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ABSTRACT

In this paper, the thick-level-set method is used to model stable and unstable (stick/slip) crack prop-

agation in the dynamic double cantilever beam (DCB) test for unidirectional composite laminates. The

thick-level-set method uses a predefined damage profile to describe the fracture process zone and allows

for accurate evaluation of the global energy release rate. A phenomenological model is introduced to cal-

culate the crack speed as a function of the energy release rate. The potential capability of the proposed

approach is demonstrated by simulating a series of dynamic DCB tests under variable test rates.

1 INTRODUCTION

Delamination is one of the major damage mechanisms for composite laminates under dynamic load-

ing. It is believed that the interlaminar fracture toughness depends on the loading rate [1]. This, with re-

gard to numerical modeling, motivates the development of rate-dependent cohesive zone models (CZM).

In terms of experimental characterization, the dynamic double cantilever beam (DCB) test is used to

measure the dynamic fracture toughness. In a comparison between numerical results obtained with a

rate-dependent CZM and experimental measurements, a good agreement can only be found when crack

arrest and re-initiation phenomena from the experiments are ignored. Inability of the CZM approach

to reproduce these phenomena from this basic test limits the suitability of this approach for predictive

simulations in more complex cases.

In this contribution, the thick-level-set (TLS) model [2, 3] is used to simulate the dynamic DCB

test, including repeated crack arrest and re-initiation. The TLS model was first introduced by Möes et

al. [2] for the modeling of damage growth in a continuum damage framework. Contrary to conventional

continuum damage mechanics, the damage in the TLS is not a direct function of the local strain but rather

a function of the distance to a moving damage front. The movement of the damage front is achieved by

evaluating the configurational force across the damage band. The TLS model was translated to interface

elements by Latifi et al. [3] to provide an alternative to the CZM for interfacial cracking. An advantage

of the TLS for dynamics is that a relationship between the energy release rate and crack speed can be

used as input of the model.

Ravi-Chandar [4] introduced a dynamic fracture criterion in which the three states of a crack, i.e.

initiation, propagation and arrest, are explicitly differentiated. The dynamic stress intensity factor K,

as a measurement of the dynamic stress field near the crack tip, is used as an indicator of the state

in which the crack should be under a given loading condition. Inspired by the above criterion, a new

phenomenological model on the relation between energy release rate and crack speed is introduced. Both

stable and unstable (stick/slip) crack propagation observed in the dynamic DCB test can be simulated

with the presented TLS approach.
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Figure 1: Double cantilever beam

2 METHOD

The dynamic double cantilever beam test of an unidirectional composite laminate under a series of

constant loading rates δ̇ is simulated by implicit dynamic numerical analysis (see Fig. 1). The constant

velocity δ̇ is applied at the top surface of the arm and the vertical degree-of-freedom of the node symmet-

ric to the loading point with the crack plane is constrained. The bulk material of the beam is represented

by plane strain triangular elements with an orthotropic linear elastic constitutive model. The middle

surface between the two arms is modeled with interface elements, in which damage is described with

the TLS approach. A damage band of length lc is predefined ahead of the initial crack tip. The signed

distance from the front of the damaged band is defined as the level set field φ . Damage d is related to the

level set field φ by:

d(φ) =

{ 0, φ < 0

atan
(

c1
φ
lc

)

· atan(c1)
−1
, 0 < φ < lc

1, φ > lc

where atan(·) is an arc-tangent function and c1 determines the shape of the damage distribution. The

possible contact among the upper surface and lower surface of the initial crack is considered by interface

elements with penalty stiffness. At the end of each load step, the energy release rate G is calculated.

Then the crack speed V is determined by a new phenomenological model and finally the level set field is

updated according to the calculated crack speed.

As key assumption in the model, a function between energy release rate G and crack speed V is

explicitly introduced (see Fig. 2). This function is inspired by the relation between K and V proposed by

Ravi-Chandar [4]. The crack starts to grow when the energy release rate G reaches the crack initiation

toughness Gi. Crack growth starts at a nonzero crack speed V (Gi). During crack growth, the crack

speed V is related to the energy release rate G according to an exponential function which possesses

three features: (1) the crack speed has a maximum value Vm ; (2) the V (G) curve has a positive slope,

representing the influence of increased microcracking on the fracture toughness; (3) the crack speed

jumps from a finite value to zero when the energy release rate drops below the crack arrest toughness Ga.

The function between crack speed V and energy release rate G during the propagation phase is:

V =Vm(1− e−αG) (1)

in which Vm is the maximum crack speed and α is a coefficient that can be determined by:

α =−

1

Ga

ln

(

1−
Va

Vm

)

(2)

where Va is the crack speed at which arrest occurs and Ga is the arrest toughness of the material.
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Figure 2: Relation between crack velocity V and energy release rate G

3 RESULTS

The dynamic DCB test is simulated for a series of constant test rates, namely 0.01, 1.0, 6.5 and 10.0

m/s. The dimensions adopted for each test are the same, i.e. L = 200.0 mm, H = 3.0 mm, a0 = 35.0

mm, s = 7.1 mm (Fig. 1). The x1-axis of an orthonormal coordinate system is set to be aligned with

fibre direction and the x3-axis is perpendicular to the crack plane. The material parameters of the bulk

material are: density ρ = 1540 kg/m3, Young’s modulus E1 = 130.0 GPa, E2 = 8.0 GPa, shear modulus

G12 = 5.0 GPa, and Poisson ratio ν12 = 0.28, ν23 = 0.43. The value of parameters used in Equation (1)

are: lc = 0.9 mm and c1 = 15. The values for Gi, Ga, Vm and Va are 1.5 N/mm, 0.5 N/mm, 500 m/s and

5 m/s, respectively.

The numerical simulation results are displayed in Fig. 3-7. Fig. 3 shows the evolution of crack length

L, crack speed V and energy release rate G with time for the test rate of 0.01 m/s. The curve representing

the crack length displays an unstable (stick/slip) type with multiple crack arrests. This unstable type of

crack growth conforms with the variation of energy release rate with time (see Fig. 3c). At early loading

stage when the crack is not initiated, the energy release rate G is a parabolic function of time. This is

in line with the theoretical solution by using the modified beam theory [5]. As soon as G reaches the

initiation toughness Gi (marked by the upper dotted line), the crack is initiated with a speed of 14.85 m/s

as it is defined by the proposed phenomenological model. At the same time the energy release rate G

drops immediately.

There exist two competing mechanisms dominating the evolution of the energy release rate G. The

one that causes G to increase is the remote loading and its contribution is determined by the applied

loading rate. The other one that causes G to decrease is crack growth and its influence is determined

by the crack speed. Since the current loading rate, i.e. 0.01 m/s, is relatively small, the gain of energy

release rate by the remote loading can not compensate for the loss of energy release rate by the crack

growth. This is why the energy release rate keeps decreasing after crack initiation. When the energy

release rate G drops to the arrest toughness Ga (indicated by the lower dotted line), the crack is arrested

and the crack speed becomes zero instantly. Afterwards, the continuous loading on the beam causes the

energy release rate G to increase again until the initiation toughness Gi is reached again and the arrested

crack is re-initiated. What follows is that the crack experiences ”initiation-propagation-arrest” cycles

during the test. It is observed that the needed time for an arrested crack to re-initiate is longer for later

“initiation-propagation-arrest” cycles. This observation is also in agreement with the modified beam

theory, which states that under quasi-static loading conditions with given loading rate the time it takes

for G to grow from Ga to Gi increases with increasing crack length.
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Figure 3: Time evolution of (a) crack length L; (b) crack speed V ; (c) energy release rate G for the test

rate of 0.01 m/s

For a higher test rate of 1.0 m/s, the development of crack length L, crack speed V and energy release

rate G during the test are plotted in Fig. 4. Similar to the previous test case, the crack growth exhibits

an unstable (stick/slip) type. In Fig. 4a, it can be observed that there are 5 plateaus during which time

periods the crack does not grow and the crack speed is zero (see Fig. 4b). Initially, the energy release

rate increases in a parabolic manner. This is consistent with the modified beam theory [5], which means

that under the current test rate the theory is still an appropriate approximation for calculating the energy

release rate before the crack is initiated.

However, there are a few differences observed in the current test compared with the previous test

case. Most notably, the number of crack arrest events is smaller than the previous case which means that

the crack is less easily arrested. This is because the decrease of the energy release rate caused by crack

growth is canceled to a larger extent by the remote loading of the larger test rate case.

Fig. 5 shows the variation of crack length L, crack speed V and energy release rate G at the test rate

of 6.5 m/s. The crack grows in a continuous manner and crack arrest does not occur (Fig. 5a and 5b).

This continuous crack growth pattern can be understood by inspecting the variation of energy release rate

shown in 5c. At the early loading phase, the energy release rate G also grows in a parabolic manner until

it reaches the initiation toughness Gi. After that, G experiences an oscillatory increasing branch until it

reaches a maximum value around 1.74 N/mm, followed by a gradually decreasing branch.

The reason for G to increase is that the test rate is relatively large so the increase of G by the remote

loading is large enough to compensate the loss of energy release rate due to crack propagation. However,

as the length of the crack becomes larger the influence of crack growth becomes more dominant, which

could be understood by examining the equation to compute the energy release rate in the modified beam

theory [5].

This phenomenon is more pronounced for the even larger test rate of 10.0 m/s (see Fig. 6), where

there is no crack arrest present during the test either. Similarly, after the energy release rate reaches the

initiation toughness, it keeps increasing until reaching a maximum value around 2.13 N/mm (see Fig.

6c) followed by a decreasing branch. The maximum energy release achieved in the current case is larger

than the maximum value obtained for the smaller test rate case of 6.5 m/s. This is because the crack

initiates at the same speed, 14.85 m/s, in both cases while the loading rate is larger for the test rate of

10.0 m/s case. There exist some other differences between the two cases. For instance, the increase of
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Figure 4: Time evolution of (a) crack length L; (b) crack speed V ; (c) energy release rate G for the test

rate of 1.0 m/s
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Figure 5: Time evolution of (a) crack length L; (b) crack speed V ; (c) energy release rate G for the test

rate of 6.5 m/s
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Figure 6: Time evolution of (a) crack length L; (b) crack speed V ; (c) energy release rate G for the test

rate of 10.0 m/s

energy release rate before the first initiation event shows significant oscillations (see Fig. 6c). This is

due to the fact that more high frequency components are activated under a higher test rate and thus the

assumptions made in the modified beam theory become less reasonable.

The force-displacement curve predicted by the current numerical model shows two different types for

the unstable and stable propagation scenarios. The force-displacement curve for test rate of 1.0 m/s, as

an example of unstable crack propagation, is plotted in Fig. 7a. The force-displacement curve for a test

rate of 10.0 m/s is plotted in Fig. 7b as an example of stable crack propagation. It is seen from Fig. 7a

that the force-displacement curve for an unstable crack propagation possesses a saw-teeth shape. This

can be understood in the following manner. The initial linear increasing part in the force-displacement

curve corresponds to the time period when the crack is not initiated and the material in the beam is still

in elastic state. After the crack initiates, the force gradually decreases until the crack is arrested (Fig.

7a). After the crack is arrested, the force builds up again. After the crack is re-initiated, the force then

decreases. This type of force-displacement curve is also observed in experiments [1]. For stable crack

propagation seen in the test rate of 10.0 m/s, the force-displacement does not show this saw-teeth pattern.

Visible oscillations are mainly due to the dynamic response of the structure.

4 CONCLUSIONS

The proposed numerical model uses the TLS concept to implement a phenomenological relation

between crack speed V and energy release rate G. This study shows the potential ability of this new

numerical framework to simulate the dynamic DCB test. By investigating a series of tests under different

loading rates, it is concluded that the features predicted by the proposed numerical model are: (1) a

transition from unstable to stable crack propagation for increasing test rates is observed; (2) unstable

crack propagation leads to a saw-teeth shaped force-displacement curve while stable crack propagation

results in a force-displacement curve resembling a quasi-static curve except for a certain amount of

oscillations; (3) the average crack velocity increases as the test rate increases. Possible influence of

strain rate-dependency, thermomechanical effect and geometry dependency on the V (G) relation will be

subject to future research.
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Figure 7: Force-displacement curve of test rate of (a) 1.0 m/s; (b) 10.0 m/s
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