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ABSTRACT

In IT systems, a logfile provides administrators with an audit trail which can be
used to review a system’s activities and a way to discover and diagnose problems
which have occurred within that system. When an attacker penetrates an IT system,
commonly one of their first actions is tampering with the logs, so that they can
hide their malicious activities [CP10]. For most types of systems a suitable secure
logging solution exists. These solutions prevent an adversary from tampering with
the system logs, or make it infeasible to do so undetectably. However, the solutions
that exist for devices with limited computing power, “resource-constrained” devices,
are all unsuited for long-term unsupervised deployment. In this scenario a device
is deployed in a hostile environment for prolonged periods of time, during which
it cannot communicate or otherwise interact with another party. Existing solutions
for this scenario are either, not secure against all known attacks on secure logging
schemes, make assumptions that are not realistic given the aforementioned scenario,
or fail to account for real-world constraints that these devices and scenario impose
on the capabilities of a secure logging scheme.

In this thesis we present two secure logging schemes called Immutable Forward
Linked and Sealed Logging (IFLS) and Pseudorandom Indexed Forward Linked Log-
ging (PIFL). Both schemes allow for tamper-resistant logging on low-powered devices
while at the same time requiring only initial interaction with an external party. Fur-
thermore we present a novel and efficient way of establishing an immutable link
between consecutive log entries, which grants protection against most attacks on
secure logging schemes. We also detail two methods to shield the last log entry, so
that Truncation Attacks and Crash Attacks [BN17] are mitigated. The combina-
tion of these techniques in IFLS and PIFL results in two schemes which are fully
tamper-resistant. We additionally find that PIFL’s pseudorandom indexing of log
entries makes this scheme well-suited for use on flash storage, a storage medium
that is ubiquitous in resource-constrained devices. Lastly, we confirm the real-world
feasibility of our work by implementing and practically evaluating IFLS in the Rust
programming language.
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“The true delight is in the finding out rather than in the knowing.”

— Isaac Asimov [Asi20]

“One day I will find the right words, and they will be simple.”

— Jack Kerouac [KD06]
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1
INTRODUCTION

Log keeping is the act of recording relevant information and events about a process
in a log file [RP01]. In the computing infrastructure domain log files are a vital part
of any system; They provide administrators with an audit trail which can be used
to review the system’s activities and a way to discover and diagnose problems which
have occurred within the system. For systems which do not operate in a high se-
curity context, such as, refrigerators or internet connected light bulbs, a simple log
file containing the logged messages in chronological order is sufficient, should their
actions ever need to be reviewed. However, for systems which operate in high-risk
environments, such as military sensors or a large-scale cloud infrastructure, one has
to account for malicious entities trying to hide their activities by tampering with the
log [KS06]. In these scenarios a secure logging scheme is needed which can guarantee
the integrity and authenticity of the log’s contents.

The function and utility of a secure logging scheme can best be illustrated with
an example; DARPA’s LANdroids [Esh07] are little caterpillar-tracked robots which
are deployed behind enemy lines to collect military intelligence. It is likely that these
measurements are stored in a log-like data structure, where each measurement is
a new entry in the log. In the event that one of these robots is taken over by an
adversary we would have to assume the worst possible scenario, which is to say
the adversary controls the robot completely. If we take a moment to reflect on this
scenario, we come to the conclusion that no amount of security measures will pro-
tect against the adversary entering false information into the log after they have
assumed control [SK98]. However, we make the assumption that, provided that the
pre-compromise log entries remain intact and unaltered, it is possible to detect the
intrusion after the fact with overwhelming probability. In this last condition lies the
challenge for secure logging schemes: ensuring the authenticity and integrity of the
pre-compromise part of the log file.

Many different schemes have been proposed for creating secure audit logs. How-
ever all of them either require some form of online communication [Acc13] [AKV03]
[CW09] [Dow+16] [Hol06] [SK98] [Wat+04] [YNR12] [YN12] or are vulnerable to
one or more attacks [MT09] [SK98] [YNR12] [YN12] [Hol06]. Most notably, all of
these papers are vulnerable to the Crash attack [BN17]. Furthermore only a few of
these schemes were designed specifically for platforms with limited computing power
[YN12] [MT09] [CW09] [BN17]. Given the need for secure logging systems, it is essen-
tial to have an efficient and secure protocol. In this thesis we design a secure logging
scheme which is both efficient and secure and which offers significant improvements
over existing solutions.

1.1 secure logging schemes

A secure audit log is defined by two properties; (i) Tamper resistance and (ii)
Verifiability. Firstly, a secure audit log should be tamper resistant. That is, it must
guarantee that the logger and only the logger can create valid entries (authentic-

1



2 introduction

ity). Additionally, once an entry has been created it must not be possible to alter it
(forward security). However, as mentioned above, once an attacker has compromised
a system one cannot prevent them from controlling what data is entered into the
log. Furthermore, one can also not prevent the attacker from deleting log entries
that have not been transferred to an external system [SK98]. The utility of secure
logging schemes in this case lies in not allowing an attacker to perform these actions
undetectably to any party inspecting the log afterwards.

Secondly, a log should be verifiable. As mentioned earlier, an attacker must not
be able to undetectably alter any log entries created before compromise. To this end
there needs to be an external party inspecting an audit log to verify whether all en-
tries are present and untampered with. The external party can come in many forms
such as, a trusted computer [SK98], a dedicated verifier [Acc13] or any interested
party in the case of publicly verifiable audit log [Adi08].

In order for an audit log to be verifiable, it needs to contain two types of information.
Firstly, it needs to provide data with which each individual entry’s authenticity can
be verified. The reason for this requirement is that in case that the log is damaged
or some entries are deleted, it should still be possible to recover information from
undamaged parts of the log. Secondly, the entries need to be connected to one an-
other in such a way that the order of the entries can be verified and deletions can be
detected. The combination of these two information types should make it infeasible
for an attacker to undetectably tamper with the entire pre-compromise part of the
audit log.

1.2 application scenario and device life cycle

The term “resource constrained” is used often throughout this thesis. Whenever this
term is used, we mean a device which only has limited computing power and memory
at its disposal. The consequence hereof is that with respect to cryptographic opera-
tions certain limitations are implicitly imposed on the capabilities of U . Concretely,
this means that most asymmetric cryptographic primitives cannot be used by U , be-
cause these typically require much more computational power than symmetric ones
[EKK14].

The scenario we base our research around is based on a typical military deployment
process of (semi-)autonomous devices. In this scenario a device’s life cycle starts at a
trusted and secure location, where it is prepared for deployment. After preparations
have finished, the device is deployed in a hostile or otherwise unsafe territory. Here
the device is expected to operate for prolonged periods of time during which it is not
overseen nor contacted by the party which deployed it. If the device survives deploy-
ment or is not otherwise lost, it will eventually be collected by the aforementioned
party.

The above process is the basis for the application scenario we envision. In this sce-
nario we have a resource constrained, untrusted logger U . U is expected to operate
autonomously for indefinite periods of time under harsh conditions (e. g. can expe-
rience power failures, overheating, etc.). Untrusted in this context means U is not
sufficiently tamper-resistant or physically secure to prevent an attacker A from tak-
ing it over. Over the duration of its deployment it cannot be assumed that U will
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ever be able to communicate with a third-party. However, it can be assumed that the
device will be inspected by a trusted party T if it were to stop functioning correctly,
or it has detected an intrusion. Furthermore on pre-deployment T has the ability to
safely perform operations such as key sharing, initializing generating public/private
key pairs and setting security parameters.

In the military branch it is often the case that equipment is developed and pro-
duced by external contractors. If the said equipment malfunctions in this scenario,
the military might not have the necessary expertise to diagnose the problem them-
selves. If this is the case, the device needs to be sent to the external contractor for
review. From the military point of view however, this poses a problem. The device
might contain sensitive information which should not be viewed by external parties.
Furthermore, the military might not completely trust the contractor to not somehow
modify, delete, or otherwise tamper with data on the device. A solution to this issue
is selective verifiability and disclosure. This means that verification and disclosure
of the data on the device is distributed over separate parties. The verifying party V
can only verify the integrity of the data and the inspecting party I can only read
the data on the device. Both of these parties are subordinate to T , meaning that
only T can give them access to (parts) of the data on U .

1.3 security guarantees

If A compromises U at a point of time t no guarantees can be made about log
entries recorded after t. Therefore we are forced to assume that all post-compromise
entries are useless and cannot be used to store any information whatsoever about
the activities of A. The scheme we construct should however allow for making the
strongest security guarantees possible about the log entries created before t. These
guarantees are:

1. A is unable to learn anything about the contents of any log entry made before
t.

2. A cannot undetectably insert entries into the log at any location corresponding
to a point in time before t.

3. A cannot undetectably modify entries recorded before t.

4. A cannot undetectably delete entries recorded before t.

5. A cannot undetectably create a new log file.

As mentioned earlier there is a non-zero probability that the device will detect the
intrusion attempt. If this is the case then that means there is a window of time
[t− ε, t] in which U knows it is being compromised but A has not gained control
over it yet. In case this happens, the aforementioned window of time [t− ε, t] should
be used to erase keying material and other secrets and leave the log in such a state
that A cannot append new valid entries to the log. What’s more, for T it should
be easy to determine from the log’s state that illegal operations have occurred. If
no intrusion is detected, there is no way to discern malicious entries from valid ones.
In that case an external tool or party should look at the contents of each log entry
to identify the intrusion after the fact. This is however outside of the scope of this
research, the focus of this thesis is solely on maintaining secure audit logs and not
on parsing or interpreting their contents.
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1.4 research question

Now that we have defined the application setting and desired properties, we can
state our research question:

How to construct an offline, authenticated, forward secure and confidential logging
scheme which is suitable for resource-constrained devices?

This question can be broken down in multiple parts in order to better clarify the
underlying problems:

1. How to achieve the confidentiality, forward security and authenticity and prop-
erties for pre-compromise log entries?

2. How to make the scheme suitable for resource constrained devices?

1.5 contributions

Our contributions are as follows:

1. We identify fundamental incompatibilities between existing secure logging so-
lutions and the requirements for our application scenario.

2. We describe multiple commonly occurring real-world scenarios in which nearly
all of the existing schemes are either unusable or suffer from severe performance
penalties.

3. We present a new secure logging scheme called Immutable Forward Linked
and Sealed logging (IFLS). Our scheme provides forward-security, authenticity,
confidentiality and log stream integrity as well as selective verifiability and
disclosure.

4. We present an adaptation of IFLS, Pseudorandom Indexed Forward Linked
logging (PIFL), which is optimized for flash memory.

5. We evaluate the performance and security of both existing secure logging
schemes and our proposed scheme and its adaptations.

1.6 report outline

This thesis report is structured in the following manner: Firstly, an introduction on
secure logging is given, the motivation for this research is provided and the goals
we hope to accomplish are stated. In Chapter 2 a background on secure logging
schemes and the building blocks hereof are given in the form of several definitions
and cryptographic primitives. Chapter 3 describes the current state of secure log-
ging schemes. In Chapter 4 we present our original work, a logging scheme called
Immutable Forward Linked and Sealed logging. A proof of its security is provided,
and its security and performance are compared to similar secure logging protocols.
Chapter 5 begins with posing multiple commonly occurring real-world scenarios in
which most existing schemes do not function well. Then we present our adaptation
of IFLS, Pseudorandom Indexed Forward Linked logging (PIFL), which is designed
specifically for the aforementioned scenarios. We additionally evaluate how these
adaptations affect performance and security. In Chapter 6 we evaluate a software
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implementation of IFLS and some of the building blocks of PIFL, to assess whether
our schemes are truly fit for resource-constrained devices. Finally, we discuss the
findings of this thesis and provide an outlook for future research in Chapter 7.





2
BACKGROUND

This chapter lays the foundation for the later chapters by providing and explaining
the necessary cryptographic preliminaries and definitions.

2.1 definitions

Definition 1. Confidentiality entails protecting information from being disclosed to
unauthorized parties. In the context of this thesis, confidentiality means that if there
exists a ciphertext M̂ encrypted with a key of length k created at a time T . Then it
should be computationally infeasible for any polynomial time bounded adversary to
recover the plaintext M at any moment T < T ′ < Tk. Where Tk is a realistic upper
bound congruent to k.

Definition 2. Authenticity and Integrity. For any log entry created according to the
logging scheme presented in this thesis there are (among others) two guarantees we
want to make. The first one is integrity, which means that the log entry is recorded
and maintained in the log file exactly as intended. The second guarantee is that of
authenticity, any entry in the log is valid if and only if it originated from the logging
device itself exactly as it was sent. For most practical applications of cryptography,
authenticity nearly always implies integrity [Bel17].

Definition 3. Forward Security. A cryptographic scheme is forward secure (or secret)
if compromising a long-term key, or a session key at some time in the future does
not compromise the security of communications made in the past [MOV96].

Definition 4. Quality of Forward Security. Forward security can be implemented
in various ways depending on the needs of the user. In the most security sensitive
scenario, one would want to update encryption keys after each encryption operation
(per-item basis). However, in some cases security is, to some degree, subordinate to
performance. In such cases, one might choose to encrypt on an interval basis rather
than a per-item basis. This performance-forward security quality trade-off is called
“Quality of Forward Security (QoF)” and it is used to indicate the amount of risk a
user is willing to accept in return for better performance [Ma08].

Definition 5. Log Stream Integrity. In [MT09] Ma et al. introduce the concept of log
stream integrity. Which in addition to the requirements as mentioned in definition 2,
adds the additional requirement that log entries cannot be reordered in the log.

2.2 cryptographic primitives and mathematical tools

2.2.1 Symmetric-key Algorithms

A symmetric key algorithm is the composition of two functions, “encrypt” and “de-
crypt” which use the same cryptographic key to create the ciphertext and plaintext
respectively. Formally: EK(M) = M̂ and DK(M̂) =M, where M is the plaintext and
M̂ the ciphertext. There exist two families of symmetric-key algorithms; stream
ciphers combine the plaintext with a pseudo-random key stream to produce the

7



8 background

ciphertext. Block ciphers on the other hand, take a block of bytes at a time and
encrypt them as a single unit [Sma15]. In this thesis only block ciphers are used.

2.2.2 Public Key Cryptography

A cryptographic system which uses a different key for encrypting than for decrypting
is called a public key cryptography scheme (PKC). Usually encryption is done with
the public key which may widely distributed, and decryption is done with the private
key which is known exclusively to the owner. This construction achieves the confi-
dentiality property (see: definition 1) and the authenticity property (see: Definition
2) [Sma15].

2.2.3 Signature Schemes

Digital signatures as described by [GMR88] allows one to sign a message with their
private key which can then be verified by any party given the original message and
the signer’s public key.

Forward Secure Signature Schemes

Forward Secure Signature Schemes are PKC based schemes where the signing key
changes over time. For the first time period there exists an initial signing key. Then,
at the end of each time period a key evolution function creates the key for the next
time period and deletes the old signing key. Signing a message (i.e. signature creation)
requires three inputs: the message to be signed, the public key and the current time
period. Likewise, for verification of a signature the same three inputs are required
and, self-evidently, the signature itself. Formally, a forward-secure digital signature
scheme is defined as a quadruple of functions; Initialize, Sign, Update, Verify,
where:

1. Initialize(k, T)→ (SK0, PK) : Takes as input the security parameter k ∈N

and the number of periods T and returns the initial secret key and public key.

2. Sign(m, SKi) → σi : Takes the secret key SKi for the current time period i
and the message m and returns the signature σi of m for period i.

3. Update(SKi)→ SKi+1 : Takes the secret key for the current time period and
returns the updated key for the next period.

4. Verify(m, σi, PK)→ {valid|invalid} : Takes as input a messagem, a putative
signature σi, the public key PK and returns whether the signature is valid for
the given message and time period.

The security guarantee that these signature schemes provide, is that compromisation
of the signing key for a given time-period does not enable signature forging for any of
the preceding time periods. In terms of forward security this is the absolute strongest
guarantee possible [DVW92]. There exist many different Forward Secure Signature
schemes, the three most relevant ones will be discussed below.

Bellare & Miner Signature Scheme

Bellare and Miner [BM99] was the first signature scheme addressing forward security
for which the space complexity was O(log T) rather than O(T), where T is the number
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of time periods. Bellare and Miner suggest a scheme based on a binary certification
tree. In their scheme a binary tree is constructed with T leaves, exactly one leaf for
each time period. Each node in the tree corresponds to a key pair instance (PK, SK)
of a regular signature scheme. The public key of the Bellare and Miner scheme is the
root of the aforementioned tree, the private keys are the set of private signing keys
corresponding to all distinct paths from the root to each leaf. A signature for a time
period i is constructed by creating a certification chain from leaf i to the root, where
the actual message is signed with the private key in the leaf. Each node in the tree
is used to sign the public key of its children. Verification of a signature σi is done by
starting at leaf i and moving upwards through the tree, verifying each signature in
the chain up to the root signature, which is verified against the public key.

Malkin Micciancio Miner Signature Scheme

The scheme published by Malkin et al. [MMM02] achieves a new feature that previous
schemes did not; the number of time periods (T) does not need to be fixed in advance
and consequently does not influence performance. Malkin, Micciancio and Miner
suggest two composition operations which take any two forward-secure schemes with
time periods T1 and T2 respectively and construct a new forward-secure scheme with
more time periods. These constructions are suggested as tools in constructing flexible
forward-secure scheme by applying them repeatedly in different combinations.

The Extended Merkle Signature Scheme

The extended Merkle signature scheme (XMSS) by Buchmann et al. [BDH11] is a
signature scheme which aside from the forward secure property, also promises to
be post-quantum secure. It achieves this property by using a pseudorandom func-
tion family and a hash function which is second preimage resistant. With only these
very minimal security assumptions (e. g. psuedorandomness and second preimage
resistance) it is provably forward secure. The current consensus among the cryp-
tographic community is that the aforementioned properties are not threatened by
quantum computers [Ber09] [Fef10] as such the XMSS scheme is post-quantum se-
cure.

XMSS is based on a one-time signature scheme (OTS), which is a signature scheme
in which a key pair can only be used once. To create a many-time signature scheme,
XMSS uses multiple OTS key pairs and authenticates their public keys trough a
Merkle Tree. In this tree the leaves are the hash digests of the OTS public keys
and the tree root is the public key. To avoid having to store every OTS key pair
individually XMSS uses a pseudorandom function to generate them.

2.2.4 Cryptographic Hash Functions

A hash function, formally defined as: H : {0, 1}∗ → {0, 1}|H|, takes an arbitrary length
input and produces a fixed length alphanumeric output called the “digest” or “hash”.
A cryptographic hash function follows the aforementioned definition and provides
some additional guarantees. (i) Determinism, the same input always results in
the same digest. (ii) preimage resistance, it is computationally infeasible to re-
cover the input from a hash. (iii) second-preimage resistance, finding two dif-
ferent inputs which produce the same hash is computationally infeasible. (iv) Non-
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correlation a small change to the input changes the resulting digest so much that
the new digest appears uncorrelated with the new one [Sma15].

2.2.5 Hash Chains

A hash chain is the result of successively applying a cryptographic hash function to
an initial input, commonly referred to as the “chain root”; x0

H−→ x1
H−→ ... H−→ xn. As

mentioned in Subsection 2.2.4, one of the properties of cryptographic hash function
is irreversibility. The implication hereof is that given an arbitrary node xi in a hash
chain, it is infeasible to recover any node xj, j < i.

Hash chains are an integral part of a large number of logging schemes [SK98] [Hol06]
[MT09] [CW09] [YNR12] [YN12]. This is due to the fact that hash chains allow
for recording chronology, a property which is extremely important to secure logging
schemes. An example of how a hash chain can be used to record chronology is the se-
cure time-stamping protocol [HS91]. In this protocol a trusted time-stamping service
(TSS) constructs a hash chain by inserting messages into it in the order they arrive.
Interested participants can then send and receive messages to the TSS in order to
ensure the chronology of these messages.

2.2.6 Message Authentication Codes

Message authentication codes (MACs) are short pieces of data appended to messages
with which the message’s authenticity can be verified. A MAC is created using the
message it is appended to and a secret key. The receiver of the message can then
verify the received message provided they possess the key used to create the MAC.
This key should be shared between the sender and the receiver over a different
(secure) channel than the one message has been sent over. The most common MAC
implementation is the hashed message authentication code (HMAC) which, as the
name implies, uses a cryptographic hash function to create a MAC.

2.2.7 Aggregate Signatures

A concept introduced by Ma et. al. [MT09], aggregate signatures allow for authen-
ticating a set of messages with a single data tag. When combined with hash chains
they provide a convenient method for achieving forward security and authenticity,
while at the same time being computationally- and space efficient. The idea behind
aggregate signatures is that the MAC of each individual message is “folded” into a
single hash digest. This is done by incrementally hashing the old aggregate signature
together with the MAC of the new message to arrive on a new, fixed-length aggregate
signature.

Formally, creating an aggregate signature is done as follows: We have an initial
secret x0 as the root of a hash chain and a set of messages {m0, ...,mn}. For the first
item we compute σ0,0 = H(MACx0(m0)), then we evolve the secret to the next entry
in the hash chain x1 = H(x0) and delete x0. For entries 1 ≤ i ≤ n the following steps
are taken:

1. Compute σ0,i = H(σ0,i−1||MACxi(mi))

2. Evolve xi to xi+1 = H(xi)
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3. Delete σ0,i−1 and xi

The resulting aggregate signature σ0,n is the length of only a single digest and can
be used to authenticate the entire set of messages. This is done by sharing x0 and
{m0, ...,mn} with a receiver (over separate channels) who will then follow the same
protocol as described above to verify that the resulting tag is equal to the one received
from the sender. It’s important to note that aggregate signatures do not require the
entire set of messages to be present on creation. As such they are extremely well-
suited to work with streams where messages arrive over a period of time. In such a
scenario the tag can be incrementally updated on arrival of each new message.





3
STATE OF THE ART

Due to the importance of audit logs in the IT landscape, a myriad of secure logging
schemes have been developed throughout the years. All of the different application
scenarios for which a logging protocol has been developed would be too broad of a
scope to discuss in this chapter. We will therefore limit ourselves to only research
directly relevant to this thesis. This will generally consist out of general-purpose
logging and resource-constrained logging schemes. In the last section of this chap-
ter (3.6) a comprehensive overview is given of how each of the discussed schemes
compares to it counterparts.

3.1 secure logging schemes

A secure logging scheme is a cryptographic data structure which is typically defined
as the composition of a state and several functions. The entire internal state of
a secure logging scheme is represented by LL which encompasses the log entries
{E1, ...,EL} but also the current cryptographic keys, hash chain nodes, HMACs or
aggregate signatures. Abstracting the internal state away behind a single expression
(L) allows for concisely defining the functionality of a secure logging scheme as the
arrangement of three functions operating on L:

1. Initialize (S) → L0 : Takes a set of initialization parameters S and returns
the readied internal state.

2. Append (ED, LL−1) → LL : Takes some new event’s data (ED) and the
then current state of the log and creates a new log entry out of ED which is
added to the log. Furthermore, cryptographic keys, signatures and so forth are
updated or deleted to reflect the new current state. Lastly the function returns
the updated state.

3. Verify(s ⊆ S, LL)→ {valid|invalid} : Takes the current state of the log and
the initialization parameters S (or a subset of S, in case of PKC based schemes)
and returns whether the state is valid or not.

There are multiple different classes of secure logging schemes, the most relevant of
which will be discussed in the coming sections. Figure 1 gives an overview of these
classes.

3.2 schneier and kelsey based logging schemes

In 1998 Schneier and Kelsey published “Cryptographic Support for Secure Logs on
Untrusted Machines” [SK98]. This paper is the foundation upon which the a sig-
nificant amount of logging schemes in use today are based. [Hol06] [MT09] [YN12]
[Wat+04] [AKV03].

In Schneier and Kelsey’s scheme an untrusted logger U creates a new log file with
identifier ID and generates a corresponding initial authentication key A0. U then
irrevocably commits both ID and A0 to a trusted remote machine T . The reason for
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Figure 1: Secure logging scheme classes.

doing this is to prevent an adversary A from deleting a log file in its entirety only
to then claim that no log file was ever created.

After a new log file has been opened and registered with T , U can add entries
to the log as follows: For log entry j with data type Wj

1. Evolve the previous authentication key into the new one: Aj = H(Aj−1), where
H(x) is some cryptographic hash function.

2. Construct the session key as Kj = H(Wj,Aj).

Figure 2: Adding a new entry to the log.

3. Symmetrically encrypt the data under session key Kj.

4. Compute the next entry in the hash chain and its corresponding message au-
thentication code as
Yj = H(Yj−1,EKj

,Wj), Zj =MACAj
(Yj).
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5. Store the newly generated log entry in the following format: {Wj,EKj
(Dj), Yj,Zj}.

To verify a log file, or a subset of its entries, T establishes a secure channel with a
verifier V and sends A0 through it. To then verify some log entry {Wj,EKj

(Dj), Yj,Zj}
U has sent to V, V performs the following steps:

1. Reconstruct the log entry’s authentication key as Aj = H◦j(A0).

2. Verify that Yj = H(Yj−1,EKj(Dj),Wj).

3. Verify that Zj =MACAj
(Yj).

4. If either step 2 or 3 fails, abort verification and output the reason.

Despite its popularity, Schneier and Kelsey’s scheme does have some drawbacks and
vulnerabilities, these will be briefly expanded upon below.

Forging Attack by Verifier

Because V receives the authentication key from T , a malicious V could potentially
tamper with the entire contents of the log file. The only thing they cannot do is delete
the log file outright, because the log’s ID is registered with T . However, because they
can delete any entry from the log, this makes very little difference in practice.

Delayed Detection Attack

As mentioned earlier, V cannot verify a log file by itself, it needs to receive A0 from
T . If this is done before T has received the most recent copy of the current open log
on U , and before it has been closed. Adversary A could tamper with records logged
from before they had compromised U while temporarily avoiding detection. T will
however detect this attack as soon as it has received the updated version of the log
file.

Truncation Attack

If A compromises U it would be realistic to assume that they have the intention to
delete the log entries documenting their break-in. So long as the log file has not been
closed, A could simply delete however many adjoining tail-end records they desire.
This is analogous to iteratively deleting the head of the hash chain (Yn), as such it
is impossible for either V or T to detect this attack.

Online Server

For every new log file opened by U , it has to communicate with T . This is an
acceptable scenario for devices for which good connectivity can be assumed, however
for a large portion of devices in use even today, this assumption cannot be made.
Schneier and Kelsey address this problem as follows: “In essense [sic], this technique
is an implementation of an engineering tradeoff between how online U is and how
often we expect U to be compromised.”. However we pose the argument that there
are certainly classes of devices where connectivity cannot be assumed, but log file
integrity is nevertheless highly desirable. One such example of these devices would be
military sensors deployed in hostile environments to gather threat intel for prolonged
periods of time.
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3.2.1 Logcrypt

Jason Holt’s Logcrypt[Hol06] is one of the secure logging schemes derived from
Schneier and Kelsey’s scheme. In his paper Holt describes three versions of his scheme,
one which uses a pre-shared key between U and V or T , one which uses public-key
cryptography and one which makes use of Identity-Based Signatures (IBS) [CC03].
For this chapter only the latter will be discussed, because it is the most relevant in
the context of this research.

Identity-Based Signatures from Gap Diffie-Hellman Groups

Logcrypt’s IBS are constructed from Gap Diffie-Hellman (GDH) groups as described
in Cha et al. [CC03]. These are groups for which the Decisional Diffie-Hellman
problem (Fig. 3b) can be solved in polynomial time, but the Computational Diffie-
Hellman problem (Fig. 3a) has no known solution in polynomial time. Tuples of the
form (P,aP,bP, cP) which are solutions to the Decisional Diffie-Hellman problem are
called valid Diffie-Hellman tuples.

P

aP

bP

Compute abP

x

y

(a) Computational Diffie-Hellman Problem
(CDHP): Given (P,aP, bP) find abP.

P

aP

bP

cP
?
= abP

x

y

(b) Decisional Diffie-Hellman Prob-
lem (DDHP): Given (P,aP, bP, cP)
determine whether c = ab.

Figure 3: Illustrations of the two problems underlying Gap Diffie-Hellman Groups.

Let G be a Gap Diffie-Hellman group of prime-order `. Using G, the entire IBS
scheme can be concisely defined as the composition of four functions:

1. Setup: Let P be a generator of G and let s R←− Z/` be the master secret.
Compute Ppub = sP and choose two cryptographic hash functions: H1 : {0, 1}∗×
G→ Z/` and H2 : {0, 1}∗ → G. The parameters of the scheme are then defined
as the tuple: (PKGpub = (P,Ppub,H1,H2), PKGpriv = s).

2. Extract: Given an identity ID, calculate the corresponding private and public
keys as: DID = sH2(ID) and QID = H2(ID) respectively.
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3. Sign: Given a private key DID and some message m, let r R←− Z/`, U = rQID,
h = H1(m||U) and V = (r+ h)DID. The signature of m for identity ID is then
given by σIDm = (U,V).

4. Verify: Given a signature σIDm = (U,V) of a message m for an identity ID.
Check whether (P,Ppub,U+ hQID,V) where h = H1(m,U) is a valid Diffie-
Hellman tuple.

Logcrypt uses IBS to attempt to achieve the forward security and authenticity prop-
erties, however it does not fully succeed in achieving the former as is demonstrated
later on in this section.

The Scheme

In Holt’s scheme an untrusted logger U generates a key generator pair (PKGpub0 ,
PKG

priv
0 ) and a period length n, which are both irrevocably committed to a trusted

computer T . The period length n is the amount of log entries which can be signed
with a generator pair before a new pair should be generated. After the first key gen-
erator pair is registered with T the log is maintained according to the following steps:

For message mi where i ∈ {0, ...,n− 1} in period N

1. Let ski = Extract(PKGprivN , i)

2. Let σi = Sign(m, ski)

3. Let Li = (mi,σi)

4. Append Li to the log

For message mi where i mod n = 0

1. Generate a new key generator pair (PKGpubN+1,PKG
priv
N+1)

2. Let ski = Extract(PKGprivN , i)

3. Let σi = Sign(PKGpubN+1, ski)

4. Delete the old generator pair (PKGpubN ,PKGprivN )

5. Let Li = (PKGpubN+1,σi)

6. Append Li to the log

Logcrypt achieves the forward security property by sealing a period when another
period begins by deleting the private key generator (PKGpriv). It’s important to note
that this is not a particularly strong version of forward security, because an adversary
can break in anywhere during the current period and undetectably tamper with all
entries in said period. Moreover, there are some other weaknesses present in logcrypt.

Truncation Attack

Like in Schneier & Kelsey’s scheme Logcrypt is vulnerable to truncation attacks.
Simply by deleting contiguous tail-end messages, an adversary can undetectably
delete data from the log. This attack is not limited to the most recent period either,
because it is impossible for a verifier to know how many periods were in the log
before deletion.
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3.3 forward secure sequential aggregate schemes

Forward secure sequential aggregate schemes (FssAgg) are schemes based on the au-
thentication technique proposed in [MT07]. In a FssAgg scheme individual log entry
signatures are erased once they are folded intro the aggregate signature. Subsequent
validity of individual log entries is implied by the validity of the aggregated signature
computed over all log entries.

In [MT09] [Ma08] Ma et al. introduce four secure logging schemes;

1. MAC-FssAgg [MT07]: A private verifiable scheme using aggregate signa-
tures as described in Subsection 2.2.7.

2. BM-FssAgg [Ma08]: A publicly verifiable secure logging scheme based based
on a modified version of the Bellare-Miner forward secure digital signature
scheme [BM99].

3. AR-FssAgg [Ma08]: A publicly verifiable secure logging scheme similar to
BM-FssAgg, except that it is based on the Abdalla-Reyzin forward secure dig-
ital signature scheme [AR00].

4. iFssAgg [MT09]: A publicly verifiable scheme similar to MAC-FssAgg with
additional verifier efficiency.

The general idea behind each of the above schemes will be expanded upon below.
Furthermore, the two classes of schemes derived from FssAgg by Yavuz et al., Hash-
Based Sequential Aggregate and Forward Secure Signature (HaSAFSS) [YN12] and
Blind Aggregate Forward (BAF) [YNR12], will be discussed as well.

3.3.1 Bellare-Miner FssAgg & Abdalla-Reyzin FssAgg

The Bellare-Miner FssAgg (BM-FssAgg) and Abdalla-Reyzin FssAgg schemes use
the commutability of the signatures generated by both the Bellare-Miner [BM99]
and Abdalla-Reyzin [AR00] forward secure signature scheme to create aggregate
signatures. For the exact details on how these signatures are constructed, refer to
the paper by Sunitha et al. [SA08].

3.3.2 Message Authentication Code FssAgg

The MAC-FssAgg is intended for use in scenarios where a logger U exclusively for-
wards information to a trusted entity and no interactive communication is needed.
The logging scheme is then defined as follows:

1. Initialize (k)→ sk0 : Generates a k-bit secret key sk0.

2. Sign (mi, ski,σ0,i−1)→ σ0,i : Receives the new log item mi and computes the
corresponding MAC as σi =MACski(mi). Then σi is folded into the aggregate
signature: σ0,i = H(σ0,i−1||σi). Subsequently, σi is deleted.

3. Update (ski) → ski+1 : Takes the current secret key and updates it to the
next iteration. The most straight-forward approach for doing this, is with a
hash chain (2.2.5).
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4. Verify (σ0,i, {m0, ...,mi}, sk0)→ {valid|invalid} : Verifies a signature by mim-
icking the signing process.

The advantages of this scheme are low space- and computational-complexity (O(1)
and O(|H|) respectively) [YN12].

3.3.3 Immutable-FssAgg

In the MAC-FssAgg scheme validity of individual log entries is implied by the valid-
ity of the entire log. This indirect verification is computationally costly if a verifier
is only interested in verifying a single entry. Furthermore, if verification were to fail
then that tells the verifier only that an entry is wrong somewhere in the log and it
says nothing about the veracity of an individual entry.

Immutable-FssAgg attempts to solve the aforementioned shortcomings by keeping
individual signatures in the log. Naturally this solution uses more space than MAC-
FssAgg, because each log entry is accompanied by a signature.

The iFssAgg scheme can be described as a modification on the MAC-FssAgg scheme:

1. Initialize (k) → {sk2, {[(L0), (L1,σ1)], σ0,1}}: Generates a k-bit secret key
sk0 and uses this key to sign a “phantom MAC” on a dummy entry L0. This
MAC is not committed to the log, only L0 is. Then another dummy event, L1, is
created, on L1 a MAC is calculated as well. Subsequently the MACs are used to
calculate an aggregate signature over L0 and L1. Finally (L1,σ1) is committed
to the log and σ0 is deleted.

The resulting log file is of the form: {[(L0), (L1,σ1), ..., (Li,σi)], σ1,i}. By not commit-
ting σ0 an adversary cannot insert a valid entry anywhere in the log, because they
need σ0 to compute a new valid aggregate signature.

3.3.4 Hash-Based Sequential Aggregate and Forward Secure Signature

In [YN12] Yavuz et al. introduce a class of schemes derived from FssAgg which they
call Hash-Based Sequential Aggregate and Forward Secure Signature (HaSAFSS).
These schemes are designed to run on UnattendedWireless Sensor Networks (UWSNs),
which are low-powered “set it and forget it” devices. At the time of writing the
only schemes belonging to the aforementioned class are: (i) symmetric HaSAFSS
(Sym-HaSAFSS), (ii) Elliptic Curve Cryptography (ECC) based HaSAFSS scheme
(ECC-HaSAFSS) and (iii) self-sustaining HaSAFSS (SU-HaSAFSS) scheme. All of
which were created by Yavuz et al. themselves.

HaSAFSS schemes allow the signer to compute publicly verifiable, fixed-size and
compact signatures efficiently. In the three aforementioned schemes the computa-
tional overhead is equal for both verifiers and signers. The way HaSAFSS schemes
achieve forward security is by using Timed-Release Encryption (TRE) [CHS07]. The
goal of TRE is to encrypt a message in such a manner that no entity can decrypt
it until a pre-defined future moment. By using the time factor via timed-release en-
cryption, an asymmetry is introduced between the sender and its receiver(s). This
asymmetry allows HaSAFSS schemes to achieve high computational efficiency by
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minimizing expensive operations, while still remaining publicly verifiable and for-
ward secure.

The security objective of a HaSAFSS scheme is to achieve secure signature aggre-
gation and time-valid forward security simultaneously. This objective varies slightly
from that of FssAgg schemes, which aim for permanent forward-security. This means
that log entries in a HaSAFSS scheme are only existentially unforgeable for a given
time period, after which the collected data has to be transferred to a sink. The ad-
vantage of this reduced quality of forward security is a reduced computational and
storage overhead, as well as public verifiability.

The Sym-HaSAFSS and ECC-HaSAFSS schemes have a linear bound on the num-
ber of time periods a signer can create a signature for. As such, all signers need to
agree on a fixed data delivery schedule prior to deployment. Su-HaSAFSS on the
other hand does not have these limitations; it allows the sender to use an unlimited
number of time periods. Additionally each sender can determine their own data de-
livery schedule without needing to communicate with other signers. The trade-off
Su-HaSAFSS makes is that it is computationally- and storage-wise more costly than
the other HaSAFSS schemes.

3.3.5 Blind Aggregate Forward

The Blind-Aggregate-Forward (BAF) logging scheme proposed in 2009 by Yavuz and
Ping [YN09], describes a novel way of making a logging scheme publicly verifiable.
To this end BAF uses a trusted third party, which generates an initial private key
and a chain of public keys, so that each evolution of the private key corresponds to
a link in the chain of public keys. Then, the initial private key is sent to the logger,
while the chain of public keys are sent to all verifiers.

The novel idea this scheme presents is a method for generating log entries, which
takes very little computing power; creating a log entry requires only a few additions
and multiplications in a finite field. Verification on the other hand is far less efficient,
it can only be done in an all-or-nothing manner. In other words, individual verifica-
tion of log entries is not possible, it’s only possible to determine whether the log file
in its entirety is valid. To address this issue Yavuz and Ping published a new scheme
in 2012 called Fast Intermediate Blind Aggregate Forward (FI-BAF) [YNR12]. In
FI-BAF, aside from the entire log file signature, each log entry has an additional
signature which can be used to verify it. Due to the fact that BAF and FI-BAF do
not use standard signature primitives, their solution is much faster than comparable
schemes such as Logcrypt (3.2.1) or the FssAgg family (3.3).

3.4 history trees

A history tree as described by Crosby et al. [CW09] is in essence a versioned Merkle
tree [Mer87]. Like in a regular Merkle tree, data is stored in the leaves, each of the
internal nodes stores the hash of the subtree below them and the hash of the root
covers the entire tree. Unlike a Merkle tree, a history tree allows for new leaves to be
appended to the right side of the tree. When such an operation occurs, a new version
of the tree is created and the hashes of the internal nodes are recalculated accordingly.
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History trees have two features which make them exceedingly useful. Firstly, as
with Merkle trees, subtrees containing redundant information can be replaced with
a node containing the subtree’s hash digest. This allows for efficient space usage with-
out losing the ability to verify data. Secondly, if there exists a version j history tree,
it is possible to determine what the root hash would have been as of version i < j by
pretending that operations i+ 1 through j do not exist, and then recomputing the
hashes of the internal nodes.

3.5 crash attack

The schemes discussed above have all put a lot of effort in theoretical proofs of
security, however in practice, log devices have a tendency to crash. Apart from crashes
on the operating system level, a logger might have to operate in hostile environments
where it can experience power loss, or suffer from overheating. Without making
strong assumptions about the underlying architecture of a logger, such as operating
system, cache and file system, it is nevertheless plausible that a crash leaves the log
file in an inconsistent state. In the context of a secure logging scheme this assertion
turns out to be a potential attack vector. In their paper Blass et al. describe a new
kind of attack on secure logging schemes, which they call the crash attack [BN17].
For this attack an attacker detectably tampers with the log file, however they then
purposefully crash the logger. For a forensic party inspecting the device afterwards,
the resulting data corruption is indistinguishable from the data corruption expected
of a device which crashed “normally”. As such, it is not possible for the auditing
party to definitively determine whether the device has been tampered with.

3.5.1 Secure Logging with Crash Tolerance

In their paper Blass et al. propose a new protocol called SLiC. The idea of SLiC
is to randomize the position of log entries in the logfile using a variation of Donald
Knuth’s Algorithm P [Knu68]. In doing so an adversary without knowledge of the
pseudo-random function used can only tamper with random entries in the log. This
means that the probability of an adversary tampering with their intended entry
is n−1. Furthermore, it should be possible for a verifier to determine whether any
data corruption was a consequence of a regular crash, or a crash attack. With the
reasoning being that for a regular crash the latest entries are lost and for the crash
attack, random entries are lost.
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3.6 overview and comparison of secure logging schemes

Table 1: Overview of various properties of the secure logging schemes discussed in this chap-
ter.

FssAggS & C (FI-) BAF Logcrypt
iFssAgg BM & AR

SU-HaSaFSS SLiC

Log 2 ·H H ExpOp+H 3 ·H 2 ·H
Computational Update 2 ·H H N/A ExpOp+H H 2·PRF
overhead Verify O(l ·H)) O(l · (ExpOp+H)) O(l ·H) O(n logn)

Keygen O(1) O(L · (ExpOp+H)) O(T · (ExpOp+H)) 2·PRF
Storage Signer O(L · |H|) |K|+ |σ| O(|sk|+ c|H|) O(L · |H|)
overhead Verifier O(|K|) O(L · |K|) O(K) O(S’)(pk’) O(|K|)

Insert 3 3 5 3 3 3 3

Delete 3 3 5 3 3 3 3

Modify 3 3 5 3 3 3 3Safe against
Truncate 5 3 5 3 3 3 •
Forge Att. by V 5 5 3 3 3 3 5

Crash Att. 5 5 5 5 5 5 •
Miscellaneous Online TTP Yes Yes Yes Yes Yes Yes No

*Table 1 shows the costs associated with processing data items for each of the schemes considered in this chapter. H
and PRF denote the cost of doing a single hash operation or pseudo-random function call respectively. |H|, |K|, |σ|, |sk|
signifies the bit length of a hash digest, symmetric key, signature and a private key respectively. The signing and key
update costs are given for a single data item. The cost of key generation is given for the total number of items (i. e. L).
Signature verification cost is given for 0 < l < L items. The storage cost costs are based on the cryptographic overhead
introduced by the schemes, furthermore the assumption is made that the cost of storing the data items is the same
for all schemes. The term ExpOp is an abbreviation for Expensive Operation, which refers to computations that are
expensive to perform, such as modular exponentiation [Sti05] and pairing [Maa04]. The • symbol is used to indicate
that a scheme is statistically safe against an attack for large enough values of L. This is a much weaker guarantee than,
for instance, “computationally infeasible” provides.
**S & C refers to the scheme by Schneier and Kelsey [SK98]. (FI-) BAF refers to the schemes by Yavuz et al. [YN09]
[YNR12]. Logcrypt to the scheme by Holt [Hol06]. FssAgg to the Forward Secure Sequential Aggregate class of schemes
by Ma et al. [MT07]. SU-HaSAFSS to the Sustainable Hash-Based Sequential Aggregate and Forward Secure Signature
by Yavuz et al. [YN12]. And lastly, SLiC refers to the scheme by Blass & Noubir [BN17].

Table 1 summarizes how each of the schemes discussed in this chapter compares
with its counterparts on a variety of principles. From this table the conclusion can
be drawn that no scheme satisfies the following criteria: (i) secure against all known
attacks, (ii) does not require an online TTP and (iii) computationally lightweight.
With this conclusion this chapter has come to an end and a clear goal for the follow-
ing chapters has been set; designing a secure logging scheme which does satisfy the
aforementioned criteria.



4
IMMUTABLE FORWARD L INKED AND SEALED LOGGING

In this chapter the Immutable Forward Linked and Sealed (IFLS) logging scheme is
introduced. First the idea behind the scheme will be explained and a formal defini-
tion given. Then, we will provide a security proof, after which the scheme’s properties
are stated and lastly the scheme is compared to other logging schemes.

In the last chapter we had arrived on the conclusion that no existing scheme sat-
isfies the following requirements: (i) secure against all known attacks, (ii) does not
require an online TTP and (iii) computationally lightweight. With computationally
lightweight we mean that our scheme should be able to run on an embedded plat-
form running other applications besides our logging application. The IFLS scheme
presented in this chapter manages to satisfy all of the aforementioned requirements
by making use of a novel technique; For each new entry that is appended to the
end of the log, an unforgeable reference to the new entry is created in the previous
entry. In other words, a forward link gets established. To understand how this is
done, we first need to look at the structure of a log entry. When a new log event
Li occurs the corresponding log entry, is a tuple of the form: (L̂i, σi). Where L̂i
is the ciphertext of Li, symmetrically encrypted under key ki. And σi is the sig-
nature of the ciphertext constructed in the following manner: σi = H(L̂i||si) for
some signature key si. Then, if another log event Li+1 happens, the correspond-
ing log entry is naturally (L̂i+1, σi+1). However we additionally make a modifica-
tion to the previous log entry so that it is now of the form (L̂i, σ†i, i+1). Where
σ
†
i, i+1 is a signature over the ciphertexts of both Li and Li+1, constructed like so:
σ
†
i, i+1 = H(σi || L̂i || si)) = H(H(L̂i || si) || L̂i+1 || si+1). It’s important to note that

for the construction of σ†i, i+1 the signature key si is not needed, only si+1 is. As
such, si can be safely deleted immediately after σi has been constructed.

In the above description, it is stated that for the construction of each log entry
two keys are needed; ki to encrypt the log event and si to seal the previous log entry
(σ†i−1, i) and compute the new signature (σi). To satisfy the forward security require-
ment it needs to be computationally infeasible to retrieve kj or sj from either ki or
si for i 6= j. We achieve this property by maintaining a hash chain Yx in the internal
memory of the device (i. e. not in persistent storage) from which the aforementioned
keys are derived. To prevent an attacker from deriving keys for past log entries, only
the head of the hash chain is stored. So for a logfile of size n, only the node Yn+1
will be in memory. An added benefit of using a hash chain in this manner is that
a device U running this scheme will only need to register the chain root Y1 with a
trusted party T on initialization. After this has been done, no further communication
between U and T is necessary except when transferring the logfile.

A naive way to derive ki and si would be hashing Yi along with two different string
constants for each of the keys. The problem with this approach lies with the fact that
on some platforms hashing can be a quite expensive operation to perform [NM02].
For this reason it might be a better option to, for example, use a single SHA512
digest and use 128 bits for ki, 128 bits for si and the other 256 bits for computing

23
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the next node in the hash chain. By using a hash chain to derive cryptographic
keying material for each new log entry a big step is taken towards satisfying the log
stream integrity property. Due to the fact that deletion or insertion of malicious log
entries would mean that the logfile is “out-of sync” with the hash chains in terms of
keying material. This would get noticed immediately upon verification. Furthermore
undetectably tampering with the ith log entry would require either obtaining both
ki and si or finding multiple collisions in the used hash function. In Section 4.4 we
prove this formally.

T U
Logfile Internal State

(L1,Y1)←−−−−−−−−−→
Secure Channel

[(L̂1, σ1)] Y1
Derive−−−−→ (k1, s1)y+ L2

yUpdate(Y1)
[(L̂1, σ†1,2), Y2

Derive−−−−→ (k2, s2)
(L̂2, σ2)]

yUpdate(Y2)
y+ L3

[(L̂1, σ†1,2), Y3
Derive−−−−→ (k3, s3)

(L̂2, σ†2,3),
y
Update(Update(...Update(Y3)))

(L̂3, σ3)]y+ [L4, ...,Ln]

[(L̂1, σ†1,2), Yn
Derive−−−−→ (kn, sn)

...
(L̂n, σn)]

Figure 4: IFLS Scheme

To complete the log stream integrity requirement, we also need to make sure that
truncating the logfile is not possible for an adversary. To understand how IFLS
prevents this, one must look at the structure of a valid logfile constructed according
to the technique described in the previous paragraph:

LN = [(L̂1, σ†1,2),

(L̂2, σ†2,3),
...

(L̂n−1, σ†n−1, n),

(L̂n, σn)]

We start by noting that a log file is valid if and only if it is of the above form. Aside
from some specific corner cases, as we explain in Subsection 4.4.5, verification of a
logfile of any other form will not succeed. To understand why this prevents truncation
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attacks, we look at what happens when an attacker deletes the last k log entries. The
resulting logfile would be as follows:

L ′N−k =[(L̂1, σ†1,2),

(L̂2, σ†2,3),
...

(L̂n−k−1, σ†n−k−2, n−k),

(L̂n−k, σ†n−k−1, n−k)]

Verification of the last log entry would not succeed in this case, because it is equal
to (L̂n−k, σ†n−k−1, n−k) and not to (L̂n−k, σn−k). The function of the last log entry
is thusly to act as a “seal” of sorts which prevents the log from being undetectably
truncated. By negating the possibility of truncation attacks, we have achieved the
log stream integrity property.

In Section 1.3 we mentioned that U might have some form of Intrusion Detection
System (IDS). If U is taken over by an attacker at a time t, and the IDS has de-
tected this compromise, then there is a window of time [t− ε, t] in which U knows
it is being compromised but A has not gained control over it yet. Without mak-
ing assumptions about the size of this window, we describe a set of steps which U
needs to take to make it infeasible for the attacker to keep logging and, if possible,
record the intrusion in the log. This protocol can be interrupted at any point after
step one, and the attacker would not gain an attack advantage. The solution we
employ, is that we keep a special intrusion signature in memory which is created
during the initialization phase of the protocol. This signature is created as follows:
σ! = H(‘‘intrusion ′′ || s!), where: s!

Derive←−−−− Y1. s! is discarded as soon the intrusion
signature has been created.

If during the logging phase an intrusion is detected, first all the keying material
currently in memory is deleted, then the protocol attempts to update the signature
of the last log entry with the intrusion signature: σ†n, ! = H(σn || σ!). The resulting
log file would then be of the following form:

LN = [(L̂1, σ†1,2),

(L̂2, σ†2,3),
...

(L̂n−1, σ†n−1, n),

(L̂n, σ†n, !)]

As mentioned earlier, this is not a valid log file and as such this would be flagged by
the verifier. The verifier then checks whether the last signature equals the intrusion
signature, after which it can conclude that an intrusion has occurred. The exact
protocol for an intrusion is the following set of steps:

1. Delete the current signature- and encryption keys, and the hash chain node:
delete(Yn+2, sn+1, kn+1).

2. Compute the intrusion signature over the last log entry: σ†n, ! = H(σn || σ!).

3. Delete σn.
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4. Write σ†n, !.

If A interrupts the above protocol before step 1, then they have successfully cir-
cumvented the IDS. In the case that A manages to stop the protocol after Step 1 or
2, then the log file is in a valid state, however A cannot continue logging, because the
hash chain has been deleted. An interruption after step 3 would mean that the log
is in an invalid state, which A cannot revert, because they lack the necessary keys.
This scenario is functionally equivalent to A performing a Crash Attack (4.4.5).

4.1 verification and disclosure

One of the goals when designing this scheme was separation of disclosure (reading
the log’s contents) and verification. The reason we pursued this goal can best be ex-
plained with an example: A manufacturer builds a logging device U for an external
party, such as a branch of the military. If U malfunctions, it needs to be sent back to
the manufacturer so that they can review U ’s activities and diagnose any problems.
In this scenario, if verification and disclosure were coupled, then the manufacturer
would be able to tamper with the log, due to the fact they have the ability to create
valid log entries. In other words forging attack by verifier is possible in this scenario.

In the IFLS scheme this scenario is counteracted by having each log entry have
two keys associated with it; the encryption key k and the signature key s. This
design allows the trusted party T to send a subset of the logfile Li,j to either an
inspecting party I or a verifying party V. These parties would additionally receive
respectively a subset of the encryption keys K = [ki, ...,kj] or a subset of the signa-
ture keys S = [si, ..., sj]. In doing so, I is only able to decrypt the contents of the log
and similarly V is only able to verify the log. Effectively preventing the possibility
of a forging attack by either I or V.

4.2 ifls formal definition

IFLS consists out of the composition of five functions (initialize, log, update, verify
and disclose) and a state (ΓN). The state encompasses both the logfile LN and the
internal state YN so that ΓN = {LN, YN}.

1. Initialize (L1, Y1)→ Γ1 : Takes an initialization entry (L1) and a hash chain
root (Y1) and creates the first log entry (L̂1 = Ek1(L1),σ1 = H(L̂1||s1)). The
encryption key k1 and the signature key s1 are securely derived from the hash
chain root in a manner most suited to the device IFLS is used on. After L̂1 has
been created, L1 is deleted from memory. Lastly the update function is called
on Y1 and the initialized log state is returned so that Γ1 = {L1 = [(L̂1,σ1)], Y2}.

2. Update (Yi)→ Yi+1 : Evolves the current hash chain node to its next iteration
and returns it.

3. Log (Li, Γi−1)→ Γi : Takes a new log message Li and creates a new log entry
(L̂i = Eki(Li), σi = H(L̂i||si)). Then the ciphertext of the new log message
(L̂i) is folded into the signature of the previous log entry in order to seal it
and create the forward link; σ†i−1,i = H(σi−1 || L̂i || si). Subsequently Li and
σi−1 are deleted and the update function is called to evolve the current hash
chain node. Lastly the new log state is returned, which is of the form: Li =
{[(L0,σ†0,1), (L1,σ

†
1,2), ..., (Li,σi)], Yi+1}.
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4. Verify (Li,j, [si, ..., sj]) → {valid|invalid} : Takes a subset of the logfile and
a set of signature keys corresponding to that subset and mimics the logging
process. Verifying the signatures at each step to check whether the log state is
valid.

5. Disclose (Li,j, [ki, ...,kj])→ [Li, ...,Lj] : Takes a subset of the logfile and a set
of encryption keys corresponding to that subset and returns the decrypted log
entries.

4.3 key derivation

The strength of a cryptographic key is commonly expressed in terms of number of
bits of entropy. A single bit of entropy can be seen as the outcome of fair coin toss
[Sha01]. Extending this concept, an n-bit full-entropy key means each bit of the key
is chosen independently of the others by the equivalent of a fair coin toss.

The security of a log entry is only as strong as the keys used to create it are. As
mentioned earlier in this chapter, a trade-off can be made between the strength of
the keys and the performance of the scheme. Or more precisely, between the entropy
of the keys and the number of hash operations needed to produce these keys. We
present three functions for key derivation; (i) hi-entropy-kd (ii) med-entropy-kd and
(iii) lo-entropy-kd. Each of these functions takes as input the current hash chain
node Yi and outputs a tuple of three elements (si,ki, Yi+1) containing the computed
signature- and encryption keys, and the next node in the hash chain. The hi-entropy-
kd function yields very strong keys at expense of performance, med-entropy-kd pro-
duces medium strong keys for improved performance and lo-entropy-kd generates
comparatively weak keys in exchange for using only a single hash operation.

1. hi-entropy-kd : This function produces the aforementioned tuple in the fol-
lowing manner:

(si
H←−−−
Cs

Yi, ki
H←−−−
Ck

Yi, Yi+1
H←−−− Yi)

We create both si and ki by hashing the current hash chain node together with a
string literal unique for the type of key being produced, Cs and Ck respectively.
We do this to prevent si, ki and Yi+1 all being equal to one another. All of the
elements of the tuple produced by hi-entropy-kd will have information entropy
equal to Yi. In practice this means that, given Assumption 2, si, ki and Yi+1
each have exactly |H| bits of entropy.

2. med-entropy-kd : This function hashes the current hash chain node with
a string literal Csk to produce an intermediary digest which is then split to
produce both the signature and the encryption key. This means that both
keys have 1

2 |H| bits of entropy. med-entropy-kd performs one hash operation to
produce the keys and another to update the hash chain node.

ski
H←−−−
Csk

Yi

(si
split←−−−−− ski, ki split←−−−−− ski, Yi+1 H←−−− Yi)

3. lo-entropy-kd : In this function we use the current chain node and split it
into three pieces so that 1/4th of the digest is used for si, 1/4th for ki and 2/4th
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of the digest, yi, is used only when evolving the node to its next iteration, so
that Yi+1 = H(yi || si || ki). By keeping one half of the hash chain node unused
for key derivation we ensure that even if si and ki are compromised, predicting
future keys is still computationally hard. Formally lo-entropy-kd is expressed
in the following manner:

Yi−1
H−−−→ Yi = (yi, si, ki)

4.4 security analysis

In this Section we prove the security of the IFLS scheme. Our approach for doing
this is to first prove the security of the various building blocks used in IFLS. Then,
we go over each of the attacks relevant to our scheme, as listed in Table 1, and prove
why they are infeasible.

There are four different kinds of parties in our scheme:

1. U is an untrusted logger which is not sufficiently tamper-resistant or physically
secure to prevent an attacker from taking it over. It does not behave maliciously
unless it is under the control of an attacker. U only interacts with T during its
initialization phase, or when it is queried by T .

2. T is a trusted computer in a secure location. It has the ability to authorize
a verifier V or an Interpreter I to access the entire, or a subset of the audit
log Li,j. It additionally supplies V with the set of signature keys S = [si, ..., sj]
corresponding to the part of the log accessed. Similarly I receives the set of
encryption keys [ki, ...,kj].

3. V is a semi-trusted verifier which verifies the logfile on U . V can obtain a copy
of the logfile and the corresponding signature keys from T . It can however not
read any data from the log.

4. I is a semi-trusted Interpreter of the log on U . Much like V, I can obtain a
copy of the logfile and the corresponding encryption keys from T . It cannot
verify any of the log entries.

The adversarial model which is used for IFLS is similar to the covert adversaries
model by Aumann et al. [AL10]. In this model an adversary A is assumed who is
fully malicious, but wants to undetectably achieve a goal. An example of such an
adversary in the case of LANDroids, would be an insurgent who has captured one
and wants to mislead the military by adding false information to the log to conceal
their activities.

Definition 6. The security of the IFLS scheme is defined as the non-existence
of a polynomial time bounded adversary A who compromises U at a time T and
produces an existential forgery of a subset of the logfile Li,j. Where 1 ≤ i < j, and
Li,j corresponds to the part of the audit log created before T .

4.4.1 Building Blocks

Before we can prove that our scheme is safe against known attacks, we first prove
that the building blocks our scheme uses are secure. To this end we start with proving
the security of the hash chain. Then we show how to safely and efficiently derive keys
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from a hash chain, and lastly we show that both the ciphertext and the signature of
a log entry are secure.

The backbone of our scheme is the hash chain which is maintained in the internal
memory of U . Because keys are derived from each node in the chain, it is impor-
tant that a cryptographic hash function is chosen which is (i) preimage resistant,
(ii) second preimage resistant, (iii) non-correlated and (iv) deterministic (see also
2.2.4). It would be tempting to model the hash chain in the Random Oracle Model,
however because of the issues with this model [CGH04] we choose not to. Instead
we will show that obtaining Yi from Yj for j < i, or finding a value X ′ 6= Yi−1 so that
H(X ′) = Yi are both computationally infeasible.

Assumption 1. The cryptographic primitives used in IFLS for hashing, encryption
and MACs have semantic security properties [Gol09] as follows:

(i) H is a secure hash function with properties: (a) determinism, (b) preimage
resistance, (c) second-preimage resistance and (d) non-correlation.

(ii) H(m || s) is equivalent to the message authentication code of m with key s
and is Existential Unforgeable Under Chosen Message Attacks (EU-CMA).

(iii) E is a symmetric encryption function which is Indistinguishable under Chosen
Ciphertext Attacks (IND-CCA secure)

Assumption 2. The root of the hash chain (Y1) is a bit-string with at least |H| bits
of entropy.

Lemma 1. Using the algorithm from Assumption 1 to hash at least |H| bits of
entropy, produces a digest with exactly |H| bits of entropy.

Proof. By applying Assumptions 1 and 2 and Lemma 1, it can be deduced that any
hash chain node Yi will have exactly |H| bits of entropy. This means that given Yi,
finding Yj for j < i, i, j ∈N, so that Hi−j(Yj) = Yi has exponential time complexity
O(2|H|). Which is computationally infeasible for all values of i and j, and conven-
tional hash digest sizes [Bel06].

Finding a collision in the hash function so that H(X ′) = Yi for X ′ 6= Yi−1 amounts
to performing a birthday attack on the hash function [BK04]. A birthday attack has
time-complexity O(

√
2|H|) which is likewise computationally infeasible for conven-

tional digest sizes.

The next building block we need to prove secure are the cryptographic keys used
to encrypt and sign log entries with. Each of the three key derivation functions
described in Section 4.3 satisfy the forward security requirement which dictates that
compromising log entry keys si or ki does not compromise the security of past or
future log entries. For the proof presented below we will assume that an adversary
is in possession of si and ki and wants to obtain a valid key tuple (si±j, ki±j), j > 0.

Proof. For hi-entropy-kd and lo-entropy-kd, finding a valid key tuple (si±j, ki±j), j >
0 is essentially the same problem as finding the exact input for a hash operation
given only the digest. In other words, an adversary would need to find Yi given only
H(Yi || S) where S is some known string literal. It’s important to note that merely
finding a collision in this scenario is not sufficient, because a collision would not pro-
duce correct keys nor can it be used to compute future hash chain nodes. For this
reason we conclude that even in the simplest case j = 1, finding a valid key tuple
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from another tuple requires reversing at least one hash digest which has computa-
tional complexity O(2|H|).

In the case of the lo-entropy-kd function, an adversary is already in possession of half
of the hash input (si, ki) and needs only to find the other half. This effectively halves
the search space which means the computational complexity becomes O(

√
2|H|). For

conventional hash digest sizes both of the aforementioned bounds are considered
secure.

A log entry consists out of two building blocks, the ciphertext L̂i and either a
regular signature σi, or a forward linked one σ†i,i+1. Both of these signatures can
be regarded as HMACs as described in [KCB97]. HMACs have been proven secure
given a secure hashing algorithm (Assumption 1) and a secure key [Bel06], which we
have proven to be true earlier. Therefore we can now conclude that signatures used
in IFLS are secure. Similarly, if we assume a secure key and apply Assumption 1, we
can conclude that the ciphertext is secure as well.

Now that we have proven that each of the building blocks of IFLS are secure, the
next step is proving that our scheme is safe against all the attacks listed in Table 1.

4.4.2 Insertion and Deletion attacks

Undetectably inserting or deleting a log entry in the pre-compromise part of the
logfile is as hard as reversing at least one hash chain node (Proof 4.4.1). For this
scenario we will assume an adversary A who wants to delete or insert one or more log
entries into L1,j where j corresponds to the last entry of the pre-compromise logfile. It
is important to note that this scenario does not consider deleting the last n messages
of the log file, because that is different kind of attack called the “truncation attack”
(4.4.3).

Proof. In the simplest case, A deletes a single log entry (L̂i,σ†i,i+1) from the logfile.
Said logfile is now of the following form:

L ′N = [
...

(L̂i−1, σ†i−1,i),

(L̂i+1, σ†i+1, i+2),
... ]

Upon verification of (L̂i−1,σi−1,i), V would check (i) whether σi−1,i
?
=

H(H(L̂i−1 || si−1) || L̂i+1 || si) and (ii) whether σi,i+1
?
= H(H(L̂i+1 || si) || L̂i+2 || si+1).

Both of these checks would fail because L̂i 6= L̂i+1 and si 6= si+1. For deletion of
multiple log entries, these checks fail as well.
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If log entries are inserted, the reasoning is very similar to the above. The logfile
now looks as follows:

L ′N = [
...

(L̂i, σ†i,i+1),

(L̂i, σ†i,i+1)
′,

(L̂i+1, σ†i+1, i+2),
... ]

Where (L̂i, σ†i,i+1) ′ is the inserted log entry. In that case verification of all log entries
(L̂j, σ†j,j+1) for j > i would fail because the signature key used for verification is not
the same as the one used to create the entries. This is due to the fact that the log
file is not synchronized to the hash chain anymore.

4.4.3 Truncation Attack

Due to the nature of a hash chain, it is impossible to know how often a chain has
been evolved if no evidence of the nodes in the chain gets recorded. In the IFLS
scheme we record evidence of a node in the form of the ciphertext and signatures
created with keys derived from said node. This approach works very well against
deletion and insertion attacks, as we have demonstrated in the previous Section.
However the problem with the truncation attack is, that by deleting a contiguous
end of tail-end log entries, there is now way to know how many log entries were in
the log originally by just looking at the hash chain. To address this problem we use
two kinds of signatures in IFLS, σ†i,i+1 for all log entries i 6= n, and σn for the last
entry in the log file. The motivation for doing this is that if an attacker were to delete
the last log entry, they would need to construct a new last signature σ ′n. Doing so
is computationally intractable, as is shown in the following proof. For this proof we
assume an attacker A who has compromised U and is now in possession of Yn+1, A’s
objective is to delete the last k log entries undetectably.

Proof. An attacker who deletes k entries from the log, leaves the log in the following
state:

L ′N−k =[(L̂1, σ†1,2),

(L̂2, σ†2,3),
...

(L̂n−k−1, σ†n−k−2, n−k),

(L̂n−k, σ†n−k−1, n−k)]

Upon verification of L ′N−k, V would notice that σn−k−1, n−k 6= H(L̂n−k || sn−k). For
A to be able to truncate undetectably, they would need to forge a new last signature
σ ′n−k. Without having knowledge of sn−k, this entails to finding a collision in the
hash function so that σ ′n−k = (L̂n−k || sn−k). This has computational complexity
O(
√
2|H|).
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4.4.4 Forging Attack by Verifier or Interpreter

For this attack we will be assuming an attacker A masquerading as either V or I,
however not as both. If V and I do collude with one another IFLS is not safe anymore
and existential forgeries against the log could be made. Furthermore, we assume that
if V notices that a part of the log is not verifiable, then they report it to T . Similarly
if I cannot decrypt a ciphertext, they notify T as well. In the IFLS scheme it is
computationally infeasible for an attacker posing as either a Verifier of Interpreter
to create an existential forgery of a subset of the log file.

Proof. An attacker who wants to forge a log entry (L̂i,σ†i,i+1) and is in possession
of [si−1, si, si+1] has everything they would need to create a valid signature of L̂i.
However, they are not in possession of the encryption key ki and have no computa-
tionally feasible way to obtain ki. For this reason it is not possible for V to forge a
complete log entry (L̂i,σ†i,i+1).

Equivalently, a malicious Interpreter I who wants to forge a log entry (L̂i,σ†i,i+1)
and is in possession of ki has the ability to create a valid ciphertext L̂i. However,
because they are not in possession of si, si−1 and si+1 they cannot create valid
signatures and thus I cannot forge a complete log entry (L̂i,σ†i,i+1).

4.4.5 Crash Attack

The crash attack [BN17] is an attack where the adversary removes log entries from
the log file and then crashes the logger. The state of the log after a crash attack is
then indistinguishable from the state after a real crash and as such the adversary is
capable of undetectably removing entries.

In the IFLS scheme there are three kinds of operations which interact with data
stored in persistent storage. These operations are:

1. Write (L̂n, σn)

2. Delete σn−1

3. Write σ†n−1,n

If U were to crash during one of these operations, it is to be expected that the
associated data is lost. Without making any strong assumptions about the under-
lying storage system U uses to implement these operations, we make the following
assumptions:

Assumption 3. If data is not involved in a storage operation, such as writing or
deleting, then we do not expect this data to be lost in the event that U crashes.

Assumption 4. Writing new log entries, as well as updating signatures are atomic
operations up until the moment A compromises U . In other words, when A gains
access to the internals of U , it will always find the log file in the valid state LN.

The above Assumptions leads us to the following proposition:

Lemma 2. By applying Assumption 3 and 4 we conclude that from the moment A
has gained over U log entry elements which are affected by file system operations are
L̂n+1, σn+1, σ†n,n+1.
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To prove that our scheme is secure against the Crash Attack we assume an ad-
versary A who compromises U , deletes one or more items from the log and then
crashes U to attempt to hide their activities. A is considered successful if V cannot
determine whether the state of the log file is the result of a regular crash, or from a
crash attack.

Proof. Using Assumptions 3, 4 and Lemma 2 we deduce that a regular crash can
leave the log file in one of the following states:
State 1

LCrN =[
...

(L̂n, σ†n, n+1),

(L̂n+1, ∅)]

State 2

LCrN =[
...

(L̂n, σ†n, n+1),

(∅, ∅)]

State 3

LCrN =[
...

(L̂n, ∅),
(L̂n+1, σn+1)]

State 4

LCrN =[
...

(L̂n, ∅),
(L̂n+1, ∅)]

State 5

LCrN =[
...

(L̂n, ∅),
(∅, ∅)]

If upon verification LN is in any other state than a valid state, or one of the five
states listed above, then it can immediately be considered as tampered with. In this
case A has failed in hiding its attack.

It is important to note at this point that L̂n is the last ciphertext of the pre-
compromise part of the log file. Therefore we are now tasked with proving that
for each of the five crashed states, it is still possible to provide strong security guar-
antees about the integrity of L̂n. We begin with noting that in each of the crashed
states we cannot use σ†n,n+1 for verification of Ln because it is either deleted or be-
cause the contents of Ln+1 cannot be trusted.

This effectively means that the only way we can verify the authenticity and in-
tegrity of L̂n is with the signature of the log entry preceding it; σ†n−1,n. In the event



34 immutable forward linked and sealed logging

that A deletes L̂n, it needs to replace σ†n−1,n with a forged signature σ ′n−1, so that
(L̂n−1, σ ′n−1) appears to be the last log entry. We have shown earlier that forging
a signature is practically equivalent to performing a birthday attack. As such the
computational complexity of performing a successful crash attack is O(

√
2|H|).

4.4.6 Data Corruption

Over the course of its lifetime U might suffer data corruption of some parts of the
log file it maintains. The purpose of this subsection is to show that corruption of
any part of the log does not affect other parts of the log in terms of verifiability or
decryption. Before we proceed, we take a moment to emphasize that data corruption
and data loss are two similar but distinct concepts. Data corruption may lead to
data loss, however depending on the severity and the nature of the corruption, this
is not a given. Seeing how there has been extensive research in approaches to both
mitigate [Las06] and correct [Fia+12] data corruption.

The uncorrectable bit error rate (UBER) in devices using flash storage is on the
order of magnitude 10−15 [Mie+08]. We will now show that with the aforementioned
UBER there are certain scenarios which are simply unrealistic even for the largest
log entries. For these scenarios we assume ciphertexts of 2560 bits, or twenty 16
byte blocks, roughly the size of the previous paragraph if one would encrypt it us-
ing AES. The reason we use such large ciphertexts is that the probability of the
scenarios described below increases with the log entry size. Therefore large cipher-
texts gives us an upper bound on the likelihood for these scenarios. We assume that
the signatures are 256 bits in length, a conventional MAC output digest size. And
lastly we assume the UBER is constant and independent for the entire life cycle of U .

Let the probability that a bit is erroneous be denoted as p, then we can arrive
on an expression for the probability that a sequence of n bits contains no errors:
P(X = 0) = (1− p)n. This expression can then trivially be adapted to obtain the
probability that a sequence of n bits contains at least one error: P(X ≥ 1) = 1−P(X =

0) = 1− (1−p)n. Now that we have an expression for probability that a sequence of
bits will be corrupted, we demonstrate that the scenarios below are so unlikely that
we do not have to account for them.

• Corruption of both a log entry’s ciphertext and signature: The proba-
bility of this event, given the above assumptions is: P = 1−(1−10−15)2560+256 =

2.8× 10−12.

• Corruption of two consecutive ciphertexts : The likelihood of this event
occurring is: P = 1− (1− 10−15)2560+2560 = 5.1× 10−12.

By excluding the above two scenarios, we only have two possible scenarios left:
either a entry’s ciphertext L̂i is corrupted, or its signature σ†i,i+1 is. In the event that
the signature is corrupted, verification fails only for that particular log entry. After
which it proceeds normally. In this case, T inspects the corresponding log entry’s
plaintexts; Li and Li+1. T determines no malicious activity has taken place and re-
computes the corresponding signatures. It is at this point that T is able to determine
that data corruption of the signature was the cause of the failed verification. In other
words, despite a corrupted signature the log file is still completely verifiable, after
some coordination between V, I and T .
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In the event that L̂i is corrupted, then verification of σ†i,i+1 naturally fails. Further-
more, verification of L̂i−1 with σ†i−1,i and L̂i+1 with σ

†
i,i+1 fails as well. However both

these ciphertexts can still be verified with σ†i−2,i−1 and σ†i+1,i+2 respectively. One
might now think that data corruption is a viable attack vector, however from an
attacker’s perspective it is an extremely unreliable attack. We start with noting that
the industry standard for symmetric encryption is using a block cipher such as AES
in counter mode. We will therefore assume counter mode for the rest of this analysis.
In counter mode, bit errors affect only the block the error has occurred in [LWR00].
Rendering that specific block unreadable, but otherwise no blocks are affected. This
means that, given the extremely low UBER in flash storage and the relatively short
length of ciphertexts, more than one bit error in any ciphertext is extremely unlikely
and would therefore strongly indicate suspicious activity. The consequence hereof
is that an attacker could potentially only corrupt a single block of the ciphertext
leaving the rest of the blocks perfectly decryptable and therefore readable. For this
reason we find data corruption not to be a viable attack vector, because an attacker
has no way of knowing if they have erased all incriminating data.

4.5 complexity analysis

In the title of this thesis we use the term “resource-constrained” to indicate one of
our primary design objectives. To achieve this objective all IFLS operations that
are performed by U should be efficient both in terms of computational- and space
complexity. In this Section we present the complexity analysis of our scheme and
evaluate whether we achieved the aforementioned “resource-constrained” goal. It is
important to note however, that a theoretical analysis is only one side of the coin.
The other side naturally being the performance of an implementation of the scheme
on real world hardware, we address this aspect in Chapter 6.

Table 2 summarizes the complexity analysis of the various operations inherent to
the IFLS scheme.

Table 2: Computational- and space complexity analysis of the IFLS scheme.
hi-entropy-kd med-entropy-kd lo-entropy-kd

Initialization O(|H|)

Log Key Derivation 2 · H H 2 · split

Computational Overhead Entry Creation 2 · H
Update H
Verify O(l · H)
Disclose O(l · E)

Signer O(L · |σ|)
Storage Overhead Verifier O(l · (|σ|+ |s|))

Interpreter O(l · (|L̂|+ |k|))

*Table 2 shows the costs associated with processing data items for each of the key derivation functions
presented in this chapter. H and split denote the cost of doing a single hash or a split operation
respectively. Note: the cost of a split operation will be negligible in most real world scenarios.
|H|, |σ|, |s|, |k| signifies the bit length of a hash digest, signature, a signature key and an encryption
key respectively. The signing and key update costs are given for a single data item. Signature
verification cost as well as item decryption cost is given for 0 < l < L items. The storage costs are
based on the cryptographic overhead introduced by the different derivation functions, the cost of
storing log events is considered to be constant and is as such omitted.
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4.6 discussion

We believe that the scheme presented in this chapter is well suited for maintaining
secure audit logs on offline and resource constrained devices. Compared to the other
schemes evaluated in the prior art, IFLS is the only scheme which is proven to be
secure against all known relevant attacks and does not require an Online TTP. In
terms of computational complexity, IFLS is as fast or faster than the other solutions.
Only (FI-) BAF is significantly faster with regard to number of operations needed for
the Log and Update functions. (FI-) BAF requires an Online TTP however, hence
we believe our solution is superior for the application scenario we have detailed ear-
lier. In terms of space complexity (FI-) BAF, Logcrypt, FssAgg require less space
than IFLS. However, the primary reason these schemes have a lower space complex-
ity is that they communicate with a TTP. In doing so, they can transfer some of the
storage cost incurred by storing data with which log entries can be verified to the
TTP.

Despite its advantages, IFLS does have some flaws. These flaws are however not
exclusive to just our scheme, but rather are systemic for nearly all secure logging
schemes. The proofs of security presented by most secure logging schemes are correct
in the theoretical sense, but fall short when translated to real world scenarios. The
most serious example of hereof is in our opinion the failure to consider the limitations
of persistent physical storage, especially on low-end devices.

Flash memory accounts for 34% of the annually produced semiconductor memory
market [Yin08] and is predominantly used in lower-end devices, due to it being rel-
atively cheap compared to other hard drives. However, a major limitation of flash
memory is that overwriting an arbitrary number of bits is in most cases impossible to
do efficiently or securely [KNM95]. The consequence of this limitation in the context
of secure logging schemes is that any scheme which depends on overwrite operations
in persistent storage is unsuited for use on devices with flash memory. This includes
our IFLS scheme, but also a whole host of other secure logging schemes [Hol06]
[MT09] [YNR12] [MT07] [YN09]. To address this problem, we present an adaptation
of IFLS in Chapter 5 which sacrifices some security in return for being able to run
on flash memory.



5
PSEUDORANDOM INDEXED FORWARD L INKED LOGGING

In the previous chapter we ended on the conclusion that the IFLS scheme, while
secure, was not practical for most resource-constrained devices. This was due to
the fact that integral to the IFLS scheme is the existence of an override function
which efficiently and irreversibly replaces an arbitrary value in persistent storage
with another value. However this is not true for low-end flash storage, because of
the way these storage media are designed. On low-end flash storage, memory blocks
are initialized to all zeros, then when data gets written to these blocks, the zeros are
flipped to ones so that the desired bit pattern is obtained. However, these bits can
exclusively be flipped from zero to one and the reverse operation is simply not possi-
ble. The only other operation that is possible, is zeroing an entire block, effectively
returning it to an initialized state. Therefore, if we want to override data on flash
storage, we first have to read out the entire block into memory, make the desired
modifications, zero the aforementioned block and only then can we write back the
modified data. This is an extremely inefficient operation and furthermore, zeroing a
block in flash storage degrades the memory cells in that block quite severely, which
drastically reduces the life expectancy of said block.

In this chapter we present the Pseudorandom Indexed Forward Linked logging scheme
(PIFL) a novel, secure, logging scheme inspired by IFLS. PIFL is not dependent on
the existence of a secure override operation and is therefore well-suited for use on
devices with flash storage. PIFL has the same low time- and space-complexity as the
IFLS scheme, it cannot however provide as strong security guarantees as IFLS pro-
vides. We expand on this claim in the security analysis section (5.2). There are two
differences between PIFL and IFLS: firstly, both schemes make use of a hash chain
for key derivation and the forward linked construction as described in the previous
chapter. However, PIFL does not use the signature of the last entry (σn) as a seal.
It instead keeps this signature in memory until the next log event (Ln+1) occurs at
which point it gets updated to a forward linked signature σ†n,n+1 and written to per-
sistent storage along with L̂n+1. The second difference lies in the data structure PIFL
uses to store the log file. Where IFLS uses a dynamic array to which log entries get
appended, PIFL uses preallocated, fixed-entry size, pseudorandomly indexed arrays.
It may not be immediately obvious what these terms mean, so to elaborate:

1. Preallocated: PIFL reserves a fixed amount of space in persistent memory
and keeps control over this space over the entire life time of U . This space is
divided up equally among A pre-allocated arrays.

2. Fixed-entry size: Each array entry is a fixed-, power of two, size byte block,
meaning that each array entry is the same size and that log entries need to be
divided up in multiple byte blocks when they are written to storage.

3. Pseudorandomly indexed: Using a pseudorandom function, we derive a
deterministic yet unpredictable array index at which each block gets inserted.

The general idea behind PIFL is to divide a log entry into multiple blocks and insert
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each block in a pseudorandom location in one of the preallocated arrays. The preal-
located arrays are all equal in size. Which array an entry gets inserted in is simply a
matter of starting at the first one according to some non-secret predetermined order
and keep using that array until it is full. At which point, the scheme switches to the
next array according to the aforementioned order. Following a predetermined order
has the added benefit of making it easy to prune old log entries; we can simply zero
the oldest array and use it anew, effectively simulating a ring buffer.

The reasoning behind dividing a log entry up in multiple blocks is two-fold. Firstly,
an attacker that wants to delete a log entry will have to guess the indices of all asso-
ciated blocks or risk certain detection. The chance of doing this correctly, assuming
random guesses, approaches zero exponentially as a function of the amount of blocks
in the array. Secondly, because each entry in the array is of equivalent block size,
they can be stored very efficiently with virtually no overhead.

We mentioned earlier that byte blocks are power of two sized (e. g. 1, 2, 4, 8, or 16
bytes), the reason for this restriction is simply that the output of nearly all crypto-
graphic primitives is also power of two sized. For example, all popular cryptographic
hashing algorithms; SHA256, SHA512 [PW08], Blake2 [Aum+13], SHA3 [Ber+11],
MD6 [Riv+08] output either 256 or 512 bit digests. Moreover, every conventional
symmetric block cipher algorithm uses 128-bit blocks. This last observation imme-
diately places an upper bound on the maximum block size, it would be nonsensical
to divide a ciphertext in blocks larger than its full-length. Seeing how no additional
security would be gained and there would just be wasted space. Therefore the maxi-
mum block size is 128 bits or 16 bytes in this scheme. The trade-off one makes when
deciding on what block-size to use, is that bigger block sizes mean less blocks and an
attacker therefore needs to guess less-often, and the set of possible indices is smaller.
Effectively making it easier to delete, or add false data to the log. However, bigger
block sizes also mean less calls to the pseudorandom function and therefore a more
performant scheme.

The pseudorandom function (PRF) we use to determine a block’s index in the ar-
ray, needs to have two requirements: (i) uniformity, for a set of randomly generated
seeds, we want the output of the PRF to be uniformly distributed over the domain
[1,N] where N is the number of blocks the array can hold. (ii) non-correlation, a
small change to the input should result in a digest that appears to be uncorrelated
with the first digest. From a practical perspective, Siphash [AB12] is an ideal candi-
date to fulfill this role. It is a fast keyed hash function expressly designed to generate
indices for hash tables and arrays. Furthermore, it is designed to be safe against
“hash-flooding”, a type of denial of service attack [KW11].

A problem with using a pseudorandom function to generate indices, is that colli-
sions will occur. We address this problem by maintaining a bitmap in memory which
keeps track of all the used indices. Then, in the event of a collision, we update the
seed of the PRF with the generated index and generate a new index. We repeat this
process until we find a non-colliding index. This approach in itself presents another
problem, the number of collisions increases geometrically with the load factor (size
of the array divided by the number of entries). If we were to fill each preallocated
array until its load factor equals one, the performance of the scheme would degrade
to an unacceptable level for inserting the last entries. We solve this problem with the
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same approach hash tables use, by keeping the load factor under a certain bound.
The exact value for an acceptable load factor is dependent on the computing power
of U and the performance of the used hashing function. As a general rule of thumb, a
default load factor of .75 offers a good trade-off between time and space costs [ML75].

In the previous chapter we presented a straightforward protocol for U to follow in
the event that the IDS detects an intrusion. For PIFL we present a variation on this
protocol. Like with IFLS, it involves computing an intrusion signature during the
initialization phase: σ! = H(‘‘intrusion ′′ || s!). However, unlike IFLS, we do not com-
pute an updated signature, but rather immediately write it to randomized indices.
The success probability of removing this block is akin to performing a truncation
attack (5.2.1). The protocol is then as follows:

1. Delete the current signature- and encryption keys, and the hash chain node:
delete(Yn+2, sn+1, kn+1).

2. Compute the pseudorandom indices for the intrusion signature: J|σ!|.

3. Write the intrusion signature: ai[J|σ!|] = σ!.

If A interrupts the above protocol before Step 1, then he has successfully circum-
vented the IDS. In the case that A manages to stop the protocol after Step 1, then
the log file is in a valid state, however A cannot continue logging, because the hash
chain has been deleted. An interruption after Step 3 would mean that the log is
in an invalid state, because there is a signature in place of where a verifier would
expect a log entry to be and empty blocks where a signature should be. In this case
the verifier would check whether the last log entry equals the intrusion signature, at
which point the intrusion is detected.

5.1 pifl formal definition

The formal definition of PIFL resembles that of IFLS, however there are some differ-
ences. The most important of which pertains to how we define the log file Ln. The log
file in PIFL is a tuple consisting of five elements; (i) a set of arrays A = [a1, ...,aN]
holding the, in blocks divided, pseudorandomly indexed, log entries. (ii) A number SB
representing the size of the blocks in the aforementioned arrays. SB can only be one of
the values in the set {21, 22, 23, 24} for reasons we described earlier. (iii) A pointer i in-
dicating that array ai is currently being used. (iv) An element representing the load
factor Lf of the array ai. And lastly (v) a set I containing all of the used indices in
ai. Mathematically the definition then becomes: Ln = {A = [a1, ...,aN], SB, i, Lf, I}.

Another difference is that PIFL instead of a single initialization log entry, takes
a set of initialization entries. The reason for doing this is that if there are only few
log entries in the log, the chance for an attacker to perform a successful truncation
attack is relatively high. By inserting an unknown number of initialization entries in
to the log, this chance becomes much smaller. Furthermore, if the attacker truncates
an initialization entry, then the attack will certainly be detected upon verification.

For computing the array indices, we use a pseudorandom function for which we
wield the following definition FX (I) → i ∈ 1, ...,N, i /∈ I. It takes two parameters, a
seed X and a set of indices I. From these two parameters it deterministically com-
putes an index i which is not a member of I.
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The five functions exposed by PIFL are defined as follows:

1. Initialize (NA, SA, SB, [L1, ...,Lj], Y1)→ Γj : First, the log file L0 as defined
above is created, so that each array ai can hold SA blocks of size SB. Then the
set of initialization entries [L1, ...,Lj] and the hash chain root Y1 are used to cre-
ate the first j log entries [(L̂1 = Ek1(L1), σ

†
1,2 = H(H(L̂1||s1)) || L̂2 || s2), ..., (L̂j, σj)].

The encryption keys [k1, ...,kj] and the signature keys [s1, ..., sj] are securely de-
rived from the hash chain using one of the key derivation functions described
in Section 4.3. The initialization entries are then divided up in blocks and
inserted into the log file, L0, according to the method detailed in the Log func-
tion described below. The last signature σj is not written to the log file, but
is instead kept in memory. This is due to the fact that we cannot make use of
the override operation and as such cannot use this signature as a seal, only to
compute forward-linked signatures. Finally, the initialized log state is returned:
Γj = {Lj = {A, i,Lf, I}, Yj, σj}

2. Update (Yi)→ Yi+1 : Evolves the current hash chain node to its next iteration
and returns it.

3. Log (Li, Γi−1)→ Γi : Takes a new log message Li and the previous entry’s sig-
nature σi−1 to create a new log entry (L̂i = Eki(Li), σ

†
i−1,i = H(σi−1 || L̂i || si)).

Subsequently the last signature kept in memory is updated to the signature
of the last entry σi = H(L̂i || si). Then the log entry is divided into NB =
|(L̂i, σ†

i−1,i)|

SB
blocks, to obtain an array of byte blocks B = [b1, ...,bNB

]. We then
derive a seed Xi

derive←−−−− Yi and for each byte block bj calculate the correspond-
ing index as follows: rj = FXi||j(I). After obtaining the index we insert the byte
block in the array: ai[rj] = bj and update I with the new index.

4. Verify ([(L̂i, σ†i,i+1), ..., (L̂i, null)], [si, ..., sj]) → {valid|invalid} : Takes a
subset of log entries and a set of signature keys corresponding to that subset
and mimics the logging process. Verifying the signatures at each step to check
whether the log state is valid.

5. Disclose ([L̂i, ..., L̂j], [ki, ...,kj])→ [Li, ...,Lj] : Takes a subset of log entries and
a set of encryption keys corresponding to that subset and returns the decrypted
log entries.

In Figure 5 we present an example schematic illustrating the operations performed
after calling Initialize (1, 8, 128, [L1,L2], Y1). Where L̂1 and L̂2 are both three
blocks in length and the output of H is 256 bits (i. e. two blocks). Note that the load
factor of a1 after this function call is 1, meaning that no more entries can be logged.
This is obviously not a very useful or realistic scenario, we merely mean to provide
a simple example of how our scheme functions.
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Operation Description Persistent Storage Internal State
Initialize Arrays a1 = [∅,∅,∅,∅,∅,∅,∅,∅] Y1

Derive−−−−→ (X1,k1, s1)
I = ∅

y

Update(Y1)

Create First Log Entry (L̂1 = Ek1(L1), σ1 = H(L̂1||s1))

Split Log Entry Into Blocks (b11,b12,b13) = to_blocks(L̂1)
Compute Pseudorandom Indices (i1, i2, i3) = for j in 1..3 do:

k = FX1||j(I)

I = I∪ k
return k

end
(i1, i2, i3) = (2, 8, 6)

Update Array a1 = [∅,b11,∅,∅,∅,b13,∅,b12]
I = [2, 6, 8]

Create Second Log Entry (L̂2, σ†1,2 = H(σ1||L̂2||s2)) Y2
Derive−−−−→ (X2,k2, s2)

Split Log Entry Into Blocks (b11,b12,b13,b14,b15) = to_blocks(L̂2,σ
†
1,2)

Compute Pseudorandom Indices (i1, i2, i3, i4, i5) = (4, 7, 1, 5, 3)

Update Array a1 = [b23,b11,b25,b21,b24,b13,b22,b12]
I = [1, 2, 3, 4, 5, 6, 7, 8]

Figure 5: Example of the operations performed by the PIFL scheme when calling Initialize
and Log.

5.2 security analysis

Due to the similarity with the IFLS scheme, most of the statements we have proven
to be true in Section 4.4 are true for PIFL as well. Specifically the Building Blocks
Proofs (4.4.1), the Insertion and Deletion Attacks Proofs (4.4.2) and Forging attack
by Verifier or Interpreter apply to PIFL (4.4.4).

5.2.1 Truncation Attack

Unlike the earlier proofs presented in this thesis, the definition of “secure” against
this attack is somewhat ambiguous. The ambiguity stems from the fact that the prob-
ability of executing a truncation attack successfully is a function of both the size of
the log file and the number of blocks the attacker deletes. To reduce the ambiguity
we start by defining a realistic scenario and making some assumptions. Then we
analyze the success probabilities of a successful attack given various configurations
and we try to find an optimum configuration which is both secure and realistic for
light-weight devices.

For this attack we assume the worst case scenario, which is that the log contains
only the initialization entries [L1, ...,Lj] and a single actual log entry Lj+1. A’s goal is
then to only delete all blocks associated with log entry Lj+1. These are the forward
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linked signature blocks, σ†j,j+1 and the blocks of the ciphertext L̂j+1. We also assume
that A knows the number of blocks they have to delete, the reasoning behind this
assumption is that A could have had influence on what was being logged even be-
fore they compromised U . Furthermore, A has no way of knowing which blocks to
delete, only how many they have to delete. If A deletes a single block from one of
the initialization entries, then we consider the attack failed.

Given the above scenario the problem of performing a successful truncation attack is
equivalent to randomly drawing exactly one specific combination (all of the correct
blocks) out of the set of all possible combinations. Mathematically, we can express
this probability like: P(success) =

(Nblocks

ntr

)−1. Where Nblocks is the total number of
blocks in the log file and ntr is the number of blocks A has to delete. Now that we
have an expression for the success probability of this attack, we can determine what
realistic values are for the variables in the aforementioned expression. In Chapter 6
we determined that an average line in a log file is 147 bytes in length. If we assume
a block size of 16 bytes, which is the least secure size as mentioned earlier, then the
ciphertext is 10 blocks in length. Subsequently, if we assume a 32 bit signature, the
smallest digest size offered by the SHA2 hash family, then a log entry is in total 12
blocks in length.

We would like to emphasize that the number and size of the initialization log en-
tries is completely under the control of T and different values than the ones we
use can be used. For the sake of simplicity however, we assume that all of the ini-
tialization entries have the same length as the actual log entry. This means that
the total number of blocks in the log file becomes Nblocks = 12 · (j + 1) and cor-
respondingly the number of blocks to truncate ntr = 12. We find that even using
only a single initialization entry (j = 1) already yields a very small success proba-
bility; P(success) =

(24
12

)−1
= 3.7× 10−7. Adding a second initialization (j = 2) log

entry drops the probability even further to: P(success) =
(36
12

)−1
= 8.0× 10−10. Nat-

urally, adding additional initialization log entries decreases the success probability
even more. Figure 6 reinforces the conclusion that the chance of success approaches
zero very fast for any non-small combination of block count and number of log entries.

The storage overhead created by introducing a small number of initialization log
entries is negligible; a single entry costs 192 bytes and two entries 384 bytes. A cost
which even the most low-end of devices can easily afford.

5.2.2 Crash Attack

Due to absence of an override operation in PIFL, this attack reduces to being func-
tionally equivalent to a Truncation Attack. We first make the same Assumptions,
3 and 4, as we did for the Crash Attack Proof in Subsection 4.4.5. Then we note
that there is only a single operation in the PIFL scheme which interacts with the
underlying file system:

Write (L̂n, σ†n−1,n)

By applying Assumptions 3, 4 and the above observation we can deduce Lemma
3
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Figure 6: 3D surface plot of the success probability of performing a truncation attack, given
a certain combination of block count and number of log entries.

Lemma 3. By applying Assumption 3, 4 we conclude that from the moment A has
gained over U log entry elements which are affected by file system operations are
L̂n+1, σ†n,n+1.

To prove that our scheme is secure against the Crash Attack we assume an adversary
A who compromises U , deletes one or more items from the log and then crashes U
to attempt to hide their activities. A is considered successful if V cannot determine
whether the state of the log file is the result of a regular crash, or from a crash attack.

Using Assumptions 3, 4 and Lemma 3 we deduce that a regular crash can leave
the log file in one of the following states:

State 1

LCrN =[
...

(L̂n−1, σ†n−1, n),

(L̂n, σ†n, n+1),

(∅, null)]
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State 2

LCrN =[
...

(L̂n−1, σ†n−1, n),

(L̂n, ∅),
(L̂n+1, null)]

State 3

LCrN =[
...

(L̂n−1, σ†n−1, n),

(L̂n, ∅),
(∅, null)]

If upon verification LN is in any other state than a valid state, or one of the five
states listed above, then it can immediately be considered as tampered with. In this
case A has failed in hiding its attack.

For State 1, an attacker would have to delete σ†n−1, n, L̂n and σ†n, n+1 to arrive
at a valid state. Using the scenario and numbers from the previous section, we get
a success probability of P(success) =

(24
14

)−1
= 5.1× 10−7. In the case of state 2,

an attacker would have to delete σ†n−1, n, L̂n and L̂n+1. The chance of succeeding
in this case is P(success) =

(32
22

)−1
= 1.6× 10−8. Lastly, for state 3, an attacker

would need to delete σ†n−1, n and L̂n, which has a chance of succeeding equal to
P(success) =

(22
12

)−1
= 1.6× 10−6. Figure 7 shows that the success probability de-

creases exponentially with the number of blocks in the log file. The conclusion we can
draw from this analysis is that even for the most unfavorable scenario, the chance of
this attack being performed successfully is incredibly small.

Figure 7: Line plot of the success probability of performing a successful truncation attack
given a certain amount of blocks in the log file. The vertical axis is base 10 loga-
rithmic.
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5.3 complexity analysis

Table 3 summarizes the complexity analysis of the functions that make up the PIFL
scheme. The complexity of the PIFL scheme is naturally very similar to that of the
IFLS scheme, as can be seen by comparing Table 2 and 3. The only real difference
is that the log function has a higher computational complexity for PIFL, due to the
fact that a pseudorandom index needs to be computed.

Table 3: Computational- and space complexity analysis of the IFLS scheme.
hi-entropy-kd med-entropy-kd lo-entropy-kd

Initialize O(|H|)
Key Derivation 2 · H H 2 · split

Log Entry Creation 2 · H
Computational Overhead Index Computation O(|I|)

Update H
Verify O(l · H)
Disclose O(l · E)

Signer O(L · |σ| · 1
Lmax
f

)

Storage Overhead Verifier O(l · (|σ|+ |s|))

Interpreter O(l · (|L̂|+ |k|))

*Table 3 shows the costs associated with processing data items for each of the key derivation functions
presented in this chapter. H and split denote the cost of doing a single hash or a split operation
respectively. Note: the cost of a split operation will be negligible in most real world scenarios.
|H|, |σ|, |s|, |k| signifies the bit length of a hash digest, signature, a signature key and an encryption
key respectively. The signing and key update costs are given for a single data item. Signature
verification cost as well as item decryption cost is given for 0 < l < L items. The storage costs are
based on the cryptographic overhead introduced by the different derivation functions, the cost of
storing log events is considered to be constant and is as such omitted.

5.4 discussion

PIFL together with the SLiC scheme by Blass and Noubir are the only schemes,
as far as we know, which are secure, light-weight and suited for devices using flash
storage. However, the security guarantee provided by PIFL is much stronger than
that of SLiC. The probability of successfully deleting a single log entry consisting
out of n blocks from a log file containing N blocks and L log entries is

(N
n

)−1, while
the same probability for the SLiC scheme is L−1. The former probability becomes
very small even for low values of n and N. In other words, PIFL offers better security
and equivalent computational performance to the SLiC scheme.

A downside of the PIFL scheme is that because the arrays are only filled up un-
til a certain load factor, there is a significant amount of allocated storage that will
not be used. Naturally the amount of unused storage is a function of the maximum
load factor Lmaxf , typical values for Lmaxf range between 0.75 and 0.95. In Subsection
6.2.1 we find that even for an Lmaxf as high as 0.95 performance is still very fast. We
realize however that this result is highly platform and implementation dependent.





6
IMPLEMENTATION

Performing just a theoretical analysis of the schemes presented in this thesis is not
a strong enough basis for determining their overall quality. To be able to do this ac-
curately we additionally need to evaluate the real world feasibility of these schemes,
especially because we make the claim that our schemes are well suited for resource
constrained devices. To test how well our schemes perform in realistic scenarios, we
created a software implementation and benchmarked it on a high-end laptop and
on a Raspberry Pi, which was chosen to represent the class of resource-constrained
devices.

In this chapter we will begin with analyzing the performance of the individual build-
ing blocks of our schemes: message encryption, message authentication code compu-
tation, key derivation, updating the hash chain and writing to persistent storage. We
then identify what building blocks are bottle necks for performance and why this
is the case. Subsequently each of the five functions IFLS provides (Initialize, Log,
Update, Verify and Interpret) are benchmarked. We chose to only implement the
IFLS scheme because the PIFL scheme makes use of all the same building blocks as
the IFLS scheme and only adds a PRF as a new component. PRFs are a well-studied
phenomenon for which a great deal of implementations and benchmarks have been
written. As such we deem a full implementation not essential for determining PIFL’s
performance characteristics, rather we will focus on just benchmarking popular PRF
implementations.

We chose to write our software implementation using the Rust programming lan-
guage [Hoa13]. The Rust language was created by the Mozilla Research Group, which
describes it as a “safe, concurrent, practical language”. Performance wise Rust is
roughly on par with low level languages such as C and C++ [FG17], however both
of these languages are notorious for resulting in codebases which contain hard to
detect and very serious security exploits [Dur+14] [Tur14]. Rust on the contrary is
safe by design; it, among other things, does not permit null pointers, data races or
dangling pointers. Furthermore, Rust requires its user to manage variable lifetimes
which are then reasoned about by the compiler through its borrow checker. We be-
lieve that Rust’s performance, coupled with the safety guarantee it provides, make
it an ideal language for implementing cryptographic schemes. We used Rust version
1.22.1 [NK17] for writing our implementation, the newest available version as of the
time of this writing.

As mentioned earlier, we test and benchmark our scheme on two devices, a high-end
laptop and a low-powered Raspberry Pi 1 Model B+ [Fou17]. The high-end laptop
is equipped with a quad-core Intel i7 Broadwell processor [Int17] and 8 GB of DDR3
memory. The Raspberry Pi has a 700 MHz single core ARM11 Broadcom processor
[Bro12] and 256 MB SDRAM of memory. For each of the benchmarks we perform,
we run the test 100 times and measure the execution duration in nanoseconds and
log size in bytes each time. Of these 100 measurements we then calculate the mean,
variance and the standard deviation [Dek+05]. The raw results of all benchmarks
that were run, can be found in Table 8.

47
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6.1 implementation details

The implementation we wrote contains all the functionality of the IFLS scheme as
described in Chapter 4. However, how we implemented these functionalities will not
be immediately obvious. In this section we will therefore detail which cryptographic
primitives we used, how we translated theoretical concepts to software implemen-
tations and why we made certain design decisions. As mentioned earlier, the imple-
mentation is written in the Rust programming language. All cryptographic primitives
mentioned in this section were supplied by the crate rust-crypto 0.2.36 1. A crate is
how packages are called in the Rust ecosystem. Projects can specify which crates
they are dependent on and the package manager, Cargo, takes care of managing
these dependencies. Crates are distributed through a central repository, located at
crates.io.

It is important to note that we made a best-effort to create a secure and realis-
tic implementation of the IFLS scheme, however this does not mean that it can
withstand a capable adversary. Even though all aspects of the implementation have
been tested, the code has not been professionally audited and hence it is likely that it
still contains subtle bugs which can be exploited. Furthermore, side-channel attacks
were not something that was considered when writing our implementation and as
such, it is most likely vulnerable to these types of attacks. This implementation is
instead merely meant as a starting point for any party who wants to create a truly
secure software implementation of the IFLS scheme. For this reason the code has
been released publicly2 under the MIT license [Ini+06], so that it can be used with
minimal restrictions by any interested party.

6.1.1 Hash Chain and Message Authentication Codes

Both the hash chain and the log entry signatures use the same hash family, SHA2
[PW08]. The hash chain update function exclusively uses the SHA512 variant of this
family. The motivation for this decision was two-fold: firstly, as can be seen in Figure
8d and 8e SHA256 is not significantly faster than SHA512 and in some cases even
slightly slower. Furthermore, only a single hash chain node will be in memory at any
given time. The extra space gain of keeping 256 bits versus 512 bits in memory is so
little that there is practically no benefit to using SHA256 in this scenario. Secondly,
because the hash chain plays such a central role in our schemes, we believe that the
increased security of being able to use 512 bits of entropy is always preferable over
the alternative of only being able to use 256.

For the log entry signatures, HMACs are used. During the initialization phase of
the scheme, the user has the option to either use SHA256 or SHA512 as the HMAC
hashing function. Naturally, this choice effects the storage overhead penalty the
scheme incurs. If SHA256 is chosen, each log entry signature is 256 bits in length
and likewise, if SHA512 is chosen, a signature is 512 bits long. The length of the
signature key si is 256 bits for both options.

We could have made the decision to support a larger number of hash algorithms,
such as SHA3 [Ber+11], MD6 [Riv+08] or BLAKE2 [Aum+13]. However, this would

1 https://crates.io/crates/rust-crypto
2 https://github.com/p-v-d-Veeken/IFLS

crates.io
https://github.com/p-v-d-Veeken/IFLS
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not have lead to any new insights and would have resulted in a much more complex
codebase. Furthermore, the purpose of this thesis is not to be a comparative study
of hash algorithms, but to research novel ideas for secure logging schemes.

6.1.2 Encryption and Decryption

For the symmetric encryption algorithm we used AES-256 in Cipher Block Chaining
(CBC) Mode [Ehr+78]. The consensus among security experts is that Counter (CTR)
Mode should be the default mode of operandi when using symmetric encryption
[FSK11]. We note however that in our scheme keys are not reused and as such our
choice for CBC is a valid one. The initialization vector (IV) is the same for each log
entry that is encrypted. The key ki used to encrypt a log entry Li is always 256 bits.

6.1.3 Key Derivation

The three key derivation methods as detailed in Section 4.3 are all implemented
using the SHA2 family. The hi− entropy− kd function concatenates the current
hash chain node with the string constants “Encryption key” or “Signature key”,
the resulting concatenation is hashed with SHA256 to obtain the encryption key
and signature key respectively. The med− entropy− kd function concatenates the
current hash chain node with the string constant “Signature & Encryption keys”.
The resulting concatenation is hashed using SHA512 to obtain an intermediary hash,
which is then split in two equal sized parts to obtain both keys si,ki. Lastly, lo−
entropy− kd splits the 512 bit hash chain node into one 256 bit part and two 128
bit parts. The two 128 bit parts are then padded to obtain the two keys. When
updating the hash chain, the original, full length, hash chain node is used.

6.1.4 Log File Structure and Encoding

The encrypted log file is stored on the logger as a simple binary file. Whenever a
new log entry is created, its ciphertext and signature are concatenated to a single
byte array which is then appended to the end of the binary file. For decryption and
verification purposes it is of course important to know which key derivation function
was used, as well as how the signatures were computed. To this end the first two
bytes of the log file are header bytes signifying the configuration which was used.
In order to be able to retrieve individual entries we use length-value encoding for
the log file. Length-value encoding entails that each log entry is prefaced with a 32
bit unsigned integer (i. e. 4 bytes) signifying the log entry’s length. Because of the
aforementioned header, the length of the entry’s signature is known and hence we
can recover the original, encrypted, entry (L̂i,σ†i ).

6.1.5 Pseudorandom Function

As mentioned earlier, we have not implemented the complete PIFL scheme. We have
however written a benchmark for measuring the performance of using a PRF to
compute indices under varying load factors. We use the SipHash [AB12] algorithm
for representing the PRF. The hash function takes two parameters - a 128 bit "secret"
key and an arbitrary data blob. This is different from traditional hashes which require
only a data blob as an input. SipHash outputs a secure 64 bit hash.
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6.2 building block benchmarks

As mentioned earlier in this chapter, the five building blocks of both schemes are: (a)
message encryption, (b) updating the hash chain, (c) writing to persistent storage,
(d) message authentication code computation, (e) key derivation. To get a sense
for which of these is the bottle neck in terms of performance, we benchmark each
building block individually. The results hereof are displayed in Figure 8.

(a) Message encryption (b) Hash chain updates

(c) Writing to persistent storage (d) Signature Computation

(e) Key derivation.

Figure 8: Scatter plots of the execution time of each of the building blocks on the high-end laptop as well as
on the Raspberry Pi. The vertical axes are the execution times in µs and the horizontal axes are the
number of iterations. On all of the plots, both the vertical and horizontal axes are base 10 logarithmic.
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The SHA256 and SHA512 labels refer to the hash functions being used [PW08], the
number coming after “SHA” designates the bit size of the output digest. For further
reference see also 2.2.4. The “Short (message)” and “Long (message)” classifications
refer to the length of the message being used. A short message is 15 characters in
length and a long message 319 characters, respectively the maximum amount of
characters than can fit in a single 128-bit block and 20 128-bit blocks. These two
message sizes were not arbitrarily chosen. We took all log files, 14 in total, from the
/var/log/ directory of an often and intensively used Linux system and calculated
the average log line length. This turned out to be 147 characters with the 5th and
95th percentile being 29 and 214 characters respectively. These numbers validate our
choice for message lengths, because the two lengths bound the line lengths found in
commonly used system logs.

From Figure 8 we conclude that both writing to persistent storage as well as sig-
nature computation are bottle necks. However, the execution time discrepancy with
other building blocks is at most an order of magnitude, in the case of persistent
storage versus updating the hash chain. For other comparisons the difference is typi-
cally some multiple smaller than 10. Furthermore, the key derivation functions have
a much bigger impact on execution time on the laptop than on the Raspberry Pi. It
is likely that the performance difference between these functions is magnified by the
much faster processor of the laptop.

The Raspberry Pi appears to be around two orders of magnitude slower than the
laptop for each of the building blocks, which appears to stroke with publicly available
benchmarks [Ben17]. Curiously, it seems to be the case that SHA512 is as fast, or
slightly faster than SHA256 on the laptop, but on the Raspberry Pi SHA512 is sig-
nificantly slower than SHA256. From other benchmarks [Cry17] we gather that the
expected behavior is that SHA512 is indeed slightly faster than SHA5256. However,
these benchmarks are all implemented on the x64 architecture. It could therefore
be possible that some factor inherent to the ARM architecture, such as the 32-bit
memory addresses, are responsible for the SHA512 slow down.

6.2.1 Pseudorandom Function Benchmarks

In this benchmark we use the PRF implementation to pseudorandomly fill up a
bitmap up until a certain load factor. As the load factor of the bitmap increases,
the expected number of PRF calls that need to be done until a valid index is found,
increases as well. The purpose of this benchmark is thusly to investigate how perfor-
mance degrades under increasing load factors.

From Figure 9 it becomes clear that this particular implementation of a PRF is
extremely fast. Even for very high load factors, the PRF is an order of magnitude
faster than other building blocks. This is a promising result for the PIFL scheme,
because it implies that an implementation of the scheme would be likely as fast or
faster than the implementation of IFLS.

6.3 logger benchmarks

While decryption and verification of encrypted log files are important components
of the IFLS scheme, the real acid test of our implementation is whether the logger
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Figure 9: Scatter plot of the execution time in micro seconds of the PRF on the high-end
laptop and the Raspberry Pi for increasing load factors.

performs well on the Raspberry Pi. In Figure 10 the results of the benchmarks
are displayed. In this benchmark the med − entropy − kd function was used for
each of the configurations. We believe this function offers the best trade-off between
performance and security, it produces keys with 256 bits of entropy and uses only a
single hash function call.

Figure 10: Scatter plot of the execution time of the logger on the high-end laptop as well as on
the Raspberry Pi. Both the vertical and horizontal axes are base 10 logarithmic.

From Figure 10 we conclude that the message size is a much more dominant factor
for the execution time than the choice of hashing function. This is to be expected
when one considers the fact that the size of the message affects three of the five
building blocks, encryption, signing and writing to the file system. Otherwise, no
unexpected results present themselves in Figure 10. The Raspberry Pi is, just like
in the building block benchmarks, roughly two orders of magnitude slower than the
laptop. The most exciting conclusion this benchmark yields is the fact that even
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in the least ideal configuration, logging only long messages and using the SHA256
algorithm, the Pi manages to log 1000 messages in 3.96 seconds. In Table 4 the
performance of all configurations are presented.

Table 4: Overview of the execution time (duration) and speed (lines / s) of the logger for
logging the designated number of lines using the indicated configurations on the
Raspberry Pi. Each of the configurations uses the med− entropy− kd key deriva-
tion function.

No. of Lines Short, SHA256 Short, SHA512 Long, SHA256 Long, SHA512
Duration (µs) Lines / s Duration (µs) Lines / s Duration (µs) Lines / s Duration (µs) Lines / s

1 1597.71 626 776.73 1287 4052.54 247 2791.12 358
10 15738.95 635 7646.75 1308 40317.18 248 27958.97 257

100 157200.89 636 76242.64 1311 407346.74 246 278769.10 359
1000 1587750.69 630 773596.45 1293 3955111.37 253 2518116.55 397

Curiously, in Figure 8 the SHA512 algorithm appears to be slower than SHA256
on the Raspberry Pi. However, in Table 4 and Figure 10 the expected behavior is
demonstrated, where the SHA512 function is faster than the SHA256 function. A
few probable scenarios are that the building block benchmarks somehow hit a very
specific performance bottleneck, such as loss of branch prediction [Smi81] or specu-
lative execution [CG99].

Up until this point we have only considered execution time, however the size of
the log file is an important aspect of IFLS as well. In Equation 1 we define a formula
for what the log file size should be for a given number of entries and a specific config-
uration. We arrived at this formula by combining the following observations: (i) the
file header consists out of two bytes. (ii) Each log entry is preceded by a four byte
integer specifying its length. (iii) Each log entry’s cipher text consists out of either
a single 128 bit block, or twenty 128 bit blocks, meaning the cipher text is either 16
or 20 · 16 bytes in length respectively. Lastly, (iv) depending on which hashing algo-
rithm is used, the signature is either 32 or 64 bytes. Combining these observations,
leads us to the four distinct possible combinations as defined in Equation 1.

Size(n) = 2+n×



(4+ 1 · 16+ 32) if Short, SHA256

(4+ 1 · 16+ 64) if Short, SHA512

(4+ 20 · 16+ 32) if Long, SHA256

(4+ 20 · 16+ 64) if Long, SHA512

(1)

In Figure 11 and Table 5 the size of the log file for various configurations at increasing
number of entries is presented. The recorded log file sizes follow the predicted size
according to Equation 1 exactly. Which is to be expected, due to the fact that the
logging benchmarks are entirely deterministic with regard to what is being logged.

From Table 5 it becomes apparent that the overhead in bytes, relative to the plain
text log, decreases with the size of the message to be logged. This is to be expected,
because the overhead is overwhelmingly due to the message signature, which is always
of a fixed-length.
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Figure 11: Scatter plot of the log file size in bytes after logging the designated number of
lines. The horizontal axis is base 10 logarithmic.

Table 5: Overview of the log file size in bytes, as well as the overhead in bytes after logging
the designated number of entries using the indicated configurations.

No. of Entries
Plaintext SHA256 SHA512

Short Long Short Long

Short Long Size Overhead (%) Size Overhead (%) Size Overhead (%) Size Overhead (%)

1 15 319 54 39 (260%) 358 39 (12.2%) 86 71 (473.3%) 390 71 (22.3%)
10 150 3,190 522 372 (248%) 3,562 372 (11.7%) 842 692 (461.3%) 3,882 692 (21.7%)

100 1,500 31,900 5,202 3,702 (246.8%) 35,602 3,702 (11.6%) 8,402 6,902 (460.1%) 38,802 6,902 (21.6%)
1000 15,000 319,000 52,002 37,002 (246.7%) 356,002 37,002 (11.6%) 84,002 69,002 (460%) 388,002 69,002 (21.6%)

Now that we have size of the log file and the speed at which the Logger logs, we can
look at the bandwidth of the Logger. In this case there are two kinds of bandwidth:
firstly, there is the input bandwidth, which is simply the amount of plaintext bytes
the Logger can process per second. The second kind is the output bandwidth, which
is the number of bytes the Logger outputs per second. As we have seen with the log
file size, our scheme introduces a storage overhead with each log entry. As such, the
output bandwidth will be higher than the input bandwidth. In Figure 12 and Table
6 the achieved bandwidth for each of the configurations can be found.

From Figure 12 and Table 6 we conclude that the bandwidth remains fairly stable
during the logging process.

6.4 interpreter benchmarks

The Interpreter as described in Section 4.4 is not assumed to be resource-constrained
and as such its performance is less important than that of the Logger. If we however
look at the operations the Interpreter needs to perform, we find no reason why it
should not be able to run on a resource-constrained device. Seeing how, it merely
receives an encrypted log file and a set of keys and outputs a decrypted log file.
Moreover, it does not concern itself with signature computation, so at least theoreti-
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Table 6: Overview of the achieved input and output bandwidths in Bytes per second for each
of the denoted configurations at varying number of lines logged on the Raspberry
Pi.

SHA256 SHA512

No. of Lines Short Long Short Long

Input Output Input Output Input Output Input Output

1 9,388 32,547 78,716 95,742 19,312 108,146 114,291 139,012
10 9,530 31,324 79,123 95,567 19,616 106,320 114,096 137,809

100 9,542 31,189 78,312 94,521 19,674 106,279 114,432 138,118
1000 9,447 30,863 80,655 97,343 19,390 104,710 126,682 152,893

Figure 12: Line plot of the achieved input and output bandwidths for each of the denoted
configurations at varying number of lines logged on the Raspberry Pi. The vertical
axis is the bandwidth in Bytes per second and the horizontal axis is the number
of entries logged. The horizontal axis is base 10 logarithmic.

cally it should be faster than the Logger. Under the assumption that the encryption
and decryption operations are equally fast. From Figure 13 and Figure 10 we can
conclude that the interpreter is indeed slightly faster than the Logger.

6.5 verifier benchmarks

Much like the Interpreter, the Verifier only needs to use a subset of the building blocks
the Logger makes use of. Namely, signature computation and file system access. For
this reason we once again expect the verifier to be slightly faster than the logger.
From Figure 14 and Figure 10 we can conclude that our expectations were met and
the verifier is just as performant as the Logger.
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Figure 13: Scatter plot of the execution time of the interpreter on the high-end laptop as
well as on the Raspberry Pi. The vertical axis is the execution time in µs and the
horizontal axis is the number of iterations. Both the vertical and horizontal axes
are base 10 logarithmic.

Figure 14: Scatter plot of the execution time of the verifier on the high-end laptop as well
as on the Raspberry Pi. The vertical axis is the execution time in µs and the
horizontal axis is the number of iterations. Both the vertical and horizontal axes
are base 10 logarithmic.

6.6 conclusion

In this chapter we have explicitly shown the real world feasibility of the IFLS scheme
and implicitly of the PIFL scheme. Our implementation achieves writing speeds be-
tween 247 and 1311 lines per second on low-end hardware, depending on which config-
uration is used. It is important to note that, while performant, our implementation
is relatively unoptimized. In the sense that most devices targeted by IFLS would
make use of dedicated hardware for cryptographic operations such as encryption
and hashing [MAD03] [SK03] [Cha+06]. These hardware implementations generally
offer greatly increased speeds (and security) over simple software implementations as
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used in our implementation of IFLS. Furthermore the Raspberry Pi’s memory card
is connected to the motherboard through a USB 2.0 adapter. This is a rather uncon-
ventional way of connecting storage to a device and is the main reason why accessing
the file system on the Pi is so slow. In later editions of the Raspberry Pi, such as
the model 3, the memory card is directly connected to the motherboard through a
MicroSDHC slot which results in much faster file system access. These observations
lead us to the conclusion that an optimized implementation could achieve writing
speeds multiple times higher than what we achieved with our naive implementation.

From all the schemes discussed in Chapter 3, the only scheme which created a
benchmarked implementation was SLiC from Blass and Noubir. Coincidentally they
benchmark their scheme on exactly the same Raspberry Pi model as we have used for
our benchmarks. Furthermore, the authors use the much of the same cryptographic
primitives as we have used; AES-256 and HMAC-SHA-256. Their benchmark entails
logging 220 strings of 160 character each and calculating the average entries per sec-
ond. This provides us with excellent data to compare our results against. In Table 7
a side-by-side comparison of achieved speeds of both schemes is given.

Table 7: Comparison of achieved speeds and bandwidths between our IFLS implementation
and Blass and Noubir’s SLiC implementation.

SHA256 SHA512
Short Long Short Long SLiC

Speed (Lines / s) 630 247 1287 358 30
Input Bandwidth (Bytes / s) 9,447 80,655 19,390 126,682 4,800
Output Bandwidth (Bytes / s) 30,8763 97,343 104,710 152,893 8,640

From Table 7 we conclude that our implementation is superior in terms of achieved
speeds to the implementation of SLiC. The differences being that IFLS is between
10 to 30 times faster than SLiC. We do note that this comparison is not perfect, due
to the fact that SLiC is written in Python and makes use of an unknown PRF imple-
mentation for computing indices not present in IFLS. From our results in Subsection
6.2.1 it seems that a PRF should not result in significant performance degradation.
However, without knowledge of which PRF implementation the authors used, this
remains mere speculation. Python on the other hand is notorious for being slow com-
pared to systems programming languages such as C, C++ and indeed Rust. It is
therefore likely that Python is largely responsible for the perceived order of magni-
tude slow down.

To determine whether our scheme is truly fit for resource constrained devices one,
rather arbitrary, benchmark we can look at is the throughput of a conventional serial
port. Any measurement a resource-constrained device makes is most likely commu-
nicated between components through a serial port. If our scheme can match the
bandwidth of such a port, we can be quite certain that our scheme satisfies the
resource-constrained requirement outlined in the beginning of this thesis. A com-
monly used standard for serial ports is RS-232 [Eva+76]. Transmission speeds over
a RS-232 port typically reach between 20,000 and 125,000 Bytes per second [Nat16].
Which, if we look at Table 6 and Figure 12, is in the range of our implementation.
As mentioned earlier, this is a rather arbitrary benchmark and there are certainly
other standards for serial ports in use which achieve higher throughput speeds. How-
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ever, the purpose of this benchmark was to illustrate that our implementation at the
very least operates on the same order of magnitude as other components of resource
constrained devices.



7
DISCUSS ION AND FUTURE WORK

In an ever changing IT landscape, one of the few constants have been that systems
need to be audited and their actions reviewed. Log files are an essential component to
the audit process and it is for this reason that secure logging schemes are important
to the world of computing. There exist a great deal of secure logging schemes for
an even greater amount of application scenarios. However, secure logging schemes
which have been designed for resource-constrained devices are few and far between.
Doubly so, for logging schemes which recognize the restrictions of the physical world
and have been designed to cope with limited space and the nature of flash storage.
In the literary review we conducted as part of this thesis, we could only find a single
scheme, SLiC by Blass and Noubir which could realistically function on a lightweight
device using flash storage.

In this chapter we revisit the research question we posed in the introductory chapter
of this thesis:

How to construct an offline, authenticated, forward secure and confidential logging
scheme which is suitable for resource-constrained devices?

We discuss how the two schemes presented here achieve the research goal. More-
over, we provide future research directions by identifying remaining open problems
and improvements.

7.1 discussion

In this thesis two secure logging schemes for resource-constrained devices are pre-
sented. We assertively state that both schemes achieve the desired properties stated
in the research question; forward-security, confidentiality, authenticity and offline.
The core concepts shared between IFLS and PIFL are a hash chain to derive keying
material used to encrypt and sign each new log entry. And forward links established
in such a manner that each log entry, safe for the last one, holds an unforgeable ref-
erence to the next entry in its signature. These forward links coupled with the hash
chain derived keys ensure that any and all attack not aimed at the end of the log file
is effectively mitigated. IFLS and PIFL have different strategies for counteracting
attacks aimed at the tail-end of the log file.

The last log entry in a log file maintained by IFLS has a different signature than
those of the preceding entries. When a new entry gets added to the log, this signature
gets updated to a forward linked signature. Because the original signature cannot be
retrieved after it has been updated, attacks which are aimed at the end of the log
file are mitigated. Herein however also lies the crux of the IFLS scheme. The update
process entails overriding the original signature with the updated one, which means
IFLS relies on the file system to provide an override function which efficiently and
irreversibly overrides a value in persistent storage. Due to the nature of flash storage,
this functionality cannot be supplied by the file system on devices using this stor-
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age medium. Low-end flash storage is the de-facto standard on resource-constrained
devices and it is these two observations which led to the creation of the PIFL scheme.

The IFLS inspired PIFL scheme uses the hash chain and forward linked signatures
the same way IFLS does. To avoid the need for an override function, PIFL instead
divides up the log entries in blocks of 2n bytes and pseudorandomly distributes
them over preallocated arrays. Doing this makes the probability that an adversary
correctly picks all the blocks associated to the last entry in the log vanishingly small.

All known attacks on secure logging schemes are computationally intractable for
the IFLS scheme, assuming conventional key sizes and signature lengths. As for the
PIFL scheme, most of the known attacks are computationally intractable with two
specific attacks, the Truncation and Crash attacks, being statistically infeasible. With
statistically infeasible we mean to say that in the worst-case scenario the probability
of these attacks being successful is so small (∼ 10−6) that we do not consider them
as realistic attack vectors.

In terms of computational- and space complexity, there are a few schemes evalu-
ated in the prior art which present better upper bounds than either IFLS and PIFL
for some operations. Most notably the (FI-) BAF schemes require fewer operations
for executing both the Log and Update functions. We note however that these
schemes are dependent on an Online TTP and are vulnerable to some attacks.

To test the feasibility of our schemes we created a software implementation of the
IFLS scheme and benchmarked the various functionalities (log, verify, disclose
and update) of the scheme. Additionally, we benchmarked the building blocks used
by both IFLS and PIFL. From these benchmarks we concluded that our schemes
undoubtedly meets the resource-constrained requirement seeing how, without any
optimizations, the IFLS implementation could match the bandwidth of a serial port
on a lightweight device. Furthermore, we found that an implementation of the similar
SLiC scheme was at least an order of magnitude slower than our implementation of
IFLS.

We did not create a software implementations of PIFL, this does not however pre-
clude us from drawing conclusions about its performance on low-end devices. We
benchmarked most of the building blocks it uses in our IFLS benchmark, moreover
we also tested the performance of a popular PRF implementation. From these bench-
marks it became apparent that computing indices with the PRF, even for high load
factors, was not a performance bottleneck when compared to other building blocks.
Seeing how the biggest difference between IFLS and PIFL is the PRF used to com-
pute array indices. In spite of all its advantages, we do have to place a critical note
on the memory usage of PIFL. Due to the fact that U needs to keep track of which
indices are used in the current active array, its memory usage scales linearly with
the size of the array. This places an upper-bound on the maximum size of the pre-
allocated arrays. With an efficient bitmap implementation, the memory footprint
of these indices will be |a| bits. Assuming arrays which can hold 216 blocks, the
corresponding index set will be 8192 bits (8 KB). While this memory footprint is
acceptable for most devices, it is not ideal and will require frequent array switching.
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7.2 future work

The logging schemes which we have presented in this thesis are, to the best of our
knowledge, the first schemes which are provably safe against all known attacks and
fit for resource-constrained devices. The two schemes, and PIFL in particular, show
real potential for real-world utility in terms of security and performance. There is
however still plenty of room for improvement.

7.2.1 Finer Grained Performance Versus Security Controls

In both the IFLS and the PIFL schemes the user can already tune the trade-off
between performance and security. For both schemes there is the option to choose
between one of three key derivation functions which offer varying degrees of perfor-
mance versus security. Furthermore, in the PIFL scheme the user can also control
the size of the blocks the log entries get divided up into. Bigger blocks mean better
performance through less file system and PRF calls. The set of possible block combi-
nations is naturally smaller however, which translates to less security against Crash
and Truncation attacks.

We believe there is no one-size-fits-all solution for all the different application scenar-
ios for even just the schemes in this thesis. As such, we deem it interesting for future
research to focus on what kind of other controls can be provided with which users can
control various aspects of these schemes. For example, aggregating a larger number
of log entries in a forward linked signature would reduce the storage overhead at the
expense of being able to verify individual log entries.

7.2.2 Data Structures for The Log File

The fundamental data structure underlying both IFLS and PIFL is the array. While
this data structure has a lot of positive properties; performant, predictable and well-
studied. It would be naive to assume that it is the single best data structure to
represent a log file. Earlier research has already been conducted on this subject,
however these have mainly focused on auxiliary functionalities such as creating a
searchable log [Wat+04], supporting remote auditing [Acc13] or adding versioning
[CW09]. During our research we have explored using binary trees to create a more
corruption resistant log, however this turned out to be a dead-end. There might
however be other data structures which do introduce interesting properties. Nodes
in a skip list [Pug90] for example, have forward-linking to other nodes as an intrinsic
property. As such, it could perhaps be used for creating a log file which is more
efficient to verify, maintain or store.

Another research direction would be to understand the ramifications of represent-
ing the log file as a directed graph. What properties, for example, cycles, graph
coloring, or small-world graphs introduce to the logging schemes. It could perhaps
be possible to omit signatures for a subgraph of entries and still ensure that the
entire log file is verifiable.
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7.2.3 Alternatives to Modifying or Hiding the Last Log Entry

In the IFLS scheme we need a secure override function for persistent storage in
order for the scheme to be workable. In the PIFL scheme we replace this dependence
with pseudorandom indexing. The underlying reason for our need for either of these
constructs, is that there needs to be someway to discern the last log entry from
other log entries which is unforgeable for an outside attacker. Overriding a signature
achieves this goal, pseudorandom indexing does not, but instead makes it difficult
for an attacker to identify the last log entry. Another approach to achieve this goal
is by using asymmetric encryption. Asymmetric encryption, as we alluded to in the
introduction of this thesis, is generally computationally quite intensive. However, in
their paper [YN12] Yavuz and Ning manage to make asymmetric encryption feasible
for resource-constrained devices. They achieved this by using Time Released Encryp-
tion (TRE), however, which is not a concept which would work for our application
scenario. The reason for this is the fact that TRE relies on online connectivity. Yavuz
and Ning have nevertheless demonstrated that asymmetric encryption can be done
on low-powered hardware. For this reason we believe that researching other ways
light-weight asymmetric encryption can be applied to secure logging schemes is a
viable research direction.

7.2.4 Concluding Remarks

The research objective of this thesis has been to create secure logging scheme tailored
for resource-constrained devices. Although solutions have been suggested, previous
work is unable to achieve resistance against all known attacks nor do they offer
real-world feasibility. This is due to them making unrealistic assumptions about the
underlying hardware and not considering the possibility of data corruption.

The two schemes presented in this thesis achieve the research objective by creating
unforgeable links between contiguous log entries and by maintaining a hash chain
to record the order of log entries. Additionally both of the schemes employ different
tactics to make the last log entry unforgeable. The first scheme achieves this property
by making use of updating signatures so that the signature of the last entry cannot
be retrieved after it has been updated. The second scheme makes the last log entry
unforgeable by randomizing the positions of all the entries in the log, so that with-
out knowledge of the seeds of the PRF, an attacker cannot identify the last log entry.

The performance and security achieved by both schemes presented in this thesis
is, to the best of our knowledge, unparalleled in the context of resource-constrained
devices. Moreover we believe that a secure and efficient implementation of the PIFL
scheme would be a viable option for a large number of non-trivial use cases. Our
implementation of the IFLS scheme would in this case be an excellent starting point
to base this secure implementation of.
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A
BENCHMARK RESULTS

Table 8: Results of all the benchmarks run on the Laptop and the Raspberry Pi. The dura-
tions are in µs and for each result the standard deviation (σ) is reported.

Duration (µs± σ)
Benchmark Laptop Pi

calc_1_sigs_msg_len_15_sha256 3± 0.148 93± 4.55× 106

calc_1_sigs_msg_len_15_sha512 6± 1.36 905± 4.28× 106

calc_1_sigs_msg_len_319_sha256 5± 1.45 111± 3.27× 105

calc_1_sigs_msg_len_319_sha512 8± 1.97 1, 102± 4.02× 106

calc_10_sigs_msg_len_15_sha256 48± 7.04 771± 2.61× 106

calc_10_sigs_msg_len_15_sha512 39± 2.01 8, 972± 5.38× 107

calc_10_sigs_msg_len_319_sha256 63± 12.1 1, 001± 7.38× 106

calc_10_sigs_msg_len_319_sha512 47± 3.45 10, 993± 4.07× 107

calc_100_sigs_msg_len_15_sha256 295± 8.31 7, 681± 8.32× 106

calc_100_sigs_msg_len_15_sha512 684± 134 89, 838± 3.04× 108

calc_100_sigs_msg_len_319_sha256 448± 8.12 9, 961± 4.77× 107

calc_100_sigs_msg_len_319_sha512 800± 76.8 109, 993± 3.25× 108

calc_1000_sigs_msg_len_15_sha256 2, 950± 51.8 89, 705± 2.72× 108

calc_1000_sigs_msg_len_15_sha512 3, 803± 40.5 753, 041± 7.86× 108

calc_1000_sigs_msg_len_319_sha256 4, 575± 283 112, 806± 2.57× 108

calc_1000_sigs_msg_len_319_sha512 4, 636± 220 924, 428± 3.35× 109

decrypt_1_messages_msg_len_15 1± 2.46 84± 4.95× 106

decrypt_1_messages_msg_len_319 2± 0.32 400± 4.36× 105

decrypt_10_messages_msg_len_15 8± 1.32 726± 2.17× 106

decrypt_10_messages_msg_len_319 16± 0.197 3, 954± 8.91× 106

decrypt_100_messages_msg_len_15 75± 14.3 7, 049± 1.37× 107

decrypt_100_messages_msg_len_319 159± 4.66 39, 361± 1.87× 108

decrypt_1000_messages_msg_len_15 878± 179 70, 560± 2.27× 108

decrypt_1000_messages_msg_len_319 1, 714± 269 395, 862± 3.4× 1012

derive_1_keys_High 2± 0.382 74± 3.61× 105

derive_1_keys_Low 0± 0.059 18± 1.91× 105

derive_1_keys_Medium 1± 0.126 120± 2.18× 105

derive_10_keys_High 20± 2.42 2, 022± .37× 108

derive_10_keys_Low 5± 0.064 1, 231± 9.55× 106

derive_10_keys_Medium 15± 5.82 1, 970± 5.78× 106

derive_100_keys_High 344± 35.1 21, 146± 1.39× 108

derive_100_keys_Low 57± 3.93 13, 320± 7.43× 107

derive_100_keys_Medium 99± 3.88 20, 518± 6.53× 107

derive_1000_keys_High 1, 992± 211 178, 442± 6.38× 108

derive_1000_keys_Low 570± 9.72 133, 778± 5.52× 108

derive_1000_keys_Medium 995± 14.6 247, 417± 4.63× 109

do_1_hashchain_updates 1± 0.283 116± 3.24× 105

do_10_hashchain_updates 5± 1.12 1, 099± .47× 107

do_100_hashchain_updates 84± 7.75 10, 920± 5.87× 107

do_1000_hashchain_updates 477± 77.7 91, 848± 2.29× 108

encrypt_1_messages_msg_len_15 1± 1.99 90± .39× 106
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Duration (µs± σ)
Benchmark Laptop Pi

encrypt_1_messages_msg_len_319 2± 0.374 373± 2.33× 106

encrypt_10_messages_msg_len_15 7± 0.573 798± 4.17× 106

encrypt_10_messages_msg_len_319 17± 0.49 3, 641± 3.27× 107

encrypt_100_messages_msg_len_15 119± 58.8 7, 843± .27× 108

encrypt_100_messages_msg_len_319 251± 107 36, 359± 2.16× 108

encrypt_1000_messages_msg_len_15 719± 123 72, 235± 2.74× 108

encrypt_1000_messages_msg_len_319 1, 749± 230 351, 390± .23× 1010

fill_to_load_factor_0.7_entry_len_22 230± 2, 280 20, 618± 4.21× 1013

fill_to_load_factor_0.7_entry_len_3 68± 672 4, 066± 1.64× 1012

fill_to_load_factor_0.75_entry_len_22 225± 2, 240 21, 565± 4.60× 1013

fill_to_load_factor_0.75_entry_len_3 71± 708 4, 482± 1.99× 1012

fill_to_load_factor_0.8_entry_len_22 205± 2, 040 23, 153± 5.31× 1013

fill_to_load_factor_0.8_entry_len_3 63± 630 4, 944± 2.42× 1012

fill_to_load_factor_0.85_entry_len_22 214± 2, 130 24, 820± 6.10× 1013

fill_to_load_factor_0.85_entry_len_3 75± 750 5, 461± 2.95× 1012

fill_to_load_factor_0.9_entry_len_22 226± 2, 250 26, 673± 7.04× 1013

fill_to_load_factor_0.9_entry_len_3 83± 829 6, 185± 3.79× 1012

fill_to_load_factor_0.95_entry_len_22 253± 2, 520 28, 824± 8.22× 1013

fill_to_load_factor_0.95_entry_len_3 111± 1, 100 7, 213± 5.15× 1012

interpret_1_lines_block_len_1_high_sha256 12± 71.6 357± 4.31× 107

interpret_1_lines_block_len_1_high_sha512 7± 37.1 361± .46× 108

interpret_1_lines_block_len_1_low_sha256 11± 72.9 348± .39× 108

interpret_1_lines_block_len_1_low_sha512 11± 73.7 357± 4.31× 107

interpret_1_lines_block_len_1_med_sha256 17± 132 359± 4.43× 107

interpret_1_lines_block_len_1_med_sha512 7± 38.2 368± 4.43× 107

interpret_1_lines_block_len_20_high_sha256 15± 115 713± 3.19× 108

interpret_1_lines_block_len_20_high_sha512 11± 72.7 719± .32× 109

interpret_1_lines_block_len_20_low_sha256 14± 109 706± 3.15× 108

interpret_1_lines_block_len_20_low_sha512 18± 140 823± 4.53× 108

interpret_1_lines_block_len_20_med_sha256 19± 150 709± 3.14× 108

interpret_1_lines_block_len_20_med_sha512 15± 115 712± .32× 109

interpret_10_lines_block_len_1_high_sha256 36± 315 1, 368± 1.48× 109

interpret_10_lines_block_len_1_high_sha512 20± 164 1, 432± 1.49× 109

interpret_10_lines_block_len_1_low_sha256 32± 285 1, 394± 1.54× 109

interpret_10_lines_block_len_1_low_sha512 31± 270 1, 370± .15× 1010

interpret_10_lines_block_len_1_med_sha256 30± 264 1, 442± 1.65× 109

interpret_10_lines_block_len_1_med_sha512 23± 199 1, 376± 1.52× 109

interpret_10_lines_block_len_20_high_sha256 91± 860 5, 231± 2.56× 1010

interpret_10_lines_block_len_20_high_sha512 49± 454 5, 013± 2.34× 1010
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Duration (µs± σ)
Benchmark Laptop Pi

interpret_10_lines_block_len_20_low_sha256 54± 509 5, 172± 2.5× 1010

interpret_10_lines_block_len_20_low_sha512 91± 870 5, 125± 2.46× 1010

interpret_10_lines_block_len_20_med_sha256 87± 829 5, 233± 2.57× 1010

interpret_10_lines_block_len_20_med_sha512 54± 506 5, 129± 2.46× 1010

interpret_100_lines_block_len_1_high_sha256 273± 2, 680 12, 129± 1.42× 1011

interpret_100_lines_block_len_1_high_sha512 154± 1, 500 12, 008± 1.39× 1011

interpret_100_lines_block_len_1_low_sha256 159± 1, 550 12, 147± 1.42× 1011

interpret_100_lines_block_len_1_low_sha512 162± 1, 580 12, 226± 1.44× 1011

interpret_100_lines_block_len_1_med_sha256 272± 2, 670 11, 946± 1.38× 1011

interpret_100_lines_block_len_1_med_sha512 158± 1, 540 11, 920± 1.36× 1011

interpret_100_lines_block_len_20_high_sha256 721± 7, 130 49, 946± 2.46× 1012

interpret_100_lines_block_len_20_high_sha512 425± 4, 200 49, 951± 2.45× 1012

interpret_100_lines_block_len_20_low_sha256 447± 4, 420 49, 361± .24× 1013

interpret_100_lines_block_len_20_low_sha512 473± 4, 680 50, 179± 2.48× 1012

interpret_100_lines_block_len_20_med_sha256 638± 6, 300 49, 571± 2.42× 1012

interpret_100_lines_block_len_20_med_sha512 439± 4, 330 50, 031± 2.46× 1012

interpret_1000_lines_block_len_1_high_sha256 2, 194± 21, 800 118, 066± 1.38× 1013

interpret_1000_lines_block_len_1_high_sha512 2, 055± 20, 400 119, 392± 1.41× 1013

interpret_1000_lines_block_len_1_low_sha256 1, 551± 15, 400 117, 898± 1.37× 1013

interpret_1000_lines_block_len_1_low_sha512 2, 903± 28, 900 118, 511± 1.39× 1013

interpret_1000_lines_block_len_1_med_sha256 1, 810± 18, 000 118, 154± 1.38× 1013

interpret_1000_lines_block_len_1_med_sha512 1, 512± 15, 000 118, 403± 1.38× 1013

interpret_1000_lines_block_len_20_high_sha256 4, 520± 44, 900 494, 117± 2.42× 1013

interpret_1000_lines_block_len_20_high_sha512 5, 448± 54, 200 492, 476± 2.40× 1014

interpret_1000_lines_block_len_20_low_sha256 7, 437± 74, 000 493, 615± 2.41× 1013

interpret_1000_lines_block_len_20_low_sha512 4, 291± 42, 700 492, 868± 2.40× 1014

interpret_1000_lines_block_len_20_med_sha256 4, 862± 48, 300 494, 067± 2.42× 1013

interpret_1000_lines_block_len_20_med_sha512 4, 389± 43, 600 493, 119± 2.41× 1013

log_1_lines_block_len_1_high_sha256 17± 1.64 1, 478± 1.23× 107

log_1_lines_block_len_1_high_sha512 17± 3.12 714± 8.37× 106

log_1_lines_block_len_1_low_sha256 26± 5.78 1, 598± 2.34× 107

log_1_lines_block_len_1_low_sha512 18± 2.12 777± 1.16× 107

log_1_lines_block_len_1_med_sha256 18± 2.22 1, 339± 7.78× 106

log_1_lines_block_len_1_med_sha512 18± 4.33 703± 6.93× 106

log_1_lines_block_len_20_high_sha256 46± 5.74 3, 929± 6.59× 107

log_1_lines_block_len_20_high_sha512 50± 10.7 2, 717± 5.68× 107

log_1_lines_block_len_20_low_sha256 85± 24.2 4, 053± 4.82× 107

log_1_lines_block_len_20_low_sha512 48± 3.81 2, 791± 3.65× 107

log_1_lines_block_len_20_med_sha256 48± 7.65 3, 470± 2.35× 107

log_1_lines_block_len_20_med_sha512 50± 12.2 2, 423± 2.19× 107

log_1_lines_only_io_msg_len_15 14± 2.45 165± 1.09× 106

log_1_lines_only_io_msg_len_319 63± 15.1 1, 720± 1.97× 107
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Duration (µs± σ)
Benchmark Laptop Pi

log_10_lines_block_len_1_high_sha256 234± 41.9 14, 766± 1.36× 108

log_10_lines_block_len_1_high_sha512 171± 23.4 7, 022± 7.31× 107

log_10_lines_block_len_1_low_sha256 269± 51.3 15, 739± 9.54× 107

log_10_lines_block_len_1_low_sha512 188± 31.4 7, 647± 6.21× 107

log_10_lines_block_len_1_med_sha256 252± 40.3 13, 324± 6.07× 107

log_10_lines_block_len_1_med_sha512 182± 34.7 6, 914± 4.05× 107

log_10_lines_block_len_20_high_sha256 464± 27.8 39, 345± 5.53× 108

log_10_lines_block_len_20_high_sha512 466± 31.1 26, 678± 1.17× 108

log_10_lines_block_len_20_low_sha256 849± 257 40, 317± 6.24× 108

log_10_lines_block_len_20_low_sha512 478± 28.7 27, 959± 2.21× 108

log_10_lines_block_len_20_med_sha256 485± 73.9 39, 403± 2.33× 1012

log_10_lines_block_len_20_med_sha512 545± 130 24, 555± 1.02× 108

log_10_lines_only_io_msg_len_15 143± 13.2 1, 477± 1.85× 107

log_10_lines_only_io_msg_len_319 407± 101 17, 182± 9.47× 107

log_100_lines_block_len_1_high_sha256 2, 356± 665 144, 389± 3.56× 109

log_100_lines_block_len_1_high_sha512 2, 140± 742 69, 364± 7.95× 108

log_100_lines_block_len_1_low_sha256 2, 389± 557 157, 201± 2.42× 109

log_100_lines_block_len_1_low_sha512 2, 347± 730 76, 243± 1.02× 109

log_100_lines_block_len_1_med_sha256 2, 430± 705 133, 499± 2.14× 109

log_100_lines_block_len_1_med_sha512 2, 382± 646 68, 767± 1.06× 109

log_100_lines_block_len_20_high_sha256 5, 887± 1, 550 391, 669± 5.65× 109

log_100_lines_block_len_20_high_sha512 5, 197± 1, 220 277, 246± .46× 1013

log_100_lines_block_len_20_low_sha256 9, 297± 1, 510 407, 347± 1.28× 1012

log_100_lines_block_len_20_low_sha512 5, 299± 1, 140 278, 769± 3.67× 1010

log_100_lines_block_len_20_med_sha256 5, 565± 1, 290 356, 166± 7.79× 1012

log_100_lines_block_len_20_med_sha512 5, 534± 1, 360 250, 232± 3.26× 1012

log_100_lines_only_io_msg_len_15 1, 478± 83.2 15, 404± 8.26× 107

log_100_lines_only_io_msg_len_319 7, 066± 1, 350 173, 064± 1.66× 109

log_1000_lines_block_len_1_high_sha256 18, 955± 2, 410 1, 448, 381± 1.63× 1013

log_1000_lines_block_len_1_high_sha512 18, 487± 2, 870 701, 943± 1.14× 1010

log_1000_lines_block_len_1_low_sha256 22, 615± 5, 040 1, 587, 751± 5.51× 1012

log_1000_lines_block_len_1_low_sha512 21, 054± 2, 570 773, 596± 1.27× 1013

log_1000_lines_block_len_1_med_sha256 20, 445± 3, 030 1, 339, 440± 2.32× 1012

log_1000_lines_block_len_1_med_sha512 18, 305± 2, 190 708, 512± 1.54× 1013

log_1000_lines_block_len_20_high_sha256 52, 167± 6, 920 3, 361, 878± 6.54× 1012

log_1000_lines_block_len_20_high_sha512 51, 542± 8, 570 2, 720, 546± 7.51× 1010

log_1000_lines_block_len_20_low_sha256 54, 048± 8, 890 3, 955, 111± 4.10× 1013

log_1000_lines_block_len_20_low_sha512 52, 370± 7, 350 2, 518, 117± 3.36× 1013

log_1000_lines_block_len_20_med_sha256 49, 648± 4, 940 3, 437, 183± 5.21× 1010

log_1000_lines_block_len_20_med_sha512 50, 272± 7, 300 2, 455, 094± 5.99× 1010

log_1000_lines_only_io_msg_len_15 11, 580± 1, 230 153, 035± .12× 1010

log_1000_lines_only_io_msg_len_319 39, 450± 5, 660 1, 492, 572± 3.47× 1012
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Duration (µs± σ)
Benchmark Laptop Pi

verify_1_lines_block_len_1_high_sha256 5± 0.524 209± 1.84× 106

verify_1_lines_block_len_1_high_sha512 4± 1.37 202± 6.84× 105

verify_1_lines_block_len_1_low_sha256 4± 1.3 206± 1.02× 106

verify_1_lines_block_len_1_low_sha512 3± 1.29 201± 4.02× 105

verify_1_lines_block_len_1_med_sha256 3± 0.905 205± 1.02× 106

verify_1_lines_block_len_1_med_sha512 5± 1.08 202± .4× 106

verify_1_lines_block_len_20_high_sha256 6± 0.459 534± 1.28× 106

verify_1_lines_block_len_20_high_sha512 4± 1.41 535± 1.54× 106

verify_1_lines_block_len_20_low_sha256 6± 1.53 536± 2.16× 106

verify_1_lines_block_len_20_low_sha512 4± 0.524 538± 2.37× 106

verify_1_lines_block_len_20_med_sha256 5± 1.96 535± 1.28× 106

verify_1_lines_block_len_20_med_sha512 4± 0.392 539± 2.66× 106

verify_10_lines_block_len_1_high_sha256 87± 2.02 7, 518± .15× 108

verify_10_lines_block_len_1_high_sha512 37± 5.48 1, 409± 4.78× 106

verify_10_lines_block_len_1_low_sha256 53± 13.2 7, 527± 1.54× 107

verify_10_lines_block_len_1_low_sha512 37± 2.75 1, 430± 5.01× 106

verify_10_lines_block_len_1_med_sha256 74± 18.7 7, 511± 1.43× 107

verify_10_lines_block_len_1_med_sha512 38± 6.36 1, 435± 4.76× 106

verify_10_lines_block_len_20_high_sha256 127± 8.4 11, 718± 6.83× 107

verify_10_lines_block_len_20_high_sha512 99± 24.7 2, 171± 1.21× 107

verify_10_lines_block_len_20_low_sha256 93± 24.7 11, 710± 6.22× 107

verify_10_lines_block_len_20_low_sha512 66± 2.12 2, 216± 8.07× 107

verify_10_lines_block_len_20_med_sha256 71± 15.9 11, 719± .82× 108

verify_10_lines_block_len_20_med_sha512 68± 7.23 2, 192± 1.06× 107

verify_100_lines_block_len_1_high_sha256 856± 123 79, 747± 4.04× 108

verify_100_lines_block_len_1_high_sha512 371± 20.5 13, 092± 7.09× 107

verify_100_lines_block_len_1_low_sha256 695± 156 79, 666± 3.16× 108

verify_100_lines_block_len_1_low_sha512 362± 18.8 13, 110± .81× 108

verify_100_lines_block_len_1_med_sha256 469± 33 79, 686± 2.92× 108

verify_100_lines_block_len_1_med_sha512 387± 75.2 13, 110± 3.83× 107

verify_100_lines_block_len_20_high_sha256 1, 107± 268 122, 176± 3.87× 108

verify_100_lines_block_len_20_high_sha512 714± 102 18, 063± 6.88× 107

verify_100_lines_block_len_20_low_sha256 822± 182 122, 136± 5.78× 108

verify_100_lines_block_len_20_low_sha512 738± 147 18, 077± 7.34× 107

verify_100_lines_block_len_20_med_sha256 673± 37 122, 166± .49× 109

verify_100_lines_block_len_20_med_sha512 844± 238 18, 033± 2.94× 107

verify_1000_lines_block_len_1_high_sha256 5, 144± 930 800, 095± 2.23× 109

verify_1000_lines_block_len_1_high_sha512 4, 163± 954 129, 671± 3.55× 108

verify_1000_lines_block_len_1_low_sha256 5, 006± 766 800, 723± 1.97× 109

verify_1000_lines_block_len_1_low_sha512 4, 136± 867 131, 402± 8.42× 108

verify_1000_lines_block_len_1_med_sha256 5, 036± 909 800, 296± 1.85× 109

verify_1000_lines_block_len_1_med_sha512 3, 949± 807 129, 536± 3.63× 108

verify_1000_lines_block_len_20_high_sha256 7, 134± 1, 080 1, 226, 005± 3.63× 109

verify_1000_lines_block_len_20_high_sha512 7, 316± 1, 220 176, 707± .75× 109

verify_1000_lines_block_len_20_low_sha256 7, 174± 926 1, 227, 331± 3.01× 1011

verify_1000_lines_block_len_20_low_sha512 7, 104± 748 178, 311± 6.62× 108

verify_1000_lines_block_len_20_med_sha256 7, 835± 2, 220 1, 226, 107± 3.49× 109

verify_1000_lines_block_len_20_med_sha512 7, 258± 1, 060 176, 733± 1.12× 109
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