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Abstract
Importance weighting is a class of domain adap-
tation techniques for machine learning, which
aims to correct the discrepancy in distribu-
tion between the train and test datasets, of-
ten caused by sample selection bias. In doing
so, it frequently uses unlabeled data from the
test set. However, this approach has certain
drawbacks: it requires retraining for each new
test set and fails when the number of test sam-
ples is very small. Therefore, we seek to study
the performance of importance weighting tech-
niques when the unlabeled data comes from an
underlying domain, instead of one specific test
set. We propose an evaluation framework in-
spired from scenarios traditionally known for
posing difficulties to importance weighting and
apply it to two popular algorithms, KMM and
KLIEP. Our results reveal that both algorithms
produce statistically significant classification
improvements in most experiments. However,
their performance is highly dependent on the
characteristics of the dataset and the sampling
bias. In particular, class overlap seems to influ-
ence adaptation ability in the case of unequal
conditional probabilities of the source and tar-
get domains, while the ”intensity” of the sam-
pling bias is an important confounding factor
when the train set size is small.

1 Introduction
A common assumption in supervised machine learning
is that the train and test sample points are drawn inde-
pendently and identically according to the same proba-
bility distribution. However, sample selection bias causes
this assumption to fail in many practical situations, ei-
ther due to limitations in uniformly collecting data from
the entire domain or because the domain from which
the available data originates is unknown [10]. In turn,
the discrepancy in distributions causes the generalisation
ability of many popular classifiers to degrade [5]. Some
noteworthy fields affected by this issue are summarised
in [10] and include econometrics [7], clinical trials [8],
and gene sequencing in bioinformatics [22].

Importance weighting represents a popular domain
adaptation technique for correcting this discrepancy in
distributions by assigning a weight to the cost of er-
ror of each train point, where a large weight indicates
that the sample is deemed highly relevant for the test
set distribution [10]. Research effort focused so far on
matching the distribution of the train set to that of a
specific test set by using unlabeled data points from the
test set [3, 10]. However, this approach presents sev-
eral shortcomings, the most important being its lack of
generalisability to different test sets, since it needs re-
training for each of them. Another hard constraint is
that the test set must be known beforehand and contain

Figure 1: Learning approaches for domain adaptation based
on the provenance of the unlabeled train data. Example
shown for a binary classification task (red and blue classes),
where darker-colored samples are the ones picked through
sample selection bias and the gray-colored samples are unla-
beled. The approach used in this paper is that from (b).

an adequately large number of samples. A largely un-
explored alternative that could potentially avoid these
issues is to use unlabeled samples from the underlying
domain distribution of the data. Adapting once to the
underlying domain would intuitively imply adaptation to
all its ”subdomains” too, represented by the differently
sampled test sets. Moreover, using a large enough un-
derlying domain would remove constraints on the size of
the test sets. We use the term source for the domain that
importance weighting adapts and target for the domain
that it adapts to (and from which the unlabeled data is
sourced). Therefore, in the classic approach the target
domain consists of the sampled data points in the test
set, whereas in our approach it consists of the underlying
domain from which the data points originate (Figure 1).

The aim of this paper is to determine how effective
is importance weighting in mitigating sample se-
lection bias when the unlabeled data is sourced
from the underlying domain instead of a particu-
lar test set. To that end, we answer three sub-questions
on the effectiveness of importance weighting in different
scenarios:

1. (SQ1) unequal conditional probabilities of the source
and target distributions

2. (SQ2) small train sample size
3. (SQ3) high-dimensional data



Our contribution to the state of the knowledge is
two-fold. First, we introduce an empirical evaluation
framework for determining how well importance weight-
ing performs in scenarios traditionally known for pos-
ing difficulties. Its methodology is generic in nature
so it can be applied to any importance weighting tech-
nique. Second, we apply the framework to two popular
importance weighting methods, Kernel Mean Matching
(KMM) [9] and the Kullback-Leibler Estimation Pro-
cedure (KLIEP) [17], comparing their performance and
identifying both strengths and weaknesses.

The remainder of this paper is structured as fol-
lows. In Section 2 we analyse related research, includ-
ing the main cases in which importance weighting un-
derperforms. The evaluation framework is introduced
in Section 3. Section 4 presents the results of applying
the framework to two importance weighting techniques,
while Section 5 places them into context. Then, Sec-
tion 6 briefs on the ethical aspects of the experiments
and their reproducibility. Finally, Section 7 concludes
by summarising the paper and discussing some poten-
tial directions for further research.

2 Related Work
Mitigation of sample selection bias represents a rich field
of study, impacted by both the type of distribution dis-
crepancy studied and the particularities of the specific
domain adaptation approach used, in our case impor-
tance weighting.

2.1 Sample Selection Bias
Sample selection bias is classified by [23] in three types,
depending on the source of bias: (1) bias only depends on
the feature vector x, (2) bias only depends on the label y,
and (3) bias depends on both x and y. It has been argued
that type (1) is ”the most important sample selection
bias case in the practice of classifier learning” [23, p. 2]
and this reflects in the body of literature. In particular,
importance weighting techniques make the fundamental,
simplifying assumption that the conditional probability
distributions of both the source (S) and target (T ) do-
mains are equal, PS(y|x) = PT (y|x). Therefore, they
infer the weight w of a sample based solely on its feature
vector, as the ratio of the target and source marginal
distributions, w(x) = PT (x)/PS(x) [9, 10].

Even within the scope of type (1), further particulari-
ties in the dataset structure determine the impact of bias
on the performance of a given classifier [5]. Of great im-
portance is whether all features in x are used for biasing,
or just a subset. Most research evaluates performance by
biasing only one of the features [3,16,23], but some cases
exist in which the entire feature vector was used [9].

There have been some limited attempts at studying
the performance of importance weighting under sam-
pling bias type (2) as well. For example, KMM was
shown to still improve test error given imbalanced train
sets [9]; however, the study probed only one sampling
scheme (10-90% class sampling proportions) on a single
dataset.

Lastly, the impact of sampling bias depends on the
classifier and its learning equation. Linear classifiers are
asymptotically immune to sampling bias type (1) when
the data points in the source domain are ”linearly” sepa-
rable [5] mainly because their prediction is not based on
a distribution over the entire input space (i.e. P (x)) [23].
Moreover, the impact of sampling bias as the train set
size increases to infinity is best visible when the model
is mis-specified (e.g. using a linear classifier for a non-
linear classification task); otherwise, the unadapted clas-
sifier converges to the importance-weighted one [10,21].

2.2 Shortcomings of Importance Weighting
Unequal conditional probabilities As discussed
earlier, importance weighting makes the simplifying as-
sumption that the conditional probabilities remain un-
changed between the source and target distributions,
which corresponds to a type (1) bias. As explained
above, to our knowledge, the only research done into
the performance of importance weighting when this as-
sumption is violated is that from [9] for KMM.
High-dimensional data One approach for calculat-
ing w(x) is to estimate the source and target densities
separately and subsequently compute their ratio. How-
ever, this solution is known to underperform in the case
of high-dimensional data, when measuring the degree of
alignment of the two distributions is hard [10, 17]. An
alternative is to directly infer the weights through an op-
timisation procedure for minimising different metrics of
distribution discrepancy [10]. Both KMM and KLIEP
belong to this latter category and use as metrics the
Maximum Mean Discrepancy and the Kullback-Leibler
divergence, respectively. However, [17] shows empirically
that these approaches are also prone to the curse of di-
mensionality if tuned incorrectly.
Performance bounds The performance difference
between an optimal classifier, trained on the target do-
main, and an importance-weighted one was bounded
by [2] (Theorem 3) with a certain probability to a value
which depends, among others, on the train sample size
and the divergence between the source and target dis-
tributions. The bound indicates that the more diver-
gent the distributions are, the larger the train set re-
quired by importance weighting to maintain the same
difference level [10]. Simultaneously, increasing the train
sample size while maintaining the divergence constant
should theoretically decrease the difference to the op-
timum [10]. Concerning this latter case, experiments
in [17] showed indeed a decrease in the error of the
importance-weighted classifier, but no comparison to the
optimum was done. Because the performance bound dis-
cussed above depends on a probability factor, it is inter-
esting to explore also the empirical impact that a small
train set size has on the adaptation performance.
High weight variance The importance weights can
be used as explanatory factors of how domain adaptation
is achieved, indicating both how much bias correction
and where in the dataset is applied [10]. Therefore, their



values can be compared between typical success and fail-
ure cases to interpret how the method behaves [10]. For a
large weight variance, it was observed that a few samples
are assigned extremely high weights and end up dominat-
ing the learning process [2, 3]. In turn, this means that
”the effective sample size drops” [10, p. 14], causing poor
classification performance. This phenomenon was shown
to appear especially when the regions with high data
density in the target domain are not contained within
the ones in the source domain [2]. To achieve success-
ful adaptation, [10] suggested that weights should vary
smoothly around value 1, but weight values are known
to be unbounded in many real-life situations [2, 3].

3 Evaluation Framework
The proposed evaluation framework contains three test
cases, each evaluating the effectiveness of importance
weighting techniques in one of the scenarios:

• unequal conditional probabilities of the source and
target distributions;

• varying train sample sizes;
• high-dimensional data.
We focus on a classification scenario in which the im-

pact of sample selection bias is known to be significant: a
linear learner for a non-linear classification task (see dis-
cussion in Section 2.1). Therefore, we use datasets that
have partially overlapping classes and do not present an
intuitively linear decision boundary. For the choice of
linear classifier we select logistic regression due to its
simplicity. Lastly, to create the domain adaptation sce-
nario, samples of each dataset are split up randomly into
the underlying domain (50%), the train set (40%) and
the test set (10%).

In general we estimate classifier performance by the
proportion of test samples classified correctly (i.e. accu-
racy). Results are the average over 30 train-test splits
in the form of random sub-sampling. We benchmark the
importance-weighted classifiers against two others: one
trained on the underlying domain (i.e. optimal) and an-
other trained on the biased train set (i.e. unweighted).

The specifics of each test case are described below.

3.1 Test Case 1: Unequal Conditional
Probabilities

This test aims to evaluate how the classification perfor-
mance varies depending on the difference between the
source and target conditional probabilities, so on the
amount of bias introduced in the sample labels. For
this, we generate three synthetic binary classification
balanced datasets, each consisting of 3000 samples with
two features, shown in Figure 2 (see Table A.1 for a for-
mal description). We induce bias in the train labels by
randomly sub-sampling each of the two classes at varying
complementary ratios, ranging from 50-50% to 2-98%, at
steps of 2%. Because the original set from which we sub-
sample is balanced, the train sample size remains con-
stant for all class imbalance ratios and ensures protec-

Figure 2: A visualisation of the the synthetic classification
datasets used in the experiments. Class 1 is marked in blue
and class 2 in red.

tion against confounding learning factors. We compute
accuracy for each class sampling ratio in part.

3.2 Test Case 2: Varying Train Sample
Sizes

We aim to evaluate the robustness of importance weight-
ing when the number of samples in the biased train set
is scarce. We consider a biasing scheme for the datasets
in Figure 2 that operates on the entire feature vector
x = (x1, x2) of the train samples. To achieve this,
we first define for each class a point with coordinates
(∆x1 , ∆x2) in the 2D plane described by the feature vec-
tor. We pick samples from each class depending on how
close they are to (∆x1 , ∆x2): the probability of a sam-
ple with feature vector x = (x1, x2) to be selected (i.e.
s = 1) decreases exponentially with the Manhattan dis-
tance to (∆x1 , ∆x2) [19]. Lastly, we multiply the Man-
hattan distance with a factor b ∈ R in order to better
control its intensity. The formula of the sampling prob-
abilities is then P (s = 1 | x) = e−b∗(|x1−∆x1 |+|x2−∆x2 |).
Figure 3 shows the probability density function of the
datasets pre and post biasing: for set (a) we prefer the
left cluster of class 1 and the upper-right points in class
2; for set (b) we favour points generally closer to the cen-
ter of the clusters; for the rotated moons in set (c) we
pick more points from the central, overlapping regions.
The values of b, ∆x1 , ∆x2 used in the experiments are
available in Table A.2.

We compute classification accuracy for models trained
on various proportions of the train set, from 100% to
2%, at steps of 2%. When diminishing the sample size
we ensure that the class proportions remain balanced, in
other words that feature bias does not infer label bias as
well. We also introduce an additional benchmark for the
scores, namely the performance of a classifier trained on



the same diminishing train set size as the other models,
but unsubjected to any type of sampling bias.

Figure 3: Probability density function of the synthetic
datasets, before and after applying the biasing scheme.
The points with coordinates (∆x1 , ∆x2 ) used in the biasing
scheme are marked in yellow for class 1 (blue) and in green
for class 2 (red).

3.3 Test Case 3: High-Dimensional Data
The last test case is concerned with whether an increase
in the size of the feature space leads to a decrease in
adaptation performance. We generate random binary
classification balanced datasets1, having 70% of the fea-
tures informative and 30% redundant. It is important
to ensure a sufficient amount of train data for each of

1We use function sklearn.datasets.make classification
from Python scikit-learn library.

the different feature sizes in our experiment. There is no
consensus on how to determine the adequate number of
samples s based on the number of features f [20], rea-
son why we generate datasets for multiple sample-feature
functions. The first function we use is Events Per Vari-
able (EPV) because of its widespread adoption [12, 20],
for which we try two variants: EPV=50 (i.e. s = f ∗ 50)
and EPV=100 (i.e. s = f ∗100). We also use a quadratic
function s = f2 ∗ 5 because EPV was shown to underes-
timate sometimes the number of samples [12].

Three different biasing schemes for the train set are
used in this experiment: (a) on the most important fea-
ture only; (b) on all features while maintaining class bal-
ance; (c) on all features without maintained class bal-
ance. For scheme (a) we identify the most important
feature via the impurity decrease in a Random Forest
classifier [14]. This approach for feature selection was
shown to generally produce sensible results [13] and out-
perform alternatives [1]. For schemes (b) and (c) we wish
to reduce the arbitrarily large feature space to a single
feature, similarly to (a), on which we can then apply the
sampling bias. To achieve this we perform PCA on the
train data and select the projection on the first principal
component as our feature [9]. We compute the mini-
mum (m) and average (m̄) values of the selected feature
in all three cases, based on which we apply a sampling
scheme in the form of a normal distribution with mean
m + (m̄ − m)/3 and variance (m̄ − m)/4 [9].

For this test case we average accuracy over 10 datasets
for each feature dimension in part and perform five train-
test splits for each of the generated datasets. We seek
an alternative to visualising results in relation to the
benchmarks without having to plot the accuracy curves
for each dataset. Therefore, we develop a new metric
called percentual domain adaptation, which quantifies
the adaptation performance of an importance weight-
ing method as the proportion (%) of the accuracy ”gap”
between the optimal and unweighted classifiers that it
cancels out. Using AccIW for the accuracy of the
importance-weighted classifier, Accunweighted for the un-
weighted and Accopt for the optimal, its formula is:

100 ∗ (AccIW − Accunweighted)/(Accopt − Accunweighted)

4 Experiments and Results
In this section we apply the evaluation framework to two
importance weighting methods, KMM [9] and KLIEP
[17], to compare and better understand their behaviour.
We use the implementations provided by the ADAPT
framework for Python [4].

The performance of both KMM and KLIEP is subject
to the choice of hyper-parameters. In all our experiments
we used a Gaussian kernel K(x, y) = exp(−γ||x − y||2).
Multiple γ values have been tried for each experiment
and results are presented for the best performing one;
the chosen γ is specified for each result. In plus, for
KMM we bound the maximum weight value to B = 1000
and set the constraint parameter to ϵ = (√ntr −1)/√

ntr

(ntr is the train set size) following the paper [9].



4.1 Unequal Conditional Probabilities
Overall, the results indicate that the performance of the
importance-weighted classifiers is always either on par
with the optimum or considerably better than that of
the unweighted method (Figure 4). The performance of
the unweighted classifier seems to degrade quite fast, but
both KMM and KLIEP remain significantly close to the
optimum for most of the experiment, until the class 2
proportion reaches on average 78% (Mann-Whitney test
at significance level 5%). Furthermore, starting from
a class 2 proportion of 64% for datasets (a) and (b)
and 76% for dataset (c), both KMM and KLIEP sig-
nificantly outperform the unweighted classifier. Results
are based on the Wilcoxon signed-rank test for the nor-
mally distributed data and the corrected resampled t-
test [11] for the non-normally distributed data, at signif-
icance level 5%. The full results of the statistical analysis
are available in Appendix B. The performance of KMM
and KLIEP is surprising given that we violate the key
assumption used by importance weighting, that of equal
conditional probabilities of the source and target distri-
butions. However, the fact that KMM and KLIEP follow
a trend close in shape to the unweighted classifier is a
sign that their robustness is still limited.

Figure 4: Classification performance on a label-based sam-
pling scheme.

We use the importance weights assigned to the train
samples to understand what factors limit the perfor-
mance of KMM and KLIEP. When class imbalance in-
creases, due to overlapping clusters, more samples of
the majority class are sampled in the vicinity of the mi-
nority class and are consequently assigned high weights
(see Figures D.1 and D.2 for a visualisation). This phe-
nomenon occurs because importance weighting does not

account for class labels when aligning distributions. The
train data points in the minority class are gradually out-
weighed by the ones in the majority class, which pro-
duces a skewed decision boundary. We analyse how two
characteristics of the train set, namely the sample size
and the distance between clusters, influence the over-
shadowing effect described above. We expect that hav-
ing more data available in the minority class and less
class overlap, respectively, will both improve adaptation
performance.

Contrary to expectations, varying the number of sam-
ples does not generate any considerable performance dif-
ference. The accuracy score variance registered by KMM
and KLIEP over five proportions (3, 2, 1, 1/2, 1/4) of the
original train set size does not exceed 0.00084 and 0.0006,
respectively (Figure 5). The performance curves based
on which the variance is computed are shown in Figure
E.1. This result can be explained by the fact that sam-
pled data in both minority and majority classes increase
directly proportionally with the overall number of train
samples, therefore maintaining the outweighing effect.

Figure 5: Variance of classification accuracy on a label-based
sampling scheme computed over different train set sizes.

Decreasing the regions of class overlap does improve in
general the adaptation performance of KMM and KLIEP
(Figure 6). Fewer samples in the majority class are as-
signed overly large weights because they are further away
from the minority class. Nevertheless, the effect is not
uniform across the datasets and tends to depend on their
shape; dataset (a) displays the most visible improvement
and dataset (b) almost no clear-cut advantage.

Lastly, we study if the common approach of assign-
ing class weights to correct class imbalance solves the
overshadowing problem faced by importance weighting
as well. We assign weights to the two classes inversely
proportional to their frequency in the train set2. The re-
sults show that both the weighted and unweighted classi-
fiers improve up to the point where they perform on par
with the optimum irrespective of the bias intensity (Fig-
ure 7). This suggests that class weights not only success-
fully correct the overshadowing problem, but they might
be a much better alternative to importance weighting for
class imbalance correction altogether.

2We set parameter class-weight=’balanced’ of class
sklearn.linear model.LogisticRegression.



Figure 6: Domain adaptation performance for more versus
less overlapping classes.

Figure 7: Classification performance on a label-based sam-
pling scheme when the classes are weighted.

4.2 Varying Train Sample Sizes
As expected, having fewer train points negatively influ-
ences the adaptation performance on all three datasets
(Figure 8). In spite of this, both KMM and KLIEP sig-
nificantly outperform the unweighted classifier through-
out much of the experiment. Results are based on the
Wilcoxon signed-rank test for the normally distributed

data and the corrected resampled t-test [11] for the non-
normality distributed data, at significance level 5%. As-
tonishingly, KMM and KLIEP even significantly match
the accuracy of the optimal (domain) classifier for a
considerable reduction in the number of train samples
(Mann-Whitney test at significance level 5%). The full
results of the statistical analysis are available in Ap-
pendix C. We note however that the accuracy score of
both adaptation methods drops steeply and can even
underperform that of the unweighted classifier for ex-
tremely low sample sizes (under 50). This is unsurpris-
ing because the optimal (unbiased) classifier registers a
similar behaviour, sign that the number of train samples
is simply insufficient for any appropriate prediction.

Figure 8: Classification performance on a feature-based sam-
pling scheme for varying train sample sizes.

The shape of the performance curves for KMM and
KLIEP (Figure 8) shows a non-linear effect of sample size
on their accuracy, which indicates that other contribut-
ing factors might exist. Instead of a proportional de-
crease, domain-adapted accuracy registers roughly three
phases: initially remains close to the optimum, then
slowly declines and finally sharply decreases. We hy-
pothesise that the observed effect is the combined re-
sult of both a reduced sample size and the applied sam-
pling bias because the ”sizes” of the three phases dif-
fer among the datasets, which also use different biasing
schemes. To verify our assumption, we repeat the exper-
iment from test case 2 for various values of the intensity
factor b and compute in each case the difference in ac-
curacy between the optimal (domain) classifier and the
importance-weighted one (Figure 9).

It is easy to observe that both sample size and bias
intensity influence considerably the depreciation in per-



formance of KMM and KLIEP because the heat maps
exhibit a diagonal-shaped pattern for all three datasets
(Figure 9). We quantify the contribution of each of the
two factors by computing the normalised marginal stan-
dard deviations of the accuracy differences in each heat
map (Table 1). The values tend to vary depending on
the dataset, from a minimum of 47.5 to a maximum of
60.5 on the sample size column. This indicates that the
proportion in which the small sample size and the bias
intensity each affect the importance weighting method is
not fixed, but rather an inherent attribute of the dataset
and the sampling scheme applied to it.

Figure 9: Accuracy difference between the optimal (domain)
and importance-weighted classifiers as a function of the bias
impact factor n (used for varying the values of b) and the
proportion (%) of the original train set size (400 samples).
The original values of b used in the sampling scheme are
varied as follows: for set (a) b ∗ 1.5n for class 1 and b ∗ 1.3n

for class 2; for (b) b ∗ 2.3n for both classes; for (c) b ∗ 2n for
both classes. Lighter colors in the heat map indicate higher
differences, so poorer adaptation performance.

Table 1: Normalised marginal standard deviations of the
scores recorded in each heat map of Figure 9.

Dataset KMM KLIEP
Sample

size
Bias

impact
Sample

size
Bias

impact
(a) 52.7 47.3 47.8 52.2
(b) 48.4 51.6 47.5 52.5
(c) 60.5 39.5 57.1 42.9

4.3 High-Dimensional Data
A general remark on Figure 10 is that the results follow a
similar trend for all three sample-feature functions. This
indicates that the scores obtained are reliable and do not
suffer from a lack of sufficient train data.

The adaptation performance of KMM is greatly af-
fected by high-dimensional data irrespective of the type
of bias applied (Figure 10). The average score differences
of KMM between the minimum (10) and the maximum
(50) number of features are 41.1 (a), 26.5 (b), 24.3 (c).
The values for the two biasing schemes using all features
are smaller than that for the scheme using only one fea-
ture, which shows that the impact of high-dimensionality
is not necessarily correlated with the ”strength” of the
biasing scheme. Moreover, the closeness of the values in
cases (b) and (c) indicates that a bias including labels
does not result in a more impactful curse of dimension-
ality than a bias using solely the feature vector. Unlike
KMM, the scores for KLIEP do not indicate fluctuations
under high-dimensional datasets. However, the adapta-
tion performance for KLIEP is in general poor through-
out the experiment, ranging between 0.39 and 7.74.

Figure 10: Domain adaptation performance for different fea-
ture dimensions. The sampling scheme involves either (a) the
most important feature only or (b)(c) all features.



5 Discussion
A key liability of importance weighting is that it does
not universally, or even uniformly, improve classification
performance across datasets or types of sampling bias.
As [10, p. 14] also highlights, ”in domain adaptation
there is no free lunch”. Our experiments indicate that
the performance of KMM and KLIEP is largely context-
dependant. For example, adaptation to unequal condi-
tional probabilities is largely influenced by the degree
of class overlap, while robustness to small train sample
sizes has as confounding factor the intensity of the sam-
pling bias. Our observation that importance weighting
can indeed fail in certain particular scenarios has been
reiterated in multiple prior studies as well [2, 3,16]. Un-
fortunately, as [10] also notices, verifying assumptions
about the dataset is not a trivial task. We purpose-
fully use datasets with only two features to be able to
visualise them and identify performance patterns, but
real-life scenarios are usually much more complex.

It is commonly agreed in literature that assigning
weights and learning based on them are two indepen-
dent processes, reason why performance bounds of im-
portance weighting are often studied independently of
any learning algorithm [2,3,16]. Consequently, we expect
that repeating our experiments with other linear classi-
fiers will produce similar results. In fact, most empirical
studies employ only one classifier like we did, typically
either SVM [9] or regression [16]. As [5, 23] shows, both
these learners are affected by sample selection bias and
can produce meaningful experimental results.

5.1 Unequal Conditional Probabilities
Our results solidify previous claims in [9] that KMM
improves classification accuracy for unequal conditional
probabilities and extends them to cover KLIEP as well.
While [9] used a single dataset and one class imbalance
ratio, we show the trend maintains for three datasets
with different patterns and over the entire span of label-
based sampling schemes. We also performed a statistical
analysis on our results to prove their significance, given
that scores shown in [9] differ by a low margin (≤ 0.03)
and no information is available on their variance. How-
ever, an important remark is that our study is empirical
in nature, meaning our conclusion can not be generalised
to other methods, datasets or sampling schemes.

It is hard to determine which factors influence the per-
formance of importance weighting when the original class
proportions in the train set are changed because all the-
oretical bounds proposed in literature assume the con-
straint of equal conditional probabilities. For example,
our results show that sample size does not play a role
anymore, contrary to what Theorem 3 from [2] suggests.
In spite of this, we tried to explain our results by the
degree of class overlap in the datasets and obtained per-
formance improvements when we distanced the clusters.
We believe that measuring the overlap between the prob-
ability densities of the two classes would be even more
insightful over simply distancing clusters. However, we

resorted to this approach over more fine-grained alterna-
tives because computing them over a multi-dimensional
feature space, even two-dimensional, is non-trivial [6].

5.2 Varying Train Sample Sizes
Our results mirror to a large extent prior empirical find-
ings and fall in line with the theoretical bound intro-
duced in [2](Theorem 3) and further interpreted in [10]
on the role of sample size in importance weighting adap-
tation. It was also shown in [17] that both KMM and
KLIEP degrade when the train set size decreases; how-
ever, they tried a range of values much smaller than
ours ([50, 150] vs [8, 400] samples) and did not provide a
benchmark for comparison. In addition, we also per-
formed a statistical analysis on our results to prove
their significance. Interestingly, while Figure 2(b) in [17]
shows that a fine-tuned KMM should visibly outper-
form KLIEP, they perform mostly similarly in our ex-
periments. This can be attributed to the difference in
datasets used in the two studies. Lastly, the inability of
the adaptation methods to improve accuracy anymore
for very small train set sizes (≤ 50 in our experiments)
was also noticed in [9], who tested KMM on multiple
real-life datasets.

The particular shape of our performance curves, con-
cave down, is explained by the value of the Rényi diver-
gence between the source and target domain distribu-
tions [2]. Our sampling bias is sufficiently ”mild” such
that the divergence results in a fast convergence of the
accuracy error for an increase in sample size [2]. By
increasing bias intensity we heighten divergence, which
makes convergence to the optimum slow. This explains
the existence of bias intensity as confounding factor.

We also aimed to empirically quantify the individual
impact of bias intensity and sample size by comput-
ing the marginal standard deviations in the heat maps.
However, our approach is limited in that results can be
easily influenced by the chosen step size. A theoretical
bound based on the Rényi divergence and the sample size
was proposed in [2], but it contains a probabilistic factor
that makes precise quantification hard unfortunately.

5.3 High-Dimensional Data
KMM and KLIEP show very different performance
trends, which is surprising given that both of them in-
fer weights in a similar way, through optimisation. Our
results disagree with previous claims that importance
weighting as a whole suffers from the curse of dimen-
sionality [10] because KLIEP maintained a stable perfor-
mance in our experiment. The same was found to be true
by [17] under the condition that the hyper-parameters
are tuned correctly.

Our results concerning KMM are particularly differ-
ent from those of prior studies. Whereas in [17] KMM
tends to improve performance as the number of features
increases, in our case it degrades. This disagreement
could be due to [17] using a constant sample size across
all feature vector dimensions and not providing a bench-
mark. This last aspect makes comparing results partic-



ularly hard, since we quantify adaptation in relation to
the unweighted and optimal classifiers. The difference in
datasets and sampling schemes between the two studies
can also impact the results. After all, dataset configura-
tion and distribution divergence played a major role for
the two-dimensional experiments, so we expect the same
to hold true in the case of high-dimensional data.

6 Responsible Research
A key ethical aspect of machine learning experiments
is the provenance of data. While most research con-
cerned with combating sample selection bias uses at least
partially, if not fully, real-world data [3, 9, 16, 23], we
base our experiments exclusively on synthetic datasets.
Not only does our approach allow for better control
over the biasing schemes, but completely eliminates the
risks associated with, for example, consent, copyright,
re-identification, and data storage and manipulation.

The fact that ”importance weighting is most often
used in applications involving clinical or social science”
[10, p. 5], both highly critical fields, emphasises the eth-
ical implications of this research and its practical use.
Our results in the case of class imbalance (test case 1)
demonstrate that importance weighting techniques have
the potential to alleviate the effects of underrepresenta-
tion of certain population categories in decision-making
situations. This makes us hopeful that our research can
be further used for alleviating at least certain types of
social bias in real-world data science applications.

The source code for generating the datasets and run-
ning the experiments presented in this paper is made
publicly available on GitLab [18] in order to ensure full
reproducibility of the research. We also include Ap-
pendix A containing all parameter settings for recreating
the identical datasets and biasing schemes to the ones
described in our test cases. To ensure that experimen-
tal results are not influenced by confounding factors, all
classification scores were averaged over a considerable
number (30) of experimental runs, in the form of train-
test splits. Lastly, all pseudo-random number generators
used in the codebase of the experimental setup employ
seeds, reason why we expect that future runs of our ex-
periments will generate identical results.

7 Conclusions and Future Work
This paper aimed to evaluate the effectiveness of im-
portance weighting techniques in mitigating sample se-
lection bias. More specifically, we studied the lesser-
known scenario when the domain adaptation uses unla-
beled samples from the underlying domain of the data,
instead of a particular test set. The proposed evalu-
ation framework contains three scenarios, traditionally
known for posing difficulties to importance weighting:
(1) unequal conditional probabilities of the source and
target distributions, (2) small train sample size, and (3)
high-dimensional data. We applied the framework to
two popular techniques, KMM and KLIEP, to analyse
their performance. We substantiate our results with a

full statistical significance analysis and augment them
with extra experiments for a better understanding.

Results matched to a large extent prior findings on
adaptation performance, but produced some novel in-
sights too. Overall, importance weighting proved to be
no one-size-fits-all solution, its success being largely de-
pendent on the characteristics of the dataset and the
sampling bias. We showed that theoretical performance
bounds, particularly involving the train set size, fail to
hold anymore when the fundamental assumption of equal
conditional probabilities is violated. Results for test case
1 also showed that KMM and KLIEP can still, surpris-
ingly, significantly improve classification in this scenario.
We hypothesized their behaviour is influenced by the
degree of overlap between the classes. In test case 2,
a decreasing train sample size showed to negatively in-
fluence the adaptation ability. Even though KMM and
KLIEP remained largely performant, for an extremely
small size this ceased to be the case anymore. Further-
more, we observed that success was grossly subject to the
”intensity” of the sampling bias. Lastly, we showed that
high-dimensional data (test case 3) does not necessar-
ily negatively affect all importance weighting techniques
as previously thought. Surprisingly, techniques from the
same class of importance weighting algorithms displayed
very different behaviours in this scenario.

Our work represented a first step in using importance
weighting with unlabeled data that is not sourced from
a particular test set. However, the underlying domain
and the test set still follow the same distribution in our
research. Future efforts can focus on using the evalua-
tion framework when the test set is subject to sampling
bias as well, which would offer better insight into the
ability to generalise simultaneously to different test sets.
Furthermore, researchers can also analyse our hypothesis
on the impact of class overlap on the adaptation perfor-
mance when the conditional probabilities are unequal.
This would be especially relevant considering how easily
this key assumption made by importance weighting can
be violated in practice. For the case of high-dimensional
data, future efforts can continue exploring its impact on
more importance weighting techniques with multiple bi-
asing schemes, since our empirical results proved to mis-
match expectations set in literature.
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A Formal Description of the Synthetic Datasets
This appendix contains the parameter settings used for constructing the synthetic datasets used in our experiments
and for inducing sample selection bias in them.

Table A.1: Parameters of the synthetic datasets used in the experiments. Datasets (a) and (b) use multivariate
normally-distributed clusters based on means and covariance matrices. Dataset (c) is generated using Python method
sklearn.datasets.make moons3based on the noise parameter.

Dataset Test case Class 1 Class 2
Samples Means Cov matrices / Noise Samples Means Cov. matrices / Noise

(a)

1
1100 1500

(0, 0)
400

2 350

(-7, 6)

(
4.5 0
0 4.5

)

500

(
15 0
0 15

)
150

(7, 6) (
2 0
0 2

)
1 1500 1500(b)
2 500

(-4, -4)
(

8 7
7 8

)
500

(-20, 2)
(

80 −60
−60 80

)

(c) 1 1500 1500
2 500

(0, 1) (0.05, 0.35)
500

(1, -0.5) (0.05, 0.35)

Table A.2: Parameters of the sample selection biasing function f(x = (x1, x2)) = e−b(|x1−∆x1 |+|x2−∆x2 |) applied during test
case 2 on the datasets.

Dataset Class 1 Class 2

∆x1 ∆x2 b ∆x1 ∆x2 b

(a) -7 6 0.1 5 5 5

(b) 0 0 0.5 -25 0 0.1

(c) 1 0.5 1.5 0 0 1.5

3Method is available at https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make moons.html .



B Statistical Analysis of Results of Test Case 1
This appendix contains a statistical analysis of the results obtained during test case 1 to determine if the importance-
weighted classifiers significantly outperform the unweighted one.

Firstly, we perform a paired samples analysis on the mean accuracy differences between the weighted and un-
weighted classifiers (i.e. dKMM = AccKMM − Accunweighted, dKLIEP = AccKLIEP − Accunweighted) recorded
in the 30 train-test splits for each of the 25 class imbalance ratios (50-50% - 2-98%). The null hypothesis is
H0 : dKMM , dKLIEP ≤ 0 and the alternative hypothesis is H1 : dKMM , dKLIEP > 0. We begin by using a box
plot to identify and eliminate potential outliers. Subsequently, we perform the Shapiro-Wilk test at significance level
5% and conclude that the majority of data is normally distributed (Table B.1). On the normally distributed data we
perform a one-tailed corrected resampled t-test [11,15] and on the non-normally distributed data we use the one-tailed
Wilcoxon signed-rank test, both at significance level 5%. The results of both tests are shown jointly in Table B.2.

Secondly, we perform an independent samples analysis to compare the mean accuracies of the weighted classifiers
and the optimal one trained on the underlying domain, again for each of the 25 class imbalance ratios. This covers the
edge case when the weighted classifier is in the vicinity of the unweighted one, so it does not significantly outperform
it, yet it is on par with the optimum, in which case we consider the domain adaptation successful as well. Analysing
data with the Shapiro-Wilk test at significance level 5% yields a large number of non-normal distributions, reason
why we decide to perform the non-parametric Mann-Whitney test on all data points. The u statistics and p values
are shown in Table B.3.

Table B.1: p values for the Shapiro-Wilk test. Significant values (p ≤ 0.05) are marked in red.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

1 .516 .847 .072 .456 .328 .056
2 .4 .215 .05 .064 .144 .328
3 .81 .562 .166 .056 .019 .24
4 .484 .085 .279 .209 .018 .082
5 .466 .621 .183 .032 .103 .357
6 .853 .16 .383 .218 .405 .49
7 .132 .144 .279 .42 .34 .421
8 .196 .924 .142 .375 .084 .825
9 .312 .779 .12 .582 .261 .359
10 .711 .063 .069 .94 .026 .529
11 .479 .781 .895 .515 .202 .255
12 .079 .954 .457 .435 .074 .431
13 .388 .94 .027 .069 .179 .062
14 .807 .764 .704 .056 .055 .917
15 .798 .195 .185 .26 .556 .691
16 .883 .667 .189 .607 .7 .534
17 .245 .847 .281 .275 .777 .561
18 .978 .824 .074 .112 .425 .499
19 .37 .114 .252 .335 .9 .775
20 .683 .068 .919 .895 .344 .182
21 .114 .074 .467 .99 .294 .857
22 .631 .276 .229 .889 .587 .462
23 .392 .929 .449 .838 .052 .07
24 .588 .783 .565 .971 .311 .116
25 .858 .531 .447 .591 .622 .165



Table B.2: Degrees of freedom (df ), t statistic and p value for the paired samples tests on the mean accuracy differences
between the weighted and unweighted classifiers. Results for the non-normally distributed data (Wilcoxon signed-rank test)
are marked in red, while the rest represent the corrected resampled t-test. Significant values (p ≤ 0.05) are highlighted grey.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

df t p df t p df t p df t p df t p df t p
1 27 0.0 .5 29 0.0 .5 27 0.144 .443 29 0.27 .394 29 -0.133 .553 27 -0.921 .817
2 27 0.167 .434 29 0.223 .413 28 171.0 .157 29 0.547 .294 29 -0.277 .608 27 -1.107 .861
3 28 0.313 .378 29 0.37 .357 27 0.524 .302 29 0.634 .265 27 84.0 .951 29 -0.723 .762
4 25 0.829 .208 29 0.578 .284 29 0.124 .451 29 0.523 .302 24 86.5 .016 29 -0.532 .701
5 29 1.095 .141 29 1.428 .082 27 0.098 .461 29 320.5 .001 28 0.575 .285 28 -0.205 .58
6 28 1.261 .109 28 1.619 .058 28 0.446 .329 29 1.395 .087 28 0.07 .472 29 -0.458 .675
7 29 2.019 .026 29 1.094 .142 25 0.925 .182 28 1.819 .04 28 0.44 .332 29 -0.147 .558
8 29 2.334 .013 29 1.741 .046 28 1.026 .157 28 2.43 .011 29 0.569 .287 29 0.081 .468
9 29 2.544 .008 29 2.519 .009 25 2.216 .018 29 2.484 .01 27 0.963 .172 26 0.599 .277
10 29 2.372 .012 29 2.652 .006 28 2.261 .016 28 2.77 .005 28 229.0 .001 28 0.407 .344
11 26 2.894 .004 29 2.963 .003 28 2.404 .012 28 3.296 .001 29 1.472 .076 29 0.881 .193
12 29 2.345 .013 29 3.115 .002 29 2.546 .008 28 3.956 .001 29 1.65 .055 29 1.202 .12
13 28 2.87 .004 29 3.415 .001 29 465.0 .001 28 4.153 .001 29 1.8 .041 29 1.467 .077
14 29 3.189 .002 29 3.678 .001 29 3.46 .001 29 3.952 .001 29 1.833 .039 29 1.617 .058
15 27 3.525 .001 27 5.234 .001 29 3.254 .001 29 4.59 .001 28 2.243 .016 29 1.931 .032
16 28 3.595 .001 29 4.077 .001 28 4.39 .001 28 4.799 .001 28 2.268 .016 28 1.78 .043
17 28 4.015 .001 29 3.621 .001 29 4.144 .001 29 3.726 .001 28 2.25 .016 28 2.066 .024
18 29 2.951 .003 29 3.321 .001 27 5.403 .001 29 4.548 .001 29 2.453 .01 29 2.259 .016
19 29 2.932 .003 29 3.22 .002 29 5.202 .001 29 4.72 .001 28 3.261 .001 28 3.664 .001
20 29 2.651 .006 29 2.927 .003 28 4.864 .001 29 5.518 .001 29 3.477 .001 29 3.621 .001
21 29 2.737 .005 29 2.911 .003 28 5.467 .001 29 7.295 .001 29 3.361 .001 28 3.549 .001
22 29 2.685 .006 29 3.789 .001 29 5.778 .001 29 7.681 .001 29 4.168 .001 29 3.852 .001
23 28 4.771 .001 27 5.273 .001 29 4.774 .001 29 7.812 .001 29 4.821 .001 29 4.686 .001
24 29 2.966 .003 28 3.391 .001 29 4.469 .001 28 6.906 .001 29 5.178 .001 29 5.239 .001
25 29 2.363 .013 28 3.894 .001 29 4.957 .001 29 6.265 .001 29 5.568 .001 29 2.783 .005

Table B.3: u statistic and p value for the independent samples tests on the mean accuracies of the weighted and optimal
(domain) classifiers (Mann-Whitney test). Significant values (p ≤ 0.05) are highlighted grey.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

u p u p u p u p u p u p
1 900.0 .001 900.0 .001 900.0 .001 900.0 .001 827.0 .001 900.0 .001
2 900.0 .001 900.0 .001 900.0 .001 900.0 .001 788.5 .001 900.0 .001
3 896.0 .001 900.0 .001 898.5 .001 900.0 .001 811.0 .001 900.0 .001
4 882.5 .001 900.0 .001 871.0 .001 900.0 .001 803.5 .001 899.5 .001
5 880.5 .001 900.0 .001 846.0 .001 894.0 .001 779.5 .001 886.5 .001
6 855.5 .001 897.0 .001 822.5 .001 886.0 .001 756.0 .001 829.5 .001
7 847.5 .001 889.0 .001 794.0 .001 861.5 .001 731.5 .001 789.0 .001
8 832.0 .001 877.5 .001 770.5 .001 838.0 .001 722.0 .001 755.5 .001
9 784.0 .001 849.0 .001 704.0 .001 783.0 .001 714.5 .001 723.5 .001
10 771.0 .001 811.5 .001 698.0 .001 734.0 .001 662.0 .002 694.0 .001
11 724.5 .001 805.0 .001 680.5 .001 680.0 .001 638.5 .005 637.5 .006
12 714.5 .001 787.5 .001 647.0 .004 637.0 .006 618.5 .013 609.5 .018
13 680.5 .001 761.0 .001 627.5 .009 622.0 .011 580.0 .055 589.0 .04
14 662.5 .002 731.5 .001 585.5 .045 590.5 .038 550.5 .138 578.0 .059
15 614.0 .015 706.5 .001 578.5 .057 561.0 .101 536.0 .205 571.5 .073
16 592.0 .036 660.0 .002 549.5 .142 547.0 .152 532.0 .227 566.5 .086
17 561.0 .101 614.0 .015 542.0 .174 481.5 .645 515.5 .335 538.0 .195
18 538.5 .192 625.5 .01 502.0 .444 432.5 .8 523.5 .279 541.5 .178
19 548.0 .148 587.5 .043 495.0 .509 410.5 .562 515.5 .335 556.0 .118
20 539.5 .188 535.5 .208 493.5 .523 421.0 .671 505.0 .419 564.0 .093
21 499.0 .472 511.5 .366 510.0 .378 389.5 .373 487.5 .583 536.5 .202
22 517.0 .325 511.0 .37 454.0 .959 409.5 .552 470.0 .772 539.5 .187
23 507.5 .398 495.0 .509 425.0 .716 381.0 .309 482.0 .641 552.5 .13
24 498.5 .477 478.5 .678 426.5 .733 399.0 .453 457.0 .923 539.5 .187
25 471.5 .756 453.5 .964 432.5 .801 406.5 .523 447.5 .976 532.0 .227



C Statistical Analysis of Results of Test Case 2
This appendix contains a statistical analysis of the results obtained during test case 2 to determine if the importance-
weighted classifiers significantly outperform the unweighted one.

We perform two analyses identical to those outlined in Appendix B. The procedure is repeated this time for each
of the 50 training sample size ratios (100% - 2%). Table C.1 shows the results of the Shapiro-Wilk test on the normal
distribution of data. The joint results of the corrected resampled t-test and the Wilcoxon signed-rank test for the
paired samples analysis are available in Table C.2. The results of the Mann-Whitney test for the second analysis, to
determine proximity to the optimal (domain) classifier, are available in Table C.3.

Table C.1: p values for the Shapiro-Wilk test. Significant values (p ≤ 0.05) are marked in red.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

1 .025 .001 .001 1.0 .004 .001
2 .073 .037 .013 .001 .002 .005
3 .216 .161 .098 .001 .006 .079
4 .288 .127 .183 1.0 .085 .015
5 .058 .079 .165 .001 .004 .03
6 .835 .311 .202 .001 .012 .019
7 .268 .691 .637 .001 .029 .08
8 .058 .167 .208 .002 .002 .046
9 .287 .475 .256 .117 .071 .597
10 .291 .055 .697 .005 .662 .437
11 .229 .191 .099 .001 .577 .254
12 .088 .407 .033 .117 .715 .719
13 .049 .297 .312 .064 .932 .752
14 .379 .883 .404 .003 .106 .109
15 .416 .612 .384 .003 .048 .291
16 .48 .19 .957 .079 .381 .097
17 .009 .144 .284 .154 .308 .299
18 .176 .14 .316 .116 .785 .522
19 .646 .482 .586 .244 .589 .171
20 .054 .411 .037 .208 .786 .375
21 .191 .055 .453 .105 .338 .252
22 .235 .372 .49 .469 .586 .83
23 .261 .528 .354 .102 .318 .189
24 .054 .283 .19 .195 .346 .107
25 .102 .242 .181 .063 .06 .802
26 .334 .115 .09 .349 .717 .386
27 .18 .132 .273 .047 .036 .172
28 .162 .143 .168 .03 .257 .605
29 .204 .082 .574 .505 .973 .217
30 .246 .654 .151 .014 .667 .47
31 .18 .606 .111 .008 .292 .797
32 .368 .405 .869 .042 .011 .009
33 .934 .101 .248 .026 .092 .019
34 .138 .118 .525 .001 .368 .613
35 .553 .054 .25 .022 .478 .323
36 .215 .192 .34 .017 .275 .387
37 .445 .031 .239 .019 .971 .924
38 .566 .144 .618 .041 .89 .505
39 .581 .07 .12 .006 .821 .461
40 .534 .453 .034 .12 .852 .383
41 .832 .349 .017 .202 .085 .063
42 .566 .184 .111 .056 .607 .145
43 .495 .145 .139 .363 .16 .193
44 .384 .787 .025 .502 .257 .28
45 .699 .081 .035 .02 .998 .249
46 .694 .83 .265 .383 .824 .315
47 .153 .457 .127 .122 .908 .526
48 .49 .572 .002 .026 .211 .255
49 .698 .351 .001 .192 .621 .913
50 .434 .672 1.0 .019 .574 .635



Table C.2: Degrees of freedom (df ), t statistic and p value for the paired samples tests on the mean accuracy differences
between the weighted and unweighted classifiers. Results for the non-normally distributed data (Wilcoxon signed-rank test)
are marked in red, while the rest represent the corrected resampled t-test. Significant values (p ≤ 0.05) are highlighted grey.
Values of t and p are marked nan where df was too low to produce reliable results.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

df t p df t p df t p df t p df t p df t p
1 28 65.5 .553 27 60.0 .044 26 65.5 .077 17 nan nan 27 0.0 1.0 26 5.5 .999
2 28 0.165 .435 29 142.0 .006 29 148.0 .378 27 55.5 .421 24 0.0 1.0 26 37.5 .952
3 29 0.374 .356 28 0.708 .242 28 -0.267 .604 24 14.5 .957 29 20.0 .999 29 -0.29 .613
4 28 0.755 .228 26 0.863 .198 29 0.071 .472 18 nan nan 29 -0.995 .836 29 140.0 .475
5 28 0.994 .164 26 0.92 .183 28 0.0 .5 27 57.0 .061 29 12.0 1.0 29 105.5 .492
6 29 0.951 .175 29 1.353 .093 28 0.108 .457 25 68.0 .01 29 30.0 1.0 29 155.5 .292
7 28 1.417 .084 28 1.362 .092 29 0.06 .476 28 61.0 .133 29 46.5 1.0 29 0.041 .484
8 26 1.649 .056 28 1.396 .087 29 0.156 .439 27 120.0 .003 27 39.5 1.0 29 143.5 .163
9 28 2.072 .024 28 1.749 .046 29 0.905 .187 28 0.366 .358 28 -0.899 .812 29 0.49 .314
10 28 1.952 .031 29 2.118 .021 29 0.823 .209 25 104.5 .005 27 -0.793 .783 28 0.609 .274
11 28 2.006 .027 28 1.861 .037 28 1.149 .13 25 23.0 .057 29 -0.366 .642 29 0.656 .259
12 28 2.714 .006 29 2.321 .014 28 192.5 .047 28 0.354 .363 29 -0.125 .549 29 0.666 .255
13 28 397.0 .001 28 2.2 .018 29 0.59 .28 29 0.544 .295 29 0.0 .5 29 0.772 .223
14 28 2.312 .014 28 2.09 .023 29 0.859 .199 28 126.0 .031 29 0.411 .342 29 1.117 .137
15 28 2.213 .018 29 2.083 .023 28 0.982 .167 25 107.0 .002 29 203.5 .063 29 1.072 .146
16 28 2.625 .007 29 2.213 .017 28 1.047 .152 28 0.782 .22 29 0.512 .306 29 1.34 .095
17 28 435.0 .001 29 2.097 .022 29 0.942 .177 29 1.181 .124 29 0.753 .229 28 1.264 .108
18 29 2.11 .022 29 1.967 .029 25 1.119 .137 29 0.711 .242 29 0.885 .192 29 1.399 .086
19 28 2.059 .024 29 2.09 .023 29 0.725 .237 29 0.493 .313 29 1.017 .159 29 1.711 .049
20 29 1.776 .043 29 2.205 .018 27 209.0 .001 29 0.646 .262 29 1.126 .135 29 1.882 .035
21 27 2.209 .018 29 2.145 .02 29 0.658 .258 29 0.398 .347 29 1.383 .089 29 1.905 .033
22 29 2.196 .018 29 2.255 .016 27 0.747 .231 28 0.465 .323 29 1.36 .092 29 1.829 .039
23 29 1.916 .033 26 2.415 .012 29 0.734 .234 27 0.191 .425 29 1.597 .06 26 3.482 .001
24 29 1.882 .035 29 2.15 .02 29 0.565 .288 29 0.453 .327 29 1.945 .031 28 2.511 .009
25 29 1.907 .033 27 2.15 .02 28 0.971 .17 26 0.915 .184 28 1.577 .063 27 2.617 .007
26 29 1.879 .035 28 2.369 .012 27 0.712 .241 27 0.872 .195 29 1.574 .063 28 2.161 .02
27 29 2.144 .02 26 2.505 .009 29 0.868 .196 26 182.0 .009 29 465.0 .001 29 2.517 .009
28 29 2.077 .023 29 2.538 .008 29 0.812 .212 28 198.0 .002 28 1.954 .03 28 2.611 .007
29 29 2.142 .02 29 2.103 .022 28 1.18 .124 28 0.811 .212 29 1.777 .043 28 2.527 .009
30 29 2.207 .018 27 2.849 .004 27 0.935 .179 26 249.0 .002 29 2.135 .021 29 2.519 .009
31 28 2.752 .005 28 2.405 .012 28 0.728 .236 25 113.0 .038 28 1.814 .04 29 2.571 .008
32 28 2.192 .018 29 2.249 .016 29 1.054 .15 26 186.5 .065 29 465.0 .001 29 465.0 .001
33 29 1.992 .028 29 2.092 .023 29 1.006 .161 26 220.0 .058 29 1.735 .047 29 465.0 .001
34 29 1.901 .034 29 1.612 .059 29 0.626 .268 25 113.5 .009 29 2.138 .021 29 2.575 .008
35 28 1.307 .101 29 1.444 .08 28 1.17 .126 27 195.0 .001 29 1.735 .047 29 2.417 .011
36 27 1.289 .104 29 1.543 .067 28 0.856 .2 26 213.5 .01 27 2.343 .013 27 3.025 .003
37 29 0.921 .182 29 431.0 .001 29 0.886 .191 28 172.0 .024 28 1.393 .087 28 2.221 .017
38 27 1.187 .123 29 1.547 .066 29 0.736 .234 26 158.5 .005 24 1.694 .052 29 2.717 .005
39 29 0.748 .23 29 1.341 .095 29 1.101 .14 27 211.5 .001 29 1.35 .094 29 2.768 .005
40 29 0.851 .201 28 1.545 .067 28 350.0 .001 27 -0.083 .533 27 1.538 .068 27 2.553 .008
41 29 0.639 .264 28 1.252 .11 29 289.5 .001 27 -0.09 .536 29 1.2 .12 27 2.154 .02
42 29 0.517 .304 29 1.107 .139 28 0.57 .287 27 0.12 .453 27 1.065 .148 28 2.135 .021
43 28 0.603 .276 29 0.885 .192 28 0.672 .254 29 0.285 .389 27 1.314 .1 29 1.656 .054
44 28 0.444 .33 29 0.745 .231 29 316.0 .001 28 0.097 .462 27 1.236 .114 27 1.898 .034
45 29 0.265 .396 26 0.392 .349 29 292.0 .007 27 141.5 .312 28 0.669 .255 29 1.315 .099
46 28 0.122 .452 28 0.129 .449 29 0.243 .405 26 0.078 .469 24 1.439 .082 29 1.516 .07
47 29 -0.141 .556 28 -0.133 .552 28 0.231 .41 27 0.021 .492 29 0.402 .345 29 0.977 .168
48 29 -0.16 .563 27 -0.123 .548 25 58.5 .169 25 61.0 .921 29 0.025 .49 29 0.743 .232
49 28 -0.037 .515 24 0.137 .446 29 111.0 .002 26 -0.044 .517 29 -0.122 .548 27 0.378 .354
50 25 -0.222 .587 27 -0.122 .548 19 nan nan 28 29.0 .998 28 -0.338 .631 28 0.061 .476



Table C.3: u statistic and p value for the independent samples tests on the mean accuracies of the weighted and optimal
(domain) classifiers (Mann-Whitney test). Significant values (p ≤ 0.05) are highlighted grey.

Dataset (a) Dataset (b) Dataset (c)
KMM KLIEP KMM KLIEP KMM KLIEP

u p u p u p u p u p u p
1 880.0 .001 845.0 .001 649.0 .003 704.0 .001 880.0 .001 840.0 .001
2 793.0 .001 793.0 .001 668.5 .001 694.0 .001 777.0 .001 739.5 .001
3 812.0 .001 822.5 .001 661.0 .002 670.5 .001 750.5 .001 650.0 .003
4 786.5 .001 810.0 .001 619.0 .012 614.0 .015 687.5 .001 676.0 .001
5 760.0 .001 781.5 .001 658.5 .002 593.0 .034 643.0 .004 673.5 .001
6 732.5 .001 799.0 .001 611.0 .017 618.5 .012 556.0 .118 650.0 .003
7 695.5 .001 773.5 .001 609.0 .019 668.0 .001 608.0 .019 627.0 .009
8 681.0 .001 723.5 .001 576.5 .061 693.0 .001 589.5 .039 607.5 .02
9 702.0 .001 706.0 .001 613.5 .015 688.5 .001 559.5 .105 574.0 .067
10 677.5 .001 676.0 .001 586.5 .043 674.0 .001 583.0 .049 549.0 .144
11 652.5 .003 642.0 .004 580.5 .053 731.0 .001 540.5 .181 496.0 .499
12 677.0 .001 640.5 .005 515.5 .333 674.0 .001 530.0 .237 446.5 .964
13 687.0 .001 640.5 .005 571.5 .072 699.0 .001 528.0 .249 448.5 .988
14 653.5 .003 652.5 .003 637.0 .005 721.0 .001 537.0 .199 437.5 .858
15 625.0 .01 632.5 .007 592.0 .035 649.0 .003 460.5 .882 450.5 1.0
16 565.0 .089 602.5 .024 566.5 .084 718.5 .001 461.5 .87 420.5 .666
17 523.0 .281 625.0 .009 645.0 .004 667.5 .001 417.0 .629 456.0 .935
18 504.0 .425 622.5 .011 631.0 .007 702.0 .001 426.5 .732 424.0 .704
19 524.5 .271 601.0 .025 552.0 .13 707.0 .001 429.0 .76 457.0 .923
20 526.5 .258 590.5 .037 603.5 .023 645.5 .004 485.0 .608 447.5 .976
21 481.5 .644 563.5 .093 547.0 .151 593.5 .034 445.5 .953 444.0 .935
22 481.0 .65 558.0 .109 583.0 .049 691.5 .001 462.5 .858 383.5 .325
23 465.5 .823 561.0 .099 537.5 .196 597.0 .029 406.0 .517 346.0 .123
24 497.0 .488 583.5 .048 552.0 .131 620.0 .012 413.5 .593 361.0 .188
25 496.0 .498 553.0 .127 517.5 .318 582.5 .05 455.5 .941 360.5 .186
26 477.5 .687 542.0 .173 501.0 .452 603.0 .023 465.5 .824 360.0 .184
27 490.5 .55 532.0 .225 562.5 .096 623.5 .01 424.5 .71 353.0 .152
28 563.5 .093 566.5 .084 498.5 .475 602.5 .024 433.0 .806 358.0 .174
29 582.0 .05 518.0 .315 535.0 .208 589.5 .039 421.0 .672 367.0 .219
30 539.5 .185 551.5 .133 548.5 .143 584.5 .046 443.5 .929 364.5 .205
31 503.5 .43 501.5 .447 545.0 .16 559.5 .105 442.0 .911 338.0 .097
32 458.5 .905 486.0 .596 541.5 .175 604.5 .022 455.5 .941 339.0 .1
33 485.5 .602 507.0 .4 511.0 .368 570.0 .076 462.0 .864 358.0 .172
34 444.5 .941 484.5 .613 517.0 .323 558.5 .108 431.5 .789 351.5 .144
35 449.0 .994 456.0 .934 468.5 .789 540.5 .18 461.0 .876 351.0 .143
36 403.0 .487 455.0 .946 510.0 .376 557.0 .113 445.5 .953 349.0 .134
37 412.0 .576 460.5 .882 485.5 .602 531.0 .231 449.5 1.0 349.5 .137
38 462.5 .858 460.5 .881 537.5 .196 563.5 .093 467.5 .801 351.5 .145
39 409.5 .551 438.5 .87 500.5 .456 541.0 .178 470.5 .766 357.5 .171
40 412.0 .575 448.5 .988 476.0 .704 524.0 .274 477.0 .694 349.0 .135
41 412.5 .581 439.5 .882 487.0 .587 519.0 .308 477.0 .694 346.0 .124
42 398.5 .446 441.0 .899 460.0 .887 511.5 .364 468.0 .795 337.0 .094
43 414.5 .601 428.0 .748 501.0 .452 453.0 .97 482.0 .64 354.0 .155
44 422.0 .682 428.5 .754 502.0 .443 475.5 .709 466.0 .818 352.0 .146
45 466.0 .817 411.0 .565 485.5 .602 468.5 .789 467.0 .806 363.5 .201
46 444.5 .941 399.5 .455 491.0 .547 460.0 .888 466.0 .818 374.5 .264
47 427.5 .743 396.0 .425 473.5 .732 478.0 .682 446.5 .964 379.5 .298
48 426.0 .726 392.0 .391 475.5 .71 481.0 .65 451.0 .994 377.5 .284
49 449.0 .994 384.5 .332 477.0 .693 485.5 .602 473.0 .738 391.0 .384
50 422.0 .682 382.0 .314 471.0 .76 479.5 .666 474.0 .727 417.0 .629



D Visualisation of Importance Weighting for a Label-Based Sampling Scheme
This appendix illustrates the weight values assigned by the importance weighting techniques to the train samples
in the synthetic datasets when a label-based bias of different intensities is used. Results are shown for KMM and
KLIEP.

Figure D.1: Visualisation of the weights assigned by KMM to the train samples for various class imbalance ratios. Class 2
proportion (%) takes on values 56, 66, 76, 86, 96. Larger sizes indicate larger weights.



Figure D.2: Visualisation of the weights assigned by KLIEP to the train samples for various class imbalance ratios. Class 2
proportion (%) takes on values 56, 66, 76, 86, 96. Larger sizes indicate larger weights.



E Classification Accuracy for a Label-Based Sampling Scheme for Various Train
Sample Sizes

This appendix contains a visualisation of the performance curves of both the weighted and unweighted classifiers on
a label-based sampling scheme when the train sample size is varied.

Figure E.1: Classification performance on a label-based sampling scheme for various proportions K of the original train sample
size used in test case 1.
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