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Iterative Depth Warping

SUNGKIL LEE and YOUNGUK KIM, Sungkyunkwan University, South Korea
ELMAR EISEMANN, Delft University of Technology, Netherlands

(a) Input scene (d) Reference depth(c) Our depth warping (e) Absolute difference(b) Input depth and motion

Fig. 1. Comparison of our depth warping (c) and the reference depth (d) with their difference (e). Given depth/motion buffers (b) at a known view (a), our
image-based warping solution can generate a high-quality depth buffer (here, SSIM=0.998; PSNR 32 dB) without costly geometric rendering at a novel view.

This article presents an iterative backward-warping technique and its applica-
tions. It predictively synthesizes depth buffers for novel views. Our solution
is based on a fixed-point iteration that converges quickly in practice. Unlike
the previous techniques, our solution is a pure backward warping without
using bidirectional sources. To efficiently seed the iterative process, we also
propose a tight bounding method for motion vectors. Non-convergent depth
holes are inpainted via deep depth buffers. Our solution works well with arbi-
trarily distributed motion vectors under moderate motions. Many scenarios
can benefit from our depth warping. As an application, we propose a highly
scalable image-based occlusion-culling technique, achieving a significant
speedup compared to the state of the art. We also demonstrate the benefit of
our solution in multi-view soft-shadow generation.

CCS Concepts: •Computingmethodologies→Rasterization; Visibility;

Additional Key Words and Phrases: Depth warping, GPU rendering, occlu-
sion culling, soft shadows
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1 INTRODUCTION
The depth buffer is a fundamental basis for diverse computer graph-
ics techniques. Modern graphics-processing-unit (GPU) pipelines
generate the depth buffer along with the associated color buffer in
the frame buffer, and use it to test the visibility of incoming frag-
ments. For many modern techniques in recent rendering pipelines,
the depth buffer also plays an important role in rendering the final
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image. Common examples include shadow mapping, global illumi-
nation, occlusion culling, ambient occlusion, and many others. It
would be beneficial to have access to it prior to the actual rendering
and at lower cost.
Typically, the depth buffer is created in a full rendering pass,

which is usually costly. Fortunately, in many scenarios, the previous
depth buffers are readily available, especially in deferred-rendering
pipelines. This observation led us to explore an efficient depth-buffer
generation method. Depending on scene complexity, our solution is
much faster than regular rendering, thereby reducing the overall
costs of many applications.

Our solution builds upon warping, which has a long history, e.g.,
in the context of view interpolation. Warping is a fast and simple
technique that matches real-time requirements, in contrast to many
other advanced techniques in image processing and computer vision.
Nonetheless, warping was previously mostly successful for color
images, where approximation errors, if only weakly perceivable,
are often acceptable. In contrast, small errors in the depth buffer
can have an important impact on visibility. Hence, the warping
needs to be precise or conservative, making an efficient depth-buffer
prediction very challenging.

Successful warping solutions exist mostly for constrained scenar-
ios (e.g., stereoscopic view synthesis as 1-D warping). For general
object/camera motions, fewer approaches exist. The warping is
typically realized by forward or backward mapping. The forward
mapping displaces a source pixel to a destination pixel with its mo-
tion vector, and the backward mapping gathers source pixels whose
motions can displace them to the destination pixel. Forward map-
ping techniques map pixels to splats/sprites [Zwicker et al. 2002] or
polygonal meshes [Mark et al. 1997]. However, this step can involve
mapping millions of vertices for typical display resolutions. Adap-
tive subdivision of the full-screen quad [Didyk et al. 2010a,b] helps,
but is still costly for high depth complexity. Backward mapping
gathers source pixels, and can be much more efficient for higher
resolutions, as it avoids heavy vertex processing or atomic depth
writing. It is difficult to find an analytic solution for the gather-
ing, and heuristics [Andreev 2010] or manual search [McMillan Jr
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1997] are typically employed. Recently, as an alternative, the fixed-
point iteration drastically relaxed the problem due to its fast conver-
gence [Bowles et al. 2012; Yang et al. 2011]. In particular, the work
of Bowles et al. [2012] forms a great basis for efficient warping.
We present an efficient and scalable depth-buffer warping tech-

nique for predictive depth-buffer generation (Fig. 1). Our depthwarp-
ing improves the previous color-image warping technique based on
the fixed-point iteration [Bowles et al. 2012], which was originally
intended to synthesize a novel view from the previous frame’s color
and depth buffers. Instead, we adapt the approach for depth-buffer
warping; we use the depth buffer as an input to our warping. Un-
like color-image warping, warping depth values requires efficient
yet more careful inpainting of potential holes that cannot be filled
via warping. We present a high-quality depth-inpainting technique
based on deep depth buffers, which is useful for multi-view syn-
theses. We demonstrate the benefit of our technique via example
applications.
Our work differs from previous approaches, as we address pure

backward-only warping, while the majority of previous solutions
have relied on forward mapping. Similarly, Bowles et al. [2012],
which motivated our work, partly uses forward mapping to initialize
the warping. Additionally, most previous work used warping for
view interpolation/morphing. Thus, the warped view is an output,
while our depth warp is an input to subsequent processing.

Applications of our depth warping relate to previous temporal-
coherence techniques [Scherzer et al. 2012]. Nonetheless, they hardly
addressed the reduction of geometric processing; typically, they
reduced the overhead of fragment processing (e.g., amortized sam-
pling). Ours differs in this respect, which adds to the novelty.
Our first application strongly utilizes our depth-buffer warping,

to enable a scalable low-latency hierarchical occlusion-culling tech-
nique, relying on a conservative depth inpainting and efficient depth
warping from the previous frame. We avoid an explicit occluder
selection and hierarchies to naturally support dynamic scenes. Dif-
ferent from prior work, the decoupling of culling and rendering
makes our approach practical, and easy to integrate into existing
engines. Further, the image-based nature and the possibility of batch-
issuing occlusion queries make our solution scalable, and lead to
stable cost, which is fundamental for a fluent user experience.

Our second application is soft-shadow mapping. Typically, a ref-
erence soft-shadow mapping renders shadow maps for each light-
source sample, leading to significant costs. Instead, we efficiently
synthesize these shadow maps. Our strategy significantly improves
rendering performance, while maintaining high quality.
Our major contributions, including the two applications, can be

summarized as:

• an efficient backward warping solution to generate depth
buffers for novel views;
• a tight search bounding method to efficiently seed the fixed-
point search without forward mapping;
• a high-quality depth inpainting strategy suitable for real-time
applications;
• an efficient image-based occlusion query technique using our
depth warping;

2 RELATED WORK
Image warping has been extensively studied. The methodologies
range from efficient to high-quality albeit costly processing. A large
body of literature exists in image processing and computer vision,
but our focus lies on efficient techniques for rendering, in particular,
GPU-based warping. We categorize previous techniques into tempo-
ral coherence, multi-source, and single-source warping techniques.

2.1 Temporal Coherence and Reprojection
One fundamental reprojection technique is the reprojection cache.
This technique maintains a temporal cache, and reuses previous
shading values [Nehab et al. 2007; Sitthi-amorn et al. 2008]. The
method exploits temporal coherence between consecutive frames,
and can drastically reduce shading costs. Similarly, multi-sample
techniques, such as soft shadows and ambient occlusion [Mattausch
et al. 2010; Scherzer et al. 2007, 2009], can be accelerated by keeping
a history of shadows or occlusion factors. However, these methods
require at least one additional render pass with all geometry, which
is an important overhead that affects rendering performance. We
refer the reader to [Scherzer et al. 2012] for a complete survey.

2.2 Multi-Source Warping
Color-image warping has traditionally been used for morphing,
view interpolation, or image-based rendering [Beier and Neely 1992;
Chen and Williams 1993; McMillan and Bishop 1995; Seitz and
Dyer 1996; Vedula et al. 2002], often relying on correspondences
between features of multiple images. The techniques synthesize or
interpolate existing images via reprojection, typically involving a
small number of views. They have also been applied to sampling
plenoptic functions [Gortler et al. 1996; Levoy and Hanrahan 1996].

Recently, warping was used on high-refresh-rate displays [Didyk
et al. 2010a]. Using the distinction of I- and B-frames in video com-
pression, they constructed the motion fields from I-frames, and
relied on forward warping using a coarse grid for intermediate
frames. The bidirectional flow-field definition was later improved
for B-frames, yielding higher quality [Yang et al. 2011].

Multi-source depth-buffer warping has hardly been used in real-
time rendering, and is more common in disparity-map generation
for multiview-stereoscopic videos or TVs [Kang and Ho 2010; Seales
et al. 1999; Zinger et al. 2010]. Similar to the multi-source color
image warping, the techniques also used feature correspondence
across multiple views to recover unknown depths. The solutions are
rather slow and require bidirectional reprojection, which inherently
delays display by one frame, leading to a non-trivial latency.

2.3 Single-Source Warping
Single-source warping, like ours, is more challenging than multi-
sourcewarping, becausemore disocclusions occur. Regarding forward-
mapping approaches, Didyk et al. [2010b] extended temporal up-
sampling (with adaptive grid refinement) to stereo-view synthesis.
While the warping itself is simple and only one-dimensional, the
adaptive refinement often requires high tessellation rates, which
reduces performance.

Backward mapping, which is closest to our work, requires a com-
plex warping function and needs to handle many disocclusions. A
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Iterative Depth Warping

 reproject Z (to the novel view) and generate motion buffer V
 principal component analysis (PCA) of motion vectors
 generation of min/max motion mipmap {Vi}

Input:    Z (depth map at a known view)
Output: Ẑ (warped depth buffer at a novel view)

for each pixel in Ẑ
    query local search bound   with {Vi}
    for each sample in  
        for each motion/depth layer L
            do fixed-point search

Backward depth warping

Fig. 2. Overview of our depth-warping framework. For multi-view depth
buffers, these steps are repeated as many times as the number of views.

simple yet effective solution is presented by Andreev [2010]. His
single-source warping uses motion vectors for the warping, and
re-renders foreground objects after replicating neighboring image
patches into the background. Recently, Bowles et al. [2012] improved
backward mapping via the fixed-point iteration used in [Yang et al.
2011] and a rigorous treatment of convergence conditions. We adapt
the fixed-point iteration to support efficient depth warping and
investigate a depth-inpainting strategy.

3 ITERATIVE DEPTH WARPING
Backward mapping mostly outperforms forward mapping (e.g., ver-
tex scattering [Lee et al. 2008; Zwicker et al. 2002]). However, if the
source point does not lie within a narrow window of its origin, a
costly local search is needed. Our work combines a recent fixed-
point iteration [Bowles et al. 2012] with a new efficient search-bound
tightening. Fig. 2 shows the pipeline of our depth buffer warping.

3.1 Preparation of Depth and Motion Buffers
We use a temporal warping to produce a new depth buffer from the
previous frame’s depth buffer, and potentially, a spatial warping to
obtain several views of this depth buffer in multi-view scenarios. As
input, we require the previous depth buffer and the screen-space mo-
tion vectors. In the case of dynamic scenes, the item buffer (indices
of objects) is also required to apply per-object transformations. After
each warping, the produced depth buffer can be used for an early
geometry culling, which reduces the rendering cost for the new
frame. The details of this culling step will be explained in Section 5.
In consequence, after rendering the scene, we obtain a perfect depth
buffer (and potentially additional buffers in the context of deferred
rendering) as a side product, which is then be used as input to the
next depth warp.

Deriving a motion-vector buffer V (combining camera and object
motion) has a negligible overhead. It helps us predict the depth buffer
of a novel view (Ẑ ) from the source view (Z ). 3D Motion vectors are
often computed via finite differences [Bowles et al. 2012; Rosado and
Studios 2007], which can cause prediction errors with the under- or
over-estimation. Instead, we generate a pixel-accurate motion in the
image space. Compared to 3D-world displacements, such pixel-unit
vectors are more consistent, have better accuracy, and only two
components. We compute this 2D motion as follows; given a pixel
in the source view q, we compute its new projected position in the
novel view q̂ := CP−1q by involving the transformation-projection

vec3 single_layer_seed( vec2 q ){ return texture(q); } // first layer
float fixed_point_search( vec2 p, vec2 v0 )
{

vec2 q = p-v0; // search seed position
vec3 s = single_layer_seed(q); // (2d motion vector, depth)
for( int k=0; k<MAX_ITER && s.z<1; k++ ){ // s.z<1 means valid

vec2 w = p-s.xy; if(distance(q,w)<threshold) return s.z;
s = texture(q=w);

}
return 1; // return invalid depth (=1)

}

Fig. 3. Pseudocode of the fixed-point search for a single search sample.

Global search

bound
Local search

bound
Fixed-point

iteration

q1

q2

p pp

Fig. 4. Warping with fixed-point iteration. We find a conservative search
region, tighten it via the motion-vector hierarchy, and search within this
region for candidates projecting to the original location. The one with
resulting minimal depth is ultimately chosen (here, q1).

matrices of previous P and current view C. The 2D motion of q is
then v(q) := q̂ − q, which is stored in a render target. In addition
to the motion vectors, the render target also stores the new depths,
which are assigned during the warping. We note that even camera
motions of purely zooming in/out yield 2D motions, due to the
perspective projection, except for the center of projection.

3.2 Backward Depth Warping with Fixed-Point Iteration
To efficiently warp a depth buffer, pixel correspondences from the
novel view to the (available) source view are needed. Starting with
a pixel p in the novel view, the goal is to find a corresponding
pixel q in the source view, which will move to p. The fixed-point
method [Bowles et al. 2012] uses the following iteration: qi+1 ←
w(qi ) := p − v(qi ), where w is the warped position, and q0 is
a starting point (seed) for the iteration. The iteration stops at a
fixed point q̃. As a fixed point, it satisfies q̃ = w(q̃), which implies
q̃ + v(q̃) = p (i.e., q̃ moves to p in the novel view).

If convergent, the method requires only few (e.g., 2–3) iterations,
but the seed q0 is crucial. Straightforward choices, like q0 = p,
may fail at boundaries between very different motions. Further, at
overlaps, hidden points might be chosen instead of visible pixels.
Heuristics [Bowles et al. 2012; Yang et al. 2011], such as using a
fixed offset, may alleviate symptoms. A better convergence can be
guaranteed with the 2 × 2 Jacobian matrix of w [Bowles et al. 2012].
Nonetheless, it involves rather costly pre-warping, subdivision steps
to split the image along slope discontinuities, and even an additional
forward mapping [Bowles et al. 2012].
We propose a simpler yet more efficient solution (Fig. 4); we

derive a compact and conservative search region Ω containing the
source pixel. Choosing seed points randomly (stratified sampling)
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vec4 local_motion_bound( vec4 b ) // b=(Left, Bottom, Right, Top)
{

vec4 m=(1,1,-1,-1)*FLT_MAX; // clear bound for LBRT
int LOD = ceil(max(0,log2(max(b.z-b.x,b.w-b.y))));
vec2 p[4] = {b.xy, b.xw, b.zy, b.zw}; // LB, LT, RB, RT corners
for(int i=0; i<4; i++){

vec4 s=texture(p[i],LOD); if(!is_valid_motion(s)) continue;
m=vec4(min(m.xy,s.xy),max(m.zw,s.zw));

}
return m;

}
vec4 motion_bound( vec2 p )
{

vec4 b, m=texture(vec2(0),MAX_LOD); // global motion bound
for(int k=0; k<MAX_BOUND_ITER; k++){ // typically, 2--4

b=m; vec4 m=local_motion_bound(vec4(p-b.zw,p-b.xy)); // LBRT
if(!is_valid_motion(m)) return b; // usually background

}
return m;

}

Fig. 5. Pseudocode of the iterative bound tightening process.

within Ω is usually enough to ensure convergence. Our solution
might even detect multiple candidates and we keep the one with
resulting minimal depth. Hereby, we can handle many ambiguous
cases. If convergence still fails, we propose a multi-layer inpainting
solution (Sec. 3.4). Fig. 3 shows the pseudocode for our approach.

3.3 Search Region Bound for Motion Vectors
To find the compact search region Ω to initialize the seeds, we build
a motion-vector hierarchy {Vi } using min-max mipmaps [Williams
1983]. Let Vi represent level i , and V0 the original motion buffer. A
texel q of Vi holds the minimum and maximum xy components of
the 2D motion vectors within a square area of 2i×2i pixels. The four
coordinates are encoded in a single texture. Consequently, the texel
on the highest mipmap level holds a global bound for all motion
vectors, which can be used as a first conservative estimate for Ω.
To narrow down Ω, we perform a series of mipmap lookups, each
reducing the search area (see Fig. 5 for the pseudocode). For a region
of size a×b, we first choose the mipmap level ⌈log2max(a,b)⌉, and
perform four lookups, one for each corner of the region. These
lookups always conservatively cover the original region. Taking the
extrema of the four texel values from Vi delivers the new bounds
on the motion and defines a new Ω. In practice, we found that two
to three such narrowing steps suffice to reduce Ω significantly.
Relying on mipmaps and four lookups to cover Ω might seem

coarse, but provides a good tradeoff; better bounds for motion vec-
tors did not result in higher quality. Instead, an improvement can
be reached by using a tighter bound Ω to choose seeds from. To
this extent, we align the axes of the view to obtain a better fit for
an axis-aligned bounding box (AABB) [Gottschalk et al. 1996]. The
gain stems from high correlation of motions; e.g., when moving the
camera, many static objects will reflect the same motion direction.
To decide on the axes, we perform a principal component analysis
(PCA) of the 2D motion vectors. The PCA does not require involving
all the vectors, and a small number (e.g., 64) usually suffices for this
purpose. We then apply the change of the coordinate system, before
constructing the aforementioned min-max mipmap representation.

vec3 multi_layer_seed( vec2 q, int layer )
{

for( int j=layer; j>=0; j-- ){
vec3 s=texture(q,j); if(s.z<1) return s; // a valid seed

}
return vec3(0,0,1); // the invalid seed

}

Fig. 6. Pseudocode of the cross-layer seeding for the multi-layer search.

When reading the bound, reversing the motion coordinates (i.e., a
rotation by 2 × 2 matrix) recovers the motion bound.
The retrieval of the tight motion bound improves quality, given

the same number of search seeds, and is also useful to adaptively
sample the search seeds. The local motion bound lying in a narrow
area implies that the search region is homogeneous. This case does
not require many samples, and an early exit can be employed. This
simple strategy leads to a significant speedup by adding more seed
samples only, where we encounter complex configurations.

3.4 Multi-Layer Warping for Depth Hole Filling
While a successful iteration process results in a good depth buffer
value in a novel view, if the necessary seed for a region was not
found, there might still be holes. In particular, hidden surfaces,
which novel views may reveal, cannot be warped. In this section,
we present a high-quality depth inpainting strategy relying on deep
depth buffers, which distinguishes ours from common approxima-
tions (e.g., hallucinations).

To generate a deep depth buffer, we employ depth peeling [Everitt
2001], which successively extracts depth layers. In each iteration,
only the geometry behind the previously extracted depth buffer is
rendered. Hereby, layers are successively peeled off the scene. By
warping all layers into the new views, holes can be avoided as oc-
cluded geometries are involved, maintaining high quality. Typically
whenever the number of novel views exceeds the number of layers
(e.g., soft-shadow mapping), the approach becomes efficient.

For multi-layer depth warping, we additionally repeat the depth
warping for each hidden layer to handle disocclusions. This is
straightforward, but does not necessarily lead to high benefit. The
iterative search may easily end up in an empty region, where the
iteration cannot proceed further; hidden depth layers are typically
sparse and exhibit wide empty regions.

To improve the process, the search should continue across multi-
ple layers. However, considering all layer combinations would be
too costly. Instead, we launch one search per layer, and generally do
not move across layers. Only when reaching an empty region of a
layer, we move the point upwards in the layers towards the camera
until the location is non-empty; Fig. 6 shows the pseudocode of this
cross-layer seeding process. If our search during the iterations ends
twice in an empty area, we consider the sample as non-convergent.
This strategy effectively improves the quality of the multi-layer

depth warping. Moreover, when there are large background objects
(e.g., ground/floor), adding them as a separate (the last) depth layer
is helpful in widening their connected search areas; this additional
layer can be rendered at negligible cost.
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Fig. 8. Geometric edges might invert their screen-space topology, which
might not be captured with depth peeling (a). This may lead to depth holes
in warping (c), which can be approximately filled by dilating neighbors (d).

Generalized Umbra Culling. A complex scene may require many
depth layers to completely fill all holes due to the warping. In this
case, depth peeling becomes too costly. To reduce the number of
layers, we revisit and improve umbra culling, which was previously
used for lens-blur rendering [Lee et al. 2010].
Umbra culling back-projects a pixel to 3D, and interprets it as

an opaque quad geometry. The volume behind this quad, which is
not reached by any rays from the novel views, is referred to as the
umbra. Fragments in the umbra are not visible from the novel views,
and therefore, can be safely ignored when warping the depth buffer
to those views. In our context of depth peeling, fragments whose
sampling points are within the umbra can be ignored. While the
original idea was applied only for planar displacements on a camera
aperture, we here generalize the idea towards arbitrary camera
motions, including orthographic projections (used for shadows of
directional lights). Specifically, the threshold x , which describes the
extent of the umbra is given via:

x :=
(d − c)s

(e + h) − s
, (1)

where d and s indicate the depth and size of the pixel quad; c and e
are the depth of the novel camera and its distance to the center ray;
and h is the offset from the center ray to the projector ray at depth
c . Standard depth peeling uses x = 0, whereas the original umbra
culling is obtained by setting c = 0, h = 0 (i.e., x := ds/(e − s)).
Fig. 7 illustrates all the parameters. The umbra culling ensures

a faster progress, due to the positive depth offset x that is added
to each layer. Moreover, when (e + h) < s , the number of required
layers is bounded, enabling to predict a maximum number of depth
layers. The number of layers for standard depth peeling is only
bounded by the scene geometry, which can be arbitrarily complex.

 BL (33M Tris., 35,200 objects) BL (33M Tris., 35,200 objects)

 YR (8.5M Tris., 17 objects)  MO (13M Tris., 6332 objects) MO (13M Tris., 6332 objects)

 CB (110M Tris., 94,275 objects) CB (110M Tris., 94,275 objects)

Fig. 9. The four scenes used for experiments: Yeahrights (YR), Monsters
(MO), Balloons (BL), and Cityblock (CB). YR model is provided courtesy of
Keenan Crane, MOmodels {shiva3d|GalaxyArt|Pedro Barbaro} at turbosquid.
com, and CB models {fingerz|digitalstonemason} at 3dwarehouse.sketchup.
com and Reallusion at reallusion.com, respectively.
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Fig. 10. Effects of the search seed samples (N ) and the number of layers (L)
on quality. The numbers on the right of each image indicate PSNR (dB) and
SSIM values, measured with the reference depth-buffer rendering (REF).

Handling Degenerate Cases. Depth peeling based on a single view,
fails to capture surfaces in certain cases, such as a geometry whose
normal is orthogonal to the ray from the view point. A worst case
is when back-facing triangles at the known view (not rendered
with back-face culling) are inverted to front faces in the novel view.
Such cases occur on rare occasions at the silhouettes/edges of large
objects (e.g., ground/terrain), and may lead to depth holes (Fig. 8).

While it would be possible to detect triangle inversions and treat
these triangles separately, the rarity of these cases does not warrant
higher computational costs. We propose a practical solution based
on the observation that the problemmostly occurs with rapidmotion
(e.g., hundreds of pixels per frame). When a hole in the depth map is
surrounded by successful searches, we close the hole by propagating
the nearest neighbor’s depth via a dilation (Fig. 8). In practice, this
strategy performs well, and leads to a good approximation.

4 EXPERIMENTAL ANALYSIS
This section reports our experiments to assess our depth warping
solution in terms of accuracy and performance.

4.1 Method
We implemented our depth warping in OpenGL 4.5 on an Intel Xeon
E5-1620 v2 with 3.7 GHz and NVIDIA GeForce GTX 1080. All tests
were performed at full-HD resolution (1,920×1,080).

Four scenes (Fig. 9) are tested with camera movements. The
Yeahrights scene (YR) is a simple scene with a small number of
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REFT=1 T=2 T=4 T=8 T=16

1X (29 px / frame)

Color

0.980/22.7 0.999/34.9

0.997/34.3 0.999/34.3 0.999/34.3

0.906/13.6 0.998/32.5 0.998/32.5

0.588/4.7 0.924/11.6 0.993/34.2 0.995/34.2

0.856/12.3

0.467/4.3

0.210/1.5

0.999/34.9 0.999/34.9 0.999/34.9

0.999/34.3

0.998/32.5

avg. of max motion

2X (62 px / frame)

4X (141 px / frame)

8X (336 px / frame)

Fig. 11. Effects of the number of iterations (T ) against motion speed. The motion speed indicates the averages of the maximum motion per each frame for
animated sequences (8, 4, 2, and 1s, respectively). SSIM and PSNR are shown for the particular frame here, and L = 4 and N = 8 were used.

objects, but with a high polygon count and high depth complexity.
The Monsters scene (MO) is a game-like scene of medium com-
plexity, with around 6.3K objects. The Balloon scene (BL) contains
around 35K objects (balloons with tiny baskets), resulting in high
complexity in terms of depth. The Cityblock scene (CB) is an urban-
like example with a large number (around 94K) of objects. All scenes
used a pre-defined camera movement of 7–13 seconds; see the ac-
companying video clip for the sequences. The averages of maximal
per-frame motion in the scenes are 16, 35, 26, and 29 pixels/frame
for YR, MO, BL, and CB, respectively; we also report the effects of
stronger motion.

We compare depth buffers produced with our warping solutions
against the depth-only model rendering as a reference depth buffer
(REF). Our experiments vary the number of search seeds (N ), the
number of input depth layers (L), the number of iterations for each
search seed (T ), and the magnitude of per-frame motion vectors.
While the single-layer solution (L = 1) keeps holes (filled with
the background depth), the multi-layer solutions (L > 1) use deep
depth buffers, and employ our inpainting. When a terrain or ground
is available (YR, MO, and CB), the last layer was peeled without
foreground objects. For the quality/performance comparison, we
used the oriented tight motion bounds unless explicitly noted, and
disabled our dilation solution to solely illustrate the depth warping
effects.

For additional comparison, we implemented two GPU-based per-
pixel forward-warping techniques. The first is a vertex-driven for-
ward warping (VFW) [Lee et al. 2008; Zwicker et al. 2002]. We define
pixel-size quads as many as the image resolution, and splat the four
corners of each quad by their motion vectors with depth buffering.
The second is based on the recent atomics-driven forward warp-
ing [Cichocki 2017; Doghramachi and Bucci 2017; Yu et al. 2010]
(AFW), which directly writes source vertices to target positions with
atomic min operation to ensure depth test. For multi-layer warping,
we adapt VFW and AFW to repeat them for each layer. However, as
indicated by Yu et al. [2010], both techniques suffer from seams/-
holes even in smooth surfaces, when a single quad/pixel maps to a
larger area. To alleviate this problem, we extend the support size of

quad/vertex [Yu et al. 2010] (in our case, by a half-pixel length to
each side); though for large areas, AFW still exhibits holes.

4.2 Depth Warping Accuracy
We first report the effects ofN and L together (Fig. 10), which are the
major factors affecting the quality of depth warping. Peak signal-to-
noise ratio (PSNR) and structural similarity [Wang et al. 2004] (SSIM)
are also reported as quantitative quality metrics, measured against
REF. For all Ls, most of the areas quickly converge with a small
number of samples (3–4), but at complex junctions, more samples
are needed. The single-layer warping (L = 1) improves with more
samples, and is saturated around N = 32. The samples that converge
in this case lead to good local quality, but overall, too many pixels
fail to converge, and large holes occur. In contrast, the multi-layer
warping (L > 1) saturates much faster and only a small number of
pixels fail to converge. Fig. 10 shows that most pixels converge, and
a high quality (> 35 dB and 0.995 in terms of PSNR and SSIM) is
reached, making the difference almost imperceptible. The SSIM is
particularly high, as failures mostly occur on sub-pixel level. When
the number of samples exceeds 8 and more than two layers are used,
we obtain a near-perfect depth buffer even for rapid motion (e.g.,
up to 100 pixels/frame of motion). Four layers are sufficient even
for very complex scenes, but it entails more computational costs. In
practice, 2–3 layers are a good tradeoff.
Table 1 shows the quality comparison of VFW and AFW with

ours (N = 16). For both layer configurations (L = 1 and L = 4)
and all the scenes, our solution always has higher accuracy than
the other forward warping solutions. This accuracy results from
the support-size expansion for both VFW and AFW, slightly dilat-
ing the boundaries; without the expansion, the qualities are much
worse. Thereby, their PSNR differences are higher than their SSIM
differences. In particular, AFW has a much lower accuracy than the
others (down to 8.8 dB of PSNR against ours), because AFW still
exhibits erroneous seams/holes, despite support-size expansion.

We also examined the effect of the number of iterations (T ) versus
motion speed. In practice,T is less important (2–3 iterations suffice)
than N and L, but the quality is often affected for rapid motions.
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Table 1. Quality/performance comparison of the vertex-driven forward warping (VFW) and atomics-based forward warping (AFW) with ours (N = 16). The
quality is measured against REF in terms of SSIM/PSNR (no unit/dB), and performance in terms of the frame time (measured in ms).

Ours (L = 1) VFW (L = 1) AFW (L = 1) Ours (L = 4) VFW (L = 4) AFW (L = 4)

quality time quality time quality time quality time quality time quality time

YR 0.968/27.5 0.7 0.934/23.3 2.2 0.950/24.3 0.3 0.996/36.1 0.8 0.997/28.2 6.3 0.993/27.9 0.4
MO 0.992/30.3 0.6 0.982/26.0 2.1 0.983/25.8 0.3 0.998/34.8 0.8 0.998/30.0 6.2 0.995/28.8 0.4
BL 0.954/23.3 0.8 0.935/21.1 2.2 0.945/21.2 0.3 0.994/29.4 1.3 0.993/26.7 6.1 0.985/25.1 0.6
CB 0.994/31.3 0.6 0.979/25.5 2.1 0.985/25.7 0.3 0.999/36.7 0.8 0.998/27.6 6.1 0.998/27.9 0.5

L=6L=1 L=2 L=3 L=4 L=5 L=7 L=8

d
e

p
th

 p
e

e
li
n

g

(s
im

p
le

)

d
e

p
th

 p
e

e
li
n

g

(u
m

b
ra

 c
u

ll
in

g
)

0.901/19.5 0.972/26.7

0.988/30.0

0.993/31.6

0.995/32.6

0.995/32.5

0.995/32.6 0.995/32.6

0.995/32.6 0.995/32.6

0.995/32.6

0.995/32.6

0.995/32.6

0.995/32.6

0.995/32.6

Fig. 12. The effect of umbra culling for generating deep depth buffers, assessed in terms of SSIM/PSNR differences (no unit/dB). The umbra culling peels
effective layers more quickly, and thereby, the quality of the warping (here, N = 16) becomes similar with a reduced number of layers.

Table 2. Quantitative quality improvements by the tight motion bound from
the global motion bound, assessed in terms of SSIM/PSNR differences (no
unit/dB) for the MO scene.

L N = 1 N = 2 N = 4 N = 8 N = 16 N = 32

1 0.04/4.66 0.02/2.63 0.01/1.24 0.01/0.91 0.01/1.26 0.01/1.46
2 0.04/6.03 0.02/3.84 0.01/1.95 0.00/1.00 0.01/1.18 0.01/1.46
3 0.04/9.48 0.02/6.17 0.00/2.56 0.00/0.54 0.00/0.37 0.00/0.28
4 0.03/9.68 0.02/6.54 0.00/2.64 0.00/0.58 0.00/0.12 0.00/0.11

Fig. 11 compares different values ofT against various magnitudes of
motion. The pre-recorded movements of the CB scene were scaled
up to 8×. As illustrated, T = 2 is already sufficient for a scaled
motion of 1–2×. As for the 4× motion, T = 4 is required to reach
saturation. Here, the quality is marginally lower than 1–2×. The 8×
motion requires more than T = 8 to converge without depth holes
in flat regions. Note that these exaggerated motions were only used
for demonstration purposes. For practical use, 2–3 iterations suffice.

We also report on the effects of the tight search bound, generated
with our mipmap-based tightening process (Sec. 3.3). Table 2 shows
quantitative quality improvements of the tight motion bound against
the global bound. The tight search bound results in significantly
higher accuracy than the global motion bound for all the test scenes.
The improvement is pronounced, when N is small (up to 9.68 dB).

The oriented bounds (OBs) of the motion vectors can improve the
quality when using the same search seed samples, while requiring

negligible constant cost (e.g., 0.2 ms for 64 objects) for the PCA
analysis. However, the OBs do not necessarily end up with smaller
areas (i.e., denser sampling) than the axis-aligned bounds (AABs).
We experimentally assessed the accuracy of OB against AAB for
the animated sequences, and found that the OB results in higher
accuracies for 66.7, 50, 41.7, and 50 % of the combinations of L ∈
{1, 2, 3, 4} and N ∈ {1, 2, 4, 8, 16, 32} for YR, MO, BL, and CB scenes,
respectively. When the area of OB is reduced, the qualities are
slightly enhanced by up to 0.007 and 1.2 dB in terms of SSIM and
PSNR difference. In practice, we can always use a tighter bound by
selecting the one that has smaller area for every frame.

Fig. 12 shows our umbra culling for depth peeling, and compares
simple depth peeling (constant thresholding) and our solution. The
color images in the upper rows visualize peeled layers, while the
lower row shows the warped depth buffers using the corresponding
layers. Umbra culling peels layers significantly faster than standard
depth peeling; when L > 8, the layers are almost empty, reaching
the upper bound for this scene. When L > 4, the quality of both
peeling techniques are similar; but for less layers (L ≤ 4), umbra
culling improves the quality. In this example, standard depth peeling
with L = 5 is equivalent to the quality of umbra culling with L = 3.
In practice, 2–3 layers are sufficient with umbra culling to achieve
high quality at low cost.

4.3 Depth Warping Performance
To assess performance, we assume that depth and motion buffers are
readily available (common in many deferred rendering pipelines).
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Table 3. Performance comparison (measured in ms) of our depth warping with tight local and global bounding and motion mipmap construction (MMC),
assessed in terms of the number of search seed samples (N ) and the number of layers (L). Each search seed was iterated 3 times (T = 3). The reference (REF)
indicates a depth-only geometry pass for comparison.

Scene L

Ours (ms)

REF (ms)Depth warping (tight bound) Depth warping (global bound)
MMC

N =1 N =2 N =4 N =8 N =16 N =32 N =1 N =2 N =4 N =8 N =16 N =32

YR

1 0.26 0.28 0.31 0.38 0.53 0.81 0.12 0.17 0.27 0.48 0.88 1.66 0.12 1.44
2 0.27 0.29 0.33 0.43 0.61 0.95 0.13 0.19 0.30 0.52 0.94 1.79 0.14
3 0.27 0.29 0.35 0.46 0.65 1.05 0.13 0.19 0.31 0.54 0.99 1.88 0.14
4 0.27 0.30 0.35 0.47 0.70 1.12 0.14 0.20 0.33 0.57 1.04 1.98 0.14

MO

1 0.27 0.28 0.31 0.36 0.48 0.73 0.12 0.17 0.28 0.49 0.90 1.72 0.12 3.21
2 0.27 0.29 0.32 0.40 0.55 0.87 0.13 0.18 0.29 0.51 0.95 1.81 0.13
3 0.28 0.30 0.34 0.44 0.63 1.02 0.13 0.19 0.31 0.54 1.00 1.92 0.14
4 0.28 0.30 0.35 0.45 0.66 1.08 0.14 0.20 0.39 0.91 1.84 2.04 0.14

BL

1 0.30 0.31 0.35 0.45 0.65 1.09 0.14 0.23 0.32 0.60 1.01 1.95 0.13 15.78
2 0.31 0.36 0.46 0.64 0.99 1.66 0.14 0.21 0.35 0.61 1.13 2.17 0.15
3 0.32 0.37 0.47 0.67 1.05 1.79 0.15 0.23 0.39 0.68 1.25 2.38 0.17
4 0.32 0.38 0.49 0.71 1.12 1.87 0.16 0.24 0.41 0.75 1.33 2.54 0.18

CB

1 0.27 0.28 0.30 0.34 0.43 0.62 0.12 0.18 0.30 0.53 0.97 1.82 0.12 37.52
2 0.27 0.29 0.32 0.40 0.55 0.87 0.13 0.19 0.31 0.55 1.01 1.93 0.14
3 0.27 0.29 0.34 0.42 0.59 0.96 0.13 0.19 0.32 0.56 1.03 1.97 0.15
4 0.28 0.30 0.34 0.43 0.64 1.05 0.13 0.19 0.33 0.56 1.05 2.03 0.16

Even in the case that the motion buffers are not available, it is
marginal to generate them (in our implementation, it took 0.1 ms
for each layer in the full-HD resolution). When particular objects
are dynamic, an item buffer (having their transformation IDs) is
also used to integrate object and camera motions; the item buffer
can also be produced during deferred rendering. We evaluate the
performance of depth warping and motion mipmap construction
(for the motion bound query), excluding setup costs and cost for
the basic rendering pipeline. To illustrate the difference, the depth
warping performance is reported for both the tight local bound and
global bound. As umbra culling is used during depth peeling, it has
no impact on the performance of the warping. For complete timings,
please refer to the applications (Secs. 5 and 6).
Table 3 summarizes the performance benchmark. The perfor-

mance of our solution scales with the number of search seed samples
(N ) and the number of layers (L). All tests used 3 iterations (T = 3)
for the search. The table shows that the performance of our solution
is stable, and less dependent on the geometric complexity of the
scene. A dependency on depth complexity still exists (a simple scene
converges faster), but to a limited amount. The time complexity of
N is sublinear, as flat regions are skipped after a small number of
samples (1–2). The dependence on L is also sublinear, due to early
skipping of empty areas on the hidden layers. The tight bound is
more costly, when N ≤ 4 due to the additional lookup to the mo-
tion mipmap (here, roughly 0.14 ms); but, as N grows (N > 4), it
starts to greatly reduce the search cost with faster convergence;
the speedup factors for N = 32 are 1.3–2.9×. The motion mipmap
construction, required to query the local motion bounds during the
warping for each pixel, is negligible (typically less than 0.15 ms

in our experiments) for a resolution of 1,024×1,024, which is the
nearest power-of-two-size below full HD.
Table 1 shows the performance comparison of VFW and AFW

with ours (N = 16); ours include the timings for motion-mipmap
generation. On average, our solution is 3.2× and 7.0× faster than
VFW for L = 1 and L = 4, respectively, and around 2× slower than
AFW for L = 1 and L = 4. VFW requires drawing many points/tri-
angles; for example, VFW with L = 4 splats 16M triangles, which is
very costly. AFW is cheaper, due to the efficient atomics-based writ-
ing, avoiding the quad rasterization for splatting. However, AFW
significantly trades quality for performance, because it cannot han-
dle large holes in smooth surfaces and discrete boundaries well.
This is why our backward warping results in higher quality, and the
additional cost of ours to AFW is small (here, 0.4 ms).

Light-weight scenes are cheap to render, which leads to little gain
when using warping. However, with growing geometric complexity,
warping becomes increasingly effective. Using our recommended
setting of N = 4 and L = 3, the speed-up of depth warping against
depth-only rendering is 2.9, 6.7, 24.7, and 76.6 for YR, MO, BL, and
CB, respectively. As an additional improvement, the depth-map
resolution can be reduced for some applications, where an additional
significant speedup (e.g., up to 2.5× for a quarter-size resolution) is
achieved, since most steps of our solution are image-based.

Regarding the depth-peeling process, while the foreground depth
layer is usually available, additional layers need to be extracted.
Fortunately, as the sparsity of the output increases, the cost per layer
shrinks, and falls slightly below direct rendering. Table 4 shows the
cost for the depth peeling.
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Table 4. Rendering cost (measured in ms) of the depth peeling, assessed in
terms of the number of layers (L). For multiple layers, the last layer peels
only the background, except for the BL scene (having no ground).

Scene L =1 L =2 L =3 L =4

YR 1.51 1.64 3.14 4.54
MO 3.46 3.58 6.94 10.28
BL 16.46 32.10 48.27 63.89
CB 37.74 37.97 74.50 110.94

5 APPLICATION: OCCLUSION CULLING
Visibility culling is a fundamental tool for real-time rendering. It
does not degrade image quality and removes invisible content. View
frustum culling (VFC) is an efficient example, where objects are
tested against the frustum, and ignored if they fall outside. Occlusion
culling additionally considers objects hiding each other.

This section introduces the first application of our depth warping,
warping-based occlusion culling (WOC). Fig. 13 gives an overview of
our solution. Our single-layer depth warping (with depth holes) can
be seamlessly integrated for high-performance occlusion culling.
We revisit the hierarchical occlusion mapping (HOM), which is

one of the specialized algorithms to efficiently query occlusion maps.
Usually, potential occluders are selected and rendered. The resulting
depth buffer (occlusion map) is used to verify the visibility of the
remaining occludees (or their bounding proxies). Efficiency highly
depends on the occluder choice, but a precise selection is costly,
and heuristics (e.g., the projected area) are usually preferred. Our
method does not require occluder/occludee distinctions, and uses
all visible elements of the previous frame; this is a near-optimal
choice with (almost) perfect occluder fusion [Wonka et al. 2000].
However, instead of rendering actual objects, we use them implicitly
by warping the previous depth buffer to the new frame.

5.1 Previous Work and Background
Typically, the occlusion test uses hardware occlusion queries (HOQs)
executed on GPUs [Cunniff et al. 2001], which deliver the amount of
potentially drawn pixels. The rendering process can then be steered
by reading back the result to the host application.

Such occlusion culling leads to several problems, reducing its util-
ity in practice. First, choosing potential occluders prior to the actual
rendering can require metadata, or occluder fusion operations, as
well as non-trivial and costly computations for high depth/trian-
gular complexity [Luebke and Georges 1995; Wonka et al. 2000].
Coarse heuristics [Klosowski and Silva 2000; Kubisch and Tavenrath
2014] reduce the overhead, but, more objects are falsely considered
visible. Second, reading back query results leads to latency, due to
the asynchronous GPU threading model. Even for recent HOQs,
which accelerate the test itself, the latency problem persists. So,
reducing the number of read-backs is crucial for culling efficiency.

Spatiotemporal coherence combined with hierarchical structures
can reduce the amount of queries. Coherent hierarchical culling
(CHC) [Bittner et al. 2004] maintains a scene-hierarchy cut (e.g.,
bounding volume hierarchy), to avoid re-testing many objects. CHC
has been improved to integrate hardware-dependent statistics [Guthe

Warping-based Occlusion 

Culling

 build hierarchical depth maps (N-Buffers) {Ẑi}

 download the query results (object visibilities) from GPU to the host
 render only visible objects

Input:    Ẑ (warped depth buffer at a novel view)
Output: visibilities of objects

for each object
    if view-frustum culled then return false
    project bounding box and find image-space bound B
    query maximum depth in B from {Ẑi}
    if occlusion culled then return false else return true

Occlusion Test (GPU)

Fig. 13. Overview of our occlusion culling framework.

et al. 2006], better scheduling and tighter bounds (CHC++) [Mat-
tausch et al. 2008], as well as ray tracing [Mattausch et al. 2015].
Nevertheless, per-object (or small-batch) queries remain necessary,
and cause redundancy, irregular stalls, as well as state changes in the
rendering pipeline, which reduce performance, and make them hard
to optimize or integrate into existing engines. Also, maintaining
hierarchical structures for dynamic scenes remains challenging.

More recent GPU-based approaches repeat the pair of culling and
geometry passes twice. The first culling tests against the previous
depth buffer [Haar and Aaltonen 2015], or the rendering of the pre-
viously visible objects [Nießner and Loop 2012]. The second-stage
culling is done against the result of the first geometry pass, followed
by the rendering of false negatives. Another approach is a hybrid
(together with the CPU) pipeline, which reprojects the previous
depth buffer, and dilates holes [Kasyan et al. 2011]. For efficiency, a
coarse resolution is used for the reprojection and occlusion culling.
Our WOC, implemented entirely on the GPU, improves the ex-

isting problems to a great extent. It does not need the selection of
occluders and considers all the previously-visible pixels as occluders.
Its image-based nature efficiently facilitates batch tests/queries in
parallel. The amount of occlusion queries reaches up to hundreds
of thousands and we demonstrate its high scalability. Furthermore,
the batch queries do not rely on a hierarchy and run in a single
GPU pass, which makes its integration into the existing engines less
intrusive (i.e., a single geometry pass) and the handling of dynamic
objects becomes easier.

5.2 Algorithms
Our approach first employs the standard VFC. Only the remaining
objects are tested using a customized query against the predicted
depth buffer Ẑ . Given a screen-space bound computed from the
proxy of an occludee, we recover the maximum depth within this
bound. When the minimum depth of the proxy corners exceeds the
maximum of the screen-space depth, we can safely cull the object.

To efficiently find the maximum depth for a screen-space bound,
we could build a mipmap from the warped depth buffer Ẑ , similar
to the motion buffers. Unfortunately, this choice is too approximate.
Instead, we rely on N-buffers [Décoret 2005]. An N-buffer is a set of
textures {Ẑi } of identical resolution, where a texel p of Ẑi holds the
maximum depth within a square area of 2i×2i pixels, whose lower
left corner is located at p. To test a region of size a×b, we use the N-
buffer texture Ẑ at a levelm = ⌊log2min(a,b)⌋, and choose lookup
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(a) Without culling (NOCULL) (c) HOM with precise depth buffer(b) HOM with our depth warping (WOC) (d) Precomputed Ideal culling (REF)
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Fig. 14. Comparison of our warping-based culling (WOC) with the precomputed ideal ground-truth culling (REF), hierarchical occlusion mapping (HOM) with
the precise depth buffer, and no culling (NOCULL). The upper and lower rows indicate the drawn fragments and overdrawn fragments (with respect to REF),
respectively. Blue-to-red in the color mapping indicates low-to-high fragment overdrawing.

Table 5. Performance (frame timemeasured inms) comparison of our culling
(WOC) against no culling (NOCULL), view frustum culling (VFC), state-of-
the-art CHC++, and ideal culling (REF).

Scene NOCULL VFC CHC++ WOC REF

YR 2.0 1.9 1.8 2.9 1.8
MO 3.8 2.6 4.3 2.5 1.2
BL 14.6 15.4 27.1 4.5 2.2
CB 38.4 43.8 18.3 6.2 4.2

locations for the tile of 2m × 2m . Overlapping ⌈a/2m⌉ × ⌈b/2m⌉
tiles ensures to accurately cover the entire test region of arbitrary
rectangular shapes.

Even using the efficient N-buffer construction, the costs are clearly
higher than for mipmaps. A good tradeoff is to use Y-Maps (a com-
bination of both, where the first i levels rely on a mipmap, and from
level i on, use N-Buffers) [Schwarz and Stamminger 2008]. Y-Maps
with two mipmap levels lead to a lower construction time, without
sacrificing much precision regarding the depth queries.
Once the occlusion test is done, the test results are stored in a

GPU buffer or texture. To steer the further rendering, the result
requires to be downloaded to the host application. This stalls the
pipeline, but the cost is relatively low (see results). Further, when the
recent extension of indirect batch rendering (reducing the overhead
of the GPU driver) is available, we can directly issue a single draw
call for all objects, entirely eliminating the stalls.

5.3 Evaluation
We implemented WOC on the same hardware and graphics API.
We used the same resolution and scenes from our experiments in
Sec. 4. We compare our solution with several methods: ideal culling
(REF), simple rendering without any culling (NOCULL), standard
view frustum culling (VFC), and state-of-the-art CHC++ [Mattausch
et al. 2008]. For REF, we precomputed an ideal set of visible objects.
CHC++ used a bounding volume hierarchy of per-object bounding
boxes built with the surface-area heuristic. CHC++ included batch,
randomization, tighter bounds of inner nodes, and multiqueries,
with the following parameters: nav = 10, b = 1000, dmax = 4, and
smax =1.4 [Mattausch et al. 2008]; we note that b and dmax were
tuned from the original suggested parameters (b=50 and dmax =3)

Table 6. Performance (measured in ms) breakdown of our WOC.

Scene Motion generation Depth warping Occlusion culling Total

YR 0.12 0.49 0.30 0.91
MO 0.12 0.47 0.34 0.93
BL 0.14 0.57 0.58 1.29
CB 0.13 0.47 1.43 2.03

Table 7. Comparison of WOC and approximate WOC (AWOC) on culling
performance (frame time measured in ms) and quality error. The original
animated sequences were sped up from 1× to 16× to scale up the camera
motions. The errors are measured as the quality difference (PSNR) between
the color renderings of WOC and AWOC.

Scene
WOC (ms) AWOC (ms) PSNR (dB)

1× 2× 4× 8× 16× 1× 2× 4× 8× 16× 1× 2× 4× 8× 16×

MO 2.5 2.6 2.8 2.9 3.1 2.5 2.5 2.7 2.8 2.9 71.1 60.6 54 49.1 48.2
BL 4.5 4.7 5.1 5.6 6.4 4.4 4.4 4.5 4.7 5.1 48.8 42.8 35.4 31.3 28.9
CB 6.2 6.4 6.8 7.2 8.7 6.1 6.2 6.5 6.6 6.8 ∞ ∞ 61.1 61.5 65.4

for higher performance in our experimental setup. Our warping
solution used a single layer (depth holes are conservatively kept at
the far-clipping depth). The number of used search seeds (N ) was 8.
The geometry rendering used a deferred rendering pipeline, except
for CHC++ (alternating between culling and rendering).

Our culling produces hardly perceptible differences compared to
REF (60 dB of PSNRs and > 0.999 of SSIMs). A failure of the iterative
search during depth warping does not necessarily lead to culling
errors, since we keep the depth of such pixels conservatively at the
far clipping depth. Only tiny objects (of 1–2 pixels) might be falsely
culled, due to rasterization precision.

Table 5 summarizes the measurements. For (relatively simple) YR
and MO scenes, VFC suffices, and no sophisticated culling is needed.
For high-complexity scenes (BL and CB), our solution significantly
outperforms all other techniques. Our speedup over VFC/CHC++
reaches up to 3.4/7.4× (BL scene) and 7.1/4.1× (CB scene). Note that,
for the MO and BL scenes, VFC outperforms CHC++, due to the
costly switches between rendering and querying.
Our solution outperforms the others mainly due to the absence

of hierarchical structures, enabling an efficient GPU parallelization.
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Fig. 15. Comparison of soft-shadows rendering using (a) our depth warping solutions, and (b) reference with respect to the shadow map resolution (SM) and
the number of area light samples (S). The quality comparison used SSIM (no unit) and PSNR (dB), and is noted at the bottom of each image of our solution.

Also, the image-based nature leads to more stable culling at constant
cost, which is important in time-critical applications. The perfor-
mance of CHC++ may degrade with an excessive amount of queries
and frequent state changes, which can introduce latency and ir-
regular costs. The average number of per-frame queries and state
changes of CHC++ are 2.4/3.0, 317.2/9.0, 2847.1/14.8, and 1988.7/16.1
for YR, MO, BL, and CB scenes, respectively. Our culling uses screen-
space bounding boxes with potentially lower culling ratios (Fig. 14
compares this to ideal culling (REF) and a precise depth buffer) but
the cost for the occlusion tests is significantly lower.
Table 6 shows the timing breakdown of our solution. The gen-

eration of the motion buffer and depth warping is nearly constant
(< 0.71ms). Culling costs are 0.30, 0.34, 0.58, and 1.43 ms for the YR,
MO, BL, and CB scenes, respectively. Occlusion tests have nearly
constant cost but the download time (to the host CPU application)
depends on scene complexity and number of objects.
In contrast to many previous hierarchy-based methods, our ap-

proach supports dynamic scenes. The overhead to update transfor-
mation matrices for dynamic objects is small (e.g., < 0.5 ms for the
fully dynamic BL scene). By simulating animation on the GPU, this
overhead would shrink even further.

Our WOC works best with moderately coherent motions, but can
be overly conservative. For example, fast rotations in a first-person
view may not be handled well, where a great portion of the warped
depth buffer can be considered holes. A sophisticated solution to
handle this issue could be the composition of the pre-rendering of
the previously visible objects with the warped depth buffer, but it
would require two-stage geometry passes. We instead propose an
efficient workaround, which fills the holes using the motion vectors
at the extrema of the local search bound (approximateWOC; AWOC).
The source pixels would not converge with their motions, but we
simply consider the nearest of them as an approximate depth. Table 7
shows the results of our experiments. As motions increase, AWOC
maintains good culling performance, while WOC’s performance
is reduced to some extent. AWOC can exhibit small errors with
respect to WOC in the resulting rendering, but the difference is
small (AWOC never descends below 30 dB in terms of PSNR). Also,
the errors are hardly perceivable, due to the rapid motion.

6 APPLICATION: SOFT SHADOWS
Our second example application is high-quality soft shadows. These
are computed via depth maps generated for each area-light sam-
ple. Usually, the many shadow maps would result in high cost, as

the rendering has to be repeated as many times as there are light
samples. Existing efficient algorithms, such as percentage-closer
filtering [Fernando 2005], variance soft shadow mapping [Yang et al.
2010], exponential soft shadow mapping [Shen et al. 2013], and mo-
ment shadow mapping [Peters and Klein 2015], do not address true
visibility tests, and view-sample methods [Eisemann and Décoret
2007; Sintorn et al. 2008] require more costly specialized geometry
processing to avoid multiple rendering passes.

We rely on our warping technique to efficiently produce hundreds
of depth maps. Fig. 15 demonstrates examples using our technique
compared to reference renderings, varying the number of area light
samples (S). We used three depth layers (L = 3; one for the ground)
and 4 search samples (N = 4) for all examples. The generated shadow
maps are close to the reference, which enables a correct visibility
evaluation without artifacts. Increasing the number of samples, the
quality rapidly improves as well (SSIMs and PSNRs up to 1.0 and 46
dB); note that we only used N = 4. A small difference only occurs
at some depth edges.

The more complex a scene is, the higher the gain of our solution.
Table 8 summarizes the performance with respect to a reference
rendering. The reference rendering scales linearly with the number
of light samples, while ours scales more with resolution due to its
image-based nature. In most cases, our solution runs faster, where
speed-up factors reach up to 3.4, 5.9, 17.4, and 31.3× for YR, MO,
BL, and CB, respectively. Only at 2,048×2,048 resolution in the YR
scene, we achieve lower performance, due to the scene’s simplicity,
which results in geometric rendering being comparable in cost to
high-resolution warping.
In practice, when requiring hundreds of views, we can use a

coarser but smarter interpolation [Neulander 2008] instead of ren-
dering all the shadow maps, but trade quality for performance.

7 DISCUSSION AND LIMITATIONS
Our depth warping features high performance, stable cost, high scal-
ability, and support for dynamic scenes, which makes our approach
interesting for interactive applications.
We proved the effectiveness of our single-view and multi-view

depth buffer synthesis. Our unoptimized implementation is still
faster than multi-view depth rendering, despite leaving room for
further performance improvements. For example, themotion bounds
for multiple views can be unified and reused. However, this would
lead to a looser bound, which might then require more samples.
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Table 8. Performance (frame time measured in ms for the number of area light samples S ) comparison of soft shadows rendering with our depth warping and
reference geometry rendering. The relative speed-up factors of our solution are measured against the reference using the same number of S .

Scene Shadow map resolution
Reference (ms) Depth warping (ms) Relative speed-up (×)

S=4 S=16 S=64 S=256 S=4 S=16 S=64 S=256 S=4 S=16 S=64 S=256

YR
512 × 512 8 25 94 365 6 8 34 108 1.4 3.0 2.8 3.4
1024 × 1024 8 25 95 372 7 13 37 128 1.2 2.0 2.6 2.9
2048 × 2048 8 27 100 392 11 30 103 393 0.7 0.9 1.0 1.0

MO
512 × 512 17 55 210 826 11 17 57 140 1.5 3.3 3.7 5.9
1024 × 1024 17 56 212 841 12 19 60 151 1.4 3.0 3.6 5.6
2048 × 2048 17 63 221 864 16 34 105 397 1.0 1.8 2.1 2.2

BL
512 × 512 55 181 687 3480 45 51 80 200 1.2 3.5 8.6 17.4
1024 × 1024 65 232 818 3535 45 52 81 204 1.4 4.5 10.1 17.3
2048 × 2048 65 232 837 3887 45 52 153 564 1.4 4.4 5.5 6.9

CB
512 × 512 205 663 2380 10021 115 117 209 333 1.8 5.7 11.4 30.1
1024 × 1024 210 670 2537 10652 117 128 212 341 1.8 5.3 11.9 31.3
2048 × 2048 213 694 2728 10707 118 128 218 445 1.8 5.4 12.5 24.0

Improving the quality with a unified motion bound for multi-view
synthesis is a promising direction for future work.
Our solution exhibits high supra-pixel accuracy, but is limited

in sub-pixel accuracy (evidenced by high SSIMs and relatively low
PSNRs). This results from the loss of geometric accuracy during
rasterization; this is a shared problem of most image-based post-
processing. In our case, this is associated with the precision of both
the warping and motion vectors. In particular, the errors of the
motion vectors reside within a half pixel size, but rapid motion can
amplify these errors, when querying the search bound query and
impact convergence. This often leads to pixel-size edge differences
at complex junctions. A potential improvement can be made using
the multisampling of the depth buffers, yet at higher cost.

Another potential source of error is rapid motion (e.g., more than
200 pixels per frame). Such motions cause slower convergence, and
might lead to triangles flipping orientation. In the future, we would
like to adapt the fixed-point search to take the underlying motion
magnitude into account.
A last issue concerns the image periphery. Solutions for the it-

erative search may lie outside the image boundary. At present, we
clamp the search samples, so that they remain in the image area.
An accurate handling requires a wider field of view to capture the
actual source depths, which leads again to additional costs.
In addition to the occlusion culling and soft-shadow mapping,

more potential applications of our depth warping solution include
depth-of-field rendering, anti-aliasing (reprojecting multiple loca-
tions within pixel), and intra-frame reprojection for virtual reality.
In all these cases, having a predictive depth map may help to select
the right color samples to reduce errors at reduced cost.

8 CONCLUSION
We have presented a high-quality depth warping technique, which
is suitable for GPU-based real-time rendering. The previous fixed-
point iteration for color image warping has been made more effi-
cient with our tight bounding method. We further showed that the
depth holes can be filled well with deep depth buffers, while still

achieving high performance. The number of depth layers can be
reduced and bounded with generalized umbra culling. The resulting
depth warping has proved its benefit in the two applications. The
hierarchy-less screen-space occlusion query leads to a low-latency,
stable, and scalable solution. For soft-shadow mapping, the multi-
view depth warping proved very beneficial, as it avoids repeated
geometry processing.

ACKNOWLEDGMENTS
This work is supported in part by the Global Frontier R&D program
through the NRF grant (No. 2018M3A6A3058649), funded by the
Korea Government, and the VIDI Grant NextView, funded by the
NWO Vernieuwingsimpuls. Correspondence on this article can be
addressed to Sungkil Lee.

REFERENCES
Dmitry Andreev. 2010. Real-time frame rate up-conversion for video games: or how to

get from 30 to 60 fps for free. In Proc. ACM SIGGRAPH 2010 Talks. ACM, 16.
Thaddeus Beier and Shawn Neely. 1992. Feature-based image metamorphosis. Proc.

ACM SIGGRAPH 26, 2 (1992), 35–42.
Jiří Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. 2004. Coherent

hierarchical culling: Hardware occlusion queries made useful. Computer Graphics
Forum 23, 3 (2004), 615–624.

Huw Bowles, Kenny Mitchell, Robert W Sumner, Jeremy Moore, and Markus Gross.
2012. Iterative image warping. Computer graphics forum 31, 2pt1 (2012), 237–246.

Shenchang Eric Chen and LanceWilliams. 1993. View interpolation for image synthesis.
In Proc. ACM SIGGRAPH. ACM, 279–288.

Adam Cichocki. 2017. Advances in Real-Time Rendering in Games. ACM SIGGRAPH
Courses.

R Cunniff, M Craighead, D Ginsburg, K Lefebvre, B Licea-Kane, and N Triantos. 2001.
ARB occlusion query. Technical Report. NVIDIA and ATI.

X. Décoret. 2005. N-buffers for efficient depth map query. In Proc. Eurographics. Wiley
Online Library, 393–400.

Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel.
2010a. Perceptually-motivated Real-time Temporal Upsampling of 3D Content for
High-refresh-rate Displays. Computer Graphics Forum 29, 2 (2010), 713–722.

Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol Myszkowski, and Hans-Peter
Seidel. 2010b. Adaptive image-space stereo view synthesis. In Proc. Vision, Modeling,
and Visualization. 299–306.

Hawar Doghramachi and Jean-Normand Bucci. 2017. Deferred+: Next-Gen Culling and
Rendering for Dawn Engine. In GPU Zen: Advanced Rendering Techniques, Wolfgang
Engel (Ed.). Bowker Identifier Services.

ACM Trans. Graph., Vol. 37, No. 1, Article 1. Publication date: January 2018. 2018-07-16 23:09. Page 12 of 1–13.



Iterative Depth Warping • 1:13

Elmar Eisemann and Xavier Décoret. 2007. Visibility Sampling on GPU andApplications.
Computer Graphics Forum 26, 3 (2007), 535–544.

Cass Everitt. 2001. Interactive order-independent transparency. White paper, nVIDIA 2,
6 (2001), 7.

Randima Fernando. 2005. Percentage-closer soft shadows. In ACM SIGGRAPH 2005
Sketches. ACM, 35.

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The
lumigraph. In Proc. ACM SIGGRAPH. ACM, 43–54.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchical
structure for rapid interference detection. In Proc. ACM SIGGRAPH. ACM, 171–180.

Michael Guthe, Ákos Balázs, and Reinhard Klein. 2006. Near Optimal Hierarchical
Culling: Performance Driven Use of Hardware Occlusion Queries. In Proc. Euro-
graphics Symp. Rendering. 207–214.

Ulrich Haar and Sebastian Aaltonen. 2015. Advances in Real-Time Rendering in Games.
ACM SIGGRAPH Courses.

Yun-Suk Kang and Yo-Sung Ho. 2010. High-quality multi-view depth generation using
multiple color and depth cameras. In Proc. International Conf. Multimedia and Expo.
IEEE, 1405–1410.

Nickolay Kasyan, Nicolas Schulz, and Tiago Sousa. 2011. Secrets of CryENGINE 3
Graphics Technology. ACM SIGGRAPH Courses.

James T Klosowski and Claudio T. Silva. 2000. The prioritized-layered projection
algorithm for visible set estimation. IEEE Trans. Visualization and Computer Graphics
6, 2 (2000), 108–123.

Christoph Kubisch and Markus Tavenrath. 2014. OpenGL 4.4 Scene Rendering Tech-
niques. GPU Technology Conference.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2010. Real-Time Lens Blur Effects
and Focus Control. ACM Trans. Graphics 29, 4 (2010), 65:1–7.

Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2008. Real-Time Depth-
of-Field Rendering Using Point Splatting on Per-Pixel Layers. Computer Graphics
Forum 27, 7 (2008), 1955–1962.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proc. ACM SIGGRAPH.
ACM, 31–42.

David Luebke and Chris Georges. 1995. Portals and mirrors: Simple, fast evaluation of
potentially visible sets. In Proc. ACM Symp. Interactive 3D graphics. ACM, 105–ff.

William RMark, Leonard McMillan, and Gary Bishop. 1997. Post-rendering 3D warping.
In Proc. Symp. Interactive 3D Graphics. ACM, 7–ff.

Oliver Mattausch, Jiří Bittner, A. Jaspe, E. Gobbetti, Michael Wimmer, and Renato
Pajarola. 2015. CHC+RT: Coherent Hierarchical Culling for Ray Tracing. Computer
Graphics Forum (Proc. Eurographics) 34, 2 (2015), 537–548.

Oliver Mattausch, Jiří Bittner, and Michael Wimmer. 2008. CHC++: Coherent hierarchi-
cal culling revisited. Computer Graphics Forum 27, 2 (2008), 221–230.

Oliver Mattausch, Daniel Scherzer, and Michael Wimmer. 2010. High-Quality Screen-
Space Ambient Occlusion using Temporal Coherence. Computer Graphics Forum 29,
8 (2010), 2492–2503.

Leonard McMillan and Gary Bishop. 1995. Plenoptic modeling: An image-based ren-
dering system. In Proc. ACM SIGGRAPH. ACM, 39–46.

Leonard McMillan Jr. 1997. An image-based approach to three-dimensional computer
graphics. Ph.D. Dissertation. University of North Carolina Chapel Hill.

Diego Nehab, Pedro V Sander, Jason Lawrence, Natalya Tatarchuk, and John R Isidoro.
2007. Accelerating real-time shading with reverse reprojection caching. In Proc.
Graphics hardware, Vol. 41. 61–62.

Ivan Neulander. 2008. Pismo: parallax-interpolated shadow map occlusion. ACM
SIGGRAPH 2008 talks.

Matthias Nießner and Charles Loop. 2012. Patch-based occlusion culling for hardware
tessellation.

Christoph Peters and Reinhard Klein. 2015. Moment shadow mapping. In Proc. Symp.
Interactive 3D Graphics and Games. ACM, 7–14.

Gilberto Rosado and Rainbow Studios. 2007. Motion Blur as a Post-Processing Effect.
In GPU Gems 3, Hubert Nguyen (Ed.). Addison-Wesley Professional, 69–117.

Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. 2007. Pixel-correct shadow
maps with temporal reprojection and shadow test confidence. In Proc. Eurographics
Symp. Rendering. Eurographics Association, 45–50.

Daniel Scherzer, Michael Schwärzler, Oliver Mattausch, and Michael Wimmer. 2009.
Real-time soft shadows using temporal coherence. In Proc. International Symp.
Visual Computing. Springer, 13–24.

Daniel Scherzer, Lei Yang, Oliver Mattausch, Diego Nehab, Pedro V Sander, Michael
Wimmer, and Elmar Eisemann. 2012. Temporal Coherence Methods in Real-Time
Rendering. Computer Graphics Forum 31, 8 (2012), 2378–2408.

Michael Schwarz and Marc Stamminger. 2008. Quality Scalability of Soft Shadow
Mapping. In Graphics Interface 2008. 147–154.

W Rrenl Seales, Greg Welch, and Christopher O Jaynes. 1999. Real-time depth warping
for 3-d scene reconstruction. In Proc. IEEE Aerospace Conference, Vol. 3. IEEE, 413–
419.

S. M. Seitz and C. R. Dyer. 1996. ViewMorphing. In Proc. ACM SIGGRAPH. ACM, 21–30.
Li Shen, Jieqing Feng, and Baoguang Yang. 2013. Exponential soft shadow mapping.

Computer graphics forum 32, 4 (2013), 107–116.

Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. 2008. Sample Based Visibility for
Soft Shadows using Alias-free Shadow Maps. Computer Graphics Forum 27, 4 (2008),
1285–1292.

Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V Sander, and Diego Nehab.
2008. An improved shading cache for modern GPUs. In Proc. Symp. Graphics
hardware. Eurographics Association, 95–101.

Sundar Vedula, Simon Baker, and Takeo Kanade. 2002. Spatio-temporal view interpola-
tion. In Proc. Rendering Techniques. 65–76.

Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. 2004.
Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans.
Image Proc. 13, 4 (2004), 600–612.

Lance Williams. 1983. Pyramidal parametrics. Proc. ACM SIGGRAPH 17, 3 (1983), 1–11.
Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. 2000. Visibility preprocessing

with occluder fusion for urban walkthroughs. In Proc. Eurographics Workshop on
Rendering. 71–82.

Baoguang Yang, Zhao Dong, Jieqing Feng, Hans-Peter Seidel, and Jan Kautz. 2010.
Variance soft shadow mapping. Computer Graphics Forum 29, 7 (2010), 2127–2134.

Lei Yang, Yu-Chiu Tse, Pedro V Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,
and Clara L Wilkins. 2011. Image-based bidirectional scene reprojection. ACM
Trans. Graphics 30, 6 (2011), 150:1–10.

Xuan Yu, Rui Wang, and Jingyi Yu. 2010. Real-time Depth of Field Rendering via
Dynamic Light Field Generation and Filtering. Computer Graphics Forum 29, 7
(2010), 2099–2107.

Sveta Zinger, Luat Do, and PHN de With. 2010. Free-viewpoint depth image based
rendering. Journal of visual communication and image representation 21, 5 (2010),
533–541.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. 2002. EWA
splatting. IEEE Trans. Visualization and Computer Graphics 8, 3 (2002), 223–238.

Received Sep. 2017; revised June 2018; accepted July 2018

2018-07-16 23:09. Page 13 of 1–13. ACM Trans. Graph., Vol. 37, No. 1, Article 1. Publication date: January 2018.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal Coherence and Reprojection
	2.2 Multi-Source Warping
	2.3 Single-Source Warping

	3 Iterative Depth Warping
	3.1 Preparation of Depth and Motion Buffers
	3.2 Backward Depth Warping with Fixed-Point Iteration
	3.3 Search Region Bound for Motion Vectors
	3.4 Multi-Layer Warping for Depth Hole Filling

	4 Experimental Analysis
	4.1 Method
	4.2 Depth Warping Accuracy
	4.3 Depth Warping Performance

	5 Application: Occlusion Culling
	5.1 Previous Work and Background
	5.2 Algorithms
	5.3 Evaluation

	6 Application: Soft Shadows
	7 Discussion and Limitations
	8 Conclusion
	Acknowledgments
	References

