machining the tyre thickness to return the profile feature. This procedure decreases
the wheel diameter to the limit where the wheel is not repairable any more and has to
be replaced. For example in the Netherlands, before 2007, NedTrain, the Dutch railway
maintenance company, re-profiled the wheels 5 to 6 times over their lifetime. In that pe-
riod, the wheel defects were detected by visual inspections or by a condition monitoring
system due to their high impact forces [6].

A preventive policy aims to avoid failure of a component by estimating its condition
and doing the maintenance activities in the right time [3]. To make an effective and ef-
ficient maintenance plan, the condition of the wheels should be accurately measured or
estimated. Physical and statistical modelling are two approaches to estimate the condi-
tion before the operation [3]. A physical model describes the failure mechanism using
a numerical or analytical method. A statistical model represents the failure distribution
based on the historical data to use for similar systems.

Currently, some maintenance companies such as NedTrain are following a usage-
based preventive policy. According to this policy, the trains are sent to workshops when

1
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approaching a predetermined threshold of usage in time or mileage. By shifting from
the corrective to the usage-based preventive policy, the wheels are re-profiled more fre-
quently (12 times on average) but in smaller cutting steps. The wheel defects have an
exponential growth and removing the tiny cracks from the wheel surface reduces the
degradation rate [7]. The comparison between the corrective and usage-based preven-
tive policies proved that the usage-based policy has improved the lifetime of the wheels
and increased their reliability [6].

The major challenge of the usage-based preventive policy is estimating the wheel
condition. The usage-based policy makes an approximate estimate of the wheel condi-
tion using the time and mileage. As a result, this policy has failed to avoid unexpected
failures and over-maintenance, and to reduce the overall maintenance cost. To estimate
the wheel condition based on the physical and statistical approaches, several assump-
tions are made about the operational situations [3]. Trains work in various environmen-
tal and operational situations, such as train velocity and acceleration, axle load, wheel-
rail adhesion, and rail profile and track pattern. Such parameters affect the wheel wear
and fatigue and, accordingly, change the degradation rate. In addition, the wheel-rail in-
teraction and consequently the degradation rate varies between the right and left wheels
on an axle, from the front to back axles in a bogie as well as from the first to second bogie
in a wagon [8, 9]. Therefore, physical and statistical models are not broadly applicable to
assess the wheel condition properly.

A condition-based maintenance procedure significantly relies on the condition data.
Detecting the existing and potential defects using a sensor or a set of sensors is gener-
ally called condition monitoring which is appropriate for systems that deteriorate over
time. An effective condition monitoring system (CMS) should detect any deviations and
should accurately estimate the degradation level. The information obtained by CMSs
can be used to optimize maintenance activities. Accordingly, condition monitoring can
be the most convenient method for estimating the wheel condition.

CMSs are currently used to detect the wheel failure for a corrective policy. In this
case, the condition of the wheel with the most severe defect has the dominant role in the
maintenance planning, while the condition-based maintenance policy tries to optimize
the maintenance plan and to avoid unexpected failures and over maintenance, based
on the conditions of all the wheels of a train. As a result, a condition-based policy can
increase the effectiveness (preventing unexpected failure), efficiency (preventing over
maintenance), and reliability of the maintenance.

1.2. WHEEL CONDITION MONITORING
Wheel condition monitoring has been and still is the subject of many studies. A CMS can
directly measure the defect features, or indirectly the defect effects [10]. For direct mon-
itoring, some sensors, such as ultrasonic once, are used to detect the cracks. The wheel
defect produces a contact force that is transferred to the track and vehicle. Therefore, the
wheel condition can be indirectly estimated by measuring the responses of the wheel or
rail such as strain, vibration, and acoustic responses. Installing sensors on every wheel
is challenging due to the expense, implementation and maintenance. For example, the
Dutch railway company has about 3000 car bodies with around 24000 wheels [6]. For
this reason, track-side measurement has been given more attention.
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Figure 1.1: A vertical wheel-rail contact force measured by a strain-based WILD with a 100mm flat
on the first wheel and for 50 km/h velocity [4].

Wheel Impact Load Detectors (WILDs) are common wayside wheel monitoring sys-
tems. They measure the rail response such as strain [5] and vibration [11], by a sensor or
a set of sensors to estimate the condition of the in-service wheels. The first generation
of WILDs was introduced in 1983 [12] and then rapidly became a widespread commer-
cial system [13]. Figure 1.1 presents the vertical wheel-rail contact force signal generated
by the passage of two wheels. The first wheel has a 100mm flat that caused 200kN peak
force, and the second wheel has a tread with local spalling [4].

Different studies have attempted to interpret and use the data measured by WILDs to
estimate the wheel condition accurately and reliably. One common criterion to quantify
the wheel condition is the peak of the data acquired by a WILD. Nielsen and Johansson
[1] reviewed the results of some experiments investigating the wheel defects using the
peak value criterion. They used the peak acceleration and the peak force collected by
accelerometers and strain gauges. The results showed a considerable fluctuation in the
peaks especially when the trains had higher velocity and the wheels had more severe
defects. Later [4], they investigated the effect of train velocity, axle load, and the defect
types on the measured peak forces. Figure 1.2 presents the peak forces collected from
two different defects for different velocities and axle loads.

The results in Figure 1.2 present an extreme variation even when the train velocity,
the axle load, and the defects were kept constant in the repeated tests. They related this
fluctuation to variation in the track property and to the random position of the defect
with respect to the sensors. To measure more reliable data and avoid this fluctuation,
the track stiffness over the measurement station can be maintained similar, but the po-
sition of the defect with respect to the sensors is out of control. Therefore, WILDs usually
exploit multiple sensors to cover the whole wheel circumference.

The first drawback of this method to quantify the wheel condition is the large varia-
tion output that reduces the reliability of the method. The train velocity and the axle load
have a significant effect on the measured data. Partington [12] excluded the effect of axle
load by means of two methods to define two other criteria. First, by using the force ratio
that is calculated by dividing the peak force by the average force collected by multiple
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Figure 1.2: Measured peak forces for different train velocities and axle loads with a) a 100 mm flat
and b) a 0.5 m long local defect [4]

sensors. The second approach is the subtraction of the peak force and the average force
that is called dynamic force. In spite of excluding the effect of axle load, the train velocity
is an out-of-control parameter that causes variation in the magnitude of the peak force,
dynamic force or the force ratio.

The second limitation is that these criteria fail to distinguish between different defect
types. The rate and mechanism of the wheel degradation are influenced by defect type.
Therefore, estimating the defect type is significant to provide a comprehensive estimate
of the wheel condition. The peak force, dynamic force or the force ratio somehow show
the existence of a defect but are unable to identify the defect type.

In addition, a severe defect dominates the other defects of a wheel. Furthermore, the
measured dynamic force and the force ratio of a wheel with multiple defects including
a severe defect can be smaller than a wheel with a similar severe defect. Because the
average of the contact force for the first wheel is higher than the second one. Therefore,
these criteria can lead to false interpretation.

Another weakness of the current criteria is difficulty in detecting the minor defects
such as spalling, periodic out-of-roundness and small shelling at an early stage. Asplund
et al. [14] also used these criteria but finally concluded that they only detect the severe
defects that greatly contribute to the contact force. As a result, developing an effective
and reliable method for detecting and identifying the wheel defects is still an open issue.

1.3. RESEARCH OBJECTIVE AND RESEARCH QUESTIONS
This dissertation aims to answer the following main research question:

How can the extent of railway wheel defects be accurately estimated?

To achieve the main goal of this research five key research questions should be answered.
The condition monitoring process includes three main steps: data acquisition, data pro-
cessing and condition estimation. The major contribution of this dissertation is made
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to the data processing and condition estimation. In the data acquisition step, the data
collected by WILDs is used. Different researchers have proposed and exploited various
methods for each step. Therefore, a comprehensive literature review is required to an-
swer the first key question:

1. What are the state-of-the-art technologies for estimating the wheel condition?

An individual static sensor makes a partial observation of a moving wheel. A WILD
normally measures the rail responses at different points (e.g., at 16 points [5]). Such a
configuration collects data from different portions of the wheel circumference. This dis-
crete measurement needs a fusion method to associate the partial data collected by the
multiple sensors at different points. Generally, the fusion method can be applied at three
different levels: the data level, the feature level, and the decision level [15, 16]. Hence,
the second key question is emerged as follow:

2. How can the data collected by multiple sensors mounted along the rail be fused
to reconstruct a new informative signal?

The results of the fusion process are influenced by several parameters such as the
wheel size, number of sensors, defect type and severity, measurement noise, train ve-
locity, axle load, and the position of the defect on the wheel surface with respect to the
sensors. To evaluate the sensitivity of the fusion process, the below question should be
answered:

3. How do the influential factors affect the reconstructed signal?

There is a range of variation in the reconstructed signals due to the influential fac-
tors. The reconstructed signals should be investigated to attribute to specific defects
types and to estimate their severity. Hence, the next question should be responded:

4. How can the defect types and their severity be detected?

Finally, the research should be validated by answering to the following question:

5. How can the proposed method be tested and validated?

1.4. RESEARCH METHOD
This dissertation aims to associate the data collected by multiple sensors to generate a
new informative signal. To determine the relation between the samples collected by the
sensors a few parameters should be known such as the sensor intervals, sensor sampling
frequency and the wheel diameter. According to the wheel circumference and the sensor
configuration, the data are mapped over the circumferential coordinate. In this research
project a theoretical method is developed. Then, the proposed method is tested using
the simulated data generated by VI-Rail. Using the simulated data gives the possibility
of changing the parameters and carrying out a parametric study. This study provides a
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detailed insight into the method.
Moving of a defective wheel with different velocities and axle loads influence the

wheel-rail interaction and the signal reconstructed. As a result, there is a range of varia-
tion in the signal reconstructed for each defect. Therefore, to classify the wheel defects
the pattern recognition tools are exploited. Finally, the developed method is validated
by a laboratory test. For practical implementation, a few issues are raised. This disser-
tation makes some assumptions and limitations that should be considered for the field
operation.

1.5. OUTLINE OF THE DISSERTATION
Figure 1.3 draws the road map of the dissertation. Each chapter covers an individual
stage or several stages of the condition monitoring process. In addition, each chapter
aims to answer an individual key research question. Finally, the last chapter points to
the main research question.

Chapter 2 gives the background, investigates the state of the art condition monitor-
ing methods, and clarifies the scientific gaps; corresponding to the key question 1.

Chapter 3 formulates the fusion process and explains the relation between the sam-
ples collected by multiple sensors; corresponding to the key question 2.

Chapter 4 carries out a detailed parametric study to investigate the sensitivity of the
fusion process and to explain the expected results; corresponding to the key question 3.

Chapter 5 uses the pattern recognition tools to detect the defect type and to estimate
the defect severity using the reconstructed signal; corresponding to the key question 4.

Chapter 6 validates the fusion method using a set of lab tests to prove the applicabil-
ity of the proposed method; corresponding to the key question 5.

Chapter 7 draws the main conclusions of the research, answers the research ques-
tions, and gives the final recommendations.
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Figure 1.3: The road map of the dissertation. The position of the boxes shows the coverage of the
chapter with respect to the condition monitoring process.





2
CONDITION MONITORING

APPROACHES FOR DETECTION OF

WHEEL DEFECTS1

This chapter describes the state-of-the-art approaches for in-service monitoring of wheel
defects. Condition monitoring approaches in the railway industry can be generally cat-
egorized into the following four groups: track-based vehicle monitoring, track-based
track monitoring, vehicle-based vehicle monitoring, and vehicle-based track monitoring
[18]. The focus of this research is on the railway wheels. Section 2.1 explains the wheel
defects and discusses their features. Two possible methods for the wheel monitoring
are the track-based wheel monitoring (wayside) and vehicle-based wheel monitoring
(on-board). As a result, the literature is divided into these two main groups, on-board
methods (section 2.2), and wayside methods (section 2.3). As mentioned in Chapter 1,
any condition monitoring process contains data acquisition, data processing and con-
dition estimation. Therefore, the available approaches can be classified based on their
contribution to the steps of the condition monitoring process, but the data processing,
and condition estimation steps totally depend on the data acquisition step. Therefore,
the literature, which are reviewed in section 2.2, and section 2.3, are categorized in sub-
sections based on sensing technique such as strain gauges, ultrasonic, vibration, and
acoustic technique. Section 2.4 discusses and compares the methods from different as-
pects such as objective of the monitoring, measurement specifications, and condition
estimation method, to identify the state of the art.

2.1. WHEEL DEFECTS
Wheels rotate on rails and make the train movement. Figure 2.1 illustrates a schematic
view of a wheelset, consisting of two wheels connected with an axle, and a track structure

1This Chapter is a revised version of Alemi et al. [17].
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consisting of rails, rail pad, sleeper, ballast, and base. Wheel-rail interaction causes wear
and fatigue defects. Nielsen and Johansson in [1] sorted the wheel defects and discussed
the reasons of their occurrence. Table 2.1 categorizes the wheel defects explained in [1]
based on their causes.

Wheel flat is a severe defect that accidentally happens by sliding the wheels. This
defect generates high impact forces that is damaging to the vehicle and track. Therefore,
numerous studies have been and are conducted to detect the wheel flat as early as pos-
sible and to investigate and reduce its detrimental effects. However, detecting the wheel
flat can be used to make a corrective maintenance plan than a preventive. In addition,
wheel flat rarely happens and has a small share in the re-profiling reasons [6].

Polygonal defect is a periodic radial deviation from the nominal wheel radius around
the wheel circumferential coordinate. Polygonal defects are caused for a variety of rea-
sons in different phases. The reasons can be explained by inhomogeneous properties
and misaligned axle hole during the manufacturing process or by misalignment in the
re-profiling and maintenance process [1], or by polygonal wear during the operation
[19]. These defects can be a pure sinusoidal wave with a long wavelength that covers
the wheel circumference or a combination of multiple waves with different harmonics.

According to the wavelengths of the polygonal defects, a range of excitation frequen-
cies is generated that is changed by the train velocity. Normally, wheel–rail contact forces
generated by polygonal wheels are lower than the alarm threshold. In addition, detect-
ing these defects by visual inspection is difficult. Moreover, polygonal defects do not
contribute to high impact force. Therefore, the usual methods such as measuring the
dynamic force are not effective. However, due to the train velocity variation, the excita-
tion frequency may approach to the fundamental resonance of the track and vehicle that
leads to high impact force, high-frequency vibration, noise, and reducing the passenger
comfort. As a result, in-service detection of these defects is an open issue.

Shelling and Spalling caused by Rolling Contact Fatigue (RCF), and are among the
main reasons of the wheel re-profiling [6]. These defects initiate as a crack and evolve
over a course of time. Therefore, to have a preventive maintenance policy, these defects
should be detected in the early stage. Modern trains tend to move faster with higher
axle loads. Hence, wear as the dominant reason of the wheel damage has been altered to
fatigue [20]. This phenomenon shifts the defects from surface to sub-surface. As a result,
detection of these defects is more challenging than the others.

In addition to the wheel condition, the wheel CMSs can provide some information
about the train. The number of axles, train velocity, train acceleration, and derailment
coefficient are some examples of the features that can be estimated by a wheel monitor-
ing system. This information can be directly used as a criterion of the wheel condition or
can be indirectly used in the data processing and condition estimation steps. Therefore,
some wheel CMSs have been developed to collect these features.
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Figure 2.1: A Schematic view of wheelset and track structure.

Table 2.1: Wheel defects and the reasons of their occurrence [1].

Causes Defects Moment of life time

Misaligned axle hole, mis-
aligned re-profiling, and
inhomogeneous material

Periodic non-roundness,
Non-periodic non-roundness,
Discrete defect

Before the operation
or in service and over
a course of time

Wear and fatigue Spalling, Shelling, Roughness,
In service and over a
course of time

Sliding and blocked brake Corrugation, Flat
In service but at a
moment
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2.2. ON-BOARD METHODS
Vehicle-based monitoring methods provide continuous and comprehensive data but
they are complex in terms of mounting, implementation and maintenance. In addition,
on-board sensors measure signals composed of both track irregularities and wheel de-
fects. Ward et al. in [18] reviewed the on-board methods used for the track and vehicle
monitoring. In this research, we focus on the wheel condition monitoring and in the fol-
lowing subsections, the on-board methods such as magnetic, ultrasonic, acoustic and
vibration techniques will be discussed.

2.2.1. VIBRATION TECHNIQUE
Liang et al. in [21] simulated the wheel flat and rail surface defects. They carried out a set
of analysis to detect the wheel flat. They did different time domain and time-frequency
analysis of vibration and acoustic signals such as the Crest factor, Skewness, RMS and
peak values as well as short-time Fourier transform, Wigner–Ville transform and the
wavelet transform. They compared the simulation results to the vertical forces and ac-
celerations measured by five accelerometers mounted on a roller rig. Displacement and
velocity were computed by integrating the vertical acceleration of the axle box. When
the wheel velocity increased from 3.5 km/h to 15 km/h, differences arise between the
results of the simulation and experiment and the methods lose their ability of detecting
the wheel flat.

Their research was extended in [22] by concentrating on the noise elimination and
time-frequency analysis to improve the results. They assessed the performance of adap-
tive noise cancelling as a pre-processing method and looked at four time–frequency
transforms as the processing methods including smoothed pseudo Wigner-Ville trans-
form, the short time Fourier transform, the Choi-Williams transform and the wavelet
transform on the raw measured acceleration signals. These tests, like prior work, were
carried out at a low velocity hence using these methods for real field application is chal-
lenging.

Jia and Dhanasekar in [23] investigated two wavelet methods to detect the wheel flat.
They simulated the vertical acceleration of a bogie to generate the required data. Two
wavelet methods are decomposing of average signal wavelet and the wavelet local en-
ergy averaging. To select the convenient wavelet function the authors tried five different
wavelets and selected the Daubechies as the best one. They carried out the simulations
for a wagon moving with a constant velocity at 80 km/h that is much higher than velocity
in [21], and [22].

Li et al. in [24] investigated two methods to detect the wheel flat using the simulated
axle box vibration signals. They ran the simulations for velocities at 100 and 200 km/h
and carried out the laboratory tests at 40 km/h. They compared empirical mode decom-
position (EMD) and ensemble EMD (EEMD) and showed the effectiveness of the EMD
method for flat detection. They extended their research in [25] by exploiting adaptive
multiscale morphological filtering (AMMF) for flat detection at 100, 150 and 200 km/h
velocities for the vibration signals simulated by a vehicle-track model, and measured in
lab tests. The on-board vibration technique has been well developed for high velocities
but just for severe defects such as flats. Therefore, a more comprehensive method would
include all defects.
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2.2.2. ULTRASONIC TECHNIQUES
Several simulations and laboratory tests were done in [26] to investigate the possibility
of mounting a ultrasonic sensor on the wheels to monitor the wheel-rail flange contact.
When the ultrasonic pulses encounter an identical interface by a full contact, the signal
will be completely transmitted. The simulations and laboratory tests measured the pro-
portion of the reflected and transmitted ultrasonic wave from no contact to perfect con-
tacts. By simulation modelling, they determined the proper position for the ultrasonic
transducer on the wheel. In the experimental tests, they loaded a section of wheel and
rail by a bi-axial frame to produce different wheel-rail contact conditions. This method
can be used for monitoring the wheel wear by considering the fact that the wheel wear
changes the contact features and consequently changes the reflected wave. This method
also needs extra analysis to exclude the effect of the rail irregularities.

2.2.3. ACOUSTIC TECHNIQUE
Frankenstein et al. in [27] designed an on-board monitoring system by putting an acous-
tic sensor inside the wheelset Axle. They carried out a simulation and a laboratory test
based on the acoustic sounds produced by the wheel defects. Different artificial cracks
were tested for the laboratory test by bearing in mind that the crack size affects the inten-
sity and length of the signal. They used the elastodynamic finite integration technique
to simulate the propagation of an ultrasonic sound. This method can detect minor de-
fects such as small cracks but the difficulties of the on-board monitoring systems are still
remained.

2.2.4. MAGNETIC TECHNIQUE
The derailment coefficient is the ratio of the lateral to the vertical wheel-rail contact
forces. This coefficient is usually measured by strain gauges mounted on a particular
wheelset. Since the wheelset is a rotating component, Matsumoto et al. in [28] used
non-contact gap sensors to remove the rotating sensors by measuring the lateral con-
tact force from the lateral bending of the wheel. Figure 2.2, shows the configuration of
such non-contact gap sensors. They extended their research in [29] by implementing
the method suggested in [28] at different commercial lines using the in-service trains.
They assessed the influential parameters such as friction and track irregularity that alter
the derailment coefficient. This method can also be used for monitoring the wheel wear
through monitoring the derailment coefficient.
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Figure 2.2: The configuration of the gap sensors for measuring the lateral force [28].

2.3. WAYSIDE METHODS
Wayside measurement is the monitoring of train equipment by sensors mounted on the
rail or along it. The preliminary model of the wayside wheel defect detector was built
in 1983 and attached to the North East Corridor between New York and Washington to
measure the wheel impact load to detect the defective wheels [12]. The wayside method
rapidly became a popular method for the wheel monitoring. For example, in Sweden the
first wayside detector was installed in 1996, while in 2016 more than 190 wayside systems
were working [14].

Some wayside detectors investigate the wheels to directly find cracks and defects.
Other wayside systems measure the signals generated by the wheel-rail interaction such
as acoustics, vibration and strain. The wheel and rail characteristics create the features of
the wheel-rail contact. By knowing the current condition of the rail, the wheel condition
can be indirectly estimated by extracting the defect features. This section reviews the
wayside monitoring systems according to their measurement approaches.

2.3.1. ULTRASONIC TECHNIQUE
Salzburger et al. in [30] proposed a wayside and in-service monitoring system to detect
the surface cracks, based on ultrasonic inspections. This system contains two probes
per rail and a particular track for installing the probes. Every sensor is able to completely
assess the circumference of the wheel and the second sensor was only used for dou-
ble inspection. Similar other typical ultrasonic inspections, this system relies on pulse-
echo, and pulse transmission, but this system does not need liquid couplings during the
measurements. In addition, it emits waves in circumferential orientation to observe the
surface and sub-surface cracks. The amplitudes of the emitted and reflected impulse,
caused by cracks, are assessed in an A-scan plot as function of time. The CMS needs a
dramatic change in the track and is therefore limited to specific stations. In addition, the
trains velocity is restricted to 15 km/h.

Brizuela et al. in [31] carried out a simulation and a laboratory test to evaluate the
ability of Doppler effect in the wheel defect detection. As illustrated in Figure 2.3, two
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Figure 2.3: The configuration of a wheel-flat detector [31].

piezoelectric transducers were mounted on a rail. The wheel-rail contact point reflects
the monochromatic wave propagated in the rail. Relating to the train velocity, the wheel-
rail contact point is moving and the frequency of the propagated wave is shifted that is
calculated according to:

fUd = 2ωRw

VU
× fU (2.1)

where fUd is the shifted frequency, fU is the frequency of the signal propagated, Rw is
the wheel radius, ω is the angular velocity, and VU is the velocity of the ultrasonic wave.
Surface wheel defects change the frequency shift that is used for the defect detection.
The authors applied a time-frequency analysis and a high pass filter to process the data
acquired.

In spite of the capability for in-service application and monitoring the whole circum-
ference, this method needs special rails, and constant and low velocity movement. In ad-
dition, this method just detects the existence of the defects and could not provide more
information about the defect type and size. Hence, they developed a method to evaluate
the wheel flat features [32]. The length and depth of flats are obtained via a theoretical
calculation that was fed by the period of ultrasound wave, which travels to the rail-wheel
contact point. They assessed their method through a simulation and a laboratory inves-
tigation, but its limitation for real field application is maintained. Kenderian et al. in
[33] assessed the capability of the combination of ultrasonic technique with Laser and
capacitive air-coupled transducer for monitoring wheel defects. They used this method
for detecting surface and sub-surface defects in the wheel tread and flange.

2.3.2. ACOUSTIC TECHNIQUE
Thakkar et al. in [34] carried out laboratory and field tests to measure the velocity of
the acoustic wave and the attenuation coefficient. Then, an analytical acoustic emission
model was built using these factors. To detect the defects in the wheel-rail interaction
area, they used the envelope of the root mean square of the signal as a comparison pa-
rameter between the emitted wheel-rail acoustic wave and the model. They extended
their research to wheel flat detection in [35]. They assessed the frequency and harmony
of the acoustic wave propagated by defective wheel to detect the wheel flat. This is built
on the fact that the quantity, quality and position of the wheel flat change the features of
the normal signal. Figure 2.4 displays the structure of the test rig.

Wheel defects emit periodic acoustic impulses regarding to the train velocity. Based
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Figure 2.4: The structure of the acoustic test rig [35].

on this consideration, recognition of a repetitive pattern in acoustic signals was dis-
cussed in [36]. For this purpose, Bollas et al. firstly applied a low pass filter on the acous-
tic waveform measured by the sensors attached on the rail. Then the root mean square of
the signal was calculated by considering 40 ms as the time window. The frequency spec-
trum of the signal acquired was obtained using a Fourier Transform. In the last stage,
the Harmonic Product Spectrum method determined the fundamental frequency that
explains the existence of a repeated impact caused by a defect. In addition, they used
Time Driven Data method to find the wheel defect. They obtained the features of the
acoustic signals of a normal train and compared them with the measured signals from
the defective train. The trend of these signals detect the presence of defects. In their as-
sessments, the train velocity was around 8-16 km/h. The ability of this method should be
checked further for higher velocities and lower signal to noise ratio. Furthermore, these
methods only indicate the existence of a wheel defect in the train and cannot detect the
defective wheel and its severity.

2.3.3. LASERS AND HIGH-SPEED CAMERAS

In [37] Yang et al. exploited lasers to emit light on the wheel surface and used a high
speed camera to catch the features of the wheel profile. This system can be mounted
on normal rails and can be used for high-speed train up to 160 km/h. The comparison
between the obtained and the reference profile leads to defect diagnosis. The main chal-
lenges in that research were noise cancellation and accurate recognition of wheel profile.
Hence, the authors developed an image-tracking algorithm to capture the wheel profile.

2.3.4. VIBRATION TECHNIQUE

Bracciali and Cascini in [38] used an acceleration sensor to detect flats and corrugations
in wheel tread using the energy comparison and the cepstrum analysis. Based on the
repetitive trace of wheel flats, the power cepstrum is a practical approach to find the
echoes of the wheel flat in a noisy signal. This method just detects the existence of the
wheel flat in a bogie, and could not identify the exact defective wheel. The exerted energy
from a wheel to the rail depends on the train velocity, so the tests were carried out with
constant velocity. Different positions and directions for six piezoelectric accelerometers
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were experienced and the best location was obtained (position and direction 2 in Figure
2.5).

Skarlatos et al. in [39] applied a fuzzy-logic method to diagnose the wheel condition
such as good, low damaged, faulty and dangerous. To achieve this purpose, they used the
vibration magnitude, the centre frequency band and the train velocity as three inputs,
while the output was the condition of the train. In their field tests, the accelerometers
were mounted on position 5 according to Figure 2.5. In addition, they investigated the
relation of the vibration magnitude to the train velocity and frequency. The vibration
signals were measured at different train velocities and statistically analysed. As a result,
it was concluded that the train velocity and frequency have considerable effect on the
vibration signal.

Belotti et al. in [11] exploited acceleration signals to detect wheel flats. In the second
step, they quantified the defect severity using the Wavelet Transform as a time–frequency
processing approach. The train velocity is calculated using the distance between the
axles. Furthermore, they counted the train axles using the measured data. Figure 2.6,
presents the acceleration signal measured and the top plot presents the result of the
axle counter. It is noticeable that the acceleration signal could not directly refer to the
number of axles passing the measurement point, therefore, a supplementary process
is required. From the practical aspect, the wagons with defective wheels are separated
and planned for corrective maintenance. Therefore, they concentrated on detecting the
bogies containing the wheel flat, instead of detecting individual defective wheel. In their
field measurements, the acceleration signals were collected by one sensor at different
train velocities from 10-100 km/h, with 10 km/h interval.

The typical examples of the signals measured by a shear bridge and an accelerometer
are given in Figure 2.7. Shear-bridges, which are constructed by strain gauges, have a
limited effective zone. Therefore, full interaction of the defective area of the wheels with
sensors is crucial. To overcome this drawback, Lee and Chiu in [40] proposed a method
to convert the measured acceleration signal to the vertical force. They presented the
relation between the input force Ft (t ), and the output acceleration at (t ) by

at (t ) =
∫ ∞

−∞
ht (t −τ).Ft (τ).dτ (2.2)

where ht (t ) is the system response. The conversion of Equation 2.2 into the frequency
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Figure 2.6: An example of the measured acceleration signal [11].

domain changes the convolution integral to a multiplicative relationship between Ft (t )
and a(t ) in the frequency domain:

Aω(ω) = Hω(ω).Fω(ω) (2.3)

The transfer function Hω(ω) can be acquired using a set of known impact forces and
rail acceleration responses and averaging at different points. This method can be in-
versely used to calculate the unknown forces from the acceleration and transfer function.
They compared two methods, inverse analysis method as a deconvolution technique,
and root mean square method, to discover the relation between track acceleration re-
sponse and the magnitude of the force. Besides accelerometers, shear bridges were also
used for evaluating the results obtained in their field measurements. Inverse analysis
method delivered good performance to convert the measured acceleration signal to the
force especially beyond the effective zone of the strain gauge. Figure 2.8 presents two
examples of the force signals reconstructed by the inverse analysis method. In these ex-
amples, the defective area on the wheel contacted the rail outside the effective zone of
the shear bridge. Therefore, the shear bridge could not sense the wheel defect perfectly,
while the signals reconstructed from the acceleration data fully covered the wheel defect.

Looking at the standard deviation of the force obtained by the shear bridges in the
calibration process, authors concluded that shear bridge measurements are not depen-
dent on the train velocity and load within their operational condition (79-109 km/h and
24-141 tonnes of wagon load).
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Figure 2.7: a) A force signal measured by a shear bridge and b) an acceleration signal measured by
an accelerometer [40].
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2.3.5. STRAIN GAUGES
Measuring the surface defects by means of strain gauges is a conventional and commer-
cial technique for the wheel condition monitoring. This CMS is called Wheel Impact
Load Detector (WILD) and some examples of the present commercial products were
mentioned in [13]. Wheels impose strain on the rail and alter the resistance of the strain
sensors mounted on the rail. Through this method, the strain gauges measure the im-
pact forces caused by the wheel defects. The position, number, and arrangement of these
sensors are determined according to the purpose and condition of the measurements.

Nielsen and Johansson in [1] and [4] investigated the effect of train velocity, axle load,
and the defect types on the peak of the data measured by strain gauges and accelerom-
eters (see Figure 1.2). The results demonstrate that these three parameters changed the
measured peaks. In addition, the repeated tests obtained scattered results, even when
all the parameters were kept constant. Furthermore, this fluctuation increases for the
higher velocities and the more severe defects. As a result, using the peak value of the
strain and acceleration signals is not a reliable method.

Stratman et al. in [5] exploited the data acquired from a WILD to indicate the de-
fective wheels. The vertical force at each point was measured by two strain gauges and
the lateral force was measured by two others. The WILD was equipped with 128 welded
strain gauges to gather the vertical and lateral forces at 16 points from two rails. For a
reliable and accurate monitoring, the sensors should measure entire the wheel circum-
ference for the wheels with different diameters. The authors claimed that the collected
data in [5] covered 90% of the wheel circumference for the most cases.

Commonly, the measured strain is converted to the force that is directly used as an
indicator of the wheel condition. For instance, the Association of American Railroads
defined 400 kN [5] and the Swedish National Rail Administration defined 290 kN [4] as a
threshold to detect the defective wheels. According to [4] the train velocity and the axle
load influence the measurement. Stratman et al. in [5] used two methods to eliminate
the effect of the train weight using the forces measured at 16 points. First, they calculated
the differences between the maximum value and the average of the measured forces,
which is called the dynamic force. In the second method, the ratio of the maximum
force (Fmax ) to the average force (F̄ ) was calculated as follow:

FD = Fmax − F̄ (2.4)

RF = Fmax

F̄
(2.5)

where FD is the dynamic force, and RF is the force ratio. These values are called “semi-
normalized impact forces”, because they eliminate the influence of the train weight on
the measured force, and leave the effect of the train velocity.

The authors in [5] suggested two indicators based on the trends of the dynamic force,
in order to detect the wheels with high probability of failure. These indicators assess the
trends of rapid increase in the dynamic force during a particular period (within 50 and 20
days) for two groups of wheels. First, wheels with high dynamic impact force (this high
impact load is lower than the threshold) and second, wheels that are running at a normal
impact. Based on these methods, 15.8% of the wheels in North America were eliminated
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because of their high probability of failure while their impact forces were lower than the
threshold limit.

Palo et al. in [9] measured the lateral wheel-rail forces by strain gauges to assess the
effect of wheel position in a bogie on the lateral forces. The assessment was carried out
in a 484 m radius curvature at a specific research station. The trains operated within a
speed range up to 100 km/h, and with severe weather such as snow, and temperature
variation between -40°C to +25 °C. In [41] they exploited high-speed cameras and lasers
for the wheel profile features monitoring and used the wheel-rail forces to decide for the
wheel maintenance. The fusion of these two pieces of data about the wheel condition,
gives valuable information for maintenance decision making.

2.3.6. FIBRE OPTIC SENSING TECHNOLOGY

A Fibre Bragg Grating (FBG) sensor is created by exposing a short section (around 1 cm
[42]) of an optical fibre to ultra-violet radiation over a phase mask in a way that the mask
pattern creates a periodic refractive index [43]. The light in an optical fibre travels freely
while the FBG sensor reflects back a specific wavelength of the light spectrum relating
to the features of the Bragg [42]. Mechanical and thermal stresses change the refractive
index of the FBG sensor and consequently change the wavelength of the reflected light
spectrum which is detected by an optical interrogator. The reflected back wavelength
(λB ) is calculated according to

λB = 2neΛ (2.6)

In this Equation, ne is the refractive index of the core and Λ is the grating period of the
FBG sensor. The alteration of the reflected wavelength (∆λB ) shows a nearly linear rela-
tion to the alteration of the strain and temperature, which are respectively ∼1pm/µε and
∼11pm/°C . The wavelength shift can be measured by two common methods: wavelength-
division multiplexing and time-division multiplexing, which are used in the interrogat-
ing system [44].

Lee et al. in [45] used FBG sensors to assess the derailment probability. The weight
of the train is used for assessing the off-loading ratio that estimates the probability of the
train derailment:

Rl =
∆Fw

Fw
= (Fwr −Fwl )

(Fwr +Fwl )
< 0.6 (2.7)

Fwr and Fwl are the vertical forces of the wheels in a wheelset. This means that the
transferred load in one axle should be limited to 60%. In addition, they remarked the
ability of FBG sensors for axle counting, train identification, and velocity estimation.

Figure 2.9 illustrates a typical strain signal measured by a FBG sensor showing the
passage of two wheels. In this Figure, emax and emi n are respectively the maximums and
minimums of the signal. In [42] FBG sensors were used to measure the weight of trains in
a commercial railway line. They evaluated four methods to correlate the measured data
to the weight of two consecutive wheels, Fw1 and Fw2 , passed the sensor by the following



2

22 2. CONDITION MONITORING APPROACHES FOR DETECTION OF WHEEL DEFECTS

W
av

el
en

gt
h 

[n
m

]

0

Time [ms]

0.2

0 1000

emax,1 emax,2

emin,1

emin,2

emin,3

Figure 2.9: A typical output of a FBG sensor which shows strain changes during the passage of a
train with 2 axles.

relations:

{
Fw1 = emax,1 −emi n,1

Fw2 = emax,2 −emi n,2

(2.8a)

(2.8b)

{
Fw1 = emax,1 −emi n,2

Fw2 = emax,2 −emi n,3

(2.9a)

(2.9b)


Fw1 = emax,1 −

emi n,1 +emi n,2

2

Fw2 = emax,2 −
emi n,2 +emi n,3

2

(2.10a)

(2.10b)

{
Fw1 = emax,1

Fw2 = emax,2

(2.11a)

(2.11b)

The authors concluded that the most accurate methods are the Equations 2.11a and
2.11b with the smallest amount of error [42].

As mentioned earlier, the train velocity and the axle load influence the measurement
[4]. Tam et al. in [44] used FBG sensors to measure the train velocity. They considered
the distance between the axles as a known value and used the time taken for passing two
axles over the sensors (two peaks) to estimate the train velocity.

The main difficulty of counting the axles is dealing with the noisy signals. The defec-
tive wheels create an impact on the rails and make some extra peaks in the strain signals.
Wei et al. in [46] used FBG sensors to count the axles and proposed two approaches to
solve this problem, named X-crossing and D-crossing. Combination of these two meth-
ods presented 100% successful rate of the axle detection.
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Figure 2.10: The strain signal generated by means of (a) a train, (b) the magnified view of the first
car that is healthy, (c) the second car that is somehow defective, (d) the third car that is quite out
of round [43].

Wei et al. in [43] fabricated and packaged FBG sensors and proposed a condition
index to quantify the wheel condition. The condition index (C I ) is based on the aver-
age of the strain changes (ε̄), the train velocity (V ) and a scaling factor (αc ). This index
estimates the overall condition of four consecutive wheels of a wagon as follow:

C I = ε̄

V
×αc (2.12)

They validated the proposed index by investigating 29 passenger trains. For the field
examination, the FBG sensors were mounted neighbouring the rail foot. These sensors
were linked through optical cables in series. Figure 2.10a illustrates the strain signal ob-
tained from one FBG sensor induced by a train with 12 wagons (cars) and 48 axles, with
the velocity between 50-90 km/h. Figures 2.10b, 2.10c, and 2.10d present the magnified
view of the three first wagons. The wheels of the third wagon were defective and pro-
duced high impact forces and high frequency components in the signal.

Filograno et al. in [47] installed several FBG sensors on a straight part of a rail in var-
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Figure 2.11: The configuration of strain sensors.

ious positions to determine the train velocity, train acceleration, number of axles, train
type, dynamic load, and the wheel defects. The train velocity in that sector is usually
between 200–300 km/h. They also investigated the effect of variation in the environ-
ment temperature on the measured data. For the axle counting, they measured the rapid
change in the signal to find the number of peaks. For the train type identification, they
matched the number of axles with the prior information from the trains, like the axle
distance for different types. By using the time intervals between the peaks in the signal
of a wagon, instantaneous velocity was calculated. For estimating the average velocity of
a train, the first and the final wheels of a train are used. For measuring the acceleration
of a train, the velocity estimated for the first and the last wagons are exploited. They es-
timated the vertical load using the shear strains to eliminate the sleeper response. They
used the sensors positioned at P5 and P6 in Figure 2.11 that illustrates different posi-
tions of the sensors. The rail characteristics and the shear strains give the vertical force
as follow:

Fxz = (
2εxzGbG Iy )

Sy
(2.13)

It means that the vertical force (Fxz ) is proportional to the differential shear strain (εxz ),
the tangential elasticity module (G), the width of the section in the rail neutral line (bG ),
and the inertial momentum of the section (Iy ), and inversely proportional to the static
momentum of the lower part of the rail (Sy ). In some cases the calculated vertical force
based on this method were higher than the static force (train weight), and in some cases
equal or even lower than the static force. They explained this result with difference in the
epoxy adherence and imbalance axles and proposed a calibration coefficient kc multiple
to Equation 2.13, which is equal 1.34 [48].

Filograno et al. in [48] used the FBG sensors as [47] to detect the wheel flat. First,
they defined a cut off frequency to filter the measured signal. Then, they calculated the
energy of the high-pass filtered signal to compare with a threshold to detect the defective
wheels. Therefore, this method uses a single sensor to detect the defective wheel. The
difficulty of this method is the influence of the adjacent defective wheels on each other.
The high-pass filtered signal presents the high frequency components related to the de-
fects. In order to distinguish between the defective wheels they assessed three different
scenarios based on phase matching between close-flatted wheels.

In Equation 2.13, the vertical force is estimated, but sometimes the static force (train
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weight) is required. The vertical force equals the sum of the dynamic and the static
forces. To estimate the static force they supposed the static force as a fraction of the
vertical force and as a function of the wheel velocity. Therefore, they carried out some
tests and concluded that for 200 and 300 km/h velocities, the dynamic force are around
14% and 21% of the static force respectively. To estimate these values, they measured
the vertical force a few times and calculated the average of them. They found a large
variation in the measured forces and explained it as a stochastic value.

Pan et al. in [49] designed a structure to install FBG sensors to increase the sensitiv-
ity of the vertical force measurement. To achieve this purpose, they positioned the FBG
sensor in the centre of a thin steel gauge and suspended the fibre from its two ends. It
means that the glue does not cover the whole fibre. This scheme prevents FBG chirping
and increases its sensitivity in a ratio of 1.7 with respect to the direct installation. They
used an array of 24 sensors, covered 6.6m, to monitor the whole circumference of the
wheel. For calculating the sensitivity, they used a standard weight locomotive. This sen-
sitive coefficient is valuable for calibrating the measured FBG wavelength which is used
for detecting the dynamic wheel load [49].

2.4. DISCUSSION
The wheel condition monitoring systems pursue different objectives. Therefore, the first
part of this section discusses the objectives of the literature reviewed. The CMSs oper-
ated in a range of situations such as the condition of rails, trains and the configuration of
the sensors that are explained in the second part. Finally, the last subsection discusses
the literature based on their method for estimating the wheel condition.

2.4.1. OBJECTIVE OF THE MONITORING
The maintenance policy determines the objective of the condition monitoring system.
Some wheel CMSs have been developed to protect the tracks from the high impact forces
generated by severe wheel defects. In this case, the objective of the wheel CMS is detect-
ing the trains having wheels with severe defects such as wheel flat. According to the
corrective maintenance policy, a threshold is defined to detect the detrimental forces.
Therefore, the exact location of the defective wheels in a wagon, and their number are
not an issue for this policy. To have a preventive maintenance policy, the wheel CMS
should be able to detect the minor defects, and to identify the defect types and their
severity for all wheels. As a result, the objective of the wheel CMS can be categorized
into these levels:

1. Detecting the train has one or more defective wheels with severe defects;

2. Detecting the wagons with one or more defective wheels with severe defects;

3. Detecting the exact defective wheels with severe defects;

4. Quantifying the condition of all wheels;

5. Identifying the defect type and severity for all defective wheels including the minor
defects;
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Table 2.2: The objectives of the on-board monitoring systems

Objective of monitoring Technique or sensor Assessment level

Flange contact Ultrasonic technique
Test rig - full scale [26]

Simulation [26]

Surface defects

Acoustic technique
Test rig - full scale [27]

Simulation [27], [21]

Vibration technique

Test rig - scale test [21], [22]

Simulation [23], [24], [25]

Field measurement [25]

Derailment coefficient Magnetic technique

Test rig - full scale [28]

Simulation [28], [29]

Field measurement [28], [29]

6. Prognosis the condition of the wheels.

The measurement objective determines the required data acquisition system and the
processing method for each level. Therefore, the quality of the condition monitoring
system should be assessed according to its objective. Hence, a general comparison be-
tween different techniques is not beneficial.

ON-BOARD METHODS

Table 2.2 presents the objectives of on-board monitoring systems that covers the flange
contact, surface defects, and derailment coefficient. Adopting the on-board monitoring
methods is challenging due to the cost and difficulty of the sensor installation, imple-
mentation and maintenance of the sensors, and variety of trains and wheels. In addition,
excluding the effect of rail defects from the measured data is a tough task. Furthermore,
many research has been conducted in the simulation and/or test rigs level and field mea-
surements were scarce. As a result, on-board monitoring as an aspect of wheel condition
monitoring has had, and still has, many complications waiting to be overcome.

WAYSIDE METHODS

In-service wayside methods are the most common wheel monitoring systems. Accord-
ing to Table 2.3, the objectives of the wayside methods can be divided into two main
groups: the wheel defect monitoring, and the train monitoring. The wheel defect data
is directly used for estimating the wheel condition. The train monitoring extracts some
features of the train that can be indirectly used in the further processing steps such as
the number of axles, train velocity, and ambient Temperature.

In recent years, wheel-rail interaction and consequently wheel-rail deterioration have
changed due to the increase of train velocities and axle loads. Hence, wear of the wheels
as a dominant reason of their damage has been altered to fatigue [20]. This phenomenon
shifts the defects from surface to sub-surface. Therefore, the wayside methods should be
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adapted to this situation. According to Table 2.3, despite sufficient growth in surface de-
fect detection using various techniques, sub-surface defect detection is still immature.
Hence, developing wayside systems for monitoring sub-surface defects is an open issue.
In addition, most of the methods deal with the severe defects and just a few methods
investigate the minor defects.

According to Table 2.3, the strain-based WILDs have been considerably used for the
wheel and train monitoring. The FBG strain sensors are wildly used in the commercial
strain-based WILDs [13]. As mentioned in Subsection 2.3.4, the strain sensors have lim-
ited effective zone. Therefore, using multiple strain sensors for more coverage is com-
mon (see Subsections 2.3.5, and 2.3.6). The strain-based WILDs is mostly used for detec-
tion of the severe defects. Stratman et al. in [5] used this system to detect the sub-surface
defects. As a results, the strain-based WILDs have considerable potential to be devel-
oped for the minor defect detection and identification. Tam et al. in [44] mentioned
several advantages of FBG sensors for railway applications:

• Electromagnetic immunity; conventional strain gauges are affected by electro-
magnetic fields induced by high voltage power lines.

• Possiblity of fabricating numerous sensors inside a fibre;

• Long transmission distance due to less conduction loss;

• Innate ability for self-referencing; FBG interrogator measures the wavelength change,
therefore the measured value is an absolute parameter;

• Resolving the recalibration or re-initialization problem

• Ability of using only one end of the fibre for interrogating the data.

Adding to these benefits, there are other factors cited in other literature such as:

• Immediate time response, reliability, durability [42];

• Small size, and independence from electric power in the measurement point [43];

• Low cost, easy installation [48];

• Great accuracy and sensitivity, stability in spite of ambient temperature change,
corrosion resistance [49].

2.4.2. MEASUREMENT SPECIFICATIONS
For an accurate and reliable measurement, considering some settings during the mea-
surement stage is necessary. The objective of the monitoring determines the measure-
ment specifications. Most of the wheel CMSs are based on the wheel-rail interaction.
The specifications of the rail, train and sensors influence the measurements. Some of
these parameters are out of control such as train velocity, and axle load that also have
significant effects on the measurement but most of the others can be set. Some exam-
ples of these specifications are listed below:
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Table 2.3: The objectives of the wayside monitoring systems

Objective of monitoring Technique or sensor Assessment level

Surface defect detection

Strain gauges
Simulation [4]

Field measurement [4], [5]

Fibre Bragg Grating sensor
Field measurement [42], [43], [47],
[48], [50]

Ultrasonic technique

Simulation [31]

Test rig [30], [31]

Field measurement [30]

Laser-Air Hybrid Ultrasonic
Technique

Test rig [33]

Vibration technique
Field measurement [11], [13], [38],
[39]

Acoustic technique

Simulation [34]

Test rig [34], [35]

Field measurement [34], [36]

Surface defect identification
Ultrasonic technique

Simulation [32]

Test rig [32]

Vibration technique Field measurement [11]

Sub-surface defects
Strain gauges Field measurement [5]

Laser-Air Hybrid Ultrasonic
Technique

Test rig [33]

Steering ability Strain gauges Field measurement [9], [41]

Derailment coefficient
Fibre Bragg Grating sensor Field measurement [42], [45], [49]

Piezoelectric Sensing Tech-
nology

Field measurement [51]

Wheel profile parameters laser and high speed camera Field measurement [41], [37]

Train velocity
Fibre Bragg Grating sensor Field measurement [44], [47]

Vibration technique Field measurement [11]

Train acceleration Fibre Bragg Grating sensor Field measurement [47]

Number of axles
Fibre Bragg Grating sensor Field measurement [46], [47]

Vibration technique Field measurement [11]

Dynamic load Fibre Bragg Grating sensor Field measurement [47], [48]

Static load (Weight of train) Fibre Bragg Grating sensor Field measurement [42], [48]

Train type identification Fibre Bragg Grating sensor Field measurement [47]

Ambient Temperature Fibre Bragg Grating sensor Field measurement [47]
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• Rail: different properties and structures of tracks, including the types and profiles
of rails, sleepers and ballast;

• Train: type, velocity, acceleration, deceleration, axle load, moving direction and
wheel sizes;

• Sensor: the methods of installation, calibration factor, the measurement range of
sensors, temperature change, sampling frequency, and the signal to noise ratio.

The on-board methods have several challenges such as sensor installation on the
wheelset, and removing the traces of the rail defects from the measured data. In addition,
the track properties such as vertical track stiffness have wide variation along the track
[52] that is beyond the control.

For the wayside CMSs, different specifications were considered. For example, in [46]
and [47] different positions were assessed to find the best one for installing the sensors.
Their results showed that the maximum deflection would be on the head and foot of the
rail in case of longitudinal sensor. The specifications of the wayside CMSs may be listed
as follow:

• Uniform track structure with constant properties over the measurement section.

• Healthy track with no defect on the rail, sleeper, etc. over the measurement sec-
tion.

• a straight and horizontal track for vertical force

• a curved track for measuring the flange contact and lateral force

• Constant train velocity over the sensors on each measurement. It can be changed
from one measurement to another one.

• The wheel has a rotating movement without any sliding.

• The neighbor wheels have no influence of each other. It means just a single wheel
is considered or just one wheel is defective.

• The sensors measure with high enough sampling frequency and high enough signal-
to-noise ratio (SNR).

2.4.3. CONDITION ESTIMATION
A corrective maintenance policy needs to detect the severe defects to avoid further de-
fects while for a preventive policy the minor defects should be detected and identified.
Most of the wheel CMSs focused on the severe defects to eliminate their detrimental ef-
fects and the condition estimation stage has not been developed well.

Salzburger et al. in [30] exploited the ultrasonic technique to detect the surface and
sub-surface cracks. Despite the good results, this method has a major difficulty in in-
stalling the sensors on the rail. In addition, the train velocity is restricted to 15 km/h.
Brizuela et al. in [32] proposed an ultrasonic technique to estimate the length and depth
of wheel flats. Belotti et al. in [11] applied the Wavelet Transform to quantify the flat size
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Figure 2.12: The evolution of the dynamic force of a defective wheel [5].

using the acceleration signals. Bracciali and Cascini in [38] quantified the defect sever-
ity by calculating the energy of the acceleration signal to detect flats and corrugations.
Skarlatos et al. in [39] estimated the wheel condition as good, low damaged, faulty, and
dangerous through a fuzzy-logic method using the the vibration magnitude, the centre
frequency band, and the train velocity. They also applied this method for the wheel flats.

The contact force is a common method to quantify the wheel condition. WILDs use
acceleration sensors or strain gauges to measure the contact force. The strain and accel-
eration signals need a transfer function and a calibration process to be converted to the
force. The strain gauges have a limited effective zone that measures a small portion of
the wheels, while the forces reconstructed from the acceleration signal have more cov-
erage [40]. Therefore, the strain-base WILDs exploit multiple sensors and measure the
contact force at several points to cover entire the wheels. In addition, the train velocity
and axle load change the contact force measured [1], [4]. Therefore, the contact force
could not be directly used as a wheel condition indicator. As a result, Stratman et al. in
[5] defined two indicators, the dynamic force and the force ratio, to eliminate the effect
of the axle loads (see section 2.3.5). Figure 2.12 presents the evolution of the dynamic
force of a defective wheel. The contact force, the dynamic force, and the force ratio are
usually used to classify the wheels into healthy and defective classes and have difficulty
in detecting the minor defects and identifying the defect type [14].

Wei et al. in [43] proposed a condition index (C I ) based on the average of the strain
changes (ε̄) to estimate the overall condition of four wheels of a wagon. Figure 2.13
presents the progress of the condition index during ten months. The considerable de-
crease in condition index after 60th day is due to the wheel re-profiling. In [36] and [15]
the train velocity, vibration frequency, and vibration magnitude are mentioned as the
parameters of the condition index. The authors only compared the condition index ob-
tained without discussing the relation between the parameters.

Diagnosis and prognosis are two key concepts in condition-based maintenance [15].
In the diagnostic aspect, the current condition is considered for maintenance decision
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Figure 2.13: The evolution of the condition index obtained for the wheels of one side of a wagon
over time. The reduction of the condition index is due to the maintenance [43].

making. When the condition exceeds a predetermined threshold, corrective activities
are required. The prognostic approach detects deviations from the normal condition to
predict the future condition and calculate the remaining useful life. In general, diagnosis
is more common than prognosis, and this is also the case in the railway industry. All the
papers reviewed here had the diagnostic aspect to defects, with the exception of [1], [5],
and [43] that showed the evolution of wheel defects over time. To prevent the failure,
developing a model to predict the future condition is also required.

2.5. CONCLUSION
To answer the first key question of “What are the state-of-the-art technologies for esti-
mating the wheel condition?”, this chapter has described the state-of-the-art methods
for the wheel defect monitoring. The main conclusions of the literature analysis are re-
ported here.

The defective wheels have detrimental effects on the components of tracks and ve-
hicles. For this reason, the researchers have mostly focused on the severe defects such
as wheel flats. The CMSs are useful when the defects grow over time. Therefore, from
the wheel point of view, monitoring the wheel flat as an abrupt defect is just a corrective
activity. To move from a corrective to a preventive policy, it is vital to detect the minor
defects and identify the defect types.

The signals measured by the on-board sensors composed of wheel defects and track
irregularities. Therefore, detecting and identifying the minor defects by means of the
on-board methods are difficult. In addition, installing the sensors on every wheel is chal-
lenging and raises other issues such as cost and maintenance.

The wayside methods have wider applications and several commercial products have
been developed. They can be installed on a healthy rail to only reflect the wheel condi-
tion. Despite the proper results of the WILDs, they have difficulty in detecting minor
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defects and identifying the defect types. In addition, the train velocity and axle load in-
fluence the measurements. Moreover, the results have considerable variations and are
not reliable and repeatable. As a result, in this dissertation we concentrate on the WILDs
and aiming to develop an effective method for detecting and identifying the wheel de-
fects by overcoming the drawbacks of the WILDs.



3
DATA FUSION PROCESS TO

RECONSTRUCT WHEEL DEFECT

SIGNAL1

Chapter 2 reviewed the state-of-the-art methods for the wheel condition monitoring.
The strain-base WILDs are widespread systems currently used for the wheel defect de-
tection. The strain sensors have a limited effective zone that leads to partial observation
from the wheels. As a result, the WILDs usually use multiple sensors to collect mul-
tiple samples from different portions of the wheel. The discrete measurement misses
the order and the pattern, and just provides the magnitude of the samples. Therefore,
the much richer variation pattern of the samples is neglected. Therefore, this Chapter
proposes a fusion method to associate the data collected by the multiple sensors. By as-
sociating the samples with their positions over the circumferential coordinate, a new in-
formative signal is reconstructed that represents the wheel geometry and consequently
the wheel defect. The fusion method can be applied at three different levels: data level,
feature level, and at decision level [16]. This Chapter develops the fusion method at the
data level to map the collected data over the circumferential coordinate.

Section 3.1 explains the configuration of the sensors and the corresponding issue of
the partial observation. The space between the sensors causes a specific time lag be-
tween the signals measured. When the sensors have the same reference time to start
the measurement, the time lag in the signals and space lag between the sensors can be
related to each other. Therefore, Section 3.2 estimates the time lags to define the time
and space relation between the collected data. Then, Section 3.3 proposes the sampling
methods to determine the samples that should be selected from each signal as the out-
put of each sensor. In Section 3.4, the fusion method is developed to reconstruct a signal
over the circumferential coordinate using the collected samples. Consequently, the Sec-
tion 3.5 estimates the train velocity to define the sampling frequency of the collected

1This Chapter is a revised version of Alemi et al. [53].
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data in the space domain. Finally, Section 3.6 proposed a method to estimate the wheel
circumference as the fundamental period of the defect signal.

3.1. SENSORS CONFIGURATION AND THE PARTIAL OBSERVATION

PROBLEM
The wheel defects are not uniformly distributed along the wheel circumference. The
non-uniform deterioration can be due to the material inhomogeneity [1], different op-
erational conditions such as braking [54], [55], or environmental conditions such as hu-
midity [56]. The wheel defects alter the contact patch that sometimes lead to multiple
contact patches or loss of contact [57]. In addition, the degradation level of the wheels
depend on their position on bogie and axle [8]. Hence, every wheel has its own degrada-
tion level that causes an individual wheel-rail contact force.

A wheel-rail contact force represents the geometric pattern of the wheel defect. The
generated contact force is transferred to the track and vehicle. This force can be mea-
sured in both sides by installing a sensor on the wheel or on the rail. When a sensor is
installed on the wheel, it can move with the wheel to continuously measure the wheel
response to the contact force. Figure 3.1a presents the contact force signal measured by
a strain gauge mounted on the wheel disc in a field experiment [58]. They measured the
strain and converted that into the force. The signal shows three periods of the vertical
contact force generated by three turns of a defective wheel with 40 mm flat. The dis-
tance between the highest peaks shows the wheel circumference. They did not report
the diameter in that article but as stated by them in another paper [59], the wheel diam-
eter was around 950 mm (2984 mm circumference). According to Figure 3.1a as a typical
example, the 40 mm flat influenced around 20% of the contact force signal (around 600
mm) that we call the defective area. The rest of the signal is called the healthy area that
covers 80% of the signal.

The sensor has three measurement zones with respect to the wheel. First, the inac-
tive zone in which the wheel is away from the sensor, producing a zero output. Second,
the transient zone in which the wheel approaches or leaves the sensor, with increasing
or decreasing in the sensor output. Third, the effective zone in which the wheel is on top
of the sensor. The sensors collect data in these measurement zones but only the data
from the effective zone is used.

When the effective zone is smaller than the wheel circumference, the sensor makes
a partial observation and only senses a limited portion of the wheel. Figure 3.1b, presents
the track response for the same experiment measured by a sensor mounted on the sleeper
(the rail support that is normally made from wood or concrete). In Figure 3.1a, the sensor
sensed the defective area in three periods but the wayside sensor just sensed a portion of
the second period and missed the others. In this example, the sensor properly sensed the
defective area but it is not always the case. The position of the defective area with respect
to the effective zone of the sensor is out of control and the length of the effective zone is
smaller than the wheel circumference. Therefore, multiple sensors are commonly used
to cover the wheel circumference [5].

The measured outputs of the multiple sensors are usable when they sample in iden-
tical situations to have an identical transfer function. Therefore, the sensors should be
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sensor mounted on the sleeper [58].
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Figure 3.2: The configuration of the wheel, rail, sleepers, and sensors for a) a uniform track struc-
ture with joined sensors, b) the typical rail-sleeper structure with joined sensors, c) the typical
structure with discrete sensors on the sleepers, d) the typical structure with discrete sensors be-
tween the sleepers.

mounted on a uniform track with a continuous structure. A schematic view of the sen-
sors and the uniform track structure are illustrated in Figure 3.2a. This structure consists
of a continuous sleeper that provides identical transfer function for the joined sensors.
Integration of the discrete samples collected by different sensors gives the required con-
tact signal over the circumferential coordinate.

Tracks with continuous sleepers are not common. In addition, creating a uniform
track structure needs a dramatic change in the rail and sleeper structure. Therefore,
a typical rail-sleeper structure is considered. The typical rail-sleeper structure (Figure
3.2b) causes dissimilar rail responses in different points along the rail. In this case, the
outputs of the joined sensors have to be calibrated with respect to the sensor position in
the longitudinal direction. To avoid this complexity, a symmetric structure of the sensors
can be used. To configure this structure, the sensors should be mounted on the positions
with an identical situation such as displayed in Figure 3.2c. This configuration assures
that every measurement refers to a comparable rail and sleeper condition, and the only
variable is the wheel condition. Figure 3.2d illustrates the sensor configuration in which
the sensors are mounted between the sleepers.

Figure 3.3 shows the results of a field measurement [60] presenting the passage of
four wheels by variation in the signals with four peaks. In this example, the third wheel
had a 60 mm flat and the other wheels were healthy. Figure 3.3a shows the strain sig-
nal converted to the contact force. This signal was measured by strain sensors mounted
in a sleeper bay like Figure 3.2d. Figure 3.3b shows the rail bending moment above the
sleeper. The variation in the measured signal in Figure 3.3b is not as sharp as the signal
in Figure 3.3a but clearly shows the passage of four wheels and the existence of the flat in
the third wheel in 2.98 s. In Figures 3.3a and 3.3b, the third wheel exactly faced the sen-
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Figure 3.3: a) The vertical wheel–rail contact forces measured in a sleeper bay; b) rail bending
moment above the sleeper; c) rail bending moment above a sleeper that was located two sleepers
away [60].

sors with the flat part. Figure 3.3c shows the same wheels measured by another sensor,
which was mounted on two sleepers away from the prior sensor in Figure 3.3b.

The defect of the third wheel obviously influenced the measured signal and gener-
ated a specific pattern with a downward and an upward deflection in the defective area.
Regardless of the sensor type, the pattern of the defective area of the third wheel can be
seen in both Figures 3.3a and 3.3b. This pattern was also sensed near the second wheel
in 2.88 s in the inactive zone due to the previous turn of the wheel. In Figure 3.3c, the
defective area of the third wheel was not sensed by the effective zone and appeared in
the inactive zone in 2.98 s, and in the transfer zones in 3.09 s. The effective zone in Fig-
ure 3.3b gives 30 kNm for the third wheel, and the sensor in Figure 3.3c gives 15 kNm. By
selecting only the magnitude of the signal as the representative output of the sensor, the
pattern of the signal related to the wheel flat is neglected.

To reconstruct a signal over the circumferential coordinate, two sampling frequency
should be considered carefully. First, the sensor sampling frequency ( ft ) that is defined
in the time domain. For example, 10 kHz sampling frequency means the sensor collects
10000 samples per each second. Second, the space sampling frequency ( fs ) that is de-
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fined in the space domain and determines the sampling frequency in the unit of space.
Increasing the train velocity increases the distance between the collected samples and
decreases the space sampling frequency. To have a signal over the circumferential co-
ordinate, the sensors should sample from the wheel to the extent that the signal can be
reconstructed using the data sampled. In Figure 3.2c, the distance between the sensors
leads to discrete sampling from the wheel circumference. Therefore, in spite of the suf-
ficient sensor sampling frequency ( ft ), it is not possible to reconstruct a signal from the
samples collected in this way.

According to the Nyquist sampling criterion, reconstructing the actual signal is per-
fectly possible when the sampling frequency ( fs ) is at least twice the highest frequency
contained in the signal ( fmax ), otherwise, it leads to aliasing [61]:

fs > 2 fmax (3.1)

In accordance with the sensor configuration, the sleeper interval is a determining
factor that defines the sensor intervals. In fact, only a limited number of samples from
the wheel circumference can be collected on every wheel revolution. This sampling
method leads to signal distortion (aliasing). The space sampling frequency is definitely
far from the Nyquist frequency and therefore presents a new challenge for the sampling
in the space domain.

3.2. LAG ESTIMATION BETWEEN THE SIGNALS
The patterns of the rail bending moment signal in Figures 3.3b and 3.3c are generally
similar except only having a delay and some variations due to the wheel defect. The delay
can be presented in three different ways: time delay (τ), space delay (ρ), and sample
delay (δ). The time delay indicates the wheel travel time between two sensors (time
dimension [s]). The space delay indicates the spatial turn of the wheel with respect to
the prior sensor, which is equal to the sensor intervals (space dimension [m]). Finally,
the sample delay shows the number of samples in the second signal that lagged behind
the first signal (a number without dimension).

In this research, the measured signals in Figures 3.3b and 3.3c are modelled in the
time domain as follow:{

z1(t ) = w(t )+ g1(t )+n1(t ), {t |t ∈R,0 ≤ t ≤ T }

g1(t ) = w(t ) · g (t )

(3.2a)

(3.2b)

{
z2(t ) = w(t −τ)+ g2(t )+n2(t ), {t |t ∈R,0 ≤ t ≤ T }

g2(t ) = w(t −τ) · g (t )

(3.3a)

(3.3b)

z1(t ) and z2(t ) are the signals measured by two consecutive sensors in the time do-
main. w(t ) is the signal generated by the wheel movement and contains low frequency
components. This signal is a function of the axle load, and the train velocity, that we
call it the wheel signal. Due to the sensor distance, and the wheel movement, the wheel
signal w(t ) shifts over time and space. τ is the time delay between the signals z1(t ) and
z2(t ), and the n1(t ) and n2(t ) are the uncorrelated noises. The signals are defined in the
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Figure 3.4: The schematic view of a) the defect signal g (t ); b) the wheel signal w(t ); c) the win-
dowed defect signal g1(t ), and d) the measured signal z1(t ).

closed interval between zero reference time and T that is the measurement time. The
time interval between each sample is 1

ft
second and the time delay between two signals

is τ second.

g (t ) is the signal generated by the wheel defect and is a function of the defect geome-
try. The defect signal g (t ) is a periodic signal that is repeated on every wheel revolution.
The sensors have a limited effective zone, therefore, they observe a limited portion of
the defect signal. The wheel signal w(t ) operates as a window function that has almost a
zero value outside the effective zone. Therefore, the product of the wheel signal w(t ) and
the defect signal g (t ) generates a partial view of the defect signal. g1(t ) is the partial view
of the defect signal measured by the first sensor. This signal superimposes on the w(t )
and mostly contains high frequency components. As a result, g1(t ) is also a function of
the wheel signal. g2(t ) is the partial view of the defect signal measured by the second
sensor and is superimposed on w(t −τ). Figure 3.4 illustrates a schematic view of the
wheel signal w(t ), the defect signal g (t ), the windowed defect signal g1(t ), and the mea-
sured signal z1(t ). Bear in mind that, this Chapter aims to reconstruct the defect signal
g (t ), from the measured signals z(t ).

The measured signals can be also presented in the space domain as

{
z1(x) = w(x)+ g1(x)+n1(x), {x|x ∈R,0 ≤ x ≤ X }

g1(x) = w(x) · g (x)

(3.4a)

(3.4b)
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{
z2(x) = w(x −ρ)+ g2(x)+n2(x), {x|x ∈R,0 ≤ x ≤ X }

g2(x) = w(x −ρ) · g (x)

(3.5a)

(3.5b)

z1(x), z2(x), w(x), g (x), g1(x),g2(x), n1(x), and n2(x) are the signals in the space domain.
The signals are defined in the closed interval between zero reference place and X that is
the length passed by the wheel over the sensors. The space interval between each sample
is 1

fs
meter and the space delay between two signals is ρ meter.

The measured signals can be also presented without dimension as

{
z1(i ) = w(i )+ g1(i )+n1(i ), {i |i ∈Z+,0 ≤ i ≤ I }

g1(i ) = w(i ) · g (i )

(3.6a)

(3.6b)

{
z2(i ) = w(i −δ)+ g2(i )+n2(i ), {i |i ∈Z+,0 ≤ i ≤ I }

g2(i ) = w(i −δ) · g (i )

(3.7a)

(3.7b)

The dimensionless signals are defined in the closed interval between first sample and I
that is the length of signal. In this case, the delay between two signals is δ samples.

The delay between two signals such as z1(i ) and z2(i ) displayed in Figure 3.3, can be
estimated by looking for the maximum cross-correlation between the signals [62]. The
cross-correlation function can be calculated as follow:

Rz1z2 (γ) =
I−γ∑
i=1

z1(i +γ)z2(i ), γ= 0,1,2, . . . (3.8)

The cross-correlation between the signals Rz1z2 (γ) involves shifting one of the sig-
nals, and summing the multiplication of the two signals. Therefore, the cross-correlation
is a function of the lag between the signals (γ). The lag γ that maximizes the cross-
correlation value, presents the sample delay δ.

δ= argmax
γ

Rz1z2 (γ) (3.9)

The space delay (ρ) is equal the space distance between two consecutive sensors
that is a known value, but the time delay (τ), which is the time difference between the
signals, should be estimated. The time delay (τ) can be calculated using the time interval
between each sample ( 1

ft
), and the sample delay δ as follow:

τ= 1

ft
×δ (3.10)

where τ is the time delay between two signals, ft is the sampling frequency of the sensors
in the time domain, and δ is the sample delay between two signals.
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3.3. SAMPLING METHODS

The multiple sensors (M sensors) start sampling at the same time with an identical sam-
pling frequency ft . Therefore, each sensor measures I = T× ft samples over T second. As
a result, M sensors measure M signals that have equal length (I samples). These signals
include the samples from inactive, transient and effective zones and generate a dataset
as follow:

Zm,i =


z1,1 z1,2 · · · z1,I−1 z1,I

z2,1 z2,2 · · · z2,I−1 z2,I
...

...
. . .

...
...

zM−1,1 zM−1,2 · · · zM−1,I−1 zM−1,I

zM ,1 zM ,2 · · · zM ,I−1 zM ,I


{

{i |i ∈Z+,0 ≤ i ≤ I }

{m|m ∈Z+,0 ≤ m ≤ M }
(3.11)

Figure 3.5 illustrates a schematic view of the sensors configuration proposed in sec-
tion 3.1, to explain the measurement zones and the required parameters. Figure 3.5a
demonstrations the configuration of the wheel, rail, and the sensors that measure the
rail response at different places. Figure 3.5b shows a schematic pattern of a defect sig-
nal g (t ). Figure 3.5c shows the inactive, transient and effective zones of the first sensor.
In Figure 3.5d, the multiple sensors measure the rail response at different places. Each
sensor makes a partial observation, like presented in Figure 3.1b. The sensors provide
different outputs in their effective zone due to the defect signal. Every sensor collects
multiple samples in the effective zone that is coming from a specific portion of the wheel
circumference. These samples are the combination of the wheel signal w(t ) and the de-
fect signal g (t ). The number of samples collected in the effective zone is identical in ev-
ery sensor if the train passes the sensors with a constant velocity, and the sensors sample
with an identical sampling frequency ft . In Figure 3.5d, the sensors collect N samples in
their effective zone.

The signals have similar patterns but with the δ delay. Therefore, the corresponding
points of the signals in two consecutive sensors have the following relation:

z1,i 7→ z2,(i+δ) (3.12)

It means that the sample i in the signal z1 measured by the first sensor maps to sample
i +δ in the second signal z2. For example, when the i th sample of the signal in Figure
3.3b is the representative sample of the second wheel, the (i +δ)th sample will be the
corresponding sample of the second wheel in Figure 3.3c. In general, when the sensors
have equal space delay (ρ), and the wheel moves with the constant velocity, the relation
between the corresponding points of the first signal to any other signal (measured by the
sensor m) will be as follow:

z1,i 7→ zm,(i+(m−1)×δ) (3.13)

We use the samples of the effective zone. Therefore, when the multiple sensors (M
sensors) collect multiple samples (N samples) from the passage of a wheel, we can gen-
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inactive, transient and effective zones of a sensor, and d) the multiple sensors that collect multiple
samples in their effective zone.
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erate the following dataset from the collected samples:

Sm,n =


s1,1 s1,2 · · · s1,N−1 s1,N

s2,1 s2,2 · · · s2,N−1 s2,N
...

...
. . .

...
...

sM−1,1 sM−1,2 · · · sM−1,N−1 sM−1,N

sM ,1 sM ,2 · · · sM ,N−1 sM ,N




{n|n ∈Z+,1 ≤ n ≤ N }

{m|m ∈Z+,1 ≤ m ≤ M }

Sm,n ⊆ Zm,i

(3.14)

In this dataset, each row presents the samples of the effective zone collected by each
sensor. The space distance between the samples of each column (distance between the
identical samples collected by two consecutive sensors e.g., s1,1 and s2,1), is equal the
space distance between the sensors (ρ) that is a known value. Therefore, the space dis-
tance of the sensors defines the space distance between the samples of each column.

3.4. DATA FUSION AND SIGNAL RECONSTRUCTION
The sensors collect a few samples on every wheel revolution (as presented in Figure 3.5).
The sampling frequency in the space domain fs obviously violates the Nyquist criterion
by subsampling lower than the fundamental frequency of the signal in the space domain.
To respond to the Nyquist sampling challenge, the nature of the defect signal gives a hint.
As can be observed from Figure 3.1a, the defect signal is a periodic signal that is repli-
cated in every wheel revolution. The distances between the main peaks in Figure3.1a in-
dicate the wheel circumference that is the fundamental period of the signal. The samples
selected from different sensors can be mapped over the circumferential coordinate using
the wheel circumference and the sensors configuration. Figure 3.6 presents a schematic
illustration of the mapping process, in which Xm is the space position of the sensors, Lw

is the wheel circumference length, and Ym is the corresponding position of the sensors
over the circumferential coordinate.

In Figure 3.6, sensors 1-5 sample from the first revolution, and the sensors 6-8 sam-
ple from the second revolution. Ym determines the position of the sensors 6-8 over the
wheel circumference. The samples collected by sensors 6-8 fill the gaps between the sen-
sors 1-5 and improve the quality of the signal. By extending the sampling procedure to
the other turns, more samples from different portions of the wheel are collected to fill
the missing data. When the sample/cycle ratio is not an integer quantity, other replica-
tions of the wheel revolution collect supplementary samples. Instead, this method will
sample multiple times the same points when the circumference is 3000 mm (954.9 mm
diameter) with 600 mm sensor interval. In this case increasing the number of sensors
is not useful for collecting the missing data. By bearing in mind the range of the wheel
diameter between 840-920 mm [63], and assuming the 600 mm sensor interval, the num-
ber of sampling from the wheel revolution, will be 4.39-4.81 times per wheel revolution.
Hence, increasing the number of sensors improves the signal quality.

3.4.1. DATA FUSION FOR SINGLE SAMPLING METHOD
In this subsection, only a single sample is used as the output of each sensor that is called
Single Sampling Method (SSM). By selecting the sample s1,1 as the output of the first
sensor for the wheel, the sample s2,1 will be the output of the second sensor for the wheel
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Figure 3.6: The illustration of the fusion process.

that measures another point of the wheel with ρ distance in the space domain. As a
result, a set of samples as the output of different sensors for the wheel are acquired as
follow:

Sm,1 =


s1,1

s2,1
...

sM−1,1

sM ,1


{

{n = 1}

{m|m ∈Z+,1 ≤ m ≤ M }
(3.15)

The samples of the sub-dataset (Sm,1) can be fused over the circumferential coordi-
nate to generate a signal for the wheel using the following Equation:

Ym,n = Xm − (Lw ×bXm

Lw
c)

{
{n = 1}

{m|m ∈Z+,1 ≤ m ≤ M }
(3.16)

where Ym is the corresponding position of the samples over the circumferential co-
ordinate, Xm is the space position of the sensors, Lw is the wheel circumference length,
and b c is the round operator toward the nearest integer less than or equal to the ele-
ment. The remainder after division of the sensor position by the circumference length
determines the sensor position on the circumferential coordinate. A new signal (ψs ) is
generated using the magnitude (Sm,1) and the position (Ym,1) of the samples as follow:

ψs = [Ym,1,Sm,1] (3.17)
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The signal (ψs ) reconstructed by SSM has M samples over the circumferential coordi-
nate.

3.4.2. DATA FUSION FOR MULTIPLE SAMPLING METHOD
In this subsection, Multiple Sampling Method (MSM) uses all the data collected in the
effective zone. To do this the space distance between the samples of each row (λ) should
be estimated. For example the space distance between s1,1 and s1,2 is required. When
the first sample of a sensor is positioned over the circumferential coordinate, the other
samples collected by the sensor in the effective zone have the following positions:

Ym,n = Ym,1 + ((n −1)×λ)

{
{n|n ∈Z+,1 ≤ n ≤ N }

{m|n ∈Z+,1 ≤ m ≤ M }
(3.18)

Then the multiple samples (N samples) measured by the sensors are positioned us-
ing the space distance between the samples (λ). As a result, the reconstructed signal (ψs )
is generated using the magnitude (Sm,n) and the position (Ym,n) of the samples:

ψs = [Ym,n ,Sm,n] (3.19)

The MSM reconstructs the signal (ψs ) by M ×N samples. Intuitively, these samples are
not uniformly distributed over the circumferential coordinate.

The sampling frequency of a sensor determines the time interval between the sam-
ples collected by the sensors. By considering the constant sampling frequency in the
time domain, the train velocity determines the space frequency (space distance) of the
samples collected by the sensor. The space interval between the samples can be defined
using the space delay ρ and the samples delay δ as follow:

λ= ρ

δ
(3.20)

This relation can be rewritten based on the train velocity V , and the sensor sampling
frequency ft as the influential factors as

λ= V

ft
(3.21)

The space distance between the samples (λ) determines the space resolution of the
measurement in the space domain. For example, when a sensor is sensing by 10 kHz
sampling frequency, for a train with 10 m/s velocity, the space distance between the sam-
ples is 1 mm. In addition, the sensors have a limited effective zone. Therefore, the num-
ber of samples that can be used as the outputs of the sensors, is determined by the space
distance between the samples (λ), and the length of the effective zone (Le ) as presented
below:

N = Le

λ
(3.22)

To determine the space distance between the samples (λ), the space delay (ρ) and
the samples delay (δ) can be directly used as presented in Equation 3.20. Moreover, the
train velocity can be indirectly used in 3.21 that is estimated in the next section.
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3.5. TRAIN VELOCITY ESTIMATION
Filograno et al. in [47] and Tam et al. in [44] estimated the train velocity using the pas-
sage time between two axles. To find the axle distance, they counted the axle numbers
and compared with the known information of different trains to identify the train type,
and the matching axle distance. This method uses only one sensor but relies on the other
information about the trains that should be provided from other sources. Here, we esti-
mate the train velocity using the multiple sensors that not requires identifying the train
type. The velocity is the space passed over the unit of time. Accordingly, the train velocity
can be estimated using the space delay and the time delay as

V = ρ

δ
× ft (3.23)

where ρ and ft are the known values and the sample delay (δ) is estimated by the cross-
correlation in Equations 3.8 and 3.9.

3.6. WHEEL CIRCUMFERENCE ESTIMATION
In Equation 3.16, the sensor position (Xm) is a known value, but the wheel circumfer-
ence length (Lw ) should be determined from other sources or should be estimated di-
rectly from the collected data. The circumference estimation method is based on an as-
sumption that the defect signal has a single defective area that contains high frequency
components. The defective area is sampled by different sensors with delay. The fusion
process should reconstruct the defect signal and put the samples of the defective area in
the right order.

The process for estimating the length of the wheel circumference (Lw ) for Multiple
Sampling Method (MSM) and Single Sampling Method (SSM) is the same. This process
can be carried out for each set of data. First, the samples of defective area are selected by
assessing the deviation of the collected samples from their average. Second, the possible
range of the circumferences is swept to determine the order of the defective area samples
over the circumferential coordinate. The actual circumference arranges the defective
area samples in the sequence.

Here, we consider the first column of the dataset 3.14, Sm,1 , m = 1,2,3, . . . , M . The
samples of this subset can be separated into two groups: the samples from the defective
area and the samples from the healthy area. The samples show a major variation with
respect to the average (µs ) that are the samples from the defective area (S1

m,n), and the
other samples that are approximately equal to the average of the samples that are the
samples from the healthy area (S2

m,n). The deviation from the average value is due to the
defect or the measurement noise. The average and the standard deviation of the samples
are calculated as

µs = 1

M

M∑
m=1

Sm,n

{
{n|n ∈Z+,1 ≤ n ≤ N }

{m|m ∈Z+,1 ≤ m ≤ M }
(3.24)

σs =
√√√√ 1

M

M∑
m=1

(Sm,n −µs )2)

{
{n|n ∈Z+,1 ≤ n ≤ N }

{m|m ∈Z+,1 ≤ m ≤ M }
(3.25)
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The samples can be separated by defining a threshold as follow:

TU =µs + (C f ×σs ) (3.26a)

TL =µs − (C f ×σs ) (3.26b)

where TU is the upper threshold and TL is the lower threshold. C f is the filter coefficient
that is an absolute number between [2,2.8].

Sm,1 ∈ S1
m,n i f :


Sm,1 > TU

or {m|m ∈Z+,1 ≤ m ≤ M }

Sm,1 < TL

(3.27a)

Sm,1 ∈ S2
m,n i f :


Sm,1 ≤ TU

and {m|m ∈Z+,1 ≤ m ≤ M }

Sm,1 ≥ TL

(3.27b)

S1
m,n ∪S2

m,n = Sm,1 (3.27c)

According to the definition of the standard deviation, 99.7% of the collected samples
are distributed in [-3σs + 3σs ]. When the filter coefficient is a very small, the noisy sam-
ples in the healthy area will not be filtered out. However, a very large filter coefficient
filters out the samples from the defective area.

Figure 3.7 illustrates a schematic example of the samples collected by 150 sensors
with the measurement noise. This figure presents the collected samples, marks the sam-
ple from the defective area, and draws the filter threshold of 2σs as the minimum thresh-
old, and the filter threshold 2.8σs as the maximum threshold.

Intuitively, the samples from the defective area should be in a sequence and close
to each other over the circumferential coordinate, but the proposed sensor configura-
tion collects the samples in the different wheel revolutions and with a space between
the samples. According to the range of the wheel diameter that is between 840-920 mm
[63], the collected samples can be differently mapped over the wheel circumference. By
sweeping the wheel range, the collected samples can be mapped differently to recon-
struct signals.

In this research, the filter coefficient (C f ) has a range between [2,2.8] that can be
optimized later. Depending on the interval between the filter coefficients (for example
0.1), several filter coefficients are determined (in this case C = 9 values). By sweeping the
range of the filter coefficient, different number of samples are selected as the defective
area for each coefficient (N t ). For example in Figure 3.7, C f = 2.8 gives 3 samples as the
defective area samples and C f = 2 gives 8 samples. Then, by sweeping the range of the
wheel circumference, the defective area samples are mapped over the circumferential
coordinate with different sequence. To find the most probable wheel circumference, the
ratio of the number of defective area samples that mapped in the sequential order (N s )
to the total number of the defective area samples (N t ) in that set is calculated:

rk,c =
N s

k,c

N t
k,c

{
{c|c ∈Z+,1 ≤ c ≤C }

{k|k ∈R,840 ≤ k ≤ 920}
(3.28)
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Figure 3.7: The relation of the thresholds and the samples to assign the samples to the defective
area and the healthy area.

The wheel circumference which provides the maximum value for rk,c is considered as the
most probable answer. When the most likely circumferences are in a continuous range,
the average of this range is selected as the wheel circumference. For example, when the
output of the algorithm is three estimates for the wheel circumference, 2980, 2981, 2982
mm, the average of these values (2981 mm) is selected. However, when multiple cir-
cumferences are possible in a series of non-continuous ranges, then the average of each
range is considered as a possible circumference. When the sensors sense no samples or
only one sample from the defective area, this method is not applicable.

3.7. CONCLUSION
The magnitude of the contact force contains a limited piece of information about the
wheel defect. Therefore, this Chapter proposed a fusion method to reconstruct a signal
containing the pattern of the contact force. To answer the key question of “How can the
data collected by multiple sensors mounted along the rail be fused to reconstruct a new in-
formative signal?”, this chapter has developed the required fusion method and filled the
gap. The multiple sensors collect multiple samples from different portions of the wheel.
The fusion method associates these samples to reconstruct a signal over the circumfer-
ential coordinate in the space domain. The fusion method needs the train velocity and
the wheel circumference, so two methods were developed to provide the required data.
The next Chapter investigates the influential parameters contributing to fusion process
and the effectiveness of using the reconstructed signals to estimate the wheel condition
will be investigated in Chapter 5.



4
EVALUATION OF INFLUENTIAL

PARAMETERS CONTRIBUTING TO

FUSION PROCESS1

Chapter 3 has developed the fundamental theory of the fusion method and explained the
required steps with their corresponding inputs and outputs. This process should handle
the operational range of each variable. Therefore, this chapter evaluates the variation
of the reconstructed signals as the outputs of the fusion process to the variation of the
influential parameters. The output of the fusion process is influenced by several param-
eters that can be categorized into two main groups. Some of the parameters affect the
contact force signal and consequently the input of the fusion process, such as the train
velocity, axle load, and defect type. Few other parameters change the performance of
the fusion method, such as the number of sensors, length of the effective zone, and the
wheel circumference as the fundamental period of the defect signal.

To evaluate the effect of the influential parameters, a detailed parametric study is
carried out. Figure 4.1 presents the procedure of the parametric study. The fusion model
has been explained in Chapter 3. The input of the fusion process is the data modelled by
VI-Rail, which is a multi-body dynamics software. VI-Rail simulates the data that will be
provided in practice by multiple sensors. Then, the generated data is exported to MAT-
LAB as the input of the fusion process. Section 4.1 explains the procedure of the data
generation using VI-Rail. Section 4.2 defines some indicators to assess the variation of
the reconstructed signals. Section 4.3 presents and discusses the results of the paramet-
ric study. To have a detailed insight about the effects of the parameters, this research
investigates the trends of the indicators than the exact value obtained.

1This Chapter is a partially based on Alemi et al. [64].
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Data Generation 

(VI-Rail)

Multiple Signals Data Fusion 

(MATLAB)

Evaluation 

(MATLAB)

Reconstructed Signal

Figure 4.1: The procedure of the parametric study.

4.1. SIMULATION PROCEDURE TO GENERATE DATA BY VI-RAIL
VI-Rail is an ad-hoc railway simulation software that has been built upon MSC Adams.
Since VI-Rail is a commercial multi-body dynamics software and TU Delft has a licence,
this software is used to model the dynamic behaviour of the rail and the defective wheel
to generate the required data. This software models the interaction of the track and ve-
hicle by considering their subsystems such as car body, sleepers, rail pads, wheelsets,
primary and secondary suspensions, dampers, and anti-roll bars.

Figure 4.2 illustrates the procedure of the data generation using VI-Rail. In the first
step, the defect model generates the defect on the wheel. Then, using the required pa-
rameters, VI-Rail models the wheel-rail interaction and generates some outputs. In the
subsection 4.1.1, the defect model is presented. Subsection 4.1.2 explains the wheel-rail
dynamics model, and subsection 4.1.3 describes the output of the data generation pro-
cess.

4.1.1. DEFECT MODEL

A precise defect model defines the size, shape, and the position of the defect on the
wheel profile and on the wheel circumference. Nielsen and Johansson in [1] classified
and reviewed the wheel defects and discussed the reasons of their development. Table
4.1 presents the features and the positions of the common defects measured or simu-
lated in literature.

Defect Model
(MATLAB)

Defective Wheel in
VI-Rail Wheel-Rail

Interaction
(VI-Rail)

Vertical Contact Force

Rail to Sleeper Displacement

Profile of
Healthy Wheel

Features of Defect

Train Velocity

Axle Load

Sampling Frequency

Number of sleepers

Track parameters

Vehicle Parameters

Wheel Diameter

Figure 4.2: The procedure of the data generation by VI-Rail.
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Table 4.1: Descriptions of the common wheel defects.

Defect
Position
on profile

Position on
circumference

Features

Eccentricities Entire Entire
One harmonics around wheel circumference, 0.1-
0.3 mm amplitude [1]

Periodic non-
roundness
(polygonal)

Entire Entire

Wavelength from 140 mm to one wheel circum-
ference, (one to ten harmonics around the wheel
circumference) with 1 mm amplitude [1]
0.3 mm amplitude [65]
1–5 harmonics around the wheel circumference
with 1 mm amplitude [60]

Non-periodic
(stochastic)

Entire Entire
The stochastic shape contains several different
harmonics with 0.3 mm amplitude [1]

Corrugation over a part Entire

Wavelength from 30-60 mm with the amplitude
smaller than 0.01 mm [1]
Wavelengths from 30–70 mm with 0.4 mm ampli-
tude [65]

Roughness over a part Entire

Wavelength around 1 mm with 0.01 mm ampli-
tude [1]
Wavelengths from 10 mm to 200 mm with ampli-
tude varies from 0.001 mm to 0.1 mm respectively
[66]
Wavelength from 50-70 mm with 0.01 mm ampli-
tude [60]

Flat over a part over a part

15-45 mm length [11]
40 mm length and 0.25-0.35 mm depth [58]
40-100 mm length and 0.3-1.4 mm depth [4]
150 mm length and 2.15 mm depth [67]
100 mm length and 0.9 mm depth [68]
Up to 60 mm length and 40 mm width [69]

Spalling over a part over a part

To 25 mm in length and width [70]
Flaws and pitting up to 12 mm diameter up to 10%
wheel coverage.
Up to 25 mm diameter, up to 20% wheel coverage.
Up to 25 mm diameter, up to 50% wheel coverage.
Up to 25 mm diameter, 3 mm or more depth,
greater than 50% wheel coverage [71]

Shelling over a part over a part

4–5 mm depth [72]
Greater than 5 mm length [73]
Combination of crack size with 2.7-5.6 mm width,
2.1-10.2 mm length, and 0.1-0.6 mm depth [74]

Discrete
defect

Entire over a part
A deviation of the wheel radius over a part of the
circumference [1]
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Figure 4.3: The vertical contact force generated for a 40 mm flat and 30 m/s velocity by a) radius
reduction entire the wheel profile, and b) radius reduction in the contact area.

Wheel flats are the severe defects that cause high impact forces. The impact loads
have positive correlation with the length and depth of the wheel flat [60]. The impact
load and the flat length are common criteria for detecting the defective wheels. Accord-
ing to the Swedish criterion the wheels with 40-60 mm flat length should be re-profiled
as detected during visual inspections [4]. Furthermore, a 60 mm flat triggers the high
impact load alarm [14]. Hence, in this research 60 mm is the maximum length of a flat.

Spalling is the most common defect [14] [6] caused by Rolling Contact Fatigue (RCF).
According to [71], the maximum spalling size is around 25 mm hence, for modelling the
spalling, squares with 30 mm side length and smaller are considered. Spalling and flat
are the defects that influence a part of the wheel profile. Unfortunately, the positions of
the defects on the wheel profile have not been reported. A set of ultrasonic inspections
in [75] shows that the RCF defects are usually between 75-105 mm from the back side of
the wheel. These points are the nominal contact region. For this reason, the defects are
implemented there.

To model a flat, the first approach is the constant radius reduction entire the wheel
profile. The second approach is the radius reduction in the contact area and leaving
the flange. Figure 4.3 presents the vertical contact force generated by these two models
for a 40 mm flat and 30 m/s velocity. Generally, these models give similar outputs. In
these two models, the length and depth (the radius variation) of the flat is identical in
the nominal contact point, and the difference is the depth of the other points in the
width direction. According to the purpose of this parametric study, each of these models
can be used to represent a wheel flat. In this study, we model the flat using the second
approach.

In VI-Rail, a wheel is defined by a set of profiles in different rotation angles. It means
that an identical profile along the circumference (0− 2π) creates a healthy wheel that
has a uniform and smooth surface. Hence, for defining a defect on the wheel surface,



4.1. SIMULATION PROCEDURE TO GENERATE DATA BY VI-RAIL

4

53

Figure 4.4: The illustration of a S1002 wheel with a spalling and a flat defect.

depending on the defect feature, several profiles should be used to construct the defect.
Figure 4.4 illustrates a schematic view of a flat and a spalling defect on the wheel surface.

In order to have the same number of points over the wheel profile, VI-Rail interpo-
lates each profile. Then it creates one spline from each point on the profile to the cor-
responding points on other profiles. This spline will have 0−2π radians rotation as an
independent variable over the wheel circumference. During the simulation for a given
rotation step, it generates a slice between two profiles while each point obtained from
interpolating one spline at the given rotation [76].

A periodic out of roundness (OOR) covers entire the wheel profile and the circumfer-
ence. Therefore, to model an OOR, the wheel diameter is varied according to the defect
shape. Figure 4.5 presents the radius variation of the wheel over the wheel circumference
for a 3rd order OOR. In the course of time, the primary shapes of spalling [55] and flat
[60] fade away and alter to a long non-roundness. Therefore, modelling the discrete long
non-roundness as a potential defect can be useful but for simplification, the discrete
long non-roundness and other defects are not taken into account.

4.1.2. WHEEL-RAIL DYNAMICS MODEL

The simulations are carried out for a passenger vehicle based on the Manchester Bench-
marks [77]. The assembly model consists of a vehicle and a flexible track. The vehicle
is one wagon composed of a car body and two bogies that each of them has four S1002
wheels. The main parameters of the vehicle model in the Manchester Benchmarks are
presented in Table 4.2.

The flexible track contains a straight UIC60 rail. The schematic view of the flexible
track structure is displayed in Figure 4.6. In this model the rail mass and the inertia prop-
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Table 4.2: The vehicle parameters based on the Manchester Benchmarks

Subsystem Parameter Value Unit

Wheelsets

Mass 1813 kg

Roll inertia (Ixx ) 1120 kg m2

Pitch inertia (Iy y ) 112 kg m2

Yaw inertia (Izz ) 1120 kg m2

Bogies

Mass 2615 kg

Roll inertia (Ixx ) 1722 kg m2

Pitch inertia (Iy y ) 1476 kg m2

Yaw inertia (Izz ) 3067 kg m2

Body

Mass 32000 kg

Roll inertia (Ixx ) 56800 kg m2

Pitch inertia (Iy y ) 1970000 kg m2

Yaw inertia (Izz ) 1970000 kg m2

Primary suspension

Longitudinal stiffness 31391 kN /m

Nominal damping in parallel 15 kN s/m

Damping series stiffness 60000 kN /m

Lateral stiffness 3884 kN /m

Nominal damping in parallel 2 kN s/m

Damping series stiffness 7500 kN /m

Vertical stiffness 1220 kN /m

Secondary suspension

Longitudinal shear stiffness 160 kN /m

Lateral shear stiffness 160 kN /m

Vertical stiffness 430 kN /m

Primary vertical dampers
Damping rate 4 kN s/m

Series stiffness 1000 kN /m

Secondary lateral dampers
Damping rate 32 kN s/m

Series stiffness 6000 kN /m

Secondary vertical dampers
Damping rate 20 kN s/m

Series stiffness 6000 kN /m
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Figure 4.5: The radius variation over the wheel circumference for a third order OOR with 0.3 mm
amplitude.
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Base

Ballast elements

Rail pad elements

Rail

Figure 4.6: The schematic front view of the flexible track structure.

erties are concentrated on each rail sleeper [78]. Table 4.3 presents the track parameters
used in the simulations. The detailed explanation of the track and vehicle structure falls
outside the scope of this manuscript.

4.1.3. OUTPUT OF THE DATA GENERATION PROCESS

VI-Rail provides a range of outputs such as the contact force, rail and sleeper accelera-
tion, and rail and sleeper displacement. The primary desired output is the rail strain that
is commercially used in practice, but VI-Rail could not provide the rail strain signal. One
approach is coupling the outputs of VI-Rail to a Finite Element Model to calculate the
corresponding rail strain. The second approach is using the available data. By consider-
ing the rail as a transducer, the contact force signal is transformed into the rail response
such as strain, acceleration and displacement. In this research due to lack of strain sig-



4

56 4. EVALUATION OF INFLUENTIAL PARAMETERS CONTRIBUTING TO FUSION PROCESS

Table 4.3: The track parameters based on the Manchester Benchmarks

Subsystem Parameter Value Unit

Rail pad right

Vertical stiffness 50 M N /m

Lateral stiffness 43 M N /m

Roll Stiffness 10 M N /r ad

Vertical damping 200 kN s/m

Lateral damping 240 kN s/m

Roll damping 10 kN s/r ad

Rail pad left

Vertical stiffness 50 M N /m

Lateral stiffness 43 M N /m

Roll Stiffness 10 M N /r ad

Vertical damping 200 kN s/m

Lateral damping 240 kN s/m

Roll damping 10 kN s/r ad

Ballast

Vertical stiffness 1000 M N /m

Lateral stiffness 37 M N /m

Roll Stiffness 10 M N /r ad

Vertical damping 1000 kN s/m

Lateral damping 240 kN s/m

Roll damping 10 kN s/r ad
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Figure 4.7: The typical simulated rail to sleeper displacement signals for two consecutive sleepers.

nal, the vertical rail to sleeper displacement is used as the output of the data generation
process that is the input of the fusion model. Every sleeper is considered as a sensor
that measures the rail to sleeper displacement signal. The sleepers have a discrete and
periodic configuration like the sensors configuration.

Figure 4.7 displays typical rail to sleeper displacement signals for two consecutive
sleepers simulated by VI-Rail. These signals show the variation in the vertical rail to
sleeper position sensed in one side of the sleeper. They have four peaks representing the
passage of a wagon with four healthy wheels in that side of track. Figure 4.7b shows a
delay due to the distance between the sleepers.

Figure 4.8 displays the displacement signals while the first wheel has 40 mm flat. The
wheel flat produced the defect signal containing high frequency components. The defect
signal is superimposed on the displacement signals.



4

58 4. EVALUATION OF INFLUENTIAL PARAMETERS CONTRIBUTING TO FUSION PROCESS

0 0.5 1 1.5 2 2.5 3 3.5 4

R
ai

l t
o 

sl
ee

pe
r d

is
pl

ac
em

en
t [

µm
] 

0

100

200

300

Time [s] 
0 0.5 1 1.5 2 2.5 3 3.5 4

0

100

200

300

a)

b)

Wheel 1
Wheel 2

Wheel 3
Wheel 4

Delay (δ, ρ, τ)

Figure 4.8: The rail to sleeper displacement signals for two consecutive sleepers while the first
wheel is defective.

4.2. RESULT INDICATORS
The fusion process reconstructs a new signal using the signals measured by multiple
sensors. The output of the fusion process is influenced by several parameters such as
the train velocity, axle load, defect type, number of sensors, length of the effective zone,
and the wheel size. To evaluate the effect of the influential parameters, a reference sig-
nal (ψr ) is used to make a comparison with the reconstructed signal (ψs ). The reference
signal is produced when the number of sensors increases to the extent that the samples
completely cover the wheel circumference (e.g., 200 sensors). In addition, the reference
signal is generated with no measurement noise, and with the actual diameter that is used
in the data generation step. In the next section for the parametric study, the number of
sensors is less than the number of sensors used for the reference signal and the measure-
ment noise is considered. In addition, the error of estimating the velocity and diameter
influences the reconstructed signal. Therefore, the comparison between the reference
signal and the reconstructed signal with these errors gives a sense about the results ob-
tained.

The similarity comparison is carried out using the cross-correlation between the nor-
malized signals. For this purpose, the reference and the reconstructed signals are nor-
malized with respect to their average, and their standard deviation as presented below:

ψ̂r = ψr −µr

σr
(4.1)

ψ̂s = ψs −µs

σs
(4.2)
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where ψ̂r is the normalized reference signal, ψ̂s is the normalized reconstructed signal,
µr and σr are the average and the standard deviation of the reference signal, and µs and
σs are the average and the standard deviation of the reconstructed signal.

The samples of the reference signal and the reconstructed signal have non-uniform
intervals. Therefore, the signals are interpolated with similar intervals (for example 1mm)
to generate the interpolated signals. ψ̂∗

r is the interpolated normalized reference signal
and ψ̂∗

s is the interpolated normalized reconstructed signal. These signals have K sam-
ples with identical intervals.

To calculate the similarity between two signals, the cross-correlation and the auto-
correlation of the signals are used. The auto-correlation is based on the Equation 3.8
while put the same signal as the input. The cross-correlation and the auto-correlation
are calculated as follow:

Rψ̂∗
r ,ψ̂∗

s
(ζ) =

K−ζ∑
k=1

ψ̂∗
r (k +ζ)ψ̂∗

s (k), ζ= 0,1,2, . . . (4.3)

Rψ̂∗
r ,ψ̂∗

r
(ζ) =

K−ζ∑
k=1

ψ̂∗
r (k +ζ)ψ̂∗

r (k), ζ= 0,1,2, . . . (4.4)

Using the Equations 4.3 and 4.4 the similarity between the reference signal and the
reconstructed signal (S̃ψr ,ψs ) is calculated as

S̃ψr ,ψs =
argmaxζRψ̂∗

r ,ψ̂∗
s

(ζ)

argmaxζRψ̂∗
r ,ψ̂∗

r
(ζ)

(4.5)

According to this Equation, the similarity will be between zero and one, where one
indicates 100% similarity and zero indicates no similarity.

To evaluate the performance of the proposed method for estimating the wheel diam-
eter and the train velocity, we make a comparison between the estimated diameter and
velocity to the actual values used in the data generation step. This comparison presents
the absolute errors of the wheel diameter and the train velocity estimation using the pro-
posed methods in [mm] and [m/s] respectively.

Furthermore, some parameters have a random nature such as the noises and the po-
sition of the defective wheel with respect to the sensors. Therefore, the test is repeated
several times and the results are presented as an average of the repetitions with their cor-
responding standard deviations. In some cases, due to the noise or lack of samples, the
diameter estimation process leads to nothing and cannot estimate any diameter. There-
fore, the reliability of the diameter estimation method is also presented by the percent-
age of the tests that gives any value as the estimated diameter to the total number of
tests.

4.3. RESULTS OF THE PARAMETRIC STUDY AND DISCUSSION
The general overview of the parametric study and the detailed flowchart of the steps
are presented in Figure 4.9. VI-Rail generates the required data as the input of the fusion
model. In Figure4.9b, the position of the wheel (effective zone of the sensor) is estimated
using a low-pass filter. The delay between the signals and the train velocity are used to
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select the required samples and make the dataset Sm,n explained in Equation 3.14. In
Figure 4.9d, the data collected in dataset is fused to reconstruct a new signal, using the
wheel circumference estimated in Figure 4.9c, and using the sensor configuration.

Figure 4.10 presents an example of the data collected by 59 sleepers (sensors) for a
wheel with a 40 mm flat. In this Figure, the samples were collected using the Single Sam-
pling Method (SSM) explained by Equation 3.15. The samples represent the first column
of the dataset Sm,n (See Equation 3.14). According to the SSM, each sensor collects one
sample. Therefore, the distance between the samples is equal to the sensor interval that
is 600 mm. Figure 4.11 presents the samples collected from the identical signals but
using the Multiple Sampling Method (MSM). In this Figure, the samples represent all
samples measured by the effective zones collected in the dataset Sm,n . As is clear from
these Figures, the collected samples provide a limited piece of information.

Figure 4.12 makes a comparison between the signals reconstructed with the SSM and
MSM based on Equations 3.16 and 3.18. In this example, the samples collected in Figures
4.10 and 4.11 are fused to reconstruct new informative signals. Figure 4.12a shows the
contact force that is provided by VI-Rail. The contact force is transferred to the wheel
and rail and makes the dynamic response of the wheel and rail. In this example, the rail
to sleeper displacement signal is used as the response of the rail to the contact force. In
Figure 4.12b, the SSM used 59 sensors to collect data and reconstruct a signal. In Figure
4.12c, the MSM used the same sensors but exploited more samples. In Figure 4.12b, the
first downward of the defective area was not sensed completely, while in Figure 4.12c,
the MSM overcame this problem.

Using the Equation 3.18, the multiple samples collected by the multiple sensors are
fused to reconstruct a new signal. Figure 4.13 presents several examples of the signals
reconstructed by the proposed method. The input signals have been the vertical rail to
sleeper displacement signals simulated by VI-Rail. The signals have been normalized by
subtracting the average of the signals. The difference between the signals is due to the
wheel defects.

4.3.1. RESULTS OF THE BASE VALUES

Several parameters influence the output of the fusion process. To evaluate the effect of
each parameter a set of base values is defined. In this subsection, the results of fusion
process using the base values are presented. In this study, the trends of the results are
more important than the exact value. Some parameters should be changed over the data
generation process and a few others should be changed over the fusion process. Table 4.4
presents the base values with their variation ranges. These parameters are explained and
investigated in the following subsections. In every simulation, the base values remain
constant except one parameter.

The outputs of the parametric study are the estimated values for the wheel diameter
and the train velocity, and the similarity of the signal reconstructed. Table 4.5 compares
the absolute error, standard deviation, and the reliability of the diameter estimated by
the SSM and MSM using the base values. As explained earlier, multiple sets of sam-
ples (different columns in dataset 3.14) can be used in the SSM. In Table 4.5, the single
sample-single set indicator presents the results of the diameter estimated by SSM using
the first set of the samples (first column in 3.14 that has been presented in 3.15). The SSM
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Figure 4.12: a) The simulation result of a wheel-rail contact force for a wheel with 40 mm flat and
30 m/s velocity. The signals reconstructed from the rail to sleeper displacement signal collected
by 59 sensors using b) the SSM, and c) the MSM.

Table 4.4: The base value and the variation range of the parameters

Parameter Base value Range

Wheel diameter 900 mm 840 – 920 mm

Defect type 40 mm Wheel flat
Wheel flat 20-60 mm

Spalling 15-30 mm

Number of sensors 50 10-60

Sensor interval 600 mm -

Sensor measurement noise 4% 1-5%

Position of defects Random Wheel circumference

Train velocity 30 m/s 10-30 m/s

Train axle load 11120 kg 16500, 22000 kg

Sensor sampling frequency 10 kHz -

Length of effective zone 60 mm 10-60 mm
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Figure 4.13: The signals reconstructed for the wheels with different defects: a) healthy wheel, b) 60
mm wheel flat, c) 3rd order out-of-round wheel, and d) 40 mm wheel flat.

can use different sets to estimate the diameter. Using all sets of the samples improves the
results of SSM that is presented by single sample–multiple sets indicator. Hereafter, sin-
gle sampling indicator refers to the single sample–multiple sets. According to Table 4.5,
using the multiple samples improves the diameter estimated and its reliability.

The MSM uses the train velocity to estimate the distance between the samples col-
lected in the effective zone. To estimate the train velocity, the time delay between the
signals measured by two sensors is used. To achieve this purpose, any pair of sensors
can be used. In this research, the consecutive pairs of sensors, (e.g., sensor 1 and 2), are
used. The train velocity is the average of the velocities estimated by different pairs. For
example, for a test with 50 sensors, the average of the velocity estimated by 49 pairs of
sensors gives the output. Therefore, the result provides a reasonable estimate of the train
velocity that is presented in Table 4.6. Using the acquired velocities in the Table 4.6, and
based on the Equation 3.21, the space distances between the samples of each sensor (λ)
will be 3.0001 and 3.0018 mm respectively for the noise free and the noisy measurements
that is satisfactory for the data fusion process.

Table 4.7 presents the results of the similarity evaluation. For the noise free measure-
ment, the MSM improves the similarity from around 49% to 98%. The diameter error
changes the similarity of SSM from 49% to 40%. The MSM improves the similarity from
40% to 97% and its standard deviation from 7% to around 4%. This improvement is
achieved, directly by using more samples to reconstruct the signal, and indirectly by de-
creasing the diameter estimation error. The measurement noise has a significant effect



4.3. RESULTS OF THE PARAMETRIC STUDY AND DISCUSSION

4

65

Table 4.5: The results of the diameter estimation process calculated by the SSM and MSM using
the base values

Indicator
Error
[mm]

Standard deviation
[mm]

Reliability
[%]

Noise free

SSM – Single set 2.72 0.58 6.4

SSM – Multiple sets 2.40 0 0.8

MSM 0.05 2.89 100

Noisy

SSM – Single set 0.61 3.79 3.2

SSM – Multiple sets 0.77 0 0.8

MSM 1.96 9.12 98.4

Table 4.6: The results of the velocity estimation for the base values.

Indicator
Error
[m/s]

Standard deviation
[m/s]

Noise free 0.000639 0.000312

Noisy signal 0.0179 0.0119

on the results. Therefore, exploiting the sensors with high signal to noise ratio is vital.
The next subsections assess the influential parameters on the reconstruction process
and present the sensitivity of the results to the variation of the parameters.

4.3.2. MEASUREMENT NOISE
VI-Rail generates pure data while the real measurements will be noisy. Therefore, eval-
uating the effect of the measurement noise on the fusion process is vital. To make a re-
alistic assumption about the signal to noise ratio, the results of a field test is considered
[79] that used FBG strain sensors. That measurement shows at least 120 µε variation in
the strain signal due to the wheel passage, while the noise was less than 5 µε (4%). In this
study, the minimum variation in the rail to sleeper displacement signal is 200µm. There-
fore, the maximum magnitude of the noise should be less than 8 µm (4%). To simulate
the noisy measurement, a set of White Gaussian Noises is added to all signals generated
by VI-Rail. The average of the noises is zero and three times of the standard deviation
(3σ) is 8 µm.

Figure 4.14 presents the absolute error and the reliability of the diameter estimation
process for different measurement noises. The measurement noise has several negative
effects on the fusion process. First, the measurement noise makes an error on the sample
delay (δ) between the measured signals. This error leads to errors in the sample distance
(λ) and in the wheel positioning. Another negative effect of the measurement noise is
variation of the sensor output. The variation in the magnitude of the samples collected
makes an error in the diameter estimated. According to Figure 4.14, the measurement
noise increases the standard deviation of the errors for both sampling methods, but the
MSM ensures much higher reliability than the SSM.
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Table 4.7: The comparison between the similarity of the SSM and MSM for the base values.

Indicator
Similarity
[%]

Standard deviation
[%]

Noise free

SSM Without diameter error 49.95 5.32

MSM Without diameter error 98.58 1.46

SSM With diameter error 40.28 7.53

MSM With diameter error 97.52 4.22

Noisy

SSM Without diameter error 28.78 7.13

MSM Without diameter error 52.91 10.52

SSM With diameter error 28.90 4.61

MSM With diameter error 50.40 11.16

Figure 4.15 presents the absolute error of the velocities estimated for different mea-
surement noises. As we expected, increasing the measurement noise increases the mag-
nitude and the standard deviation of the error of the velocity estimation process. The
errors of the velocities estimated by the filtered signal are also presented in Figure 4.15.
By filtering the measured signals, the error of the velocity estimation process and its cor-
responding errors, the error of the sample distance (λ) and the error of the wheel po-
sitioning (sampling error), can be reduced, while the negative effect on the diameter
estimation process and the variation of the sensor output are remaining.

Figure 4.16 shows the results of the similarity assessment for different measurement
noises. The MSM improves the similarity of the reconstructed signals when the noise
is not high. By increasing the measurement noise, the similarity significantly decreases
and the MSM loses its ability. The measurement noise varies the magnitude of the sen-
sor output. By considering the maximum of the signal as the output of the sensor, the
measurement noise has limited effect. For example, 5% noise variates 5% of the mag-
nitude of the sensor output. Instead, the fusion method considers the position and the
magnitude of different samples to generate a pattern. Therefore, the small measurement
noise can influence the signals reconstructed. According to Figure 4.16, the 5% noise de-
creased the similarity of the reconstructed signals from around 100% to less than 50%.
As a result, using sensors with high Signal-to-Noise Ratio (SNR) is critical to produce
informative signals.

4.3.3. NUMBER OF SENSORS

The fusion method exploits the data collected by multiple sensors. The signal recon-
struction with a few number of samples leads to signal distortion. Intuitively, more sen-
sors collect more samples and give better results. The sensors should be mounted on an
identical situation that is challenging for a measurement with high number of sensors.
Therefore, providing similar results with lower number of sensors is essential. A com-
mercial interrogator with four measurement channels, can interrogate around 160-320
FBG sensors, fulfilling practical requirements by providing high number of sensors and
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Figure 4.17: The results of the diameter estimation process using the SSM and MSM for different
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b) mean absolute error for noisy signals, and c) reliability.

high SNR [46].

Figure 4.17 presents the results of the diameter estimation process for different num-
ber of sensors, noise free and noisy signals and using the SSM and MSM. The reliability
of the SSM for lower than 40 sensors is almost zero. Therefore, the SSM did not give any
estimate for the wheel diameters when the number of sensors is lower than 40 sensors.
The MSM ensures very high reliability especially for small number of sensors. When the
reliability of the MSM reached to around 100%, increasing the number of sensors de-
creases the error and its standard deviation. As a general result, increasing the number
of sensors improves the results of the diameter estimated.

Figure 4.18 presents the results of the velocities estimated. In general, the noise free
signal gives lower error than the noisy signal. Increasing the number of sensors influ-
ences the average of the errors and decreases their standard deviations. In Figure 4.18,
there is an outlier in the noise free signals at 20 sensors. To understand the reason of this
strange behaviour, the study is repeated with higher resolution. Figure 4.19 depicts the
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Figure 4.18: The results of the velocity estimation process for different number of sensors.
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results of the velocity errors for the noise free measurement with higher resolution.
According to Equation 3.23, the velocity is a function of the sample delay (δ) that is

estimated using the cross-correlation between the signals measured by different sensors
(See the Equations 3.8 and 3.9). Based on Equations 3.6 and 3.7, the measured signals
can be modelled as the combination of the signal generated by the wheel movement,
the signal generated by the wheel defect, and the uncorrelated noises. For the noise free
measured signal, the defect signal influences the output of the cross-correlation func-
tion. As explained before, the velocity is calculated by averaging the velocities estimated
by multiple pairs of sensors. Most of the time, the averaging excludes the effect of the de-
fect signal, but it is not always the case. Therefore, the outlier is generated for the noise
free signals at 20 sensors.

The low pass filter used in the prior subsection can cancel out the negative effect
of the defect signal and the measurement noise. Figure 4.20 presents the results of the
velocity estimation process for different number of sensors for the filtered signals.
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Figure 4.20: The results of the velocity estimation process using the filtered signals for different
number of sensors.

Figure 4.21 compares the results of the similarity between the SSM and MSM while
the number of sensors increases. The MSM collects multiple samples to fill the gaps
between the data collected by the SSM and improves the similarity. The effect of the
noise and the diameter error when they occur simultaneously is significant to the extent
that even an increasing sensor number could not improve the similarity. As a general
result, increasing the number of sensors increases the similarity.

4.3.4. LENGTH OF EFFECTIVE ZONE

The comparison between the lengths of the effective zone and the wheel circumference
(around 3000 mm) in Figure 3.1 shows that the sensor had a long effective zone around
600 mm. FBG strain sensors have smaller effective zone [42], [43] but can be altered
using the special gauges [49]. The data generated by VI-Rail is the rail to sleeper dis-
placement signal. The effective zone for this signal is around 60 mm that is constant in
all simulations. Therefore, to evaluate the effect of the effective zone variations, different
lengths from the effective zone are used.

Figure 4.22 makes a comparison between the errors and the reliabilities of the diame-
ters estimated by the SSM and MSM for different lengths of the effective zone. Generally,
by increasing the length of the effective zone, the error of the diameter estimation pro-
cess decreases. To use all samples of the effective zone, accurately positioning of the
effective zone on the signal is necessary. To estimate the train velocity entire the mea-
sured signals are used. Therefore, the length of the effective zone is not the influential
factor for estimating the train velocity.

Figure 4.23 compares the similarity of the signals reconstructed using the SSM and
MSM with different lengths of the effective zone. Increasing the length increases the
similarity. Therefore, using a sensor with longer effective zone can reduce the number of
sensors required.
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Figure 4.21: The results of the similarity assessment for different number of sensors for a) noise
free signals without diameter error, b) noisy signals without diameter error, and c) noisy signals
with diameter error.
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Figure 4.22: The results of the diameter estimation process using the SSM and MSM for different
lengths of the effective zone. a) Mean absolute error with standard deviation error bar for noise
free signals, b) mean absolute error for noisy signals, and c) reliability.
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Figure 4.23: The similarity comparison between the signals reconstructed by the SSM and MSM
for different lengths of effective zone. a) Normalized similarity with standard deviation error bar
for noise free signals without diameter error, b) for noisy signals without diameter error, and c) for
noisy signals with diameter error.
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Figure 4.24: The distribution of the samples over the circumferential coordinate for different di-
ameters.

4.3.5. WHEEL DIAMETER

For a certain sensor configuration, the wheel diameter determines the frequency of the
measurement from the wheel circumference in the space domain. The measurement
frequency for the range of wheel diameters (840–920 mm) will be 4.39-4.81 measure-
ments per cycle for 600 mm sensor interval. This variation determines the distribution
of the samples over the circumferential coordinate. Figure 4.24 presents an example of
the distribution of the samples over the circumferential coordinate for different wheel
diameters. In this example the simulated samples collected by 150 sensors using the
SSM with 600 mm sensor interval. The numbers on top of the circles present the wheel
diameter and the numbers inside the circles indicate the maximum distance between
the samples mapped over the circumferential coordinate.

Several parameters influence the distribution of the samples such as the sensor inter-
val, wheel diameter, length of the effective zone, number of sensors, and the train veloc-
ity. These parameters with the exception of the number of sensors are the out-of-control
parameters. The samples should cover entire the wheel circumference to reconstruct the
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Figure 4.25: a) The signal reconstructed by 59 sensors using the MSM for a wheel with 850 mm
diameter, 40 mm flat, and 30 m/s velocity, b) frequency spectrum of the signal.

signal properly. According to Figure 4.24, wheel diameter changes the distribution and
the frequency of the samples. The monitoring system should be able to cover the whole
range of the wheel diameter. Therefore, the minimum number of sensors should be de-
termined based on the range of the wheel diameter. Figure 4.25 represents the defect
signal presented in Figure 4.12c in the frequency domain using the Fast Fourier trans-
form (FFT). The defect signal after reconstruction is interpolated to have 1000 samples
per meter in the space domain. Figure 4.25b shows that the frequency of the signal is
limited to the frequency lower than 100 Hz. It means the Nyquist frequency in the space
domain is 200 samples per meter (twice the highest frequency contained in the signal).
Therefore, the defect signal can be reconstructed without any distortion, if the maximum
distance between the consecutive samples is smaller than 5 mm.

Using the criteria defined for the sampling frequency, the minimum number of sen-
sors required for monitoring the whole range of the wheel diameter is determined. Fig-
ure 4.26 presents the maximum distance between the consecutive samples (λmax ) ob-
tained after the signal reconstruction, for different number of sensors. In this example,
the sensor interval is 600 mm and the length of the effective zone is 60 mm. Intuitively,
changing the length of the effective zone changes the trends of the plot. Figure 4.27
presents this distance for different number of sensors when the length of the effective
zone increased to 300 mm. In this case, with 19 sensors the λmax is decreased to less
than 5 mm for all wheel diameters. The comparison between the Figures 4.26 and 4.27
shows that considering the number of sensors and the length of the effective zone at the
same time is important.

The monitoring system should be able to deal with the whole range of the wheel
diameters because the wheel diameter is an out-of-control parameter. Therefore, the
number of sensors and the length of the effective zone should be determined with re-
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Figure 4.26: The maximum distance between the consecutive samples for different number of
sensors with 600 mm sensor interval and 60 mm length of the effective zone.
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Figure 4.27: The maximum distance between the consecutive samples for different number of
sensors with 600 mm sensor interval and 300 mm length of the effective zone.
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Figure 4.28: The maximum distance between the consecutive samples for different number of
sensors and different lengths of the effective zone with 600 mm sensor interval.

spect to the wheel diameter. As a result, the highest λmax for different wheel diameters
is considered as the representative of the whole range of the wheel diameters. Figure,
4.28 shows the variation of the highest λmax for different number of sensors and the dif-
ferent lengths of the effective zone. According to this figure, with 20 sensors, increasing
the length of the effective zone is more helpful than increasing the number of sensors.

Figure 4.29 presents the results of the diameter estimation process for different diam-
eters. The reliability of the process using the SSM significantly varied for different wheel
diameters while the MSM constantly gives reliable outputs. The results of the similarity
assessment are presented in Figure 4.30. The comparison between the results obtained
from Figures 4.24 and 4.30 shows that the wheel with large distance between the samples
has low similarity and the wheel with small distance between the samples has high sim-
ilarity. The MSM by filling the gaps between the samples using more multiple samples
improves the similarity. In addition, the wheel condition can be considered constant
over a few days. Therefore, multiple measurements can be used to improve the similar-
ity by fusing the signals reconstructed by each measurement.

4.3.6. TRAIN VELOCITY

Train velocity influences the fusion process by changing the contact force, and the space
sampling frequency. A wheel with different velocities exerts different contact forces,
which influences the rail responses and the results obtained. Figure 4.31 depicts the
ratio of the maximum and the average of the contact force for different train velocities
that have been calculated based on Equation 2.5. This ratio shows the deviation of the
dynamic contact force from the static force.

The sampling frequency of the sensors in the space domain depends on the train
velocity. Increasing the train velocity decreases the space domain sampling frequency.
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Figure 4.29: The results of the diameter estimation for different wheel diameters. a) Mean absolute
error with standard deviation error bar for noise free signals, b) mean absolute error for noisy
signals, and c) reliability.
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Figure 4.30: The results of the similarity for different wheel diameters. a) Normalized similarity
with standard deviation error bar for noise free signals without diameter error, b) for noisy signals
without diameter error, and c) for noisy signals with diameter error.
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Figure 4.31: The contact force ratio for different train velocities.
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Figure 4.32: The comparison between the diameters estimated by SSM and MSM for different train
velocities. a) Mean absolute error with standard deviation error bar for noise free signals, b) mean
absolute error for noisy signals, and c) reliability.

Therefore, increasing the train velocity increases the space intervals between the sam-
ples (λ) while the samples are collected in the constant time interval. The contact force
ratio has the same effect on the SSM and MSM, while the train velocity directly influ-
ences the MSM by changing the sampling frequency in the space domain. Lower train
velocity gives higher sampling frequency in the space domain in which the MSM gives
better performance. Figure 4.32 compares the results of the diameter estimation process
using the SSM and MSM. For the velocity around 20 m/s, the process gives higher relia-
bility. When the contact force ratio increases, the measurement noise has less influence
on the process.

The velocity estimation process uses the cross-correlation to find the delay between
the signals measured by two sensors. Generally, by increasing the train velocity, the
space sampling frequency decreases. As a result, when the train velocity increases, the
error of the estimated velocity will increase. On the other hand, the train velocity changes
the contact force ratio that influences the cross-correlation and consequently the esti-
mated velocity. For the noise free measurement, the contact force ratio has the dominant
role, while for the noisy measurement, the signals are covered by the noise and the space
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Figure 4.33: The results of the velocity estimation for different train velocities.

sampling frequency plays the major role. Figure 4.33 presents the error of the estimated
velocity for different train velocities. According to Equation 3.21, higher sampling fre-
quency of the sensors in the time domain can compensate the effect of high velocity on
the space domain sampling frequency. Figure 4.34 presents the results of the velocity es-
timation process using the filtered signals for different velocities. The filter can exclude
the effect of contact force and noises but the effect of decreasing the space sampling fre-
quency remains. Therefore, increasing the velocity increases the error of the estimated
velocities.

Figure 4.35 compares the similarity of the signals reconstructed by the SSM and MSM
for different train velocities. Clearly, the MSM is performing better than the SSM espe-
cially for the lower velocities. As mentioned earlier, lower train velocity leads to higher
space sampling frequency. Therefore, with constant length of the effective zone, higher
samples are collected. For example, a sensor with 60 mm effective zone collects 60 sam-
ples with 1 mm distance from a train with 10 m/s velocity, while it collects 20 samples
with 3 mm distance from a train with 30 m/s velocity.

4.3.7. DEFECT TYPE

The variation in the defect type and size changes the contact force and the contact force
ratio and consequently changes the rail response. This subsection studies the wheel flat
as the most severe defect and the wheel spalling as the most common defect. Figure 4.36
presents the contact force ratio for different defects. Increasing the defect size increases
the contact force ratio.

The results of the diameter estimation process are presented in Figure 4.37. The con-
tact force ratio shows the influence of the wheel defect on the contact force. Moreover,
the higher contact force ratio gives the higher rail response ratio. Therefore, the mea-
surement noise that is a function of the rail response, has less influence on the rail re-
sponse that induced by wheel defect. As a result, increasing the defect size decreases the
diameter estimation error and increases the reliability.
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Figure 4.34: The results of the velocity estimation process using the filtered signals for different
train velocities.
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Figure 4.35: The similarity comparison between the signals reconstructed by the SSM and MSM
for different train velocities. a) Normalized similarity with standard deviation error bar for noise
free signals without diameter error, b) for noisy signals without diameter error, and c) for noisy
signals with diameter error.
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Figure 4.36: The contact force ratio for different defect types.
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Figure 4.37: The results of the diameter estimation process for different defect types. a) and b)
Mean absolute error with standard deviation error bar for noise free signals, c) and d) mean abso-
lute error for noisy signals, and e) and f) reliability.
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Figure 4.38: The results of the similarity assessment for different defect types. a) and b) Normalized
similarity with standard deviation error bar for noise free signals without diameter error, c) and d)
for noisy signals without diameter error, and e) and f) for noisy signals with diameter error.

In the same way, increasing the defect size increases the similarity. Figure 4.38 presents
the results of the similarity assessment using the SSM and the MSM for different defect
types and sizes. The MSM has better results than the SSM. For small defects, the mea-
surement noise covers the defect signal and decreases the similarity. Therefore, using
the sensors with high SNR is essential for reconstructing the defect signal for the small
defects.

Figure 4.39 presents the results of the velocity estimation process for different defect
types. The measurement noise increases the errors of the velocities estimated. In addi-
tion, the defect size changes the contact force ratio. Therefore, for the severe defects, the
defect size is the dominant factor and causes the error. As mentioned earlier, the input
signals can be filtered to suppress the negative effects of the noise and the defect signal
on the velocity estimation process.
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Figure 4.39: The results of the velocity estimation for different defect types.
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Figure 4.40: The contact force ratio for different axle loads.

4.3.8. AXLE LOAD

Table 4.2 presented the mass of car body, bogies and the wheelsets based on the Manch-
ester benchmarks [77]. The total mass of a car body, two bogies and four wheelsets is
44482 kg and accordingly, the axle load is 11120 kg. To assess the effect of the axle load
variation on the fusion process, two other axle loads, 16500 kg and 22000 kg are used.

Figure 4.40 presents the contact force ratio for different axle loads. According to this
figure, the contact force ratio is almost constant for different axle loads. Therefore, dif-
ferent axle loads generate similar defect signals. As a result, axle load variations do not
influence the fusion process directly. Figure 4.41 presents the results of the diameter es-
timation process for different axle loads. Increasing the axle load does not change the
outputs of the process. The comparison between the SSM and the MSM shows that the
MSM gives better performance by making smaller error and higher reliability.

The results of the similarity assessment and the velocity estimation process for dif-
ferent axle loads are presented in Figures 4.42 and 4.43. As we expected, the variations
of the axle load have slightly changed the results. By increasing the axle load, the con-
tact force ratio remains almost constant but the static load (average load) is increased.
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Figure 4.41: The results of the diameter estimation process for different axle loads. a) Mean abso-
lute error with standard deviation error bar for noise free signals, b) mean absolute error for noisy
signals, and c) reliability.
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Figure 4.42: The results of the similarity assessment for different axle loads. a) Normalized simi-
larity with standard deviation error bar for noise free signals without diameter error, b) for noisy
signals without diameter error, and c) for noisy signals with diameter error.

Therefore, the ratio of the noise to the main signal decreases. As a result, increasing the
axle load decreases the effect of the noise and improves the results. This consequence is
visible in the similarity and in the velocities estimated of the noisy signals.
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Figure 4.43: The results of the velocity estimation for different axle loads.

4.4. CONCLUSION
Chapter 3 proposed a fusion method to reconstruct a new signal from the data collected
by multiple sensors. The output of the fusion process is influenced by several parame-
ters. Some of them affect the input of the fusion process and some of them change the
performance of the process. This chapter carried out a detail parametric study to inves-
tigate the influential factors to respond to the third key question that is: “How do the
influential factors affect the reconstructed signal?”.

The SSM picks only a single sample per sensor while the MSM exploits all collected
samples (of the effective zone) to fill the gaps between the samples used by the SSM.
The results showed the effectiveness of the MSM. When the contact force ratio is not
relatively large, the rail response variation due to the wheel defect is comparable with
the measurement noise magnitude. Therefore, the measurement noise covers the defect
signal and decreases the similarity of the reconstructed signal to around 50% from 97%.
It shows that the fusion method can give better performance when the SNR is high. As
a result, for detecting the minor defects, using the sensors with high SNR are essential.
A low pass filter can only be used in the velocity estimation process to cancel out the
negative effect of the defect signal and the measurement noise.

Several parameters influence the distribution of the samples over the circumferential
coordinate such as sensor interval, wheel diameter, train velocity, length of the effective
zone, and number of sensors. In general, increasing the number of sensors improves
the results of the fusion process. Therefore, a trade-off is required between the cost of
the interrogator supporting high number of sensors, and the accuracy and reliability. In
addition, using the sensors with longer effective zone reduces the number of sensors
required. Furthermore, the sampling frequency of the sensors limits the maximum ve-
locity of the wheel that can be monitored. In the next Chapter, the reconstructed signals
are used to identify the defect type and severity.





5
DEFECT IDENTIFICATION AND

CONDITION ESTIMATION1

Chapter 3 developed the fusion process to reconstruct an informative signal from the
signals measured by multiple sensors. Chapter 4 investigated the influential parameters
contributing to the fusion process. The next step is identifying the wheel defect to es-
timate the wheel condition by attributing the reconstructed signal to the wheel defect.
Besides the wheel defect, several other parameters influence the reconstructed signals.
The influential parameters can be categorized into two groups. In the first group, the
parameters influence the fusion process, and make an imperfect measurement and cor-
rupt the signals reconstructed. Measurement noise, lack of enough number of sensors,
and error in estimating the wheel diameter can be mentioned as the parameters of the
first group. In the second group, the operational parameters such as the train velocity,
and axle load change the signals reconstructed. Variations in these parameters lead to
variation in the signals reconstructed even when the defect is kept constant and the fu-
sion process works perfectly. In spite of having perfect reconstruction, the variation in
the operational parameters is unavoidable.

This chapter aims to classify the reconstructed signals into different classes of defect
types and severities, but the reconstructed signals have out-of-control variations due to
the operational conditions. This Chapter tackles the challenge of variation in the signals
to attribute the reconstructed signals to the defects. To achieve this purpose, the pattern
recognition tools are used to design the required classifier to deal with this classification
problem. In supervised pattern recognition, the classifier is trained by available known
data to be able to classify new unseen data. This Chapter is organized as follows: Sec-
tion 5.1 provides an overview on the classification process. In section 5.2, a dataset is
generated using VI-Rail for the training and testing steps. Then, section 5.3 explains the
features extracted from the reconstructed signals. Section 5.4 investigates the possible
classifiers and explains the training process. Finally, section 5.5 presents and discusses
the results of the classification process.

1This Chapter is partially based on Alemi et al. [80], and [81].
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5.1. PROCEDURE OF THE DEFECT IDENTIFICATION
The primary wheel condition monitoring system (WILD) was used to detect detrimental
wheels [12]. When the force exceeds a threshold the wheel is classified into detrimen-
tal class. Therefore, WILDs are used to keep safe the train movement by classifying the
wheels into safe and detrimental classes. Clearly, the detrimental wheels are defective
while the safe wheels can be defective or healthy. From the wheel point of view, the
classification problem can be presented as the wheel defect detection that classifies the
wheels into two classes: healthy and defective wheels. The defective wheels should be
classified into different classes containing different defect types and severities. There-
fore, this classification is called here, the defect identification. This classification can be
more complex by considering several defects with different severities.

The procedure of learning from data with known class labels to classify new un-
seen data is called supervised pattern recognition [82]. To build a classification problem
from the wheel defect identification problem, the pattern recognition terminologies are
adapted. In this case, the signals reconstructed from different defect types and severities
are called objects (patterns). The objects generated by similar defect type and severity
build a class. Therefore, each class refers to an individual defect type with a certain sever-
ity. For example, the signals reconstructed from a flat with 40 mm length build a class.
These signals can be measured with different velocities or various loads, but all of them
are assigned to the same class. Moreover, the signals reconstructed from a flat with 60
mm length, in spite of having similar defect type, have different severity and build an-
other class. The objects from all classes build a dataset. These classes should be defined
based on the needs of the potential users of the classification results. Therefore, this
method can be generalized to more classes containing more defect types and severities.

An object with the class label is called the known data. When the class of an object
is unknown, the object is called an unseen data. The classifier can be trained by learn-
ing from known data to classify unseen data. To train a classifier, the objects should be
encoded by some features. For example, the signals can be represented by some statis-
tical features such as average, peak, RMS, skewness, kurtosis, and crest factor. Figure
5.1 presents an example of a classification problem based on two features. Figure 5.1a
illustrates the distribution of 21 objects based on average force as a feature (F1). In this
examples, among 20 known objects, 10 objects (stars) belong to class 1, and 10 objects
(circles) belong to class 2, and one object has unknown class. In Figure 5.1b, the objects
are represented by another feature, peak force (F2). The purpose of the classification is
to assign the unseen object to the right class using the known data. According to Figure
5.1a, and b, classifying the unseen object is difficult. Figure 5.1c presents a 2-dimension
scatter plot using both features. By representing the objects using average force (F1) and
peak force (F2) as the required features, a classifier can be trained by the known objects
to make a separation line between two classes. Using this classifier, the unseen object
can be classified to class 1. By increasing the number of features the classification per-
formance can be improved, but selecting too many features leads to curse of dimension-
ality, and more objects are required to train the classifier. Therefore, making a trade-off
between the feature size and the complexity is essential.

The classification process is generally a classifier training using the features of the
known data, and classifying the objects with unknown class labels using the classifier
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Figure 5.1: An illustration of two classes problem represented by two features. a) The plot of the
classes by feature 1, b) by feature 2, and c) a scatter plot by both features.

trained. Defining the informative features to represent the objects is a crucial task. Chap-
ter 3 developed the fusion model to generate a pattern to provide more informative fea-
tures. The supervised pattern recognition can be used when a set of data from each class
is available. Critical systems are not allowed to reach the failure. Therefore, there is no
defect data to train classifiers for those systems. Since the measurement from the wheel
defects such as flat, and out-of-roundness is possible, the supervised pattern recognition
can be investigated for the wheel defect classification.

Figure 5.2 presents the procedure of the wheel defect classification. In Figure 5.2a,
VI-Rail simulates the wheel-rail interaction, and then the fusion model reconstructs a
signal from the multiple signals generated by multiple sensors (See Chapters 3, and 4).
To provide a dataset, defects with different types and severities should be considered
as different classes. These classes together with a healthy class, construct the possible
classes for objects. Each class should have several objects to be used for training the
classifier and testing the unseen data. The characteristic of defect in each class are fed to
VI-Rail to model the wheel-rail interaction to give multiple signals. The fusion process
reconstructs a new signal from the multiple signals. The reconstructed signals vary by
variation in train velocity, and axle load. Therefore, the data generation process should
be repeated for different velocities, and axle loads. The objects from all classes build a
dataset. Therefore, for each class, several objects (signals) are generated that construct a
dataset as the output of the data generation step.

The dataset generated is divided into two subsets to use for training and testing the
classifiers. In Figure 5.2b, one subset of the dataset is used for training the classifiers. In
the feature extraction step, the reconstructed signals (objects) are encoded by features.
These features should represent the characteristics of the reconstructed signals to use as
a specific view of the defects. The features are exploited to train the classifiers. The out-
put of this step is a classifier. Finally, the trained classifiers should be able to classify the
unseen subset of the dataset. Since the labels of the unseen subset are already known,
the performance of the classifier can be evaluated.
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Figure 5.2: The procedure of the wheel defect classification.

5.2. DATASET GENERATION FOR TRAINING AND TESTING
Wheel-rail interaction is simulated by VI-Rail to generate the required data. The proce-
dure of the data generation using VI-Rail has been presented in Figure 4.2. The same as
the previous chapter, the simulations are carried out for a passenger vehicle based on
the Manchester Benchmarks [77]. The parameters of the track and vehicle have been
presented in Tables 4.2 and 4.3.

In the first step of the data generation procedure, the defect model generates the de-
fect on the wheel. VI-Rail simulates the wheel-rail interaction and calculates the contact
force and then the vertical rail to sleeper displacement signals. Therefore, as the output
of the VI-Rail simulation. Table 5.1 presents the value of the parameters used in the data
generation process.

Two types of defects are considered: flat and periodic out of roundness (OOR). The
flat defect includes two severities, 40 and 60 mm length, and the periodic out of round-
ness is a 3rd order out-of-round wheel with 0.3 mm amplitude. These defects plus a
healthy wheel construct four condition classes. Figure 4.13 presented the examples of
each class. To generate the variation within the classes, two axle loads (11 and 13 tons)
and seven velocities (10, 15, 20, 25, 30, 35, and 40 m/s) are considered. Therefore, each
class has 14 signals (objects) and the dataset has 56 objects for four classes.

Figure 5.3 presents the signals generated by two defects, a 60 mm wheel flat and a 3rd
order periodic out-of-round wheel, for different velocities and for two axle loads. The top
row contains the signals generated by 11 tons axle load and the bottom row by 13 tons.
Increasing the axle load from 11 to 13 tons, increased the rail to sleeper displacement
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Table 5.1: The value of the parameters used in the data generation process.

Parameter Value

Wheel diameter 850 mm

Defect type
40 and 60 mm flats

3rd order periodic out-of-round

Number of sensors 50

Sensor interval 600 mm

Train velocity 10-40 m/s

Train axle load 11120 and 13000 kg

Sensor sampling frequency 10 kHz

Length of effective zone 60 mm

for both defects (shift the signals). For the wheel flat, increasing the train velocity in
this range generally reduces the effect of defect and the magnitude of the patterns, while
for the periodic OOR wheel, increasing the train velocity increases the effect of defect
and the magnitude of the patterns. Figure 5.3 demonstrates the variations of the signals
due to the variations in the operational conditions such as load and velocity. The recon-
structed signals presented in Figure 5.3a belong to the same condition class and build
a class, and this is the case for Figure 5.3b as well. In each class, the objects have con-
siderable variations in magnitude, but they have similar patterns in general. The objects
should be encoded by defining good features to represent these similarities. The next
Section explains the feature extraction method.
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The patterns generated by 60 mm wheel flat with different velocities and axle loads
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Figure 5.3: The main signals generated by a) a 60 mm flat b) a 3rd order periodic out-of-round
wheel with different velocities from 10-40 m/s and for two axle loads, the top row 11 tons and the
bottom row 13 tons.
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Three common statistical features for estimating the wheel condition are the peak value,
dynamic value, and the ratio of the peak to the average, that have been explained in sec-
tion 2.3.5. Each of these features is an individual number that quantifies the wheel con-
dition. As mentioned earlier, the train velocity and the axle load influence these num-
bers. Usually, these numbers are used with some thresholds to classify the wheels into
two detrimental and safe classes [14]. In this research, these values are used as the sta-
tistical features to train the classifiers and to classify the wheels into different classes.

The fusion process makes a pattern from the samples and provides the possibility of
extracting more features from the patterns than the simple statistical features. The fea-
tures should be defined based on the characteristic of the reconstructed patterns (ψs ) to
allow the classifiers to distinguish the patterns. For example, the signals in Figure 5.3a
have heart pulse patterns and the signals in Figure 5.3b have sinusoidal patterns. Ac-
cording to the shape of the patterns, different features can be extracted. In this Chapter,
the data has been simulated by VI-Rail and can be varied from the field data, because the
dynamic properties of the track and train determine the dynamic response of the track
and consequently the signals measured. Therefore, the shape features are not investi-
gated in this research.

Another general approach for representing the patterns is considering them as vec-
tors. In this way, the samples of the reconstructed signals (ψs ) are used as the required
features. For example, consider the example presented in section 4.3, in which the data
has been collected by M = 59 sensors for a wheel with 2670 mm circumference, and 30
m/s velocity. The length of effective zone was 60 mm and the sampling frequency of
the sensors was 10 kHz. Therefore, the sensors collected N = 20 samples in their effec-
tive zones (See Equations 3.21 and 3.22). Accordingly, the reconstructed signal (ψs ) has
N ×M = 1180 samples that have been distributed non-uniformly over the circumference
(See Section 3.4.2). The interpolation of the reconstructed signal with 1 mm interval
gives a signal with 2670 samples with uniform distribution. The representation of the
interpolated signal (ψ∗

s (k)) is a K-dimensional vector with K = 2670 features. A compar-
ison between the results of the classification using the statistical features and the vector
features, investigates the effectiveness of the reconstruction method.

When the interpolated signal is considered as the main signal, several other signals
can be obtained to be investigated as the features to may lead to better results. To reduce
the effect of axle loads, the Dynamic Signal and the Ratio Signal can be defined. The
dynamic signal is generated by subtracting the average of the signal. The ratio signal is
the ratio of the signal to its average. The dynamic signals of the 60 mm wheel flat and
the periodic OOR wheel are presented in Figure 5.4. These signals have zero average and
perfectly show the effect of defects and velocity. Another signal is Normalized Signal is
generated by subtracting the average of the signal and dividing by the standard deviation
of the signal that gives a dimensionless signal. Each of these signals has K features. Table
5.2 presents the formula of different features with the size of their feature vector. Figure
5.5 presents the normalized signals that reduced the effect of velocity in addition to the
axle load.
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Figure 5.4: The dynamic signals generated by a) a 60 mm flat b) a 3rd order periodic out-of-round
wheel with different velocities from 10-40 m/s and for two axle loads, the top row 11 tons and the
bottom row 13 tons.
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Figure 5.5: The normalized signals generated by a) a 60 mm flat b) a 3rd order periodic out-of-
round wheel with different velocities from 10-40 m/s and for two axle loads, the top row 11 tons
and the bottom row 13 tons.
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Table 5.2: The definition and formula of different features.

Name Formula Size

Peak Value argmaxk ψs 1

Dynamic Value argmaxk ψs −µs 1

Ratio Value
argmaxk ψs

µs
1

Main Signal ψ∗
s (k) K

Dynamic Signal ψ∗
s (k)−µs K

Ratio Signal
ψ∗

s (k)
µs

K

Normalized Signal
ψ∗

s (k)−µs
σs

K

5.3.1. PREPROCESSING AND DATA ALIGNMENT
As mentioned earlier, the first preprocessing step in the feature extraction procedure is
the interpolation of the signals. In this step, the signals are interpolated in the same
range of discrete points with an identical interval. This interpolation determines the
number of features. To avoid the curse of dimensionality, the interval is defined 1 mm.

The position of the wheel defect with respect to the sensors is out of control. There-
fore, the defective area can be positioned in different locations over the circumferential
coordinate in different measurements. In the second step of the feature extraction pro-
cedure, the signals are rotated over the circumferential coordinate to be aligned with
respect to each other. In this research that the wheel circumference is 2670 mm, the
patterns are rotated to the extent that the maximum of each signal is positioned in the
position 1000 mm. Figures 5.3, 5.4, and 5.5 have presented the signals after the interpo-
lation and alignment.

5.4. TRAINING PROCESS AND CLASSIFIER SELECTION
This Chapter uses a dataset generated by the simulated data to train the classifiers. The
simulated data can be extensive and the classifiers can be trained well, but from the prac-
tical point of view, collecting data from defective wheels is costly. Therefore, the training
set should be small as much as possible. In addition, the signals have high dimensional
feature spaces. As a result, a Support Vector Classifier (SVM) can be a good choice that
works well on datasets containing low sample sizes with high dimensional feature spaces
[83]. In addition, k-nearest neighbour classifier (kNN) can be another non-parametric
method using the neighbours of an object to assign it to the most common class [84].

In the case of small training set, the overfitting is a considerable challenge. Figure
5.6 presents the averaged learning curves of the Dynamic Signal for SVM, 1-NN and 3-
NN classifiers after 40 repetitions. As mentioned earlier, the dataset has 56 objects. In
each repetition some objects are selected as the training set to train the classifier and
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Figure 5.6: The average error of SVM, 1-NN, and 3-NN for different sizes of the training set after 40
experiments for the Dynamic Signal.

others are used for testing. In Figure 5.6, the horizontal axis shows the number of objects
used for training. According to this Figure, by increasing the number of objects used
for training the classifiers, the classification errors decrease. For example, by using 40
objects for training, the classifiers give less than 10% errors. Therefore, it is expected
that these three classifiers can deal with this problem. The errors on the training set
(apparent error) for SVM and 1-NN are zero (dashed lines). The distance between the
solid and dashed lines is overfitting. For smaller training set, the 3-NN classifier performs
with less overfitting. As a result, these three classifiers are selected to be tested in the next
Section.

5.5. TESTING AND CLASSIFICATION RESULTS

Table 5.2 described seven different methods for representing the wheel condition. Three
typical statistical feature extraction methods (the peak value, dynamic value, and the ra-
tio of the peak to the average) provide an individual number and four new methods use
the reconstructed signal to represent the condition state containing many features. A
comparison between the statistical features and the new signal features demonstrates
the effectiveness of the proposed methods. To investigate the classifiers a 10-fold cross
validation is performed. Accordingly, the classifiers are trained on nine subsets and are
tested on the remaining subset. The selection of the train set and test set is random.
Therefore, the process is repeated 20 times and the average error and its standard devi-
ation are presented. Table 5.3 presents the average errors and the standard deviation of
the errors after 20 repetitions for three classifiers and for seven different feature extrac-
tion methods. The classification results demonstrate a considerable difference between
the signal features, and value features. The classifiers trained by signal features classify
the defects perfectly, while the classifiers based on the value features gives poor perfor-
mance. For example, the 1-NN classifier using the dynamic signal classified the signals
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Table 5.3: A comparison between different classifiers and feature methods by the average and the
standard deviation of the classification errors. The horizontal bars represent the magnitude.

Feature Classifier Error [%] Standard deviation 
of the error [%]

SVM 74.98 0.03
1-NN 79.2 3.31
3-NN 77.09 3.35
SVM 59.06 0.11
1-NN 22.04 2.88
3-NN 22.8 1.54
SVM 74.99 0.02
1-NN 23.1 2.89
3-NN 23.13 2.44
SVM 3.93 1.82
1-NN 65.04 2.99
3-NN 61.39 4.26
SVM 2.15 0.95
1-NN 0.25 0.64
3-NN 2.18 0.63
SVM 13.75 1.84
1-NN 0.29 0.57
3-NN 2.26 0.79
SVM 1.57 1.03
1-NN 0.93 0.82
3-NN 0.55 0.63

Normalized signal

Main signal

Dynamic signal

Ratio signal

Peak value

Dynamic value

Ratio value

with 99.75% performance (0.25% error).

Table 5.4 provides the detail information of the classification error of the SVM for the
first cross validation of the Dynamic Signal. Based on the confusion matrix, a 60 mm
flat defect was assigned to the class of 40 mm flat. More investigation revealed that the
mistake is due to the 60 mm flat with 10 m/s velocity, in which, the dynamic force is not
high enough and the 60 mm flat looks like a 40 mm flat.

As it has been discussed in Chapter 4, in addition to the wheel defect, several other
parameters influence the reconstructed signals. The operational parameters such as the
train velocity, and axle load vary the signals reconstructed, while the measurement noise,
and error in estimating the wheel diameter make an imperfect measurement and cor-
rupt the signals reconstructed. The classifiers perfectly responded to the variation of the
signals due to the variation of the train velocity, and axle load. In Chapter 4, the influen-
tial parameter on the fusion process have been discussed. Two main parameters influ-
enced the fusion results are the measurement noise, and error in estimating the wheel
diameter. The following subsections investigate the performance deterioration of the
classifiers due to the measurement noise, and error in estimating the wheel diameter.
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Table 5.4: The confusion matrix of the SVM classifier for the Dynamic signal.

Estimated Labels

Healthy 60 mm flat 3rd order OOR 40 mm flat Totals

True Labels

Healthy 14 0 0 0 14

60 mm flat 0 13 0 1 14

3rd order OOR 0 0 14 0 14

40 mm flat 0 0 0 14 14

Totals 14 13 14 15 56

5.5.1. CLASSIFICATION OF NOISY SIGNALS
In the previous section, the noise free data generated by VI-Rail has been directly fed
to the fusion process (See Figure 5.2). To investigate the robustness of the classifiers
performance with respect to imperfect measurements (reconstructions), a set of White
Gaussian Noises, similar to the noise presented in section 4.3.2, is added to all signals
generated by VI-Rail. Then, the fusion process reconstructs signals using the noisy data.
As a result, a dataset from four condition classes is generated that has 56 noisy objects.
The classifiers are trained by a subset of this dataset and are tested on the remaining
subsets. Since the noise has a random nature, the process is repeated 9 times to evaluate
the average effect of the noise. It means that in each repetition, a new set of noises is
added to the generated signals and the fusion process reconstructs signals using them.
In addition, each dataset is evaluated by 20 repetitions of a 10-fold cross validation.

To assess the performance degradation of the classifiers due to the presence of mea-
surement noise, the process is repeated for different noises. Figure 5.7 presents the dy-
namic signals for different noises. Figure 5.8 depicts the variation of the classification
error for different measurement noises using Main signal, Dynamic signal, Ratio signal,
and Normalized signal for 1-NN, 3-NN, and SVM classifiers. The results are the aver-
age error of 9 time repetition with the corresponding standard deviation. Generally, the
classifiers have presented a robust performance with respect to the measurement noise,
since they have been trained by the noisy objects and tested on the noisy objects. When
the Main signal is used, the NN classifiers made around 65% errors, and increasing the
measurement noise had minor influence on that. The Normalized signal is sensitive to
noise and the errors of the NN classifiers increased to 20% by increasing the noise. The
classification by SVM contained around 15% errors with a consistent performance in
presence of increasing noise. The Dynamic signal provided small errors and a satisfac-
tory performance when was used by different classifiers.

5.5.2. CLASSIFICATION OF SIGNALS WITH DIAMETER ESTIMATION ERROR
Wheel diameter (circumference) is a fundamental value used in the fusion process, and
the error of this value leads to imperfect reconstruction. Wheel diameters can be pro-
vided from different sources, but Chapter 3 proposed a method to estimate the wheel di-
ameter using the data measured. Regardless of the method used for providing the wheel
diameter, the error of this value influences the reconstruction process, and consequently
the classification results. This section investigates the performance deterioration of the
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Figure 5.8: Classification error for different measurement noises using Main signal, Dynamic sig-
nal, Ratio signal, and Normalized signal for a) 1-NN, b) 3-NN, and c) SVM classifiers.
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classifiers due to error in estimating the wheel diameter.
The fusion process reconstructs the signals with errors to generate the required dataset.

Then, the dataset is evaluated by 20 repetitions of a 10-fold cross validation. Figure 5.9
presents the variation of the classification error for different diameter errors using Main
signal, Dynamic signal, Ratio signal, and Normalized signal for 1-NN, 3-NN, and SVM
classifiers. The results show that increasing the diameter error increases the classifica-
tion error.
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5.6. CONCLUSION
This Chapter answered to the corresponding research question: "How can the defect
types and their severity be detected?". Train velocity, and axle load vary the signals re-
constructed. In addition, some parameters such as measurement noise, and error in
estimating the wheel diameter corrupt the signals reconstructed. Therefore, pattern
recognition methods were used to train the classifiers and test the unseen data. This
Chapter used a dataset containing 56 reconstructed signals to classify the wheels into
four classes. The results showed that the wheels can be perfectly classified with more
than 99% performance using dynamic signals. This demonstrates the effectiveness of
the reconstruction method in generating the informative signals to use for classifying
the defects. The comparison of results showed that the classification using the recon-
structed signals give better performance than the classification using the statistical fea-
tures such as peak force. The robustness of the process was also evaluated by considering
the measurement noise and the diameter estimation error. The results indicated that the
classifiers are robust enough to deal with these imperfections.



6
EXPERIMENTAL VALIDATION OF

DATA FUSION MODEL AND DEFECT

IDENTIFICATION1

Chapter 3 developed the fusion model to reconstruct an informative signal from the mul-
tiple signals measured by the multiple sensors. In chapter 4, the fusion model has been
tested using the data simulated by VI-Rail. Chapter 5 developed a defect identification
model using the pattern recognition methods to classify the defective wheels by estimat-
ing the defect type and severity. The defect identification model used the simulated data
to generate the dataset and test the model. This chapter validates the fusion method
and the defect identification model using the data generated by laboratory tests. Due
to the lack of experimental facility, a new test rig has been designed and constructed
to model the wheel-rail interaction and to generate the real data required for the data
fusion model and the defect identification model.

This chapter, in section 6.1, explains the structure of the new test rig. In this test rig,
a rotating arm moves a wheel over a circular rail that is supported by sleepers. Accord-
ing to this symmetric configuration, six strain sensors have been mounted under the rail
with constant intervals to measure the rail bending strain. The strain sensors measure
different portions of the wheel in discrete points. In section 6.2, the fusion model recon-
structs patterns from the data collected by the multiple strain sensors for different wheel
defects. By reconstructing the informative patterns correlated to the wheel defects, the
fusion model is validated. In section 6.3, a dataset is generated using the data collected
from a set of laboratory tests as the input of the defect identification model. This data
is used in the training and testing steps in the classification process. Different wheel de-
fects including the flat and out-of-round wheels with different loads and velocities are
tested and the results validate the defect identification model by classifying the wheels
into different classes of defects.

1This Chapter is partially based on Alemi et al. [85].
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Figure 6.1: The schematic view of the test rig used for modelling the wheel-rail interaction.

6.1. TEST RIG DESIGN
Several test rigs such as described in [21], [86], [87], [88] have been constructed to model
the wheel-rail interaction to provide variety of data for different purposes. For example,
Armstrong and Thompson made a reduced scale circular model to investigate rolling
noise [86]. Liang et al. [21] used a roller rig to model wheel-flat and rail surface de-
fect. Since the access to these facilities were restricted or the nature of the test rigs were
not fitted to the data fusion model, a new test rig has been designed. This section pro-
vides a detailed explanation about the new test rig constructed to generate real data by
modelling the wheel-rail interaction. Figure 6.1 shows the schematic view of the test rig
consisting of a rail, rotating arm, wheel hub, spring, wheel, motor, sleepers, clamps, and
rubbers. The specifications of the test rig components are presented in Table 6.1.

The rail had a rectangular profile with 20 mm height and 15 mm width. The circular
rail was connected by clamps to 24 sleepers to transfer the wheel load to the bottom
plate. The clamps, sleepers, and the bottom plate were screwed with a piece of rubber
in between. This structure and the motor were mounted on a frame with dimensions of
about 120×120 mm. The rotating arm was connected to the motor through a shaft. The
wheel velocity is adjustable by the motor drive. Another side of the rotating arm had the
wheel hub to hold the wheel. Figure 6.2 shows the magnified view of the wheel hub and
wheel-spring-arm connection. The load of the wheel on the track is adjustable using a
spring connected to the wheel hub. Turning the nut above the spring pushes the wheel
hub, and consequently the wheel down. Figure 6.3 shows final view of the test rig.
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Table 6.1: The specifications of the test rig components.

Component Specification

Rail
Aluminium, rectangular profile:
15×20 mm, inner diameter: 992.5
mm, outer diameter: 1022.5 mm

Wheel Steel, 100 mm diameter,

Sleeper PVC, 120×50×15 mm,

Rotating arm Rectangular tube: 120×60×4 mm

Clamp Aluminium, 60×20 mm

Hub spring k = 119 N/mm

Hub screw Pitch: 1.5 mm

Rubber pad Styrene-butadiene(SBR)

bottom plate Aluminium, 20 mm thickness

Figure 6.2: The magnified view of the wheel hub.
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Figure 6.3: The photo of the test rig in laboratory.

6.1.1. SENSOR CONFIGURATION AND DATA ACQUISITION

The track has 24 sleepers with constant intervals. Six general-purpose strain gages were
installed under the rail in the bay between the sleepers in the symmetric positions with
60◦ intervals. The rail was polished and the sensors were directly glued to the rail. The
overall length of the sensors was 9.83 mm and gage length was 4.75 mm with linear pat-
tern. These sensors measured the rail bending strain generated by the wheel-rail contact
force by 3 kHz sampling frequency. Figure 6.4 presents the schematic top view of the
sensors positions, wheel, rail, sleepers and rotating arm. According to this Figure, the
sensors were configured with a constant distance. The sensors were connected through
an amplifier, and a data acquisition device (DAQ) to a computer. Figure 6.5 presents the
configuration of sensors, amplifier, DAQ, and the computer.

6.1.2. WHEEL DEFECT MODEL

Four wheels have been used to investigate the fusion model. Four wheels were tested
including a healthy wheel, two flat wheels, and a wheel with periodic out-of-roundness
(OOR). The wheels have 100 mm diameter and a convex profile. To make the defects on
the wheels, first, three defective wheels were machined to have flat profiles. This process
reduced the wheel diameter to 99.01 mm. Then, the defects were made on the wheels.
One wheel had a big flat with 6.6 mm length and 0.11 mm depth. Another flat wheel had
small flat with 4.4 mm length and 0.05 mm depth. The third defective wheel was a third
order periodic OOR wheel with 98.92 mm diameter and 0.08 mm amplitude.

6.1.3. WHEEL LOAD AND VELOCITY

The strain sensors measure the rail bending signal as the response of the rail to the
wheel-rail contact force. Since the rail response is influenced by the wheel load and
velocity, the wheel load and velocity were kept constant during each measurement. The
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motor drive controls the velocity of the motor and shows the actual velocity of the motor
on a screen. A gearbox converts the motor rotation to the shaft rotation with 15:1 gear
ratio. Therefore, the rotational velocity of the wheel can be estimated by recording the
motor shaft velocity dividing by 15.

The wheel is pressed by the spring force by screwing on the nut above the spring
to exert the required contact force. According to Table 6.1, the pitch of the screw is 1.5
mm and the spring constant is 119 N/mm. Therefore, by counting the rotations of the
nut multiplying to the pitch of the screw, and the spring constant, the static load of the
wheel can be estimated. Next sections investigates the data fusion model, and the wheel
defect identification model using the data generated by the test rig.

6.2. EXPERIMENTAL VALIDATION OF THE MULTI-SENSOR DATA

FUSION MODEL
The strain gage sensors measure the rail bending response as voltage signals. These sig-
nals are voltage variation over time due to the wheel passage. Normally the measured
voltage signal is converted to the strain signal and then using a known force is converted
to the force signal. The output of the data fusion model is a pattern. Therefore, the raw
output of the sensors in voltage was directly used as the input of the data fusion model
without converting to strain or force. Figure 6.6 presents the output of a sensor during
the passage of the healthy wheel. In this signal, when the wheel is far from the sensor, the
output of the sensor is zero. By approaching the wheel to the sensor, the output of the
sensor changed. When the wheel is close to the sensor in a way that is not on top of the
sensor, the rail goes up and compresses the sensor and provides negative output. When
the wheel passes the sensor, the output of the sensor increases to a maximum that de-
pends on the wheel-rail contact force. The shape of this signal depends on the dynamic
parameters of the test rig but it is generally comparable to the signal measured from the
field tests [48].

When the wheel is healthy and is moving with constant velocity, the signals measured
by the multiple sensors will have nearly identical shapes, and magnitudes except having
a delay. Figure 6.7 presents the outputs of the six sensors in the first round of the healthy
wheel rotation over the sensors. Each sensor measures a portion of the wheel. The mag-
nitude of the peaks in the signals measured by each sensor depends on the wheel-rail
contact force and basically on the wheel portion that contacts with rail. When the wheel
is healthy, the sensors measure signals with similar magnitude in the peaks.

In this circular test rig, more rotations of the wheel leads to the extension of the num-
ber of sensors. On each rotation, 6 sensors sample from the wheel. Therefore, for exam-
ple, 10 rotations of the wheel equal to sampling with 60 sensors. Figure 6.8 presents the
outputs of 60 sensors for the four wheels including healthy, OOR, big flat with 6.6 mm
length, and small flat with 4.4 mm length. In this Figure, the sensors provided outputs
with variations in the peaks depending the wheel portions contact the rail and sensors.
In this test, the velocity of the motor was 300 RPM and the wheel had 20 RPM velocity.
The nut was rotated 7 rounds to press the spring 10.5 mm. Therefore, the spring force
was around 1.25 kN.

The signals presented in Figure 6.8 make a dataset according to Equation 3.11. Using
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the MSM proposed in section 3.3, few samples from the peaks on each signal can be se-
lected to generate a new dataset like presented in Equation 3.14. Figure 6.9 compares the
samples measured by 60 sensors after selecting 11 samples per sensor using the MSM
for different wheels. In Figure 6.9a, the wheel is healthy and the samples have very small
deviation from their average. In Figure 6.9b, c, and d that correspond to the OOR and
flat wheels, the samples have more deviations from their averages. These deviations ac-
knowledge the existence of the wheel defects but fail in providing detailed insight about
the wheel defects.

According to Equations 3.16 and 3.18, the positions of the sensors (Xm) and the wheel
circumference (Lw ) are required for fusing the collected data. The rail diameter is 1007.5
mm (the diameter of the rail in the middle point between the inner and outer side of
the rail). The diameters of the wheels are 100, 99.01, and 98.92 mm. Using the Equa-
tions 3.18, and 3.19, the selected samples presented in Figure 6.9, have been fused and
mapped over the circumferential coordinate to generate patterns. Figure 6.10 compares
the results of the fusion model for four wheels. In this Figure, the length of the signals
equals to the wheel circumference. Figure 6.10a shows an almost smooth pattern corre-
sponding to the healthy wheel. Figure 6.10b displays a sinusoidal pattern corresponding
to the 3rd order out of round wheel. Figure 6.10c demonstrates a pattern containing
big peaks corresponding to the big flat. Figure 6.10d depicts a pattern containing small
peaks corresponding to the small flat.

The comparison between the patterns reconstructed in Figure 6.10, and the defects
explained in section 6.1.2 shows that the reconstructed patterns provide relevant infor-
mation about the wheel defects. These results perfectly validate the fusion model and
the possibility of generating informative signals from the samples collected by multiple
sensors.
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6.3. EXPERIMENTAL VALIDATION OF THE WHEEL DEFECT IDEN-
TIFICATION MODEL

This section follows the pattern recognition procedure used in Chapter 5 to validate the
defect identification model. In this section the input of the defect identification model
is the signals reconstructed from the real data measured by the test rig.

6.3.1. REAL DATA GENERATION FOR TRAINING AND TESTING

To generate a dataset for training and testing the classifiers, the four wheels with eight
velocities and three loads are used. Therefore, the dataset has 96 objects (patterns). Fol-
lowing the previous section, wheel-rail interaction is modelled by the test rig to gener-
ate the required data. Three defective wheels with the healthy wheel construct the four
classes. The wheel defects have explained in section 6.1.2. The motor velocities are 200,
300, 400, 500, 600, 700, 800, and 900 RPM. Therefore, the wheel velocities are 13.3, 20,
26.6, 33.3, 40, 46.6, 53.3, and 60 RPM. The wheel loads are 1.07, 1.25, and 1.6 kN.

Chapter 4 in section 4.3.5 discussed the influential parameters on the distribution of
the samples over the circumferential coordinate. This distribution is determined by the
different parameters such as the sensor interval, wheel diameter, length of the effective
zone, number of sensors, and the wheel velocity. In these experimental tests, the length
of the effective zone is 5 mm, and the wheel velocities and diameters are known. Since
the test rig has a circular structure, any changes in the wheel-rail contact point change
the passing curve of the wheel and consequently the sensor intervals. The middle point
of rail has 1007.5 mm diameter. As it is expected, the measurements showed that the
contact point varied between 1004.5 to 1008 mm depending on the wheel velocity and
load, due to wheel slip on the circular rail. Therefore, the rail circumference varied be-
tween 3155.7 to 3166.7 mm and as a result, the sensor intervals varied between 525.9 to
527.7 mm. For this specific sensor configuration, the distribution of the samples col-
lected by the sensors can be simulated to determine the required number of sensors to
cover the wheels circumferences.

The parametric study in the section 4.3.5 showed that the maximum distance be-
tween the consecutive samples over the circumferential coordinate should be smaller
than 5 mm for reconstructing the defect signal without any distortion. The required
number of sensors can be determined by considering the wheel diameters, 100, 99.01,
and 98.92 mm, and sensor intervals, 525.9 to 527.7 mm. Figure 6.11 presents the max-
imum distance between the consecutive samples for different number of sensors when
sensor intervals varied between 525.9 to 527.7 mm. In Figure 6.11a, with 100 sensors
the required samples can be collected to cover whole wheel circumference to the extend
that the maximum distance between the consecutive samples reach to less that 5 mm.
In Figure 6.11b that the wheel diameter is 99.01 mm, the required number of sensors is
around 200 sensors. In Figure 6.11c, around 380 sensors are required to cover the whole
wheel circumference with 5 mm maximum distance between the consecutive samples.
As discussed in the section 4.3.5, the number of sensors required depends on the length
of the effective zone of the sensors and can be reduced by increasing this length. As a
result, 380 sensors are used collect samples from the wheels, and to generate a dataset
from the reconstructed signals.
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Table 6.2: The definition and formula of different features used.

Name Formula Size

Peak Value argmaxk ψs 1

Dynamic Value argmaxk ψs −µs 1

Ratio Value
argmaxk ψs

µs
1

Main Signal ψ∗
s (k) K

Dynamic Signal ψ∗
s (k)−µs K

Ratio Signal
ψ∗

s (k)
µs

K

Normalized Signal
ψ∗

s (k)−µs
σs

K

Fourier transform of Main Signal F (ψ∗
s (k)) K /2

Fourier transform of Dynamic Signal F (ψ∗
s (k)−µs ) K /2

Fourier transform of Ratio Signal F (
ψ∗

s (k)
µs

) K /2

Fourier transform of Normalized Signal F (
ψ∗

s (k)−µs
σs

) K /2

Figure 6.12 presents the signals generated using 380 sensors by different wheels for
different velocities and for 1.25 kN loads. This Figure shows 32 objects (signals) from 96
objects of the dataset. the other 64 objects generated by two other loads.

6.3.2. FEATURE EXTRACTION FROM RECONSTRUCTED SIGNALS
This Section follows the preprocessing, data alignment, and feature extraction proce-
dure used in section 5.3. The reconstructed signals have been interpolated with 1 mm
interval to give signals with uniform distribution of the samples over the circumferen-
tial coordinate. Then, the maximum of the signals is positioned in 100 mm to align the
signals. Seven methods that used to represent the wheel condition are three statistical
features include the peak value, dynamic value, and the ratio of the peak to the average,
and four K-dimensional vectors include the reconstructed signal, dynamic signal, ratio
signal, and the normalized signal. In addition to these methods, the frequency transform
of these signals are used in this Chapter to represent the wheel condition. To transfer the
signals into the frequency domain, the Fast Fourier transform is applied. Therefore, four
other signals are generated by transferring the signals into the frequency domain. The
amplitude of the transferred signals used as the feature required. Since the half of the
transferred signals are used, the new signals have K/2 features. Table 6.2 presents the
detailed definition and formula of different features.
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Figure 6.12: The main signals generated by a) the healthy wheel, b) the big flat with 6.6 mm length,
c) the 3rd order periodic out-of-round wheel, and d) the small flat with 4.4 mm length for different
velocities from 13.3-60 RPM, and for 1.25 kN loads.
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6.4. WHEEL DEFECT IDENTIFICATION RESULTS
This Chapter made a dataset using the data generated by the test rig to train and test the
classifiers used in Chapter 5. Three classifiers, SVM, 1-NN and 3-NN, are investigated
using a 10-fold cross validation. To train the classifiers, the dataset is divided into 10
subsets. The classifiers are trained on nine subsets and are tested on the remaining sub-
set. Since, the selection of the train set and test set is random, the process is repeated
20 times. Table 6.3 presents the average and the standard deviation of the errors after 20
repetitions for three classifiers and for 11 different feature extraction methods using the
dataset generated by laboratory tests.

The results presented in Table 6.3 shows that the Frequency features provide much
better performance. For example, 1-NN classifier using Fourier transform of recon-
structed and dynamic signals classified the wheels with around 4% error. These results
validates the wheel defect identification model.

In these tests four wheel with three different sizes have been used. Figure 6.11 showed
that the maximum distances between the consecutive samples reduced to 5 mm for most
sensor intervals by using around 50 sensors. This results indicates that the signals re-
constructed by 50 sensors can provide useful information required. Therefore, the clas-
sification process is investigated by different datasets generated by different number of
sensors. Figures 6.13, 6.14, and 6.15 present the variations of the classification errors by
increasing the number of sensors used for collecting data and reconstructing the signals.

Figure 6.13 compares the classification errors of SVM, 1-NN, and 3-NN classifiers
using the Peak value, dynamic value, and Ratio value when the number of sensor is in-
creased. This Figure shows that the classification errors using 1-NN, and 3-NN classifiers
decrease by increasing the number of sensors. In addition, the classification errors are
too high when the number of sensors are too few. Figure 6.11 showed that with few
number of sensors, the samples have large distance and could not cover the whole cir-
cumference. Therefore, using reasonable number of sensor or increasing the length of
the effective zone to cover whole circumference is vital even when the reconstructed
method is not used and only the statistical features are used.

Figure 6.14 shows that the 1-NN, and 3-NN classifiers using the main signal provided
better performance than the dynamic signal, ratio signal, and the normalized signal. In
addition, increasing the number of sensors more than around 30 sensors has no impact
on the results. Figure 6.15 presents the results of the classifications using the frequency
features. In Figures 6.15a, b, and c, the error reductions due to increasing the number of
sensors are significant.
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Table 6.3: A comparison between the results of different classifiers and feature methods by the
average and the standard deviation of the classification errors. The horizontal bar represents the
magnitude.

Feature Classifier Error [%] Standard deviation 
of the error [%]

SVM 75 0.33
1-NN 48.33 1.03
3-NN 39.42 1.66
SVM 55.72 0.53
1-NN 16.19 1.28
3-NN 12.6 1.5
SVM 75 0
1-NN 26.14 1.38
3-NN 25.72 1.62
SVM 26.04 2.48
1-NN 16.77 1.34
3-NN 18.43 0.96
SVM 34.94 2.09
1-NN 47.6 0.68
3-NN 48.38 0.71
SVM 35.1 1.01
1-NN 45 0.54
3-NN 47.08 0.42
SVM 28.59 2.47
1-NN 33.64 1.12
3-NN 34.47 1.58
SVM 14.06 1.73
1-NN 4.06 0.46
3-NN 6.3 0.92
SVM 14.37 1.92
1-NN 4.42 0.57
3-NN 6.14 0.82
SVM 16.3 1.85
1-NN 8.22 0.82
3-NN 10.1 0.9
SVM 22.7 2.2
1-NN 22.08 1.41
3-NN 18.95 1.19

Normalized signal

Fourier transform of Main signal

Fourier transform of Dynamic signal

Fourier transform of Ratio signal

Fourier transform of Normalized signal

Peak value

Dynamic value

Ratio value

Main signal

Dynamic signal

Ratio signal
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Figure 6.13: The comparison of the classification errors of 1-NN, and 3-NN classifiers by increasing
the number of sensor for a) Peak value, b) dynamic value, and c) Ratio value.
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Figure 6.14: The comparison of the classification errors of 1-NN, and 3-NN classifiers by increasing
the number of sensor for a) Peak value, b) dynamic value, and c) Ratio value.
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Figure 6.15: The comparison of the classification errors of 1-NN, and 3-NN classifiers by increasing
the number of sensor for a) Peak value, b) dynamic value, and c) Ratio value.
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6.5. CONCLUSION
This Chapter answered to the corresponding research question: "How can the proposed
method be tested and validated?". This Chapter validated the data fusion, and the wheel
defect identification models using the experimental data generated by a test rig. Four
wheels with different conditions were tested by different loads and velocities to generate
the required data. The data fusion model reconstruct signals from the collected samples
and made a dataset. Pattern recognition methods were used to learn from the data to
make classifiers. These classifiers were used to classify unseen data and validate the
wheel defect identification model. The results obtained demonstrated the possibility of
using the reconstructed signals to classify the wheels into different classes of defect types
and severities.

Performance of the wheel defect identification model depends on two main param-
eters. First parameter is the classification method including preprocessing, feature ex-
traction, and classifier used. The errors due to this parameter can be reduced by de-
veloping the preprocessing, and feature extraction procedures such as principal com-
ponent analysis (PCA), and using classifiers with different specifications such as kernel
function. The second parameter is the reconstructed signals used for training the clas-
sifiers. Chapter 4 investigated and discussed the influential parameters on the signals
reconstructed. By considering these parameters, the errors of the defect identification
model can be reduced.





7
CONCLUSIONS AND

RECOMMENDATIONS

This dissertation proposed and investigated the performance of a data fusion method
to reconstruct a new informative signal for estimating the wheel condition. This final
Chapter draws the main conclusions in Section 7.1, and offers a set of recommendations
for future research in Section 7.2.

7.1. CONCLUSIONS
This dissertation aimed to develop a wheel condition monitoring method to answer the
following main research question: "How can the extent of railway wheel defects be ac-
curately estimated?". To achieve this goal, Chapter 1 addressed five key research ques-
tions. This Section presents the answers of the key questions and summarizes their cor-
responding conclusions.

To present the state-of-the-art condition monitoring methods, Chapter 2 carried out
a comprehensive literature study and answered the first key question: "What are the
state-of-the-art technologies for estimating the wheel condition?". On-board and wayside
are two methods for monitoring the wheel condition. On-board methods have several
challenges to be implemented. Several wayside systems are commonly used to moni-
tor the wheels. Since the wheel flat as a severe defect damage the track and train, many
researches have been focused on detecting flats. These methods can be helpful for cor-
rective maintenance by detecting the defective wheels. WILD is a commercial system
invented few decades ago that is used for measuring the wheel load. WILD had no sig-
nificant developments in the course of time. This system has great potential to be de-
veloped as a wheel condition monitoring system. The results obtained from different
studies showed that the train velocity and axle load influence the WILD outputs. In ad-
dition, this system has difficulty in detecting minor defects and identifying the defect
types. As a result, this research focused on developing the WILD system to estimate the
wheel defect type and severity.
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The sensor installed along the rail makes a partial observation of a moving wheel.
Therefore, WILDs normally use multiple sensors to collect data from different portions
of the wheels. The main idea that has been proposed and developed in this disserta-
tion is combining the data collected by multiple sensors to reconstruct informative sig-
nals by mapping the samples over the circumferential coordinate in the space domain.
Chapter 3 proposed a fusion method to answer the second key question: "How can the
data collected by multiple sensors mounted along the rail be fused to reconstruct a new
informative signal?". As we expected the reconstructed signal follows the contact force
pattern that represents the wheel geometry. As a result, the proposed method can be
considered as a generic method that can fuse different responses of track components
such as rail and sleeper. As a proof, Chapter 4 used the rail to sleeper displacement sig-
nals, and Chapter 6 used the bending signals measured by strain sensors to reconstruct
informative signals.

The output of the fusion process is influenced by several parameters. Chapter 4 car-
ried out a detail parametric study to answer this question: "How do the influential factors
affect the reconstructed signal?". The influential parameters can be categorized into two
groups. The parameters influence the fusion process by making an imperfect recon-
struction, and the parameters change the reconstructed signals by changing the wheel-
rail contact force. Measurement noise is an example of the parameters of the first group
that makes an imperfect measurement. When the defect is relatively small, the rail re-
sponse variation due to the wheel defect is comparable with the measurement noise
magnitude. Therefore, the measurement noise covers the defect signal in the recon-
structed signal. Therefore, using sensors with high signal to noise ratio is essential for
detecting the minor defects. Some other parameters influence the distribution of the
samples over the circumferential coordinate such as sensor interval, wheel diameter,
length of the effective zone, and number of sensors. These parameters should be de-
termined in a way that the collected samples cover the whole wheel circumference. The
most practical methods are increasing the number of sensors, and using the sensors with
longer effective zones such as shear strain sensors presented in Figure 2.13. The param-
eters of the second group are the operational parameters such as the train velocity, and
axle load that change the reconstructed signals. These parameters are out of control and
have considerable effects on reconstructed signals.

Variations in the influential parameters such as train velocity, and axle load lead to
variation in the signals reconstructed even when the defect is kept constant, and the
fusion process works perfectly. In addition, some parameters such as measurement
noise corrupt the signals reconstructed. The main purpose of this research is to esti-
mate the wheel condition by identifying the defect type and severity. To attribute the
reconstructed signals to specific class of defect type and severity, the pattern recogni-
tion methods have been exploited. To answer this question: "How can the defect types
and their severity be detected?", Chapter 5 built a wheel defect identification model us-
ing Support Vector Machine (SVM), and k-nearest neighbour classifier (k-NN) to classify
the signals into different classes. In this method, the classifiers are trained by a set of
data to be able to classify new unseen data. Therefore, this method needs sufficient data
from different classes of defect types and severities. The results obtained in Chapter 5
showed that the classification using the reconstructed signals gives convincing perfor-
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mance with minor errors.
To validate the data fusion, and the wheel defect identification models a test rig

has been designed and constructed in Chapter 6. To reconstruct signal, the data fu-
sion model used the experimental data generated by the test rig. Then, the classifiers
have been trained by the reconstructed signals to classify unseen data and to validate
the wheel defect identification model. The results obtained validated the data fusion
model by reconstructing informative signals. The wheel defect identification model as
the main aim of this dissertation has been validated by classifying the wheels into differ-
ent classes of defect types and severities using the classifiers trained by the reconstructed
signals. The laboratory results showed that the extent of wheel defects be accurately esti-
mated by classifying the wheels into different classes with less than 5% error. This means
that the technology developed in this dissertation has a great potential for real field im-
plementation.

7.2. RECOMMENDATIONS
Railway is a conservative, old, mostly government-owned, and complex industry. Each
country has its own railway structure with different stakeholders. For example, in the
Netherlands, ProRail is the infrastructure company and several train operators use the
infrastructure, while in Switzerland, SBB is the infrastructure and operator company. To
take the next step, some challenges regarding the technical development, and imple-
mentation should be tackled as follows:

• The available commercial WILDs in the market normally use 6 to 12 sensors per
rail. These number of sensors are not enough to cover whole wheel circumference.
Therefore, the first step is increasing the number of sensors to the extent that the
collected samples provide required sampling frequency in the space domain to
reconstruct the signals.

• To collect reliable data from the sensors, the measurement segments of the track
should be maintained more than other segments. In addition, the sensors with
higher signal to noise ratio such as FBG sensors can provide better outputs.

• The defect identification model exploited supervised pattern recognition methods
that need a dataset to train the classifiers. In this dissertation, we considered lim-
ited classes of defects. To implement this model in practice, all possible defects
with the corresponding range of severities should be considered to generate the
required dataset for training the classifiers. As a result, a test campaign should be
carried out to collect the required data.

• The defect identification model uses the reconstructed signals to train the classi-
fiers. The reconstructed signals are the responses of the track to the contact force.
Since the patterns of the reconstructed signals depend on the dynamic properties
of track and vehicle, the training dataset should be localized by considering the
variations in these properties.

• Following the dataset generation, the feature extraction methods should be tested
and in case of poor performance, new features should be extracted.
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• WILDs are being used to detect the detrimental wheels by measuring the high im-
pact forces when they exceed a threshold. In this case, the WILDs are used as a
safety and alarming system. When a wheel exceeds the threshold, it has to be
stopped in the next station and the operator incurs a penalty. Therefore, the freight
operators have to be conservative to be within the safety range. The outputs of the
defect identification model can be used to avoid these consequences, and to max-
imize the train loads.

• The defect information can be used to optimize the maintenance plan of the wheels.
Therefore, to monitor all wheels, the WILDs should be distributed over the net-
work to give full coverage.

• The wheel-rail contact force (wheel condition), is required for the track degrada-
tion modelling and its lifetime prediction. The wheel condition estimated by the
new method can be used to improve the track degradation model, lifetime predic-
tion model, and the track maintenance plan.

• WILDs usually are used to calculate the track access charges by measuring the
wheel load. The infrastructure company calculates the track access charges for
train operators that use the infrastructure. These charges are normally calculated
for each train based on the kilometres and loads. According to the Commission
Implementing Regulation 909/2015 of the European Union [89], wheel defect such
as flats can be taken into account for calculating the direct cost of trains. There-
fore, the technology developed in this dissertation can be used for track access
charge calculation by considering the wheel defect type and severity.
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List of symbols and notations

The following Table presents a list of the symbols and notations used in this Dissertation.

at acceleration in the time domain
Aω acceleration in the frequency domain
bG width of the section in rail neutral line
C I condition index
C f filter coefficient
C number of filter coefficients
emax maximum of strain signal
emi n minimum of strain signal
ft sensor sampling frequency in the time domain
fs sensor sampling frequency in the space domain
fmax highest frequency contained in signal
fUd shifted frequency
fU frequency of signal propagated
Ft force in the time domain
Fω force in the frequency domain
Fmax maximum force
F̄ average force
FD dynamic force
Fwr vertical force of the right wheel
Fwl vertical force of the left wheel
Fw1 vertical force of the first wheel
Fw2 vertical force of the second wheel
Fxz vertical force calculated by shear strain
F1 first feature
F2 second feature
G tangential elasticity module
g (t ) wheel defect signal in the time domain

g j (t )
windowed defect signal measured by sensor in the time do-
main
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g (x) wheel defect signal in the space domain

g j (x)
windowed defect signal measured by sensor in the space do-
main

g (i ) dimensionless wheel defect signal
g j (i ) dimensionless windowed defect signal measured by sensor
ht system response in the time domain
Hω system response in the frequency domain
Iy inertial momentum of the rail section
I total number of samples of the signal
kc calibration coefficient
Lw wheel circumference length
Le length of the effective zone
M total number of sensors
N total number of samples in the effective zone of the sensors
N t total number of samples from defective area

N s number of defective area samples that mapped in the sequen-
tial order

ne refractive index of the core of FBG sensor
n j (t ) uncorrelated noise in the time domain
n j (x) uncorrelated noise in the space domain
n j (i ) dimensionless uncorrelated noise
Pi sensor position
Rw wheel radius
RF force ratio
Rl off-loading ratio

rk,c

ratio of the number of defective area samples that mapped in
the sequential order to the total number of the defective area
samples

Rz1z2 (γ)
cross-correlation between the signals measured by two sen-
sors

Rψ̂∗
r ,ψ̂∗

s

cross-correlation between interpolated normalized recon-
structed and reference signals

Rψ̂∗
r ,ψ̂∗

r

auto-correlation of the interpolated normalized reference sig-
nal

Sy static momentum of the lower part of rail
Sm,n dataset from the collected samples
S1

m,n samples from the defective area
S2

m,n samples from the healthy area

S̃ψr ,ψs

similarity between the reference signal and the reconstructed
signal

T measurement time
TL lower threshold
TU upper threshold
VU velocity of the ultrasonic wave
V train velocity
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w(t ) wheel signal in the time domain
w(x) wheel signal in the space domain
w(i ) dimensionless wheel signal
Xm space position of the sensors
Ym position of the sensors over the circumferential coordinate
z j (t ) signal measured by sensor in the time domain
z j (x) signal measured by sensor in the space domain
z j (i ) dimensionless signal measured by sensor
Zm,i dataset of all signals measured by all sensors
αc scaling factor
γ lag in the cross-correlation function
δ sample delay between signals
∆λB alteration of reflected wavelength
ε strain
ε̄ average of strain changes
εxz shear strain
Λ grating period of FBG sensor
λmax maximum distance between the consecutive samples
λB reflected back wavelength
µs average of the samples
µr average of the reference signal
µs average of the reconstructed signal
ρ space delay between signals
σs standard deviation of the samples
σs standard deviation of the reconstructed signal
σr standard deviation of the reference signal
τ time delay between signals
ψs reconstructed signal
ψr reference signal
ψ̂r normalized reference signal
ψ̂s normalized reconstructed signal
ψ̂∗

r interpolated normalized reference signal
ψ̂∗

s interpolated normalized reconstructed signal
ω angular velocity

b c round operator toward the nearest integer less than or equal
to the element
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List of abbreviations

The following Table presents a list of abbreviations used in this Dissertation.

CMS Condition Monitoring System
WILD Wheel Impact Load Detectors
RCF Rolling Contact Fatigue
RMS Root Mean Square
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
AMMF Adaptive Multiscale Morphological Filtering
FBG Fibre Bragg Grating
SNR Signal to Noise Ratio
SSM Single Sampling Method
MSM Multiple Sampling Method
OOR Periodic Out Of Roundness
FFT Fast Fourier transform
SVM Support Vector Classifier
kNN k-Nearest Neighbour classifier
PCA Principal Component Analysis
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