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SUMMARY

As one of the main sensor in autonomous driving, radar has great advantages over
other sensors, especially its capabilities during adverse weather condition and Doppler
information extraction.

Performance of the radar in terms of accuracy and target resolution strongly
depends on radar waveforms transmitted and signal processing algorithms applied.
To achieve high range resolution, an ultra-wideband (UWB) signal has to be used
for sensing, which introduces difficulties to achieve high Doppler and direction-of-
arrival (DOA) estimation simultaneously due to the range migration. To address
this problem, in this thesis new signal processing algorithms are proposed, which
pave the way to improved performance of the automotive radar sensor.

As the frequency-modulated continuous-wave (FMCW) radar are widely used
in short-range and middle-range applications due to its low cost and simplicity,
FMCW waveform is the main research subject. The FMCW signal model is derived
and analysed in Chapter 2 which for the first time takes both the range migration
and wideband DOA problems into account at the same time.

The point-like moving targets are considered in Chapter 3 where their Doppler
velocities are within the maximum unambiguous velocity of the radar. A novel im-
proved multiple signal classification (MUSIC) algorithm with the dynamic noise-
subspace method is proposed to address both the range migration and wideband
DOA problems. The algorithm releases the great potentials of the conventional MU-
SIC algorithm in the presence of the range migration. Moreover, an efficient algo-
rithm based-on Rayleigh-Ritz step is introduced for the proposed method resulting
in a considerable reduction of computational requirements without any performance
degradation. Comparison with the conventional narrow-band MUSIC, Keystone-
MUSIC, inversion-MUSIC and corresponding Cramér-Rao bounds (CRB) using
simulations, reveals the superiority of the method proposed in terms of accuracy,
resolution and efficiency.

The problems similar to those considered in Chapter 3 but in the presence of the
Doppler ambiguity are considered in Chapter 4. A spectral norm-based algorithm
is proposed to address the coupling terms for a single moving point-like target. The
algorithm for the first time abandons the integration-based method for ambiguous
velocity estimation. The spectral-norm based algorithm provides a new tool to re-
solve the ambiguity problem which outperforms the conventional integration-based
algorithm by avoiding the off-grid problem with limited data size. Moreover, com-
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0 2 SUMMARY

bined with the modified CLEAN techniques and Greedy algorithm, the proposed
algorithm can be extended to multiple moving targets. Furthermore, the power iter-
ation algorithm is smartly adopted for an efficient implementation of the proposed
method.

After addressing the point-like targets, the moving extended targets are studied
in Chapter 5 especially when multiple extended targets cannot be separated both
in range and beam profile. The Doppler difference is used to recognise them and
inverse synthetic aperture radar (ISAR) concept is adopted to split and image the tar-
gets separately. The conventional entropy minimisation approach is applied to the
signal model for not only the Fourier spectrum but also the eigenspectrum as well
for the first time. The Fourier spectrum has a relatively high resolution in higher-
order motion (e.g. acceleration) while eigenspectrum has a better resolution in
Doppler separation. The advantages of both spectra are utilised to separate multiple
extended targets by a simple but powerful combination. Via numerical simulation,
the applicability of the algorithm in the automotive application is demonstrated.

Last in Chapter 6, by processing the experimental data from automotive radar,
we present a novel and fast imaging algorithm for slow-moving targets which pro-
vides super-resolution on DOA. The range information is processed via fast Fourier
transform (FFT) for efficiency while the DOA is estimated by the MUSIC algorithm
for super-resolution. Since the MUSIC spectrum is pseudo-spectrum and can not
represent the correct dynamic range of the imaging results, a novel normalisation
method is introduced to vividly indicate the energies of different targets. In com-
parison with conventional FFT-BF, a cleaner range-azimuth image is obtained with
the proposed algorithm demonstrating higher angular resolution and without strong
side-lobes.

Although the research presented in this thesis is served for automotive applica-
tion, some of the algorithms and ideas can be easily generalised for a broad spec-
trum of diverse applications.



SAMENVATTING

Als een van de belangrijkste sensoren in autonoom rijden, heeft radar grote voor-
delen ten opzichte van andere sensoren, met name zijn mogelijkheden gedurende
ongunstige weersomstandigheden en Doppler-informatie-extractie.

Prestaties van de radar in termen van nauwkeurigheid en doelresolutie zijn
sterk afhankelijk van de uitgezonden radargolfvormen en toegepaste signaalverwer-
kingsalgoritmen. Om een hoge bereikresolutie te bereiken, moet een ultrabreed-
bandsignaal worden gebruikt voor waarneming, wat moeilijkheden veroorzaakt als
tegelijkertijd een hoge Doppler- en DOA-schatting moet worden verkregen, van-
wege de bereikmigratie. Om dit probleem aan te pakken, worden in dit proefschrift
nieuwe signaalverwerkingsalgoritmen voorgesteld, die de weg vrijmaken voor ver-
beterde prestaties van de autoradarsensor.

Aangezien de frequentie-gemoduleerde continue golf (FMCW) -radar vanwege
zijn lage kosten en eenvoud op grote schaal wordt gebruikt in toepassingen op korte
en middellange afstanden, is de FMCW-golfvorm het belangrijkste onderzoekson-
derwerp. Het FMCW-signaalmodel wordt afgeleid en geanalyseerd in hoofdstuk 2,
dat voor het eerst tegelijkertijd rekening houdt met zowel de migratie van het bereik
als de breedband-DOA-problemen.

De bewegende puntvormige doelen worden in hoofdstuk 3 besproken, waar hun
Doppler-snelheden binnen de maximale ondubbelzinnige snelheid van de radar lig-
gen. Een nieuw verbeterd MUSIC-algoritme met de dynamische ruissubruimte-
methode wordt voorgesteld om zowel de migratie van het bereik als de breedband-
DOA-problemen aan te pakken. Het algoritme maakt de grote gebruiksmogelijk-
heden van het conventionele MUSIC-algoritme mogelijk in aanwezigheid van de
bereikmigratie. Bovendien wordt een efficiënt algoritme gebaseerd op de Rayleigh-
Ritz-stap geïntroduceerd voor de voorgestelde methode, wat resulteert in een aan-
zienlijke vermindering van de computationele vereisten zonder enige prestatiever-
mindering. In vergelijking met de conventionele smalbandige MUSIC, Keystone-
MUSIC, inversion-MUSIC en bijbehorende CRB met simulaties, wordt de supe-
rioriteit van de voorgestelde methode in termen van nauwkeurigheid, resolutie en
efficiëntie getoond.

De problemen die vergelijkbaar zijn met die in hoofdstuk 3, maar in aanwezig-
heid van de Doppler-ambiguïteit, worden in hoofdstuk 4 besproken. Er wordt een
op spectraalnorm gebaseerd algoritme voorgesteld dat zich richt op de koppelings-
voorwaarden voor een enkel bewegend puntvormig doel. Het algoritme laat voor
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0 4 SAMENVATTING

het eerst de op de integratie gebaseerde methode voor dubbelzinnige snelheids-
schatting zien. Het op de spectrale norm gebaseerde algoritme biedt een nieuw
hulpmiddel om het dubbelzinnigheidsprobleem op te lossen dat beter presteert dan
het conventionele op integratie gebaseerde algoritme, door de off-grid-problemen
met beperkte gegevensomvang te vermijden. Bovendien, in combinatie met de aan-
gepaste CLEAN-technieken en het Greedy-algoritme, kan het voorgestelde algo-
ritme worden uitgebreid tot meerdere bewegende doelen. Uiteindelijk wordt het
power iteratie-algoritme slim toegepast voor een efficiënte implementatie van de
voorgestelde methode.

Na het aanpakken van de puntvormige doelen, worden de bewegende uitge-
breide doelen bestudeerd in Hoofdstuk 5, vooral wanneer meerdere uitgebreide
doelen niet te splitsen zijn in zowel bereik als straalprofiel. Het Doppler-verschil
wordt gebruikt om ze te herkennen en het ISAR-concept wordt gebruikt om de doe-
len afzonderlijk te splitsen en in beeld te brengen. De conventionele benadering
voor het minimaliseren van entropie wordt voor het eerst toegepast op het signaal-
model voor niet alleen het Fourier-spectrum, maar ook voor het eigenspectrum.
Het Fourier-spectrum heeft een relatief hoge resolutie bij bewegingen van hogere
orde (bijv. versnelling), terwijl het eigenspectrum een betere resolutie heeft bij
Doppler-scheiding. De voordelen van beide spectra worden gebruikt om meerdere
uitgebreide doelen te scheiden door een eenvoudige maar krachtige combinatie. Via
numerieke simulatie wordt de toepasbaarheid van het algoritme in de automotive-
applicatie gedemonstreerd.

Als laatste in hoofdstuk 6 presenteren we, door de experimentele gegevens van
autoradars te verwerken, een nieuw en snel beeldvormingsalgoritme voor lang-
zaam bewegende doelen dat een superresolutie op DOA biedt. De bereikinforma-
tie wordt voor efficiëntie verwerkt via FFT, terwijl de DOA wordt geschat door
het MUSIC-algoritme voor superresolutie. Aangezien het MUSIC-spectrum een
pseudo-spectrum is en niet het juiste dynamische bereik van de afbeeldingsresulta-
ten kan vertegenwoordigen, wordt een nieuwe normalisatiemethode geïntroduceerd
om de energie van verschillende doelen dynamisch aan te geven. In vergelijking met
conventionele FFT-BF wordt met het voorgestelde algoritme een schoner bereik-
azimut beeld verkregen met een hogere hoekresolutie zonder sterke zijlobben.

Hoewel het in dit proefschrift gepresenteerde onderzoek wordt gebruikt voor
automotive toepassingen, kunnen sommige algoritmen en ideeën gemakkelijk wor-
den gegeneraliseerd voor een divers breed spectrum van toepassingen.



LIST OF SYMBOLS AND
NOTATIONS

a,A Scalars are denoted by normal letters
a Vectors are denoted by lower-case bold-face letters
A Matrices are denoted by upper-case bold-face letters
A Tensors are denoted by bold calligraphic letters
AT Transpose of matrix A
A∗ Complex conjugate of matrix A
AH Conjugate transpose of matrix A
||A||2 Spectral norm of matrix A
||A||F Frobenius norm of matrix A
||A||max, ||a||max Returns the maximum absolute value of the entry in matrix

A or vector a
abs(A) Returns the matrix with the absolute values of all entries

of matrix A
σ(A) Spectrum of the matrix A
[A]p,q Returns the entry of matrix A at the (p + 1)th row and

(q + 1)th column
[A]p,q,r Returns the entry of tensorA at the (p+1)th row, (q+1)th

column and (r + 1)th tube
orth(A) Orthogonisation of the columns of matrix A
diag(A) Returns the diagonal entries of matrix A
vec(A) Vectorisation of matrix A by stacking the columns to-

gether
Tr(A) Returns the trace of a matrix A
⊗ Kronecker product
� Hadamard product
� Elementwise division
◦ Outer product
×n Tensor n-mode product
bxc Gives the nearest integer less than or equal to x
bxe Gives the nearest integer to x
I Identity matrix
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F (·) Fourier transform
E(·) Expectation operation
<(·) Real part extraction
=(·) Imaginary part extraction
δ(·) Kronecker delta function
sinc(·) Sinc function
corr(·, ·) Correlation operation
O Asymptotic notation
R Real number field
C Complex number field



1
INTRODUCTION

1.1. MOTIVATION OF RESEARCH
A new civilisation era is coming with the boom of the technologies. Especially
with the rapid development of computer science and sensor techniques, mankind
will gradually liberate the labour force and achieve a highly automated industry.
Obviously, the road to such a future is not always smooth and a lot of challenges
are presented in the path. In addition to superior computing power, sensor science is
another significant challenge. With advanced sensors and related signal processing
methods, the scope of human activities has been greatly increased, and the ability
to perceive and explore the world has been significantly enhanced.

Although many kinds of sensors have been developed for environment sensing,
for example, Fig. 1.1 shows the properties of the main sensors in the automotive
applications, none of them is omnipotent1. Fig. 1.1 also indicates that radar has
the most advantages among these sensors. Especially for the Doppler velocity es-
timation, radar has an absolute advantage over other sensors. Thus, it will play an
irreplaceable role in automotive sensors. However, there are some great challenges
of radar need to be urgently solved for future application in the complex environ-
ment.

There are three main kinds of resolutions in automotive radar, namely, range
resolution, Doppler frequency resolution and DOA resolution. To satisfy the re-
quirement of the range resolution, the bandwidth of the waveforms is increased sig-
nificantly. This subsequently, however, brings several challenges to moving targets
detection and corresponding parameters estimation, especially for the fast-moving
objects.

1Source: https://www.unitedlex.com
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Figure 1.1: Comparison of different sensors in automotive application, where the performances are
rated by 5 grades from 0 (bad) to 5 (best)
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(a) (b)

(c) (d)

Figure 1.2: Long-time exposure of camera of (a) stationary car and (b) fast-moving car and
long-time illumination of radar of (c) stationary point target and (d) fast-moving point target

One primary challenge is the range migration phenomenon and the related
Doppler ambiguity problem. For better targets detection and higher Doppler res-
olution, long-time microwave illumination for the targets are necessary. However,
fast-moving targets might migrate several range resolution cells during this time and
bring difficulties for joint range and Doppler frequency estimation. The influence
of range migration of one single point target on the Fourier spectrum is illustrated
in Fig. 1.2 and compared with photos of a car with long-time exposure.

The range migration problem becomes more evident and cannot be ignored
when UWB signals are applied. There are two main directions to treat the range
migration. The first one is to eliminate the range migration and obtain the focused
targets when the Doppler shifts are smaller than the maximum unambiguous ve-
locity which depends on the radar settings. Another direction is when the Doppler
ambiguities happen and the fold numbers are expected to be estimated from the
range migration. The first case, for example, happens to vehicles mounted with
automotive radar when they are driven in the city or rural area and the second case
will be considered on the highway.

Another great challenge is the wideband DOA problem. Since the conventional
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so-called super-resolution algorithms are formulated based on the assumptions of
the narrowband signals, they cannot directly be applied to the wideband cases. Al-
though some wideband DOA algorithms have been proposed, they are not optimised
for joint parameters estimation with limited data. New signal processing methods
for joint estimation of wideband DOA, Doppler and range with super-resolution
abilities are urgently required.

1.2. STATE OF THE ART AND CHALLENGES

1.2.1. RANGE MIGRATION

Detection and localisation of moving targets are important in many fields such
as automotive radar [1], ground moving target indication (GMTI) [2], underwa-
ter acoustic array [3]. The most important parameters of moving targets are range,
azimuthal (and, in 3D space, elevation) angle (or DOA) and velocity. The target
range and angle together determine the location of a target. The Doppler (along
with range) velocity is usually determined in coherent radars by means of phase
shift between chirps within the coherent processing interval (CPI), and DOA is
determined from the phase shift of signals received by different antennas within an-
tenna array. Both phase shifts can be easily measured separately using narrowband
radar. Using the de-chirping technique for FMCW radar [2, 4], the received signals
are transformed into multi-dimensional complex sinusoids (whose phase depends
on the fast-time - range, slow-time - Doppler velocity and array element - DOA),
which will be discussed in the next chapter. Then the estimation of target’s param-
eters is transformed into the frequencies estimation problem. By extending tradi-
tional single-frequency estimators to joint multiple frequencies estimators, such as
matched filter, 2D-Capon [5], 2D-MUSIC [6], 2D-ESPRIT [7] and sparse represen-
tation methods [8, 9], joint range-Doppler estimation algorithms have been devel-
oped. These algorithms perform well under narrowband signal condition. Target
movement causes, however, change in the target range during one CPI (physically)
and the cross-couplings between fast-time and slow-time (mathematically), which
is called range walk or range migration in GMTI [2, 10, 11]. The cross-coupling
terms spread the Fourier spectrum and consequently lead to resolution losses and
estimation errors for these classic algorithms: the larger the signal bandwidth or
the higher the target velocity, the higher the estimation error of conventional meth-
ods [10, 12].

Recently, since wideband signals are widely used due to the demand of increas-
ingly higher range resolution, the range migration problem has attracted signifi-
cant attention. To solve the target migration problem, the relaxation-based super-
resolution algorithms have been proposed in [2, 13, 14] for multiple moving target
feature extractions. However, they consider a wideband approach for the range pro-
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file, while they assume a narrowband approach for the steering vector. In [15], the
authors present the iterative adaptive algorithm (IAA) for joint multiple parameters
estimation, which provides super-resolution by iteratively calculating the covari-
ance matrix together with estimation results. In [16, 17], IAA is extended to the
wideband waveform case together with the range migration problem. However,
IAA consumes a huge amount of memory and time when the raw data dimension is
large and the scanning area is divided into dense bins, which makes the algorithm
impractical for real-time applications. The Keystone transform and matched filter
were used in [12, 18] to eliminate the range walk residual and the Radon Fourier
transform (RFT) was proposed to consider even higher-order coupling problems by
line or curve searching in the frequency domain in [10,19]. Unfortunately, these ap-
proaches need a large amount of raw data to do interpolation or coherent integration,
therefore they could not provide the same fine resolution as the super-resolution al-
gorithms in [6, 15]. Implementation of the RFT also requires a large amount of
computing power for the line searching in multi-dimensional data. Some waveform
design methods are also proposed to solve the range migration problem [11], but
these algorithms increase the system’s complexity and the achieved resolution is
not as high as that obtained by super-resolution algorithms.

1.2.2. DOPPLER AMBIGUITY
According to the Nyquist sampling criterion, there exists a maximum unambigu-
ous velocity which is determined by the constant pulse repetition frequency (PRF).
When the target radial velocity is larger than the maximum unambiguous veloc-
ity, it will be folded into the unambiguous domain of the Doppler spectrum. This
problem is common for the low PRF waveforms. Although some waveform de-
sign techniques for unambiguous estimation of Doppler and range (such as multiple
pulse repetition frequencies (MPRF) combined with Chinese Remainder Theorem
(CRT) [20] or up-/down-chirps [21]) have been proposed, these approaches increase
the system complexity and have unsatisfactory performance under low signal-to-
noise-ratio (SNR) conditions, which is not a good solution for automotive radar.

For the single PRF waveforms, solutions for the unambiguous Doppler fre-
quency by using the range migration coupling term has been proposed in sev-
eral papers [10, 16, 22–35]. The methods proposed can be roughly divided into
three categories: parametric methods, incoherent integration-based and coherent
integration-based methods. The parametric methods use the model of the noise co-
variance matrix and solve the problem by Bayes estimator. [22–24]. In addition to
the heavy computational load, these methods are also usually very sensitive to the
parameters setting and the initialization. The incoherent integration methods, for
instance, Hough transform (HT) [25], suffer from their poor performance under the
low SNR conditions. The coherent methods are usually performed by the matched
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filter (MF) bank, e.g., W-Capon, W-APES [26], time-reversing transform [27, 28],
scaled inverse Fourier transform [29], modified location rotation transform [30],
IAA which is extended to the wideband waveforms [16]. Keystone transform in
combination with some focusing criteria can also be applied to unambiguous ve-
locity extraction [31–33]. Another famous coherent integration method is RFT by
coupling terms compensation and integration and it is shown in [10,34,35] that the
generalised RFT is the optimal coherent integration-based method for rectilinearly
moving targets under the white Gaussian noise background. However, to accurately
resolve the Doppler ambiguity, the coherent integration approaches usually require
large data size to perform interpolation or coherent integration, which is often not
available due to the limited observation time. Moreover, without appropriate grid
oversampling, MF suffers from the collapsing loss for the off-grid targets. Moder-
ate oversampling in every dimension is required to overcome this problem, hence
with an increased computational burden.

1.2.3. MOTION PARAMETERS ESTIMATION OF EXTENDED TARGETS
The above-mentioned algorithm and techniques are principally applied to the point-
like targets. However, in addition to detection and estimation, the "shape" of the
targets is desired for target recognition. By increasing the illuminating time, the
Doppler resolution can be increased to observe the Doppler differences of scatterers
within one extended target, which is the well-known ISAR imaging [36]. Then
the "shape" of the targets could be recognised. The long-time illumination brings
severe range migration for moving targets, but also provides more information of
the motion parameters of the targets. Therefore, the range alignment by motion
compensation is one of the key problems for the focused images of the target in
ISAR application.

ISAR imaging of a single target has been thoroughly studied and is widely used
for target classification and recognition [37]. One of the key techniques for ISAR
imaging is the range alignment by motion compensation. Many algorithms have
been proposed for motion parameters estimation, such as the centroid tracking al-
gorithm [38], the entropy minimisation (EM) [39], the phase gradient auto-focusing
technique [40], the image contrast maximisation [41]. Among them, EM is one of
the most popular and widely used methods. Moreover, many improved algorithms
based on EM have been introduced, such as Rényi entropy [42], Tsallis entropy [43]
and efficient implementation of EM [44, 45].

However, if there are multiple closely spaced targets presented in the observed
scene, the conventional methods of range alignment and phase adjustment for the
only single target may fail to separate the targets with slightly different velocities or
accelerations. Current approaches of multiple targets separation in ISAR imaging
can be roughly categorised into two classes: separated imaging and direct imaging.
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Figure 1.3: Dense vehicular scenario where two cars cannot be separated in both beam and range
profile

If the targets are not coupled, a coarse image of the targets can be obtained
and the targets can be separated in the coarse image using imaging segmentation
techniques [36,46,47] or sparse representation [48] and more precise image can be
achieved by accurate motion compensation separately.

However, a more challenging scenario is that the targets are coupled with each
other and the range histories are overlapped. For such cases, several popular types
of algorithms are intensively studied. One is based on time-frequency (TF) analysis
which is used to separate different sources in TF domain [49–52]. The drawbacks
of the TF analysis are either the cross-terms for Wigner-Ville distribution(WVD)
and Radon-Wigner transform (RWT) or the low frequency resolution for short-time
Fourier transform (STFT). Another famous algorithm which is based on fractional
Fourier transform (FrFT) [53] to extract the higher-order rate of the signal which is
corresponding to the acceleration and jerk. However, the targets with the same or
similar acceleration are difficult to be recognised by FrFT. Several lines or curves
detection based algorithms [54, 55], such as Hough Transform, are applied to sepa-
rate the range profile of each target. However, the performance of these algorithms
decreases significantly when the range histories of different targets seriously cou-
pled. Another type is the exhaustive search of the motion parameters and using
auto-focusing criteria as the indications to estimate these parameters [46, 56, 57].
Based on the auto-focusing approach, many algorithms are introduced to separate
and image multiple moving targets, e.g., the Modified Keystone [53,58] and Radon-
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Transform [46].

1.2.4. WIDEBAND DOA
In addition to the range migration, another limitation for (Ultra-)WB signal in the
collocated array or multiple-input and multiple-output (MIMO) application is the
DOA estimation. Although the range migration problem has been studied inten-
sively, the current algorithms jointly dealing with range migration and DOA esti-
mation fail to provide a good solution to wideband DOA estimation by simplifying
the signal model with narrowband DOA assumption [2,14,59]. The traditional DOA
estimators are based on narrowband assumptions by the interferometry information,
such as Capon, MUSIC, etc. To apply the traditional narrowband super-resolution
algorithm for wideband cases, two of the mainstreams of wideband DOA estima-
tion are proposed, namely the incoherent signal subspace method (ISSM) and the
coherent signal subspace method (CSSM). ISSM solves this problem via a filter
bank to decompose the array output into its independent narrowband components.
Then the subspace algorithm is applied to each narrowband output, and DOA esti-
mates can be averaged in some way. However, each of narrowband estimates does
not fully exploit the total emitter power and some of the narrowband components
may have a low SNR, and the final DOA estimates may be adversely affected by a
few inaccurate narrowband estimates [60]. CSSM combines the different narrow-
band signal subspace into a single signal subspace that obeys the narrowband array
model. Although it is shown in [60] that the performance of CSSM is superior
to ISSM, the forming of focusing matrices and universal spatial covariance matrix
(USCM) can increase the computational complexity significantly. In addition, the
accuracy of the focussing matrices highly depends on and is sensitive to the prelim-
inary estimate of the true DOAs [61]. In some other communication problems, joint
time-of-arrival (TOA) and DOA estimation in impulse radio (IR)-UWB are studied,
unfortunately, the DOAs are estimated by the pulse delay which is determined by
the bandwidth and not suitable for the colocated array. Another powerful tool for
DOA estimation is the time-frequency(TF)-MUSIC [62, 63] which is used to deal
with non-stationary sources and it is also applied for wideband DOA estimation in a
similar way as CSSM [64]. However, in FMCW radar, the de-chirped signals (beat
frequency signals) for each antenna element behaves as "stationary sources", so an
application of TF-MUSIC to them is not helpful.

The main motivation of this research is to develop some new algorithms which
could not only estimate the wideband DOAs with the capability of super-resolution
but also take the range migration problem into account. Most importantly, all the
parameters, i.e., range, Doppler and DOA are estimated jointly. The algorithms
should be adaptive to different scenarios. For instance, in the automotive applica-
tion, the Doppler ambiguity is not considered to alleviate the computational burden
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when the vehicles are driven in the city or rural place while it has to be considered
when people are driving on a highway. Moreover, the more demanding scenario is
the targets imaging when they are hardly separable in the range or beam profile.

1.3. RESEACH OBJECTIVES AND NOVELTIES
This dissertation aims to develop advanced algorithms for joint parameters esti-
mation of multiple fast-moving targets. To achieve these objectives, the following
research questions will be addressed step by step

• Joint DOA and Doppler estimation by eliminating the range migration.

• Joint Doppler, DOA and range estimation using UWB FMCW signals in the
presence of the Doppler ambiguity.

• Joint Doppler and range estimation for imaging of multiple extended targets.

• Efficient FFT-MUSIC algorithm for automotive application.

1.4. OUTLINES OF THE THESIS
The rest of the thesis is organised as follows:

• Chapter 2 Fundamentals of FMCW and wideband signal model.

This chapter gives a brief introduction of the FMCW theory and the corre-
sponding wideband signal model for multiple moving targets are established.
The signal model takes advantage of the property of the linear modulated fre-
quency and transform the wideband DOA as the coupling terms in the signal
model analogous to the range migration. As such, the range migration and the
wideband DOA problem are treated in a similar way. The challenges and the
constraints of the migration problem and wideband DOA are reviewed with
the mathematical model. This signal model will be used in the following
chapters.

• Chapter 3 Joint parameters estimation using compensated MUSIC algo-
rithm.

This chapter tries to modify the conventional MUSIC algorithm to the pro-
posed wideband signal model where the Doppler ambiguity is not considered.
A novel compensated MUSIC algorithm is proposed in this chapter to adjust
the phase in each searching grid and the dynamic noise subspace is extracted
to improve the estimation accuracy and resolution. Both 2D and 3D MUSIC
algorithm with the proposed compensation method are presented. Moreover,
efficient implementations are proposed and the corresponding performances
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are compared for the 2D case. Finally, the performances of the proposed
methods are compared with other algorithms and validated by the simulation
results.

The publications related to this chapter are the following:

– S. Xu and A. Yarovoy, "Joint Doppler and DOA estimation using 2D
MUSIC in presence of phase residual," 2017 European Radar Confer-
ence (EURAD), Nuremberg, 2017, pp. 203-206.
doi: 10.23919/EURAD.2017.8249182

– S. Xu and A. Yarovoy, "Joint Parameters Estimation Using 3D Tensor
MUSIC in the Presence of Phase Residual," 2018 International Confer-
ence on Radar (RADAR), Brisbane, QLD, 2018, pp. 1-4.
doi: 10.1109/RADAR.2018.8557322

– S. Xu, B. J. Kooij and A. Yarovoy, "Joint Doppler and DOA Esti-
mation Using (Ultra-)Wideband FMCW Signals," Signal Processing,
168(2020): 107259.

• Chapter 4 Joint parameters estimation using spectral norm-based algorithm.

Since the proposed algorithm in the previous chapter has limited potential for
the estimation of Doppler ambiguity, a new algorithm is introduced in this
chapter. The algorithm uses the same signal model from Chapter 2 in which
the Doppler ambiguities are also considered. The spectral norm-based algo-
rithm for a single target is presented and subsequently applied Greedy and
RELAX algorithms, the proposed methods can be easily extended to mul-
tiple targets. In addition, the power iteration algorithm is adopted to accel-
erate the algorithm. Finally, the simulation results show the superiorities of
the algorithm over the coherent integration-based algorithm in accuracy and
computational time with limited data.

The publication related to this chapter is

– S. Xu, and A. Yarovoy, "Joint Features Extraction for Multiple Moving
Targets Using (Ultra-)Wideband FMCW Signals in presence of Doppler
Ambiguity," IEEE Transactions on Signal Processing, under review af-
ter revision.

• Chapter 5 A novel auto-focusing algorithm using entropies of both eigen-
spectrum and Fourier spectrum for closely multiple extended targets.

The previous algorithms are based on the point-like targets, while in this
chapter, the extended targets are considered. The closely positioned targets
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which cannot be separated either in the range profile or the beam is the ex-
treme case in multiple targets imaging. The conventional auto-focusing cri-
teria, e.g. Shannon entropy of the Fourier spectrum would fail to separate
two targets if they move with similar radial velocities. The proposed entropy
of eigenspectrum has much higher sensitivity in the Doppler differences, and
thus, can be used in such cases. Combined the entropies of both Fourier
spectrum and eigenspectrum, a new algorithm having both high resolutions
in velocity and acceleration is introduced. The real geometry simulation val-
idates the applicability of the proposed algorithm.

The publication related to this chapter is

– S. Xu, and A. Yarovoy, "Minimum Entropy of the Eigen Spectrum
for Motion Parameters Estimation of Multiple Extended-Targets," IEEE
Sensors Journal, under review.

• Chapter 6 Super-resolution DOA with FFT-MUSIC Algorithm for Automo-
tive Radar Imaging.

Although some efficient implementations have been introduced in previous
chapters, they are still computationally intensive for current computers. In
this chapter, an efficient FFT-MUSIC algorithm is proposed for the range-
azimuth image of slow-moving objects. The performance of the algorithm is
compared with conventional beamforming algorithm using the experimental
data collected from a moving car in the complex environment. Despite the
slightly increased computational load, the proposed algorithm provide much
higher angular resolution than beamforming method without strong sidelobes
and can be implemented in real-time.

The publication related to this chapter is

– S. Xu, J. Wang and A. Yarovoy, "Super Resolution DOA for FMCW
Automotive Radar Imaging," 2018 IEEE Conference on Antenna Mea-
surements & Applications (CAMA), Vasteras, 2018, pp. 1-4.
doi: 10.1109/CAMA.2018.8530609

• Chapter 7 Conclusions.

The conclusions are drawn in this chapter and some recommendations for the
future research are presented.





2
FUNDAMENTALS OF FMCW

AND WIDEBAND SIGNAL MODEL

2.1. FMCW
In this section, some basic concepts of FMCW and related terms are briefly re-
viewed. Furthermore, the signal model of multiple moving point-like targets using
UWB FMCW antenna array is provided and discussed.

2.1.1. CW RADAR
Continuous-wave (CW) radar systems transmit the electromagnetic wave continu-
ously and the echo reflections from the objects are received and recoded simulta-
neously and continuously as well [65]. Since the high duty ratio is achieved, it has
much higher integrated energy in a short time than the pulse counterpart. Bistatic
configuration is employed for CW radars, and since the transmitter and receiver
cannot be isolated perfectly, the direct wave from the transmitter to the receiver will
influence the received signals. This problem, subsequently, relegates CW systems
to relatively low power and hence short-range applications.

Since the range of the targets is determined by the EM wave’s round-trip delay,
the characteristics of the CW waveforms must be changing to retrieve the range
information (e.g., change the wave’s frequency or phase over time).

2.1.2. FMCW
There are several possible modulation patterns which can be used for different mea-
surement purposes:

• Sawtooth modulation, also called linear frequency-modulated continuous-
wave (LFMCW or FMCW).

19
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• Triangular modulation.

• Square-wave modulation (simple frequency-shift keying, FSK).

• Stepped modulation (staircase voltage).

• Sinusoidal modulation.

Among these modulations, FMCW (upward ramps sawtooth modulation) is
widely used in the automotive radar and is the main object of the research in this
thesis. The FMCW signal in the time-frequency domain is illustrated in Fig. 2.1.
The T0 is the chirp duration in which the frequency is linearly modulated with time.
After the frequency reaches the maximum value, the time interval tsettle is needed
to reset the frequency to the starting frequency. Since the initial time of the modu-
lation could be nonlinear or unstable, the only useful data are collected in the time
periods which are shown as the green line in Fig. 2.1.

Figure 2.1: FMCW Signal Model

The main advantages of FMCW automotive radar over other waveforms in-
cludes:

• Simultaneous ranges and Doppler velocities estimation;

• Relatively low sampling frequency with de-chirping technique;

• Narrowbandd processing (after de-chirping) for short-range applications;

• Safety with low transmitted power;

• Low cost;

• Portable size;
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• Simplicity;

• High reliability;

• Good sensitivity.

2.1.3. DE-CHIRPING TECHNIQUES

Figure 2.2: Illustration of de-chirping techniques

Different from pulse radar, the received chirp signals can be processed by the
matched filter or the so-called de-chirping or de-ramping techniques analogously.
Fig. 2.2 shows the theory of de-chirping techniques, where the green line indicates
the time-frequency relation of the transmitted chirp signal and the received chirp
signal is denoted by the blue line. The de-chirped signal is obtained by instanta-
neous frequency differences between the transmitted and received chirps (indicated
by the red line), which is called the beat frequency signal or beat signal. The beat
signal contains the range information as well as the Doppler information. However,
the Doppler frequency shift in one beat signal usually is much smaller than that of
range and is mostly negligible. To obtain the Doppler information, multiple chirps
are used and Doppler frequency is estimated from the phase shift within multiple
beat signals.

There are many advantages to apply de-chirping technique other than the matched
filter. In addition to the simple implementation in the analogous circuits, the sam-
pling frequency is dramatically reduced, which will be discussed in the signal model
in detail.

However, there is also some limitations of FMCW. As we will show in the signal
model, usually the maximum unambiguous velocity and maximum unambiguous
range are hard to be achieved with low sampling frequency simultaneously.
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2.2. FMCW SIGNAL MODEL
2.2.1. SIGNAL MODEL
In this section, the signal model using a monostatic antenna array with one trans-
mitter and L receivers is formulated. Without losing generality, the uniformly dis-
tributed linear array (ULA) with omnidirectional elements is considered for the
receivers. Assume I point targets with unknown initial range r = [R1, R2, ..., RI ],
radial velocity v = [v1, v2, ..., vI ] and angle θ = [θ1, θ2, ..., θI ] are located in the
observed far-field. During one CPI a sequence of FMCW chirps is transmitted with
the chirp duration T0 and the pulse repetition interval (PRI) T . A normalised single
chirp signal with bandwidth B has the form

s0(t) =
{
ej2π(f0t+0.5µt2) t ∈ [0, T0],
settle time t ∈ (T0, T ), (2.1)

where f0 = fchirp, start is the starting frequency, µ = B

T0
denotes the frequency mod-

ulation rate and the settle time is the system reset interval. The periodic transmitted
signal is decomposed into fast-time domain t′ and chirp number (slow-time) do-

main m =
⌊
t

T

⌋
as t′ = t−mT, t′ ∈ [0, T0], where m = 0, 1, 2, ...,M − 1 and M

is the total number of the chirps in one CPI.
Then the periodically transmitted signal can be expressed as

s(t) = s(t′ +mT ) = s(m, t′) = s0(t′). (2.2)

Consider the ith scatterer in the observation domain with the radial velocity vi and
the initial range Ri, the round trip delay of the reflected signal for ith scatterer is

τi(m, t′) = 2(Ri + vi(t′ +mT ))
c

= γi + 2vi
c

(t′ +mT ), (2.3)

where c is the speed of light and γi = 2Ri
c
� T0 is the initial round trip delay of

ith scatterer. Using the 0th element of the array as the reference, the received signal
of ith scatterer by the lth element can be written as

r
(l)
i (m, t′) = αie

jϕ
(l)
i s(t′ +mT − τi(m, t′))

= αie
jϕ

(l)
i ej2πφi(m,t

′), (2.4)

with t′ ∈ [γi, T0],

where the superscript (l) denotes the lth element of receiver array, l = 0, 1, 2, ..., L−
1 denotes the indices of element and L is the total number of the receivers, αi is
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the constant complex amplitude of ith scatterer, exp(jϕ(l)
i ) denotes the phase delay

relative to the 0th element, and according to (2.2) the term 2πφi(m, t) has the form

φi(m, t′) = f0(t′ − τi(m, t′)) + 0.5µ(t′ − τi(m, t′))2,

with t′ ∈ [γi, T0]. (2.5)

From the phase of the received signal, the instantaneous frequency of the received
signal is extracted as

fi(m, t′) = ∂φi(m, t′)
∂t′

= f0

(
1− ∂τi(m, t′)

∂t′

)
+ µ(t′ − τi(m, t′))

(
1− ∂τi(m, t′)

∂t′

)
≈ f0 + µt′. (2.6)

Here the terms of the time delay are neglected because of the short range assumption
τi(m, t′) << T0 and vi << c. Then the phase delay of the lth element relative to
the 0th element is obtained by

ϕ
(l)
i = 2πfi(m, t′)

ld

c
sin θi = 2π(f0 + µt′) ld

c
sin θi, (2.7)

where θi denotes the angle of the ith scatterer, fi(m, t′) denotes the instantaneous
frequency and is obtained from (2.6), and d denotes the distance between the neigh-
bouring elements, respectively. In this thesis, the targets are located in the far-field
and the observation time in one CPI is very short, thus, the angles of the target are
assumed constant during one CPI. It is seen in (2.7) that the phase delay is not only
related to the element index l, but also the fast-time t′. In fact, it is very straight-
forward because the steering vector is the function of frequency for wideband DOA
and the frequency is the function of fast-time for FMCW signal, then naturally,
the steering vector is transferred to a function of time. Therefore, the wideband
DOA is decomposed into the narrowband one and an additional second-order cou-
pling between the indices of elements and the fast-time. According to (2.7), the
second-order coupling has more significant influence when the relative bandwidth
B

f0
is larger. Therefore, for DOA estimation, the wideband term is usually related

to the relative bandwidth. This is different from the range estimation, the wideband
term is generally related to the absolute bandwidth. Especially for moving objects,
wideband is considered when range migration problems happen.

This wideband DOA problem has been ignored in many articles for joint param-
eters estimation [14,66,67]. Moreover, the traditional CSSM or ISSM for wideband
DOA are avoided by solving the problem of coupling terms.
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The received signal is then correlated with the conjugate copy of the transmitted
signal and the de-chirped signal of the ith scatterer received by lth element can be
written as (for simplicity, αi is still used for denoting the complex amplitude of the
de-chirped signal)
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z
(l)
i (m, t′) = r

(l)
i (m, t′)× s∗(m, t′)

= αie
ϕ

(l)
i exp[j2πf0(t′ − τi) + 0.5µ(t′ − τi)2]

× exp[−j2π(f0t
′ + 0.5µt′2)]

= αie
ϕ

(l)
i exp[j2π(f0t

′ − f0τi + 0.5µt′2 + 0.5µτ2
i

− µt′τi − f0t
′ − 0.5µt′2)]

= αie
ϕ

(l)
i exp[j2π(−f0τi + 0.5µτ2

i − µt′τi)]

≈ αieϕ
(l)
i exp[−j2π(f0τi − µtτi)]

= αie
ϕ

(l)
i exp

{
−j2π

[
f0

(
γi + 2vi

c
t′ + 2vi

c
mT

)]}
× exp

{
−j2π

[
µt′
(
γi + 2vi

c
t′ + 2vi

c
mT

)]}
= αie

ϕ
(l)
i exp

{
−j2π

[
f0γi +

(
f0

2vi
c

+ µγi

)
t′

+f0
2vi
c
mT + µ

2vi
c
mTt′ + µ

2vi
c
t′2
]}

≈ αieϕ
(l)
i exp

{
−j2π

[(
f0

2vi
c

+ µγi

)
t′ + f0

2vi
c
mT + µ

2vi
c
mTt′

]}
≈ αi exp

[
j2π(f0 + µt′) ld

c
sin θi

]
× exp

[
−j2π

(
f0

2vi
c
Tm+ µγit

′
)]

× exp
[
−j2πµ2vi

c
Tmt′

]
. (2.8)

In the last step, we use the assumption that(
f0

2vi
c

+ µγi

)
t′ ≈ µγit′, (2.9)

The assumption that the Doppler frequency is negligible with respect to the beat

frequency is appropriate under two conditions. The first one is f0
2vi
c
� µγi and

the second one is that f0
2vi
cfs

is much smaller than Nyquist bound 0.5, where fs is

the sampling frequency. This assumption is just for simplicity and works for most
scenarios but it is worth noting that it is actually not necessary since combining
the frequencies estimated in the fast-time and slow-time, accurate estimations of



2

26 2. FUNDAMENTALS OF FMCW AND WIDEBAND SIGNAL MODEL

the velocity vi and range Ri are allowed. The issue is mentioned here just to call
attention to this assumption, since in another type of waveform, this assumption
would bring unpleasant results, which will be discussed again in Appendix B.

After analog-digital converter (ADC) with sampling frequency fs, the analo-
gous data are discretised as z(l)

i which is represented as

z(l)
i (m, k) = αi exp[j2π(a(θi)l + fd(vi)m+ fr(ri)k)]

× exp[j2π(fθr(θi)lk + fdr(vi)mk)], (2.10)

where k = bt′fsc is the indices of fast-time samples (k = 0, 1, 2...,K − 1 and K

is the total number of the samples in one PRI), the notations a(θi) = f0
d

c
sin θi,

fd(vi) = −f0
2vi
c

, fr(ri) = − µ
fs
γi,

fθr(θi) = µ
d

cfs
sin θi and fdr(vi) = −µ2vi

cfs
T are used to simplify the equation.

The data can be stacked as matrix form for the lth element. Before showing the
signal model, we first define the notations of DOA steering vector a(θi) ∈ CL×1,
slow-time sinusoidal vector fd(vi) ∈ CM×1, fast-time sinusoidal vector fr(ri) ∈
CK×1, range migration coupling matrix Φ(vi) ∈ CM×K and wideband DOA cou-
pling matrix Ψ(θi) ∈ CL×K , respectively, as

a(θi) = [1, e−j2πa(θi), ..., ej2πa(θi)(L−1)]T ,
fd(vi) = [1, ej2πfd(vi)T , ..., ej2πfd(vi)T (M−1)]T ,
fr(ri) = [1, ej2πfr(ri), ..., ej2πfr(ri)(K−1)]T ,

Ψ(θi) =


hT0 (θi)
hT1 (θi)

...
hTL−1(θi)

 ; Φ(vi) =


gT0 (vi)
gT1 (vi)

...
gTM−1(vi)

 ,
(2.11)

with hl(θi) ∈ CK×1 and gm(vi) ∈ CK×1 as

hl(θi) = [1, ej2πlfθr(θi), ..., ej2πlfθr(θi)(K−1)]T ,
gm(vi) = [1, ej2πmfdr(vi), ..., ej2πmfdr(vi)(K−1)]T . (2.12)

With these notations, the signal model for the lth element is written as

Z(l)
i = αia(l)(θi)(1M [hl(θi)]T )� (fd(vi)fTr (Ri))�Φl(vi), (2.13)

where a(l)(θi) is

a(l)(θi) = exp
(
j2π ld

λ
sin θi

)
. (2.14)
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Then the received data of lth element in the presence of the Gaussian noise N(l) is
written as

X(l) =
I∑
i=1

Z(l)
i + N(l). (2.15)

For the following analysis and further algorithm, the data are further represented in a
more compact way by stacking the discretised data z(l)

i (m, k) directly to formulate
three dimensional tensor Y ∈ CL×M×K for multiple targets in the presence of
white Gaussian noise as

Y =
I∑
i

αia(θi) ◦ fd(vi) ◦ fr(ri)�Wθr(θi)�Wdr(vi) + N , (2.16)

where N ∈ CL×M×K is the complex Gaussian noise tensor with distribution
CN (0, σ2), Wθr(θi) ∈ CL×M×K is the wideband DOA coupling tensor and Wdr(vi) ∈
CL×M×K is the range migration coupling tensor of ith target, respectively. Let
[P(θi)]l,0,k = [Ψ(θi)]l,k ∈ CL×1×K , which means adding a new axis between
the row and the column of Ψ(θi) to make it as a three-dimensional tensor P(θi)
(illustrated ib Fig. 2.3), then Wθr(θi) and Wdr(vi) have the form

Wθr(θi) = P(θi)×2 1TM ,
Wdr(vi) = 1L ◦Φ(vi). (2.17)

Figure 2.3: Illustration of adding a new axis to make 2D a matrix as 3D tensor

Then the problem is to estimate the parameters θi, vi and Ri for all I point
targets from the tensor data Y , where the cubic data Y are indexed with the array
element indices l = 0, 1, ..., L − 1, slow-time indices m = 0, 1, ...,M − 1 and
fast-time sampling indices k = 0, 1, ...,K − 1.

2.2.2. UNAMBIGUOUS PARAMETERS
According to (2.8) and Nyquist criterion, the maximum unambiguous angle θmax,
Doppler velocity vmax and range Rmax are determined by a(θi) ∈ [−0.5, 0.5),
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fd(vi) ∈ [−0.5, 0.5) and fr(ri) ∈ [0, 1) as

sin(θmax) = min
{

c

2f0d
, 1
}
,

vmax = c

4Tf0
,

Rmax = cK

2B = K∆r, (2.18)

where ∆r = c

2B is the theoretical range resolution. Here we assume that the az-
imuthal angles of the targets are within the unambiguous domain and it is usually

realised by setting the distance of neighbouring antenna as d = c

2f0
= λ

2 to cover

the whole azimuthal domain unambiguously, where λ = c

f0
is the wavelength of

the starting frequency. If the Doppler velocity vi is larger than the maximum un-
ambiguous velocity vmax, it will be folded into the unambiguous domain of the
sinusoidal components fd(vi) according to

vi = 2nivmax + v̂i (2.19)

where |v̂i| < |vmax| is the folded velocity and ni is the integer fold number. Esti-
mation of velocity from fd(vi) = fd(v̂i) would only yield the folded velocity v̂i,
while the information of the Doppler ambiguity can be extracted from the coupling
component fdr(vi). Here we assume that the |fdr(vi)| < 0.5 to avoid coupling term

ambiguity and it is usually satisfied in most applications when |vi| <
cfs
4B holds.

According to (2.18), the constraint between vmaxRmax and the sampling fre-
quency fs has

vmaxRmax ≤
c2

8Bf0
fs, (2.20)

where
c2

8Bf0
is a constant determined by the radar system. For a given system,

vmaxRmax is bounded by the sampling frequency fs. Eq. (2.20) indicates that for
UWB FMCW radar, large vmax andRmax are usually hard to achieve simultaneously
using the low-cost hardware (low sampling frequency). Such constraint limits the
application of UWB FMCW radar in many industrial fields. For example, to simul-
taneously achieve vmax = 100m/s and Rmax = 200m for 77GHz automotive radar
with 4GHz bandwidth, the sampling frequency of at least 500MHz is required.
Moreover, higher sampling frequency implies a larger amount of data to be col-
lected and processed in a limited time interval, which is computationally heavy and
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memory-consuming. To alleviate the burden on the hardware, a possible way is
to relax the maximum unambiguous velocity vmax and recover the true ambiguous
velocity |vi| > |vmax| from the coupling term fdr(vi).

2.3. CONCLUSIONS
In this chapter, the fundamental concepts of CW, FMCW and de-chirping tech-
niques are reviewed and the signal model for multiple moving point targets in high-
resolution FMCW radar has been introduced, which will be used in the following
chapters. Different from the narrowband cases, the presented signal model not only
contains the sinusoidal components whose frequencies are corresponding to the pa-
rameters, but also the mutual coupling terms which are brought by range migration
and wideband DOA. Therefore, the frequency estimator for conventional narrow
signals cannot be applied directly. This problem is one of the main challenges of
the whole thesis and a number of novel algorithms to eliminate or take advantages
of these terms are introduced in the following chapters.





3
JOINT PARAMETERS
ESTIMATION USING

COMPENSATED MUSIC
ALGORITHM

The joint DOA, Doppler and range estimation of moving point-like targets using
the derived signal model in the previous chapter is investigated and the compensated
MUSIC algorithm is proposed in this chapter. Based on the signal model in Chapter
2, 2D MUSIC algorithm is firstly adopted for joint estimation of Doppler and DOA
by ignoring the coupling terms. Then a novel embedded compensation approach is
applied to adjust the phases to improve the accuracy and resolution of the estima-
tion. After that, an original efficient implementation of the proposed algorithm is
introduced, and the relevant performances are compared with other algorithms. In
spite of the heavy computational load, the same compensation approach is further
applied to 3D MUSIC in which the noise subspace is extracted by tensor decom-
position. Finally, numerical simulations are used to validate the performance of the
proposed methods. It is shown that the performance of the proposed compensated
2D MUSIC has higher accuracy and resolution than that of Keystone MUSIC. In
addition, it is shown that for a small number of targets, the Rayleigh-Ritz is the most
efficient approach among its counterparts. In addition, the proposed compensation
method also shows positive results in 3D MUSIC simulation.

31



3

32
3. JOINT PARAMETERS ESTIMATION USING COMPENSATED MUSIC

ALGORITHM

3.1. INTRODUCTION
Although both range migration and wideband DOA estimation are intensively stud-
ied separately, there are few articles addressing both problems simultaneously. In
this chapter, a MUSIC-based algorithm is proposed for the problem of joint Doppler
and DOA estimation using the signal model from the previous chapter considering
both range migration and wideband DOA issues. The range migration model has
been studied comprehensively and presented as the second-order coupling between
fast-time and slow-time. Combine the fact that the steering vector is the function
of the frequency of wideband DOA and the frequency is the function of fast-time
in FMCW signal, the conventional CSSM and ISSM can be avoided by transform-
ing the steering vector into the function of fast-time. Thus, the wideband DOA
problem is transformed to the inter coupling between the fast-time and the element
indices analogue to the range migration problem. By this transform, both range
migration and wideband DOA problem present as coupling terms and can be elim-
inated in the same way. Borrowing the signal model from the previous chapter,
the classic 2D MUSIC-based algorithm for joint estimation of Doppler and DOA
is presented. Unfortunately, conventional 2D MUSIC algorithm cannot correctly
estimate the parameters in the presence of the couplings. To eliminate the influence
of the coupling terms for accurate parameters estimation, a phase compensation
method is proposed for both couplings of range migration and wideband DOA. The
compensation method needs, however, multiple large-size matrix eigendecompo-
sitions which are computationally intensive. Therefore, two efficient implemen-
tations, namely the Lanczos algorithm and Rayleigh-Ritz step, are introduced. We
compare the two proposed methods with the inverse method, which is also a general
MUSIC accelerating approach presented in [66].

The proposed 2D MUSIC could only estimate two-dimensional parameters si-
multaneously by averaging one-dimensional data to formulate the covariance ma-
trix. Thus, 2D MUSIC has to be applied at least twice to estimate the three-
dimensional parameters. In spite of the computational loads, the compensation
algorithm is extended to 3D MUSIC as well in this chapter, where different from
eigendecomposition-based 2D MUSIC, the noise subspace is obtained by tensor
decomposition.

A series of numerical simulations are performed and the results are presented
to demonstrate the applicabilities and the advantages of the proposed algorithms.

The rest of the chapter is organised as follows. In Section 3.2, the classic 2D
MUSIC is applied to joint estimation of Doppler and DOA. Then, the compensation
algorithm is proposed. The efficient implementations are introduced and compared
in Section 3.3. The 3D MUSIC algorithm is further presented in 3.4. Simulation
results are presented in Section 3.5 and conclusions are drawn in Section 3.6.
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3.2. 2D MUSIC ALGORITHM AND COMPENSATION METHOD
In this section, the classic 2D MUSIC algorithm for joint estimation of DOA and
Doppler is presented first. However, the coupling terms decrease the performance
of classic 2D MUSIC. In order to circumvent this a novel compensation method is
proposed in the MUSIC algorithm to remove such interference. The estimation of
the model order is discussed at last in this section.

3.2.1. 2D MUSIC ALGORITHM
With the low-rank 3D data model, it is possible to apply the MUSIC algorithm
for joint parameter estimation if we ignore the coupling terms. Using one dimen-
sion of sinusoidal data as reference, the 2D MUSIC algorithm can be implemented
for joint two-dimensional parameter estimation. The 3D MUSIC algorithm can
be further used for joint three-dimensional parameters estimation for DOA, range
and Doppler. The noise subspace can be extracted by applying a spatial smoothing
technique to eliminate coherence between the sources [68] or by applying a high
order singular value decomposition (HOSVD) [69]. However, it is both time- and
memory-consuming to directly apply the 3D MUSIC algorithm. Despite such a
problem, we extend the proposed algorithm to the 3D case with tensor decomposi-
tion later. Here, the 2D MUSIC algorithm is applied first, for instance, to estimate
Doppler and DOA jointly. It is worth noting that, the proposed methods can also be
applied for joint estimation of Doppler and range or DOA and range. To apply the
2D MUSIC algorithm, the raw data has to be reshaped from the 3D tensor data to
the 2D matrix Y ∈ CLM×K (where L is the number of the antenna elements, M is
the number of chirps in one CPI and K is the number of samples for each chirp) by
stacking element and slow-time dimensions together from 2.15 as

Y =


X(0)

X(1)

...
X(L−1)

 . (3.1)

For simplicity, Y is rewritten in matrix notation as:

Y =
I∑
i

αia(θi ⊗ fd(vi))fTr (Ri)�Ωdr(vi)�Ωθr(θi) + N, (3.2)

where Ωdr(vi) ∈ CLM×K and Ωθr(θi) ∈ CLM×K are given by,

Ωdr(vi) = 1L ⊗Φ(vi),
Ωθr(θi) = Ψ(θi)⊗ 1M (3.3)
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Now, the classic 2D MUSIC algorithm is applied directly by ignoring the cou-
pling terms. First, the covariance matrix R ∈ CLM×LM averaging on fast-time is
computed according to

R = E(YYH). (3.4)

The eigendecomposition is applied to split the data space into the noise subspace
Un associated to the noise eigenvectors and the signal subspace Us associated to
the signal eigenvectors.

R = UΛUH ,

U = [Us Un]. (3.5)

To extract the noise subspace we assume that the number of the scatterers is known.
The estimation of the number of scatterers will be discussed later. The matched
steering vector α(vp, θq) ∈ CLM×1 for the velocity vp and the angle θq is formu-
lated as

α(vp, θq) = a(θq)⊗ fd(vp). (3.6)

After that, the MUSIC spectrum at the point (vp, θq) can be calculated by

P (vp, θq) = 1
αH(vp, θq)UnUn

Hα(vp, θq)
. (3.7)

3.2.2. COMPENSATION FOR COUPLING TERMS
Directly applying the classic MUSIC algorithm without any phase compensation
yields an estimation performance that is significantly inaccurate due to the influence
of the coupling terms. Hence, phase adjustment is needed before the MUSIC algo-
rithm is applied. Although the Keystone transform is the most common approach
for the coupling term adjustment, the interpolation of the Keystone transform leads
to significant phase errors when the data size is small [18, 70]. Despite this draw-
back, the performance of Keystone transform will be discussed and compared with
the proposed algorithm in Section 3.5.

Fortunately, since the coupling terms are functions of v for Ωdr(vi) and θ for
Ωθr(θi), we are able to remove the coupling terms in each scanning grid. The
compensation term for the grid in terms of (vp, θq) is formulated as

C = (Ωdr(vp)�Ωθr(θq))∗. (3.8)

Then by Hadamard product with the raw data matrix Y yields

Ŷ = Y�C. (3.9)
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Since the compensation term is just a phase shift, it will not increase the noise
power. The coupling terms of the new obtained data are removed for the grid in
terms of (vp, θq).

With this compensation, not only the phase is adjusted to improve the accuracy,
but also the orthogonality between the steering vector and the noise subspace is
enhanced which helps to improve the resolution. The covariance matrix averaging
on fast-time is calculated using the improved data Ŷ according to

R̂ = E(ŶŶH). (3.10)

Finally, the 2D MUSIC algorithm (3.7) can be applied to the improved covariance
matrix.

Fig. 3.1 explains how the compensation influences the orthogonalities between
steering vector and the extracted "noise subspace" with two rank-one targets. Fig.
3.1(a) illustrates the situation when there are no coupling terms, where the steering
vectors are formulated with same amplitude in the above graph and the data are
decomposed into noise subspace (indicated by grey colour) and signal subspace
(indicated by red and green colour) in the below graph. The signal subspace is the
span of the rank-one components corresponding to the targets and therefore, the
steering vectors of such targets are orthogonal to the noise subspace, that is why the
targets could be found in the mismatch position between the steering vectors and
the noise subspace.

Fig. 3.1(b) shows that when the coupling terms are present, the targets cannot be
expressed as rank-one components any longer. This explains that when the data are
projected on the eigenspace, part of the energies corresponding to the targets will
leak into the "noise subspace". Thus, the reason for ill-performance of conventional
MUSIC is that the steering vectors of the targets are non-orthogonal to the extracted
"noise subspace".

Fig. 3.1(c) and Fig. 3.1(d) illustrate how the proposed approach improves the
orthogonalities between the steering vectors and the "noise subspace". When the
MUSIC algorithm scans the grid which is the location of the red target, the com-
pensation adjusts the phase and makes the red target as the rank-one component
regardless of the green target. Such adjustments lead to the fact that all the energy
of the red target will be projected onto the "signal subspace" and the steering vec-
tor of the red targets are completely orthogonal to the "noise subspace" even if it
contains the part of the energy of the green target. The same story will occur to the
green target when the algorithm scans its location.

According the analysis above, the algorithm is concluded in Algorithm 1 (A1).
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(a) (b)

(c) (d)

Figure 3.1: Illustration of orthogonality betweem the noise subspace and the steering vectors for (a)
without couplings, (b) with couplings, (c) coupling compensation for the red target and (d) coupling

compensation for the red target.
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Algorithm 1 2D MUSIC with Compensation (A1)
1: Reshape the raw data as (4.19)
2: for vp in [−vm, vm] do
3: for θq in [−θm, θm] do
4: C = (Ωdr(vp)�Ωθr(θq))∗
5: Ŷ = Y�C
6: R̂ = E(ŶŶH)
7: R̂ = UΛU−1 # Eigendecomposition
8: Un = U[:, I : end] # I is the number of targets
9: α(vp, θq) = a(θq)⊗ fd(vp)

10: P (vp, θq) = 1
αH(vp, θq)UnUn

Hα(vp, θq)
11: end for
12: end for

3.2.3. ESTIMATION OF THE TARGET NUMBER
Before implementing the 2D MUSIC algorithm, the number of targets has to be
estimated to correctly extract the noise subspace. Apparently, the coupling terms in
(3.2) bring difficulties to estimate the number of the targets, since the eigenvalues
decrease more smoothly than that of the narrowband model. Therefore, a novel
method is proposed for the estimation of the number of targets involved. Usually,
the number of targets is much smaller than the dimension of the covariance matrix,
so the signal subspace is allowed to be slightly overestimated. Another important
fact is that the "noise subspace" is dynamic with searching grid, the correct sig-
nal component could adaptively project onto the "signal space" to guarantee the
orthogonality between the steering vector and the "noise subspace". According to
this property, a larger model order than the true one can be selected first to image the
MUSIC pseudo-spectrum. Then by using peaks detection methods we estimate the
number of the targets from the MUSIC pseudo-spectrum for simplicity. Although
it is allowed to assume the larger dimension of the signal subspace than the true
one, it provides better imaging results by using the whole noise subspace. After
we obtain the number of targets, the proposed algorithms can be applied to obtain
better estimation. The simulations of such a method will be shown in Section 3.5.1.

3.3. EFFICIENT IMPLEMENTATION OF COMPENSATED 2D
MUSIC

The proposed algorithm, however, needs multiple eigendecompositions of large ma-
trices, which is unacceptable in automotive applications. In this section, an efficient
implementation of the proposed methods without loss of the performance is intro-
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duced by accelerating extraction of the noise subspace and parallel implementation.

3.3.1. EFFICIENT IMPLEMENTATION FOR THE NOISE SUBSPACE EX-
TRACTION

As for 2D MUSIC, the dimension of the covariance matrix LM × LM is usually
very large. Thus, it is a heavy computational burden to perform all the eigende-
compositions for each scanning grid and limits the proposed method for real appli-
cations. Fortunately, as the covariance is a Hermitian matrix, some properties of
the algorithm allow opportunities to accelerate the algorithm. The first one is that
the number of targets is usually much smaller than the dimension of the covariance
matrix. Instead of calculating all eigenvectors, one can only calculate the needed
eigenvectors in the signal space, while the noise subspace can be easily obtained
from the orthogonal complement subspace of the signal subspace according to

UnUn
H = I−UsUs

H . (3.11)

Another interesting property is that the compensation term is just a minor phase
shift. Therefore, the norm distances of the signal subspaces in each adjacent grids
are close to each other. Based on these properties, two acceleration methods are
introduced, namely the Lanczos algorithm and the Rayleigh-Ritz step. The inverse
approach in [66] is also mentioned for comparison.

LANCZOS ALGORITHM
The Lanczos algorithm is an iterative method for calculating the eigendecomposi-
tion of large Hermitian/symmetric matrices [71]. It saves a lot of computation by
only computing the largest eigenvalues and their corresponding eigenvectors. Thus,
it can be used in scenarios where only the signal subspace is required and the dimen-
sion of the signal subspace is much smaller than the dimension of the covariance
matrix.

RAYLEIGH-RITZ STEP
Lanczos is much faster to extract the signal subspace than the default eig function
(in NumPy or MATLAB) if the dimension of the signal subspace is small. However,
it is not fast enough and we do not take advantage of the fact that the adjacent
signal subspaces are close to each other in the norm distance. The signal subspaces
for neighbouring grids are close to each other in the norm distance so the previous
signal subspace provides a good initial guess to calculate the next one. Thus, the
Rayleigh-Ritz step method [72] is adopted to use the previous signal subspace as the
initial guess to approach the current signal subspace. According to the simulation,
just one step is needed to obtain a sufficiently good eigenvector approximation.
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Table 3.1: Computational Complexity

Algorithm Computational complexity

Default eig Func O(n3)

Inverse O(1
3n

3)

Lanczos O(βn2)

Rayleigh-Ritz O(β2n+ β3)

INVERSE ALGORITHM WITHOUT EVD
In [66], the authors proposed to use the inverse of the covariance matrix to replace
the noise subspace. Certainly, calculating the inverse or pseudo-inverse of a huge
matrix will save a lot of time compared to calculating the eigendecomposition, and
shows comparable results with MUSIC but is faster than eigendecomposition MU-
SIC. However, this method can only work in high SNR condition. If the SNR is low,
the approximation of this method is no longer valid. Moreover, the convergence per-
formance of matrix inverse/pseudo-inverse is not monotonically increasing with the
snapshot/SNR [73]. Thus this algorithm is not stable and robust. Despite its disad-
vantages, from the computational burden and estimation performance perspectives,
we use this algorithm as a reference to compare it with our proposed algorithms.

COMPARISON

To compare the performance of selected methods on computation time, we first fix
the dimension of the covariance matrix and measure the time consumption with the
different number of eigenvectors associated to the largest eigenvalues. The simula-
tion results with a mean time of 100 repeats using Python3.5 with SciPy0.19 under
Intel(R) Core i5-6500 @ 3.20GHz is shown in Fig. 3.2(a). (It is worth noting that
the results using MATLAB could be different.)

The computation time is not only influenced by the number of eigenvectors
associated to the largest eigenvalues, but also by the dimension of the covariance
matrix. Thus, the comparison of time consumption with different dimensions of the
covariance matrix is shown in Fig. 3.2(b). As we can see, the computation time of
the default eig function increases significantly with the dimension of the covariance
matrix as it needs O(n3) flops (float number operations). The Rayleigh-Ritz step
shows to be the most efficient method among all of them.

The computational complexity is shown in Table 3.1, where n represents the
dimension of the Hermitian matrix and β represents the number of eigenvectors
associated to the β largest eigenvalues.
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Figure 3.2: Time consumption comparison for (a) calculating the different number of eigenvectors
with the same dimension of the Hermitian matrix of 768 × 768 and (b) calculating 10 eigenvectors

with the different dimension of the Hermitian matrix

According to the above analysis, using the Rayleigh-Ritz step as an example,
the algorithm can be illustrated as Algorithm 2 (A2).

3.3.2. PARALLEL PROCESSING
As the 2D MUSIC algorithm is a scanning process, it is possible to divide the scan-
ning domain into several parts related to CPU cores for parallel processing. We can
process each part parallelly to fully utilise the hardware. Here, by using a threading
package in python3.5, we divide the scanning domain into 4 parts with identical size
and by using covariance matrix size of 256× 256, the computational time with and
without parallel computing are 25.8 seconds and 41.9 seconds, respectively. In the
simulation, 62% of the computational time is saved by using parallel processing.

3.4. 3D MUSIC ALGORITHM WITH TENSOR DECOMPO-
SITION

Previous sections discussed to reduce the range dimension as the reference dimen-
sion to extract the noise subspace. So at least two times such MUSIC algorithm
has to be performed to obtain three-dimensional parameters. In this section, the
proposed compensation algorithm is extended to 3D MUSIC. However, only one-
dimensional compensation on velocity is present by ignoring the wideband DOA
problem in the algorithm for simplicity. This makes sense since the wideband DOA
and range migration have a similar mathematical expression in the signal model and
could share the solutions.

As we know, one of the key step of the MUSIC algorithm is the extraction
of the noise subspace. Usually, the spatial smoothing technique is applied to ob-
tain the smoothed covariance matrix to increase the detectability of the coherent
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Algorithm 2 Compensation algorithm with Rayleigh-Ritz step (A2)
1: Reshape the raw data Y as (3.1)
2: R = E(YYH)
3: R = UΛUH # Eigendecomposition
4: Us = U[:, 0 : I − 1]
5: for vp in [−vm, vm] do
6: Ŷ = Y� (Ωdr(vp))∗
7: for θq in [−θm, θm] do
8: Ŷ = Ŷ� (Ωθr(θi))∗
9: R̂ = E(ŶŶH)

10: Z = R̂Us
11: Z = QP # QR decomposition
12: H = QHR̂Q
13: H = FΘFH # Eigendecomposition
14: Us = QF
15: α(vp, θq) = a(θq)⊗ fd(vp)
16: P (vp, θq) = 1

αH(vp, θq)(I−UsUs
H)α(vp, θq)

17: end for
18: end for
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sources. However, the usage of spatial smoothing decreases the effective raw data
size. Tensor decomposition (TD) is adopted here to extract the noise subspace to
avoid this side effect and the process of TD is illustrated in Fig. 3.3. Unlike the
method in [74], in which the author formulates the multi-dimensional covariance
matrix, TD is directly performed. Here, the number of sources are assumed to be
known as I . In fact, although the rank-one components of TD are not mutually
orthogonal, they could represent the whole signal subspace. The orthogonalisation
process is applied to orthogonalise and unitise these components. Next, the noise
subspace can be easily obtained from orthogonal complement subspace of the sig-
nal subspace. However, the received signals cannot be extracted exactly as rank-one
components due to the coupling terms in the data model. Thus, compensation is
made before TD to adjust the phase of the signal reflection of one target to a rank
one component. As the targets with different velocity have different coupling phase
residuals, the compensation has to be implemented in each velocity bin. Therefore,
the velocity term is chosen as the first scanning domain to reduce computational
complexity.

The compensation term for the coupling at the velocity scanning bin vp is writ-
ten as coupling component D ∈ CL×M× K as

D = 1L ◦Ωdr
p (3.12)

Then multiply the conjugate compensation term with raw data elementwisely as

Ŷ = Y �D∗ (3.13)

The new data, where the coupling term is removed for the velocity vp are obtained.
Then the range and angle scanning can be performed in the current velocity grid.

After removing the phase residual in velocity bin vp, TD is applied to extract
I rank-one component. It is worth noting that these rank-one components cannot
represent all the targets signal subspace. Only the targets with velocity vp, whose
phase residuals are compensated, are rank-one component among them.

Then by Kronecker product and orthogonalisation process, the signal subspace
is formed as the unit orthogonal column matrix. After that, the noise subspace is
obtained by orthogonal projection as

UnUH
n = I−UsUH

s , (3.14)

where I is the identity matrix and the noise subspace extraction is illustrated in Fig.
3.4. The steering function vector is formulated for scanning bin [θp, vq, rh] as

α = a(θp)⊗ fd(vq)⊗ fr(rh). (3.15)
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Figure 3.3: Illustration of Tensor Decomposition

The MUSIC spectrum is

Pp,q,h = 1
αH(I−UsUs

H)α
. (3.16)

Above all, the algorithm is concluded in Algorithm 3 (A3).

Algorithm 3 compensated 3D TD-MUSIC (A3)

for vp in [−vm, vm] do
Ŷ = Y �D∗
Ŷ =

∑I
i ai ◦ bi ◦ ci # Tensor Decomposition

Us(i) = ai ⊗ bi ⊗ ci
Us(i) = Us(i)

||Us(i)||
Us = orth(Us) # Orthogonalisation
UnUH

n = I−UsUH
s

for θq in [−θm, θm] do
for rh in [0, Rm] do
α = a(θq)⊗ fd(vp)⊗ fr(rh)
P = 1

αH(I−UsUs
H)α

end for
end for

end for

3.5. SIMULATIONS
In this section, a group of numerical simulations are presented to demonstrate the
performance of the proposed methods.

3.5.1. 2D MUSIC
As the coupling term is related to the bandwidth, the performance of the proposed
methods with different bandwidths, i.e. 1 GHz and 4 GHz, will be simulated. The
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Figure 3.4: Formulation of noise subspace with tensor components

other system parameters used for simulation are shown in Table 3.2.

Table 3.2: Parameters of the System

Parameters Value
Number of chirps in one CPI 16
Number of samples in one Chirp 32
Number of antenna elements 8
Starting Frequency 77 GHz
Inter-element distance 1.899 mm
Chirp repetition interval 0.1 ms
Chirp duration 0.09 ms

BANDWIDTH 1 GHz
We start with considering a case with a bandwidth of B = 1 GHz, where the rel-
ative bandwidth is 1.3%. Fig. 3.5 shows the root-mean-square errors (RMSEs) of
estimates of DOA and Doppler of a single point scatterer with the radial velocity
8 m/s, angle 40◦ and range 80 m as a function of the SNR. They are compared
with the corresponding CRB (see Appendix for CRB derivation). The RMSEs are
obtained from 40 Monte Carlo trials. As classic MUSIC is a biased estimator, the
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Figure 3.5: Comparison of RMSEs with CRB as a function of SNR at B = 1 GHz for one target at
angle 40◦ and velocity 8 m/s. (a) angle estimation and (b) velocity estimation

RMSEs will not decrease with the increase of SNR. One can also observe that the
RMSEs of the Keystone MUSIC do not always decrease along with the increase of
the SNR since the error introduced by the interpolation will dominantly decrease
the accuracy of the estimation at high SNR condition.

We further focus on the performance of the proposed methods in a challeng-
ing scenario. To this end, four closely positioned point scatterers with the same
angles θ = 45◦ and the same amplitudes 0 dB, but close radial velocities v =
[4.6, 5.68, 6.86, 7.91] m/s and random range from 100 m to 200 m are set. The
SNR is set to 3 dB. The normalised results are shown in Fig. 3.6.

MUSIC with phase compensation (in both Lanczos and Rayleigh-Ritz accel-
eration implementations) achieves at least −3 dB isolation between the scatterers,
while the inverse method and the classic MUSIC algorithm without phase compen-
sation are not able to separate scatterers from each other. The Keystone-MUSIC
(Fig. 3.6(b)) shows some separation of the scatterers with low speed, but fast-
moving scatterers are not separated.

Table 3.3 shows the computation times of the three methods and the compen-
sated MUSIC algorithm with default eig function, where the observation domain is
divided into a 100× 100 grid. It is worth noting that the superiority with respect to
the computation time consumption of the proposed algorithm could be more signif-
icant if the dimension of the covariance matrix would be larger.
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Figure 3.6: Angle-Velocity maps of B = 1 GHz and SNR= 3 dB for (a) 2D MUSIC without phase
compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with phase compensation

and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by
Rayleigh-Ritz step and (e) 2D MUSIC with phase compensation and accelerated by inverse

algorithm
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Figure 3.7: Comparison of RMSEs with CRB as a function of SNR at B = 4 GHz for one target at
angle 40◦ and velocity 8 m/s. (a) angle estimation and (b) velocity estimation

Table 3.3: Comparison of computational time

Algorithm Computational Time
Default eig Func 152.68 s
Lanczos 18.75 s
Rayleigh-Ritz 5.48 s
Inverse 32.66 s
Keystone MUSIC 1.01 s

BANDWIDTH 4 GHz
Next, we increase the bandwidth from 1 GHz to 4 GHz, where the relative band-
width is 5.1%. According to the model from (3.2), the estimation accuracy will
deteriorate as the bandwidth increases. The same point scatterer with radial veloc-
ity 8 m/s, angle 40◦ and range 80 m is set for RMSE simulation. The obtained
RMSEs results of the proposed methods and the competitors are compared with
CRB in Fig. 3.7. The error of the no compensation method is much larger than
what we obtained in the case of B = 1 GHz.

The next simulation is to test the ability of the proposed algorithm to detect a
relatively weak target. According to the analysis, if there is a strong migrated target
present in an observation domain, the energy of this target will dominantly spread
into several eigenvectors. Thus, the subspace corresponding to the relatively weak
target will be allocated to noise subspace. Two targets, one with range 100 m, angle
20◦ , velocity 8 m/s and amplitude α = −10 dB and another one with range 80 m,
angle 40◦, radial velocity 5 m/s and amplitude α = 0 dB, are set. The SNR is set to
30 dB. The results are shown in Fig. 3.8, where for improved visibility the results
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are normalised. From Fig. 3.8(a), we can see that the weak target is missing in the
classic MUSIC result without phase compensation.

Both targets are seen in the MUSIC pseudo-spectrum obtained by Keystone
MUSIC algorithms, however the peaks corresponding to the targets are wider than
in the classical MUSIC or proposed algorithms and their relative contrast with the
background is much smaller in magnitude.

Then 11 point scatterers with random angles from 0◦ to 50◦, random radial
velocities from 0 m/s to 9 m/s and random ranges from 100 m to 200 m random α
from−3 dB to 0 dB are set and the SNR is set to 20 dB. The normalised results are
presented in Fig. 3.9, where the dynamic range is limited to 20 dB.

From the angle-velocity map, one can conclude that the peaks of estimation
without phase compensation are biased towards higher velocities and widened (es-
pecially in the azimuthal domain) in comparison with that of the proposed meth-
ods. Although the accuracies of estimation are slightly better, the Keystone MU-
SIC suffers from the poor resolution of closely spaced targets (especially in az-
imuth domain). At the same time, all three compensation algorithms demonstrate a
clear separation of all targets and accurate estimation of their parameters. To show
the improvement of the resolution of the proposed compensation method, an extra
simulation using the same system parameters of 6 random point targets with large
angles and velocities is implemented. The results without compensation, phase ad-
justment by Keystone transform and phase compensation by the proposed method
are presented in Fig. 3.10. The three closely positioned targets are hardly resolved
from Fig. 3.10 (a)(b), while they are clearly resolved in Fig. 3.10(c).

In the next simulation, we keep the same parameters as before while increasing
the snapshots from 32 to 128. The results of the 11 point targets from the previous
simulation are presented in Fig. 3.11. The imaging performance of the inverse
algorithm significantly degrades when we increase snapshots to 128 and a strong
ghost target appears at the position (v = 0, θ = 0), while the Rayleigh-Ritz and
Lanczos algorithms reveal sharper peaks related to targets. It is noted that the results
agree with the simulation in [73].

NUMBER OF TARGETS ESTIMATION
The 11 point scatterers from the previous simulation are used again in this simula-
tion and the SNR is set to 20 dB. Fig. 3.12 shows the number of target estimations
using the different dimension of the signal subspace assumption. The connected re-
gion label algorithm is used here to obtain the number of targets from the binarised
MUSIC spectrum. Here the threshold for binarization is set to −7 dB, which is a
third of the mean value of the normalised MUSIC spectrum of a large number of
target assumptions.

Fig. 3.13 shows the MUSIC spectrum of Rayleigh-Ritz method and classic
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Figure 3.8: Angle-Velocity maps of B = 4 GHz and SNR= 30 dB for (a) 2D MUSIC without phase
compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with phase compensation

and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by
Rayleigh-Ritz step and (e) 2D MUSIC with phase compensation and accelerated by inverse

algorithm
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Figure 3.9: Angle-Velocity maps of B = 4 GHz and SNR= 20 dB for (a) 2D MUSIC without phase
compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with phase compensation

and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by
Rayleigh-Ritz step and (e) 2D MUSIC with phase compensation and accelerated by inverse

algorithm

MUSIC without compensation for the incorrect dimension of signal subspace as-
sumptions. From the results, both classic MUSIC and compensation MUSIC will
miss targets if the dimension of the signal subspace is underestimated. However,
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Figure 3.10: (a) 2D MUSIC without phase compensation and (b) 2D MUSIC after Keystone
transform (c) 2D MUSIC with phase compensation and accelerated by Rayleigh-Ritz step

compared with Fig. 3.9, our proposed compensation MUSIC has a higher tolerance
for overestimating the dimension of signal subspace than that of classic MUSIC.

3.5.2. 3D MUSIC
In this subsection, the numerical simulation for proposed 3D MUSIC algorithm are
performed and the radar parameters are shown in Table 3.4.

Three targets at the coordinates (range (m), angle (degrees), velocity(m/s))
(9, 30, 60), (7, 40, 55) and (8, 35, 50) are correspondingly set to simulate multi-
ple moving targets. In this simulation, we assume the number of targets is known.
However, the coupling terms usually make it very difficult to correctly estimate the
number of sources. Thanks to the fact that the dynamic noise subspace is guar-
anteed to be orthogonal to the steering function vector, the number of the sources
is allowed to be slightly overestimated as well in TD-MUSIC. There are many al-
gorithms and tools of tensor decomposition available and in our simulation, the
non-linear least square (NLS) is adopted [75]. The simulation results using 3D TD-
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Figure 3.11: Angle-Velocity maps of B = 4 GHz, SNR= 20 dB and 128 snapshots for (a) 2D
MUSIC without phase compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with
phase compensation and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation
and accelerated by Rayleigh-Ritz step and (e) 2D MUSIC with phase compensation and accelerated

by inverse algorithm

MUSIC compensation are shown in Fig. 3.14(a)(c), respectively. From the figures,
one can see that all the peaks corresponding to the targets reveal in the right posi-
tion with high resolution. All the results are normalised and restricted in 20 dB for
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Figure 3.12: The number of targets estimation from MUSIC pseudo-spectrum using different
dimensions of the signal subspace assumptions
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Figure 3.13: Angle-Velocity maps of B = 4 GHz, SNR= 20 dB and 32 snapshots for (a) 2D
MUSIC without compensation assume 10 targets, (b) Rayleigh-Ritz step assume 10 targets, (c) 2D

MUSIC without compensation assume 16 targets and (d) Rayleigh-Ritz step assume 16 targets
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Table 3.4: System Parameters

Parameters Values
Carrier frequency 10 GHz
Number of antenna elements 8
Number of fast-time samplings 64
Number of pulses for CPI 8
Distance between elements 15 mm
Bandwidth 1 GHz
PRI 0.1 ms
SNR 10 dB

better observation.
For comparison, the results using the same 3D TD-MUSIC algorithm without

compensation are shown in Fig. 3.14(b)(d), the peaks corresponding to the targets
appear at the biased position and the close targets appear as ghost targets. Ac-
cording to the system parameters, although the target may not migrate more than
one range resolution cell, the coupling terms influence the resolution and accuracy
significantly. Thus, the phase residual phenomenon should not be ignored in the
super-resolution algorithms.

The simulation results successfully validate the improvement of estimation per-
formance on accuracy and resolution. The time for one slice map in Fig. 3.14(a) is
around one minute, while the time for FFT is less than one second. Although 3D TD
is more computationally intensive than conventional FFT, it provides much higher
resolutions on estimation. This algorithm could be a subsidiary to provide better
estimation in the local spectrum after implementing FFT. Moreover, with parallel
processing and more powerful hardware techniques, TD-MUSIC could be a very
promising algorithm in the future.

3.6. CONCLUSIONS
In this chapter, we first proposed joint Doppler-DOA estimation using the UWB
FMCW array-based radar for moving targets. Using the signal model from Chapter
2 a modified 2D MUSIC algorithm to eliminate the influence of the inter-coupling
terms. The method adjusts the phase of the raw data in each scanning grid before
eigendecomposition to improve the accuracy of the Doppler and DOA estimation.
Moreover, we propose two efficient implementations, namely a Lanczos algorithm
and a Rayleigh-Ritz step, to reduce the computational burden specifically for the
proposed method.

By comparing RMSEs and CRB of classical MUSIC, Keystone MUSIC and
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(a) (b)

(c) (d)

Figure 3.14: Range angle map at velocity 60 m/s (a) with phase compensation, (b) without phase
compensation and Range-velocity map at angle 30◦ (c) with phase compensation, (d) without phase

compensation

proposed algorithm (for the bandwidths of 1 GHz and 4 GHz) via numerical simu-
lations, we demonstrate that the phase compensation algorithm improves the accu-
racies of both Doppler and DOA estimation over the classical and Keystone MUSIC
and the accuracies of the proposed algorithm improve with SNR. For example, the
accuracies of both Doppler and DOA estimations are improved more than 20 dB for
SNR = 20 dB in Fig 3.7. Although for SNR below −10 dB Keystone MUSIC has
similar accuracy to the proposed method, the resolution and overall contrast of the
MUSIC pseudo-spectrum is worse than by the algorithm proposed. Due to the phase
compensation, the algorithm proposed also resolves targets closely spaced in the
velocity-angular domain, which are not resolvable both with the classical and Key-
stone MUSIC algorithms. Further, we show that the proposed Lanczos algorithm
and Rayleigh-Ritz are more robust than the inverse algorithm in our simulations. In
addition, the Rayleigh-Ritz step shows superiority with respect to computation time
consumption when the number of targets is much smaller than the dimension of the
signal covariance matrix and has a high tolerance for overestimating the dimension
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of the signal subspace.
The compensation approach is further extended to 3D TD MUSIC in spite of

the intensive computations. The influence of the coupling phase on the parameters
estimation is removed at first by applying a compensation process for each velocity
scanning bin. Then TD is applied to decompose the 3-dimensional raw data, and
corresponding orthogonal signal subspace is obtained by orthogonalizing the Kro-
necker product of rank one component. Finally, the 3D MUSIC algorithms are used
to estimate the range, Doppler and DOA jointly. The simulation results validate the
improvements of proposed methods with high resolution in joint range, Doppler
and DOA estimation.



4
JOINT PARAMETERS

ESTIMATION USING SPECTRAL
NORM-BASED ALGORITHM

The joint estimation of range, velocity and azimuth for multiple fast-moving tar-
gets using UWB FMCW radar with the antenna array in the presence of Doppler
ambiguities is addressed. The range migration of moving targets is modelled by
the mutual coupling between fast-time and slow-time (chirp index) and leads to
the smearing of the target spectrum. This phenomenon degrades the performance
of conventional detection and estimation techniques, however, it can be used to
resolve Doppler (velocity) ambiguities. Similarly to range-Doppler processing, the
performance of estimation of DOA with conventional narrowband-based algorithms
significantly degrades if an UWB signal is employed. For the FMCW waveform,
the wideband DOA differs from the narrowband one by an extra coupling term sim-
ilar to the range migration problem. A novel spectral norm-based algorithm for
joint range, velocity and DOA estimation of fast-moving targets is proposed taking
the appropriate wideband signal model into account. The proposed spectral norm-
based algorithm avoids the off-grid peak searching and can be easily accelerated by
the power iteration algorithm; it outperforms the conventional coherent integration
methods in both accuracy and efficiency for the moderate data size. The advan-
tages of the proposed algorithm and its super-resolution ability are validated by the
numerical simulations.
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4.1. INTRODUCTION
The compensated MUSIC algorithms are introduced in the previous chapter to elim-
inate the coupling terms and the numerical simulations demonstrate the superiority
of the algorithm over other counterparts. The algorithms perform well if the targets
move with low velocities without the Doppler ambiguity. However, MUSIC fails
to provide an efficient solution to resolve Doppler ambiguities when the Doppler
frequencies are out of the scope of the maximum unambiguous velocity.

According to the analysis in Chapter 2, the product of the maximum unambigu-
ous range and maximum unambiguous velocity is constrained by the sampling fre-
quency. To reduce the cost of the hardware in the real applications, long-range and
large unambiguous velocity cannot be achieved simultaneously. The range ambigu-
ity is much difficult to resolve for single PRF signals, while the Doppler ambiguity
could be estimated from the range migration.

This chapter presents a novel approach to address the problem of features (range,
Doppler, DOA) extraction of multiple moving targets in the presence of Doppler
ambiguity. The signal model developed in Chapter 2 is still used in this chapter, the
difference from chapter 3 is that the velocity vi could be much larger than vmax or
less than −vmax. A novel spectral norm-based algorithm is proposed to address the
wideband DOA and Doppler ambiguity simultaneously.

There are 6 main algorithms listed in this chapter (A4vA9) and the novelties of
this chapter are summarised as:

1. The spectral norm-based algorithm introduced in A5 is based on a principally
new approach and does not belong to any existing category of algorithms since
it is a non-parametric and non-integration based algorithm. As described in Sec-
tion 1.2.2, there exist three categories to address the Doppler ambiguity problem
in state-of-the-art, while the method in the chapter can be recognised as the
fourth category.

2. The coupling terms (range migration and wideband DOA) are addressed sepa-
rately from the sinusoidal signals corresponding to the range, Doppler and DOA
in A5, while the existing algorithms process the Doppler ambiguity from the
coupling terms and sinusoids together. Moreover, due to the usage of alterna-
tive update between the coupling terms and the sinusoids in A5, the convergent
condition is relaxed in terms of SNR.

3. The proposed algorithm outperforms the conventional coherent-integration-based
algorithm in terms of accuracy since it avoids the off-grid problem for the fold
number estimation.

4. By introducing an efficient implementation via the proposed data reshaping, A5
can be solved with less time and memory consumptions. Furthermore, A9 is
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specifically proposed for our algorithm which provides a more efficient way to
solve A5 by the power iteration algorithm (A8).

5. The performance of the proposed algorithm is analysed in detail for RMSEs of
all target parameters estimation and is compared to the corresponding CRB in
different scenarios. Furthermore, the simulation results demonstrate that the pro-
posed algorithm holds the super-resolution ability of RELAX algorithm (A7).

The rest of the chapter is organised as follows. In Section 4.2, a novel algorithm
for a single moving target is introduced. Subsequently, in Section 4.3 the proposed
algorithm is combined with the greedy algorithm and RELAX estimator. Section
4.4 presents an efficient implementation of the proposed algorithm. Numerical ex-
amples are presented in Section 4.5 to illustrate the performance of the proposed
algorithm and compare it with CRB. Finally, the conclusions are drawn in Section
4.7.

4.2. SINGLE TARGET
The joint estimation of range r, velocity v and DOA θ from the signal model (2.16)
is a highly non-linear problem. In this section, we consider a single point target
and propose a novel spectral-norm based algorithm for targets parameters estima-
tion. Then a new alternative update method is introduced to assure the estimation
accuracy.

Assume that there is only the ith target presented and all the interferences from
other targets are removed or negligible. The data are represented as

Yi = αia(θi) ◦ fd(vi) ◦ fr(ri)�Wθr(θi)�Wdr(vi) + N . (4.1)

Since the coupling terms are functions of the ambiguous velocity vi and the DOA
θi, the proposed method attempts to estimate these parameters from the coupling
terms first.

4.2.1. COUPLING TERMS ESTIMATION
In this part, we first show a traditional coherent integration method for the parame-
ters estimation from the coupling terms and the drawbacks are discussed. Second,
a novel spectral norm-based method is introduced which performs better than con-
ventional coherent integration approaches, especially when the data size is limited.

• Coherent integration-based method

The conventional integration-based methods are realised by the matched filter bank
and usually can be implemented via multi-dimensional FFT if the data are uni-
formly sampled. For the signal model (4.1), the method can be written as

v̌i, θ̌i = argmax
v,θ

||F [Yi �W∗
θr(θ)�W∗

dr(v)]||max, (4.2)
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where the checkmark (̌·) denotes the parameters estimated from coupling terms.
The v̌i is the unambiguous velocity which could be much larger than vmax or less
than −vmax. The estimates are based on peak detection of the coherently integrated
energy of the compensated signals. If the coupling terms are correctly compen-
sated, which means the ith target is focused, the integrated energy of the target will
produce a maximum. The form of (4.2) corresponds to Generalized-RFT proposed
in [34] if the array element dimension is removed, which means that (4.2) is the
3-dimensional form of RFT. Although various coherent integration algorithms are
mentioned in the Section 4.1, (4.2) is sufficient to be used as the benchmark here-
inafter since the optimality of RFT is shown to perform coherent integration for
rectilinearly moving targets under the white Gaussian noise background [10].

Since the discrete Fourier spectrum is grid-based and could only yield the on-
grid peak, even if the coupling terms are correctly compensated, the maximum spec-
trum might miss the Fourier grids. Then the on-grid peak of the Fourier spectrum
may return a highly inaccurate estimation of v̌i and result in incorrect fold num-

ber extraction. This problem is severe if M <
f0
B

(when neighbouring slow-time
frequency grids return different fold number estimation). Henceforth, in case of
moderate data size, very dense zero-padding is needed to create the over-complete
Fourier basis and match the data, which is both time- and memory-consuming. This
problem will be shown in detail in Section 4.5.

• Norm-based method

To address the off-grid problem, we propose a novel spectral norm-based method
which can estimate the location of an off-grid peak. To show the proposed al-
gorithm, the data model Yi is reshaped into the matrix form Yi ∈ CLM×K by
stacking the array element and slow-time dimensions together as

Yi =


[Yi]0,:,:
[Yi]1,:,:

...
[Yi]L−1,:,:

 . (4.3)

Rewrite Yi compactly as

Yi = αi[a(θi)⊗ fd(vi)]fTr (ri)�Ωθr(θi)�Ωdr(vi) + N, (4.4)

where N ∈ CLM×K is the complex discrete noise, and the coupling matrices
Ωθr(θi) ∈ CLM×K and Ωdr(vi) ∈ CLM×Kare

Ωθr(θi) = Ψ(θi)⊗ 1M ,
Ωdr(vi) = 1L ⊗Φ(vi). (4.5)



4.2. SINGLE TARGET

4

61

Let Xi = αi[a(θi) ⊗ fd(vi)]fTr (ri), which is a rank-one matrix, then we can show
the inequality

||Xi �Ωθr(θi)�Ωdr(vi)||2 ≤ ||Xi||2, (4.6)

with following proof
Proof: Because

||Xi �Ωθr(θi)�Ωdr(vi)||2
≤ ||Xi �Ωθr(θi)�Ωdr(vi)||F

=
√∑

p

∑
q
|[Xi]p,q|2 · |[Ωθr(θi)]p,q|2 · |[Ωdr(vi)]p,q|2

=
√∑

p

∑
q
|[Xi]p,q|2

= ||Xi||F
= ||Xi||2, (4.7)

where |[Ωθr(θi)]p,q|2 = |[Ωdr(vi)]p,q|2 = 1, and the equality holds iff Xi �
Ωθr(θi) � Ωdr(vi) is rank-one matrix, which obviously is not (since it cannot be
formulated by matrix product of two vectors). Here the property ||X||2 ≤ ||X||F
(equality holds iff X is rank-one matrix or zero matrix) is used [76].

According to the inequality (4.6), the parameters in the coupling terms can be
extracted by

v̌i, θ̌i = argmax
v,θ

||Yi �Ω∗dr(v)�Ω∗θr(θ)||2 (4.8)

= argmax
v,θ

||Xi �Ωdr(vi − v)�Ωθr(θi − θ)

+ N�Ω∗dr(v)�Ω∗θr(θ)||2
= argmax

v,θ
||Xi �Ωdr(vi − v)�Ωθr(θi − θ)||2 + σ̄

= argmax
v,θ

||Xi �Ωdr(vi − v)�Ωθr(θi − θ)||2.

Because we assume the white Gaussian additive noise, the noise energy is uniformly
distributed across the whole data and uncorrelated with the signal. Moreover, the
compensation to the noise is just a phase shift, it will not increase the noise power.
Therefore, after the same phase shift, the noise term N�Ω∗dr(v̌i)�Ω∗θr(θ̌i) is still
uncorrelated with the signal component and can be put out from spectral norm as a
constant σ̄.

It is worth noting that the matrix stacking in (4.3) is a practical way to perform
matrix manipulation for multi-way data [77]. Although according to the simulation
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results, TD could provide similar performance, it is not yet proved mathematically
and TD is computationally heavier than matrix norm computation [78].

The non-linear optimisation of (4.8) requires a two-dimensionally exhaustive
search on ambiguous velocity v and angle θ simultaneously. In Section 4.4 we
demonstrate that (4.8) can be decomposed into two separate one-dimensional searches
via the data reshaping.

Compared to the integration-based method, the peak is found without the Fourier
grids. Thus, the off-grid problem for the estimates from coupling terms can be
avoided. The detailed comparison will be presented in Section 4.5.

4.2.2. FREQUENCIES ESTIMATION
According to the analysis of the CRBs of the folded velocity v̂i (|v̂i| < vmax) from
the sinusoids and the unambiguous velocity v̌i from coupling term separately (see
in Appendix A), the estimation accuracy of v̂i is much higher than that of v̌i. Thus,
the parameter estimations from the coupling terms are less reliable and less accurate
than those from the sinusoids. However, more accurate parameters (azimuth, folded
velocity and range) can be obtained from the sinusoids after compensation of the
coupling terms using the coarse estimations (azimuth θ̌i and unambiguous velocity
v̌i). With the coarse estimates v̌i, θ̌i from (4.8), the compensation terms are for-
mulated as W∗

dr(v̌i) and W∗
θr(θ̌i). If performed with Yi �W∗

dr(v̌i) �W∗
θr(θ̌i),

the new decoupled data are obtained. Since there is only one target present and for
simplicity, the method for parameters estimation is given from the decoupled data
using matched filter

Ỹi = Yi �W∗
dr(v̌i)�W∗

θr(θ̌i), (4.9)

v̂i, θ̃i, r̃i = argmax
v,θ,r

||Yi ×1 aT (θ)×2 fTd (v)×3 fTr (r)||max,

where (̃·) denotes the estimated parameter.

4.2.3. FOLD NUMBER ESTIMATION
As the coarse unambiguous velocity v̌i and the folded velocity v̂i are estimated,
then the initial fold number estimation can be obtained according to (2.19) by

ñi =
⌊
v̌i + vmax

2vmax

⌋
, (4.10)

and more accurate estimation of unambiguous velocity is given as

ṽi = v̂i + 2vmaxñi. (4.11)

It is shown in (4.11) that the unambiguous velocity is divided as the folded velocity
v̂i which is estimated from sinusoidal components and the fold number which is
extracted from the coupling components.
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It works very well in most cases, however, (4.11) fails in the worst case when
the velocity vi is very close to (2n + 1)vmax. The problem is illustrated in Fig.
4.1, where Eq. (4.11) works when the targets are located in the grey or cyan re-
gion. However, if the target is located close to (2n + 1)vmax (green region in Fig.
4.1), for instance, assume vi = 3vmax, the estimate from the coupling component
returns v̌i ≈ 3vmax (which is indicated as red dashed arrows), then (4.11) might
return uncertain fold number 1 or 2 depending on the noise, interference from the
other targets and the computational accuracy. Additionally, the estimate v̂i from the
sinusoidal component is |v̂i| ≈ vmax (which is indicated as blue dashed arrows),
which might return v̂i . vmax or v̂i & −vmax. Therefore, there could be 4 combi-
nations of (4.11) and different ṽi would be obtained. This problem would happen
in each iteration of the RELAX algorithm and would influence the convergence of
the RELAX algorithm significantly.

Figure 4.1: Illustration of fold number estimation

To solve this problem, a novel approach is introduced. Since if vi ≈ (2n+1)vmax,
we have |v̂i| ≈ vmax. A threshold ε is set to test the difference ||v̂i| − vmax|, and
this threshold is determined by the accuracy of the estimate v̂i. If ||v̂i| − vmax| ≤ ε
is satisfied, (4.10) is modified by replacing floor operation bc by round operation
be to obtain the uncertain fold number. Then the fold number can be determined
according to the sign of v̂i. If v̂i < 0 the fold number is correctly estimated with
more confidence, otherwise the fold number is more likely overestimated.

According to the analysis, the fold number estimation is summarized in Algo-
rithm 4 (A4).

4.2.4. REFINE THE PARAMETERS BY ALTERNATION
As we mentioned before, the unambiguous velocity estimate v̌i is coarse and inac-
curate which may result in the inaccuracy of the estimations of v̂i and ñi. Thus, a
novel refinement method is introduced to improve the accuracy of the estimation
by alternatively updating ṽi, θ̃i by (4.9) and (4.11) and updating W∗

dr(v̌i), W∗
θr(θ̌i)

by v̌i, θ̌i ⇐ ṽi, θ̃i. The reason is straightforward because the accurate ṽi and θ̃i
lead to accurate coupling terms compensation and in return increase the accuracies
of ṽi and θ̃i. Since the alternative method converges very fast, only 3 or 4 repeats
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Algorithm 4 Fold Number Estimation Algorithm (A4)

1: Input: v̂i, v̌i, vmax, ε
2: if ||v̂i| − vm| > ε:

3: ñi =
⌊
v̌i + vmax

2vmax

⌋
4: ṽi = v̂i + 2vmaxñi
5: else:
6: ñi =

⌊
v̌i + vmax

2vmax

⌉
7: if v̂i > 0:
8: ñi ⇐ ñi − 1
9: endif:

10: ṽi = v̂i + 2vmaxñi
11: endif
12: Output: ñi, ṽi

are sufficient for convergence. Although the alternation process only needs a few
repeats, it is very important and influences the estimation results significantly. The
comparison with and without such alternation will be shown in Section 4.5.

4.2.5. AMPLITUDE ESTIMATION
As we have already estimated the frequencies, the estimation of the complex am-
plitude is directly given by

α̃i = 1
LMK

[Yi �W∗
dr(v̌i)�W∗

θr(θ̌i)]×1 aT (θ̃i)×2 fTd (v̂i)×3 fTr (r̃i). (4.12)

Although the alternation steps can optimize the solutions, (4.9) is still an on-grid
estimation. As soon as the relatively accurate estimation is obtained as the initial
guess, the Nelder-Mead method [79] is adopted to optimize the estimation of the
local optimal off-grid solution as

Ỹi = Yi �W∗
dr(v̌i)�W∗

θr(θ̌i), (4.13)

α̃i, ṽi, θ̃i, r̃i = argmax
α,v,θ,r

||Yi − αa(θ) ◦ fd(v) ◦ fr(r)||F .

The algorithm for a single target is summarised as Algorithm 5 (A5).

4.3. MULTIPLE TARGETS
In this section, the multiple target scenario is considered and the estimation is per-
formed in two steps: first, a greedy algorithm for initialisation, and second, the
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Algorithm 5 Alternation Algorithm (A5)

1: Estimate v̌i, θ̌i = argmax
v,θ

||Yi �Ω∗dr(v)�Ω∗θr(θ)||2

2: Estimate fold number ñi =
⌊
v̌i + vmax

2vmax

⌋
3: repeat
4: Update v̂i, θ̃i, r̃i from (4.9)
5: Update ṽi, ñi according to A4
6: Update v̌i, θ̌i ⇐ ṽi, θ̃i
7: Update W∗

dr(v̌i) and W∗
θr(θ̌i)

8: until the stop criteria satisfied
9: Estimate α̃i from (4.12)

10: Optimize (4.13) using Nelder-Mead method
11: Output: α̃i, ṽi, θ̃i, r̃i

RELAX algorithm for optimisation. Both the greedy algorithm and the RELAX
algorithm have been widely used and show an effective performance in many ap-
plications [2, 13, 14, 80–84]. Thus, the general ideas of the greedy and RELAX
algorithm are adapted to the multiple-target scenario with the proposed method of
a single target.

4.3.1. GREEDY ALGORITHM

For multiple targets, the greedy algorithm is performed to extract and remove each
target sequentially. By applying the A5 to the raw data, the parameters of the target
with maximum magnitude will be estimated. Construct the reflected signal as Z̃i

and subtract it from the data as

Z̃i = α̃ia(θ̃i) ◦ fd(ṽi) ◦ fr(r̃i)�Wθr(θ̃i)�Wdr(ṽi),
Z ⇐ Z − Z̃i, (4.14)

where the initialisation is made with Z ⇐ Y . Repeat A5 by updating Z in (4.14)
until some stop condition is satisfied. Here a threshold of magnitude is selected
as the criterion for the stopping condition and defining the number of targets for
simplicity. The greedy algorithm stops if the magnitude of the ith target is smaller
than the threshold ε1. The threshold ε1 can be selected relatively smaller than the
desired magnitude and the number of targets is allowed to be slightly overestimated
since it will be reconsidered later.

This algorithm is summarised as Algorithm 6 (A6).
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Algorithm 6 Greedy Algorithm (A6)
1: Z = Y , i = 1
2: repeat
3: Estimate ith parameters ϑ̃i using A5 from Z
4: Formulate Z̃i, and remove it from Z as (4.14)
5: i⇐ i+ 1
6: until |α̃i| ≤ ε1
7: Output: number of targets Ĩ = i and all the corresponding features ϑ̃i =

[α̃i, ṽi, θ̃i, r̃i]

4.3.2. RELAX ALGORITHM
The estimation results of A6 are coarse since the mutual interference between the
targets will affect the estimation of other targets and the estimation error will accu-
mulate with the increase of the number of targets in the scene. To address this prob-
lem, an iterative parameters estimation method is presented in this subsection [80].

Assume the number of the targets has been estimated, which can be incorrect
and will be reconsidered in the following, the parameters of the ith targets can be
re-estimated by A5 from the data without the interference from the other targets

Zi ⇐ Y −
∑
p 6=i

Z̃p. (4.15)

Thus, the new parameters are estimated without interference from the side lobes
or spread spectrum from the other targets. This algorithm loops from i = 1 to
i = Ĩ , and for more accurate estimation, it has to be repeated multiple times. As the
number of the targets may be slightly overestimated, a more demanding threshold
ε2 can be set after several iterations. Once the magnitude is lower than ε2 in the
iteration, the corresponding target is abandoned.

To save computational time, (4.8) is replaced by

ňi, θ̌i = argmax
n,θ

||Y�Ω∗dr(v̂i + 2nvm)�Ω∗θr(θ)||2, (4.16)

and (4.10) in A5 is replaced by

ñi ⇐ ňi. (4.17)

This is because we already have a relatively accurate estimation of the folded ve-
locity v̂i, the information desired from the coupling term is the fold number ñi. The
stop criterion can be made based on the estimation convergence.

The iterative algorithm is summarised in Algorithm 7 (A7).



4.4. EFFICIENT IMPLEMENTATION

4

67

Algorithm 7 RELAX Algorithm (A7)

1: Apply A6 for initial parameters estimation
2: repeat
3: Z = Y
4: for i = 1 : Ĩ do
5: Zi = Z −

∑
p 6=i Z̃p

6: Estimate ith parameters using A5 from Zi and reformulate Z̃i, where
(4.8) is replaced by (4.16) and (4.10) is replaced by (4.17)

7: end for
8: After several iterations, abandon the targets according to |α̃i| ≤ ε2 and

update Ĩ
9: until some stop criteria satisfied

NUMBER OF TARGETS ESTIMATION

The estimation of the number of scatterers is usually a difficult problem, especially
in the presence of the coupling components. Although the proposed magnitude
thresholding works very well when the targets are far-separated from each other, it
may be difficult to define the thresholds when there are too many closely spaced
targets within Rayleigh resolution. An alternative way is to combine the proposed
method with generalized Akaike information criterion (GAIC). Since it is not the
main contribution of this thesis, readers are referred to [2].

4.4. EFFICIENT IMPLEMENTATION
It is time-consuming to solve (4.8) with the simultaneously two-dimensional scan-
ning. In this section, we introduce a novel method to solve it efficiently. In fact,
(4.8) can be solved separately by two one-dimensional scanning on v and θ. Here,
we show the method of estimating v̌i as an example. For doing that, we reshape
the tensor data (4.1) to a new matrix form by stacking the array element and the
fast-time dimensions together in matrix Vi ∈ CM×LK as

Vi =
(
[Yi]0,:,:, [Yi]1,:,:, · · · [Yi]L−1,:,:

)
, (4.18)

and it can be written compactly as

Vi =αifd(vi)[a(θi)⊗ fr(ri)]T �
[
1MψT (θi)

]
�
[
1TL ⊗Φ(vi)

]
+ N̄

=αifd(vi) [a(θi)⊗ fr(ri)�ψ(θi)]T �
[
1TL ⊗Φ(vi)

]
+ N̄, (4.19)
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where ψ(θi) ∈ CLK×1 is

ψ(θi) =


h0(θi)
h1(θi)

...
hL−1(θi)

 . (4.20)

Such reshaping of the data is beneficial to use matrix manipulation and more im-
portantly, to hide the wideband DOA coupling term into the same dimension by
stacking element indices l and fast-time samples k together. Thus, the matrix
αifd(vi) [a(θi)⊗ f(ri)�ψ(θi)]T , which contains the wideband DOA coupling term,
is a rank-one matrix. Similar to (4.6), we have

||αifd(vi) [a(θi)⊗ fr(ri)�ψ(θi)]T �
[
1TL ⊗Φ(vi)

]
||2

≤ ||αifd(vi) [a(θi)⊗ fr(ri)�ψ(θi)]T ||2. (4.21)

So v̌i can be estimated by one-dimensional search as

v̌i = argmax
v
||Vi � [1TL ⊗Φ∗(v)]||2. (4.22)

Now we focus on the efficient solution of (4.22). Although there is a default norm
function in MATLAB, it is not optimised for our specific problem. Let Λi(v̌i) =
Vi � [1TL ⊗Φ∗(v)], so

||Λi(v)||2 =
√
||σ(Λi(v)ΛH

i (v))||max. (4.23)

The solution of the spectral norm is transformed into the estimation of the largest
eigenvalue of the matrix Λi(v)ΛH

i (v). Thus, compared to (4.3), another benefit
of (4.18) is that the smallest dimension of the data matrix is shrunk to reduce the
computational load of calculating the spectral norm. There are many algorithms to
perform the eigendecomposition of a Hermitian matrix; here we propose to use the
simple power iteration algorithm since only the largest eigenvalue is needed [85].
Moreover, the compensations in the adjacent searching grids are just a minor phase
shift, thus, the eigenvectors associated with the largest eigenvalues for the neigh-
bouring searching grids are close to each other in the norm distance. According to
the simulation, after good initialisation, only a few power iterations are required to
provide sufficiently good largest eigenvalue approximation with the previous eigen-
vector as the initial guess. To make the thesis self-contained, the power iteration
algorithm is given in Algorithm 8 (A8).

Based on the analysis, the efficient implementation of (4.22) is shown in Algo-
rithm 9 (A9), where the velocity searching domain v̌ is −V : ∆v : V (sampled
with the linear spacing ∆v).
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Algorithm 8 Power Iteration (A8)

1: Input: Hermitian matrix R, u(0) with ||u(0)|| = 1, j = 0
2: repeat
3: w = Ru(j)

4: u(j+1) = w/||w||
5: λ(j+1) = (u(j+1))HRu(j+1)

6: j ⇐ j + 1
7: until |λ(j) − λ(j−1)| < δ, δ is the presetting threshold
8: Output: u(j), λ(j)

Algorithm 9 Efficient Implementation of (4.22) (A9)

1: Initialize u(0) = [1, 0, 0, ..., 0] ∈ RM×1, empty vector λ = ∅∅∅, searching
domain v̌ = −V : ∆v : V , j = 0

2: for v in v̌ do
3: R = Λi(v)ΛH

i (v)
4: Compute λ(j+1) and u(j+1) using A8 with input R and u(j)

5: Store the eigenvalue [λ]j = λ(j+1)

6: j ⇐ j + 1
7: end for
8: Find index q of ||λ||max in λ
9: Output: [v̌]q

The angle θ̌i can be estimated similarly by stacking the slow-time and the fast-
time dimensions together from (4.1). The derivations are straightforward and omit-
ted here.

4.5. SIMULATIONS
In this section, several numerical examples are presented to demonstrate the effec-
tiveness of the proposed algorithm.

The conventional coherent-integration method by replacing step 1 in A5 by (4.2)
(FFT-based algorithm) are compared with the proposed algorithm in terms of ac-
curacy and time consumption. The RMSE is obtained by 400 Monte-Carlo tri-

als as RMSE =
√
E[(ϑ̃− ϑ)2], where ϑ̃ denotes the estimated parameter and ϑ

is its true value. The starting frequency of the FMCW waveform is f0 = 77
GHz and the chirp duration is T0 = 0.08 ms. The chirp repetition interval is
T = 0.1 ms and M = 8 chirps data are collected for simulation, so the total
CPI is 0.8 ms. A standard ULA of L = 8 elements with the inter-element distance
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of d = c

2f0
= λ

2 ≈ 0.195mm is considered for the receivers. Therefore, within

such a short time, all the targets are approximately moving with constant velocities.
According to the parameters, the unambiguous velocity domain is [−vmax, vmax)
with vmax ≈ 9.7 m/s. Unless otherwise stated, the alternation in A5 is repeated
3 times as default; the default bandwidth is set as B = 4 GHz, which means the
theoretical range resolution is ∆r = c

2B ≈ 0.037 m; the magnitudes of the targets

follow |αi| ∼ U(0.5, 1) and keep constant over observation time; the threshold ε1
is set as 0.2 × |α̃1| and ε2 is set as 0.4 × |α̃1|, where |α̃1| is the estimated mag-
nitude of first target and usually is the largest magnitude among all targets; the
velocities of the targets are set randomly, following the uniform distribution as vi ∼

U(−6vmax, 6vmax). The SNR is defined as SNR = ||
∑I
i Xi �Ωθr(θi)�Ωdr(vi)||2F

||N||2F
.

4.5.1. MULTIPLE TARGETS SIMULATION AND TIME CONSUMPTION
COMPARISON

In the first case study, the general estimation performance of the proposed norm-
based method and that of the FFT-based method are compared. 10 random point-
like moving targets are set in the observation scene and are illuminated by FMCW
waveform. The reflected signals are received by the antenna array and are sampled
with sampling frequency fs = 640 kHz (K = 512 snapshots for each fast-time)
and the SNR is set to 10 dB. The simulation results are shown in Fig. 4.2, where the
labels in the legend are: FFT denotes the FFT-based algorithm, Norm denotes the
proposed spectral norm algorithm and implemented by default norm function and
PI denotes the proposed algorithm implemented by the power iteration algorithm.

Here, to illustrate the off-grid problem of the FFT-based method, two sets of
simulation for this method are performed with κ − 1 times zero-padding (κ times
FFT points). In the first case, (4.2) is applied with 1 time (κ = 2) zero-padding.
The angle-range and range-velocity results are shown in Fig. 4.2(a)(b), respectively.
Since the DOAs have no ambiguity problem for the system, despite minor errors,
the DOAs are almost correctly estimated. However, most of the velocity estimates
have large errors due to the off-grid problem.

The situation is better when 3 times zero-padding is applied (κ = 4) and the
results are shown in Fig. 4.2(c)(d), where 2 targets still appear with incorrect am-
biguity number estimation. Although it can be expected that better results can be
obtained with increasing of κ, the time- and memory-consumptions become unac-
ceptable for automotive application.

Fig. 4.2(e)(f) and Fig. 4.2(g)(h) show much accurate estimation of the scene
by using the proposed norm-based methods with and without the power iteration
algorithm, respectively. The estimation of the angles is more accurate than that in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Angle-range and velocity-range maps for (a)(b) FFT-based algorithm with 1 (κ = 2)
time zero-padding, (c)(d) FFT-based algorithm with 3 (κ = 4) times zero-padding, (e)(f) proposed

norm-based method, (g)(h) proposed efficient implementation.

Fig. 4.2(a)(c) and there is no estimation error of fold number in Fig. 4.2(f)(h).
Additionally, the proposed efficient implementation has similar performance with
the default norm function.

The estimation error of fold number
∑I
i |ni − ñi| and RMSEs of unambiguous



4

72
4. JOINT PARAMETERS ESTIMATION USING SPECTRAL NORM-BASED

ALGORITHM

(a) (b)

Figure 4.3: (a) Fold number estimation errors with iteration, (b) RMSEs of ambiguous velocities
with iteration

velocity are shown in Fig. 4.3 and here we assume the number of targets I is known.
It is shown that for 10 far-separated targets, the RELAX algorithm with proposed
methods converges within 3 iterations. However, the FFT-based algorithm with 1-
time zero-padding cannot converge to a stable point and with 3 times zero-padding
converges with the wrong fold number estimation. The RMSEs of unambiguous
velocity estimation in Fig. 4.3(b) strongly correspond to the estimation errors of
the fold number in Fig. 4.3(a), while the proposed spectral norm-based algorithms
with and without efficient implementation can reach 0 error of fold number esti-
mation. Additionally, the proposed algorithm with only 1-time alternation in A5
is also applied and the simulation results in Fig. 4.3 demonstrate that with more
alternations in A5, A7 can converge faster.

In addition to the better accuracy of the proposed algorithm, the comparison of
the time consumption of different algorithms is listed in Table 4.1. The simula-
tion results show that the proposed algorithm implemented with the power iteration
algorithm is preferable in both accuracy and efficiency.

Table 4.1: Time consumption comparison

Algorithm A2 A3 per iteration
Norm-based (power iteration) 12.70 s 8.27 s
Norm-based (default norm function) 19.07 s 9.77 s
FFT-based (κ = 2) 31.14 s 13.57 s
FFT-based (κ = 4) 217.79 s 54.45 s

4.5.2. LOW SNR AND WITH DIFFERENT ALTERNATIONS
The previous simulation has shown that A5 could accelerate the convergence of A7,
and in this subsection, the superiority of A5 under low SNR condition with multiple
targets is presented as well. To reduce the integrated SNR, the fast-time samples
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Simulation results: (a) angle-range spectrum for M = 0, (b) range-velocity spectrum for
L = 0, (c) angle-range map using proposed algorithm with power iteration, (d) velocity-range map

using proposed algorithm with power iteration, (e) fold number errors with different alternations and
(f) RMSEs of ambiguous velocity estimation with different alternations

are decreased to K = 64 and SNR is set to SNR = 5 dB. The other 11 point-like
targets are randomly positioned in the observation scene. The results of applying
FFT to the raw data of the first slow-time sample (M = 0) and the first antenna
element (L = 0) are shown in Fig. 4.4(a)(b), in which the migration phenomenon is
hardly seen from the range-velocity map. The estimation results with the proposed
algorithm are shown in Fig. 4.4(c)(d). The proposed algorithm can estimate all the
targets with high accuracy. Then to prove the importance of A5, the alternation is
decreased to 1 repeat and the corresponding fold number estimation error and the
RMSE of the unambiguous velocities are plotted in Fig. 4.4(e)(f). It is clear that
without sufficient alternations, A7 could not reach the convergence, while with only
3 repeats of A5, A7 converges within 5 iterations.
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4.5.3. RMSE COMPARISON OF NORM VERSUS FFT
To show the off-grid problem clearer, two sets of simulations are performed for
only one target, which either is an on-grid target or an off-grid one. To save the
simulation time on Monte Carlo trials, the fast-time snapshots are set to K = 64.

The parameters for the on-grid target are r = 16∆r
κ

, v = 202vmax

κM
, θ = 40◦ and the

off-grid target is located in between of two FFT grids both for range and velocity

as r = 16.5∆r
κ

, v = 20.52vmax

κM
and θ = 40◦, where κ means κ − 1 times zero-

padding for the (4.2).
The RMSEs and the corresponding CRB comparisons are shown in Fig. 4.5 for

κ = 4 (see Appendix A for CRB derivation). One can see from Fig. 4.5 that, for the
on-grid target, both norm-based and FFT-based algorithm can reach the CRBs for
all the parameters. It is also observed that the proposed method can reach the CRB
around −5 dB for the ambiguous velocity, while the FFT-based algorithm reaches
the CRB around 0 dB.

Even though, we have to admit that under the very low SNR condition, coher-
ent integration methods might have better estimation performance than proposed
method since the RMSEs of FFT-based method are much lower than that of the
proposed algorithm for SNR in (−20,−10) dB.

Consider the off-grid target, the RMSE of the velocity using the FFT-based
method cannot reach the CRB but keeps an approximately constant value of 2vmax.
This is because the fold number is estimated incorrectly. The wrong estimation of
the unambiguous velocity decreases the accuracies of the DOA, range and ampli-
tude as well.

4.5.4. RMSES COMPARISON OF BANDWIDTH 1 GHZ VERSUS 4 GHZ
From the signal model, we can speculate that with larger bandwidth, the phase
of the coupling terms will vary more significantly and therefore have higher SNR
tolerance. It means the parameters extraction from the coupling terms can be more
accurate with larger bandwidth in the low SNR conditions. Thus, in this study, the
performance of the proposed methods with different bandwidth, namely 1 GHz and
4 GHz, is tested. Two separate targets are set in the observation scene. The the
parameters of two targets are v = [50, 60] m/s, θ = [30◦, 10◦], r = [0.5, 0.8] m,
respectively.

Fig. 4.6 gives the results of the RMSEs and the corresponding CRB compar-
isons. According to Fig. 4.6, the performances for angle and the amplitude are
almost identical and this demonstrates that the proposed method is adaptive to sig-
nals with different bandwidths for DOA estimation. It is also observed that the CRB
of range for 4 GHz is lower than that for 1 GHz simply because the wider frequency
band provides higher range resolution. Moreover, the RMSE of the unambiguous
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(a) (b)

(c) (d)

(e)

Figure 4.5: RMSEs and CRB comparisons for a single point-like target of (a) angle θ̃, (b) velocity ṽ,
(c) range r̃, (d) real part and (e) imaginary part of the amplitude α̃

velocity reaches the CRB from the lower SNR condition at −2.5 dB for 4 GHz sig-
nal, while that for 1 GHz signal reaches the CRB from around 5 dB. The simulation
results indicate that a possible way to resolve the fold number under very low SNR
condition with constrained data size is to increase the bandwidth.

4.5.5. RMSES OF CLOSELY POSITIONED TARGETS
The super-resolution ability of the RELAX algorithm has been shown in [2]. While
the proposed method is applied to a more general signal model, the estimation per-
formance for the close targets is evaluated in numerical simulations in this subsec-
tion. Two targets with the same angles and Doppler shifts but half range resolution
distance separated are set in the observation scene. The parameters are v = [50, 50]

m/s, θ = [30◦, 30◦], r = [0.5, 0.5 + ∆r
2 ] m, respectively.
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(a) (b)

(c) (d)

(e)

Figure 4.6: RMSEs and CRB comparisons for two far-separated targets of (a) angle θ̃, (b) velocity ṽ,
(c) range r̃, (d) real part and (e) imaginary part of the amplitude α̃

The comparisons of the RMSEs and the corresponding CRBs using the proposed
algorithm with efficient implementation are shown in Fig. 4.7(a)-(e). Although the
performance is not as good as that for two far-separated targets in Fig. 4.6, the
RMSEs of all the parameters decrease with the CRB from SNR = 0 dB. Among all
the parameters, the RMSE of unambiguous velocity estimation has the best perfor-
mance and almost reaches the CRB.

Moreover, the RMSE trends and the simulation results show that the two closely
spaced targets are successfully resolved from each other, which validates that the
proposed algorithm holds the super-resolution ability of A7. It is worth noting that
for two closely positioned targets, much more iterations (around 50 iterations) are
needed for convergence and the range residuals with iterations are plotted in Fig.
4.7(f), where the range residual of pth iteration is defined as |r̃(p) − r̃(p−1)|.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: RMSEs and CRB comparisons for two close targets of (a) angle θ̃, (b) velocity ṽ, (c)
range r̃, (d) real part and (e) imaginary part of the amplitude α̃, and (f) the range residual with

iteration number.

4.6. COMPARISON WITH COMPENSATED MUSIC AND SUG-
GESTIONS

Since we have proposed two algorithms for the coupling terms compensation algo-
rithm, the differences between them and the suggestion for different applications
should be discussed.

The main difference is that the compensated MUSIC algorithm treats the cou-
pling terms as redundant phases which are expected to be eliminated, while in this
chapter extra information, the Doppler ambiguity number, is extracted from the
coupling terms. Obviously, the problem in the previous chapter is a special case of
the problem addressed in this chapter. Therefore, the algorithm introduced in this
chapter can be applied, without any problem, to the issue in the previous chapter.
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Although the spectral norm-based algorithm has wider applications, it clearly has
some limitations as well.

Firstly, although the efficient implementation is proposed, the RELAX algorithm
consumes much more time than MUSIC algorithm, and more importantly, the time
consumptions increase exponentially with the model order and can only be applied
to signal model with sparse targets. Secondly, as shown in the simulations that the
performance of spectral norm require higher SNR to be applicable.

Thus, the suggestion between two algorithms is that when the velocity of the ob-
jects is relatively slow, the MUSIC algorithm is the optimal option, while when the
scenario comes to sparse targets but with very high velocities, the RELAX algo-
rithm seems a better choice.

4.7. CONCLUSIONS
In this chapter, a novel algorithm has been proposed to address the joint features
extraction of multiple fast-moving targets using (ultra-)WB FMCW signals consid-
ering both Doppler ambiguity and wideband DOA problems. The kernel of the al-
gorithm combines several parts: a spectral norm-based parameters extraction from
the coupling components and an alternative parameter refinement method is intro-
duced for a single target, then the Greedy algorithm for initialisation and RELAX
algorithm for optimisation of the results are applied for multiple targets. An effi-
cient implementation of the proposed algorithm is further introduced by the power
iteration algorithm. The performance of the algorithm proposed is validated by
numerical simulations. According to the results of the simulations, the algorithm
proposed outperforms the traditional coherent integration method both in accuracy
and efficiency when the data size is limited and SNR is sufficient. On top of that,
the SNR tolerance of the proposed algorithm is enhanced by increasing the signal
bandwidth, which makes the algorithm well-suited for UWB radars. Finally, it is
also proved that our approach holds the super-resolution ability of RELAX at the
expense of a slight loss of accuracy and a larger number of iterations.



5
MOTION-BASED SEPARATION

AND IMAGING OF
CLOSELY-SPACED EXTENDED

TARGETS

Multiple moving extended-targets separation and imaging using UWB FMCW an-
tenna array are investigated in this chapter. The difference in motion of closely-
spaced extended targets is used to separate and image them while their radar sig-
natures overlap in the range-azimuth domain. The conventional inverse synthetic
aperture radar (ISAR) concept is adopted to image the targets and separate them by
appropriate motion compensation. A novel auto-focusing criterion based on the en-
tropy of the eigenspectrum and the Fourier spectrum is proposed. It allows separat-
ing closely spaced targets and estimating their motion parameters and it overcomes
the low Doppler resolution of closely-spaced extended targets of conventional tech-
niques. Afterwards, the bearing information is extracted by signal reconstruction
for every target separately. With the estimated position and the motion parameters
of multiple targets, their images are reconstructed using standard imaging process-
ing algorithms. The performance of the proposed method is validated via numerical
simulations.
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5.1. INTRODUCTION
The range migration problem of point-like targets in the UWB FMCW signal model
has been thoroughly considered in previous chapters. The point-like target assump-
tion is appropriate when the targets are far away from the sensors and the Doppler
differences of the scatterers within one target due to the target rotation is much
smaller than the Doppler frequency resolution. By extending the illumination time,
the resolution of the Doppler frequency can be enhanced and such Doppler dif-
ferences can be observed. According to such differences, the "shape" of the target
could be obtained from the range-Doppler image for further target recognition. This
is the basic idea of ISAR and the main difference to SAR is that the relative veloc-
ities of the targets and the sensors are unknown. Although the ISAR auto-focusing
algorithms have been very mature for a single target, most algorithms would fail to
separate multiple closely-positioned targets in intensive traffic.

To overcome such drawback, a novel algorithm based on the entropies of both
eigenspectrum and Fourier spectrum is introduced to estimate the motion param-
eters and obtain a better separation of multi-targets on Doppler shifts when they
have slightly different velocities and the same accelerations. Since the eigenspec-
trum has a much higher sensitivity to the second-order mutual coupling introduced
by the first-order motion, i.e. the constant velocities, targets with similar veloci-
ties might be separated while they cannot be separated by the conventional entropy
minimisation of Fourier spectrum. However, the eigenspectrum is weakly sensitive
to the asymmetric mutual coupling and insensitive to the auto-coupling. Thus, it
is difficult to estimate the higher-order motion parameters from eigenspectrum ac-
curately. Therefore, a simple method to combine both entropies is introduced and
the high resolutions for both velocities and accelerations are achieved. To allevi-
ate the noise influence as much as possible, the entropy maps are denoised by total
variation (TV) algorithm before combination and the local minima are detected
with a threshold of prominence. Then the range histories are aligned and Keystone
transform are utilised to eliminate the phase error within the unambiguous domain.
The FFT is applied to image the focused targets and the thresholding is adopted
to separate different targets sequentially. The range-Doppler map can be further
reconstructed by combining the imaging results of multiple targets.

The rest of this chapter is organised as follows. The signal model for multiple
targets illuminated by UWB FMCW signals is established in Section 5.2. A new
criterion for auto-focusing ISAR imaging is introduced in Section 5.3. Numerical
simulations are presented in Section 5.4 and the conclusions are drawn in Section
5.5.
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5.2. SIGNAL MODEL
In this section, the signal model of multiple extended targets using wideband FMCW
is formulated and the scenario with the coordinates is illustrated in Fig. 5.1.

Figure 5.1: Scenario with coordinates

Since the scatterers from one target could have different velocity projection on
the line of sight (LOS) and the corresponding received signals contain different
Doppler information as well, a scattering centroid is usually chosen as a reference
phase centre. Generally, the scattering centre can be chosen randomly close to the
geometric centroid of the target. Consequently, the scattering centre is usually not
unique but located in a bounded region. Assume the instantaneous range of the
scattering centre is expressed as the second-order polynomial

Ri(tm) = Ri0 + vitm + 1
2ait

2
m, (5.1)

where tm = mT is the slow-time, Ri0 denotes the initial range of the scattering
centre of the ith target and the corresponding motion parameters, velocity and ac-
celeration are denoted by vi and ai, respectively. Here, the fast time t′ is directly
omitted since t′ << tm. Moreover, the higher-order motion parameters are ignored
since it is sufficiently accurate to describe the movements of the targets with the
second-order Taylor polynomial in a short time [58, 86]. It is worth noting that,
the proposed algorithm would also work for higher-order motions at the price of an
increased computational burden.

The instantaneous range of the jth scatterer includes the polynomial termRi(tm)
and the triangular terms which denote the relative range to the phase centre and the
projection of the cross-range on the LOS. Therefore, the instantaneous range of the
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jth scatterer of ith target is given as [37, 51]

Rij(tm) = Ri(tm) + yij cos(ωitm) + xij sin(ωitm)

≈ Ri0 + vitm + 1
2ait

2
m + yij + xijωitm, (5.2)

where yij and xij denote range and cross-range relative to the scattering centre of
jth scatterer of ith target and yij , xij � Ri0, ωi is the rotational speed of ith target,
which is provided by the tangential velocity. Since the observation time is short,
the assumptions cos(ωitm) ≈ 1 and sin(ωitm) ≈ ωitm are made to linearise the
model [37, 51].

Then the round trip delay of the transmitted waves reflected from the jth scatterer
of ith target is then written as

τij(tm) = 2Rij(tm)
c

, (5.3)

where c is the speed of the light.

Insert (5.2) in (5.3), the round-trip delay is written as

τij(tm) = 2Rij(tm)
c

(5.4)

= 2
c

( Ri0 + vitm + 1
2ait

2
m + yij + xijωitm )

= 2(Ri0 + yij)
c

+ 2(vi + xijωi)
c

tm + ai
c
t2m.

By choosing a proper scattering centre, the target "shape" could be constructed
by yij and xijωi. Here, the "shape" is a distorted shape in the XOY plane, and
if the ωi can be correctly estimated, the real spatial shape in X ′OY ′ plane can be
reconstructed.

With the time delay in (5.4), the analogously received wave of jth scatterer from
ith target is obtained as rij(t) = s(t − τij(tm)). Then rij(t) is mixed with the
conjugate copy of the transmitted wave and the de-chirped signal of such scatterer
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is obtained as

yi(tm, t′) = rij(tm, t′)s∗(tm, t′) (5.5)

= αij exp{j2π[f0(t− τij(tm)) + µ(t′ − τij(tm))2

− f0t
′ − µt2]}

≈ αij exp[−j2π(f0τij(tm) + 2µτij(tm)t′)]

= αij exp
{
− j2π

[
f0

2(vi + xijωi)
c

tm

+ f0
ai
c
t2m + 2µ2(Ri0 + yij)

c
t′

+ 2µ2(vi + xijωi)
c

tmt
′ + 2µai

c
t2mt
′
]}
,

where αij is the complex amplitude of jth scatterer of ith target, and the constant

terms exp
(
− j4πf0

Ri0 + yij
c

)
and exp

[
4µ
(Ri0 + yij

c

)2]
are subsumed by the

constant amplitudes term αij . Here since the observing time is very short, we as-
sume that the amplitudes of all the scatterers do not change within one CPI.

Sampling the data yi(tm, t) in terms of the fast time t′ with frequency fs (sam-

pling interval Ts = 1
fs

), and the data can be stacked as matrix form Xi ∈ CM×K

Xij = αijfd(vi + xijωi)fTr (yij) (5.6)

�Ψ(vi + xijωi)�Ω(ai)�Θ(ai),

where k = 0, 1, ...,K−1 is the fast time sampling indices andK is the total samples
in one chirp, and the sinusoidal vectors fd(vi + xijωi) ∈ CM×1, fr(yij) ∈ CK×1

are

fd(vi + xijωi) =
[
1, exp

(
− j4πvi + xijωi

λ
T
)
, ..., (5.7)

exp
(
− j4πvi + xijωi

λ
T (M − 1)

)]T
,

fr(yij) =
[
1, exp

(
− j8πµRi0 + yij

cfs

)
, ...,

exp
(
− j8πµRi0 + yij

cfs
(K − 1)

)]T
,

where λ = c

f0
is the wavelength corresponding to the lowest frequency of the band,

and the coupling matrices Ψ(vi+xij) ∈ CM×K , Ω(ai) ∈ CM×K , Θ(ai) ∈ CM×K
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are defined with entries as

[Ψ(vi + xij)]m,k = exp
[
− j8πµvi + xijωi

cfs
Tmk

]
, (5.8)

[Ω(ai)]m,k = exp
[
− j2πf0

ai
c
T 2m2

]
,

[Θ(ai)]m,k = exp
[
− j4πµ ai

cfs
T 2m2k

]

The signal model for a single scatterer contains the sinusoidal terms fd(vi+xijωi)
and fr(yij), whose Fourier spectrum reveals the distorted shape of the targets by yij
and xijωi. In addition to the sinusoidal terms, there are three extra coupling com-
ponents. The second-order mutual coupling term Ψ(vi + xijωi) is the function of
the Doppler velocity vi in vi + xijωi. Here, the velocity vi can be larger than the
maximum unambiguous velocity of the system and will be folded in the unambigu-
ous Doppler interval. This is one of the main problems for targets detection and
parameters estimation in most cases when the acceleration of the target is ignored.
The high-order phase term Ω(ai) and higher-order asymmetric mutual coupling
term Θ(ai) contain the higher-order motion parameters, i.e. the acceleration ai. To
image the ith target in the range-Doppler map, all these coupling terms should be
correctly compensated.

The matrix data of a single antenna element are Xij . Now the ULA for receiver
is considered and the wideband steering matrix A(θij(tm)) ∈ CL×K can be written
as [77]

A(θij(tm)) = a(θij(tm))1TK �Φ(θij(tm)), (5.9)

where θij(tm) is the azimuth of the jth scatterer of the ith target at the time tm and
the narrowband steering vector is

a(θij(tm)) =
[
1, exp

(
− j2π d

λ
sin(θij(tm))

)
, ...,

exp
(
− j2π (L− 1)d

λ
sin(θij(tm))

)]T
, (5.10)

and according to (2.13) the coupling term introduced by the wideband waveform is

[Φ(θij(tm))]l,k = exp
(
− 2jπµlkd

cfs
sin(θij(tm))

)
. (5.11)
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Stacking all the slow-time t0 to tM−1 forms the tensor data Aij ∈ CM×K×L as

Aij = . (5.12)

Now the discretised data Yij ∈ CM×K×L of the antenna array of the jth scatterer
of ith target are stacked as a tensor, given by

Yij = Aij � (Xij ◦ 1L), (5.13)

and the received multi-way data Z ∈ CM×K×L in the presence of the noise are
written as

Z =
I∑
i

J∑
j

Yij + N , (5.14)

where N is the discrete multi-way additive complex Gaussian white noise with the
entries’ distribution as N (0, σ2).

Now the problem is to estimate the motion parameters and image the targets from
the tensor data Z .

5.3. MOTION-BASED TARGET SEPARATION AND IMAGING
In this section, we propose a novel method for multiple closely-spaced extended
targets separation and imaging. Firstly, the motion parameters of the targets are
estimated using the combination of the conventional Fourier spectrum-based en-
tropy and the proposed eigenspectrum-based entropy. Secondly, the ISAR imaging
is performed via the range-Doppler processing and a simple thresholding method
is applied to separate multiple targets. Thirdly, the azimuths of the targets are es-
timated correspondingly using the signal reconstruction of the targets. Finally, the
observed scene is reconstructed via an image processing technique using the esti-
mated target motion parameters.

5.3.1. MOTION PARAMETERS ESTIMATION
To present the 2D targets in the Fourier spectrum by the conventional range-Doppler
algorithm, the range migration needs to be eliminated. To align the range history,
or equivalently to compensate the coupling components Ψ(vi + xijωi), Ω(ai) and
Θ(ai), the motion parameters of the scattering centre vi and ai should be estimated.
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However, since the motion parameters of targets usually are different, the range
alignments of all the observed targets cannot be performed simultaneously. The
Shannon Entropy of the Fourier spectrum provides an efficient way of estimating
the motion parameters for a single extended target and can be applied in the multi-
targets scenario if the targets have sufficiently different motion parameters [39, 45,
86]. The Shannon entropy for a vector s = [s1, ..., sN ] with positive entries is
defined by

Entropy(s) = −
n=N∑
n=1

pn log pn, (5.15)

where

pn = sn∑
n sn

. (5.16)

According to the definition of the Shannon entropy, when the targets are correctly
focused by motion compensation, the FFT result yields a minimum entropy value.
In terms of velocity v and acceleration a, the range alignment is performed via
phase compensation as

Ŷ(v, a) = Y�Ψ∗(v)�Ω∗(a)�Θ∗(a)
= αijfd(vi + xijωi)fTr (yij)

�Ψ(vi − v + xijωi)
�Ω(ai − a)�Θ(ai − a), (5.17)

where Y = [Z]:,:,0 is the data of the first antenna element. With the power spectrum
P(v, a) = (F Ŷ(v, a)) � (F Ŷ(v, a))∗, the motion parameters are estimated via
the optimisation:

ṽ, ã = argmin
v,a

Entropy[vec(P(v, a))]. (5.18)

The conventional Fourier spectrum-based Shannon entropy works properly when
the motion parameters of different targets - velocities or accelerations - are signifi-
cantly distinct. However, the Fourier spectrum has relatively low sensitivity on the
second-order mutual coupling, therefore, it may be difficult to separate the targets
when they are moving with slightly different velocities and similar acceleration.

To overcome this problem, we propose a novel approach based on Shannon en-
tropy of the matrix eigenspectrum for motion parameters estimation given by

R(v, a) = Ŷ(v, a)ŶH(v, a),
ṽ, ã = argmin

v,a
Entropy[σ(R(v, a))]. (5.19)
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It is worth noting that R(v, a) = ŶH(v, a)Ŷ(v, a) can also be used for EM. More-
over, since the eigenspectrum is insensitive to the auto-coupling terms, the Ŷ(v, a)
can be replaced by Ŷ(v, a) = Y�Ψ∗(v)�Ω∗(a), where the term Θ∗(a) is omit-
ted for computational simplicity. The proposed approach is based on the fact that
the off-grid eigenspectrum has a much higher sensitivity to the second-order mutual
coupling terms than grid-based Fourier spectrum and has no side-lobes issues.

Although the proposed entropy has higher velocity resolution, it is much less
affected by the coupling terms Θ(ai) and Ω(ai). This is because these coupling
terms have much less influence on the orthogonality of the eigenvectors. There-
fore, it is possible to have two entropy maps together, where the Fourier spectrum-
based entropy has a higher resolution for the higher-order motion parameters while
eigenspectrum-based entropy has a higher resolution for the first-order motion pa-
rameters. A straightforward approach is to combine these two entropies to obtain
high-resolution separation both on velocity and acceleration.

Before combining them, the entropy maps should be normalised into the same
scale. We propose to use the normalisation towards the interval [0, 1] by

N(I) = I −min(I)
max(I)−min(I) , (5.20)

where I denotes the entropy map constructed by the entropy value of all the search-
ing grid on velocity and acceleration, and max() and min() return the maximum
and minimum value of the map. To benefit from the high sensitivities to different
motion parameters, we propose the novel metric obtained from both entropy maps:

S = −[1−N(F )][1−N(Σ)], (5.21)

where F and Σ are the entropy maps of Fourier spectrum and eigenspectrum, re-
spectively. Then the motion parameters can be estimated by finding the local min-
ima of the combined entropy map of S.

To automatically detect the targets and estimate the motion parameters, some
further steps should be performed. Since both entropy maps contain noise, there
might be many local minima introduced by the noise. To alleviate the influence
of noise, the TV denoising algorithm [87] is applied to the combined entropy. This
processing removes most of the local minima. The locations of the left local minima
would indicate the motion parameters of the targets.

5.3.2. TARGET IMAGING AND SEPARATION
With the estimated parameters from the previous step, the targets can be imaged
separately by appropriate range alignments. By the coupling terms compensation
for the scattering centre, part of the signal distortion due to the range migration will
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be eliminated. However, that is not sufficient to obtain a well-focused image due to
the Doppler differences of the scatterers to the phase centre. The Keystone trans-
form is performed to the aligned data within the maximum unambiguous Doppler
interval [58]. The process is illustrated as

F{Keystone[Y�Ψ∗(ṽ)�Ω∗(ã)�Θ∗(ã)� (fd(ṽ)1TK)∗]}, (5.22)

where Keystone denotes the Keystone transform operation and the term (fd(ṽ)1TK)∗
is used to put the scattering centre in the centroid of the spectrum. If the estimation
results are located within the acceptable boundary, all the scatterers of one target
are shifted into the observation window without Doppler ambiguity, and the FFT
and Keystone transform will generate a focused image.

Here we also assume that the targets would not be focused at the same time;
otherwise, they will be recognised as the same target. According to this assump-
tion, when one target is focused, the others would not be entirely focused. Then,
the multiple targets can be separated with CLEAN techniques or the threshold-
ing method [56]. If the targets are constructed of too many scatterers, it is time-
consuming to apply the CLEAN technique, therefore, the simpler thresholding is
adopted in this chapter for target detection and separation. From the separated fo-
cused range-Doppler map, the distorted shape of the targets can be recognised and
parameters of all the dominant scatterers ỹij and x̃ijω̃i are estimated.

5.3.3. AZIMUTHAL BEAMFORMING
Multiple targets may not be separable in the azimuthal domain by means of tradi-
tional BF techniques if they are closely positioned. Although the subspace-based
methods can provide super-resolution ability, most of them are applicable for only
the point-like targets and not suitable for extended targets considered in this study
[77]. Fortunately, since the targets have been separated from the previous steps, the
corresponding azimuthal information can be estimated separately.

Because the azimuths of the targets are slightly changing with time, to accurately
estimate the azimuths of the targets, the data Z = [Z]0,:,: of the first slow-time
index are used to avoid angle migration.

To estimate the azimuth of a single target, we apply BF with the reconstructed
data of each target separately. For the ith target, the reconstructed data for the first
slow-time sample and the searching angle grid θ̃ are

Z̃i(θ̃) = α̃iA(θ̃)�
( J∑

j

1M fTr (ỹij)
)
. (5.23)

Then the estimation can be made simply by

θ̃i = argmax
θ

|Tr[Z̃Hi (θ)Z]|. (5.24)
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5.3.4. IMAGING OF THE OBSERVED SCENE
According to the parameters estimated above, we can image the observed scene
of multiple moving targets. Here, we assume the ranges of the targets are known,
which are easily estimated from the range profile and we also assume that all the
targets move along the Y ′ axis. Then, the image of the observed scene can be
obtained by a few steps:

IMAGE RESCALING
Since the image is distorted by the xijωi, the real crossrange xij is rescaled by

dividing the ωi, where ωi ≈
vi tan θi
Ri0

.

ROTATION AND LOCATION
The map in coordinate XOY has to transform to real geometric coordinate X ′OY ′

according to the angle θi for the ith target separately. Finally, based on the estimated
positions of the centroid of the targets θi andRi, the focused images of all the targets
are placed in the corresponding positions.

5.4. SIMULATIONS
In this section, the simulation results are presented to demonstrate the performance
of the proposed algorithm and further discussions on the proposed algorithm are
also provided.

5.4.1. NUMERICAL SIMULATIONS
The automotive scenario is considered and the radar has the following parameters.
The bandwidth of FMCW signal is B = 4 GHz with starting frequency f0 =
77 GHz, the chirp duration is T0 = 320 µs and the chirp repetition interval is
T = 400 µs. M = 156 chirps are transmitted in a burst and the reflected signals
are received by the ULA with L = 8 antenna elements. After the de-chirping
process, the data are sampled with the sampling frequency of fs = 625 kHz. Then
the received data in the multi-way form Z ∈ C156×200×8 are used to estimate
the motion parameters. As for the target, each car model is represented by 137
dominant points scatterers as shown in Fig. 5.2. The amplitudes of all the scatterers
are set from uniform distribution αij ∼ U(0.8, 1). The SNR is set to 10dB with
additive complex Gaussian noise.

To validate the performance of separating multiple closely-spaced targets, two
cars are set in the observed domain, which cannot be separated from the beam and
range profile. The exact geometry of the two cars is shown in Fig. 5.3, where the
radar is located in the position of (0, 0). This scenario is very common in the real
world, where two cars are close to each other and partially overlapped with each
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Figure 5.2: Car model with 137 point scatters

Figure 5.3: The geometry of the simulations

other in both beam and range. It is worth noting that the real geometry is indicated
by axis X ′ and Y ′, while the ranges X of the LOS are indicated by the dashed
lines. The velocities of car1 and car2 are set as 20.87 m/s and 20.62 m/s along
the negative Y ′ axis. We assume the radar is mounted on the vehicle which has a
velocity of 19.44 m/s along the positive Y ′ axis. Thus, the total relative velocities
of the cars to the radar are −40.31 m/s and −40.06 m/s along the Y-axis and the
velocity projections of the scattering centre of the targets on the LOS are −37.89
m/s and −34.69 m/s, respectively. Moreover, the accelerations of both targets are
set to ai = 0 m/s2 to test the capability of separating two cars from the Doppler
differences.

According to the parameter setting of the system and the objects, the discrete
received data in tensor form are established using the signal model (5.14). It is
worth noting that in reality, only half of these scatterers can be illuminated by the
radar due to the propagation of the radio wave, but for simulation, we assume all
these scatterers are observed by the radar. In the signal model, the relative velocities
of the cars along the Y ′ axis are divided into two orthogonal components, the radial
parts v‖ in the direction to the radar and tangential parts v⊥ which is orthogonal to

the radial parts v‖ and provide the rotational speeds of the targets as ω = v⊥
R

. Here,
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(a) (b)

Figure 5.4: Range-Doppler map for (a) range-Doppler map in the observed window and (b) unfolded
range-Doppler map

since the observing time is very short, we assume the speeds are constant over one
CPI.

For comparison, the ideal imaging results of all the scatterers without any cou-
pling components are shown in Fig. 5.4. Fig. 5.4(a) shows the positions of the
scatterers of the cars in the observed window in which the velocities are folded
within the maximum unambiguous domain. Fig. 5.4(b) illustrates the correspond-
ing unfolded imaging results with the green and blue dashed lines indicating the
region of acceptable boundaries of two cars and the space between the red dashed
lines indicates the maximum unambiguous domain. All the velocity estimations
within the dashed lines (green and blue) would compensate the most coupling in-
fluence and bring the target close to the centroid of the observed window. One of
the main objectives in the following simulation is the estimation of the motion pa-
rameters of the cars and reconstruction of the unfolded range-Doppler map similar
to Fig. 5.4(b).

By applying 1D FFT on the fast-time domain of the data, the range migration
phenomenon of two cars is shown in Fig. 5.5(a), in which the range histories of two
targets are overlapped with almost the same slope and are hardly separated. Fig.
5.5(b) shows the imaging results without any range alignment applying 2D FFT to
the raw data of a single antenna element.

Next, the proposed eigenspectrum based entropy map (5.19), the conventional
Fourier spectrum-based entropy map (5.18) and the combination of both entropies
(5.21) are applied to the simulated data and the simulation results are shown in Fig.
5.6, where all the entropy results are normalised. The local minimum values are de-
tected with the prominence threshold 0.05 and indicated by the white crosses for all
the entropy maps. Here to clearly show the local entropy, we made an assumption
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(a) (b)

Figure 5.5: (a) 1D FFT on fast time to show the range migration with slow-time bins and (b) 2D FFT
imaging result without motion compensation

that the coarse velocity estimations have been obtained which are in the range from
−33 m/s to −40 m/s.

Fig. 5.6(a) shows the proposed entropy map obtained with the eigenspectrum
and Fig. 5.6(b) shows the counterpart of using the Fourier spectrum. Since the
eigenspectrum is weakly sensitive to the asymmetric coupling terms, the entropy
map shows strong thick lines along the acceleration dimension. Although the res-
olution of the acceleration is low, one can observe that two targets are distinctly
resolved in Fig. 5.6(a) from the velocity domain, while they can hardly be sepa-
rated in Fig. 5.6(b). Therefore, the algorithms for multiple targets imaging of the
Fourier spectrum-based EM [56, 58] will fail to image the targets separately. The
result of using the proposed combination is shown in Fig. 5.6(c).

One can observe that although the eigenspectrum-based entropy map provides
a high resolution on velocity, it yields local minima with poor acceleration esti-
mations. By contrast, the Fourier spectrum-based entropy map has much higher
resolution in the acceleration domain but fails to separate two cars in the velocity
domain. The targets detection and motion parameters estimation revealed in Fig.
5.6(c) by the proposed algorithm agrees with the ground truth in terms of velocity
and acceleration estimation.

To show the superiority of the proposed algorithm, the entropies at the accel-
eration 0 m/s2 are plotted in Fig. 5.7. There is a deep valley between two peaks
which corresponds to the cars with the proposed algorithm, while the entropy of the
Fourier spectrum is much smoother and only one peak could be recognised.

After the motion parameters estimation, the next step is to image the targets sep-
arately. According to (5.22), the coupling terms are firstly compensated for the
phase centre. Secondly, Keystone transform is applied to eliminate the coupling
terms for all the scatterers within the unambiguous region. After that, 2D FFT is
used to obtain the range-Doppler map of the cars. Finally, the "shape" of the targets
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(a) (b)

(c)

Figure 5.6: The entropy map for (a) the eigenspectrum, (b) Fourier spectrum and (c) the combined
entropy by (5.21)

are extracted using thresholding sequentially.

The cars are imaged using 2D FFT followed by 10 dB thresholding and the results
are shown in Fig. 5.8. Since two cars are so close in Doppler velocity that they are
not able to completely separated for all scatterers and the part of another car would
appear in the observed window. The thresholding results are further combined to
generate the unfolded range-Doppler map, which is shown in Fig 5.9. Despite some
artefacts, the overall map agrees well to Fig. 5.4(b).

Then the BF results using the algorithm described in Section 5.3.3 of two cars
are plotted in Fig. 5.10, where the azimuths of the cars are correctly estimated. In
comparison, the BF result of using the whole data of the first slow-time is plotted
as well, where only one peak can be estimated for a single car.

After estimating the azimuths, the real geometric image can be reconstructed
according to the steps proposed in Section 5.3.4 and the imaging results are shown
in Fig. 5.11. By comparison with the geometric setting in Fig. 5.3, the two cars are
correctly positioned in the observed scene.
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Figure 5.7

(a) (b)

(c) (d)

Figure 5.8: (a)(b) Focusing image and thresholding result for car1 and (c)(d) Focusing image and
thresholding result for car2
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Figure 5.9: Estimated unfolded range-Doppler map

Figure 5.10: Beamforming results

Figure 5.11: Reconstructed Scene
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5.4.2. DISCUSSIONS
In addition to the advantages demonstrated in the simulation, the algorithm has
some limitations. The first one is that the eigenspectrum is much easier to be con-
taminated by the noise than the Fourier spectrum. Therefore, the general perfor-
mance of the proposed method under low SNR condition, for instance, less than 0
dB, is usually worse than that of Fourier spectrum-based entropy. The second limi-
tation is that the entropy of both eigenspectrum-based and Fourier spectrum-based
would fail to separate two targets when their energies of the reflected signals are
significantly distinct, for instance, more than 10 dB.

5.5. CONCLUSIONS
The motion parameters estimation and range-Doppler imaging of multiple moving
extended-targets are addressed in this chapter. To improve the moving targets sepa-
ration in the Doppler velocity domain when the targets are moving with almost the
same accelerations, a novel auto-focusing method based on the entropy of the eigen-
spectrum is proposed. Combining the proposed eigenspectrum-based entropy and
Fourier spectrum-based entropy, both Doppler velocities and higher-order motion
parameters can be estimated accurately. After estimating the motion parameters, the
azimuths of the extended targets are estimated by reconstructing the corresponding
signal model respectively. Finally, the spatial images of extended targets are recon-
structed. The numerical simulation results show the applicability of the proposed
method to the automotive application. The advantage over conventional algorithm
are demonstrated for moderate SNR condition and the limitations of the algorithm
are also discussed.



6
SUPER-RESOLUTION DOA WITH
FFT-MUSIC ALGORITHM FOR
AUTOMOTIVE RADAR IMAGING

Radar imaging for automotive radar is studied and a novel FFT-MUSIC algorithm
is proposed and applied to the experimental data. Although many advanced algo-
rithms have been proposed in previous chapters, they have the same limitations.
The current computational power limits the applications for these algorithms in
real-time processing of automotive radar. In this chapter, an original FFT-MUSIC
imaging algorithm is introduced to overcome poor cross-range resolution of tradi-
tional beamforming (BF) algorithms. The algorithm provides super-resolution on
the DOA profile and provides a clear image of the environment. The experimen-
tal data are collected with NXP dolphin radar in Delft campus and processed with
conventional beamforming method and proposed FFT-MUSIC algorithm. The per-
formances of both algorithms are thoroughly compared.
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6.1. INTRODUCTION
Automotive radar has been significantly growing in popularity in recent years [21,
88–95]. The basic concept of automotive FMCW radar is to generate and transmit
a linear frequency ramp as the transmitted signal. By mixing the transmitted and
received signals, the beat frequency signal is generated in the receiver. The range
profile is obtained by spectrum analysis of such beat frequency. Meanwhile, the an-
gle profile of the targets could be extracted from the phase delay between different
radar antenna array elements. Although with MIMO radar the equivalent aperture of
the virtual array is up to two times larger as the physical aperture, the angular reso-
lution of conventional BF is extremely limited by the aperture size. To improve the
performance of angle-range imaging, so-called super-resolution algorithms, such
as 2D MUSIC [96], 3D MUSIC [97] and FFT-ESPRIT [67], have been introduced
to automotive radar. However, high-dimensional MUSIC cannot be adopted for
real-time implementation due to the high computational load. Moreover, the fast
Fourier transform - estimation of signal parameters via rotational invariance tech-
niques (FFT-ESPRIT) algorithm can hardly work in the challenging environment
because the 1D FFT of only one element could not provide sufficient SNR to detect
the targets [67].

To reduce the imaging complexity and at the same time provide high angular
resolution, we present the FFT combined with MUSIC algorithm for the UWB
MIMO automotive radar angle-range imaging and the results from measured data
are presented and compared with that of conventional BF method. The experimental
data are collected from moving cars equipped with NXP radar demonstrator [98].
After the data preprocess and MIMO calibration, the range profile is processed
by FFT for high efficiency and MUSIC algorithm is applied to angle profile for
high angular resolution. The spatial smoothing is applied to avoid coherent sources
and a dynamic threshold is set to detect the number of the sources in each range
cell. Moreover, an original dynamic normaliser is also applied to each range cell to
approximate the true spectrum image.

The rest of the chapter is organised as follows. Section 6.2 describes how the ex-
perimental data are collected and preprocessed. The imaging algorithm is described
in detail in Section 6.3. The imaging results are presented and compared in Section
6.4. Main conclusions about the performance are drawn in Section 6.5.

6.2. DATA COLLECTION AND PREPROCESSING
6.2.1. RADAR SETUP
The experiments are implemented in the campus of Delft University of Technology
where there are many stationary parking cars, concrete buildings and moving bi-
cycles. The MIMO radar (see in Fig. 6.1(a)) is set in the front of a car as shown
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in Fig. 6.1(b). The radar with 3 transmitters and 4 receivers can be considered as
a ULA with 3 × 4 elements. The car moved at speed of around 10 Km/h inside
the campus. The raw data were collected by radar and the scenarios were captured
by the driving recorder (Camera and GPS). The radar system settings are shown in

(a) (b)

Figure 6.1: Experiments setup: (a) NXP radar demonstrator RF board and (b) Experimental auto
equiped with NXP radar demonstrator

Table 6.1. The transmitted FMCW signal model is shown in Fig 2.1. The MIMO

Table 6.1: System Parameters

Parameters Values
Centre frequency 78.8 GHz
Bandwidth 1 GHz
Number of transmitters 3
Number of recievers 4
Number of chirps 32
Distance between elements 1.899 mm
Sampling frequency 20 MHz
Chirp duration 50 µs
Settle time 6 µs

transmitters transmit chirp signals sequentially and the reflected signals from the
reflector are received by four receivers. After mixing with the transmitted signal,
the beat frequency signal is generated and digitised by sampling at a low sam-
pling rate. However, the raw data cannot be processed for imaging immediately,
and some preprocessing operations should be implemented to filter out the inter-
ferences. The original measured data include many interferences due to the system
settings. Moreover, the array pattern needs to be calibrated to suppress the mutual
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coupling between array elements.

6.2.2. MIMO CALIBRATION
The MIMO calibration vector is collected by experimental trials. The steering vec-
tor directing to angle θ of MIMO virtual array is a(θ) = α(θ)⊗ β(θ), where α(θ)
is the transmitted steering vector, β(θ) is the received steering vector. In the follow-
ing, the virtual array steering vector a(θ) will be adopted. The reflected signal of
a single target located at the 0◦ is collected as ameasured(0◦) in the laboratory. The
ideal reflection of such target without mutual coupling is calculated as aideal(0◦).
Then the calibration vector for this angle can be approximated by

c = aideal(0◦)� ameasured(0◦). (6.1)

We note that a more accurate calibration matrix can be obtained by measuring multi-
ple angles. Then the raw data can be calibrated by taking the element-wise product
with c along the virtual array dimension. After all the preprocessing. the three-
dimensional beat frequency data model Y ∈ CL×M×K can be written as

Y =
I∑
i=1

αia(θi) ◦ fd(vi) ◦ fr(Ri) + N , (6.2)

where i = 1, 2, ..., I is the index of the far-field targets, α denotes the complex
amplitude, L denotes the number of elements of the virtual array, M denotes the
number of chirps, K denotes the number of fast-time samples after preprocessing,
θi denotes the angle of the ith scatterer, N ∈ CL×M×K denotes the additive system
noise, and a(θi) ∈ CL×1, fd(vi) ∈ CM×1, fr(Ri) ∈ CK×1, respectively, denote the
virtual steering vector, Doppler beat frequency vector, range beat frequency vector
of the ith scatterer. Here, according to the system parameters, the range migration
phenomenon of slowly moving targets is nonobvious and could be neglected in the
model.

6.3. IMAGING FOR ANGLE-RANGE
After removing the interferences and array calibration, the data are prepared for
imaging. The wideband signal provides a sufficiently high range resolution with
FFT. Thus, FFT is directly applied to the range domain. To accurately indicate the
range profile, zero-padding is made for the FFT operation. After 1D FFT, the data
model Yk̃ ∈ CL×M of the k̃th range cell can be written as

Yk̃ =
I∑
i=1

αisinc[β(rk̃ − ri)]× a(θi)fTd (vi) + N, (6.3)
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where β is a constant determined by the system parameters, k̃ is the index of the
range profile after FFT, ri is the range of ith scatterer and N is the noise matrix.
As for the angle domain, 1D MUSIC is applied for each range cell by using the
Doppler beat frequency dimension as the reference dimension.

6.3.1. SPATIAL SMOOTHING
Spatial smoothing has to be implemented before applying MUSIC algorithm in each
range cell to separate the coherent signals. In fact, two closely spaced stationary
targets have almost the same Doppler shift and are hardly separated by eigende-
composition. For a detailed explanation of spatial smoothing, the reader is referred
to [99, 100].

6.3.2. TARGETS DETECTION IN EACH RANGE CELL
The eigendecomposition is performed then to the smoothed covariance matrix Ck̃ ∈
C(L−P )×(L−P ) to obtain the eigen space as

Ck̃ = Uk̃Λk̃U
H
k̃
, (6.4)

where P is the constant for dimension reduction in spatial smoothing, Uk̃ is a uni-
tary matrix. The eigenvalues can be found from the diagonal matrix Λ. The eigen-
value vector is

λk̃ = [λk̃,1, λk̃,2, ..., λk̃,L−P ] = diag(Λk̃). (6.5)

The number of the targets can be estimated from this vector. If there is no target, the
absolute values of the eigenvalues decrease very smoothly, while if there are some
targets present, the absolute value of the eigenvalues corresponding to the targets
will be much larger than that corresponding to the noise. Although there are many
criteria in literature for the number of targets estimation, in this section a threshold
which is determined by the average value of the eigenvalues is used in each range
cell for simplicity.

6.3.3. MUSIC ALGORITHM FOR AZIMUTH-RANGE IMAGING
Then according to the number of detected targets, the noise subspace can be ex-
tracted from the eigendecomposition as

Uk̃ = [Wk̃ Vk̃], (6.6)

where Wk̃ and Vk̃ represent the signal subspace and noise subspace, respectively.
Divide the angle domain into Q grids as [θ0, θ1, ..., θQ] and formulate the steering
vector a(θ) ∈ C(L−I)×1 as

a(θ) = [1, ej2π
d
λ

sin θ, ..., ej2π
(L−P )d

λ
sin θ]T , (6.7)
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where d is the inter space between neighbouring virtual elements and λ is the wave-
length of the center frequency. Applying MUSIC algorithm, the pseudo-spectrum
of angle pk̃ ∈ RQ×1 can be obtained

pk̃ = [ 1
||a(θ0)Vk̃||2

, ...,
1

||a(θQ)Vk̃||2
]T . (6.8)

The MUSIC spectrum is the pseudo-spectrum, which means the amplitudes of MU-
SIC results cannot directly represent the amplitudes of the scatterers.

To approximate the real spectrum of the range-angle map, the pseudo-spectrum
needs some transformation. Here, we propose a novel normalisation method by
using the spectral norm of Yk̃ to approximately represent the maximum energy of
the range cell k̃. Therefore, after normalisation of the pseudo-spectrum to the same
baseline as 0 ∼ 1 for all range cells, the spectral norm of Yk̃ is calculated as the
maximum spectrum of range cell k̃. Now, the spectrum for different range cells are
comparable and the formula is

ˆ̃pk̃ = ||Yk̃||2
p̂k̃ − ||p̂k̃||min

||p̂k̃||max − ||p̂k̃||min
(6.9)

6.4. PROCESSING RESULTS
In this section, we will present some results of the measured data by the proposed
methods. The car was moving with a speed of about 10 Km/h for the whole exper-
iment.

The first scenario for the measured data is shown in Fig. 6.2(a), where the strong
reflectors contain the building wall with metal reinforcement (indicated by the pur-
ple dashed line), a pedestrian close to the wall (indicated by the green circle), a
metal sewer cover (indicated by the green circle) some stationary cars (indicated by
the red circle). The imaging result of the proposed method for such a scenario is
shown in Fig. 6.2(c), and for comparison, the processing results using conventional
BF method is shown in Fig. 6.2(b). By comparison, the spectra of the wall metal
reinforcement and the car are narrower for super-resolution algorithm than that of
BF method. Moreover, the pedestrian and sewer cover are masked by the sidelobes
of the spectra of the wall in Fig. 6.2(b), while in Fig. 6.2(c) the pedestrian and the
sewer cover can be clearly separated from the wall (indicated by the white arrows).

The second scenario is shown in Fig. 6.3(a), where the strong reflectors are the
bicycles along the road (indicated by the purple dashed line), a cyclist (indicated
by the green circle) and a lamppost (indicated by the cyan square) in front of the
car. The processing results using both the MUSIC algorithm and the BF method
are shown in Fig. 6.3(c) and Fig. 6.3(b), respectively. The figures also show that
the spectrum for both bicycles and lamppost are overall narrower and more clear of
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MUSIC algorithm than that of BF method. The sidelobes for BF method (indicated
with red arrows) are as strong as the spectrum of the cyclist (indicated with the
white arrow), which makes it difficult to identify the cyclist.

From the figures and analysis above, the performance of the angular resolution
of the MUSIC algorithm is overall much better than that of the BF method. The
time consumption of two methods for the same data and with the same computer
is 0.44 second for the FFT-MUSIC method and 0.09 second for FFT-BF method.
Although it is slightly slower in this case, the proposed FFT-MUSIC algorithm has
much room for efficient implementation by using parallel processing in the real
application.

6.5. CONCLUSIONS
In this chapter, we have presented the MIMO automotive radar angle-range imaging
using FFT-MUSIC and the results with experimental data. The data collected from
moving cars are preprocessed and calibrated at first. Then the FFT-MUSIC algo-
rithm is applied for the angle-range imaging. The range profile is processed by FFT
for efficiency and MUSIC algorithm is applied for angle profile for high-resolution
separation. The experimental results obtained with MUSIC and BF method are pre-
sented and compared. Although the time consumption is slightly increased, it is
clear that the MUSIC algorithm provides much higher angular resolution without
strong sidelobes.
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6. SUPER-RESOLUTION DOA WITH FFT-MUSIC ALGORITHM FOR

AUTOMOTIVE RADAR IMAGING

(a)

(b)

(c)

Figure 6.2: Scenario 1: (a) the scenario captured by camera; (b) the results of FFT-BF method; (c)
the results of FFT-MUSIC method
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(a)

(b)

(c)

Figure 6.3: Scenario 2: (a) the scenario captured by camera; (b) the results of FFT-BF method; (c)
the results of FFT-MUSIC method





7
CONCLUSIONS

7.1. CONCLUSIONS
The work described in this dissertation addresses the major problems and challenges
of joint parameters estimation, namely the ranges, radial velocities, and azimuths,
for multiple moving objects using (ultra-)wideband signals. Target movement re-
sults in target migration over the range cells during the CPI. Algorithms were de-
veloped which compensate target movements or even use it to improve target pa-
rameter estimation has been performed in this thesis for several major MIMO radar
problems.

For the FMCW signal, which is the main waveform used in this thesis, the estab-
lished signal model takes both the wideband DOA and range migration problems
into account. It differs from the narrowband case by two extra mutual coupling
terms in the signal model. One is introduced by the wideband DOA as coupling
component between element indices and slow-time indices. Another one presented
as mutual coupling component between fast-time samples and slow-time indices
which is caused by range migration. Conventional multi-dimensional frequency
estimators can only be applied to the estimation of the parameters when each point-
like source is present as a rank-one component (Fourier basis or another Hilbert
basis). However, in the established signal model of moving targets, the spectrum
spreads due to the mutual couplings introduced by the wideband signals and it can-
not be represented as a mixture of multiple uncorrelated rank-one components. In
this thesis, several algorithms have been proposed to address the joint multiple pa-
rameters estimation (such as range, Doppler and azimuth) in the presence of such
couplings.

As a side study, bi-phase phase-modulated CW (PMCW) radar, which is low
Doppler tolerance compared to FMCW, is also investigated separately in the ap-
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pendix. The Doppler frequency shift degrades orthogonality between the transmit-
ted binary codes and the reflected binary codes from the moving target. This degra-
dation introduces the energy loss of the main lobe and strong sidelobes. The main
lobe and sidelobes levels of PMCW in the presence of Doppler shift and low-pass
filter are analysed. The Doppler correction technique is presented and validated
with experimental data. However, the study of PMCW is preliminary and there are
opportunities for deeper investigation which would be discussed in 7.2

The major novelties and achievements are summarised as follow.

• A Novel Compensated MUSIC algorithm: For the established UWB FMCW
model, the conventional 2D MUSIC algorithm is applied to the joint esti-
mation of DOA and Doppler. To eliminate the influences of the coupling
terms, an original compensation method is proposed. The compensation al-
gorithm precisely adjusts the phase for each scanning grid and the dynamic
noise subspace is used to formulate the MUSIC algorithm. To alleviate the
computational load of the multiple eigendecompositions of large matrices,
two efficient implementations are introduced, i.e., Lanczos algorithm and
Rayleigh-Ritz step.

By comparing RMSEs and CRB of classical MUSIC, Keystone MUSIC and
proposed algorithm (for the bandwidths of 1 GHz and 4 GHz) via numerical
simulations, it is demonstrated that the phase compensation algorithm im-
proves the accuracies of both Doppler and DOA estimation over the classical
and Keystone MUSIC and the accuracies of the proposed algorithm improve
with SNR. For example, the accuracies of both Doppler and DOA estima-
tions are improved more than 20 dB for SNR = 20 dB as shown in Fig. 3.7.
Although for SNR below −10 dB Keystone MUSIC has an accuracy similar
to the proposed method, the resolution and overall contrast of the MUSIC
pseudo-spectrum is worse than by the algorithm proposed. Due to the phase
compensation, the algorithm proposed also resolves targets closely spaced
in the velocity-angular domain, which are not resolvable both with a clas-
sical and Keystone MUSIC algorithms as shown in Fig. 3.10. Further, it
is demonstrated that the proposed Lanczos algorithm and Rayleigh-Ritz are
more robust than the inverse algorithm in the simulations in Fig. 3.11. In ad-
dition, the Rayleigh-Ritz step shows superiority with respect to computation
time consumption when the number of targets is much smaller than the di-
mension of the signal covariance matrix (see Fig 3.2) and has a high tolerance
for overestimating the dimension of the signal subspace (see Fig. 3.13).

It is demonstrated that the phase adjustment approach is further applicable to
3D MUSIC algorithm for 3D parameters estimation (see Fig. 3.14)
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• Novel spectral norm-based algorithm: The proposed compensated MUSIC
greatly increases the accuracy of parameter estimations. However, it fails to
provide an efficient way to resolve the Doppler ambiguity for fast-moving
targets. The state-of-art algorithms to address the ambiguous Doppler are
based on coherent integration, which suffers from the off-grid problems for
Doppler fold number estimation when the data size is limited. Therefore, a
novel algorithm is then proposed to address the joint estimation of ranges,
ambiguously radial velocities and azimuths for multiple point-like targets.
The kernel of the algorithm combines several parts: a spectral norm-based
parameters extraction from the coupling components and an alternative pa-
rameter refinement method are introduced for a single target, then the Greedy
algorithm for initialization and RELAX algorithm for optimization of the re-
sults are applied for multiple targets. An efficient implementation of the pro-
posed algorithm is further introduced using the power iteration algorithm.
The performance of the algorithm proposed is validated by numerical simu-
lations.

According to the results of the simulation, the algorithm proposed avoids the
off-grid problem and is more than 16 times faster than FFT based algorithm
(with 3 times zero-padding) for Greedy algorithm and around 7 times faster
for RELAX iteration. On top of that, the RMSEs results also suggest that sig-
nals with wider bandwidth should be used to resolve the Doppler ambiguity
at lower SNR conditions (see Fig. 4.6(b), the RMSE of 1 GHz signal reaches
the CRB around 5 dB while that of 4 GHz signal arrives at the CRB at −2.5
dB). It is also proved that the algorithm proposed holds the super-resolution
ability of the RELAX at the expense of the slight loss of the accuracy and
larger number of iterations (see in Fig. 4.7).

• Entropy of eigenspectrum for auto-focusing of clusters of point-like targets:
Both above-mentioned algorithms, compensated MUSIC and spectral-norm
based algorithm, are based on the assumptions of sparsely point-like targets.
However, the distributed targets are usually presented as clusters of point
sources. It is a waste of time to extract the point targets in the same cluster
one by one using the RELAX algorithm. Since each cluster of point targets
has similar range migration couplings and Doppler ambiguities, the range
alignment could be performed for all point targets in one cluster at the same
time using some auto-focusing techniques.

For point targets, the focusing criterion is easily chosen for the maximum
coherent integration energy. While for a cluster of point targets, the Shannon
entropy of the range-Doppler map is widely applied to the focusing judge-
ment. However, the Shannon entropy of the range-Doppler spectrum also
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suffers the off-grid problem and sidelobes interference. Inspiring from the
proposed spectral-norm based algorithm, a criterion based on the entropy of
the eigenspectrum was proposed. To combine the advantages of the entropies
of both spectra, a simple combination method is presented.

The simulation shows that two cars with the same accelerations and slightly
different velocities cannot be resolved in the conventional entropy of the
Fourier spectrum while they are clearly separated in the entropy of the eigen-
spectrum. With the combined entropy map, the motion parameters are esti-
mated and subsequently, the range-Doppler map is reconstructed.

• FFT-MUSIC algorithm for automotive radar imaging:

The previous chapters address the fast-moving objects, while we also pro-
posed the fast imaging algorithm for a slow-moving scenario which combines
fast Fourier transform and MUSIC algorithm. However, since the MUSIC al-
gorithm generates a so-called pseudo-spectrum and cannot be comparable for
different range cells, a new normalisation technique is proposed by us based
on the spectral norm of the covariance matrix of different range cells. By
comparing the processing results by the proposed FFT-MUSIC and the con-
ventional FFT-BF algorithm, the proposed algorithm provides much cleaner
image without strong sidelobes and with higher azimuthal resolution than
conventional FFT-BF method at the expense of slightly higher computational
load.

• Study on Doppler influence for bi-phase PMCW waveform:

The behaviour of PMCW for moving objects is quite different from FMCW
and we provide the investigations on bi-phase PMCW in the presence of
Doppler shift and low-pass filter as a side study in the appendix. The main
lobe and sidelobe levels are analysed in the presence of Doppler shift and
a Doppler correction technique is presented which preserves the correlation
patterns of the codes. Then the experimental data are collected with PARSAX
and processed with the Doppler compensation. Compared to the conventional
range-Doppler process for PMCW, the main lobe level is enhanced in line
with the analytical results and the sidelobe levels are suppressed almost to
the noise level with the proposed Doppler compensation technique.

7.2. RECOMMENDATIONS FOR FUTURE WORK
• Efficient implementation of tensor decomposition

Tensor decomposition is a powerful tool and is intensively studied in the aca-
demic area. Despite that the tool is time-consuming, it provides an alternative
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tool in higher-dimensional data processing analogous to the principal compo-
nent analysis by SVD.

• Joint parameters estimation in the presence of non-Gaussian noise

All the algorithms presented in this thesis are based on the assumption of
Gaussian noise. It is recommended to test the performance of the algorithms
for joint parameters estimation in the presence of non-Gaussian noises and
strong clutters.

• Near-field scenarios and angular velocity estimation

The far-field scenario is considered in the thesis, while when the target is
sufficiently close to phased array radar or using array/MIMO with a much
larger aperture, the near-field problem should be addressed. Moreover, when
the targets are close, the fast-moving targets may migrate both in range cells
and angular cells, and such angular velocity would provide additional com-
ponents in the signal model. Therefore, some advanced algorithm should be
introduced to address such problems.

• Perturbation of eigenspectrum

Although the current divide-and-conquer algorithm can compute eigenspec-
trum of large matrix efficiently by using parallel processing, the time con-
sumptions of computing eigenspectrum are much heavier than that of com-
puting Fourier spectrum. Fortunately, the perturbation theory of the matrix
eigenspectrum is a hot topic in mathematics. The specific perturbation pattern
is clear in the proposed algorithms. There might exist a favourable algorithm
for efficient implementation of eigenspectrum computation.

• Range migration problem of the PMCW signals

The interference of the Doppler shift on the code has been studied in this
thesis. However, the range migration problem may also happen to the PMCW
signals, which would cause the code mismatch problem. This problem would
also directly decrease the range resolution. What worse is that most of the
current DOA algorithm would be invalid. Further, the Doppler ambiguity
presented in the PMCW signals differently and the proposed spectral norm
would fail to estimate the ambiguity fold number. Such study will bring the
PMCW a wider application.





A
CRB DERIVATION

To formulate CRB matrix, we first reshape the raw data (2.16) into the vector form
y ∈ CLMK×1 as

y =
I∑
i=1

αi(a(θi)⊗ fd(vi)⊗ fr(ri))� ωdr(vi)� ωθr(θi) + n, (A.1)

where all the Doppler velocities are considered as ambiguous, ωdr(vi) ∈ CLMK×1

and ωθr(θi) ∈ CLMK×1 are

ωdr(vi) = 1L ⊗


g0(vi)
g1(vi)

...
gM−1(vi)

 ;ωθr(θi) =


1M ⊗ h0(θi)
1M ⊗ h1(θi)

...
1M ⊗ hL−1(θi)

 (A.2)

Let Q ∈ CLMK×1 be the noise covariance matrix, which is

Q = E(nnH) = σ2IMLK (A.3)

with σ2 being the variances of the noise. According to the extended Slepian-Bangs’
formula [101], the ijth element of the fisher information matrix (FIM) has the form:

{FIM}ij = Tr

(
Q−1 ∂Q

∂ηi
Q−1 ∂Q

∂ηj

)
+ 2<

[(
∂y
∂ηi

)H
Q−1

(
∂y
∂ηj

)]
(A.4)

where

η = [θ,v, r,<(α),=(α)]T (A.5)
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with θ and v being the vectors consisting of the DOAs and Doppler frequencies,
respectively. ∂y/∂ηi denotes the derivative of y with respect to the ith parameter
of η. Note that the FIM is block diagonal since the parameters in Q are independent
of those in η and vice versa. Thus, the CRB matrix for the motion parameters can
be calculated from the second term on the right side of (A.4). The derivations of
each parameters are given as follow, where for simplicity the parameters denotions
are neglected.

χθi = jξ1,i(dL � a)⊗ fd ⊗ fr � ωdr � ωθr
+ jξ2,ia ⊗ fd ⊗ fr � ωdr � [ωθr � (dL ⊗ 1M ⊗ dK)]

χv
i = jζ1,ia ⊗ (dM � fd)⊗ fr � ωdr � ωθr

+ jζ2,ia ⊗ fd ⊗ fr � [(1L ⊗ dM ⊗ dK)� ωdr]� ωθr,
χr
i = jνa ⊗ fd ⊗ (dK � fr)� ωdr � ωθr,

αR
i = a ⊗ fd ⊗ fr � ωdr � ωθr,
αI
i = ja ⊗ fd ⊗ fr � ωdr � ωθr, (A.6)

where the coefficients are ξ1,i = 2παifc
d

c
cos θi, ξ2,i = 2παiµ

d

cfs
cos θi,

ζ1,i = −4παiT
fc
c

, ζ2,i = −4παiT
µ

cfs
, ν = 4π µ

cfs
.

For joint all parameters estimation in chapter 4, let

G = [χθ1 ... χθI ,χv
1 ... χ

v
I ,χ

r
1, ... χ

r
I ,α

R
1 ... αR

I ,α
I
1 ... α

I
I ]. (A.7)

while for just joint DOA and Doppler in chapter 3, then let

G = [χθ1 ... χθI ,χv
1 ... χ

v
I ]. (A.8)

Then the CRB matrix for the parameter vector η is given by

CRB(η) = [2<(GHQ−1G)]−1. (A.9)

There are two terms in χv
i (A.6), where the first term is the derivation of folded

velocity from the sinusoids and the second term is the derivation of unambigu-
ous velocity from the coupling terms. Therefore, the corresponding CRBs can
be calculated separately. Let χ̂v

i = jζ1,ia ⊗ (dM � fd) ⊗ fr � ωdr � ωθr and
χ̌v
i = jζ2,ia⊗ fd⊗ fr� [(1L⊗dM⊗dK)�ωdr]�ωθr. Then set G = [χ̂v

1 , ..., χ̂
v
I ]

or G = [χ̌v
1 , ..., χ̌

v
I ], the corresponding CRBs can be calculated according to (A.9)

for v̂ or v̌.
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Using the same system setting from Section 4.5.3, and set one target as α = 1,
v = 50m/s, r = 30m and θ = 30◦, the corresponding CRBs for v̂ and v̌ are plotted
in Fig. A.1.

Figure A.1: CRB comparison of folded velocity from sinusoids and the unambiguous velocity from
the coupling terms





B
STUDY ON DOPPLER INFLUENCE
FOR BI-PHASE PMCW SIGNALS

The bi-phase PMCW waveform properties for moving targets sensing are studied
in this appendix. The accurate signal model using PMCW waveform observing
multiple moving objects is established. The main lobe and sidelobe level of the
code autocorrelation are analysed in the presence of Doppler shifts and low-pass
filter. Then a compensation algorithm to mitigate the influence of the Doppler shift
on the orthogonality of the codes is presented. Furthermore, an experiment with
PARSAX radar is performed by observing multiple moving vehicles on the street
and the corresponding range-Doppler results using the conventional algorithm and
the compensation algorithm are compared. The processing results demonstrate that
the main lobe level decreases as expected due to the Doppler shift and the com-
pensation method can recover the correct level of the main lobe and suppress the
sidelobe level simultaneously.
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B.1. INTRODUCTION
Automotive radar plays an important role in driver assisting systems aiming to both
on road safety and driver comfort improvement and many modern vehicles are al-
ready equipped with different systems. To increase the azimuthal angular resolution
and simultaneously restrict the aperture size and the cost, the MIMO technique is
widely applied in the current generation of the automotive radars [102]. To achieve
simultaneous transmission from all transmit channels and reduce the mutual inter-
ference between multiple channels in MIMO, the orthogonality of the transmitted
waveforms has to be achieved. In FMCW MIMO systems, time-division multi-
ple access (TDMA) or frequency-division multiple access (FDMA) has to be ap-
plied to realize simultaneous transmission and avoid cross-correlation among the
transmitted waveforms [103]. An alternative to FMCW, called phase-modulated
continuous-wave (PMCW), has attracted more considerations in automotive appli-
cation due to its performance and implementation simplicity [104].

PMCW waveform, however, is also suffering from relatively high-level sidelobes
in the range profile, and different dedicated approaches have been suggested to re-
duce them [105–119]. The first kind of sidelobe is introduced by imperfect corre-
lation properties of the code itself. Although this is inevitable when designing the
waveform, many kinds of code families are proposed and provide different sidelobe
pattern [105–110,114]. Welch bound provides a lower bound for sidelobe level and
usually is used as a criterion to evaluate the performance in codes design [111].

Phase coding of the CW signal spreads the power of the signal over a large band-
width. To fit the PMCW signal spectrum to the spectral usage regulations and limit
the bandwidth requirements to the ADC, PMCW waveform undergoes low-pass fil-
tering. This filtering leads to another kind of sidelobe or increases the level of the
first kind of sidelobe.

Doppler frequency shift, which is caused by target movement, results in the code
orthogonality loss in the reflected signal and introduces the last kind of sidelobe.
Many techniques have been proposed to suppress such sidelobes. For the single
pulse PMCW waveform, 2D matched filter with multiple Doppler compensation
can be applied and the thresholding method is used to estimate the Doppler fre-
quency [112,113]. In addition to the bi-phase PMCW waveform, poly-phase coded
waveform has higher Doppler tolerance where such sidelobes are almost negligi-
ble [114, 115]. However, digital integrated circuit (IC) implementations with re-
spect to these poly-phase codes require very high-performance DACs and ADCs
and will probably be more affected by IQ imbalance and other circuitry impacts.
Moreover, the mismatched filter provides lower sidelobe level than the matched fil-
ter in the presence of Doppler shift at the expense of decreased SNR [116, 117].
For multi-pulses PMCW, Doppler correction can be performed on each Doppler
channel [118, 119]. This can be performed by applying the matched filter to each
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Doppler channel with the replica of the desired signal, which is the subpulse with
corresponding Doppler offset. An alternative way for Doppler correction is bit-
inversion by applying 1-bit sampling and reverse the bit value when the phase
changed more than 180 degrees [118].

In this appendix, the main lobe level of the PMCW waveform autocorrelation
function is studied in the presence of the Doppler shift and the low-pass filter. Ac-
cording to the signal model established, the main lobe level will decrease with the
increase of the velocity within the unambiguous velocity domain. We show that the
maximum decrease of main lobe level due to the Doppler shift is 1.961 dB when
the velocity approaches the maximum unambiguous velocity regardless of the code
family, bandwidth or carrier frequency. Furthermore, a compensation algorithm is
presented to recover the orthogonality of the codes and mitigate the influence of the
Doppler shift on the main lobe and sidelobe level. To validate the influence of the
Doppler shift on PMCW waveform by observing moving targets, an experimental
study has been performed PARSAX radar. The range-Doppler maps are obtained
with the conventional algorithm and the proposed compensation method.

The rest of the appendix is organised as follows. The signal model of the PMCW
waveform is established in Section B.2. Based on the signal model, the properties of
the autocorrelation of the codes on main-lobe and sidelobes are analysed in Section
B.3. Then the Doppler shifts compensation method is introduced in Section B.4.
Furthermore, the experimental study is described and the results are provided in
Section B.5. The conclusions are drawn in Section B.6.

B.2. PMCW SIGNAL MODEL
The bi-phase PMCW radars use sequences of binary symbols or chips that are
mapped onto 0 and 180 degree phase shifts of a continuous radiofrequency car-
rier [104]. Assuming availablility of P mutual orthogonal code series, the chip
series can be presented as

φpk = {−1, 1,−1, ...,−1, 1,−1}, (B.1)

where p = 0, 1, ..., P − 1 indicates the index of the code series, k = 0, 1, ...,K − 1
is the binary chip indices and K is the code length. According to the properties of
PMCW, it is assumed that the code set hold (here we assume the i, j < K)

corr[φpk−i, φ
q
k−j ] =

{
0 if p 6= q or i 6= j,
Kδ(k − i) if p = q and i = j.

(B.2)

where corr denotes the correlation operation, φpk−i and φpk−j are the circular shifted
code of φk with i and j chips and δ(·) is the Kronecker delta function. With the
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code, the normalised phase modulated signal of one pulse with pth code can be
formed as

sp(t) =
K−1∑
k=0

φpk rect
(
t− kTc
Tc

)
t ∈ [0, T ), (B.3)

where Tc is the binary chip duration, T = KTc is the pulse duration and

rect(x) =
{

1 |x| ≤ 0.5,
0 |x| > 0.5. (B.4)

The chip series can be easily recovered from Eq. (B.3) by sampling with interval
Tc. Multiple pulses with all code series are

S(t) =
P−1∑
p=0

M−1∑
m=0

sp(t−mT ) t ∈ [0,MT ), (B.5)

where m = 0, 1, ...,M − 1 denotes the index of the pulses, M denotes the total
number of pulses. Mixed with the carrier wave, the transmitted signals for the
transmitters are given as

ST (t) = S(t)ej2πfct, (B.6)

where fc is the carrier frequency.
Let assume I moving targets are presented in the observation domain. Then the

round trip delay of ith target is

τi(t) = 2(Ri + vit)
c

= γi + 2vi
c
t, (B.7)

where Ri, γi = 2Ri
c

and vi denote, respectively, the initial range, initial round trip
delay and the radial velocity of ith target, and c denotes the speed of the light.

Here, we assume the radial velocities of all targets are within the maximum un-
ambiguous velocity of the system. Moreover, another important assumption is that

the targets will not migrate more than one range resolution cell δr = cTc
2 . The

received signal of qth receiver is

SR(t) =
I∑
i=1

αiST [t− τi(t)] (B.8)

=
I∑
i=1

αie
j2πfc(t−γi−

2vi
c
t)S

(
t− γi −

2vi
c
t

)

≈
I∑
i=1

αie
j2πfcte−j2πfcγie−j2π

2vi
c
fctS(t− γi),
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where αi denotes the complex amplitude of the ith target. Here we assume vi � c

and t is short, then the term
2vi
c

in S
(
t− γi −

2vi
c
t

)
is omitted. To keep the

formulas simple, we neglected the noise term since the additive noise is independent
of our method. Noting that when the velocities are so large that the targets would
move several range cells within Tframe = MT , this term then cannot be neglected
directly and the code mismatch problem has to be considered. This case will be
studied in the future.

Letfd,i = 2vi
c
fc denotes the Doppler frequency of ith target and the constant

term e−j2πfcγi is absorbed into αi (for simplicity, αi is still used in the following).
Then the received signal is mixed with conjugate of the carrier wave and we obtain

ŜR(t) =
I∑
i=1

αie
−j2πfd(vi)tS(t− γi). (B.9)

To jointly estimate the range and the Doppler information, the time t is split into
fast-time t′ and slow-time index m with time interval T as

t = t′ +mT t′ ∈ [0, T ). (B.10)

The received data are sampled with the sampling interval Tc in the fast-time domain
and the discrete data are obtained as

X(k,m) =
I∑
i=1

{
αi exp(−j2πfd(vi)(kTc +mT ))

× S(kTc +mT − γi)
}

=
I∑
i=1

{
αi exp(−j2πfd(vi)kTc)

× exp(−j2πfd(vi)mT )×
P−1∑
p=0

φpk−ni

}
, (B.11)

where k = 0, 1, ...,K−1 andK, respectively, denote the fast-time indices k =
⌊
t

Tc

⌋
and the total samples in each pulse, and ni =

⌊
γi
Tc

⌋
denotes the number of the code

shift of ith target where bxc gives the nearest integer less than or equal to x. In
FMCW radar, the term exp(−j2πfd(vi)kTc) is omitted because of Doppler tol-
erance of LFM waveform. However, in the PMCW signal model, the term will
add a redundant phase shift on the binary code, which decreases the orthogonal-
ity and brings high-level sidelobes in range profile. Without any phase adjustment,
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the performance of the range profile by correlation operation will be dramatically
degraded, especially with a high Doppler frequency shift.

B.3. MAIN LOBE AND SIDELOBES LEVEL ANALYSIS

B.3.1. DOPPLER INTERFERENCE

In this section, the influence of the Doppler shifts on the orthogonality of the codes
will be analysed and the energy loss of the main lobe is presented.

According to the signa model (B.11), the maximum unambiguous velocity is
determined by the pulse repetition interval (PRI) T as vmax = c

4Tfc
. Assume a

point-like target with velocity |v| ≤ vmax, the Doppler frequency is obtained as

fd(v) = 2v
c
fc = v

vmax

2vmax

c
fc = 1

2T
v

vmax
.

According to (B.11), the phase variation remaining in the fast-time will be

ϕ = −2πfd(v)kTc = − v

vmax

kTc
T
π. (B.12)

Since
∣∣∣∣ v

vmax

∣∣∣∣ ≤ 1 and
kTc
T

= k

K
≤ 1, we get |ϕ| ≤ π. Let ν = v

2vmax
, and we

have the coherent intergration energy of the target as

E(ν) =
∣∣∣∣corr

[
φpk−n, φ

p
k−n exp

(
−j2πν k

K

)]∣∣∣∣
=
∣∣∣∣∣
K−1∑
k=0

exp
(
−j2πν k

K

)∣∣∣∣∣
=


K ν = 0,

K

2π|ν|

√
2− 2 cos(2πν) 0 < |ν| ≤ 0.5. (B.13)

Because:

if ν = 0,

∣∣∣∣∣
K−1∑
k=0

exp
(
−j2πν k

K

)∣∣∣∣∣ = K;
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else if |ν| ≤ 0.5,∣∣∣∣∣
K−1∑
k=0

exp
(
−j2πν k

K

)∣∣∣∣∣
=
∣∣∣∣∣
K−1∑
k=0

[
−j sin

(
2πν k

K

)
+ cos

(
2πν k

K

)]∣∣∣∣∣
=
∣∣∣∣∣−j

K−1∑
k=0

sin
(

2πν k
K

)
+
K−1∑
k=0

cos
(

2πν k
K

)∣∣∣∣∣
K is sufficiently large===========⇒

≈ K

2π|ν|

∣∣∣∣−j ∫ 2πν

0
sin xdx+

∫ 2πν

0
cosxdx

∣∣∣∣
= K

2π|ν|

√
2− 2 cos(2πν). (B.14)

Accordingly, the main lobe energy E of the correlation result for |ν| ≤ 0.5 cor-
responding to the target has

2K
π

= E(0.5) ≤ E(ν) ≤ E(0) = K, (B.15)

or in dB level

dB(2K
π

) = dB(K)− 1.961 dB ≤ dB(E(ν)) ≤ dB(K). (B.16)

According to (B.16), the energy of the main lobe of the correlation results does
not depend on the code family and the code length but the ratio of

v

vmax
. Further-

more, regardless of the code family and code length, the maximum peak energy loss
for a single target is 1.961 dB, which is achieved when |v| = vmax. It is indicated
in (B.13) that the main lobe energy loss can be calculated according to the value
ν, which determines how much improvement can be achieved by Doppler shifts
correction.

At the same time, the sidelobe level variation is much more complicated and
depends on the code family and code length. The simulation results of the maxi-
mum sidelobes energy variation of different code family and length are shown in
Fig. B.1, where ZCZ2048, APAS1020, Rand1024, and Rand2048 denote the zero
correlation zone (ZCZ) code with the length of 2048, almost perfect autocorrelation
sequences (APAS) code with the length of 1020, random code with length 1024 and
2048, respectively.
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Figure B.1: Energy variation of different codes

B.3.2. LIMITED BANDWIDTH
In addition to the Doppler shifts, removing frequency components by low-pass filter
also brings some side effects on the autocorrelation performance of the phase-coded
waveforms.

In [120], antenna power transmission limits have been set up by the federal com-
munications commission (FCC) for the United States of America to prevent out-
of-band interference and avoid the spectrum from becoming too crowded. The
European telecommunications standards institute (ETSI) spectral mask is consid-
ered in this appendix, which is for mid-range radar (MRR) and long-range radar
(LRR) systems defined by 3 dBm/MHz within the system defined receiver band-
width B, while outside the receiver bandwidth power spectral density is limited to
-30 dBm/MHz.

Since the filter is applied to PMCW waveform in the waveform generator digi-
tally, the perfect rectangular windowing function is performed to simulate the in-
fluence of the limited bandwidth. Here the 50 MHz ZCZ code vector φ with a
length of K = 32768 is used to simulate the performance and the data are sam-
pled with 400 MHz sampling frequency to observe the main lobe of autocorrela-
tion clearly. Therefore, the real number code is set as φ ⊗ 116, where the vector
116 = [1, 1, ..., 1] ∈ R16. The spectrum of the codes is plotted in Fig. B.2(a) and
two rectangular filters are shown in green line for 100 MHz and red line for 50MHz.

The autocorrelation results are presented in Fig. B.2(b), and the main lobe region
is zoomed and shown in Fig. B.2(c), where for better visualization the results are
normalised with the 400 MHz data. Although the sidelobe energy for the mid-
range of the zero correlation zone is increased when the low-pass filter is applied,
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(a)

(b)

(c)

Figure B.2: Limit bandwidth influence: (a) rectangular filters, (b) autocorrelation results and (c)
main lobes and nearby sidelobes
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the level is around 100 dB lower than the main lobe and 70 dB lower than Welch
bound. Therefore, the long-range sidelobe can be ignored for the low-pass filter.
However, the short-range sidelobes shown in Fig. B.2(c) are much stronger when
low-pass filter applied. The first sidelobe level for 100 MHz filter is 21.83 dB lower
than the main lobe, while that for 50 MHz the sidelobe level is only 19.74 dB lower.

B.4. DOPPLER SHIFTS COMPENSATION
In this section, the Doppler shifts compensation method is presented. There are
two ways to perform the Doppler correction, i.e., the direct matched filter sug-
gested in [118] where the replica of the desired signal with Doppler offset for each
Doppler channel is applied to the matched filter, and the Doppler compensation
for all Doppler channels before the matched filter. The latter will be described in
following, while the comparison with the former will be presented at the end of
this section. The traditional approach to locate the targets in the range-Doppler
domain is applying correlation on the fast-time domain for range profile at first,
and then performing FFT on the slow-time domain for Doppler profile. However,
without knowing the Doppler information, the term exp(−j2πfd(vi)kTc) cannot be
removed for multiple targets. The proposed solution is that the FFT is performed on
the slow-time domain firstly to distribute the signals into different Doppler channels
as

X (k, ξ) =
M−1∑
m=0

X(k,m) exp(−j2π ξ

M
m)

=
I∑
i=1

{M−1∑
m=0

exp
(
j2π−fd(vi)MT − ξ

M
m

)

× αi exp (−j2πfd(vi)kTc)×
P−1∑
p=0

φpk−ni

}

=
I∑
i=1

{
αisinc(fd(vi)MT + ξ)

× exp(−j2πfd(vi)kTc)×
P−1∑
p=0

φpk−ni

}
, (B.17)

where the constant term is absorbed into αi. Here, usually, windowing function,
such as Hann, needs to be applied to suppress the sidelobes, while we neglect this in
our formulas to make neat formulas . From Eq. (B.17), in the frequency distribution
of the slow-time domain, the peaks appear at the Doppler channel where

ξ̂i = −fd(vi)MT. (B.18)
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The integrated energy in the slow-time domain usually may not be sufficient for
target detection. Therefore, we perform the phase compensation blindly for all
Doppler frequency channels. For each Doppler frequency channel ξ̂, the compen-
sation term is formulated as

c(k, ξ̂) = exp
(
−j2π ξ̂Tck

MT

)
. (B.19)

Now it is possible to adjust the phase in the fast-time domain for the ξ̂th Doppler
channel as

Y(k, ξ̂) = X (k, ξ̂)× c(k, ξ̂)

=
I∑
i=1

{
αisinc(fd(vi)MT + ξ̂)

P−1∑
p=0

φpk−ni

}
. (B.20)

Although the noise term is not shown here, we note that the compensation is just
a phase shift, it will not affect the noise level. Since the phase is adjusted, the
correlation process with qth code and with the chip shift k̂ is performed to extract
the range profile. According to properties in Eq. (B.2), we obtain the results as

P(n, ξ̂) = corr
[
Y(k, ξ̂), φqk−n

]
=

I∑
i=1

[
αisinc(fd(vi)MT + ξ̂)δ(k − ni)

]
(B.21)

Observe the Eq. (B.21), the peaks appear when fd(vi)T = − ξ̂

M
and k = ni. Then

the range and Doppler information can be extracted simultaneously.
In fact, since the compensation for each slow-time is fixed, the compensation

matrix with entries as (B.19) can be formulated and pre-stored according to the
data size to save time.

Compared to the direct matched filter, the correlation patterns of the codes are
preserved using Doppler compensation since the additional Doppler shifts on the
codes are non-linear operation (element-wise product). Fig. B.3 shows the numer-
ical result of the autocorrelation patterns with the codes from the previous section
using the direct matched filter and Doppler compensation, respectively. It is ob-
served that the autocorrelation pattern of ZCZ code is perfectly preserved while
direct matched filter introduce high-level sidelobes close to the main lobe.

B.5. EXPERIMENTAL RESUTLS
In this section, the experimental setup is described and the radar system parameters
are provided. Due to the hardware limitation, here the single-input and single-
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Figure B.3: Comparison between Doppler compensation and direct matched filter

output (SISO) system is used to analyse the correlation properties of the PMCW
signal.

B.5.1. PARSAX RADAR
The PARSAX radar on the roof of EWI building is used to observe the vehicles on
the Schoenmakerstraat in Delft [121]. The radar working bandwidth is B = 50
MHz with the carrier frequency of fc = 3.315 GHz and the sampling frequency is
synchronised with the arbitrary waveform generator (AWG). The AWG is applied
to generate the PMCW signals with the intermediate frequency of fi = 125 MHz
for the real part of data and the sampling clock is fs = 400 MHz.

According to the parameters of the hardware and since only real part of the signal

is recorded, the binary chip duration is given as Tc = 2
B

= 40 ns. It means that each

binary chip has to digitally repeat bTcfse = 16 times.
The real part of the data is recorded for both transmitted and received waveform

by the radar. The PARSAX has four polarization channels, namely HH, HV, VH and
VV channels. In the measurements, the VV channel transmits PMCW waveform
while the HH channel transmits the reference waveform. The reference waveform
has the same PRI with a single pulse at the beginning of PRI so it can be used to
label the starting position of the continuous waves.

B.5.2. PMCW SIGNAL
In the experiment, the ZCZ is applied to generate the PMCW signals [122] since it
has almost perfect autocorrelation property in the short-range in Fig. B.2(b).

Since the ZCZ code length should be the power of 2, the code length is set to

K = 215 × 16 = 524288. Therefore, we obtain the PRI T = K

fs
= 1.311 ms

and the maximum unambiguous velocity is vmax = 17.245 m/s. It is sufficient to
observe the vehicles on Schoenmakerstraat whose speed limit is 50 km/h and the



B.5. EXPERIMENTAL RESUTLS

B

129

velocity component in the direction to the Radar is even less.
The code series is generated by the Python script and mixed with the intermediate

frequency for one PRI waveform. Then the real part of the waveform in intermedi-
ate frequency is imported to the AWG.

B.5.3. DATA COLLECTION
According to the setup of the measurement, the procedure is shown as the flowchart
in Fig. B.4.

Figure B.4: Flowchart of the measurement

The waveform in intermediate frequency is mixed with the carrier frequency and
transmitted by the PARSAX direction to the Schoemarkerstraat. The received ana-
logue data by PARSAX are then mixed with the conjugate of the carrier wave. Then
the real part of the discretized data in the intermediate frequency is recorded from
sampling on the analogue data with the AWG clock.

To obtain the I/Q channel data and remove the intermediate wave, the spectrum of
the received signal is shifted by mixing the conjugate of the intermediate wave and
the 100 MHz rectangular windowing function is applied to filter out high-frequency
components as Fig. B.5. Then the inverse-FFT (iFFT) is applied to recover the data
to the time domain. According to the clock and PRI, the received data are split into
fast-time and slow-time domain and ready to be processed.

B.5.4. RESULTS ANALYSIS
In this subsection, the data are processed with the conventional method and the
proposed compensation method.

The conventional method applies the code correlation for each fast-time to extract
the range information first, and then the Doppler frequency is obtained by perform-
ing FFT on the slow-time. The proposed algorithm performs FFT on the slow-time
first and formulates the compensation matrix with the entries as (B.19) to remove
the Doppler shift residual in each Doppler channel, then applies the fast-time code
correlation.
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Figure B.5: Spectrum of original data (top), after mixing with intermediate wave (middle), after the
low-pass filter (bottom)

Table B.1: Main lobe energies

Target Target1 Target2
v -15.65 m/s 14.28 m/s
|ν| 0.454 0.414
Theoritical increment 1.59 dB 1.30 dB
Experimental increment 1.94 dB 1.15 dB
Differece -0.35 dB 0.15 dB

The processing results are shown in Fig. B.6, where the fast-time correlations are
performed with the transmitted code itself as autocorrelation and with the orthogo-
nal code as cross-correlation.

Two moving targets are observed at range around 0.9 km with opposite moving
directions from the range-Doppler map. The main lobe energies are summarised
as Table B.1, where the theoretical values are calculated according to (B.13). The
differences between theoretical values and experimental values are −0.35 dB and
0.15 dB, respectively, which are acceptable due to the influences of the noises and
clutters.

The sidelobes appearing beyond the range of the targets are much stronger than
that appearing before the targets. This is probably due to strong clutters received
from the environment at the time after the wavefront hits the ground. Therefore,
the sidelobes before the targets (shown in the red boxes) are used to analyse the
performance of the compensation method. It is seen in both autocorrelation and
cross-correlation results, the sidelobes levels are much lower with the proposed
compensation method and almost close to the noise level.



B.5. EXPERIMENTAL RESUTLS

B

131

(a) (b)

(c) (d)

Figure B.6: Range-Doppler map of (a) contiontional autocorrelation, (b) compensational
autocorrelation, (c) conventional cross-correlation and (d) compensated cross-correlation
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To observe the main lobe enhancement and sidelobe suppression clearly, the
sliced range-Doppler maps for the first target at the velocity of −15.65 m/s are
plotted in Fig. B.7. For both autocorrelation and cross-correlation, it is seen that
the sidelobe suppression is up to 5 dB and most of the sidelobes are suppressed to
the noise level.

(a)

(b)

Figure B.7: Range-Doppler map slicings at v = −15.65 m/s of (a) autocorrelation and (b)
cross-correlation.

The time consumption for proposed Doppler compensation method, however, is
around 50 seconds with one-time zero-padding for FFT on the slow-time, while the
computational cost for the conventional method on the same computer is only 12
seconds. When we remove such zero-padding, the time consumptions for the pro-
posed method and the conventional method are 20 seconds and 10 seconds, respec-
tively. Moreover, if the compensation matrix is pre-stored, the time consumption
of the Doppler compensation method will be more comparable to the conventional
method.

B.5.5. DISCUSSION
The computational complexity of the compensation method is relatively higher than
the conventional algorithm. If there are no zero-padding for FFT on slow-time, one
extra matrix multiplication is needed for Doppler compensation and the time is
usually negligible. However, when n times zero-paddings are applied for FFT on
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the slow-time, the time consumption for the fast-time correlation is also n times.
One of the main disadvantages of PMCW compared to FMCW is that the full

bandwidth sampling frequency is required for the code recovery while much lower
sampling frequency for FMCW is sufficient after deramping. However, PMCW
signal needs much less sampling dynamic range than FMCW, even 1-bit sampling
is applicable, which, in another way, reduces the hardware requirement [118, 123].

B.6. CONCLUSION
Doppler shift influence on bi-phase PMCW waveform is investigated in this ap-
pendix. The signal of the staggered PMCW signal model is established with the
fast-time and the slow-time domains. Then the influence of the Doppler shifts and
the limited bandwidth on the main lobe and sidelobes are analysed for a single mov-
ing target, where the Doppler shift influence on the main lobe can be expressed as
a function of the velocity. Moreover, a Doppler shift compensation method is in-
troduced to mitigate the Doppler shift on the fast-time. Last, the measurements us-
ing the waveform agile radar PARSAX are performed to validate the performance
of PMCW with and without the proposed compensation method. The main lobe
enhancement is achieved according to the analysis and the sidelobes level is sup-
pressed up to 5 dB with Doppler shift compensation method proposed.
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