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Comparison between A* and RRT Algorithms for

UAV Path Planning

C. Zammit∗ and E. van Kampen†

Delft University of Technology, Delft, 2629HS, The Netherlands

Unmanned Aerial Vehicles (UAVs) are being integrated into a wide range of indoor
and outdoor applications. In this light, robust and efficient path planning is paramount.
An extensive literature review showed that the A* and Rapidly–Exploring Random Tree
(RRT) algorithms and their variants are the most promising path planning algorithms
candidates for 3D UAV scenarios. These two algorithms are tested in different complexity
3D scenarios consisting of a box and a combination of vertical and horizontal plane obstacles
with apertures. The path length and generation time are considered as the performance
measures. The A* with a spectrum of resolutions, the standard RRT with different step–
size constraints, RRT without step size constraints and the Multiple RRT (MRRT) with
various seeds are implemented and their performance measures compared. Results confirm
that all algorithms are able to generate a path in all scenarios for all resolutions, step sizes
and seeds considered, respectively. Overall A*’s path length is more optimal and generation
time is shorter than RRT projecting A* as a better candidate for online 3D path planning
of UAVs.

I. Introduction

Unmanned Aerial Vehicles (UAVs) are slowly being integrated into all spheres of life. UAVs are being
proposed for a wide range of indoor and outdoor applications varying from surveillance, search and rescue
to leisure flying. The inclusion of UAVs into the national airspace and military applications requires ro-
bust autonomous guidance, navigation control (GNC) systems that shall ensure safe navigation in view of
uncertainties present within UAV systems and the environment in which they will operate.

Autonomous GNC systems rely on robust and effective path planning. Path planning is the process of
automatically generating feasible and optimal paths to a predefined goal point in view of static and dynamic
environmental and model constraints and uncertainties. Path planning was initially approximated as a 2D
problem1–3 but with the introduction of complex 3D environmental and model constraints focus shifted onto
3D path planning approaches.4–6 Besides fixed7,8 and moving obstacles,9,10 different studies consider a wide
spectrum of constraints including: weather,11,12 no–fly zones,13,14 communication,15,16 fuel1,14 and model
constraints.13,17

Although certain constraints such as buildings, no–fly zones and particular kinematic constraints can be
defined accurately, in reality the absolute majority can only be defined with an element of uncertainty, for
example weather, fuel consumption and vehicles’ position and state. Furthermore, constraints can pop–up
whilst in flight and the path planning algorithm shall be able to mitigate these a priori unknown situations.13

Different algorithms exist for path planning of automated vehicles. These path planning algorithms can
be segmented into three main categories: Graph–based, Sampling–based and Interpolation approaches.

Graph–based searching algorithms define the state space into an occupancy grid defining obstacles as
inaccessible grid points. Then algorithms search the available grid points giving a solution if a path exist.27

Graph–based algorithms guarantee a solution if the grid resolution is adequate.29

Sampling–based searching algorithms select a non–structural finite number of points in the configuration
space and create connections between these points.29,49 Sampling–based methods are generic, efficient,
simple and probabilistically–complete (guarantees a solution as time approaches infinity).29
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Interpolation techniques, common in autonomous path planning, are usually employed as a post path
planning stage. Interpolation techniques’ ultimate aim is to optimise a path using smoothed segments to
enhance performance and limit workload on control systems and associated actuators.

The twofold aim of this paper is to provide a literature review of the state–of–the–art path planning
algorithms that leads to the performance analysis of the two most utilised path planning algorithms, that
is the A* and Rapidly–Exploring Random Tree (RRT), in the context of 3D UAV path planning.29 In
this study, path length and computational time with and without a common path smoothing algorithm
are the performance parameters considered. In the context of UAVs, path length determines the time of
traversal of a path and consequently the time the UAV takes to reach the goal point. The path planning
time is fundamental especially in a high time–varying and dynamic environment in which by the end of path
planning some parameters may vary. Also, this time will limit the response of the UAV control algorithm
to changes in both UAV model and environment. Performance analysis is important in determining the
strengths, weaknesses and appropriateness of utilising either of the algorithms for 3D UAV path planning.

The paper will be organised as follows. Section II introduces and discusses the theoretical aspect of the
A* and RRT algorithms, followed by a literature review of the above mentioned methods and their associ-
ated variants, in Section III. Section IV presents the implementations of the RRT variants, the smoothing
algorithm and the test environment. In Section V the results are presented, analysed and discussed. Section
VI concludes the study by highlighting the main strongholds and shortcomings of the algorithms in view of
3D UAV path planning.

II. The A* and RRT Algorithms

A. The A* algorithm

The A* algorithm constructs the optimal path based on an evaluation function f(n) that determines the
actual cost of an optimal path constrained to pass through n, from a point xinit to the goal node of n, xgoal
∈ RM .26 n is any node and xinit is the starting node in the M –Dimensional available space such that n,
xinit ∈ RM . This evaluation function f(n) is the summation of the actual cost from xinit to a node n (g(n))
and the actual cost from n to the goal point of n (h(n)), where f, g, h: ∈ RM → R:

f(n) = g(n) + h(n) (1)

g(n) and h(n) cannot be determined absolutely as the cost evaluation is a function of the selected

resolution. Therefore the cost is estimated by ĝ(n) and ĥ(n), respectively. Therefore, the evaluation function

f̂(n) → f(n) as the resolution → ∞, is estimated by:

f̂(n) = ĝ(n) + ĥ(n) (2)

The A* algorithm first defines xinit and xgoal: the start and goal nodes, respectively. Consequently, the
A* algorithm generates successive nodes through the successor operator (Γ) which defines a set of successor
nodes ni ∈ RM and the associated cost ci ∈ R for each particular node n based on a predefined heuristic
graph movement, such that RM × R → RM . “Open” nodes are all successor nodes ni except for nodes that
are already on the optimal path or reside on an obstacle. A “Closed” node is any node in RM that forms
part of the optimal path or resides on an obstacle. Algorithm 1 and Figure 1 describe and illustrate the
underlying principles of the A* Algorithm.26

B. Rapidly-Exploring Random Tree (RRT)

The RRT algorithm grows trees of feasible trajectories by randomly planting seeds. The resultant tree
interconnects the start and goal points.24 Algorithm 2 and Figure 2 describe and illustrate the governing
principles of the RRT algorithm.

τ ∈ (RM , RM × R) refers to tree nodes and their associated edges from the starting node. Xfree refers to
all obstacle–free nodes in the environment. xinit ∈ RM : start node, xgoal ∈ RM : goal node, xrand ∈ RM : ran-
dom node, xnear ∈ RM : nearest node, lnear ∈ RM : nearest point on edge to xrand, xedge ∈ RM : nearest node
on edge, xnew ∈ RM : new node of tree a D distance from xnear or lnear and K is the maximum preset iterates.
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Algorithm 1: A* Algorithm

1: Assign xinit as open

2: Calculate f̂(xinit) from the start point xinit to all possible open nodes ni

3: Find the smallest f̂(xinit) and select the associated node n

4: If f̂(xinit) is empty

5: No path Exist

6: End

7: While n 6∈ xgoal
8: Node n is marked closed

9: Apply the successor operator Γ

10: The f̂ function is re–calculated for successor nodes of n marking these nodes as open

11: If f̂ is empty

12: No path Exist

13: Else If f̂(ni) is now smaller than when ni was closed

14: Successor closed nodes of n are remarked as open

15: End

16:End

17:Parent node n is closed (Path Found)26

Figure 1. The A* Algorithm: (a) First Iterate and (b) Second Iterate
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Algorithm 2: RRT Algorithm

1: Assign start point xinit to tree τ

2: Repeat for K iterates AND While xgoal 6∈ τ
3: Generate random state xrand ∈ Xfree

4: Find the nearest node xnear and edge lnear to xrand.

5: If Distance (xnear to xrand) > Distance(lnear to xrand), then

6: Define xnew, D distance from xnear to xrand.

7: If xnear can be connected to xnew, without collision, then

8: xnew is a new node of τ

9: End

10: Else Define xnew, D distance from nearest node on lnear, xedge to xrand

11: If xedge can be connected to xnew, without collision, then

12: xnew is a new node of τ

13: End

14: End

15: If Distance(xnew to xgoal) < D AND xnew can be connected to xgoal, without collision then

16: xgoal ∈ τ
17: End

18: End

19: If xgoal ∈ τ then path has been found

20: Else path not found

21: End
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Figure 2. RRT: (a) First Iterate and (b) Second Iterate
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III. Literature Review

The literature review will focus on the implementation, utilisation, advantages and disadvantages of
graph–based and sampling–based path planning approaches and their variants. A review of the post path
planning smoothing algorithms follows. This review will conclude with a comparison of graph–based and
sampling–based approaches in a common scenario.

A. Graph–based Approaches

The Dijkstra algorithm was the pioneer graph–based search algorithm.28 The A* algorithm is an advance-
ment of the Dijkstra algorithm. Due to their relative simplicity both have been widely used for path planning
in various fields.

1. Dijkstra Algorithm

Dijkstra’s algorithm searches minimum cost paths from two predefined points after exhaustively searching
all possible combinations.28 It has been applied in urban environments,30 in multi–vehicle simulations31 and
automated race driving in the DARPA challenge.32,33 The Continuous Dijkstra and its variants find the
shortest paths through analogy with Snell’s Law and optical properties.37

2. A* Algorithm

The A* algorithm uses a heuristic evaluation function to determine the cost of neighbouring nodes.18 It
is computationally efficient but due to its heuristic nature it offers no guarantee of success even if a path
exists.19 The A* was applied both on grid graphs and visibility graphs.

A number of variants were developed. The Dynamic A* (D*) which is an evolution of the A* in which only
the new nodes are updated.20 The field D* generates low–cost and smooth paths by linear–interpolation
planning and re–planning.34 The focused D* heuristically searches locally from previous search results
consequently reducing computational time.21 Similarly, the Lifelong Planning A* (LPA*) an incremental
A*, is equivalent to A* for the first run but for consequent searches it re–uses parts of previous search trees
that are identical to the new search tree.23 The D* Lite developed on the LPA is shorter than the D*,
utilises one tie–breaking criterion when comparing priorities and is computationally simpler than D*.22

Theta* is composed of the Basic Theta*, which is simple and fast but does not guarantee the optimal
path, and the Angle–Propagation Theta*, which results in better worst–case complexity per vertex but
generates slower, complexer and longer paths.35 The Phi*, is an advancement over the basic Theta*, by
eliminating nodes no longer in the line–of–sight of their parents.36 Phi* searches in every angle and executes
fast re–planning although it takes more calculation time. The Incremental Phi* does this by using a pre–
processing stage36 used in the Differential A*.38 The Block A* performs pre–smoothing using a look–up
table with predefined short paths prior to the initiation of the A* search.40 The Block A* is faster than A*
and Theta* but does not guarantee a solution.36 The Jump Point Search (JPS) neglects neighbourhood cells
in the surroundings of evaluated cells.41 This algorithm is fast by exploiting symmetries although it cannot
search in every direction.42

Other A* variants such as Fringe–Saving A*46 and Differential A*38 identify the largest unaltered search
areas from the previous search and resume the search from there.45 Furthermore, incremental heuristic
algorithms, such as the Generalized Adaptive A*47 and Path– and Tree–Adaptive A*,48 update heuristics
with knowledge gained in previous searches enriching performance. The consistency of heuristics is dependent
upon cost edges.45

The Anytime Repairing A* (ARA*), Anytime D* (AD*) and Anytime Tree Restoring A* (ATRA*) use
anytime techniques on A* and D* respectively to quickly generate sub–optimal paths until the allocated
time runs up.43 Truncated incremental search applied to LPA* (TLPA*), D* (TD*) and D* Lite (TD*
Lite) selectively re–expands the search utilising previous solution states in view of target sub–optimality
bound.44 Although these variants enhance performance they remain computationally expensive to apply in
high–dimensional situations.34

The extensive and successful application of the A* algorithm and its numerous variants in different fields
indicates that it is well a matured and developed algorithm.
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B. Sampling–based Approaches

The Probabilistic Roadmap Method (PRM)50 and the Rapidly–Exploring Random Tree (RRT),51 which cre-
ate cyclic and acyclic random graphs respectively, are the most commonly used sampling–based approaches.29

1. Probabilistic Roadmap Method (PRM)

The PRM method is composed of the learning phase in which sample points are connected to one another
forming a roadmap using a local planner and the query phase in which a graph search algorithm searches
a feasible path from the start and end points using a previously constructed roadmap.50 The following are
variants of PRMs.

The Lazy PRM delays collision checking to only when necessary.52 The PRM* introduces a variable
distance metric that enhances optimality.25 The cell–based PRM (CPRM) discretises the configuration
space into cells prioritising cells close to direct paths or disconnected components biasing searches to solution
areas consequently resulting in faster re–planning.53 The Dynamic Roadmap (DRM) generates a roadmap
assuming an obstacle–free space, maps workspace maps to roadmap edges and invalidates edges residing on
obstacles during online re–planning.54 Similarly, Pomarlan et. al.55 increases the cost of near invalidated
edges pushing the path away from obstacles.

The Flexible Anytime Dynamic PRM (FADPRM) segments the environment into desirable zones, an A*
search is done to continually improve the solution based on priority heuristics near frontier edges.56 The
Elastic Roadmap uses feedback controllers to connect roadmap vertices (associated with workspace features)
in a continually–changing environment.57 Reactive Deformation Roadmap (RDR) generates a roadmap
based on dynamic milestones and reactive links. The roadmap attract milestones and repel obstacles while
ensures connectivity with the addition and removal of milestones and associated links.58

2. Rapidly–Exploring Random Tree (RRT)

The Rapidly–Exploring Random Tree (RRT)51 constructs a unidirectional search tree by randomly selecting
and interconnecting obstacle–free states until a tree branch reaches the goal node. The integration of motion
parameters including system dynamics is a key advantage of the RRT with respect to PRM.51 The standard
RRT is efficient in complex high–dimensional environments although paths may not be optimal and may
require smoothing.59–61 RRT properties allow them to be applied in non–holonomic and motion constraint
environments as RRT trees expand uniformly in unoccupied spaces.62

The RRT–Connect or bidirectional RRT grows a tree also from the goal node.63 Execution Extended
RRT (ERRT) re–plans invalidated paths probabilistically using both new random sample points and nodes
from the invalidated path.65 Moreover, evolutionary algorithms with bi–directional Rapidly Exploring Evo-
lutionary Trees (RET) were proposed by Martin et. al., reporting improvement in changing environments
making use of Spatial KD–Trees for efficient neighbouring node look–up,65 although both RRT and RET de-
pends upon prior knowledge of the environment.64 But Gros et. al. notes that unidirectional tree structures
are more suited for cluttered environments with non–holonomic differential constraints than bidirectional
approaches due to inherent flexibility.5

The basic RRT lacks optimality in cost function. The RRT* advancement,66 sensibly reduces cost by
considering a minimum length cost, exhibits asymptotic optimality, but consequently suffers in defining
the local optimum from the start.25 RRT* only considers path–quality when adding or removing nodes
and does not consider the configuration–cost function when sampling. RRT* converges slowly in high–
dimensional environments.67 The RRT*–Smart was designed to increase the rate of convergence over the
RRT*, producing optimum or near optimum paths, reducing execution time.76

Frazzoli et. al.79 developed an RRT–like algorithm that connects states to all nodes not just the closest.
An obstacle–free distance cost function is utilised and after checking for collisions the algorithm is given
a definite time to re–plan. The cell–RRT utilises probabilistic approaches after decomposing the environ-
ment to make optimal use of planning approaches.85 Tests with different decomposition granularities and
planner heuristics show that goal–biasing reduces path length and solution’s success rate.85 Performance
is enhanced by considering previously defined path segments and environmental analysis prior environment
decomposition.85

Transition–based RRT (T–RRT) uses a Metropolis–like transition test to bias exploration to low–cost
regions by adding nodes in these areas.60 On the negative side, the path–quality criterion is neglected
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during the path creation when creating edges, offering no guarantee of path optimality.60 The Transition–
based RRT* (T–RRT*) combines the path–quality criterion of the RRT* with the low–cost region bias of
the T–RRT.60 Different physical (lane changes, road edges and terrain grade) and logical environmental
(dynamics and obstacle–avoidance including both fixed and moving) biases were utilised for efficient RRT–
tree construction.73–75 Shang et. al.86 biased the RRT in a complex 3D environment on its own planning
history. Like in graph–based approaches, anytime paradigms were applied to RRTs68–70 to quickly obtain a
feasible path which converges to optimum using previous searches.

Consequently, the Anytime T–RRT (AT–RRT) applies the anytime methodology to re–plan T–RRT
paths, converging to optimum.60 Other anytime applications to RRT are the RRT–Roadmap (RRM) which
balances path exploration and refinement based on RRT*71 a meta–approach using path hybridization with
short–cutting.72 The Dynamic RRT (DRRT) discards children of invalidated vertices and re–plans from the
goal node to the current node.77 In the Anytime Dynamic RRT (AD–RRT), the benefits of both paradigms
is exploited.78 In the multipartite RRT (MP–RRT) sampling and re–planning is performed as in ERRT,
discarding invalid nodes as in DRRT.80

The RRTX is also an asymptotically optimal real–time re–planning algorithm that generates continually
valid and optimal paths in a dynamic environment. In the event of a collision due to a newly detected
obstacle, the search tree is updated and the path–to–goal rooted sub–tree is re–planned.87 Similarly to
RRTX , the Partial Motion Planner (PMP) assigns a fixed time window for planning and execution. This
real–time planner, builds a path with a predefined length from the current state to the goal node. The
environmental model is then updated and the process is repeated while planning occurs.81 The Closed
Loop RRT (CL–RRT), also a real–time planner, uses the fixed time–window for re–routing a tree from
the model’s current state in a closed–loop feedback approach. The CL–RRT method works for nonlinear
controllers and models with unstable dynamics. The associated stabilisation controller reduces prediction
errors and.73 The Greedy Incremental Path–Directed (GRIP) also considers kinodynamic constraints when
growing a tree from current state in a finite computational time window. This process is done prior model’s
initial movement.82 Consequently, the planner updates the tree by deterministically propagating valid nodes
from previous searches while discarding invalid nodes leading to collisions. This greedy approach is biased
to probabilistically complete state–space exploration.82

Reconfigurable Random Forests (RRF) uses the concept of MP–RRT by separating and growing discon-
nected trees, consequently interconnecting trees and trimming them when trees become too dense.83 The
Lazy Reconfigurable Forest (LRF) maintains the forest of trees to adapt to moving trees and obstacles.
Only the edges along the path are validated not the entire forest as with the DRRT approach.84 Similarly,
Multiple RRTs (MRRT) that simultaneously expand more than one tree were also proposed. Their aim is
to enhance algorithmic performance and expansion issues.62 Multiple Incremental RRTs (MIRRT) uses the
incremental extension to maintain formed trees for future path planning requests.62

Probabilistic approaches evolved from PRMs to RRTs and their extensions to either mitigate inherent
shortcomings and/or to best perform in particular scenarios. Similarly to A*, the extend to which this
methodology was enhanced and applied strengthens its candidature for robust and effective UAV path
planning.

C. Interpolation Techniques

Interpolation techniques construct a new smoother path based on a previously defined path to improve
trajectory continuity, feasibility, vehicle and environmental kinematic and dynamic constraints.27,88

Straight lines and circular shapes are the simplest, shortest and computationally cheapest interpolation
methods.89,90 The path is not continuous and depends on global path nodes.27 Clothoid Curves, defined by
Fresnel integrals,91 make linear–to–curved transitions smoother using linear changes in curvature. Clothoid
curves are continuous, suited for local planning, computationally intensive and non–smooth.27 Also, differ-
ent order Polynomial Curves are utilised to define curves based on the positional, angular and curvature
constraints of the interconnecting points. Polynomial Curves are continuous and smooth but computing
coefficients for specific motion states is computationally intensive.27

Bézier Curves, based on the Bernstein Polynomials, use control points to define a continuously–changing
curvature. Bézier Curves have been used extensively in numerous fields due to their modularity and low
computational demand with low curve degree.27

Spline Curves are piecewise polynomials defined as a set of polynomial curves, B–Splines, Bézier Curves
and/or Clothoid Curves.27 A Spline curve is not computationally intensive but is not optimal as the algorithm
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stresses is upon continuity between path segments.27

D. Comparing Approaches

Tsai et. al.92 first applied the RRT for 3D path planning of multirotor UAVs and the Dijikstra algorithm
for path cost enhancement. In the second configuration of the same setup, 3D path planning was realised
with the RRT–Connect algorithm and the path cost is enhanced using an amended A* that considers only
the flight path angle instead of discretising the environment into the grid. Furthermore, Bézier Curves are
employed for 3D path smoothing. They report that path efficiency and computational cost are improved in
the second configuration when compared with the first.92

Rao et. al.93 applied and compared the A* and RRT–Connect path planning algorithms to generated
feasible energy–optimal 2D paths for Autonomous Underwater Vehicles (AUVs) based on ocean currents.
The RRT–Connect tree is Voronoi–biased through some heuristics adjusted by the Iterative k–Nearest RRT
(IkRRT) which considers k–neighbours instead of a single neighbour.94 Rao et. al.93 concluded that
both methods are suitable for this application with RRT avoiding high energy shallow regions due to the
elimination of grid discretisation while RRT–Connect struggled to find solutions against Voronoi bias. On
the other hand, the A* can handle highly difficult missions against strong currents.93

IV. RRT algorithm variants, Smoothing algorithm and Test Environment

The RRT algorithm described in Section IIB is constrained by a step size. This is included to emulate
the UAV model’s translational constraints. This limitation increases path planning time. In this paper
these translational constraints are waived and the segmentation of the path into waypoints based on UAV’s
translational constraints shall be considered only by the path following algorithm. Moreover, this adaption
is included to offer a fair comparison between the standard RRT and Multiple RRT (MRRT) algorithms.
The latter initiates with a predetermined number of trees which grows per iterate towards the random node
and consequently interconnects without considering step size constraints.

A. RRT algorithm without step size constraint

The RRT algorithm is slightly altered by removing the step size constraint. The altered algorithm is defined
in Algorithm 3 utilising the same variables as in Algorithm 2. The governing principles of this altered
algorithm is illustrated in Figure 3.

B. Multiple Rapidly–Exploring Random Tree (MRRT)

In MRRT, an arbitrary number of RRTs are simultaneous expanded, with two starting from the start and
end nodes and the remaining starting from predefined or randomly–selected nodes.62

τ1..N ∈ (RM , RM × R) refers to tree nodes and their associated edges starting from the starting and goal
nodes, respectively. N is the number of trees and NMax is maximum number of allowed trees. The other
variables are the same as in Algorithm 3. Algorithm 3 and Figure 4 describe and illustrate the governing
principles of the MRRT algorithm.

C. Smoothing Algorithm

A standard smoothing algorithm is utilised by both A* and RRT algorithms. xp1 and xp2 ∈ RM are two
randomly–selected nodes from the A*/RRT/MRRT path nodes τfinal. xpnt1 and xpnt2 are two randomly–
selected points, one on the segment connecting xp1 to xp1+1 and the other on the segment connecting xp2 to
xp2+1. E is the maximum number of smoothing iterates. The smoothing principle is defined in algorithm 4
and illustrated in Figure 5.

D. Experimental Setup

The experimental space is defined as a cube of 1x1x1 (the units are generic and can be factored according
to the application scenario) with centre (0,0,0) and limits [-0.5 → 0.5, -0.5 → 0.5, -0.5 → 0.5]. These test
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Algorithm 3: RRT Algorithm without step size constraint

1: Assign start point xinit to tree τ

2: Repeat for K iterates AND While xgoal 6∈ τ
3: Generate random state xrand ∈ Xfree

4: Find the nearest node xnear and edge lnear to xrand.

5: If Distance (xnear to xrand) ¿ Distance(lnear to xrand), then

6: If xnear can be connected to xrand, without collision, then

7: xrand is a new node of τ

8: If xrand can be connected to xgoal, without collision then

9: xgoal ∈ τ
10: End

11: End

12: Else

13: If xedge can be connected to xrand, without collision, then

14: xrand is a new node of τ

15: If xrand can be connected to xgoal, without collision then

16: xgoal ∈ τ
17: End

18: End

19: End

20: End

21: If xgoal ∈ τ then path has been found

22: Else path not found

23: End

Algorithm 4: Multiple RRT Algorithm

1: Assign start point xinit to tree τ1, goal point xgoal to tree τ2 and A predefined nodes to trees τ3...A−−2

2: Repeat for K iterates OR (N == 1)

3: Generate random state xrand ∈ Xfree

4: Find the nearest neighbouring node xnear or nearest neighbouring edge lnear for each tree τ1..N ,

if possible (due to obstacles).

5: If more than one tree τi,j,k.... can be connected to xrand, without collision, then xrand is the common

node xnew connecting two or more trees to one tree τj .

6: Else If one tree τi can be connected to xrand, without collision, then xnew == xrand is new node

of τi.

7: Else If node is not on obstacle and cannot be connected to a tree, set xrand as new node

xnew of new tree τN+1 if N < NMax

8: End

9: End

10: End

11: End

12: If N == 1 then path has been found

13: Else path not found

14: End
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Algorithm 5: Smoothing Algorithm

1: Repeat for E

2: Randomly select xp1 and xp2 from τfinal

3: Swap xp1 and xp2 if xp2 is a node further than xp1 to the goal node xgoal

4: Randomly select xpnt1 and xpnt2 from the path points

5: If segment connecting xpnt1 and xpnt2 is obstacle free then remove all intermediate nodes

i.e. from xp1+1 to xp2

6: End
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scenario were originally developed by Clifton et. al.95 for assessing the MRRT algorithm and made available
online in.96 For all tests the start and goal nodes are defined at [0,-0.5,0] and [0,0.5,0], respectively.
Three different obstacle scenarios, illustrated in Figure 6 are considered:

1) Two obstacle planes at y=0 and y=0.2 with a square opening from x=0.15 to x=0.35 and z=0.15 to
z=0.35 for both planes.

2) Five obstacle planes:

2.1) Two planes at y=-0.2 and y=0.2 with a square opening from x=0.15 to x=0.35 and z=0.15 to
z=0.35 for both planes;

2.2) One plane at y=0 with a square opening from x=-0.35 to x=-0.15 and z=-0.35 to z=-0.15; and

2.3) Two planes at z=-0.25 and z=0.25 with no openings.

3) Same as 2) with the addition of two planes at y =-0.4 and y=0.4 with a square opening from x=-0.35
to x=-0.15 and z=-0.35 to z=-0.15.

(a) (b)

(c)

Figure 6. Obstacle Scenarios: (a) First Scenario (b) Second Scenario and (c) Third Scenario

The resolution, the step size per iterate and the number of seeds/nodes per axis are considered as the
control variables for the A*, RRT and MRRT algorithms, respectively. For the A* the resolutions considered
start from 11 pixels (10 spaces) to 29 pixels (28 spaces) in steps of two in a unity square box of 1x1x1. The
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unity square box represents a general measure of distance. The path length is generic with respect to the
unity square box in plots, depending on the environment in which the algorithm is implemented (example:
cm, m or km). The step size per iterate is varied in steps of 1

10+(2xi) (i is incremented by 1 every step)

between 1
10 and 1

28 to reflect the resolution considered for the A* approach. For the MRRT, the number of
seeds per axis ranges from 2 to 20 also in steps of two.
The maximum number of smoothing iterates E is set at 1000. The random generator for the RRT algorithm
(A* not required) utilises the same random sequence for all runs. Also, for the RRT algorithm the maximum
number of iterates (K ) is set to 2000. The maximum number of trees (N ) is set as a function of (K ):

N = 3(K3) + 2 (3)

For both algorithms each test is performed 100 times and the path length before and after smoothing and
the associated time are considered as performance measures a. The unsmoothed length, smoothed length,
path generation time and path smoothing time per 100 iterates are illustrated in Figure 7 – 12.
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Figure 7. A* Results: (a) Path Length Prior Smoothing (Generic length with respect to a unity square box)
(b) Path Length After Smoothing (c) Computational Time and (d) Smoothing Computational Time for 100
Iterates

V. Results

Figure 7 shows that a solution is possible in all scenarios for all resolutions considered. Although this
may project the A* as guaranteeing a solution when it exists, this is not the case as remarked in literature.19

From Figure 7 (a) it is clear that the path length prior smoothing is primarily dependent upon the scenario’s
difficulty in finding a possible path. In fact in scenario 2 the length is 50% more with respect to scenario 1
since the planner needs to pass from three windows on opposite alternating extreme sides of obstacle planes
instead of two windows parallel to each other as seen in Figure 6 (b) and (a), respectively. Similarly, in
scenario 3, the length has doubled, since now the planner needs to traverse five planes with windows each
on opposite extremes as in Figure 6 (c).

The distances and therefore positions of ‘open’ grid points effect the path length prior smoothing, since
changing the resolution will ultimately change ‘open’ grid point positions resulting in shorter or longer
possible path for the same scenario. In situations, like scenarios 2 and 3, where few possible paths exist,
the change in resolution and consequently grid point positions will effect the length. This hypothesis is
confirmed in Figure 7 (a) by the relatively high ripple factor of scenarios 2 and 3. On the other hand, since
the number of available paths is significantly larger for scenario 1 this ripple effect is highly diminished.

aThe tests are performed using an Intel Xeon ES–1650, 3.2GHz

13 of 23

American Institute of Aeronautics and Astronautics



The path length after smoothing further confirms the dependence of the length on the path difficulty. As
any point on the path is now considered available, the rippling effect is sensibly reduced. Overall, the mean
smoothed path length was shortened to 88%, 84% and 83% of the mean unsmoothed length for consecutive
scenarios. This confirms the validity of the smoothing algorithm. The increase of the smoothing iterates
from 1,000 to 10,000 have an insignificant effect on the smoothed path length although this increase results
in an increase in the number of path points. An increase in path points, increases the control maneuvering
demand on the path following control system, consequently reducing performance.

The path generation time is dependent primarily on the grid resolution and secondly on the path difficulty.
The higher the resolution, the more grid points are available to be considered by the A* algorithm. Moreover,
the higher the path difficulty, the longer the possible paths and consequently more time is required to find
the path.

The path smoothing time is in the region of milliseconds per iterate, implying that it is much smaller
than the path generation time. Figure 7 (d) shows that the path smoothing time is only slightly dependent
on path difficulty.

Theoretically, the path length is inversely proportional with resolution implying that as the resolution
approaches zero the path length approaches infinity and vice–versa. This relationship is not visualised in the
scenarios considered as the obstacles in all scenarios involve 2–D planes with windows. In these situations,
the resolution has minimal effect since, based on grid positions and the inherent path construction process,
it is either possible to construct a path or not. Therefore, to confirm this hypothesis, a simple obstacle
scenario consisting of a box 0.4x0.4x0.4 centred at (0,0,0) was constructed as shown Figure 8.

Figure 8. A* Simple Obstacle Scenario

Results in Figure 9 confirm the hypothesis about inverse proportionality. Moreover, due to the relative
simplicity of the path, the smoothing algorithm has marginal effect on path length. As predicted, the
computational time for path generation exhibits an inverse relationship with resolution as A* is required to
process more points as the resolution increases.

Figure 10 shows that the RRT was able to construct a path in all scenarios for all step sizes. This confirms
that RRT is probabilistically complete.29 From Figure 10 (a) it can be deduced that for simple scenarios
(Scenario 1) the path length prior smoothing is independent of the step size. Theoretically, for an optimal
path the step size is directly proportional to path length, as the planner can go around an obstacle tighter
to the obstacle for shorter step sizes. But tests confirm that the lengthier the tree branches the greater the
probability of intersection with obstacle planes. Therefore, the larger the step size the lesser the number
of possible tree branches that are used to construct the path, reducing the zig–zagging effect. In fact, the
smaller the step size the more lower amplitude zig–zagging will result. This opposite relationship confirms
the lack of optimality expressed in literature.29

The lack of optimality can be deduced from the difference in length between the unsmoothed and
smoothed paths. The mean smoothed path length was 54%, 50% and 51% of the mean unsmoothed path
length for scenarios 1 to 3, respectively. The same line profile was retained for all three scenarios. This
implies that the smoothing algorithm’s optimality potential is limited by the unsmoothed path points as
theoretically the step size must be directly proportional to path length. Similar to A*, the increase in
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Figure 9. A* Simple Scenario Results: (a) Path Length Prior Smoothing (Generic length with respect to a
unity square box) (b) Path Length After Smoothing (c) Computational Time and (d) Smoothing Computational
Time for 100 Iterates
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Figure 10. RRT Results: (a) Path Length Prior Smoothing (Generic length with respect to a unity square
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smoothing iterates from 1,000 to 10,000 resulted in a negligible effect on path planning performance, al-
though the smoothing time increased by a factor 2.23. This shows that although the smoothing iterates
are increased by 10 times, after a specific number of iterates the effect of smoothing saturates and the path
length approaches an optimum.

Overall, the unsmoothed path length for A* is shorter than that for RRT even as the scenario complexity
increases. In fact, A*’s unsmoothed path length is only 59%, 53% and 51% of the unsmoothed RRT path.
This further confirms the optimality of A* and the lack of optimality for RRT. The results cannot be directly
compared as the RRT is constrained by a step size per iterate implying that the planner can theoretically
move to every point on the circumference of a circle of radius equal to the step size and centre at the
nearest node while in the A* the planner is limited to a predefined set of points. Moreover, the mean
variance in length for different scenarios is smaller for RRT than for A* for the same scenario volume, as the
RRT explores more volume (leading to zig–zagging) than A* which always considers the shortest segment
irrespective of the scenario considered.

The length reduction by smoothing of the RRT is more effective than the A* as the latter is able to
construct shortest paths for a particular resolution while the RRT lacks in optimality. The curve shapes of
the unsmoothed and smoothed lengths is similar as to A* case, confirming that the smoothing algorithm is
limited by the unsmoothed path points.

As predicted, and similarly to A*, the path generation time is inversely proportional to the step size
since the tree will require more time to explore more volume, vital to find a path, if the tree branches are
shorter. Similar to A*, the simpler the scenario the less time is required to find the path. This is because
the amount of branches created prior to finding the path is much higher for obstacle rich scenarios compared
to simpler scenarios. As for the A*, the path smoothing time is almost independent of the scenario and step
size considered, although for scenario 3 it is marginally higher. Furthermore, the path smoothing time is
negligible (5 milliseconds per iterate) when compared to the path computation time.

Parameter Scenario 1 Scenario 2 Scenario 3

Path Length Prior Smoothing [–] 1.8316 3.3794 5.2724

Path Length After Smoothing [–] 1.1315 1.8806 2.8099

Computational Time RRT (s) 0.0094 0.6656 1.6364

Smoothing Computational Time for 100 Iterates (s) 3.5967 4.6568 5.1689

Table 1. RRT without step size constraints

The results of Table 1 illustrate the mean values for 100 iterates for each scenario without limiting the
path planner’s progression step per iterate. The path length prior and after smoothing for RRT with step size
constraint is 17%, 11% and 4% (unsmoothed) and 1%, 0.4% and 0.04% (smoothed) longer than the respective
values of RRT without step size constraints for scenarios 1 to 3, respectively. Results confirm that the path
length prior smoothing is marginally improved by removing constraints, especially for simple scenarios, as
the algorithm can directly reach the goal node if a path exist (irrespective of length) as illustrated in Figure
11 (c). This cannot be done when the RRT is constraint, even when a direct path exist, as the distance
between the nearest node to the goal node and the goal node must be equal or smaller than the step size.
As a result, instead of a direct line, a zig–zag path will be created as a randomly generated node will not
reside on the direct path as illustrated in Figure 11 (a) and (c). For more complex scenarios, the direct
connection between a node and a goal node is highly limited by the obstacle rich scenario, nullifying the
difference in path length between the two algorithms as illustrated in Figure 11 (b) and (d). The smoothing
algorithm was able to smoothen the low amplitude ripple in the RRT with step size constraint, nearing the
performance of the latter method with the RRT without constraints. This is particularly evident in obstacle
rich scenarios as the ripple factor is more limited.

The path generation time is reduced by factor of 454, 7 and 10 for the RRT with step size constraint for
consecutive scenarios. This substantial improvement results as the planner is able to connect directly to the
random node (if possible) irrespective of length. Therefore one iterate in unconstrained RRT will require
numerous iterates (with associated time) and also giving rise to a zig–zagging nature. This result confirms
that, especially for simple scenarios, significant amount of time is wasted by the RRT without constraints
when a path can be easily connected directly. The smoothing time of the unconstrained RRT decreased by
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Figure 11. RRT vs RRT without constraints: (a) RRT path for Scenario 1 (b) RRT path for Scenario 3 (c)
RRT without constraint path for Scenario 1 and (d) RRT without constraint path for Scenario 3

23%, 3% and 2% with respect to the original RRT for consecutive scenarios, respectively. The increase in
smoothing time for simple scenarios results as the unconstrained RRT is able to generate almost optimal
paths. In fact, the unsmoothed path contains less than 10 nodes for scenario 1 for all iterates. In this light,
the smoothing algorithm requires only few iterates to optimise the paths.

The path length results of Table 2 confirm the optimality of the A* in finding the shortest possible path
and the lack of optimality of the RRT even if the RRT planner is allowed to travel to any point within the
domain. The path generation time for the unconstrained RRT is significantly lower than for A* especially
for simple paths as the unconstrained RRT is not limited by grid position and successor operator limitations
and is able to traverse unlimited distance in one iterate. Moreover, the smoothing time is half or less for
the unconstrained RRT with respect to A*. A*’s smoothing time is higher even if A* is almost optimal as
the smoothing algorithm is required to process more points in A* when compared to the unconstrained RRT.

Parameter Scenario 1 Scenario 2 Scenario 3

Path Length Prior Smoothing [–] 145% 170% 189%

Path Length After Smoothing [–] 102% 113% 123%

Computational Time RRT (s) 0.16% 9% 20%

Smoothing Computational Time for 100 Iterates (s) 43% 49% 50%

Table 2. RRT without step size constraints with respect to A*

Figure 12 confirms that the MRRT generated a path in all situations. The path length prior smoothing is
primarily dependent upon the complexity of the scenario and independent of the number of seeds–per–axis.
The mean path length prior smoothing for MRRT is longer when compared with the RRT without constraints
for consecutive scenarios as illustrated in Table 3. This implies that although the MRRT is unconstrained
in length, as the RRT and seeds are uniformly distributed, the unconstrained RRT was able to perform
better especially for simpler scenarios. The MRRT interconnects different trees with unconstrained length
just as the unconstrained RRT interconnects between nodes independent of length. This generates, for both
algorithms and simple scenarios, high amplitude zig–zagging in the path prior smoothing as illustrated in
Figure 13 (a) and (c). To interconnect trees situated evenly throughout the environment the MRRT’s path
length is longer than the unconstrained RRT as the latter can directly (although not optimally) connect to
random nodes without exploring a high percentage of the environment. This high amplitude zig–zagging
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Figure 12. MRRT Results: (a) Path Length Prior Smoothing (Generic length with respect to a unity square
box) (b) Path Length After Smoothing (c) Computational Time and (d) Smoothing Computational Time for
100 Iterates
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for Scenario 3 with 10 seeds–per–axis
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effect is attenuated with dense obstacle scenarios as interconnection between distant trees is very difficult
as shown in Figure 13 (b) and (d). Also as the amount of available trees is significantly reduced due to a
reduction in available space in the latter scenarios, interconnections are reduced resulting in a reduction in
difference in path length for the two algorithms.

Moreover, as shown in Table 4 the MRRT mean unsmoothed path length is longer than RRT for consec-
utive scenarios. Even the A* algorithm outperformed MRRT in unsmoothed path length as the path length
for MRRT is more than double than A* for all scenarios, as shown in Table 5.

Parameter Scenario 1 Scenario 2 Scenario 3

Path Length Prior Smoothing [–] 148% 119% 112%

Path Length After Smoothing [–] 101% 102% 102%

Computational Time RRT (s) 7600% 600% 200%

Smoothing Computational Time for 100 Iterates (s) 168% 132% 123%

Table 3. MRRT with respect to RRT without step size constraint

Parameter Scenario 1 Scenario 2 Scenario 3

Path Length Prior Smoothing [–] 127% 108% 107%

Path Length After Smoothing [–] 101% 102% 102%

Computational Time RRT (s) 17% 81% 38%

Smoothing Computational Time for 100 Iterates (s) 130% 128% 121%

Table 4. MRRT with respect to RRT

Parameter Scenario 1 Scenario 2 Scenario 3

Path Length Prior Smoothing [–] 216% 203% 209%

Path Length After Smoothing [–] 104% 115% 123%

Computational Time RRT (s) 13% 55% 80%

Smoothing Computational Time for 100 Iterates (s) 64% 56% 50%

Table 5. MRRT with respect to A*

As for all previous three algorithms considered, for MRRT the smoothing algorithm was able to sig-
nificantly reduce the path length. For MRRT, the mean path length after smoothing is almost equivalent
to all other algorithms for all scenarios, except for the A* algorithm in the second and third scenarios in
which an increase of 15% and 23% resulted as tabulated in Tables 3 to 5. Results show that the smoothing
algorithm attenuates the difference in performance of all the considered algorithms. In conclusion, MRRT
was outperformed in terms of path length by all approaches considered, even if conceptually it is the most
complex.

For MRRT, the path planning time is primarily dependent upon the scenario complexity as for the
other approaches. Moreover, the time increases as the number of seeds–per–axis increases. This is because
the planner is required to expand and possibly interconnect far more trees (by a factor of 3) than in low
seed–per–axis situations. The mean path generation time for MRRT is factorwise longer with respect to
the unconstrained RRT for consecutive scenarios. Oppositely, the mean path generation time for MRRT is
lower with respect to RRT and A* especially in simple scenarios as illustrated in Tables 4 and 5. This shows
that the MRRT is computationally more efficient with respect to the standard RRT and A*. The latter two
algorithms are constrained by either path points or length while MRRT tree propagation is unconstrained
and explores the environment evenly from the beginning. Therefore it is unfair to compare them with MRRT.
It is clear that the unconstrained conceptually simpler RRT outperformed the MRRT algorithm by multiple
factors especially for simple scenarios, projecting the former for real–time applications.
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The smoothing time for MRRT was longer for low seeds–per–axis situations, especially for simple sce-
narios. This is because with lower seeds–per–axis the trees from each seed were able to explore a larger area
prior to interconnection than for higher seed–per–axis situations. This increases zig–zagging and the number
of nodes to smoothen increases, effectively increasing time. This effect nullified and even superimposed (in
the 2 and 4 seeds–per–axis situations) the scenario difficulty effect visualised for higher seeds–per–axis situ-
ations. The mean smoothing time for MRRT is longer with respect to both RRT algorithms as the number
of nodes is higher for MRRT with respect to the other RRT algorithms therefore more interconnections are
possible. Oppositely, the smoothing time is lower for MRRT with respect to A* as path points, since the A*
algorithm is almost optimal and therefore interconnection between points on path segments without obstacle
collision is more probable.

VI. Conclusion

This paper analysed the performance of the A*, RRT and its variants in 3D environments in view of UAV
path planning applications. In accordance with literature, the A* generated almost optimal paths while the
RRT always generated non–optimal paths. In fact, the difference in path length after smoothing is only
slightly improved for A* while it was significantly improved for RRT. Furthermore, the A* only explored
areas necessary for path construction while the RRT evenly explored the environment. The A* generated
shorter paths (even after smoothing) in less time with respect to RRT. This difference in path generation
time was attenuated by the elimination of the step size constraints while the path length prior smoothing
was only marginally improved due to higher amplitude path zig–zagging. The evenly–distributed MRRT did
not exhibit a noteworthy improvement over RRT.

In the context of UAV 3D path planning, besides obstacle avoidance, the path generation time is funda-
mental, especially in dynamic environments where the path needs to be continuously updated, while optimal
path length is crucial in long distance situations since UAV on–board resource dependence such as fuel and
battery become the bottleneck. The A*’s optimality and its low computational demand makes it a key
candidate for online UAV 3D path planning with static and dynamic obstacles. Moreover, A* allows the
environment to be discretised differently according to different exigencies of different parts of the scenario,
making optimal use of resources. RRT and its variants are suited to generate paths efficiently in evenly
distributed and focused 3D area exploration applications. RRT and its variants can perform better in terms
of path construction time and length than A* if the randomly–selected nodes are intelligently selected in
view of obstacle shape, position and dynamics.

The inclusion of UAV kinematic and dynamic model and sensor constraints and uncertainties together
with fixed and moving obstacle position, speed and direction will confirm the applicability of the A* and
RRT algorithms in real life dynamic environments.
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70Abbasi–Yadkori, Y., Modayil, J. and C. Szepesvári, J. “Extending rapidly–exploring random trees for asymptotically
optimal anytime motion planning”, IEEE International Conference on Intelligent Robots and Systems (IROS), Shanghai,
China, 18–22 Oct. 2010, pp. 127–132.

22 of 23

American Institute of Aeronautics and Astronautics



71Alterovitz, R., Patil, S. and Derbakova, A. “Rapidly–exploring roadmaps: weighing exploration vs. refinement in optimal
motion planning”, IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011, pp.
3706–3712.
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