
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2014

MSc THESIS

Compression of Next-Generation DNA
Sequencing Data

Georgios Kathareios

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2014-08

DNA sequencing is the process of determining the ordered sequence
of the four nucleotide bases in a strand of DNA, for storage in an
electronic medium.
Since the mid-2000s, with the advent of Next-Generation sequencing
technologies, the production rate of sequencing data has surpassed
the rate with which hard disc prices are decreasing, meaning that
storage hardware is becoming increasingly expensive. Thus, efficient
methods to compress this kind of data are crucial for the future of
genetic research.
Traditionally, this kind of data is compressed using generic compres-
sion techniques like gzip and bzip2. These techniques however do
not distinguish between the three kinds of data present in the input
file - identifier strings, base sequences and quality score sequences -
and therefore cannot fully exploit their respective statistical depen-
dencies, resulting in poor compression ratios.
In this master thesis, a specialized algorithm for the lossless compres-
sion of sequencing data is presented, aiming at high compression. A
different compression technique is used for each part of a read: delta
encoding for the id strings, linear predictive coding for the qual-
ity scores and high order Markov chain modelling for the nucleotide

bases. Arithmetic coding is implemented and used as an entropy encoder, based on a different Markov
chain modelling scheme for each part. Prior to the selection of these techniques, methods such as hidden
Markov modelling and the Burrows-Wheeler transform were investigated, aspiring to improve the compres-
sion, but were eventually proven impractical. The resulting algorithm achieves compression rates as low as
19% of the initial size, comparable to state of the art algorithms, compressing the ids, bases and quality
scores to 5.5%, 19.7% and 31.3% of their original size, respectively. Finally, we investigate the viability of
achieving very high compression speeds for DNA sequencing data, by using a hardware implementation of
the DEFLATE standard, which promises a 2GB/s compression speed. We show through simulations that
ultra fast compression is possible, with a small degradation of approximately 1.38% in the compression
ratio compared to the also DEFLATE-complying gzip.

Compression of Next-Generation DNA Sequencing
Data

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Georgios Kathareios
born in Patra, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Compression of Next-Generation DNA Sequencing
Data

by Georgios Kathareios

Abstract

DNA sequencing is the process of determining the ordered sequence of the four nucleotide
bases in a strand of DNA, for storage in an electronic medium.

Since the mid-2000s, with the advent of Next-Generation sequencing technologies, the pro-
duction rate of sequencing data has surpassed the rate with which hard disc prices are decreasing,
meaning that storage hardware is becoming increasingly expensive. Thus, efficient methods to
compress this kind of data are crucial for the future of genetic research.

Traditionally, this kind of data is compressed using generic compression techniques like gzip
and bzip2. These techniques however do not distinguish between the three kinds of data present
in the input file - identifier strings, base sequences and quality score sequences - and therefore
cannot fully exploit their respective statistical dependencies, resulting in poor compression ratios.

In this master thesis, a specialized algorithm for the lossless compression of sequencing data
is presented, aiming at high compression. A different compression technique is used for each part
of a read: delta encoding for the id strings, linear predictive coding for the quality scores and
high order Markov chain modelling for the nucleotide bases. Arithmetic coding is implemented
and used as an entropy encoder, based on a different Markov chain modelling scheme for each
part. Prior to the selection of these techniques, methods such as hidden Markov modelling and
the Burrows-Wheeler transform were investigated, aspiring to improve the compression, but were
eventually proven impractical. The resulting algorithm achieves compression rates as low as 19%
of the initial size, comparable to state of the art algorithms, compressing the ids, bases and quality
scores to 5.5%, 19.7% and 31.3% of their original size, respectively. Finally, we investigate the
viability of achieving very high compression speeds for DNA sequencing data, by using a hardware
implementation of the DEFLATE standard, which promises a 2GB/s compression speed. We
show through simulations that ultra fast compression is possible, with a small degradation of
approximately 1.38% in the compression ratio compared to the also DEFLATE-complying gzip.

Laboratory : Computer Engineering
Codenumber : CE-MS-2014-08

Committee Members :

Advisor: Dr. Ir. Zaid Al-Ars, CE, TU Delft

Chairperson: Prof. Dr. Ir. Koen Bertels, CE, TU Delft

Member: Dr. Ir. Stephan Wong, CE, TU Delft

Member: Dr. Ir. Fernando Kuipers, NAS, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1

1.1 Context . 1

1.2 Background . 2

1.2.1 Shotgun Sequencing . 2

1.2.2 The FASTQ File Format . 4

1.2.3 Data Compression . 6

1.2.4 Discrete Time Markov Chain . 10

1.2.5 Arithmetic Coding . 12

1.3 Problem Statement . 16

1.4 Thesis Outline . 16

2 Related Work 19

2.1 General compression techniques . 19

2.1.1 Gzip . 19

2.1.2 bzip2 . 20

2.2 Domain-specific compression techniques 21

2.2.1 SAMtools . 22

2.2.2 Quip . 23

2.3 Comparison of FASTQ compression techniques 25

2.4 Additional domain-specific techniques . 27

3 Compression of Quality Scores 29

3.1 Introduction . 29

3.2 Linear Predictive Coding . 30

3.2.1 Linear Prediction . 31

3.2.2 Blocked LPC . 35

3.2.3 Modelling and Coding . 38

3.2.4 Evaluation of Blocked LPC . 39

3.2.5 Adaptive LPC . 42

3.3 Modelling with Hidden Markov Models . 44

3.3.1 Training an HMM . 45

3.3.2 Extracting information from the HMM 48

v

3.3.3 Implementation . 49
3.4 Evaluation . 51

4 Compression of Identifiers and Bases 55
4.1 Identifier Strings . 55

4.1.1 Preprocessing . 56
4.1.2 Modelling and Coding . 58
4.1.3 Evaluation . 59

4.2 Sequences of Nucleotide Bases . 60
4.2.1 Utilizing BWT and MTF preprocessing 61
4.2.2 Skipping the preprocessing . 65
4.2.3 Evaluation . 66

5 Complete Compressor 69
5.1 Compression performance . 70
5.2 Compression speed . 73

6 Towards real-time compression 75
6.1 The GenWQE card . 75
6.2 Configuring for FASTQ files . 76

7 Conclusions and recommendations 79
7.1 Conclusions . 79
7.2 Recommendations . 80

Bibliography 84

A Algorithms for Arithmetic Coding 85
A.1 Encoding Algorithm . 86
A.2 Decoding Algorithm . 87

B Huffman trees for GenWQE 89

vi

List of Figures

1.1 The DNA sequencing process. 1

1.2 Historical trends in storage prices versus DNA sequencing costs. [44] . . 2

1.3 Illustration of the shotgun sequencing method. 3

1.4 Read representation format in FASTQ. 4

1.5 Example of a read in FASTQ format. 4

1.6 Lossless and Lossy compression. 6

1.7 Lossless compression components. 8

1.8 Example of a simple first-order Markov Chain. 10

1.9 Example of how the intervals change in arithmetic encoding. 14

1.10 Interval rescaling in arithmetic coding. 15

2.1 The SAM file format. 23

2.2 Structural blocks of Quip’s non-reference based compression. 24

2.3 Compression ratios of popular FASTQ compression techniques. 26

2.4 Compression and decompression speed of popular FASTQ compression
techniques. 26

3.1 Relative frequency distribution of the quality scores in C11. 29

3.2 The predictive coding transformation. 31

3.3 Relative frequency distribution of the quality scores in N21. 34

3.4 Relative frequency distribution of the 1st-order LPC error values in N21. 34

3.5 Entropy reduction between the quality score sequences and LPC error
values in N21, as a function of the order of prediction. 35

3.6 Entropy reduction between the quality score sequences and blocked LPC
error values in N21, as a function of the order of prediction, for different
block sizes. 37

3.7 Entropy reduction between quality scores and prediction error values
with 4th-order blocked LPC for large sized blocks in N21. 38

3.8 Compression ratio on the quality scores with different values on the order
of the DTMCs. 39

3.9 Compression ratio on the quality scores of C11 with different values of
prediction order. 40

3.10 Compression ratio on the quality scores of C11 with different values of
Npos. 41

3.11 Compression ratio on the quality scores of C11 with different values of
Njump. 41

3.12 Compression ratio on the quality scores of C11 with different values of
Nthres. 42

3.13 Compression ratio on the quality scores of C11 with adaptive LPC and
different values of T . 44

3.14 Representation of a simple Hidden Markov Model. 45

vii

3.15 Compression ratio on the quality scores with HMM modelling using
different numbers of hidden states in C11. 50

3.16 Compression ratio on the quality scores of C11 with different values of
L for the HMM training. 51

3.17 Compression ratio on the quality scores of C11 with different values of
Ts for the HMM training. 52

4.1 Part of a 3rd-order modified DTMC, used for modelling the id strings. . 59
4.2 Compression ratio on the identifier strings using different values for the

order of the DTMC in N21. 60
4.3 Compression ratio on the identifier strings of N21 with different values

of Nthres. 61
4.4 Compression ratio on the base sequences using different values for the

order of the DTMC in N21, with BWT and MTF preprocessing. 63
4.5 Compression ratio on the bases of N21 with different values of Nthres,

using BWT and MTF preprocessing. 64
4.6 Compression ratio and speed on the bases of N21 with different values

of M , using BWT and MTF preprocessing. 65
4.7 Compression ratio on the base sequences using different values for the

order of the DTMC in N21, without preprocessing. 67
4.8 Compression ratio on the bases of N21 with different values of Nthres,

without preprocessing. 67

5.1 The compressor. 69
5.2 The decompressor. 70
5.3 Relative frequency distribution of the quality scores in C11 and C12. . . 71
5.4 Comparison of the compression ratios of this work to popular compres-

sors for the C11 benchmark. 72
5.5 Comparison of the compression ratios achieved by quip compared with

this work. 72

viii

List of Tables

1.1 IUPAC representation codes for DNA or RNA nucleotide bases. 5
1.2 FASTQ benchmarks, courtesy of UMC 6
1.3 File properties of the FASTQ benchmarks 6
1.4 Calculation of the interval ΦN (3) . 13

2.1 The string aardvark$ is permuted to k$avrraad by performing the BWT . 21

4.1 The first ten identifier strings of C11. 55
4.2 Delta encoding on the identifier strings (without misalignments). 56
4.3 Misaligned delta encoding on the identifier strings. 57
4.4 Size of the binary representation according to the value of the header byte. 57
4.5 Delta encoding on the identifier strings of Table 4.2 using the binary

representation transformation. 58
4.6 Delta encoding on the identifier strings of Table 4.3 after the binary

representation transformation. 58
4.7 Frequencies of occurrence of each symbol in the base sequences of N21,

with a total number of 785404080 bases in the file. 61
4.8 MTF transform on the sequence AAAGGGCCZN. 62

5.1 Compression results of the implemented compression technique. 71

6.1 Simulated compression ratio achieved with the GenWQE card and com-
parison with gzip -9. 77

B.1 Distance Huffman code . 89
B.2 Literal-length Huffman code . 90

ix

x

List of Acronyms

BWT Burrows-Wheeler Transform

DNA Deoxyribonucleic acid

DTMC Discrete Time Markov Chain

GenWQE Generic WorkQueue Engine

HMM Hidden Markov Model

IUPAC International Union of Pure and Applied Chemistry

LPC Linear Predictive Coding

LZ Lempel-Ziv

MTF Move-To-Front

NGS Next-Generation Sequencing

RNA Ribonucleic acid

SAM Sequence Alignment/Map

UMC Utrecht Medical Center

xi

xii

Acknowledgements

First of all, I would like to express my sincere thanks to Dr. Zaid Al-Ars, who believed
in me, supervised, and trusted me to work individually with this project. Without his
guidance, support and advice, none of this would have been possible. I would also like
to thank Dr. Fernando Kuipers and Marcus Märtens for their precious suggestions, and
Dr. RangaRao Venkatesha Prasad for his advice and interest in this work. Last but not
least, I would like to thank Dr. Stephan Wong and Dr. Koen Bertels for agreeing to be
in my examination committee.

Georgios Kathareios
Delft, The Netherlands
August 19, 2014

xiii

xiv

Introduction 1
1.1 Context

The field of genetics studies the genes − molecular units of heredity of living organisms
− by gathering, processing and analysing the encoded information in DNA molecules
that is passed from one generation to the next. Since the study of genetics and molecular
biology is a key component in identifying and battling genetic diseases, such as cancer
and leukemia, interest in the field has sky-rocketed in the past half century and continues
to increase to this day. This increase in interest has been facilitated by technological
advances of computer science and has brought forth technological breakthroughs such
as the DNA sequencing process. Nowadays, modern genetics have been strongly linked
with and are heavily dependent on the study of information management systems.

Figure 1.1: The DNA sequencing process.

The backbone of genetics is the DNA sequencing process (Fig. 1.1), the process of
determining the precise order of nitrogenous bases within a strand of DNA [6]. The
first methods for determining DNA sequences emerged in the 1970s, with Sanger’s
Nobel-winning chain-termination sequencing [38] becoming the method of choice. Early
methodologies suffered from the limitation that only a few hundred base pairs could
be sequenced in each experiment, meaning that approximately five million experiments
would have to take place in order to sequence the whole human genome [6]. Therefore, in
the following years researchers focused on optimizing these methods to be faster and able
to sequence multiple samples in parallel. More recently, in the 1990s, the pyrosequencing
method [36] revolutionized the process, as it is substantially faster and can be straight-
forwardly automated. There has been a bloom in the advent of new techniques since.
Array-based pyrosequencing, sequencing-by-synthesis and sequencing-by-ligation tech-
niques, developed after 2005, have exponentially increased the speed of the sequencing
process and brought forth the Next-Generation sequencing (NGS) data [44, 29].

Due to these advances, a massive amount of NGS data is constantly being produced,
processed and stored, and hence DNA sequencing is often categorized as a big data
application [9, 44]. However, this rapid expansion of data generation creates a major

1

2 CHAPTER 1. INTRODUCTION

Figure 1.2: Historical trends in storage prices versus DNA sequencing costs. [44]

problem, as the need in storage space increases by the same rate. The problem is
illustrated in Fig. 1.2, which shows the exponential decrease in the cost of sequencing in
recent years. This trend is contrasted with the decrease in the cost of hard drive storage
over the same time period, as predicted by Kryder’s Law [47]. In the coming years, if
the same trend persists, the cost of a DNA sequencing pipeline will be dominated by the
storage cost, rather than the sequencing itself.

Therefore, efficient data compression methods are crucial in keeping the cost of such
a system in manageable levels. Nowadays, generic data compressors such as gzip and
bzip2 are widely used by biologists. However, these compressors are specifically designed
to produce adequate results for a wide variety of input data types. By doing so, they
overlook important statistical properties of NGS data that should be used towards more
efficient compression results. A custom-made compressor that exploits these properties
would be able to outperform the currently used techniques, and would greatly help in
reducing the storage medium needs, effectively reducing the cost of the DNA sequencing
process.

1.2 Background

This section aims to briefly present basic notions and background information that are
required to follow the rest of the work. For a more detailed description on each topic,
the reader should refer to the respective cited material.

1.2.1 Shotgun Sequencing

As already mentioned, the sequencing process can only identify a few hundred base pairs
per experiment. A human DNA molecule contains approximately 3 billion base pairs.
Hence, the practice of shotgun sequencing [6] is used to enable the identification of a
whole genome. It involves the segmentation of the DNA strand in numerous fragments

1.2. BACKGROUND 3

Figure 1.3: Illustration of the shotgun sequencing method.

that are individually sequenced. The sequenced fragments vary in length, typically in the
range of 25 to 750 base pairs according to the sequencing technology, and are called short
reads or simply reads. By performing the fragmentation and sequencing step multiple
times over clones of the same DNA molecule, the resulting reads overlap.

Given a set of reads created by shotgun sequencing a genetic sequence, coverage is
defined as the average number of reads representing a given nucleotide in the recon-
structed sequence. Given the length G of the original genome, the number N of reads in
the set, and the average length L of each read, the coverage of the set is calculated as
follows:

C =
N ∗ L
G

(1.1)

Thanks to this induced read overlap, it is possible to recreate the initial genome
almost entirely, by aligning and merging reads in a process called sequence assembly
(Fig. 1.3). Two main variants of the assembly process exist:

• De-Novo assembly where the genome is recreated using only the available reads.

• Mapping assembly where the genome is recreated by utilizing a similar genome as
reference.

Mapping assembly is fundamentally faster than de-novo assembly, but is not always
applicable, as a reference genome may not always be available. The accuracy that
modern assembly algorithms achieve in reconstructing the original sequence depends on
the coverage of the provided reads. A coverage of 4 is generally required for an acceptable
level of accuracy, while a coverage between 8 and 10 is required before the reconstructed
sequence can be declared complete [6].

As a result, a high degree of data redundancy is introduced in high-coverage read
sets, which increases the space required for storage in a hard disc drive. In the context
of this work, the focus is given in the genetic data that are created directly after the

4 CHAPTER 1. INTRODUCTION

sequencing process, in the form of unaligned reads before the assembly, as they are the
most demanding in terms of storage space requirements.

1.2.2 The FASTQ File Format

The FASTQ file format has emerged as a de facto format for storing NGS data in the
form of reads [8]. It arose ad-hoc from several sources, primarily Sanger and Illumina.
Its popularity is mainly attributed to its simplicity and the popularity of its predecessor,
the FASTA format. However, it lacks standardization and several incompatible variants
exist.

@ sequence identifier string or title

sequence of bases

+ optional repetition of the title

sequence of quality scores

Figure 1.4: Read representation format in FASTQ.

FASTQ is a text-based, human-readable, ASCII encoded file format. The file is
separated in 4-line blocks, each representing a different read. The 4 lines are formatted
as shown in Fig. 1.4. An example of the representation of a simple read in the FASTQ
format is shown in Fig. 1.5.

@HWI-ST867:117:C0RCJACXX:2:1101:1439:1932 1:Y:0:CGATGT

NTTTCTATGTGTCTCACTTTNNCTGTACATATCANTGCAGNAATAAGACTA

+

#0;==?>?=>?@@:@@<<??##335==:?9);8>#119=?#07=?<??><?

Figure 1.5: Example of a read in FASTQ format.

The first line starts with the character ’@’ and contains an identifier string for the
read. It is a free format field with no size limit, where arbitrary information may be
added. According to the sequencing instrumentation used, the field may contain en-
coded information on the sequencing method, the instrument’s name, various ids that
correspond to the experiment, or simply an index and the read’s length.

The second line contains the main information of the read, which is the sequence
of bases that comprise it. Each base is represented with a single upper case character,
taken from the IUPAC single letter code for DNA or RNA nucleotide bases (Table 1.1).
In practice only A, C, T, G, and N are used, and white spaces or any other characters
are not permitted in this field.

The third line begins with the character ’+’ and originally contained the same identi-
fier string as the first line. However, that practice has been dropped in favour of smaller
files, and thus the rest of the line is left empty.

1.2. BACKGROUND 5

IUPAC nucleotide code Base

A Adenine
C Cytosine
G Guanine

T (or U) Thymine (or Uracil)
R A or G
Y C or T
S G or C
W A or T
K G or T
M A or C
B C or G or T
D A or G or T
H A or C or T
V A or C or G
N any base

. or - gap

Table 1.1: IUPAC representation codes for DNA or RNA nucleotide bases.

The fourth line contains the quality scores sequence, a sequence of characters equal
in length with the nucleotide base sequence. Each character in this line is the encoded
representation of the quality score of the corresponding nucleotide base of the second line.
The quality score (a.k.a. PHRED score) of each base measures how probable it is for
this particular base to have been incorrectly identified. These scores are being assigned
to the bases during the sequencing process and are used by downstream applications
to determine whether the identification of the particular base is trustworthy. There
are two main variants on how the quality scores are computed, shown below (pe is the
probability of erroneous identification of a base and the round() function rounds to the
closest integer):

QSanger = round
(
− 10 log10pe

)
(1.2)

QSolexa = round
(
− 10 log10(

pe
1− pe

)
)

(1.3)

The calculated values of the quality scores are then encoded using a single ASCII charac-
ter. The printable ASCII characters 33 - 126 are reserved, with character 33 representing
the quality value 0. However, Illumina pipelines after version 1.8 utilize only the quality
scores in the range 0-41, corresponding to the characters in the range ’ !’-’J’. This range
is also assumed in this work, without the loss of generality.

The FASTQ files that are used as benchmarks in this thesis were provided by the
Utrecht Medical Center (UMC) and originate from human DNA sequencing. They are
the ones shown in Tables 1.2 and 1.3.

6 CHAPTER 1. INTRODUCTION

Filename Abbreviation

Non-injected_1_CGATGT_L002_R1_001 N21
ControleMan1_H879KADXX_CCGTCC_L001_R1_001 C11
ControleMan1_H879KADXX_CCGTCC_L001_R2_001 C12
ControleMan1_H879KADXX_CCGTCC_L002_R1_001 C21
ControleMan1_H879KADXX_CCGTCC_L002_R2_001 C22

Table 1.2: FASTQ benchmarks, courtesy of UMC

Benchmark
Size

(GBs)
Number of

reads
Read
size

N21 2.33 15400080 51
C11 9.88 40424844 101
C12 9.88 40424844 101
C21 9.82 40206923 101
C22 9.82 40206923 101

Table 1.3: File properties of the FASTQ benchmarks

1.2.3 Data Compression

1.2.3.1 General Information

Compression is the process of transforming the representation of some input data X to a
new representation XC that requires fewer bits and is achieved through the elimination
of redundant information. The inverse process involves the conversion of the compressed
data XC to the reconstructed data Y , and is called decompression. In this thesis, the
term compression will refer to the pair of compression and decompression processes.

X

XC

XC Y

Decompression

Lossless
Compression

Lossy
Compression

Decompression

Figure 1.6: Lossless and Lossy compression.

There are two broad classes of compression (Fig. 1.6) :

• Lossless compression: When Y is identical to X.

• Lossy compression: When the reconstructed Y cannot be identical to X given
only the information contained in XC .

1.2. BACKGROUND 7

The usage of each of these types of compression depends on the type of input data and
the reconstruction requirements [40]. Lossy compression achieves higher compression by
removing information that is deemed useless from the input data. For example, in the
compression of audio data, frequencies outside the acoustic range of the human auditory
system are filtered and thus are not reconstructed. Therefore, this type of compression
is ideal for media applications, and is indeed widely used in audio, image and video
compression standards such as: MP3, JPEG, MPEG and H.264.

On the other hand, in lossless compression, no drop of information is acceptable [39].
Text compression is an important example of the utilization of lossless techniques, since
the loss of information there could lead to the destruction of the text’s coherence or
distortion of its meaning.

In the context of genetic data compression, the loss of information is generally unde-
sirable, since a wrong reconstruction of a set of nucleotide bases could cause a big portion
of the data to be rendered useless. It would certainly be possible to drop information
from the reads’ identifier strings, or exclude nucleotide bases below a certain threshold
of quality score to achieve higher compression. However, it is impossible to make such
decisions, without knowledge of the information needed by downstream applications. As
there are numerous applications that may need every piece of data, focus is given only
on lossless compression techniques in this work.

1.2.3.2 Input Data

The input data of a compressor is a sequence of symbols. A sequence S = s1s2..sN is
defined as the concatenation of the symbols si, i ∈ [1, N]. The discrete r-ary alphabet
U = {u1, u2, .., ur}, r ≥ 2 is the finite set containing all possible values for each symbol
si. For example, the sequence 010110 is a sequence over the binary alphabet {0, 1} and
the word “compression” is a sequence over the alphabet of the English language.

A sequence is created by an information source X(t), a discrete random variable
which assumes the value xt ∈ U at time point t. We denote as Xj

i = xixi+1..xj the
concatenation of the values of X(t) in the time interval [i, j]. Any sequence S over U
of length N can be generated by the source X(t), starting at time point t = i, with
probability Pr{Xi+N

i = S}.
The simplest information source is a memoryless or independent and identically dis-

tributed (iid) source. An information source is independent if and only if:

Pr{Xi+N
i = S} =

i+N∏
j=i

Pr{X(j) = sj} (1.4)

The independence property of the source indicates that the probability of encountering
a specific value on a symbol does not depend on the value of any other symbol in the
sequence. In addition, the symbols in the source sequence are identically distributed
based on the probability mass function (pmf) p()1, if Equation 1.6 holds.

Pr{X(t) = u} = p(u), ∀u ∈ U ,∀t ∈ [1, N] (1.6)

1For a sequence created by an iid source, the pmf can be calculated by measuring the frequency of

8 CHAPTER 1. INTRODUCTION

In simpler terms, the identical distribution property guarantees that the probability of
encountering a specific symbol is the same at any position of the sequence. However,
most information sources that are encountered in nature are not memoryless, and genetic
data is not an exception to that rule.

1.2.3.3 Steps of the Compression

Preprocessing

Modelling

CodingInput
Data

Compressed
Data

Figure 1.7: Lossless compression components.

There are three main steps in the compression process as shown in Fig. 1.7. The first
step of preprocessing the data involves an initial transformation of the input sequence
S1 over U1 to a different sequence S2 over U2 that is more highly compressible. It
is of the utmost importance that the transformation that is used can be inverted on
the decompressor, in order to reconstruct the data. In lossy compression, this is the
step where the information drop occurs. An example of preprocessing in compression
algorithms is the Lempel-Ziv algorithm in gzip and the motion prediction and motion
compensation steps in the H.264 codec. Depending on the input data type, this step
may be omitted, as the data may already be in an highly compressible form.

The next step is modelling. As the name suggests, the aim of this step is to create
a model of the information source of the input data, which will in turn be used in the
coding step. In order for the decompression to produce the desired result, the same
model that was used to compress the data has to be utilized. This can be achieved in
three ways:

• Both the compressor and decompressor can use a previously known model. For
example, statistical models for the English language exist and can be used when
compressing text of the English literature.

• The compressor creates a model based on the input data, and includes it in the
compressed file. This technique is used in gzip compression, where the model is
embedded in the compressed bitstream in the form of Huffman trees.

• The compressor can create the model gradually while encoding the input data. In
this technique, the model does not need to be included in the compressed data,
as long as the method of its creation is known to the decompressor. If this holds,
the decompressor can construct the exact same model by performing the same
model-construction method gradually as it decompresses the data.

each symbol:

p(u) =
1

N

N∑
i=1

fu(si), where fu(si) =

{
1, si = u

0, else
(1.5)

1.2. BACKGROUND 9

The final step of the compression is the coding step. In this step, the S2 = s21s22..s2N
sequence over U2 that has been created after preprocessing is transformed to a sequence
Sb, usually over the binary alphabet, which is the final product of the compression. The
model that was created in the previous step is utilized in order to achieve a reduction in
the size needed to store Sb compared to the size of S1.

A special case of coding is entropy encoding. Entropy encoding achieves size reduction
by assigning a unique code to each symbol ui ∈ U , with the property that the size
of the code representation of ui is inversely proportional to the probability Pr{s2k =
ui},∀k ∈ [1, N]. Two widely used forms of entropy encoding are Huffman encoding and
arithmetic coding, which will play an important role in this thesis. Entropy encoders
usually outperform other coding schemes like universal codes, but heavily depend on
correct statistical modelling of the input information source.

1.2.3.4 Performance Measures

The basic measure of effectiveness for a compression technique is the compression ratio
(CR). It is simply defined as the percentage of the input data size needed to store the
compressed data:

Compression Ratio =
Compressed Data Size

Input Data Size
(1.7)

Thus, a compression method that reduces a 10GB file to a 2.5GB file achieves 0.25
compression rate for that file2.

Another useful metric for compression methods is the speed of compression. This is
defined as the rate of converting an input file to a compressed one. The compression
speed (CS) is measured in bytes per second, and can be calculated as follows:

Compression Speed =
Size of uncompressed file

T ime needed to compress
(1.8)

The decompression speed (DS) is defined similarly. It is the rate of recovering data
from a compressed file, and can be calculated as follows:

Decompression Speed =
Size of uncompressed file

T ime needed to decompress
(1.9)

In addition, Shannon entropy [43] can be used as a measure of the amount of
information present in a sequence. Assuming that a sequence S over the alphabet
U = {u1, u2, .., uM} is created by an iid source, its entropy can be calculated as fol-
lows:

H(S) = −
M∑
i=1

p(u)log(p(u)) (1.10)

where p() is the pmf used in Eq. 1.6. Depending on the base of the logarithm that is
used, the result is measured in bits for a base of 2, or nats for a base of e.

2Sometimes also written as 4:1.

10 CHAPTER 1. INTRODUCTION

The entropy of a sequence quantifies the amount of its information. Therefore, it
can be interpreted as the theoretical lower limit on the average number of bits needed
to encode the sequence without the loss of information.

It should be noted that when the sequence is created by a non-iid source, Equation
1.10 can only approximate the sequence’s entropy. Nevertheless, it is still useful for
measuring the information content of a sequence.

1.2.4 Discrete Time Markov Chain

Discrete Time Markov Chains (DTMCs), or simply Markov Chains (MCs) [15, 30] are
statistical processes used to model information sources. The modelled system is assumed
to always be in some known state, with the possibility to undergo a transition to another
state randomly in the discrete time domain.

A first-order DTMC λ is defined as the tuple (N,S, A, qinit). S is a set of the N
possible states of the system, comprising the state-space of the process. The state at
time-point t is s(t). The transition matrix A : S ×S → [0, 1] is a stochastic matrix with
A(q, q′) being the probability for the system to undergo a transition from state q to state
q′. Therefore, A(q, q′) = Pr{s(t + 1) = q′|s(t) = q} and the following equation must
hold: ∑

q′∈S
A(q, q′) = 1, ∀q ∈ S (1.11)

Finally, qinit ∈ S is the initial state of the model. An example of a simple DTMC with
three states is shown in Fig. 1.8.

A

B C

0.6

0.2 0.2

0.3

0.2

0.5
0.15

0.15

0.7

Figure 1.8: Example of a simple first-order Markov Chain.

The first-order DTMC holds the Markov property, that is, the probability of a tran-
sition only depends on the current state and not the states that came before it. In other
words:

Pr{s(t+ 1)|s(1), s(2), ..., s(t− 1)} = Pr{s(t+ 1)|s(t)} (1.12)

Besides the first-order DTMC, it is possible to define a n-order DTMC, in which the
probability of a transition only depends on the previous n states. That means that:

Pr{s(t+ 1)|s(t), s(t− 1), ..., s(1)} = Pr{s(t+ 1)|s(t), s(t− 1), .., s(t− n)} (1.13)

1.2. BACKGROUND 11

An n-order DTMC is again defined as λn = (N,S, A, qinit), with the only difference being

the fact that the transition matrix is now a

n times︷ ︸︸ ︷
S × ..× S → [0, 1] stochastic matrix.

In order to model an information source over the alphabet U with an n-order DTMC,
we assume that transitions take place every time a symbol is created. The states corre-
spond to the last n symbols emitted from the source, thus, there are N = |U|n states in
the model. Naturally, that would mean that the transition matrix containsN×N = |U|2n
probabilities. However, a closer look to the modelled system would reveal that from the
state s1s2..sn the model can go to the states s2s3..snx, x ∈ U only, since a single symbol
is transmitted every time. Therefore the probability to undergo a transition to another
state is equal to 0. Given that information, the transition matrix only needs to contain
N × |U| = |U|n+1 probabilities.

The probabilities of the transition matrix can be calculated by measuring the fre-
quency of each symbol and taking under consideration its previous n symbols. However,
in the case of very long sequences, creating the model before the start of the compres-
sion can be a time-consuming task. This problem can be solved by adaptive modelling :
parameters are trained and updated as data are compressed. The model is initialized
with some arbitrary frequencies for each state. As more and more symbols are encoun-
tered, their respective frequencies are recorded, and the probabilities are updated. In
addition, by downscaling the measured frequencies at given intervals, weight is given to
more recently observed data, exposing local statistical properties of the data.

This technique gives some very important advantages to the modelling step. First,
once the model is trained properly, it achieves a tight fit with the actual information
source, as it takes advantage of the spatial locality of data. Second, the modelling is
performed at the same time as the actual compression of the data, eliminating the need of
two passes over the data, resulting in faster compression. Lastly, there is no overhead for
storing the model along with the compressed data. As long as the initial parameters and
the training method is known to the de-compressor, the same technique can be followed,
and the model can be recreated on-the-go. The only drawback of adaptive modelling
is the fact that until the model is properly trained, it lacks in accuracy. However,
considering the huge amount of available data that is considered for the application of
this thesis, proper training can be achieved with a small percentage of it, and as such
this drawback can be overlooked.

Using a n-order DTMC as a model for an information source is rather straightforward.
The n last symbols st−1, st−2, .., st−n that were generated by the source point to the state
qt−1 = st−1st−2..s−t− n that the DTMC currently has. The probabilities of a transition
from this state to the next ones (which can only be the states st−2st−3..st−nx, where
x ∈ U) correspond to the probabilities of encountering the symbol x next. Thus, the
coding of symbol x can be performed using these probabilities, and subsequently the
model parameters -probabilities and state- are updated. It is important that the update
step comes after the compression step for the symbol x, so that the de-compressor is able
to imitate this behaviour and produce the desired result. If for example the model was
updated with x’s value before the actual compression of the symbol, the de-compressor
would not be able to make the same update, simply because it does know the exact value
of x yet.

12 CHAPTER 1. INTRODUCTION

1.2.5 Arithmetic Coding

Arithmetic coding [37, 39, 40] is a technique for entropy coding, which, compared to
other methods, stands out for its effectiveness and versatility. The following are some of
its strong points:

• Provably optimal compression for iid sources.

• Near-optimal compression for non-iid sources.

• Clear distinction between modelling and coding - changing the modelling parame-
ters (for example in adaptive modelling) does not interfere with the coding process.

• Effective in a wide range of applications.

• Its main process consists of arithmetic operations, which can be efficiently imple-
mented in high-performance hardware.

Arithmetic coding is different from other entropy coding methods which represent
each symbol with a unique binary value3. It codes one symbol at a time, and assigns to
it a real-valued number of bits, or in other words, it assigns a unique binary value to the
whole sequence.

More specifically, a sequence S = s1s2..sN over the alphabet U = {0, 1, ...,M − 1}4
is converted to a code value v, a real number in the interval [0, 1). The code value of
every possible sequence is unique and is represented in the output file by its codeword d,
which is the fractional part of v in binary format. For example, if a sequence is assigned
with the code value 0.19287109375, we have:

code value v = 0.19287109375410 = 0.00110001011002︸ ︷︷ ︸
codeword d = 0011000101100

Therefore, a mapping is defined between the infinite number of sequences of symbols
from the alphabet U to the infinite real values in the interval [0, 1).

In order to acquire the mapping, the probability of each symbol at some point of the
sequence, i.e

pk(u) = Pr{sk = u}, ∀k ∈ [1, N], ∀u ∈ U , (1.14)

is assumed known from the modelling step of the compressor. Also, we assume

pk(u) 6= 0, ∀k, u (1.15)

and define the cumulative distributions ck(u) and dk(u):

ck(0) = 0 (1.16)

ck(u) =
u−1∑
i=0

pk(i), u = 1, ...,M − 1 (1.17)

dk(u) =

u∑
i=0

pk(i), u = 0, 1, ...,M − 1 (1.18)

3Like Huffman [22] or Golomb [19] encoding.
4Every alphabet can be mapped to a {0, 1, ...,M − 1} alphabet, so this convention is assumed for

simplicity without the loss of generality.

1.2. BACKGROUND 13

1.2.5.1 Encoding process

The arithmetic encoding process consists of creating a sequence of nested intervals in
the form Φk(S) = [αk, βk), k = 0, 1, .., N , with 0 ≤ αk ≤ αk+1 and βk+1 ≤ βk ≤ 1.
Starting from Φ0(S) = [0, 1), the interval Φk(S) is created by dividing Φk−1(S) in M
portions, each proportional to the probability pk(u), u = 0, 1, ..,M − 1. Then, the
interval corresponding to the currently encoded symbol sk is selected as the interval
Φk(S). Thus, the interval creation can be summarized with a set of recursive equations:

Φ0(S) = [0, 1) (1.19)

Φk(S) = [αk, βk) = [αk−1 + lk−1 · ck(sk), αk−1 + lk−1 · dk(sk)), k = 1, .., N (1.20)

where
lk = βk − αk

Once ΦN (S) is defined, any real number in that interval can be selected as the
uniquely decodable code value v of that sequence. Hence, the value with the shortest
codeword is selected. One way to achieve this is by using the following recursive equations
to find an interval ΨK = [γK , δK) ⊂ ΦN (S):

Ψ0 = [γ0, δ0) = [0, 1) (1.21)

Ψk = [γk, δk) =

{
[γk−1, γk−1 +

δk−1−γk−1

2), if βN < δk

[γk−1 +
δk−1−γk−1

2 , δk−1), else
(1.22)

In simpler words: Starting from [0, 1) again, the Ψk interval is halved recursively and
one of the halves is selected. The procedure continues until an interval ΨK = [γK , δK)
that is entirely contained in ΦN (S) is reached. At this point, γK is selected as the code
value of S and the codeword will have K bits.

k symbol ak bk

0 - 0 1
1 2 0.6 1
2 1 0.68 0.84
3 0 0.68 0.712

Table 1.4: Calculation of the interval ΦN (3)

As an example, consider the encoding of the sequence S = 210 over the alphabet
U = {0, 1, 2}, with pk(0) = 0.2, pk(1) = 0.4 and pk(2) = 0.4 for all k. The encoding
process is shown in Fig. 1.9. First the interval ΦN (S) is determined using the recursive
equations 1.19-1.20, as shown on Table 1.4. Afterwards, the codeword is determined by
finding the interval Ψk that entirely includes [0.68, 0.712), using the equations 1.21-1.22.
This interval is found to be [0.703, 0.6875) and thus, the code value selected for S is
0.6875 = 0.1011002, which gives the codeword d = 101100.

14 CHAPTER 1. INTRODUCTION

Figure 1.9: Example of how the intervals change in arithmetic encoding. On the left:
The encoding process to produce the interval ΦN (S), on the right: Determining the
codeword for that interval.

1.2.5.2 Decoding process

The decoding process consists of the recreation of the nested intervals Φk(S), given
the codeword b (which is converted to the code value v) and the same model as the
encoder. In the same manner, starting from [0, 1), the interval is partitioned according
to the probability of each symbol. Then, the interval that contains the real number
associated with the codeword is selected and the process is repeated. The equations
used for decoding are:

Φ′0(S) = 0 (1.23)

sk = {s : lowk(s) ≤ v < highk(s)}, k = 1, ..., N (1.24)

where:
lowk(s) = αk−1 + lk−1 · ck(s)

highk(s) = αk−1 + lk−1 · dk(s)

1.2. BACKGROUND 15

lk = βk − αk

Φ′k(S) = [lowk(sk), highk(sk)), k = 1, ..., N (1.25)

There are two ways to determine when the decoding iterations should end. The first
is to specify the end of the sequence with a special character and the second is to know
the length N before-hand. In this thesis the latter is used, as the size of all sequences is
known.

1.2.5.3 Implementation issues

In the Equations 1.19-1.20 and the example in Fig. 1.9, it is obvious that the length of
the interval Φk(S) shrinks with each iteration. In hypothetical infinite-precision systems
this would not pose any threats, however, there is a possibility of underflow in the finite
precision representation of real-life systems.

This problem can be solved by rescaling any interval with length that drops below 0.5.
However, the rescaling has to happen in a manner that preserves the information gathered
up to that point and at the same time, it can be mimicked exactly by the decoding
process. Thus, the encoding is carried out incrementally, meaning that any gathered
information is stored before the rescaling step as the sequence is being compressed,
rather than wait for end of the whole process. When the interval to be rescaled is
contained entirely in the upper of the lower half of [0, 1), the first bit of the codeword
is decided5. Thus, this bit can be stored and the interval rescaled without the loss of
information. In this case, the rescaling is performed by mapping [0.5, 1) or [0, 0.5) to
[0, 1) (mapping E1 and E2 respectively). Fig. 1.10 shows an example.

Figure 1.10: Interval rescaling in arithmetic coding.

In the case where the interval straddles the midpoint of the unit interval, the rescaling
maps the interval [0.25, 0.75) to [0, 1) instead (mapping E3). However, the first bit is
not decided yet, so there is nothing to store at this point. Instead, the encoder counts
the number of successive E3 mappings it performs and on the next E1 or E2 mapping,
it stores more than 1 bits to show that E3 mappings have been performed. This process
is then imitated by the decoder, by performing the exact same rescaling on the interval,
but on the code value v as well.

51 for the upper half, since v > 0.5 = 0.12 and 0 for the lower half.

16 CHAPTER 1. INTRODUCTION

The second issue that needs to be addressed for an implementation of an arithmetic
coder is the fact that all computations require real arithmetic. In the case where a
floating point representation is used, the speed of an arithmetic coder would be hindered
in most platforms. Therefore, there is a need to use fixed-point representation and integer
arithmetic. This can indeed be performed by selecting the precision P to use for the
implementation, and mapping the interval limits from the real range [0, 1) to the integer
range [0, 2P−1). For example, with 32 bit precision, the interval [0.23, 0.5) is represented
as [987842477, 2147483648). This means that the minimum interval length that can be
represented is 1/2P , but interval rescaling already takes care of this problem. Also, some
precision is inevitably lost in the calculations, although the impact in compression is
minimal with a high enough P , while the benefit in speed is considerable. In addition,
all probabilities used in the computations can be represented as frequencies of occurrence
of the respective symbol, thus eliminating the need for any real arithmetic.

The complete algorithms for arithmetic coding and decoding, including interval
rescaling and integer arithmetic, that are implemented in this thesis are shown in Ap-
pendix A.

1.3 Problem Statement

The aim of this thesis is to create a custom compression algorithm for Next Generation
DNA Sequencing data, with the following characteristics:

• Lossless, non-reference based compression

• High compression performance

• Manageable execution times

To work towards this goal, different techniques have to be investigated for each of the
three types of information that are present in this kind of files, hoping to uncover the
statistical properties of each one of them, so that they can be used for decreasing the
size of the compressed files.

1.4 Thesis Outline

This thesis report is organized as follows:
Chapter 2 presents the related work which includes the most popular general com-

pression algorithms, along with prominent custom compression techniques.
Chapter 3 describes our efforts for compressing the sequences of quality scores, using

two different techniques: the first performs preprocessing with linear prediction, while
the second attempts more accurate modelling with hidden Markov models.

Chapter 4 is dedicated in the compression of the identifier strings and base sequences.
For the first ones, only one technique is considered, since it proves to be extremely
effective. For the base sequences on the other hand, preprocessing with the Burrows-
Wheeler transform is attempted initially, but is eventually skipped, in favour of a simple
compressor with Markov chain modelling and arithmetic coding.

1.4. THESIS OUTLINE 17

Chapter 5 discusses the resulting compression performance that is achieved by the
techniques that were deemed best in the previous two chapters, by presenting our final
implementation.

Chapter 6 investigates the viability of real-time compression with a hardware imple-
mented, DEFLATE-compatible compressor, and finally, Chapter 7 concludes the thesis
and proposes some recommendations for future work.

18 CHAPTER 1. INTRODUCTION

Related Work 2
In this chapter, the main compression techniques that are used for the compression of
FASTQ files are presented. These are divided in two main categories: General compres-
sion techniques and domain-specific compression techniques.

Section 2.1 presents the fist category, general compression techniques. These tech-
niques were designed to suit a wide variety of applications, and have existed since before
the need of compression on NGS data. However, thanks to their widespread use in vari-
ous contexts, they were adopted as easily available solutions in the compression of NGS
data, as well.

On the other hand, domain-specific compression techniques (Section 2.2) are the ones
that were designed specifically to compress NGS data. They generally achieve better
compression rates, since they take advantage of the statistical properties of this kind of
data. Despite their increased performance, they are not as widely used by geneticists as
the legacy applications of general compression techniques. This trend is likely to change
in the near future, as the need for better compression increases.

2.1 General compression techniques

2.1.1 Gzip

Gzip is a file format and software application used for file compression and decompression,
designed for text, but applicable to any file type. It was developped by Jean-loup Gailly
for the GNU project [17] in 1993, and it has been extremely popular for applications
where a high compression rate is not crucial.

The compression method of Gzip is based on the DEFLATE format specification
[13, 12], the same specification that is used by the PNG format for images [23] and the
popular compression library zlib [14].

Gzip is a block-based compression method. As the name suggests, the input file is
divided in blocks, each of which is individually compressed. Block-based compression
has the advantage that in the case of data corruption, only the data confined within a
block is lost. Nonetheless, this technique hinders the compression performance, since
redundancies between blocks cannot be identified and removed. The block sizes in gzip
are arbitrary, with an upper limit of 65535 bytes of the input file. The compressor is free
to choose the size of a block as it is compressed, or start a new block, if it “believes”
that it will improve the compression.

The heart of Gzip is the preprocessing step which uses the LZ77 algorithm [49],
an adaptive-dictionary-based technique [40], which is used as a pre-processing step. The
purpose of this step is to identify recurring patterns in the data, and eliminate redundant
repetitions. This is achieved by finding matches of identical strings of symbols within a

19

20 CHAPTER 2. RELATED WORK

given block. Afterwards, these strings, apart from the first occurrence, are converted to
pointers in the form of a (length, distance) pair, containing the length of the matching
string and the distance from the previous occurrence. Especially in DEFLATE, the
length can be from 3 bytes up to 258, and the distance from 1 byte up to 32768 (meaning
that a repetition may overlap with itself). A very simplistic example of this conversion
is the following:

Input:

Previously compressed︷ ︸︸ ︷
daadbbcabraca

To be compressed︷ ︸︸ ︷
dabrarrarrad

Output: d(7, 4)r(5, 3)d

Following the conversion, the alphabet of the 255 ASCII character symbols and the
alphabet of the length symbols are combined to form an alphabet of size 286. Values
0 – 255 are are the characters, 256 is the end-of-block symbol and the rest 29 indices
represent the lengths, by utilizing extra bits. Another alphabet is created for the distance
symbols. The modelling step is a simple count of the frequency of occurrence of each
symbol in the two alphabets, and based on that, a Huffman code [22] is created for each,
to constitute the final entropy coding step.

Gzip gives the liberty to the user to select one of 9 compression levels, to balance
the speed/compression ratio trade-off. Level 1 provides the higher speed, but poor
compression performance, while level 9 gives the highest ratio at the expense of speed.

2.1.2 bzip2

The bzip2 file compressor [41] is another popular general-compression technique. It is
an open-source program, developed and distributed by Julian Seward [42].

Same as gzip, bzip2 uses block-based compression, with block sizes in the range of
100 to 900 kB. However, while gzip attempts to discover repeated strings of characters,
bzip2 takes advantage of repeats of single characters, as will be shown in this section.

It’s strong point is its preprocessing step, which performs a number of transformations
on the data of each input block.

The first transformation is run-length encoding. It is a very simple, but highly ef-
fective process, which transforms runs of identical characters to just the character and
the length of the run, thus representing a number of bytes with only 2 values. In the
case of bzip2, sequences of 4 to 255 duplicate symbols are transformed to a sequence
of 4 symbols and the accompanying run length minus 4. For example, the sequence
AAAAAAABBBBCCCD is transformed to AAAA\3BBBB\0CCCD.

Afterwards, the Burrows-Wheeler transformation (BWT) [7] is performed. This
transformation consists the core of bzip2, since it is a very effective lossless compression
method [1]. Interestingly, it does not have any effect on the size of the data whatsoever.
Instead, it rearranges the symbols in a way that identical symbols are grouped together,
forming runs of duplicate characters and thus strengthening their statistical properties.
More importantly, it does so without the need to store additional data.

The transform is performed by sorting all rotations of a string in lexicographical
order. The output of the process consists of the last character of each rotation in the

2.2. DOMAIN-SPECIFIC COMPRESSION TECHNIQUES 21

sorted order. For example, the string aardvark, terminated by the special character $,
is permuted in the string k$avrraad, as shown in Table 2.1. As long as the terminating
character is included in the string, the transformation is reversible [7].

The benefits of the transformation are clear in this example. The initial string had
only one run larger than 1 character, while the transformed one has 2. This may not
seem as a big improvement, since the input string a short one, but the average run
lengths increase as the size of the input string increases.

Rotations Sorted Rotations

aardvark$ $aardvark
ardvark$a aardvark$
rdvark$aa ardvark$a
dvark$aar ark$aardv
vark$aard dvark$aar
ark$aardv k$aardvar
rk$aardva rdvark$aa
k$aardvar rk$aardva
$aardvark vark$aard

Table 2.1: The string aardvark$ is permuted to k$avrraad by performing the BWT .

In order to reap the benefits of the BWT, the next step of preprocessing is the
Move-To-Front (MTF) [4, 39] transformation. This is another simple transformation,
which replaces every symbol by the number of different symbols which have appeared
since its last occurrence in the data stream. For example, the string aaaabbcbcabbb is
transformed to 0000102112200, assuming that cba preceded it. When the MTF trans-
formation is performed after the BWT, it manages to skew the frequencies of occurrence
of the symbols, thus enabling better compression by entropy encoders. Even in the pre-
vious example, the highest frequency of occurrence in the initial string is 5 for the symbol
a, while the frequency of 0 in the result is 8.

After the MTF, another round of run-length encoding takes place, to conclude the
preprocessing step. Finally, modelling similar to gzip’s is performed, where the frequency
of occurrence of each symbol is measured and Huffman codes for each block are created
for the entropy coding step.

2.2 Domain-specific compression techniques

Domain-specific compression techniques for FASTQ files can be categorized in two main
groups: Non-reference based and reference-based techniques. The difference lies in the
fact that reference-based compressors are preceded by mapping assembly with some
reference genome. Therefore, they only need to compress the position of a sequence in
the reference and any difference between them, instead of the whole sequence. This way
they manage to achieve superior compression to non-reference based techniques.

However, this category has a number of disadvantages. Firstly, the data cannot be

22 CHAPTER 2. RELATED WORK

compressed until the mapping is performed. Therefore, data from experiments cannot
be directly compressed after sequencing, and have to stored uncompressed for a period of
time. Moreover, an appropriate reference sequence database may not always be available,
as in the case of metagenomic sequencing − sequencing of genetic material recovered
directly from environmental samples, as opposed to cultivated clonal samples. Last but
not least, the compressed files of reference-based approaches are not self-contained. Their
decompression requires precisely the same reference database used for compression, and
in the case that this reference is not available, the initial data cannot be recovered.

Given all the above, we opt to focus on non-reference based compression in this thesis.
In this section, we present some prevalent examples of such compression-techniques, and
we briefly mention some reference-based ones for completeness.

2.2.1 SAMtools

SAMtools [27] is a software package for processing NGS data, initially developped by
Heng Li. It contains software and APIs for sorting and aligning reads in order to perform
mapping assembly, which use their own compressed data format.

Instead of FASTQ, SAMtools use their own Sequence Alignment/Map (SAM) file
format for NGS data. This format stores the same information as FASTQ for each read
and additional information on the alignment of each read to a reference [46].

A SAM file contains header lines and read lines. Header lines start with the character
@, and contain information on the file in the form TAG:VALUE. This information can
either concern the whole file, e.g., the format version used, or a group of reads, e.g.,
the reference genome used for their alignment. As the name suggests, read lines contain
the actual reads, with 11 tab-delimited fields of information. These are in order of
appearance:

• QNAME: Query template name of the read: Essentially the name of a group of
reads that originate from the same sequence.

• FLAG: Bitwise flag that denotes different types of reads.

• RNAME: Name of the reference sequence of the alignment.

• POS: Position of the first matching base for the alignment.

• MAPQ: Mapping quality.

• CIGAR: String that encodes the alignment of the read sequence with the refer-
ence.

• RNEXT: Reference sequence name of the next read in the DNA sequence.

• PNEXT: Position of the alignment of the next read in the DNA sequence.

• TLEN: Observed length of the assembled sequence.

• SEQ: Sequence of nucleotide bases of the read, same as the sequence string in the
FASTQ format.

2.2. DOMAIN-SPECIFIC COMPRESSION TECHNIQUES 23

• QUAL: Quality string, same as the quality string in the FASTQ format.

In the end of each real line, optional information in the form TAG:VALUE can be added.
All of the above fields have reserved characters or values for the absence of the respective
piece of data. Therefore, a FASTQ file can be converted to a SAM file, by An example
of 2 reads in a SAM file is shown in Fig. 2.1.

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *

Figure 2.1: The SAM file format [46].

SAM files are compressed by being converted to their binary representation, called
the BAM file fomat. This format utilizes the BGZF compression format, which is a block
compression technique implemented on top of the standard gzip file format [46], which
also uses DEFLATE-compliant compression. As such, a BAM file can be decompressed
by any ‘gunzip compatible’ program, making it a popular choice among researchers.

The innovation of BGZF over regular gzip compression, is the fact that it can be
indexed, allowing efficient random access to the reads within the file. In order to achieve
this, a BGZF file contains a series of concatenated BGZF blocks, each being a gzip-
compliant file by itself. The gzip file format, allows for the inclusion of extra application-
specific fields on the file header, which are used by the BGZF format to hold the file
offset of each block.

The SAM/BAM format is probably the most popular compression scheme among ge-
neticists at the moment. The unique ability of BAM files to access specific reads, without
the need for the decompression of the whole file, allows for the creation of downstream
applications that can work entirely on this format. However, the compression ratio of
this approach cannot exceed the ratio of gzip. Despite being a domain-specific com-
pression technique, BGZF does not take advantage of the unique statistical properties
of the data included in the file, which would lead to better compression performance.
Moreover, extra effort is needed to create the index, which in turn has the prerequisite
that the reads are sorted in the order of their alignment to the reference. On top of that
FASTQ files cannot be directly compressed, but have to be converted to SAM before
being compressed to BAM.

2.2.2 Quip

Unlike the SAM/BAM compression method, Quip [24] is a domain-specific compression
algorithm that uses the statistical properties of NGS data to achieve high compression
rates. It incorporates three basic modes of operation:

• Regular non-reference based compression

• Reference-based compression

24 CHAPTER 2. RELATED WORK

• Non-reference based compression aided by de-novo assembly

In all three modes, different compression techniques are used for the read’s identifier
string, sequence and quality scores, each being suitable for the type of data in the field.

Input

Delta
Encoding

Arithm.
Coding

Arithm.
Coding

12th-order
DTMC

Arithm.
Coding

3rd-order
DTMC

Output

Identifier

strings

Sequences

Quality

scores

Figure 2.2: Structural blocks of Quip’s non-reference based compression.

When regular non-reference based compression mode, Quip performs minimal pre-
processing, exclusively on the identifier strings. Noting that these strings have large
portions of characters identical from read to read, the developers chose to perform a
form of delta encoding as the preprocessing step on them.

In delta encoding, instead of compressing a complete sequence, only the differences
from a previous sequence are encoded. If these two sequences are similar, then the
difference data are only a portion of the original data, therefore some reduction has
already taken place. In the same manner, Quip parses and tokenizes every identifier
string in separate fields, and compares them to the identifier of the previous read. Tokens
that happen to be identical with the previous read can be compressed to a negligible size.
Non-identical tokens on the other hand, are divided in a prefix identical to the previous
read, which is compressed as previously, and the remaining suffix which is encoded as
is. The developers do not provide any information on what kind of modelling is used for
the identifiers, but arithmetic coding is used as the final entropy coder.

2.3. COMPARISON OF FASTQ COMPRESSION TECHNIQUES 25

The sequence of bases on the other hand does not get preprocessed. Instead, Quip
uses a 12th-order adaptive DTMC to model the sequences, which means that a nucleotide
is predicted based on the 12 previous bases that have been compressed. The prediction,
in the form of probabilities for each symbol, is then used by an arithmetic coding step
for the final compression.

The same compression technique is used for quality scores as well: no preprocessing,
adaptive DTMC modelling and arithmetic coding. However, since the size of the alphabet
for quality scores is much larger than the one of bases (41 instead of 4), a 3rd-order
DTMC is used instead.

The other two modes of operation enhance the compression of the base sequences.
In the second one, that of reference-based compression, Quip accepts SAM or BAM files
with pre-aligned reads, and the reference to which they are aligned. Using the alignment
information, only the position of the read’s sequence on the reference, and any deviation
from it needs to be compressed, instead of the whole sequence. However, being reference-
based compression, this mode of operation has all the advantages and disadvantages as
presented in the beginning of the section.

In the final mode of operation, Quip attempts to eliminate the disadvantages of
reference-based compression. Thus, instead of using an external reference to compress
the data, it creates a reference for the input file, by performing de-novo assembly on
the first 2.5 million reads of the file. This reference is then used for reference-based
compression. The assembly process can be mimicked during decompression, and as such,
it does not have to be contained in the compressed file, rendering it entirely self-contained
and eliminating the need for external references.

Combining both fast compression and high ratios, Quip outperforms other compres-
sion techniques and is considered state-of-the-art at the moment.

2.3 Comparison of FASTQ compression techniques

In order to evaluate the compression techniques presented in this chapter, the benchmark
C11 (Table 1.3) is used1. The testing platform was a server with a 4-core Intel(R)
Xeon(R) E5420 processor and 32GB of RAM. Figure 2.3 shows the compression ratios
achieved, and Fig. 2.4 shows the respective speed in compression and decompression,
calculated by measuring the execution time of each program.

From these figures, it is evident that gzip’s performance, both in means of compression
and execution time, can vary greatly according to the level used. Yet, even on level 9
(gzip -9), which gives the best compression, it lacks in comparison with other techniques.
Gzip’s decompression speed is noteworthy. It is far higher than the other techniques,
thanks to the very simple procedure it follows. BAM, being build on top of gzip, has a
similar compression performance, but far lower speeds, due to fact that the conversion
from FASTQ to SAM has to precede the actual compression. bzip2 on the other hand,
performs impressively for a general-purpose compressor, but it lacks in speed, due to the
high number of transformations that take place.

1For FASTQ to BAM compression, Picard (http://picard.sourceforge.net/) was used, since SAMtools
does not support conversion of unaligned reads.

26 CHAPTER 2. RELATED WORK

gz
ip

-1

gz
ip

-9

bz
ip

2

B
A
M

qu
ip

qu
ip

-a

20

25

30

35

37.81

32.02

25.92

32.73

20.91 20.89

Compression technique

C
o
m

p
re

ss
io

n
ra

ti
o(

%
)

Figure 2.3: Compression ratios of popular FASTQ compression techniques.

Quip is superior to the other alternatives in terms of compression, and at the same
time maintains a respectable throughput. However, using the de-novo assembly-aided
mode (quip -a) severely hinders the compression speed, with a negligible gain in com-
pression.

gz
ip

-1

gz
ip

-9

bz
ip

2

B
A
M

qu
ip

qu
ip

-a
0

20

40

60

80

100

38
.2

7

4
.1

2

7.
0
7

1
0.

1
4

2
5.

54

10
.2

2

78
.4

4

71
.5

5

21
.7

5

7.
82 1

5.
11

13
.7

5

Compression technique

C
om

p
re

ss
io

n
-D

ec
om

p
re

ss
io

n
S

p
ee

d
(M

B
/s

)

Compr. Decompr.

Figure 2.4: Compression and decompression speed of popular FASTQ compression tech-
niques.

2.4. ADDITIONAL DOMAIN-SPECIFIC TECHNIQUES 27

2.4 Additional domain-specific techniques

Bonfield et al. [5] present fastqz and fqzcomp, two lossless domain-specific compression
programs that also use adaptive modelling and arithmetic coding. Kozanitis et al. [26]
proposed reference-based compression with SlimGene, and analysed the effects of lossy
compression of the quality scores in downstream applications, concluding that ”There
are dozens of downstream applications and much work needs to be done to ensure that
coarsely quantized quality values will be acceptable for users”. Nevertheless, lossy com-
pression techniques have emerged. CRAMtools [16], performs reference-based compres-
sion and discards the quality scores of reads that match a reference sequence. SCALCE
[20], Qscores-Archiver [48] and more recently HUGO [28] cluster the quality scores, coars-
ening the alphabet, but losing all other values. Moreover, a noteworthy technique for
lossless, non-reference-based compression of only the base sequences is presented in [10].
Finally, [11] presents an overview of a number of domain-specific techniques.

28 CHAPTER 2. RELATED WORK

Compression of Quality Scores 3
3.1 Introduction

As mentioned in previous chapters, a FASTQ file contains three types of data: the identi-
fier strings, the base sequences and the sequences of quality scores. General compression
methods that do not distinguish among the three of them lack in compression perfor-
mance. Therefore, in order to achieve high compression rates, different techniques have
to be used for each type of data. These techniques have to be designed to suit their
respective data type, so that their statistical correlations are uncovered, and used to an
advantage.

Out of the three types, the quality scores have the highest information content. This
statement has already been mentioned in related bibliography [24, 26, 16], but it is
relatively straightforward for the following reasons.

For identifiers, in the vast majority of reads, only one or two characters change
compared to the previous read. This means that the rest of the information of the
identifier is redundant, enabling very high compression ratios.

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

Quality scores

R
el

a
ti

ve
fr

eq
u
en

cy

Figure 3.1: Relative frequency distribution of the quality scores in C11.

Nucleotide base sequences contain less redundant information than identifiers. Most

29

30 CHAPTER 3. COMPRESSION OF QUALITY SCORES

of the redundancy in this type of data comes from the fact that the reads overlap (Fig.
1.3), although it is more difficult to uncover this redundancy without performing mapping
assembly first. In FASTQ files specifically, the fact that ASCII characters are used to
represent the 5 symbols of these sequences (A,C,T,G,N) is itself a waste of storage
space. ASCII characters use 8 bits per symbol, whereas dlog2(5)e = 3 bits per symbol
is enough to encode the whole alphabet. Taking into consideration the fact that N is
highly improbable, an average of close to 2 bits per symbol can be very easily achieved
for nucleotides, which by itself presents a compression ratio of 25%. More on this will
be discussed in Chapter 4.

Quality scores on the other hand, have a much larger alphabet, with a size of 42
symbols. Inherently, that means that the simplest binary encoding needs a maximum of
dlog2(42)e = 6 bits per symbol. Measuring the frequency of occurrence of each quality
score value in benchmark C11 (Table 1.2) reveals a skewed distribution (shown in Fig.
3.1), with over 90% of the scores being above 30. The calculation of the entropy on
this type of data shows that at least 3.74 bits per symbol are needed, if their source is
considered an iid one.

In this chapter, we present our attempts to compress the sequences of quality scores
in FASTQ files. In Section 3.2, linear predictive coding is used as a preprocessing step,
along with adaptive DTMC modelling and arithmetic coding. In Section 3.3 an attempt
in more complex modelling is performed, by using Hidden Markov Models to model the
source of the quality scores, aspiring to enhance the compression achieved by arithmetic
coding.

3.2 Linear Predictive Coding

Kozanitis et al. [26] and Jones et al. [24] note that a quality score is highly correlated
with the quality scores in preceding positions. This means that the value of a quality
score at position n is most probably close to the values in positions n − 1, n − 2, ...
This property shows a data redundancy that can possibly be eliminated for the sake of
compression. In order to do so, a preprocessing step of Linear Predictive Coding (LPC)
is used.

Predictive coding is a mathematical process, in which the value of an entity is pre-
dicted based on previously observed values. As a notion, it has been used extensively in
video compression [35] and audio signal modelling [33].

Since the compression process is performed on a sequence S = s1s2...sN of input
symbols, the compressor can create a prediction ŝi for the symbol si based on the symbols
{sj : j < i}. Moreover, the decompression of data symbol si is performed after the
decompression of all data symbols {sj : j < i}. Therefore, the decompressor is able to
create the same prediction for the data symbol si that the compressor did, if provided
with the details of the prediction technique.

Obviously, the prediction will not always be accurate. Therefore, an error ei between
the actual value of di and the predicted value will exist. In the case of lossless compres-
sion, only this error need be stored, in order to be able to reconstruct the initial data
sequence, without the loss of information.

3.2. LINEAR PREDICTIVE CODING 31

Prediction

(a)

si−1, ..., si−k

si

ŝi

ei
+

−

Prediction

(b)

si−1, ..., si−k

ei

ŝi

si
+

+

Figure 3.2: The predictive coding transformation: (a) During compression, (b) During
decompression.

The described process defines a transformation from the input sequence S to the
sequence of error values Se = e1e2...eN . This transformation can be used for compression
by observing that if the prediction is sufficiently accurate, the error values will most
frequently be small. This in turn means that the error sequence takes most of its values
from a small subset of the whole alphabet, which is the driving force behind entropy
coding. Hence, a good prediction scheme can skew the probabilities of occurrence of the
symbols to create a sequence more suitable for compression.

3.2.1 Linear Prediction

In the case of quality values, linear prediction [45] can be used for the predictive coding
step. As the name suggests, in this kind of prediction, the value of a quality value is
predicted as a linear combination of its predecessor values.

A sequence of quality scores, containing the N values corresponding to the nucleotide
bases of a read can be seen as a discrete function :

q : {1, ..., N} → {0, ..., 41} (3.1)

A prediction of q(n) can be created by the previous p quality values, using p-order
forward linear prediction 1. The prediction of q(n) is denoted as q̂(n) and is calculated
as follows:

q̂(n) =

p∑
k=1

ak · q(n− k) (3.2)

where a = [a1, a2, ..., ap] is the vector of weighting coefficients of the linear predictor,
and p is the order of prediction, or in other words, how many previous values are used
for the prediction. For completeness we consider q(n) = q(1), ∀n < 1.

The error of the prediction is defined as the difference between the predicted value
and the actual value of the quality scores:

e(n) = q(n)− q̂(n) = q(n)−
p∑

k=1

ak · q(n− k) (3.3)

1A forward-backwards linear predictor can also be defined, when the prediction is created from both
previous and later values. However, in our case such a predictor is of no practical value, since the
decompressor would not be able to know the following values and create the prediction.

32 CHAPTER 3. COMPRESSION OF QUALITY SCORES

Now lies the problem on how to create an optimal predictor, which minimizes the
values of the error. It is obvious that the accuracy of the prediction depends on the
weighted coefficients a of the predictor.

We define the total squared prediction error of the prediction:

E =
N∑
n=1

[e(n)]2 =
N∑
n=1

[q(n)− q̂(n)]2 =
N∑
n=1

(
[q(n)]2 − 2 · q(n) · q̂(n) + [q(n)]2

)
(3.4)

In signal processing terms, Eq. 3.4 gives a value indicative of the energy of the error
signal. Obviously, it is desirable to choose the predictor coefficients so that the value of
E is minimized. The optimal minimizing values can be determined through differential
calculus, i.e. by calculating the partial derivative of E with respect to each coefficient
and setting that value equal to zero:

∂E

∂ak
= 0, ∀1 ≤ k ≤ p

⇒ ∂

∂ak

(
N∑
n=1

(
[q(n)]2 − 2 · q(n) · q̂(n) + [q(n)]2

))
= 0

−2

N∑
n=1

(
q(n) · ∂

∂ak
q̂(n)

)
+ 2

N∑
n=1

(
q̂(n) · ∂

∂ak
q̂(n)

)
= 0

N∑
n=1

(
q(n) · ∂

∂ak
q̂(n)

)
=

N∑
n=1

(
q̂(n) · ∂

∂ak
q̂(n)

)
(3.5)

From Eq. 3.2 follows that:

∂

∂ak
q̂(n) = q(n− k) (3.6)

Thus, Eq. 3.5 becomes:

N∑
n=1

(q(n) · q(n− k)) =

N∑
n=1

(q̂(n) · q(n− k)) (3.7)

Using Eq. 3.2 again, we get:

N∑
n=1

(q(n) · q(n− k)) =

N∑
n=1

(
p∑
i=1

(ai · q(n− i)) · q(n− k)

)
N∑
n=1

(q(n) · q(n− k)) =

p∑
i=1

(
ai ·

N∑
n=1

q(n− i) · q(n− k)

)
(3.8)

For the sake of brevity, the correlation function φ is defined:

φ(i, k) =
N∑
n=1

q(n− i) · q(n− k) (3.9)

3.2. LINEAR PREDICTIVE CODING 33

Thus, Eq. 3.8 becomes:

φ(0, k) =

p∑
i=1

ai · φ(i, k), k ∈ [1, p] (3.10)

Equation 3.16 defines a system of p linear equations, with p unknowns: a1 through
ap. These are called the normal equations [45] of the predictor, and their solution is the
vector of coefficients that minimize the prediction error.

Given all the above, the linear predictive coding step of the quality scores compressor
performs the following steps:

1. Solves the system of normal equations.

2. Stores the coefficients in the compressed file for the decompressor to use.

3. Performs the prediction using the calculated coefficients.

4. Transforms the sequence of quality scores to the sequence of prediction errors and
compresses them.

Accordingly, the decompressor performs the following steps:

1. Reads the prediction coefficients from the compressed file.

2. Decompresses the sequence of prediction errors.

3. Calculates the prediction for each quality value and adds the error to recreate the
actual value.

The benefits of LPC can be better understood with an example. Using benchmark
N21 (Table 1.2), 1st-order LPC was performed on each read’s quality score sequence
separately. The relative frequency of each quality score before the LPC is shown in Fig.
3.3. The highest symbol frequency is 26.8% for the quality value 41, and the entropy is
3.44 bits per symbol.

After 1st-order LPC, the relative frequencies of the error values are the ones shown in
Fig. 3.4. It is obvious that the distribution is much more skewed now, with the highest
relative frequency being 52.6% and the entropy being 2.94 bits per symbol: a reduction2

ratio of 1.17 in entropy. This reduction is expected, as information is ‘removed’ from the
sequence during the transformation and moved to the coefficients.

Increasing the order of prediction, increases this reduction in entropy, as shown in
Fig. 3.5. This happens because the prediction becomes more accurate as the order
increases, and as consequence, over 90% of the error values are 0 for 50th-order LPC,
which has an entropy of 0.61 bits per symbol.

Nevertheless, two problems arise from LPC. The first is the fact that the alphabet of
all possible error values is fundamentally twice in size the alphabet of all possible quality
scores. When the scores vary in the range [0, 41], the error assumes values in the range
[−41, 41]. Yet, this is not a concern when the prediction is accurate, as the frequency

2Entropy reduction is defined as the quotient of the initial entropy over the reduced entropy.

34 CHAPTER 3. COMPRESSION OF QUALITY SCORES

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

Quality scores

R
el

a
ti

ve
fr

eq
u
en

cy

Figure 3.3: Relative frequency distribution of the quality scores in N21.

−40 −30 −20 −10 0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

0.6

Prediction error values

R
el

at
iv

e
fr

eq
u
en

cy

Figure 3.4: Relative frequency distribution of the 1st-order LPC error values in N21.

3.2. LINEAR PREDICTIVE CODING 35

0 10 20 30 40 50

1

2

3

4

5

6

Order of LPC

E
n
tr

op
y

re
d

u
ct

io
n

ra
ti

o

Figure 3.5: Entropy reduction between the quality score sequences and LPC error values
in N21, as a function of the order of prediction.

distribution of the symbols will be skewed resulting in lower information content, as
shown in the above example. The main consequence is the fact that a larger alphabet
requires a larger model during the modelling step.

The second problem is the fact that the coefficients are real numbers, and as such
originate from a huge alphabet. This means that they are not easily compressable, and
in fact they would be harder to compress than the original quality scores. Therefore, the
practise of creating separate optimal coefficients for each read that was described above
in not usable in practise. A solution for that problem is described in the next section.

3.2.2 Blocked LPC

Unfortunately, LPC on each read’s quality score sequence separately is not an option,
as there would be significant overhead to store the vector of coefficients for each of
them. Therefore, the linear prediction scheme must be altered, so that a single vector
of coefficients is used to predict the values of more than one read. Of course, with
this alteration to the prediction scheme, the normal equations for the calculation of the
coefficients will also be altered.

The set of reads in the input file is divided in blocks, with each one containing M
reads, each with a quality sequence of size N . For each block, its own vector of coefficients
a = [a1, a2, ..., ap] needs be calculated.

The sequence of quality values for each read in a block is denoted as qm, m ∈ [1,M].
In contrast to regular LPC, qm(n) = c for zero or negative values of n, where c is the
arithmetic mean of all qm(1) quality values. From all the above, it follows that the

36 CHAPTER 3. COMPRESSION OF QUALITY SCORES

p-order prediction will be calculated as:

q̂m(n) =

p∑
k=1

ak · qm(n− k), ∀m ∈ [1,M], ∀n ∈ [1, N] (3.11)

and the corresponding prediction error:

em(n) = qm(n)− q̂m(n), ∀m ∈ [1,M], ∀n ∈ [1, N] (3.12)

The total error that needs to be minimized now is the following:

Ebl =
M∑
m=1

[
N∑
n=1

[em(n)]2
]

(3.13)

which is the sum of the errors of prediction of all the reads in the block.
Minimizing the error Ebl is achieved as before:

∂Ebl
∂ak

= 0, ∀1 ≤ k ≤ p (3.14)

Following the same train of thought as before, we define the correlation function for
each read:

φm(i, k) =

N∑
n=1

[qm(n− i) · qm(n− k)] (3.15)

The normal equations of the predictor now become:

M∑
m=1

φm(0, k) =

p∑
i=1

[
ai ·

M∑
m=1

[φm(i, k)]

]
, k ∈ [1, p] (3.16)

We define:

φbl(i, k) =

M∑
m=1

[φm(i, k)] (3.17)

Therefore, the normal equations have a similar form as previously:

φbl(0, k) =

p∑
i=1

ai · φbl(i, k), k ∈ [1, p] (3.18)

The steps that the compressor and decompressor have to take using the blocked LPC
are the same as for regular LPC, with the only difference that the normal equations (Eq.
3.18) are solved once for each block.

Naturally, the reduction in the entropy of the quality scores will be less in blocked
LPC, compared to calculating a different coefficients’ vector per read in regular LPC.
When the coefficients are fitted to one quality sequence only, they optimally reflect the
sequence’s properties. On the opposite case, the coefficients are created to reflect the
properties of a whole block of reads, and as a result, they do not optimally specify the
properties of each individual read in the block. The resulting entropy reduction when

3.2. LINEAR PREDICTIVE CODING 37

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

Order of blocked LPC

E
n
tr

o
p
y

re
d

u
ct

io
n

ra
ti

o

M = 1
M = 2

M = 500
M = 5000

Figure 3.6: Entropy reduction between the quality score sequences and blocked LPC
error values in N21, as a function of the order of prediction, for different block sizes.

using different block sizes in blocked LPC of the quality scores of benchmark N21 (Table
1.2) is shown in Fig. 3.6.

A block with only a single read (M=1) behaves exactly as regular LPC. Yet, as the
block size increases, the effect of blocked LPC is apparent: With only 2 reads per block,
the entropy reduction’s scales much slower with the entropy reduction. However, in
order to eliminate the overhead of storing the coefficients on the compressed file, the
block needs to be as large as possible. Further increasing the block size, reveals that
with this prediction method, the entropy reduction does not scale with the increasing
order of the prediction. On the contrary, the entropy reduction stays close to 1.3 for
higher block sizes.

Further increasing the block size is desirable, as long as it does not affect the entropy
reduction, since the overhead of storing the coefficients becomes negligible. Figure 3.7
shows the entropy reduction in the conversion from quality scores to error values, achieved
with larger blocks, for 4th order LPC on the same benchmark as before. Apparently, the
difference between them in terms of entropy reduction is very small, although higher sizes
perform better. This is due to the fact that the system of normal equations of a larger
block tends to be more robust towards a minority of reads that are potentially divergent
in terms of statistical properties than the rest. Therefore, we have the freedom to choose
the block size among the higher values. However, care should be taken with very large
blocks, as there is the potential hazard of overflow in solving the normal equations for
files with large reads sizes.

An entropy reduction of 1.26 times may seem trivial in comparison to the respective
numbers that are seen in regular LPC. Nevertheless, blocked LPC transforms the qual-

38 CHAPTER 3. COMPRESSION OF QUALITY SCORES

500
10000

50000
100000

500000
1000000

2000000
4000000

1.25

1.252

1.254

1.256

1.258

1.26

1.262

1.264

1.266

1.268

Block size (reads)

E
n
tr

op
y

R
ed

u
ct

io
n

Figure 3.7: Entropy reduction between quality scores and prediction error values with
4th-order blocked LPC for large sized blocks in N21.

ity scores’ sequences in the more highly compressible error sequences, with negligible
overhead and therefore it can be effectively used as a preprocessing step.

3.2.3 Modelling and Coding

In order to complete the compression process, the blocked LPC preprocessing step is
followed by a modelling step using adaptive DTMCs, and arithmetic coding as the final
entropy coder.

The modelling step is carried out by a set of adaptive DTMCs. Each one of them
corresponds to the context of modelled quality scores. The different contexts depend
on the position of an error symbol in its sequence, and by the number of high jumps
in error values3 that have been observed at a particular read. The former enables the
compressor to have a different model for each part of a sequence. This is needed because
the quality scores depend on their position in the read, and this property is passed to the
prediction error during LPC. The later enables the compressor to keep different models
for sequences with highly variable error values.

Each individual DTMC has an order of l, meaning that it measures the frequency
of occurrence of any symbol of the error value alphabet Uer = {−41, ..., 41}, given the

3A high jump is defined as a difference larger than 1 in two consecutive error values.

3.2. LINEAR PREDICTIVE CODING 39

previous l values. More precisely, they are represented by the transition matrix A4

containing the cumulative frequencies dk of the algorithms in Appendix A. The adaptive
nature of the model is implemented by scaling down by a factor of 2 the measured
frequencies of a state, every time one of the surpasses a threshold value (Nthres).

If we define Npos as the number of different context models depending on the position
of a symbol and Njump as the number of different context models depending on the
number of jumps, the compressor uses Npos · Njump models in total, each containing
|U|l+1 = 83l+1 parameters. Using 2 bytes to store every parameter, the models need
2 ·Npos ·Njump · 83l+1 bytes in memory.

Finally, the arithmetic coder has 32 bits precision for the fixed arithmetic and encodes
all sequences of a block in a single codeword.

C11 C12 C21 C22

0

10

20

30

40
33.27

38.59

32.66

37.97

33.46

40.18

32.85

39.45

Benchmark

C
om

p
re

ss
io

n
R

a
ti

o
(%

)

l = 2 l = 3

Figure 3.8: Compression ratio on the quality scores with different values on the order of
the DTMCs (Npos = 5, Njump = 2, Nthres = 8192, p = 4).

3.2.4 Evaluation of Blocked LPC

In this section, the effect of the parameters l, Npos, Njump, Nthres and p, as described in
the previous section, is shown through experiments. The evaluation criterion will be the
compression ratio that is achieved on the quality scores of our benchmarks (Table 1.3).
The uncompressed size of this type of data in the FASTQ format is:

Number of reads ∗ (sequence size ∗ 1 byte per symbol + 1)

The plus one is added for the newline character in the end of each quality score sequence.
The block size M will be 1000000 reads, as it large enough for adequate blocked LPC.

First, the value for the order of the DTMCs l is chosen. The memory needed for
the models increases exponentially with the value of l, and as a consequence, only the

4See Section 1.2.4.

40 CHAPTER 3. COMPRESSION OF QUALITY SCORES

2 4 6 8 10 12 14 16

31.4

31.6

31.8

32

32.2

32.4

32.6

Prediction Order

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 3.9: Compression ratio on the quality scores of C11 with different values of
prediction order (l = 2, Npos = 15, Njump = 15, Nthres = 8192).

values 2 and 3 can be considered. Larger models have the advantage of most accurate
modelling, and the disadvantage that they need a large amount of input data to be
trained. Figure 3.8 shows the compression ratio achieved using both values for l on our
benchmarks. The results verify the fact that larger models need more data to be trained.
As a consequence, there is a lack in compression performance, up to the point that the
models are adequately trained. On larger input files, this problem could be alleviated,
however, using 2nd-order DTMCs has the advantage of smaller memory consumption,
which allows for higher Npos and Njump values. As a result, the value for l will be set to
2 for the rest of the experiments.

Figure 3.9 shows the compression ratio achieved with a variable order of blocked LPC.
As it turns out, in blocked LPC, 1st-order prediction creates the smallest prediction error,
which is translated to a better compression ratio.

Figure 3.10 shows the effect of Npos on the compression ratio achieved on C11 (Table
1.2), and Figure 3.11 shows the effect of Njump on the compression ratio achieved on the
same benchmark. Same as l, but to a smaller extend, these parameters effect the com-
pression ratio by modifying the number of models that are used. Therefore, appropriate
values must be selected to balance the trade-off between the amount of data needed to
train the models and their accuracy.

Finally, Fig. 3.12 shows how Nthres effects the compression performance. High values
of the threshold would make the models unable to react fast enough to changes in the
statistical properties of the modelled information. On the other hand, low values of the
threshold would make the models disregard information about the past and only depend

3.2. LINEAR PREDICTIVE CODING 41

0 5 10 15 20 25 30 35 40

31.3

31.4

31.5

31.6

31.7

31.8

Npos

C
o
m

p
re

ss
io

n
R

a
ti

o
(%

)

Figure 3.10: Compression ratio on the quality scores of C11 with different values of Npos

(l = 2, Njump = 15, Nthres = 8192, p = 1).

0 5 10 15 20 25 30

31.3

31.4

31.5

31.6

31.7

31.8

31.9

Njump

C
om

p
re

ss
io

n
R

a
ti

o
(%

)

Figure 3.11: Compression ratio on the quality scores of C11 with different values of
Njump (l = 2, Npos = 13, Nthres = 8192, p = 1).

42 CHAPTER 3. COMPRESSION OF QUALITY SCORES

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

31.2

31.4

31.6

31.8

32

Threshold

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 3.12: Compression ratio on the quality scores of C11 with different values of
Nthres (l = 2, Npos = 13, Njump = 15, p = 1).

on recent observations, meaning that they cannot predict the future after encountering
a divergence in the statistical properties of the input.

3.2.5 Adaptive LPC

The results on the compression with blocked LPC show that the optimal prediction
coefficients are not necessary to achieve a reduction on the entropy of the sequence that
is being encoded. Nevertheless, a disadvantage of blocked LPC as a preprocessing step
lies in the fact that it performs two passes over the input data; one for calculating
the coefficients, and one for calculating the prediction error and performing the actual
compression. However, it is shown that the prediction is best when its calculation method
is kept simple, that is, when 1st-order prediction is used, so that it can capture the
‘trend’ of the quality scores in the block as generally as possible. This fact can be used
for converting the two-pass preprocessing step to a one-pass one, by sacrificing some
compression ratio to achieve better compression speed.

In blocked LPC, in the case of 1st-order prediction, the set of normal equations is
reduced to just one equation:

a1 =

M∑
m=1

N∑
n=1

[qm(n)qm(n− 1)]

M∑
m=1

N∑
n=1

[q2m(n)]

(3.19)

3.2. LINEAR PREDICTIVE CODING 43

Therefore, the value of the coefficient depends on the products q(n)q(n−1) and q(n)q(n)
of all quality scores in a block, and needs a first pass over the data to calculate them,
prior to encoding any value in the block.

In order to use LPC with only one pass, the notion of blocks is dropped, and these
products are calculated for all quality scores prior to the one that is being encoded.
In other words, when the k-th quality score of the whole input file is encoded, its a1
coefficient is calculated based on the products q(n)q(n − 1) and q(n)q(n) for all n ∈
[1, k − 1]. The products are also weighted with a weight w(n) to favour the most recent
scores, in order to implement the adaptive nature of the LPC and to avoid overflow
problems. Therefore, the coefficient calculation becomes:

a1(k) =

k−1∑
n=1

[w(n) · q(n)q(n− 1)]

k−1∑
n=1

[w(n) · q2(n)]

, ∀k : q(k) is the k-th quality score of the input file

(3.20)
By defining the nominator and denominator of Equation 3.20 as A(k) and B(k),

respectively, the weighting is implemented with the following recurrence relations:

A(1) = 1

A(k) =

{
A(k − 1) + q(k)q(k − 1), A(k − 1) < NThres ∧B(k − 1) < NThres
A(k−1)

2 + q(k)q(k − 1), A(k − 1) > NThres ∨B(k − 1) > NThres

, k > 1

(3.21)

B(1) = 1

B(k) =

{
B(k − 1) + q2(k), A(k − 1) < T ∧B(k − 1) < T
B(k−1)

2 + q2(k), A(k − 1) > T ∨B(k − 1) > T
, k > 1 (3.22)

In these equations, T is a threshold for the A(k) and B(k) values that signifies how
fast the nominator and denominator adapt to the input data.

The adaptive LPC is followed by the same modelling and arithmetic coding step
as blocked LPC for the compression of the sequence of prediction errors. Figure 3.13
shows the compression ratio achieved for various values of T. As the parameter increases,
the a1 coefficient adapts more slowly to the recent data, since more quality scores are
highly weighted. The compression ratio decreases for higher T values, which means
that the coefficient benefits from including information about earlier data, showing that
information is repeated, and a general ‘trend’ of the quality scores can be assumed.

Moreover, the results show that the compression is almost 1% worse that blocked
LPC. This is attributed to the fact that blocked LPC takes into consideration ‘future’
quality values when encoding the k-th score, since the prediction coefficient has been
calculated with all values of a block. Nontheless, adaptive LPC achieved a speedup of
1.245 compared to blocked LPC (13,8 MB/s for adaptive LPC compared to 11.08 MB/s
for blocked LPC)

44 CHAPTER 3. COMPRESSION OF QUALITY SCORES

0 0.5 1 1.5 2 2.5 3

·106

32.2

32.4

32.6

32.8

33

33.2

33.4

Threshold

C
o
m

p
re

ss
io

n
R

a
ti

o
(%

)

Figure 3.13: Compression ratio on the quality scores of C11 with adaptive LPC and
different values of T (l = 2, Npos = 13, Njump = 15, p = 1, NThres = 4096).

3.3 Modelling with Hidden Markov Models

DTMCs are very often used as models for compression purposes [31, 24, 5]. Their main
advantages include being very simple in implementation, and being very effective models
for input sequences that own the Markov property.

Nonetheless, it would be interesting to investigate the effectiveness of more complex
modelling for the compression of quality scores. As such, an attempt is made in using
Hidden Markov Models (HMM) [32] for modelling the sequences. No preprocessing is
performed so as not to alter the statistical properties of the data, and the final entropy
coder is once again arithmetic coding.

DTMC modelling assumes that the internal state of the information source of a
sequence uniquely corresponds to the last symbols it has produced. However, if this is
not the case for the source, and the information source can create the same sequence of
symbols from two different internal states, the DTMC will miss this distinction.

HMMs, on the other hand, assume that the internal state-space of the information
source is not directly observable, but it can be predicted based on the sequence of symbols
it has produced. Therefore, an HMM models the information source as transitioning
between a set of states that do not specifically correspond to observable physical events
(as the name suggests, the states are hidden).

A Hidden Markov Model λ = (A,B, π) is characterized of the following:

• N , the number of hidden states in the model. The set of states is denoted as
S = {S1, S2, ..., SN}. Every time that a state transition takes place, an observable

3.3. MODELLING WITH HIDDEN MARKOV MODELS 45

S1 S2 S3

D E F

a11

a12

b11

b12
b13

a22

a21 a23

b21 b22 b23

a33

b31

b32

b33

Figure 3.14: Representation of a simple Hidden Markov Model.

symbol is produced. The state at time point t is denoted as qt.

• M , the number of possible values for the produced symbols, or in other words, the
size of the alphabet of the produced symbols. The observation symbols correspond
to the physical output of the system being modelled, in our case the sequence of
quality scores. The individual symbols are denoted as V = {v1, v2, ..., vM}

• The transition probability matrix A = {aij}, where:

aij = Pr{qt+1 = Sj |qt = Si}, ∀i, j ∈ [1, N]

• The probability distribution for the symbol production, for state Sj , B = {bj(k)},
where:

bj(k) = Pr{vk produced at time t|qt = Sj}, ∀i ∈ [1, N],∀k ∈ [1,M]

• The initial state probability distribution π = {πi} where:

πi = Pr{q1 = Si}, ∀i ∈ [1, N]

An example of a simple HMM with N = 3, M = 3 is shown in Fig. 3.14.
There are two main problems to be encountered when using HMMs. The first involves

the training of the model with a subset of the input data in order to reflect the information
source, and the second involves extracting information from the model.

3.3.1 Training an HMM

Determining the parameters of an HMM to model the source of a training sequence is a
very difficult problem. In fact, there is no known way to analytically solve for the model

46 CHAPTER 3. COMPRESSION OF QUALITY SCORES

which maximizes the probability of the observation sequence [32]. However, an HMM
λ = (A,B, π) can be chosen such that it locally maximizes the probability of creating a
training sequence O = O1O2...OT , thus modelling its information source. This can be
achieved with the Baum-Welsh method. Prior to presenting this method, the forward
variable αt and the backward variable βt have to be calculated.

The forward variable αt(i) is the probability of the partial observation sequence
O1O2...Ot while the state of λ is Si at time t:

αt(i) = Pr{O1O2...Ot, qt = Si|λ} (3.23)

The values of the forward variable can be calculated inductively:

α1(i) = πibi(O1), 1 ≤ i ≤ N (3.24)

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (3.25)

Accordingly, the backward variable βt(i) is the probability of the partial observation
sequence Ot+1Ot+2...OT , given that the state of λ is Si at time t:

βt(i) = Pr{Ot+1Ot+2...OT |qt = Si, λ} (3.26)

Again, the values of the backward variable can be calculated inductively:

βT (i) = 1, 1 ≤ i ≤ N (3.27)

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j), T − 1 ≥ t ≥ 1, 1 ≤ i ≤ N (3.28)

Using the forward and backward variables, we can calculate ξt(i, j), which is the proba-
bility of the HMM being in state Si at time t and state Sj at time t+ 1:

ξt(i, j) = Pr{qt = Si, qt+1 = Sj |O, λ} (3.29)

This is calculated as follows:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)

(3.30)

Finally, the probability of the HMM being in state Si at time t is γt(i):

γt(i) =
αt(i)βt(i)
N∑
i=1

αt(i)βt(i)

=
N∑
j=1

ξt(i, j) (3.31)

3.3. MODELLING WITH HIDDEN MARKOV MODELS 47

The Baum-Welsh method defines reestimation formulas for adjusting the parameters
of an HMM based on a training sequence of data. More specifically, given the HMM
λ = (A,B, π) and the training sequence O = O1O2...OT , the identically sized HMM
λ̄ = (Ā, B̄, π̄) can be calculated using the following equations:

π̄i = γ1(i) (3.32)

āij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(3.33)

b̄j(k) =

T∑
t=1

s.t. Ot=vk

γt(j)

T∑
t=1

γt(i)

(3.34)

The HMM λ̄, calculated with Equations 3.32 - 3.34, is provably a better model than
λ in the sense that Pr{O|λ̄} > Pr{O|λ} [2], or the model that locally maximizes this
probability, in which case λ̄ = λ. Therefore, by iteratively substituting λ with λ̄ and
calculating the re-estimation equations, λ will converge to an HMM trained to produce
the training sequence O, thus modelling its information source.

There are two implementation issues for the Baum-Welsh method. The first involves
around the fact that the values of αt(i) tend exponentially towards zero as i increases
(Eq. 3.25) and the same happens to βt(i) values, as i decreases (Eq. 3.28). Therefore,
when the size of a training sequence increases, the precision needed to store each of these
values exceeds the precision range of any machine. In order to avert this problem, the
values of these variables are scaled at each time point by the coefficient ct:

ct =
1

N∑
j=1

αt(j)

(3.35)

Therefore, the scaled values are:

α̂t(i) = ct · αt(i), β̂t(i) = ct · βt(i) (3.36)

Thus, the values of the two variables are substituted by the scaled ones in the re-
estimation equations and the effect of the coefficients is cancelled as they appear both
on the nominators and the denominators5.

The second implementation issue arises from the fact that the quality scores are
divided in reads. This means that there is not one single training sequence, but a set of
K sequences:

O = [O(1), O(2), ..., O(K)] (3.37)

5The full proof can be found in [32]

48 CHAPTER 3. COMPRESSION OF QUALITY SCORES

Therefore, the goal of the re-estimation equations is now to maximize:

Pr{O|λ} =

K∏
k=1

Pr{O(k)|λ} =

K∏
k=1

Pk (3.38)

The initial re-estimation equations depend on summing frequencies of occurrence of
symbols in the observation. So, they are modified for multiple observation sequences by
summing over all of them, and by weighting the frequencies accordingly to the probability
of their sequence.

By using scaling and multiple observation sequences, and in addition by selecting
π1 = 1, πi = 0, i 6= 1, the re-estimation equations become:

āij =

K∑
k=1

1
Pk

Tk−1∑
t=1

α̂
(k)
t (i)aijbj(O

(k)
t+1)β̂

(k)
t+1(j)

K∑
k=1

1
Pk

Tk−1∑
t=1

N∑
j=1

α̂
(k)
t (i)aijbj(O

(k)
t+1)β̂

(k)
t+1(j)

, 1 ≤ i, j ≤ N (3.39)

β̄j(l) =

K∑
k=1

1
Pk

Tk−1∑
t=1

s.t. Ot=vl

α̂
(k)
t (i)β̂

(k)
t (i)

K∑
k=1

1
Pk

Tk−1∑
t=1

α̂
(k)
t (i)β̂

(k)
t (i)

, 1 ≤ j ≤ N, 1 ≤ l ≤M (3.40)

where

Pk =
N∑
i=1

α̂
(k)
T (i) (3.41)

3.3.2 Extracting information from the HMM

So far, we have described how an HMM can be trained to model the information source
of the quality scores of a FASTQ file. However, it is not straightforward how to use the
information contained in the model at the arithmetic coding step.

At the process of encoding the i-th symbol of the sequence of quality scores O =
O1O2...OK , the following procedure is followed:

1. Find the probability to be in each state of the HMM based on the sequence
O1O2...Oi−1. In effect, this is the calculation of the forward variable α̂i(j), ∀j ∈
[1, N].

2. Calculate the probability of the state Sj being the next state qi, without taking
under consideration the knowledge of the symbol Oi, so that the decompressor can
imitate this calculation. The probability is calculated as follows:

Pr{q1 = Sj} =

{
1, j = 1

0, else
(3.42)

Pr{qi = Sj} =
N∑
l=1

α̂i−1(l)aij , i > 1, 1 ≤ j ≤ N (3.43)

3.3. MODELLING WITH HIDDEN MARKOV MODELS 49

3. Find the most probable next state Sp, p = argmax
j
{Pr{qi = Sj}}

4. The symbol distribution for the most probable state is bp(), which is used as the
probability of Equation 1.14. Thus, we can easily calculate the cumulative distri-
butions of Equations 1.17 and 1.18 for the arithmetic coding step.

The parameters of the trained HMM are embedded in the compressed file and are
therefore known to the decompressor. Thus, the decompression process follows exactly
the same steps to produce the cumulative distributions needed by the decoding algorithm
of the arithmetic coder.

3.3.3 Implementation

The implementation of the described compressor is divided in two phases: The training
phase and the compression phase.

During the training phase, the parameters of the HMM are estimated using sample
reads from the input file as training sequences. If the set of training reads was comprised
from consecutive reads in the file, there would be the danger of training the HMM to
reflect some local statistical property that would be present in that particular subset,
but not in the entire file. Thus, we opt to form the set of training reads by sampling the
reads of the whole file, with a sampling period of Ts reads (that is, every Ts-th read is
added to the training set).

The model has N hidden states and each state produces one of the M = 41 observable
symbols in the alphabet of quality values. As stated in [32], the probability matrix A
can be initialized with random values (that do not violate the stochastic property of
the matrix), but the probability distributions in B have to be carefully selected for
the selected application. Thus, the vectors bj are initialized with a skewed probability
distribution, much like the one shown in Fig. 3.3.

The training process is carried out in double precision floating point arithmetic, due to
the need for high precision in the re-estimation equations 3.39 - 3.40. Ideally, the training
step would iterate over these equations, up to the point where the model converges to the
local maximum (i.e. λ̄ = λ). This practice however, could potentially lead to the need of
a very high number of iterations if the initial model estimation is too far from the point
of convergence, meaning that there exists a high scale of unpredictability on the timing
performance of the training step. This fact, combined with the high computational load
of double precision arithmetic, would render the training step too slow, to the point
that it would be unusable. Therefore, it is imperative to enforce a maximum allowed
number of iterations L, and the model that occurs after that many iterations is used for
modelling, regardless of whether it has converged or not.

From the above, it is evident that there are three parameters that affect the com-
pression performance of the compressor:

• N , the number of hidden states

• L, the maximum number of iterations allowed in the training step

• Ts, the sampling period for the creation of the training data

50 CHAPTER 3. COMPRESSION OF QUALITY SCORES

3 4 5 6 7 8 9 10

42.5

45

47.5

50

52.5

55

57.5

60

Number of hidden states in the HMM

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 3.15: Compression ratio on the quality scores with HMM modelling using different
numbers of hidden states in C11 (L = 100, Ts = 10000)

The actual effect of the parameters is investigated in the case of the C11 benchmark
(Table 1.2).

The first one, N , is arguably the most important. It determines the size of the model,
which in turn determines the ability of the model to reflect the statistical properties of
the quality scores’ information source. The effect of this parameter on the compression
ratio achieved on the quality scores of is shown in Fig. 3.15. As shown, an incorrectly
sized model has a huge impact on the compression ratio. Too few states fail to distinguish
between the actual states of the information source and more than one can be mapped to
the states of the HMM. On the other hand, when assuming too many states for the model,
the excess states do not have any physical correspondence. Yet, some observations are
inadvertently attributed to them, reducing the probability of transitioning to the actual
state that created the observation.

Given the size of the model, the details of the training process have to be specified.
First we investigate the number of iterations L needed for an adequate training of the
model; Figure 3.16 illustrates the effect of this parameter. It must be noted that for
these values of L the training did not converge to the local extremum6. By using the
same initial values for the stochastic matrix A, this figure can also be interpreted as
the learning curve of the model. For a small amount of iterations, the model is not
adequately trained to model the specific properties of the input file. However, at around

6In fact, convergence for this particular setup and input file was not reached even after 650 iterations
(for a precision of 0.01 for each parameter). The actual number of iterations was not determined and
the attempt was aborted after the first 24 hours of execution.

3.4. EVALUATION 51

20 40 60 80 100

43

43.5

44

44.5

45

45.5

46

46.5

Number of maximum allowed iterations L

C
o
m

p
re

ss
io

n
R

a
ti

o
(%

)

Figure 3.16: Compression ratio on the quality scores of C11 with different values of L
for the HMM training (N = 6, Ts = 10000).

60 iterations, the training reaches close to the point of convergence, and remains close
in the following iterations. A slight increase in the compression ratio takes place at this
point, which is explained by the fact that the training procedure increases the possibility
that the model can recreate the training sequences, but does not guarantee that it will
reflect the whole file.

Finally, the size of the subset of the input file’s reads that comprise the training set
has to be determined. The size of the training set is the 1/Ts-th of the set of all quality
score sequences in the input file, and thus, it can be selected by modifying the sampling
period Ts. Figure 3.17 shows the effect of different training sizes on the compression
ratio. Generally, small sampling periods achieve better compression performance, since
they correspond to larger sizes of the training set. Small training sets (larger Ts values)
fundamentally contain less state transitions and thus result in an underfitted model,
which does not adequately represent the information source. On the contrary, larger
training sets result in better trained models, but they render the training process more
computationally intensive; the number of computations in Equations 3.39-3.40 increases
linearly with K.

3.4 Evaluation

Comparing the two compression methods that were presented in this chapter shows that
blocked LPC is far superior to HMM modelling. As shown in Figures 3.12 and 3.17,
the first method achieved approximately 9% lower compression rate when comparing

52 CHAPTER 3. COMPRESSION OF QUALITY SCORES

0
5,000

10,000
15,000

20,000
25,000

30,000
35,000

40,000
42

42.5

43

43.5

44

44.5

45

45.5

46

46.5

47

47.5

48

48.5

Sampling period Ts

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 3.17: Compression ratio on the quality scores of C11 with different values of Ts
for the HMM training (N = 6, L = 60).

the best observed results (31.2% and 42.4%, respectively). This is mainly a result of
HMM modelling lacking the adaptive nature of blocked LPC. The same model is used
for all quality score sequences throughout the file, and as a result, local properties are
not taken under consideration. Generally, HMM modelling that adapts to the local input
would be possible by training a new model for blocks of input data. However, training
of an HMM is a very demanding task in terms of computational power, as will be shown
below. Thus, performing it multiple times over the course of the compression of a single
file would result in prohibitive low compression speeds.

In addition to blocked LPC consistently achieving better compression, all experiments
showed that its performance is more robust with respect to the design parameters, as
only small changes in the compression result were observed. On the contrary, HMM
modelling requires perfectly calibrated parameters, and changes in the quality scores’
information source would require the definition of the parameters anew.

What is more, the process of HMM training is too computationally demanding to be
used in a big data compressor. For example, in the experiment with N = 6, L = 60,
Ts = 2500 which proved to be the best in compression ratio terms, the training phase
needed 6193 seconds to complete, while the actual compression needed only 1638 seconds
in our testing system. This amounts to a compression speed of approximately 0.5 MB/s,
which is extremely low, compared to the 15.08 MB/s measured for the blocked LPC. The
reason behind the low speed is that fact that training a model is an iterative process,
and as such, the program iterates over the training data multiple times. In addition, the

3.4. EVALUATION 53

reestimation equations 3.39-3.39 contain a fair amount of calculations, which has to be
performed in double precision arithmetic, thus contributing to the heavy computational
requirements. On the other hand, blocked LPC performs only two passes over the
data, one for calculating the prediction coefficients, and one for performing the actual
compression. In addition, the only demanding computations are performed in solving
the set of normal equations (Eq. 3.18), but for the small values of the order of the
prediction that proved to be best, very few calculations are needed.

The only advantage of HMM modelling lies in the fact that it requires less memory
at run-time, compared to the DTMC used to model the prediction error in the other
method. However, this is not enough of an advantage to counter its low compression
and speed performance.

54 CHAPTER 3. COMPRESSION OF QUALITY SCORES

Compression of Identifiers and
Bases 4
As mentioned in the previous chapter, the identifier strings and the sequences of bases in
a read carry less information content than the sequences of quality scores. Nonetheless,
they comprise a big portion of a FASTQ file; the sequences of bases take exactly as much
storage space as the quality scores, and the id strings are usually 50-60 characters long
per read. Therefore, the efficient compression of this type of data plays a vital role in
the compression ratio achieved for the entire file.

Fortunately, it is relatively easy to eliminate redundancies in id strings, using a simple
form of delta encoding. Section 4.1 shows how delta encoding is used as a preprocessing
step, along with DTMC modelling and arithmetic coding.

Redundancy in base sequences is more difficult to uncover. In Section 4.2, we present
two different methods that were tested, each taking advantage of a different statistical
property of the sequences. The first uses the fact that the alphabet of this type of data is
limited to only 5 characters, while the second uses the fact that the reads are overlapping
as a result of the sequencing procedure, which means that some information is repeated.

4.1 Identifier Strings

Generally, the entirety of the reads contained in a single FASTQ file comes from the
same experiment. This means that all identifier strings contain the same information on
the sequencing technology, the origin of the sequenced genome and any more relevant
information. Usually, only one or two index numbers change between consecutive reads,
meaning that the rest of the information of the identifier is redundant, and can be
eliminated during the compression process, achieving very high compression easily.

HWI-D00267:38:H879KADXX:1:1101:1146:2170 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1238:2215 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1172:2215 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1123:2221 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1349:2099 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1452:2103 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1490:2166 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1463:2183 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1446:2209 1:N:0:CCGTCC

HWI-D00267:38:H879KADXX:1:1101:1492:2230 1:N:0:CCGTCC

Table 4.1: The first ten identifier strings of C11.

As an example, Table 4.1 shows the first ten identifier strings of benchmark C11
(Table 1.2). In this example, only 6 out of the total 53 characters change between

55

56 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

consecutive reads, with the rest being redundant. In the following, we show how this
fact can be used to achieve a good compression ratio.

4.1.1 Preprocessing

A straightforward way of eliminating the redundant information in id strings is delta
encoding. In this form of encoding, only the differences of a string to a previous one are
encoded, instead of the entirety of characters. Thus, in the above example, it is possible
to store only the 6 characters that change, with some overhead to indicate the positions
of the changes.

In the context of id strings, we use a preprocessing step to transform the identifier
string that is currently compressed, to its difference from the previous read. The dif-
ference between two strings is defined as the sequence of the differences in the ASCII
values of characters in respective positions. In the case that the two stings are not
equally sized and the string being compressed is larger than the previous, the shorter
one is concatenated with zeros until it reaches the size of the larger one.

Therefore, for the id sequences Si = si1si2...siNi and Sj = sj1sj2...sjNj , both over
the alphabet U = ASCII codes = {0, ..., 127}1, the difference Dij over the alphabet
UD = {−127, ..., 127} is defined as:

Di,j(n) =

{
sin − sjn, 1 ≤ n ≤ Nj

sin, n > Nj

, ∀n ∈ [1, Ni] (4.1)

Id 1 H W I - D 0 0 2 6 7 : 3 8 : H 8 7 9 K A D X X : 1 : 1 1 0 1 : 1 2 3 8 : 2 2 1 5 1 : N : 0 : C C G T C C

Id 2 H W I - D 0 0 2 6 7 : 3 8 : H 8 7 9 K A D X X : 1 : 1 1 0 1 : 1 1 4 6 : 2 1 7 0 1 : N : 0 : C C G T C C

D2,1 0 1 -1 2 0 0 1 -6 5 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.2: Delta encoding on the identifier strings (without misalignments).

For example, the difference of the second read from Table 4.1 from the first read
is shown in Table 4.2. It is obvious from this example that the vast majority of the
values in the difference strings will be zero, which means that the sequence has a very
low information content.

Nevertheless, it is possible for some number to be in a different order of magnitude
than it was in the previous read. When this happens, as a result of the ASCII represen-
tation, the rest of the string will be misaligned, resulting in non-zero difference values as
shown in Table 4.3.

In order to alleviate this problem, a quick parsing step takes place before the
calculation of the difference, converting all numbers in the string from their ASCII
representation to their binary equivalent. In more detail, every number in the
string with an ASCII representation of 1 to 9 bytes is converted to the tuple
(header byte, binary representation). In the case that the ASCII representation of
a number is larger than 9 bytes, it is split to smaller strings of that range.

1Extended ASCII is not used in the id string, thus all byte values are in the range [0, 127].

4.1. IDENTIFIER STRINGS 57

Id i <prefix> : 1 : 1 1 0 1 : 1 1 3 4 : 1 0 0 2 3 1 : N : 0 : C C G T C C

Id i+1 <prefix> : 1 : 1 1 0 1 : 1 4 7 6 : 2 1 3 5 1 : N : 0 : C C G T C C

Di+1,i 0...0 0 0 0 0 0 0 0 0 0 -3 -4 -2 0 -1 -1 -3 -3 19 -17 -9 -20 20 10 -10 -9 0 -4 -13 17 0

Table 4.3: Misaligned delta encoding on the identifier strings. The prefix is
HWI-D00267:38:H879KADXX.

The header byte has a value equal to the number of bytes in the original ASCII
representation. Therefore, the values 1 through 9 are reserved for this use, since they
represent special characters and are never encountered in an id string. This way, the
header byte specifies that the following bytes are not actual characters of the string and
should not be interpreted as such. It is also needed in order to be able to distinguish and
recreate numbers in the string that start with one or more 0s, for example 0123 instead
of 123.

Value of the Size of bin. representation
header byte in bytes

1,2 1
3 2

4,5 3
6,7,8 4

9 5

Table 4.4: Size of the binary representation according to the value of the header byte.

Moreover, the header byte determines the size of the binary representation of a
number. The number of bytes used for each header byte is shown in Table 4.4. Using
these sizes, it is guaranteed that misalignments occur much less frequently, since numbers
in different orders of magnitude have representations of the same size.

In the bytes of the binary representation, only the 7 less significant bits are used, and
the most significant one stays at 0. As an example, the number 10023 will be transformed
to the tuple (0x05, {0x00, 0x4E, 0x27}). With this convention, the values of these bytes
are always in the range [0, 127] and therefore, the difference between them and any other
byte in the string is always in the range [−127, 127] which can be stored in a single byte.
This way, the difference string remains equal in size to the largest of the two id strings
that are compared.

In overall, the transformation of numbers to their binary representation only increases
the size of the id string for single digit numbers, as 1 header byte and 1 byte of bin.
representation are needed. Yet, that increase has a trivial impact to the compression
ratio, if the difference values are 0, since the relative frequency of this particular symbol is
significantly higher than any other symbol, which in turn means that arithmetic coding
would need close to 0 bits to encode it. For numbers of other sizes, the transformed
number is actually smaller than or equal to the initial size.

As an example of the effect of this transformation, we will see its effect on the two
previous examples in Tables 4.5 and 4.6. These show the delta encoding procedure with

58 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

Read 1 H W I - D 0x05 0x00 0x02 0x0B : 0x02 0x26 : H 0x03 0x06 0x6F K A D X X : 0x01 0x01 : 0x04 0x00 0x08

Read 2 H W I - D 0x05 0x00 0x02 0x0B : 0x02 0x26 : H 0x03 0x06 0x6F K A D X X : 0x01 0x01 : 0x04 0x00 0x08

Diff 0

Read 1 0x4D : 0x04 0x00 0x09 0x56 : 0x04 0x00 0x11 0x27 0x01 0x01 : N : 0x01 0x00 : C C G T C C

Read 2 0x4D : 0x04 0x00 0x08 0x7A : 0x04 0x00 0x16 0x7A 0x01 0x01 : N : 0x01 0x00 : C C G T C C

Diff 0 0 0 1 -1 36 0 0 1 5 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.5: Delta encoding on the identifier strings of Table 4.2 using the binary repre-
sentation transformation. The red colour signifies the values of the bytes, while black
colour signifies ASCII characters.

i <prefix> 0x04 0x00 0x08 0x6E : 0x05 0x00 0x4E 0x27 0x01 0x01 : N : 0x01 0x00 : C C G T C C

i+ 1 <prefix> 0x04 0x00 0x0B 0x44 : 0x04 0x00 0x10 0x57 0x01 0x01 : N : 0x01 0x00 : C C G T C C

Diff 0...0 0 0 3 -42 0 -1 0 -62 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.6: Delta encoding on the identifier strings of Table 4.3 after the binary represen-
tation transformation. The red colour signifies the values of the bytes, while black colour
signifies ASCII characters. The prefix is HWI-D0x05 0x00 0x02 0x0B:0x02 0x26:H0x03

0x06 0x6FKADXX:0x01 0x01:0x04 0x00 0x08 0x4D:.

the binary transformation for the read identifiers used in Tables 4.2 and 4.3, respectively.
In the first case, the transformation does not interfere with the result of the delta encod-
ing, as the same number of symbols are non-zero. In the second case, the transformation
eliminates the misalignment problem, and increases the relative frequency of symbols
with a value of zero in the difference string, resulting in a sequence that is more highly
compressible.

4.1.2 Modelling and Coding

Following the transformation described above, and delta encoding, the distributions of
the symbols in the Di,i−1 sequences, are significantly skewed, with 0 being the value of the
vast majority of them. In addition, the alphabet is quite large with 255 distinct values,
and thus, a high order DTMC would be extremely memory consuming and difficult to
train.

Given the above, the model size can be kept small, while maintaining its accuracy,
by reasoning on whether past values are 0 or not, rather than using their exact value.
Hence, a pth-order adaptive DTMC model is used for modelling, but with the following
modification: it has 2p states, each corresponding to whether the previous p values of a
difference sequence are 0 or not. Each of the states has 255 probabilities, each probability
pv corresponding to the probability of encountering the symbol v. Figure 4.1 shows part
of a such a 3rd-order DTMC. Once again, the model holds cumulative frequencies in each
state instead of the actual probabilities, with the frequencies of each state updated each
time that particular state is reached. This way, the values of the cumulative frequencies
can be used directly from the arithmetic coder, without the need for summation. In
addition, the model is adaptive, meaning that every time a certain threshold (Nthres) on
any measured frequency is reached, the frequencies of that specific state are scaled to

4.1. IDENTIFIER STRINGS 59

000 001

010

011

...

...

p0 p1

p2

p255

p0

p1

p2

p255

Figure 4.1: Part of a 3rd-order modified DTMC. 0s and 1s in the states correspond to
whether the corresponding previous symbol had the value 0 or not, respectively.

half, adapting the model to more recent observations. The final step of compression is
the standard arithmetic coder that was implemented, using 32 bits of precision.

4.1.3 Evaluation

As described above, the compression performance on the id strings depends on two
parameters:

• p: the order of the adaptive DTMC.

• Nthres: the highest value that can be observed on some measured frequency of
any state in the DTMC. When the value is surpassed at some state, all measured
frequencies for that state are scaled down by a factor of 2.

The performance metric is the compression ratio for the N21 benchmark (Table 1.2), the
id strings of which amount to 814.97 MBs to storage space, with an average id string
size of 55.5 characters.

Figure 4.2 shows the effect of different values of p. This parameter directly affects the
size of the model. Therefore, as the value increases, the model becomes more accurate
in predicting the symbols, as more and more previous values can be taken into account.
The drawback on larger values however is the fact that the size increases exponentially
with p, therefore increasing the memory needed by the compressor.

Figure 4.3 shows the effect of the value of Nthres on the compression ratio. Small
values of this parameter cause the modelling step to depend more heavily on recently
encoded symbols, and as the value increases, the weight on older increases as well. In
the context of id strings, the higher the value, the better the compression, which means
that frequent rescaling does not benefit the compression. This in turn means that the
statistical properties of the difference strings do not change in the course of the file,
and therefore the scaling procedure harms the compression by keeping the measured
frequencies in small values, losing accuracy when used for probability calculations. For
example, let’s assume that a symbol has been observed 25 times over the last 1000
observations, meaning that it has a 2.5% probability of occurrence. If however the

60 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

Order of the adaptive DTMC model

C
o
m

p
re

ss
io

n
R

at
io

(%
)

Figure 4.2: Compression ratio on the identifier strings using different values for the order
of the DTMC in N21 (Nthres = 16384).

measured frequencies are scaled to half, the probability is perceived as 12/500=2.4%,
producing an error of 0.1%. Given the fact that most symbols in the difference strings
are very rare, even such small errors lead to incorrect modelling, thus harming the
compression performance.

Nevertheless, this observation does not render the adaptive modelling obsolete. The
opposite case of using a static model would result in modelling that is not flexible to a
variety of inputs, and simply abolishing scaling would lead to overflow problems.

Finally, it is obvious that the compression ratio that is achieved for the id strings is
far superior to the one achieved for the quality scores. This fact confirms the statement
in the beginning of the chapter that there is less information content in this type of data,
and as such there is no need to explore other methods of preprocessing or modelling.

4.2 Sequences of Nucleotide Bases

From the symbols that comprise the sequences of nucleotide bases, A, C, T, and G are
almost equally frequent, with N being much rarer, as shown in Table 4.7 for the N21
benchmark (Table 1.2).

There are two main properties of the base sequences that can be taken advantage of
in order to eliminate redundant information. In this section two methods for compressing
the sequences of bases are presented and compared, each taking advantage of a different
property.

4.2. SEQUENCES OF NUCLEOTIDE BASES 61

0
10,000

20,000
30,000

40,000
50,000

60,000
70,000

6

7

8

9

10

11

12

Threshold on the number of observations

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 4.3: Compression ratio on the identifier strings of N21 with different values of
Nthres (p = 10).

Symbol Frequency Relative Frequency

A 213705700 0.27210
C 180910184 0.23034
T 212836224 0.27099
G 176721194 0.22501
N 1230778 0.00157

Table 4.7: Frequencies of occurrence of each symbol in the base sequences of N21, with
a total number of 785404080 bases in the file.

4.2.1 Utilizing BWT and MTF preprocessing

The first property is the fact that these sequences have a very small alphabet, consisting
of only 5 characters: A, C, T, G, and N. As a first method, BWT and MTF transforma-
tions (see Section 2.1.2) are performed in the preprocessing step, while adaptive DTMC
and arithmetic coding are used for modelling and coding, respectively.

The BWT transformation groups identical characters of a sequence, creating runs of
characters that can be coded more efficiently than single characters. As the alphabet is
small, the runs generated by the transformation tend to be large, and therefore, after
the MTF transformation, the resulting sequence is more highly compressible than the
initial base sequence.

The BWT transformation becomes increasingly more effective as the the size of the

62 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

input increases [1]. Thus, a number of M base sequences S1, S2, ..., SM , each with a
size of N characters, are concatenated to form the string S. Considering that each base
sequence is comprised of N characters, i.e. Si = si,1si,2...si,N , the concatenation is the
following:

S = s1,1s1,2...s1,Ns2,1s2,2...sM,NZ = s1s2...sN ′Z (4.2)

S contains the N ′ = N ∗M characters of the sequences plus the character Z, which
is appended as a terminating character. This specific character is selected, since it is
never encountered in the base sequences, and is lexicographically larger than any other
character2.

The result of the transformation, BWT (S), is the sorted sequence of the characters
si, ∀i ∈ [1, N ′ + 1], where si > sj , when the string si+1si+2...sN ′Zs1...si is lexicograph-
ically greater than the string sj+1sj+2...sN ′Zs1...sj . A simple implementation of the
transform can be implemented with any sorting algorithm, such as quicksort [21].

The MTF transformation converts BWT (S) to S′, transforming from the alphabet
U = {A,C, T,G,N,Z} to the alphabet U ′ = {0, 1, 2, 3, 4, 5}. Same as in bzip2, the pur-
pose of the MTF is to uncover the beneficial effects of the BWT, by skewing the symbols’
probability distribution, so that lower values have higher probability of occurrence.

The transformation is performed by creating a list of the 6 symbols of the input
alphabet. Each of the 6 positions in the list is associated with a corresponding number;
the symbol at the top of the list is assigned the number 0, the next one is assigned the
number 1, and so on. Every time a symbol is observed in the input string (thus, for
every symbol in BWT (S) in this case), the number assigned to it is concatenated to S′,
and the symbol is moved to a higher position in the list - hence the name Move-To-Front
for the transform. Therefore, when runs of the same character are encountered in the
input, the character moves to the top of the list and runs of 0s are concatenated in the
output.

Input - A A A G G G C C Z N

Output - 0 0 0 3 0 0 2 0 5 4

List 0 A A A A G G G C C C C
1 C C C C A A A G G G G
2 T T T T C C C A A A A
3 G G G G T T T T T T N
4 N N N N N N N N N N T
5 Z Z Z Z Z Z Z Z Z Z Z

Table 4.8: MTF transform on the sequence AAAGGGCCZN.

Since some statistics for the input sequence are known, the way each symbols moves
u in the list can be controlled for better results. As such, when one of the characters
A,C,T or G are observed in the input, this character moves to the top of the list, thus

2The transformation requires a terminating character that is either lexicographically larger or smaller
than all other characters.

4.2. SEQUENCES OF NUCLEOTIDE BASES 63

transforming the rest of the run to 0s. N on the other hand is much rarer, and therefore
its runs in the BWT (S) string will be much shorter. Therefore, each time this character
is observed, it only moves one position towards the top of the list. Finally, the character
Z is unique in S. So, when it is observed, it is certain that it will not occur a second
time, and therefore, it stays always in the bottom of the list and is exclusively assigned
the number 5. An example of how the list changes during the transformation is shown
in Table 4.8.

Usually, the MTF transform is followed by a run-length encoding step, at least for the
highly frequent 0 value. However, in this case, this is not needed, as arithmetic coding
inherently performs run-length encoding. A closer look to the encoding algorithm (see
Appendix A and Section 1.2.5) shows that output bits are only emitted at the rescaling
step. However, when the frequency of a symbol is high, the newly calculated interval
Φk is close to Φk−1, and thus rescaling is scarce. On the other hand, a symbol with
low frequency of occurrence, and therefore low probability, will result in a small interval,
and possibly more than one rescalings. So, a whole run of zeros will be coded in a small
amount of bits, while the rare 5 will require more bits, exactly as in run-length encoding.

Therefore, the result of the MTF, S′, is modelled by a pth-order adaptive DTMC,
with scaling by a factor of 2 on the measured frequencies of a state every time one of
them reaches the threshold Nthres, same as previous usages of this kind of modelling.
Finally, the result of the modelling is used by a 32-bit precision arithmetic coder, that
compresses the entirety of the M sequences of bases in one codeword.

1 2 3 4 5 6 7 8

24.52

24.53

24.54

24.55

24.56

24.57

24.58

24.59

24.6

Order of the adaptive DTMC model

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 4.4: Compression ratio on the base sequences using different values for the order
of the DTMC in N21, with BWT and MTF preprocessing (Nthres = 4096, M = 50).

64 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

1,000
2,000

3,000
4,000

5,000
6,000

7,000
8,000

9,000
10,000

24.5

24.51

24.52

24.53

24.54

24.55

Threshold on the number of observations

C
o
m

p
re

ss
io

n
R

a
ti

o
(%

)

Figure 4.5: Compression ratio on the bases of N21 with different values of Nthres, using
BWT and MTF preprocessing (p = 7, M = 50).

The parameters that influence the compression ratio in this method are p, M and
Nthres.

Figure 4.4 shows the effect of the order of the modelling DTMC. It is evident that
this parameter does not have a large influence on the compression, since the difference
is in the order of 0.01%. Since a 1st-order DTMC is almost as effective as a higher order
one, we can deduce that the values of the result of the MTF transform depend mostly
on the value of the previous symbol and not on the values of any symbols before that.
Similarly, the value of Nthres has a minimal effect in the achieved compression ratio, as
shown in Figure 4.5.

The parameter M on the other hand, that is, the number of base sequences that are
concatenated to create S, plays a more vital role. Figure 4.6 shows how the compression
ratio is affected by this parameter. The ratio improves as the number of reads in S in-
creases, since the BWT creates larger runs of characters in larger input sequences. Also
shown in the same figure is the compression speed achieved with a simple implementation
that uses the quicksort [21] sorting algorithm (calculated for compressing the bases only,
but reading from the whole FASTQ file). As this algorithm has an O(nlogn) average
performance, the compression speed is O(1

nlogn), as shown in the figure. It is evident that
the value of M balances the trade-off between the compression ratio and compression
speed. However, despite the fact that the measured implementation is rather simplistic
and could be greatly improved, the preprocessing step takes a heavy toll on the com-
pression speed, which is the main drawback of bzip2 compressor as well. This is the

4.2. SEQUENCES OF NUCLEOTIDE BASES 65

reason that a faster method for compressing the nucleotide bases is investigated in the
following.

5 10 15 20 25 30 35 40 45 50

24.5

24.6

24.7

24.8

24.9

Number of concatenated sequences

C
om

p
re

ss
io

n
R

at
io

(%
)

0.1

0.2

0.3

0.4

0.5

0.6

C
o
m

p
re

ss
io

n
sp

ee
d

(M
B

/
s)

Comp. Ratio
Comp. Speed

Figure 4.6: Compression ratio and speed on the bases of N21 with different values of M ,
using BWT and MTF preprocessing (p = 7, Nthres = 4096).

4.2.2 Skipping the preprocessing

The second property of the id strings that can be used for compression is derived from
the content and construction method of the data.

The sequence of bases in a DNA molecule consists of sub-sequences that belong in two
categories, namely coding and non-coding DNA [34]. Coding DNA contains information
for the creation of amino acids, and since there is a finite amount of amino acids in
nature, certain sub-sequences are repeated to create this part. Non-coding DNA is the
part of the base sequence that is not involved in the creation of amino acids. Instead,
non-coding DNA is used for a number of other functions, not all of which are known
yet, and can possibly be non-functional or evolutionary residues. Nevertheless, even this
category of DNA consists of sequences that are present in multiple copies in the genome,
aptly named repetitive DNA. In overall, DNA consists of structured information with a
large number of repetitive sub-sequences.

Moreover, during the sequencing procedure, a number of identical clones of the same
DNA molecule are fragmented to create the reads. Therefore, the reads overlap and they
can recreate the initial sequence of bases in the molecule, via the assembly procedure.
However, this overlap also leads in duplicate identical sub-sequences spread over the
reads (see Fig. 1.3), which could be eliminated.

66 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

Thus, the base sequences of the reads contain a large number of repetitive sub-
sequences of varying sizes. Identifying these repeated sub-sequences directly is possible
(with the LZ algorithm [49] for example), however it would be an extremely arduous
task to perform on a large file size.

Instead, the knowledge that the input data contains a large number of repetitions
can be used to predict the next character given its predecessors. Given that the p last
characters that have been encoded are probably part of a repeated sub-sequence, previous
observations of that particular p -sized sequence can give us the next character.

The described procedure can be implemented with a pth-order adaptive DTMC
model, measuring the number of times each of the 5 bases is encountered, given the
previous p bases.

Therefore, in this method for the compression of bases, no preprocessing is performed,
so that the sub-sequence repetitions remain unchanged. Instead, a pth-order DTMC is
used to model the sequences, and a 32bit-precision arithmetic coder is used for the
creation of the output bitstream. The described model would contain 5p · 5 parameters.
Intuitively, as the value of p increases, larger repetitions can be taken into account,
resulting in more accurate modelling. Nevertheless, the value of p has to have an upper
limit, in order to keep the model size in manageable levels. In order to alleviate this
restriction, we take under consideration the fact that the character N is much rarer than
the rest. So, when determining the state of the model, N is regarded as the character A,
reducing the number of states to 4p and the number of parameters in the model to 4p ·5,
with minimal effect on the accuracy of the model. For example, in a 5th-order model,
if the last encoded characters are ACTGN, the model will be in the state associated with
the sequence ACTGA. Same as in previous usages of an adaptive DTMC, the adaptivity
parameter Nthres is the value that causes the measured frequencies of a state to be scaled
down by a factor of two when being surpassed.

Figure 4.7 shows the effect of p on the compression ratio achieved with this method
on the N21 benchmark (Table 1.2), verifying that higher model order values result to
more accurate modelling and therefore better compression ratios. Figure 4.8 shows
that the value of Nthres has a minimal effect on the compression ratio, after a certain
value is reached. It should be noted that this method achieves a compression speed of
approximately 11 MB/sec for p = 12, in the same setup as the measurements for the
previous method (calculated for compressing the bases only, but reading from the whole
FASTQ file).

4.2.3 Evaluation

Comparing the two methods that were described earlier, it is evident that omitting the
preprocessing step is superior both in terms of compression ratio and compression speed.

The superior ratio reveals that the repetition of sub-sequences in the DNA molecule
is a property that can be very advantageous when used for compression. Preprocessing
with the Burrows-Wheeler transform fails in comparison, because it ‘breaks’ this property
by permuting the characters. Moreover, it works in a local context only; it does not take
under consideration any information outside the block of M reads.

On the other hand, the method that skips the preprocessing step adapts the DTMC

4.2. SEQUENCES OF NUCLEOTIDE BASES 67

6 7 8 9 10 11 12 13

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Order of the adaptive DTMC model

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 4.7: Compression ratio on the base sequences using different values for the order
of the DTMC in N21, without preprocessing (Nthres = 4096).

1,000
2,000

3,000
4,000

5,000
6,000

7,000
8,000

9,000
10,000

19.656

19.657

19.658

19.659

19.66

19.661

Threshold on the number of observations

C
om

p
re

ss
io

n
R

at
io

(%
)

Figure 4.8: Compression ratio on the bases of N21 with different values of Nthres, without
preprocessing (p = 12).

68 CHAPTER 4. COMPRESSION OF IDENTIFIERS AND BASES

model as the compression progresses. Thus, the model contains information from the
beginning of the file, up to the last encoded character, and the larger the input data,
the closest the model is fitted to the information it contains. Since, the entirety of the
compressed data is used for training the model, there is not danger of overfitting, as was
the case on HMMs.

In addition, the second method’s superiority in compression speed is a result of its
simplicity. It needs very little computational power, with the only major computations
being the ones performed by the arithmetic coder. Rather, its main bottleneck derives
from the large amount of memory needed by the DTMC, which leads to cache misses
and high memory latency.

Complete Compressor 5
Based on the techniques described on the previous chapters, a simple implementation
of a compressor/decompressor pair was developed, incorporating the methods that were
deemed best through experimentation. The implemented compressor includes the fol-
lowing three parts:

• The id strings compressor, which uses the delta encoding preprocessing step, along
with DTMC modelling and arithmetic coding. The DTMC has an order of 10, so
as to achieve adequate precision in modelling (see Fig. 4.2) while at the same time
keeping the memory consumption low. The NThresh value was kept at 65000.

• The bases compressor, which performs no preprocessing on the data, but encodes
with arithmetic coding, based on DTMC modelling. In this case, the order of
the model is kept at the value of 12, even though a higher order shows better
compression. This is chosen as such, because the memory needed for storing the
model increases exponentially with the order, and a 12-th order model already
requires 160 MB. The NThresh value was kept at 2000.

• The quality scores compressor, which performs adaptive LPC preprocessing, and
models the prediction errors with DTMCs and codes once again with arithmetic
coding. The parameter values that are used are: l = 2, Npos = 13, Njump = 15, p =
1, NThres = 4096, T = 3000000, which proved to be best during the experiments.

Bases
Compressor

Ids
Compressor

file.fastq

Quality Scores
Compressor

file.fastq.bascomp

file.fastq.idcomp

file.fastq.qualcomp

Input OutputCompression

Figure 5.1: The compressor.

69

70 CHAPTER 5. COMPLETE COMPRESSOR

file.fastq.bascomp

file.fastq.idcomp

file.fastq.qualcomp

Decompressor file.fastq

Input Output

Figure 5.2: The decompressor.

The compression for each of the three types of data is performed independently from
the others, with three distinct programs (Fig. 5.1). Thus, the result of the compres-
sion is given in three distinct files, that contain all the information needed to losslessly
reconstruct the original file.

The decompression process on the other hand does not follow the same technique
(Fig. 5.2), since the decompressed results have to be multiplexed to recreate the FASTQ
format, serializing the accesses on the three files.

5.1 Compression performance

The compression results that are achieved for the five benchmarks of Table 1.3 are shown
in Table 5.1. The compressor is able to compress a FASTQ file in almost a fifth of its
original size, without the loss of any kind of information. The results once again prove
the claim that id strings contain very little information, while the quality scores have
the highest information content and are the most difficult to compress.

Moreover, we can see that the level of compression that can be achieved on sequences
quality scores and bases can vary according to the input file. Especially for the quality
scores, the compression ratio depends on the variety of scores that are more frequently
encountered in the file. A highly skewed distribution of the quality scores contains less
information and results in more efficient compression, as evidenced between the bench-
marks C11 and C12 (Fig. 5.3) which have approximately 6% difference in the compres-
sion ratios of quality scores. This difference is even more apparent when comparing to
the distribution of N21 (Fig. 3.3), which contains high quality reads, resulting from
higher quality samples for the sequencing process.

A similar effect can be observed for the compression the base sequences. However,
this is not attributed to the distribution of individual base characters, since these are
usually almost uniform. Rather, the difference lies in the fact that different files have

5.1. COMPRESSION PERFORMANCE 71

Uncompressed File (measurements in bytes)

Benchmark Ids Bases Quality scores Total Size

N21 854555441 800804160 800804160 2502364001

C11 2243457790 4123334088 4123334088 10611400498

C12 2243457790 4123334088 4123334088 10611400498

C21 2231388138 4101106146 4101106146 10554221199

C22 2231388138 4101106146 4101106146 10554221199

Compressed File (measurements in bytes)

Benchmark Ids Bases Quality scores Total Size

N21 53750474 (6,3%) 157436440 (19,7%) 252127786 (31,5%) 463314700 (18,5%)

C11 124423670 (5,5%) 938021598 (22,7%) 1308203087 (31,7%) 2370648355 (22,3%)

C12 124424019 (5,5%) 951909077 (23,1%) 1551848623 (37,6%) 2628181719 (24,8%)

C21 123801431 (5,5%) 933508524 (22,8%) 1282775960 (31,3%) 2340085915 (22,2%)

C22 123801813 (5,5%) 942813817 (23,0%) 1525230664 (37,2%) 2591846294 (24,6%)

Table 5.1: Compression results of the implemented compression technique (the compres-
sion ratios are shown in the parentheses).

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

Quality scores

R
el

at
iv

e
fr

eq
u
en

cy

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

0.3

Quality scores

R
el

at
iv

e
fr

eq
u
en

cy

Figure 5.3: Relative frequency distribution of the quality scores in C11 (left) and C12
(right).

different values for the coverage value of the set of reads that they contain. Thus, files
with a higher coverage are bound to contain more repetitions of the same subsequences of
bases, which the DTMC eventually learns and can predict with a high degree of accuracy.
This effect is shown in the compression of the base sequences of N21, which contains a
high coverage of a smaller sample than the one sequenced for the C11-C22 benchmarks.

As a final remark, the results show that files with small read sizes are bound to be
compressed more than files with larger reads. This is evidenced by the compression ratio
achieved on N21 which has a read size of 51 as opposed to the other benchmarks that
have a read size of 101. As the read size of a set of reads decreases, the portion of the
file that contains id strings increases. For example, in the N21 benchmark, the id strings

72 CHAPTER 5. COMPLETE COMPRESSOR

take up almost 34% of the file, while in C11, the portion is only 21.1%.

gz
ip

-1

gz
ip

-9

bz
ip

2

B
A
M

qu
ip

qu
ip

-a

th
is

wor
k

20

25

30

35

37.81

32.02

25.92

32.73

20.91 20.89
22.3

Compression technique

C
om

p
re

ss
io

n
ra

ti
o(

%
)

Figure 5.4: Comparison of the compression ratios of this work to popular compressors
for the C11 benchmark.

N
21

C
11

C
12

C
21

C
22

0

10

20

30

40

16
.7

7 20
.9

1

22
.5

1

20
.7

8

22
.3

9

18
.5

2 22
.3

4

24
.7

7

22
.1

7

24
.5

6

Benchmark

C
o
m

p
re

ss
io

n
R

at
io

(%
)

quip this work

Figure 5.5: Comparison of the compression ratios achieved by quip compared with this
work.

Compared to other available techniques, the compressor achieves compression ratios
close to the state-of-the-art, as shown in Fig. 5.4. This result is consistent with all
benchmarks, where this work achieves a compression ratio within 1.8% on average of

5.2. COMPRESSION SPEED 73

the ratio that is achieved by quip [24], the state-of-the-art compressor (Fig. 5.5). The
slightly improved compression performance of quip suggests that the preprocessing of
the data may not always beneficial. Preprocessing alters the statistical properties of the
data, meaning that even though LPC decreases the 1st order entropy of the sequence of
quality scores, it may destroy dependencies between consecutive values, that would be
otherwise uncovered with DTMC modelling.

5.2 Compression speed

The compressor and decompressor pair that were implemented aimed at evaluating the
compression performance of the selected techniques, and not at creating a fast compres-
sor. Therefore, there is enough room for improvement on this matter. Apart from some
decisions in the selection of the techniques for reasonable execution times (like the choice
of adaptive LPC instead of blocked LPC, and the creation of 3 programs that are exe-
cuted in parallel during compressing), no optimizations are performed for improving the
caching behaviour or increasing the degree of parallelism. Still, this simple implementa-
tion achieves 15.08 MB/s compression speed on average, and 2.1 MB/s decompression
speed.

The reason behind the extremely low decompression speed is uncovered by profiling
the application, which shows that 75% of the time is spent on the decoding algorithm
of the arithmetic coding process (Appendix A.2). In addition, decoding the bases or the
quality scores alone can be performed at a speed of almost 7.5 MB/s, which shows that
the decoding of the id strings is the bottleneck of the whole program.

The difference that id strings have over the bases and quality scores is the fact
that they consist of a large alphabet. This in turn means that the lines 6-13 of the
algorithm are repeated many times before the encoded symbol is found, as opposed to
the compression process which only executes them once per symbol. These lines consist
the most computational intensive lines of code in the whole process, as they contain both
multiplications and divisions for 64-bit numbers1, and therefore repeating over them is
bound to decrease the compression speed.

1The products w · dk(sj) and w · dk(sj) must both be 64-bit numbers to avoid overflow

74 CHAPTER 5. COMPLETE COMPRESSOR

Towards real-time compression 6
Most compression techniques that are used on sequencing data achieve high compression
ratios, but the speed with which they compress and decompress are far from achieving
transparent compression. Modern solid-state drives achieve reading and writing in speeds
of hundreds of MB per second [25], and real-time compression should be able to reach
these speeds.

The Computer Engineering laboratory of TUDelft has obtained the Generic
WorkQueue Engine (GenWQE), a PCIe Accelerator card from IBM, which can perform
DEFLATE[12, 14, 13] compatible compression at reported speeds of 2GB/s. Unfor-
tunately, the drivers for the card are not yet disclosed from the manufacturer, as the
card is still in experimental stages of production, but in this chapter the work focuses
on investigating whether the card can produce adequate compression ratios based on
simulations.

In section 6.1 we present how the card works, and based on that, in section 6.2 we
show how to determine the configuration of the card for compressing FASTQ files, and
simulate the results that the card would achieve with this configuration.

6.1 The GenWQE card

The GenWQE card performs DEFLATE-compatible compression, which means that the
compressed files can be decompressed with any other DEFLATE compatible decompres-
sor. The compression process is similar to regular the regular gzip process (see Section
2.1.1).

First, the LZ77 [49] algorithm is performed on the input data to identify string
repetitions which are replaced by a (length, distance) tuple. The data to be compressed
consists of length, distance and literal symbols 1, which are represented using 2 distinct
alphabets. The first contains the values 0-285, with the first 256 ones corresponding
to literals with the same ASCII representation, value number 256 corresponding to the
end of block character and values 257-285 corresponding to the lengths in tuples (the
lengths take values in the range 3-258, and thus their representation may require some
extra bits, as defined in the standard [12]). The second alphabet is used to represent
the 32768 different distance values in 30 symbols: 0 through 29. In order to do so, extra
bits are utilized after a symbol’s code, as defined in the standard.

In general, the DEFLATE standard allows the compressor to encode the literals,
lengths and distances of a block of the input data in 3 different ways:

• No compression

1Literals are the characters that are encoded as is, since they do not belong to a repeated string.

75

76 CHAPTER 6. TOWARDS REAL-TIME COMPRESSION

• Compression with fixed Huffman Trees (defined in the standard)

• Compression with dynamic Huffman Trees

Gzip in general chooses the third method and creates two sets for Huffman codes [22]
(one for each alphabet) for each input block, in order to be able to detect local statistical
properties of the input file and adapt to them. The GenWQE card, on the other hand,
drops this adaptability for the sake of fast compression, and compresses all literals,
lengths and distances with Huffman codes that are provided beforehand by the user.
This way, no computation of Huffman trees need to be performed, and only one pass
over the data is needed for their compression.

Therefore, the card can be configured with a different couple of trees, according to
the type of input data it is meant to compress. In the next section we present how these
trees can be created for FASTQ files, in a process that can be mimicked for any other
type of input file.

6.2 Configuring for FASTQ files

The compression performance of the GenWQE card greatly depends on the selection of
the Huffman trees for the literals-lengths and distances alphabets. In order to achieve as
good a compression ratio as possible, the card must be provided trees specially designed
for the type of input file that it compresses.

The FASTQ file format gives a lot of opportunities for repeated strings of characters;
id strings are almost identical and base sequences have already been shown to have a
lot of repetitions. Moreover, the set size of reads favours certain distance values, making
their probability distribution skewed.

Therefore, in order to create a couple of trees for the GenWQE card that aim at
FASTQ compression, we measure the frequency of occurrence of every symbol in the re-
sult of the LZ77 algorithm for a set of files of this type. For performing that, the popular
open source library zlib [18] was modified to report every symbol that is output from the
LZ algorithm, and it was subsequently used in a simple implementation of gzip. The set of
input files consisted of the five benchmarks of Table 1.2, plus the following six open source
files from the GenBank [3] database of the National Center for Biotechnology Informa-
tion (NCBI): SRR400039.fastq, SRR125858.fastq, SRR359032.fastq, SRR372816.fastq,
ERR030867.fastq, and ERR030894.fastq.

Performing the compression with the modified zlib library allows us to measure the
frequency of occurrence of every symbol and to calculate Huffman trees for them with
the method described in [22] and [12], with the DEFLATE requirement of having a
maximum code length of 15 and the card-only requirement of having a code for every
symbol, whether it is encountered or not. The calculated trees can be found in Appendix
B.

The measured frequencies (and therefore the Huffman trees as well) show that the
most frequent literals are in the range 40-74, which correspond to quality scores, meaning
that it is harder to find repetitive subsequences in them. As for the length of repetitive
subsequences, values between 4 and 58 are most commonly encountered (values 257-275

6.2. CONFIGURING FOR FASTQ FILES 77

in the literal-length tree), with the repetition most probably being more than 8193 bytes
earlier in the file (since values above 26 are most common in the distance trees).

Even though it is not possible to configure the lab’s GenWQE card yet, it is possible
to calculate its compression performance, since we know the frequency of occurrence of
every symbol (si, i ∈ [0, 285] for the literal-length alphabet and vi, i ∈ [0, 29] for the
distance alphabet) and the number of bits that are needed to compress it (which is equal
to the number of bits needed for its Huffman codeword (hj) plus any extra bits defined
by the standard (kj)). Thus, the total number of bits L of the compressed file would be:

L =

285∑
i=0

[f(si) ∗ (hsi + ksi)] +

29∑
i=0

[f(vi) ∗ (hvi + kvi)] (6.1)

where f() is the measured frequency of a symbol.

Benchmark Calculated Comp. ratio (%) Gzip -9 comp. ratio (%)

N21 29,01 28,67
C11 32,23 32,02
C12 35,84 34,45
C21 32,02 31,80
C22 34,5 34,27

Table 6.1: Simulated compression ratio achieved with the GenWQE card and comparison
with gzip -9.

Table 6.1 shows a comparison between the compression ratio achieved with regular
gzip (compression level 9) and the calculated compression ratio that the GenWQE card
would achieve with the Huffman trees calculated before, on the benchmarks of Table 1.3.
The results show that the card would achieve slightly worse compression than gzip, which
was expected, since the dynamism of different Huffman codes throughout the file was
dropped. Nevertheless, the difference is not high, with the highest observed difference
at 1.39%.

Therefore, the GenWQE card with this configuration can definitely be used for high-
throughput compression for FASTQ files, as it achieves compression very close to regular
gzip. It should be noted however that the Huffman codes that were created aim only at
FASTQ compression, but the same methodology that was utilized to create them can be
used for other file formats as well, like SAM or FASTA.

78 CHAPTER 6. TOWARDS REAL-TIME COMPRESSION

Conclusions and
recommendations 7
7.1 Conclusions

The DNA sequencing process is the backbone of modern genetics, the process of de-
termining the precise order of nitrogenous bases within a strand of the DNA molecule.
Recent advances in sequencing technology have exponentially increased the speed of the
process and brought forth the Next-Generation sequencing. This rapid expansion of data
generation, causes the need in storage space to increase by the same rate. This means
that if the same trend persists, the cost of a DNA sequencing pipeline will be dominated
by the storage cost, rather than the sequencing itself. In order to alleviate this problem,
efficient compression is imperative. However, the generic compression techniques, that
are used nowadays, such as gzip and bzip2, cannot provide high compression ratios. In-
stead, specialized solutions must be investigated, which take under consideration unique
statistical properties of this kind of data to achieve superior compression.

In this thesis, we investigate techniques for achieving high compression ratios on
FASTQ files, while at the same time keeping the compression speed in manageable
levels. In order to achieve better compression performance than generic techniques, the
input files have to be disintegrated to expose the three different kind of information that
they hold: the identifier strings, the sequences of bases and the bases of quality scores.
The final goal is achieved by identifying the statistical properties of every specific kind
of information so as to use a suitable compression method.

The sequences of quality scores are most difficultly compressed, since they have the
highest information content. Two compression methods are investigated. The first uses
linear prediction coding as a preprocessing step to transform the sequence of quality
scores to a sequence of prediction errors, with reduced entropy. Subsequently, the infor-
mation source of the prediction errors is modelled with a discrete time Markov chain, and
compressed with an arithmetic coder. The second method skips the preprocessing step
and attempts to model the information source of the quality scores with hidden Markov
models, and in turn compress using again an arithmetic coder for entropy coding. The
comparison of the two techniques showed that the LPC method was superior to both
compression performance (31.2% compared to 42.4% for the second method) and speed
(15.08 MB/s compared to 0.5 MB/s), and in addition was more robust in respect with
design parameters. The hidden Markov models on the other hand required too much
computation resources, while at the same time failed to model the source of the quality
scores adequately.

The identifier strings of the reads proved much more highly compressible, since there
exists a huge amount of redundant information between the ids of consecutive reads.
Therefore, using a simple parsing and delta encoding preprocessing step, complemented
by Markov chain modelling and arithmetic coding managed to compress to approximately

79

80 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

5.5% of its initial size, needing in average 0.4 bits per symbol.
The sequences of bases are in between ids and quality scores in terms of information

content. As the alphabet size of these sequences is small, the Burrows-Wheeler transform
was investigated for transforming the data in a more highly compressible form. However,
the results show that the transform has the opposite result; the sequences of bases are
highly structured by nature and therefore predictable, while the result of the transform
is more unpredictable. As a result, the use of a high order Markov chain for modelling
along with arithmetic coding, led to better compression with a 19.7% ratio, and at the
same time, better timing performance.

Furthermore, a compression/decompression pair was implemented using the tech-
niques that proved best for each of the three kinds of information. The implementation
achieved compression performance very close to state-of-the-art compressors, compress-
ing files close to 19% of their original size.

Finally, we investigated how a GenWQE compression card can be used to achieve
moderate compression at very high speeds (reportedly 2 GB/s), conforming to the DE-
FLATE standard. We created specialized Huffman codes for FASTQ files, that can be
provided to the card, resulting in estimated compression ratios at maximum 1.4% worse
than the highest compression level of gzip.

7.2 Recommendations

As this thesis focused on achieving high compression for FASTQ files, further research
can move towards two main directions: improving the compression performance further,
or improving the compression speed.

For improving the compression, research should focus in increasing the compression
on quality scores. A very promising idea lies in the fact that each quality score cor-
responds to a nucleotide base, and therefore there may exist some correlation between
specific sequences of bases and sequences of quality scores. This may seem counter-
intuitive, in the sense that quality scores depend on the quality of the sample and not
on the sequence of the bases, yet, it would not be unimaginable if the sequencing process
‘favours’ some base sequences in terms of quality, or ‘struggles’ with others.

Moreover, the compression could be greatly improved if the possibility for lossy com-
pression was present. Yet, this requires the knowledge of the whole sequencing pipeline,
and the certainty that losing information does not influence downstream applications.

In terms of improving the compression speed, there is a lot of room for improvement.
Achieving transparent processing through hardware implementations of specialized com-
pression methods, would surpass the obvious disadvantage of the GenWQE card (or sim-
ilar general compression hardware implementations), which is the reduced compression
performance. Indeed, the specialized compressor that was presented in this work is an
example of a streaming application, that is a good candidate for FPGA implementation.

Finally, the specialized compression techniques could be extended to the increasingly
popular SAM file format, which stores a superset of the data of FASTQ files.

Bibliography

[1] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer Publishing Company,
Incorporated, 1 edition, 2008.

[2] L. Baum and G. Sell. Growth transformations for functions on manifolds. Pacific
Journal of Mathematics, 27(2):211–227, 1968.

[3] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and E. Sayers. GenBank.
Nucleic acids research, 37(Database issue):D26–31, January 2009.

[4] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression
scheme. Commun. ACM, 29(4):320–330, April 1986.

[5] J. Bonfield and M. Mahoney. Compression of FASTQ and SAM Format Sequencing
Data. PLoS ONE, 8(3), 2013.

[6] T. Brown. Genomes 3. Garland Science, 2006.

[7] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Digital SRC Research Report, 1994.

[8] P. Cock, C. Fields, N. Goto, M. Heuer, and P. Rice. The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic
Acids Res, 38(6):1767–1771, April 2010.

[9] F. Costa. Big data in biomedicine. Drug Discovery Today, October 2013.

[10] A. Cox, M. Bauer, T. Jakobi, and G. Rosone. Large-scale compression of genomic
sequence databases with the Burrows-Wheeler transform. CoRR, abs/1205.0192,
2012.

[11] S. Deorowicz and S. Grabowski. Data compression for sequencing data. Algorithms
for Molecular Biology, 8:25, 2013.

[12] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951, May 1996. http://www.ietf.org/rfc/rfc1951.txt.

[13] P. Deutsch. GZIP file format specification version 4.3. RFC 1952, May 1996.
http://www.ietf.org/rfc/rfc1952.txt.

[14] P Deutsch and J. Gailly. ZLIB Compressed Data Format Specification version 3.3.
Internet RFC 1950, May 1996. http://www.ietf.org/rfc/rfc1950.txt.

[15] A. Drake. Discrete-state markov processes. In Fundamentals of applied probability
theory, chapter 5. McGraw-Hill, 1988.

81

82 BIBLIOGRAPHY

[16] M. Fritz, R Leinonen, G. Cochrane, and E. Birney. Efficient storage of high through-
put sequencing data using reference-based compression. Genome Research, 21:734–
740, 2013.

[17] J. Gailly. GNU Gzip documentation. http://www.gnu.org/software/gzip/

manual/gzip.html, 2013. [Online; accessed 1-July-2014].

[18] J. Gailly and M. Adler. zlib: A Massively Spiffy Yet Delicately Unobtrusive Com-
pression Library. http://www.zlib.net/, 2014. [Online; accessed 15-August-2014].

[19] S. Golomb. Run-length encodings (corresp.). IEEE Transactions on Information
Theory, 12(3):399–401, 1966.

[20] F. Hach, I. Numanagic, C. Alkan, and S. Sahinalp. SCALCE: boosting se-
quence compression algorithms using locally consistent encoding. Bioinformatics,
28(23):3051–3057, 2012.

[21] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961.

[22] D. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Pro-
ceedings of the IRE, 40(9):1098–1101, September 1952.

[23] International Organization for Standardization. Information technology — com-
puter graphics and image processing — portable network graphics (png): Functional
specification. ISO/IEC 15948:2004, 2004.

[24] D. Jones, W. Ruzzo, X Peng, and M. Katze. Compression of next-generation se-
quencing reads aided by highly efficient de novo assembly. CoRR, abs/1207.2424,
2012.

[25] M. Jung and M. Kandemir. Revisiting Widely Held SSD Expectations and
Rethinking System-level Implications. In Proceedings of the ACM SIGMET-
RICS/International Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’13, pages 203–216, New York, NY, USA, 2013. ACM.

[26] C. Kozanitis, C Saunders, S. Kruglyak, V. Bafna, and G. Varghese. Compressing
Genomic Sequence Fragments Using SlimGene. Journal of Computational Biology,
18(3):401–413, 2011.

[27] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup. The
Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079,
August 2009.

[28] P. Li, X. Jiang, S. Wang, J. Kim, H. Xiong, and L. Ohno-Machado. HUGO: Hierar-
chical mUlti-reference Genome cOmpression for aligned reads. JAMIA, 21(2):363–
373, 2014.

[29] M. L. Metzker. Sequencing technologies - the next generation. Nat Rev Genet,
11(1):31–46, January 2010.

http://www.gnu.org/software/gzip/manual/gzip.html
http://www.gnu.org/software/gzip/manual/gzip.html
http://www.zlib.net/

BIBLIOGRAPHY 83

[30] J. Norris. Markov chains. Cambridge series in statistical and probabilistic mathe-
matics. Cambridge University Press, 1998.

[31] I. Pavlov. LZMA SDK (Software Development Kit). http://7-zip.org/sdk.

html/. [Online; accessed 14-July-2014].

[32] L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[33] L. Rabiner and R. Schafer. Digital Processing of Speech Signals. Englewood Cliffs:
Prentice Hall, 1978.

[34] J. Reece, L. Urry, M. Cain, S. Wasserman, P. Minorsky, and R. Jackson. Campbell
Biology (9th Edition). Benjamin Cummings, 9 edition, October 2010.

[35] I. Richardson. The H.264 Advanced Video Compression Standard. Wiley, 2011.

[36] M. Ronaghi, M. Uhlén, and P. Nyrén. A Sequencing Method Based on Real-Time
Pyrophosphate. Science, 281(5375):363–365, July 1998.

[37] A. Said. Introducing to Arithmetic Coding - Theory and Practice. HPL-2004-76.
Imaging Systems Laboratory, HP Laboratories Palo Alto, April 2004.

[38] F Sanger, S Nicklen, and AR Coulson. DNA sequencing with chain-terminating
inhibitors. Proceedings of The National Academy of Sciences of The United States
Of America, 74:5463–5467, 1977.

[39] K. Sayood. Lossless Compression Handbook. Communications, Networking and
Multimedia. Elsevier Science, 2002.

[40] K. Sayood. Introduction to Data Compression, Third Edition (Morgan Kaufmann
Series in Multimedia Information and Systems). Morgan Kaufmann, Third edition,
December 2005.

[41] J. Seward. bzip2 official website. http://www.bzip.org/. [Online; accessed 1-July-
2014].

[42] J. Seward. bzip2 and libbzip2, version 1.0.5: A program and library for data
compression, documentation. http://www.bzip.org/1.0.5/bzip2-manual-1.0.

5.html, 2007. [Online; accessed 1-July-2014].

[43] C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, July, October 1948.

[44] L. Stein. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010.

[45] P. Strobach. Linear Prediction Theory: A Mathematical Basis for Adaptive Systems.
Springer series in information sciences. Springer-Verlag, 1990.

http://7-zip.org/sdk.html/
http://7-zip.org/sdk.html/
http://www.bzip.org/
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html

84 BIBLIOGRAPHY

[46] The SAM/BAM Format Speicification Working Group. Sequence Alignment/Map
Format Specification. http://samtools.github.io/hts-specs/SAMv1.pdf, 2014.
[Online; accessed 1-July-2014].

[47] C. Walter. Kryder’s Law. Scientific American, August 2005.

[48] R. Wan, V. Anh, and K Asai. Transformations for the compression of FASTQ
quality scores of next-generation sequencing data. Bioinformatics, 28(5):628–635,
2012.

[49] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23:337–343, 1977.

http://samtools.github.io/hts-specs/SAMv1.pdf

Algorithms for Arithmetic
Coding A
Definitions:

P = Integer representation precision
WHOLE = 2P − 1
HALF = WHOLE/2
QUARTER = WHOLE/4
N = the size of the sequence to be encoded
S = s1s2...sN : the sequence to be encoded over the alphabet U , |U| = M
V = v1v2...vL: the sequence of bits that consist the codeword to be decoded
pk(u) is represented as frequencies of occurrence:

pk(u) = rk(u)
Rk

, Rk =
∑M

i=0 rk(i), rk(i) ∈ Z
ck(0) = 0
ck(j) =

∑j−1
i=0 rk(i), j = 1, ...,M, k = 1, ..., N

dk(j) = ck(j) + rk(j), j = 1, ...,M, k = 1, ..., N

85

86 APPENDIX A. ALGORITHMS FOR ARITHMETIC CODING

A.1 Encoding Algorithm

1 Algorithm: Arithmetic Encoding

Input: N , S, ck(), dk() ∀k ∈ [1, N]
Output: emitted bits

// Initialize:

2 a ←0, b ←WHOLE, s ←0;

// Iterate over the sequence:

3 for k ← 1 to N do
// Calculate the new interval:

4 w ←b-a;
5 b ←a +round(w ·dk(sk)/Rk);
6 a ←a +round(w ·ck(sk)/Rk);

// Rescaling: Mappings E1 and E2

7 while b <HALF or a >HALF do
8 if b <HALF then
9 emit 011...1 (s ones), s ← 0;

10 a ← 2·a, b ← 2·b;

11 else if a >HALF then
12 emit 100...0 (s zeros), s ←0;
13 a ← 2 · (a −HALF), b ← 2 · (b −HALF);

// Rescaling: Mapping E3

14 while a >QUARTER and b <3·QUARTER do
15 s ←s +1;
16 a ← 2 · (a −QUARTER), b ← 2 · (b −QUARTER);

// Finalize:

17 s ←s +1;
18 if a ≤QUARTER then
19 emit 011...1 (s ones)

20 else
21 emit 100...0 (s zeros)

A.2. DECODING ALGORITHM 87

A.2 Decoding Algorithm

1 Algorithm: Arithmetic Decoding

Input: N , V , ck(), dk() ∀k ∈ [1, N]
Output: S

// Initialize:

2 a ←0, b ←WHOLE, z ←0 i ←P+1;
3 z ← (v1v2...vP)2; // Read the first P bits

4 // Iterate over the sequence:

5 for k ← 1 to N do
// Calculate the new interval for all symbols:

6 for j ← 1 to M do
7 w ←b −a;
8 b 0 ←a +round(w ·dk(sj)/Rk);
9 a 0 ←a +round(w ·ck(sj)/Rk);

10 if a 0 ≤ z <b 0 then
11 sk ← sj ;
12 a ←a 0, b ←b 0;
13 break;

// Rescaling: Mappings E1 and E2

14 while b <HALF or a >HALF do
15 if b <HALF then
16 a ← 2·a, b ← 2·b z ← 2·z;
17 else if a >HALF then
18 a ← 2 · (a −HALF), b ← 2 · (b −HALF), z ← 2 · (z −HALF);

// Read the next codeword bit:

19 if vi=1 then z ←z +1;
20 i ←i +1;

// Rescaling: Mapping E3

21 while a >QUARTER and b <3·QUARTER do
22 a ← 2 · (a −QUARTER), b ← 2 · (b −QUARTER);
23 z ← 2 · (z −QUARTER);

// Read the next codeword bit:

24 if vi=1 then z ←z +1;
25 i ←i +1;

88 APPENDIX A. ALGORITHMS FOR ARITHMETIC CODING

Huffman trees for GenWQE B
Value Code Code size (bits)

0 07FE 11
1 00F6 8
2 07FF 11
3 03FE 10
4 00F7 8
5 01FE 9
6 00F8 8
7 00F9 8
8 00FA 8
9 00FB 8
10 00FC 8
11 00FD 8
12 00FE 8
13 007A 7
14 003A 6
15 003B 6
16 18 5
17 003C 6
18 19 5
19 001A 5
20 001B 5
21 001C 5
22 8 4
23 9 4
24 000A 4
25 000B 4
26 0 3
27 1 3
28 2 3
29 3 3

Table B.1: Distance Huffman code

89

90 APPENDIX B. HUFFMAN TREES FOR GENWQE

Value Code Code size (bits) Value Code Code size (bits) Value Code Code size (bits)
0 7F24 15 101 7F5F 15 202 7FC4 15
1 7F25 15 102 7F60 15 203 7FC5 15
2 7F26 15 103 7F61 15 204 7FC6 15
3 7F27 15 104 7F62 15 205 7FC7 15
4 7F28 15 105 7F63 15 206 7FC8 15
5 7F29 15 106 7F64 15 207 7FC9 15
6 7F2A 15 107 7F65 15 208 7FCA 15
7 7F2B 15 108 7F66 15 209 7FCB 15
8 7F2C 15 109 7F67 15 210 7FCC 15
9 7F2D 15 110 7F68 15 211 7FCD 15
10 7F2E 15 111 7F69 15 212 7FCE 15
11 7F2F 15 112 7F6A 15 213 7FCF 15
12 7F30 15 113 7F6B 15 214 7FD0 15
13 7F31 15 114 7F6C 15 215 7FD1 15
14 7F32 15 115 7F6D 15 216 7FD2 15
15 7F33 15 116 7F6E 15 217 7FD3 15
16 7F34 15 117 7F6F 15 218 7FD4 15
17 7F35 15 118 7F70 15 219 7FD5 15
18 7F36 15 119 7F71 15 220 7FD6 15
19 7F37 15 120 7F72 15 221 7FD7 15
20 7F38 15 121 7F73 15 222 7FD8 15
21 7F39 15 122 7F74 15 223 7FD9 15
22 7F3A 15 123 7F75 15 224 7FDA 15
23 7F3B 15 124 7F76 15 225 7FDB 15
24 7F3C 15 125 7F77 15 226 7FDC 15
25 7F3D 15 126 7F78 15 227 7FDD 15
26 7F3E 15 127 7F79 15 228 7FDE 15
27 7F3F 15 128 7F7A 15 229 7FDF 15
28 7F40 15 129 7F7B 15 230 7FE0 15
29 7F41 15 130 7F7C 15 231 7FE1 15
30 7F42 15 131 7F7D 15 232 7FE2 15
31 7F43 15 132 7F7E 15 233 7FE3 15
32 7F44 15 133 7F7F 15 234 7FE4 15
33 1FC6 13 134 7F80 15 235 7FE5 15
34 7F45 15 135 7F81 15 236 7FE6 15
35 03F4 10 136 7F82 15 237 7FE7 15
36 7F46 15 137 7F83 15 238 7FE8 15
37 1FC7 13 138 7F84 15 239 7FE9 15
38 03F5 10 139 7F85 15 240 7FEA 15
39 03F6 10 140 7F86 15 241 7FEB 15
40 00F4 8 141 7F87 15 242 7FEC 15
41 00F5 8 142 7F88 15 243 7FED 15
42 01F4 9 143 7F89 15 244 7FEE 15
43 00F6 8 144 7F8A 15 245 7FEF 15
44 01F5 9 145 7F8B 15 246 7FF0 15
45 01F6 9 146 7F8C 15 247 7FF1 15
46 00F7 8 147 7F8D 15 248 7FF2 15
47 01F7 9 148 7F8E 15 249 7FF3 15
48 68 7 149 7F8F 15 250 7FF4 15
49 69 7 150 7F90 15 251 7FF5 15
50 006A 7 151 7F91 15 252 7FF6 15
51 006B 7 152 7F92 15 253 7FF7 15
52 006C 7 153 7F93 15 254 7FF8 15
53 006D 7 154 7F94 15 255 7FF9 15
54 006E 7 155 7F95 15 256 3F90 14
55 006F 7 156 7F96 15 257 11 5
56 28 6 157 7F97 15 258 2 4
57 29 6 158 7F98 15 259 3 4
58 002A 6 159 7F99 15 260 4 4
59 002B 6 160 7F9A 15 261 0 3
60 002C 6 161 7F9B 15 262 5 4
61 002D 6 162 7F9C 15 263 12 5
62 002E 6 163 7F9D 15 264 72 7
63 002F 6 164 7F9E 15 265 73 7
64 000C 5 165 7F9F 15 266 74 7
65 000D 5 166 7FA0 15 267 75 7
66 000E 5 167 7FA1 15 268 76 7
67 000F 5 168 7FA2 15 269 13 5
68 30 6 169 7FA3 15 270 77 7
69 31 6 170 7FA4 15 271 00F8 8
70 32 6 171 7FA5 15 272 01F9 9
71 10 5 172 7FA6 15 273 78 7
72 70 7 173 7FA7 15 274 79 7
73 71 7 174 7FA8 15 275 00F9 8
74 01F8 9 175 7FA9 15 276 07EF 11
75 7F47 15 176 7FAA 15 277 07F0 11
76 7F48 15 177 7FAB 15 278 0FE2 12
77 7F49 15 178 7FAC 15 279 7FFA 15
78 07EE 11 179 7FAD 15 280 7FFB 15
79 7F4A 15 180 7FAE 15 281 7FFC 15
80 7F4B 15 181 7FAF 15 282 3F91 14
81 7F4C 15 182 7FB0 15 283 7FFD 15
82 7F4D 15 183 7FB1 15 284 7FFE 15
83 7F4E 15 184 7FB2 15 285 7FFF 15
84 33 6 185 7FB3 15
85 7F4F 15 186 7FB4 15
86 7F50 15 187 7FB5 15
87 7F51 15 188 7FB6 15
88 7F52 15 189 7FB7 15
89 7F53 15 190 7FB8 15
90 7F54 15 191 7FB9 15
91 7F55 15 192 7FBA 15
92 7F56 15 193 7FBB 15
93 7F57 15 194 7FBC 15
94 7F58 15 195 7FBD 15
95 7F59 15 196 7FBE 15
96 7F5A 15 197 7FBF 15
97 7F5B 15 198 7FC0 15
98 7F5C 15 199 7FC1 15
99 7F5D 15 200 7FC2 15
100 7F5E 15 201 7FC3 15

Table B.2: Literal-length Huffman code

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Background
	Shotgun Sequencing
	The FASTQ File Format
	Data Compression
	Discrete Time Markov Chain
	Arithmetic Coding

	Problem Statement
	Thesis Outline

	Related Work
	General compression techniques
	Gzip
	bzip2

	Domain-specific compression techniques
	SAMtools
	Quip

	Comparison of FASTQ compression techniques
	Additional domain-specific techniques

	Compression of Quality Scores
	Introduction
	Linear Predictive Coding
	Linear Prediction
	Blocked LPC
	Modelling and Coding
	Evaluation of Blocked LPC
	Adaptive LPC

	Modelling with Hidden Markov Models
	Training an HMM
	Extracting information from the HMM
	Implementation

	Evaluation

	Compression of Identifiers and Bases
	Identifier Strings
	Preprocessing
	Modelling and Coding
	Evaluation

	Sequences of Nucleotide Bases
	Utilizing BWT and MTF preprocessing
	Skipping the preprocessing
	Evaluation

	Complete Compressor
	Compression performance
	Compression speed

	Towards real-time compression
	The GenWQE card
	Configuring for FASTQ files

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Algorithms for Arithmetic Coding
	Encoding Algorithm
	Decoding Algorithm

	Huffman trees for GenWQE

