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Abstract

In the pursuit of reducing the climate impact of aviation, there has been an increased interest in the
adoption of renewable energy technologies. Examples of revolutionary technologies include hydrogen
fuel cell systems and waste heat recovery using the organic Rankine cycle. The design of viable energy
conversion systems for aviation poses unique challenges in terms of efficiency, weight and size. To
this end, research on small-scale turbomachinery operating at high rotational speeds is increasingly
pursued in the context of, for example, fuel cell air compressors or organic Rankine cycle turbines.
Such machines typically call for oil-free operation to avoid contamination of the process fluid. Gas
foil bearings can prove to be an enabling technology due to their reliability, oil-free operation and
compatibility with high rotational speeds.

The use of gas foil bearings to support organic Rankine cycle turbines requires lubrication with
complex working fluids at operating conditions near the saturated vapour line or thermodynamic critical
point. Although there has been an increased interest in high-pressure gas lubrication in recent scientific
literature, there is still a lack of understanding of the effects of non-ideal compressible flows on the
performance of (gas foil) journal bearings. In order to further address this knowledge gap, this work
focuses on the modelling of such bearings lubricated with dense fluids made by complex molecules like
those adopted for waste heat recovery at high temperatures in aviation.

The compressible Reynolds equation governing the thin-film flow within the bearing is discretized
using a finite difference method. The solution to the non-linear problem is obtained using a relax-
ation method in which a thermodynamic software program updates the non-ideal thermodynamic state
properties after each iteration. The load-carrying capacity of the bearing is obtained by integrating the
resulting steady-state pressure field around the rotor shaft. A perturbation method is applied to ob-
tain the stiffness and damping coefficients used in a linearized rotor-dynamic analysis. The developed
computational tool allows for the analysis of bearing performance under varying operating conditions.

The conclusions of this work emphasize the challenge of generating sufficient load-carrying capacity
and rotor-dynamic stability associated with high-pressure gas lubrication in journal bearings. Bearings
operating with compressible lubricants near the thermodynamic critical point are typically characterized
by turbulent thin-film flows with non-negligible molecular interactions. Reduced peak pressures within
the gas film are anticipated, resulting in a reduced load-carrying capacity as compared to ideal gas
lubrication flows. It is shown that non-ideal thermodynamic effects have an impact on rotor-dynamic
stability by affecting the steady-state attitude angle of the bearing.

The modelling of a gas foil journal bearing used to potentially support the turbine of the organic
Rankine cycle hybrid integrated device (ORCHID) of the TU Delft has finally been considered. The
results show the utility of a numerical model in assessing bearing performance and understanding the
associated physics. This work can be used as a basis for future analysis and design of gas foil journal
bearings lubricated with high-pressure process fluids.
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1
Introduction

1.1. Context
The Paris agreement is considered as a turning point in the approach of tackling global warming. The
agreement aims to significantly reduce global greenhouse gas emissions over all industry sectors. The
long-term mean global temperature rise should be limited to well below 2∘𝐶. Furthermore, European
carbon emissions should reach net zero by the second half of the 21st century. The aviation industry
currently accounts for approximately 2% to 3% of carbon dioxide emissions globally, and about 4%
in Europe. [6] With other emitting sectors taking action to improve sustainability, this proportion of
emissions attributable to aviation is expected to grow in the near future if no drastic measures are
taken.

In recent years, revolutionary new technologies have been presented to reduce carbon emissions
in aviation. Liquid hydrogen has been considered as a promising alternative for jet fuel in commercial
airliners. With hydrogen as an energy carrier, the use of fuel cells could be an attractive option to
convert stored chemical energy into electrical energy. Fuel cells could power propeller-driven aircraft
allowing for efficient transportation on short- to medium-haul airliners. Proton exchange membrane
fuel cells (PEMFC) are a promising fuel cell technology for efficient conversion of the chemical energy in
hydrogen. However, if the technology is to be applied in aviation, large power densities are required.[7]
Supplying pressurized air to the fuel cell stack can increase power density and electrical efficiency. The
pressurization of the air to the stack can typically be done using a compact centrifugal compressor
operating at high rotational speeds.

Figure 1.1: Exemplary process flow diagram of an ORC system.[1]

A key aspect in the design of more sustainable aircraft will be to effectively exploit all the available
energy streams. Irrespective of the configuration in terms of gas turbine or fuel cell driven propul-
sion, waste heat recovery has the potential of significantly increasing the net conversion efficiency of
propulsion or thermal management systems. The organic Rankine cycle (ORC) turbogenerator could

1
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be an effective technology for the conversion of wasted thermal energy into useful power aboard the
aircraft. An exemplary process flow diagram of such an ORC system is shown in Figure 1.1. [1] For
aviation, a large power density ORC system is desired in which the size and weight of the various
system components are minimized. The performance of an ORC system is largely dependent on the
performance of the expander and a radial inflow turbine operating at high rotational speeds is arguably
the most attractive option in terms of efficiency, size and weight.

Fuel cells are very sensitive to pollutants. Contamination of the pressurised air stream to the fuel
cell can cause damage and loss of performance of the electrodes in the stack. For ORC systems, the
properties of the organic fluid and its thermal stability are important characteristics determining the
performance of the cycle.[1] Contamination of the working fluid can negatively affect the performance
of the system components. Oils trapped in the heat exchangers, for example, can cause deteriorated
heat transfer coefficients. The use of conventional rolling element bearings in the turbomachinery
components of aforementioned systems requires oil lubrication systems. Such oil lubrication systems
add complexity and weight and the oil can contaminate the working fluid, which brings up the demand
for oil-free turbomachinery. Furthermore, the high rotational speeds as a result of the small scales of
the turbomachinery components as well as the requirements for extended lifetimes makes the use of
gas dynamic bearings an attractive option for such systems.

1.2. Gas Foil Bearings
Research on hydrodynamic bearings has been pursued for more than half a century. Due to the lack of
physical contact between mechanical parts such bearings allow for operation at high rotational speeds
and increased operational lifetime. Within hydrodynamic bearings, the rotation of the shaft drags the
fluid as a result of viscous shear stresses. The fluid is dragged into a hydrodynamic wedge which
generates pressure. A schematic of a typical hydrodynamic journal bearing is shown in Figure 1.2.
The hydrodynamic wedge is facilitated by the offset of the shaft centre from the centre of the bearing
housing, which is generally referred to as the eccentricity 𝑒 or eccentricity ratio 𝜖. As illustrated in the
figure, the generated pressure allows the bearing to carry an external load 𝑊𝑒𝑥𝑡.

Convergent
Wedge

Divergent
Wedge

Journal

Figure 1.2: Schematic of a typical hydrodynamic journal bearing.

For applications such as the organic Rankine cycle or fuel cell systems, it is desirable to rely on
oil-free turbomachinery. Instead of making use of oil, the working fluid of the system could be used
as a lubricant. Gasses and vapors typically have a much lower density and viscosity than oil, allowing
for reduced power losses within the bearing. However, this also results in relatively low load-carrying
capacities. As a result, gas dynamic bearings are suitable only for supporting rotors of compact systems
typically operating at very large rotational speeds.

Another result of the lower lubricant viscosity in gas-lubricated bearings compared to oil-lubricated
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bearings is the reduced damping of the gas film.[8] Journal bearings suffer from cross-coupled reaction
forces to perturbations in the journal position. This can result in an unstable whirling motion typically
referred to as sub-synchronous or half-frequency whirl. This instability is characterized by a whirling
motion around the shaft equilibrium position with a frequency of about half the shaft rotational speed.
Such instabilities can significantly limit the operating range of gas dynamic bearings in particular.

In order to increase the performance of rigid plain gas bearings, the geometry could be altered to
include features such as compliant foundations or grooved surfaces. A common compliant surface gas
bearing is referred to as the gas foil bearing. A schematic of a first-generation gas foil journal bearing
is shown in Figure 1.3.[2] The compliant structure consists of a bump foil or bump strip layer which is
welded to the housing at the trailing edge. The top foil is spot welded to the housing at the same point
and laid on top of the bump foil loosely, thereby separating the gas film and the ambient pressure gas
underneath the top foil. The gas foil journal bearing as depicted in the figure can carry radial loads
whereas axial loads on the rotor are supported using gas foil thrust bearings such as the one shown in
Figure 1.4b.

Figure 1.3: Schematic of a first generation gas foil journal bearing.[2]

An example of a widespread application of gas foil bearings is in aircraft environmental control
systems (ECS). The air cycle machine (ACM) is a commonly used refrigeration unit of this environmental
control system in gas-turbine powered aircraft. The system is used to provide cooled air to the cabin
and any possible contamination of the process air should therefore be avoided. A similar argument
applies to the application of gas foil bearings in waste-water treatment blowers which is a relatively
large market for the technology nowadays. Such blowers are used to create air bubbles to aid the
biological processes of aeration and agitation. Other applications include micro-turbines, cryogenic
pumps and possibly fuel cell air compressors.

1.3. Motivation of the Work
Extensive research on the design and performance of gas foil thrust and journal bearings has been
carried out by NASA around the start of the 21st century. One of the goals of the research was to
improve familiarity with the foil bearing design and manufacturing processes.[9] Experimental studies
have been performed on prototype bearings of which examples are shown in Figure 1.4. Modelling of
gas foil bearings was typically done by solving the Reynolds equation under the assumption of ideal gas
behaviour. Since most applications at the time involved bearing operation with ambient air at standard
sea level conditions, there was no need to investigate the effect of high pressure and non-ideal flows.

In recent years, there has been an increasing interest in the application of gas dynamic bearings
for applications such as organic Rankine cycle turbines or compressors for super-critical carbon-dioxide
power systems.[10] Such applications are characterized by high-pressure working fluids typically near
the vapour saturation line or the thermodynamic critical point. Under these circumstances the com-
pressibility of the fluid becomes significant and the ideal gas law is no longer applicable.
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Although there is an increased interest in high-pressure gas lubrication, there is still a lack of general-
ization of the effects of non-ideal compressible lubrication flows. Guenat investigated the characteristics
of bearings operating in proximity to the thermodynamic critical point where increased compressibility
of the fluid is observed.[11] In his work, the effect of compressibility on bearing load capacity and
stability was analysed mainly for grooved dynamic bearings.

The work presented in this manuscript aims to address this knowledge gap further by first investigat-
ing these effects from a conceptual point of view in terms of non-dimensional numbers. In particular,
the work focuses on the modelling of gas bearings lubricated with fluids made by complex molecules
like those adopted for waste heat recovery at high temperatures in aviation. Furthermore, the work
aims to implement numerical models that capture the complex fluid-structure interaction characteristic
of gas foil journal bearings as an initial step to verify the feasibility of this particular technology for
application with (mini-)organic Rankine cycle turbo-generators.

(a) Gas foil journal bearing. [9] (b) Gas foil thrust bearing. [12]

Figure 1.4: Gas foil journal and thrust bearings designed by NASA.

1.4. Research Questions and Objectives
The goal of this research is to investigate the performance of gas dynamic bearings lubricated with
non-ideal compressible flows at high pressure. The work will focus primarily on modelling gas bearings
lubricated with fluids composed of complex molecules suitable for waste heat recovery in aviation. The
first step will be to implement numerical models capturing the behaviour of (rigid) plain journal bear-
ings. Afterwards, the models will be extended to include the fluid-structure interaction characteristic
of compliant surface bearings. In particular, the goal is to implement a numerical tool that captures
the behaviour of gas foil bearings used to support high-speed rotors of (mini)-ORC turbines. As such,
this work is intended to aid in verifying the feasibility of this technology for application with the turbine
of the Organic Rankine Cycle Hybrid Integrated Device (ORCHID) of the TU Delft. To this end, the
following research questions are formulated in this work:

• How do non-ideal thermodynamic effects and effects related to the type of fluid molecule af-
fect the performance of gas dynamic bearings in terms of load-carrying capacity and stability in
comparison to bearings lubricated with ideal gasses?

• Can gas foil journal bearings lubricated with siloxane MM generate sufficient load-carrying capacity
to support the rotor of the Organic Rankine Cycle Hybrid Integrated Device (ORCHID) turbine at
design conditions?

In order to answer the research questions, a number of research objectives are formulated. These
objectives are listed as follows:

• Implement the relevant numerical models into a computational tool that allows for the prediction
of gas film properties such as density and pressure for bearings lubricated with arbitrary working
fluids at different thermodynamic conditions.
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• Predict steady-state and dynamic bearing performance characteristics including load-carrying ca-
pacity and rotor-dynamic critical mass using the gas film properties calculated by the developed
tool.

• Verify the computational tool and the computed bearing characteristics by using openly available
data in scientific literature.

• Use the numerical predictions to assess the influence of non-ideal thermodynamic effects on
bearing performance characteristics including load capacity and rotor-dynamic critical mass for
laminar and turbulent lubrication flows.

• Assess the influence of structural compliance in gas dynamic bearings lubricated with dense
vapors by comparing numerical results for plain journal bearings and gas foil bearings.

• Use the computational tool to calculate the load-carrying capacity of a gas foil bearing lubricated
with siloxane MM at suitable dimensions and operating conditions for application with the ORCHID
turbine.

1.5. Report Outline
The report is structured in the following way:

• Chapter 2 presents the methodology used in this research. The compressible Reynolds equation
governing the gas film properties is derived for three-dimensional unsteady lubrication flows.
The effects of thermal expansions and the limitations of the compressible Reynolds equation
are discussed. Furthermore, the gas film models are extended to account for turbulence effects
which become increasingly important for supercritical or dense fluids. The frequency perturbation
method is introduced as a means of obtaining the steady-state density field and the perturbed
density field used to compute bearing impedances. Models used to compute the structural de-
flections in gas foil bearings are presented. Finally, the numerical methods used to solve the
differential equations are discussed. The chapter and the developed computational tool are sum-
marized by means of two flow diagrams presenting the steady and dynamic solution procedures.

• Chapter 3 discusses the influence of non-ideal compressible flows on plain journal bearings.
First, the results computed with the developed tools are verified using data from scientific lit-
erature. The non-ideal steady-state load capacity is shown to be influenced primarily by the
non-dimensional bulk modulus. Next, the onset of a self-sustained instability in gas bearings
is discussed and the analysis of the non-dimensional bulk modulus is extended to the dynamic
bearing characteristics. The influence of variations in dynamic viscosity is briefly addressed. The
chapter is concluded by assessing the effects of turbulence in non-ideal gas lubrication.

• In chapter 4 the step towards gas foil bearings is made. The models applicable to gas foil bearings
are verified using data from literature. The data correspond to lubrication with laminar flows of
sea-level pressure air. Next, the differences between rigid surface and compliant surface bearings
are analysed by comparing numerical results for plain journal bearings and gas foil bearings.
Finally, the load capacity is plotted as a function of journal eccentricity, minimum film thickness
and attitude angle for a gas foil bearing suitable for operation with the ORCHID turbine. The
bearing is shown to operate at a Reynolds number within the limits of the turbulence model and
the assumptions made in the derivation of the compressible Reynolds equation are shown to hold
at design conditions.





2
Methodology

The models and mathematical equations used to analyse the performance of gas dynamic bearings
will be presented in this chapter. The motion of the gas film is governed by the Reynolds equation.
The Reynolds equation was first derived by Osborne Reynolds in 1886 for incompressible flows [13]
and it has since been an instrumental mathematical tool in the research on lubrication. Since its
first derivation, the Reynolds equation has been extended to include compressible, three-dimensional,
unsteady and turbulent effects. In this chapter, such a derivation of the compressible Reynolds equation
is presented.

To capture the deflections of compliant surfaces in gas foil bearings a simple structural model
will be presented which is coupled to the Reynolds equation. Furthermore, some relevant bearing
characteristics including load-carrying capacity and a rotor-dynamic critical mass will be defined. The
chapter is concluded with a description of the numerical solver used to iteratively solve the partial
differential equations.

2.1. Compressible Reynolds Equation
Since its first derivation for incompressible flows in 1886 the Reynolds equation has been used ex-
tensively in scientific literature on lubrication theory. Often the equation was coupled to an ideal gas
equation of state. The recent shift towards high-pressure lubrication, however, requires the inclusion
of non-ideal compressible flow effects in the Reynolds equation. Conboy, for example, simulated the
non-ideal gas lubrication in gas foil thrust bearings operating with supercritical carbon dioxide. [14]
Kim presented a three-dimensional thermo-hydrodynamic design tool for radial foil bearings using the
Reynolds equation including turbulent and non-ideal thermodynamic effects. [15]

The compressible Reynolds equation is derived from the Navier-Stokes equations and governs the
density and pressure field within the thin fluid film. The method of deriving the equation as presented
in this section is based on the work of Chien, Cramer and Untaroiu [16], extended to include three-
dimensional and unsteady effects.

In Figure 2.1 a schematic figure is shown of a plain journal bearing indicating the nomenclature
to be used in the equations. The nominal bearing clearance ℎ0 is defined as the film thickness for
a bearing with zero eccentricity, i.e. when the shaft and the bearing housing are concentric. This
eccentricity, defined as the offset between the shaft centre and the centre of the bearing housing, is
denoted with the symbol 𝑒. Often, however, the eccentricity ratio 𝜖 is stated which is defined as the
eccentricity normalized with the nominal bearing clearance. The attitude angle 𝜓 is defined as the angle
between the inertial 𝑋-axis and the eccentricity as shown in the figure. The circumferential coordinate �̄�
measures the circumferential distance from the inertial 𝑋-axis in counterclockwise direction normalized
by the bearing radius 𝑅. The axial �̄� component extends into or out of the page in the direction of the
bearing width and is also normalized using the bearing radius. The non-dimensional film thickness ℎ̄ is,
in general, a function of the circumferential coordinate �̄� and can be computed using the eccentricity
ratio 𝜖 and attitude angle 𝜓 for a plain journal bearing as:

ℎ̄ (�̄�) = 1 − 𝜖 cos (�̄� − 𝜓) (2.1)

7
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Figure 2.1: Schematic figure showing a plain journal bearing.

Where the film thickness ℎ is normalized using the nominal film thickness. The flow properties
such as the density and pressure distribution are directly affected by the film thickness distribution and
this relation is captured by the Reynolds equation. Within the derivation in this section, the following
assumptions are made:

• The film thickness is negligible compared to other length scales of the bearing.

• The lubricating film is laminar.

• Inertia effects are negligible relative to viscous shear stresses.

• The fluid is characterized by a Newtonian stress-strain relationship.

• Thermodynamic properties such as density and pressure are constant over the film thickness.

The compressible Navier-Stokes equations without body forces [17] form the starting point of the
derivation and are presented using tensor notation in Equation 2.2:

𝜌𝜕𝑢𝑖𝜕𝑡 + 𝜌𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= − 𝜕𝑝𝜕𝑥𝑖
+ 𝜕
𝜕𝑥𝑗

(2𝜇𝑒𝑖𝑗 −
2
3𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) (2.2)

In which the strain-rate tensor 𝑒𝑖𝑗 can be written as:

𝑒𝑖𝑗 =
1
2 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (2.3)

In order to derive the Reynolds equation and apply the corresponding assumptions, it is useful
to normalize the Navier-Stokes equations using the definition of the non-dimensional parameters as
presented in Equation 2.4:

�̄� = 𝑢
Ω𝑅 �̄� = 𝑣𝑅

Ω𝑅ℎ0
�̄� = 𝑤

Ω𝑅 �̄� = 𝑥
𝑅 �̄� = 𝑦

ℎ0
�̄� = 𝑧

𝑅

�̄� = 𝑡Ω �̄� = (𝑝 − 𝑝𝑟𝑒𝑓)
ℎ20

𝜇𝑟𝑒𝑓Ω𝑅2
�̄� = 𝜌

𝜌𝑟𝑒𝑓
�̄� = 𝜇

𝜇𝑟𝑒𝑓

(2.4)

Using the normalized variables and Equation 2.2, the 𝑥- 𝑦- and 𝑧-components of the Navier-Stokes
equation are written in non-dimensional form as:
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𝑅𝑒ℎ0𝑅
𝜕�̄�
𝜕�̄� + 𝑅𝑒

ℎ0
𝑅 ( ⃗̄𝑣 ⋅ ⃗̄∇) �̄� + 𝜕�̄�𝜕�̄� =

ℎ20
𝑅2

𝜕
𝜕�̄� [2�̄�

𝜕�̄�
𝜕�̄� −

2
3�̄� (

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )]+

𝜕
𝜕�̄� [�̄� (

𝜕�̄�
𝜕�̄� +

ℎ20
𝑅2
𝜕�̄�
𝜕�̄� )] +

ℎ20
𝑅2

𝜕
𝜕�̄� [�̄� (

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )] (2.5)

𝑅𝑒 ℎ
3
0
𝑅3
𝜕�̄�
𝜕�̄� + 𝑅𝑒

ℎ30
𝑅3 (

⃗̄𝑣 ⋅ ⃗̄∇) �̄� + 𝜕�̄�𝜕�̄� =
ℎ20
𝑅2

𝜕
𝜕�̄� [�̄� (

𝜕�̄�
𝜕�̄� +

ℎ20
𝑅2
𝜕�̄�
𝜕�̄� )]+

ℎ20
𝑅2

𝜕
𝜕�̄� [2�̄�

𝜕�̄�
𝜕�̄� −

2
3�̄� (

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )] +

ℎ20
𝑅2

𝜕
𝜕�̄� [�̄� (

ℎ20
𝑅2
𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )] (2.6)

𝑅𝑒ℎ0𝑅
𝜕�̄�
𝜕�̄� + 𝑅𝑒

ℎ0
𝑅 ( ⃗̄𝑣 ⋅ ⃗̄∇) �̄� + 𝜕�̄�𝜕�̄� =

ℎ20
𝑅2

𝜕
𝜕�̄� [�̄� (

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )]+

𝜕
𝜕�̄� [�̄� (

ℎ20
𝑅2
𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )] +

ℎ20
𝑅2

𝜕
𝜕�̄� [2�̄�

𝜕�̄�
𝜕�̄� −

2
3�̄� (

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� +

𝜕�̄�
𝜕�̄� )] (2.7)

In order to simplify the equations, the assumption is made that the film thickness is much smaller
as compared to a characteristic length scale in either of the two orthogonal directions. That is, the film
thickness ℎ is negligible compared to the bearing radius 𝑅 or bearing axial width 𝐿:

ℎ20
𝑅2 ≪ 1 (2.8)

Furthermore, the assumption is made that the inertia of the flow is negligible compared to the
viscous forces of the fluid:

𝑅𝑒ℎ0𝑅 ≪ 1 (2.9)

In which the Reynolds number is defined based on the film thickness ℎ and the peripheral speed of
the rotor 𝑈 = Ω𝑅. The density and dynamic viscosity are evaluated at a reference thermodynamic state
which is typically the state of the ambient fluid in the compartment in which the bearing is located:

𝑅𝑒 =
𝜌𝑟𝑒𝑓Ω𝑅ℎ0
𝜇𝑟𝑒𝑓

(2.10)

Under the aforementioned assumptions, the non-dimensional Navier-Stokes equations simplify to
the following relations:

𝜕�̄�
𝜕�̄� =

𝜕
𝜕�̄� (�̄�

𝜕�̄�
𝜕�̄� ) (2.11)

𝜕�̄�
𝜕�̄� = 0 (2.12)

𝜕�̄�
𝜕�̄� =

𝜕
𝜕�̄� (�̄�

𝜕�̄�
𝜕�̄� ) (2.13)

Equation 2.12 states that the pressure can be considered constant over the film thickness. Equa-
tion 2.11 and Equation 2.13 can be integrated twice to obtain expressions for the circumferential and
axial velocity components, respectively. In order to do so the following no-slip boundary conditions are
applied:

�̄�(𝑦 = 0) = 0 �̄�(𝑦 = 0) = 0
�̄�(𝑦 = ℎ) = 1 �̄�(𝑦 = ℎ) = 0 (2.14)
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Note that 𝑦 = 0 refers to the surfaces of the bearing housing and 𝑦 = ℎ indicates the surface of
the rotating shaft. The boundary conditions lead to the following expressions for the non-dimensional
velocity profiles in circumferential and axial directions:

�̄� = 1
2�̄�
𝜕�̄�
𝜕�̄� (�̄�

2 − ℎ̄�̄�) + 1ℎ̄ �̄� (2.15)

�̄� = 1
2�̄�
𝜕�̄�
𝜕�̄� (�̄�

2 − ℎ̄�̄�) (2.16)

The terms proportional to the pressure gradients in Equation 2.15 and Equation 2.16 are referred
to as the Poiseuille flow terms whereas the term proportional to the peripheral speed of the rotor in
Equation 2.15 is referred to as the Couette flow term.

In order to connect the velocity profile to the density field, the conservation of mass equation is
integrated over the film thickness:

∫
ℎ̄

0
(𝜕�̄�𝜕�̄� +

⃗̄∇ ⋅ (�̄� ⃗̄𝑣)) 𝑑�̄� = 0 (2.17)

By substituting Equation 2.15 and Equation 2.16 and applying Leibnitz’s integration rule1 the fol-
lowing expression is obtained.

∫
ℎ̄

0

𝜕�̄�
𝜕�̄� 𝑑�̄� +

𝜕
𝜕�̄� (�̄�∫

ℎ̄

0
[ 12�̄�

𝜕�̄�
𝜕�̄� (�̄�

2 − ℎ̄�̄�) + 1ℎ̄ �̄�] 𝑑�̄�) − �̄�
𝜕ℎ̄
𝜕�̄� +

𝜕
𝜕�̄� (�̄�∫

ℎ̄

0
[ 12�̄�

𝜕�̄�
𝜕�̄� (�̄�

2 − ℎ̄�̄�)] 𝑑�̄�) = 0

(2.19)
Performing the integration and rearranging leads to the following form of the non-dimensional

Reynolds equation:

𝜕
𝜕�̄� (

�̄�ℎ̄3
12�̄�

𝜕�̄�
𝜕�̄� ) +

𝜕
𝜕�̄� (

�̄�ℎ̄3
12�̄�

𝜕�̄�
𝜕�̄� ) =

1
2
𝜕(�̄�ℎ̄)
𝜕�̄� + 𝜕�̄�ℎ̄𝜕�̄� (2.20)

For a compressible flow, the above equation can be rewritten as a partial differential equation for the
density field which leads to the following compressible Reynolds equation, that is the model considered
in this work:

𝜕
𝜕�̄� (

�̄�ℎ̄3
�̄�
𝜕�̄�
𝜕�̄� ) +

𝜕
𝜕�̄� (

�̄�ℎ̄3
�̄�
𝜕�̄�
𝜕�̄� ) = Λ

𝜕(�̄�ℎ̄)
𝜕�̄� + 2Λ𝜕�̄�ℎ̄𝜕�̄� (2.21)

In which 𝛽 is the non-dimensional bulk modulus written as:

�̄� = 𝜌
𝑝𝑟𝑒𝑓

𝜕𝑝
𝜕𝜌|𝑇

(2.22)

The bulk modulus relates to the compressibility of the fluid as it is a measure of the resistance of a
substance to volume changes. The effect of the bulk modulus on bearing performance will be discussed
in detail in subsequent chapters. It should be noted that the compressible Reynolds equation in the
form of Equation 2.21 is only valid if the effects of thermal expansion can be neglected. The potential
relevance of thermal expansion in thin films will be discussed in the next section. The compressibility
number or bearing speed number in Equation 2.21 is defined as:

Λ =
6𝜇𝑟𝑒𝑓Ω𝑅2
𝑝𝑟𝑒𝑓ℎ20

(2.23)

1Leibnitz’s integration rule can be written for example for the partial derivative in circumferential direction as:

∫
ℎ̄

0

𝜕
𝜕�̄� 𝑓(�̄�, �̄�, �̄�)𝑑�̄� =

𝜕
𝜕�̄� ∫

ℎ̄

0
𝑓(�̄�, �̄�, �̄�)𝑑�̄� − 𝑓(�̄�, ℎ̄, �̄�) 𝜕ℎ̄𝜕�̄� (2.18)
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As mentioned, the reference thermodynamic state used in this definition is typically the state of
the fluid in the bearing compartment. The compressibility number is an indication of the relative
balance between Poiseuille flow and Couette flow in the Reynolds equation. Large compressibility
numbers can be the result of high rotor speeds and indicate that the driving Couette flow is increasingly
dominant. This can typically lead to larger load capacities as elaborated in subsequent chapters. The
compressibility number is sometimes also referred to as the bearing number or bearing speed number.

This section is concluded by indicating a limitation of the compressible Reynolds equation beyond
the presented assumptions. Equation 2.12 shows that the pressure can be considered constant across
the film thickness as long as the film thickness is small compared to the radius of the bearing. In
the integration of the conservation of mass equation (Equation 2.19) it was implicitly assumed that
the variation of the density over the film thickness is therefore negligible as well. In order to verify
this assumption, the variation of the non-dimensional density can be written as a function of non-
dimensional pressure and temperature variations through an equation of state model as:[16]

𝑑�̄�
𝜌 = 𝛾

�̄��̄�2
𝑀2
𝑟𝑒𝑓

𝑅𝑒 ℎ0𝑅
𝑑�̄� − 𝛼Δ𝑇𝑑�̄� (2.24)

Equation 2.24 shows that the density variations might be significantly larger than the pressure
variations when the ratio of specific heats (𝛾) becomes singular. If this is the case, the density cannot
be considered constant over the film thickness and the integration of conservation of mass as done in
Equation 2.19 is no longer correct. This indicates the impossibility of using the Reynolds equation for
modeling the motion of the fluid film close to the critical point. The singularity of 𝛾 is the result of a
singularity in 𝑐𝑝 near the critical point as shown in Figure 2.2 for siloxane MM.
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Figure 2.2: Contour plot of the ratio of specif heats (𝛾) for siloxane MM created using NiceProp.[3]

2.2. Temperature Equation & Thermal Expansions
In the previous section, the compressible Reynolds equation was presented. This equation consti-
tutes a second-order non-linear partial differential equation through the presence of the bulk modulus
and dynamic viscosity. The bulk modulus and dynamic viscosity are thermodynamic variables and are
therefore a function of both density and temperature for example (𝛽 (𝜌, 𝑇) and 𝜇 (𝜌, 𝑇)). For com-
pressible flows, the temperature is, in general, not constant throughout the flow field. Chien, Cramer
and Untaroiu presented the non-dimensional energy equation for steady two-dimensional flows.[16] In
this section, this procedure is followed and the unsteady three-dimensional energy equation is derived.
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Finally, the assumption of negligible thermal expansion in thin film flows as applied in this work is
discussed.

Conservation of energy can be written in differential form in terms of enthalpy for a flow without
internal heat sources as: [17]

𝜌𝐷ℎ𝐷𝑡 =
𝐷𝑝
𝐷𝑡 −

𝜕𝑞𝑖
𝜕𝑥𝑖

+ 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

(2.25)

In which thermal conduction can be modelled using Fourier’s law:

𝑞𝑖 = −𝑘
𝜕𝑇
𝜕𝑥𝑖

(2.26)

Enthalpy changes can be related to temperature and pressure changes through an equation of state
model:

𝑑ℎ = (𝜕ℎ𝜕𝑇)𝑝
𝑑𝑇 + (𝜕ℎ𝜕𝑝)𝑇

𝑑𝑝 = 𝑐𝑝𝑑𝑇 + (
𝜕ℎ
𝜕𝑝)𝑇

𝑑𝑝 (2.27)

Furthermore, by resorting to Gibb’s equation and utilizing Maxwell’s relations the following identity
can be written for the partial derivative of enthalpy with respect to pressure at constant temperature:

𝜌 (𝜕ℎ𝜕𝑝)𝑇
= 𝜌𝑇 (𝜕𝑠𝜕𝑝)𝑇

+ 1 = 𝑇
𝜌 (

𝜕𝜌
𝜕𝑇)𝑝

+ 1 = 1 − 𝛼𝑇 (2.28)

In which 𝛼 = − 1
𝜌 (

𝜕𝜌
𝜕𝑇 )𝑝 is defined as the isobaric expansion coefficient. Using this identity and

Equation 2.27, conservation of energy Equation 2.25 can be written by making the temperature varia-
tions explicit as follows:

𝜌𝑐𝑝
𝐷𝑇
𝐷𝑡 = 𝛼𝑇

𝐷𝑝
𝐷𝑡 +

𝜕
𝜕𝑥𝑖

(𝑘 𝜕𝑇𝜕𝑥𝑖
) + 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(2.29)

Following the procedure proposed by Chien, Cramer and Untaroiu, the temperature equation Equa-
tion 2.29 can be normalized using the definitions given in Equation 2.4 along with the following defini-
tions:

�̄� =
𝑇 − 𝑇𝑟𝑒𝑓
Δ𝑇 �̄�𝑝 =

𝑐𝑝
𝑐𝑝𝑟𝑒𝑓

�̄� = 𝑘
𝑘𝑟𝑒𝑓

𝑃𝑟 =
𝜇𝑟𝑒𝑓𝑐𝑝𝑟𝑒𝑓
𝑘𝑟𝑒𝑓

𝐸𝑐 = Ω2𝑅2
𝑐𝑝𝑟𝑒𝑓Δ𝑇

(2.30)

In which Δ𝑇 is some representative temperature difference occurring in the flow, 𝐸𝑐 is the Eckert
number and 𝑃𝑟 is the Prandtl number. Using the above-mentioned normalization the temperature
equation is written in non-dimensional form as:

𝑅𝑒ℎ0𝑅 𝑃𝑟�̄��̄�𝑝
𝜕�̄�
𝜕�̄� + 𝑅𝑒

ℎ0
𝑅 𝑃𝑟�̄��̄�𝑝 (

⃗̄𝑣 ⋅ ⃗̄∇) �̄� = 𝜕
𝜕�̄� (�̄�

𝜕�̄�
𝜕�̄� ) +

ℎ20
𝑅2 [

𝜕
𝜕�̄� (�̄�

𝜕�̄�
𝜕�̄� ) +

𝜕
𝜕�̄� (�̄�

𝜕�̄�
𝜕�̄� )]+

𝑃𝑟𝐸𝑐 [Φ̄ + 𝛼𝑇𝜕�̄�𝜕�̄� + 𝛼𝑇 (
⃗̄𝑣 ⋅ ⃗̄∇) �̄�] (2.31)

The normalized viscous dissipation in the above equation is defined as:

Φ̄ = ℎ20
𝜇𝑟𝑒𝑓Ω2𝑅2

𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

≈ �̄�𝑥𝑦
𝜕�̄�
𝜕�̄� + �̄�𝑧𝑦

𝜕�̄�
𝜕�̄� (2.32)

Applying the assumption that inertia effects are negligible compared to viscous shear stresses,
convection of energy becomes negligible. For thin lubrication films as considered in this research,
Equation 2.31 states a balance between work done by pressure forces, viscous dissipation and thermal
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conduction along the film thickness. In the vast amount of scientific literature on the modelling of
gas dynamic bearings, the assumption is made that the flow within the bearing is iso-thermal. This
assumption can typically be justified on the basis that the aspect ratio of the gas film is very large.[11]
In other words, the heat transfer area over which conduction in film thickness direction occurs is large
relative to the bulk flow. This allows the temperature differences as a result of viscous dissipation to
be smoothed out by thermal conduction as shown by the temperature equation Equation 2.31. Most
of the scientific literature, however, deals with ideal gas lubrication and for compressible flows thermal
expansions might play a significant role. These thermal expansions relate to changes in the thin film
density distribution as a result of temperature variations. To analyse the relevance of thermal expansion
in the thin film flows of interest, the variations in non-dimensional density can be written as a function
of pressure and temperature changes as: [16]

𝑑�̄�
𝜌 = 𝛾

�̄��̄�2
𝑀2
𝑟𝑒𝑓

𝑅𝑒 ℎ0𝑅
𝑑�̄� − 𝛼Δ𝑇𝑑�̄� (2.33)

Equation 2.33 indicates that the effect of thermal expansion is characterized by the product 𝛼Δ𝑇.
If the characteristic temperature difference of the flow is determined by the flow dynamics, a typical
scaling can be determined by considering the product of the Eckert and Prandtl number, referred
to as the Brinkman number, to be equal to one (𝐸𝑐𝑃𝑟 = 𝐵𝑟 = 1). A Brinkman number of one is
characteristic for flows in which there is a balance between thermal conduction and heat produced
by viscous dissipation. Using the definition of the Eckert number and assuming 𝐵𝑟 = 1, the thermal
expansion can then be expressed as:

𝛼Δ𝑇 = 𝛼Ω
2𝑅2
𝑐𝑝𝑟𝑒𝑓

𝑃𝑟 =
𝛼𝑎2𝑟𝑒𝑓
𝑐𝑝𝑟𝑒𝑓

𝑀2
𝑟𝑒𝑓𝑃𝑟 = 𝒪(𝐺𝑟𝑒𝑓𝑀2

𝑟𝑒𝑓𝑃𝑟) (2.34)

In which 𝐺 = 𝛼𝑎2𝑐−1𝑝 is the Grüneisen parameter and 𝑎 is the speed of sound. If the flow is
to be assumed iso-thermal, the effects of thermal expansion should be negligible. Equation 2.34 as
derived by Chien, Cramer and Untaroiu presents a useful guideline for verifying this assumption.[16] For
negligible thermal expansion the inequality 𝒪(𝐺𝑟𝑒𝑓𝑀2

𝑟𝑒𝑓𝑃𝑟) ≪ 1 should hold true. This limit depends
on the thermodynamic reference state in which the bearing is operating as well as the peripheral speed
of the rotor. In the computational tool developed in this work, this parameter is plotted on the 𝑇 − 𝑠
plane for a particular bearing by utilizing NiceProp.[3] An example of a bearing operating at Λ = 0.1
using siloxane MM as a lubricant is shown in Figure 2.3. The figure shows that the assumption breaks
down near the critical point where the compressibility effects and the Prandtl number increase.

In this work, the numerical investigations are limited to the analysis of iso-thermal lubrication flows.
The effects of thermal expansion are neglected. It can be shown that in the domain of interest, the
effect of temperature variations on bulk modulus and dynamic viscosity is limited as well.[16] The bulk
modulus and viscosity will be taken to depend on the local density within the thin film and the reference
temperature (𝛽 (𝜌, 𝑇𝑟𝑒𝑓) and 𝜇 (𝜌, 𝑇𝑟𝑒𝑓)).

To summarize the mathematical derivations up to this point, Table 2.1 presents the relevant form of
the Reynolds equation for the different flow physics involved in the analysis. The table indicates that
Equation 2.21 is more restrictive than Equation 2.20 as it cannot be used to model incompressible thin
film flows and it cannot be coupled with an energy equation in order to include thermal expansions.
These effects, however, will not be considered in this work. Equation 2.21 is used in this research
as it allows for straightforward implementation. Furthermore, this form is useful in analysing how the
(non-ideal) thermodynamic effects enter the flow models through the Reynolds equation.

Modelled flow physics Form of Reynolds equation Notes
Incompressible Equation 2.20 Density is kept constant in the analysis.

Compressible with thermal effects Equation 2.20
Requires coupling with the energy equation
for the temperature distribution.

Compressible without thermal effects
Equation 2.20
& Equation 2.21

Equation 2.21 allows easier implementation
and generalization of physical concepts.

Table 2.1: Summary of the different flow physics captured by the different forms of the Reynolds equation.
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Figure 2.3: Example of a plot showing the relevance of thermal expansions on the density field for a particular bearing lubricated
with siloxane MM at Λ = 0.1.

2.3. Turbulence Effects
One of the main assumptions within the derivation of the Reynolds equation is that fluid inertia is
negligible relative to the viscous stresses. This allows for a balance between pressure and viscous
forces. Due to the small film thickness characteristic for thin film flows, the Reynolds number is often
sufficiently small to justify this assumption. For high-pressure gasses, however, the Reynolds number
can get increasingly large. Bruckner performed experimental studies using high-pressure lubricants
in gas foil bearings and showed increased power losses as a result of turbulence effects. [18] His
work indicates the relevance of fluid inertia for high-pressure lubricants as this can lead to the onset
of turbulence in thin film flows.

There exists a variety of different approaches within the scientific literature to model the effects of
turbulence in thin films. Among the first turbulence models derived to account for inertia effects within
the Reynolds equation is the work of Constantinescu and it dates back to the previous century.[19]
By using the Prandtl mixing length hypothesis, approximate relations for the turbulent velocity profiles
within the fluid film are derived. These expressions are used to propose semi-empirical turbulence
correction factors applied to the Reynolds equation. In this work, the approach proposed by Constan-
tinescu is followed. The approach is presented in detail in literature.[20] In this section, a summary is
given on the background of these correction factors.

A common approach in the analysis of turbulent flows is to use a Reynolds decomposition where
the instantaneous quantities are decomposed into the time-averaged component and the fluctuations.
For the pressure and circumferential velocity for example:

𝑝 = �̄� + 𝑝′ 𝑢 = �̄� + 𝑢′ (2.35)

This decomposition can subsequently be substituted into the Navier-Stokes equations (Equation 2.2).
By averaging the resulting equations, the so called Reynolds averaged Navier-Stokes (RANS) equations
are obtained. The assumptions as discussed in section 2.1 can again be applied to the RANS equations
leading to the following momentum conservation equations in circumferential and axial directions for
turbulent fluid films:

𝜕𝑝
𝜕𝑥 =

𝜕
𝜕𝑦 (𝜇

𝜕𝑢
𝜕𝑦 − 𝜌𝑢

′𝑣′) (2.36)
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𝜕𝑝
𝜕𝑧 =

𝜕
𝜕𝑦 (𝜇

𝜕𝑤
𝜕𝑦 − 𝜌𝑣

′𝑤′) (2.37)

The 𝜌𝑢′𝑢′, 𝜌𝑢′𝑣′ and 𝜌𝑢′𝑤′ components of the Reynolds stress tensor have dropped out as a result
of the thin film assumption similar to the derivation of the laminar Reynolds equation in section 2.1. Note
that in the above equations the components 𝑝, 𝑢, 𝑣 and 𝑤 indicate dimensional mean values. The over-
bar notation has been dropped on these parameters since these variables will always represent mean
values. From now on, if these parameters are indicated with an over-bar this indicates normalization
as presented in Equation 2.4.

In order to close the system of equations, the Reynolds stress tensor needs to be modelled. A
common approach is to use an Eddy viscosity model, where the Reynolds stress tensor is modelled as
being proportional to the strain-rate tensor:

−𝜌𝑢′𝑖𝑢′𝑗 = 𝜖𝑚 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑖𝜕𝑥𝑗
) (2.38)

In Constantinescu’s approach, Prandtl’s mixing length hypothesis is used in order to model the Eddy
viscosity 𝜖𝑚. This allows the 𝑥-component of the momentum equation for example to be written as:

𝜕𝑝
𝜕𝑥 =

𝜕
𝜕𝑦 (𝜇

𝜕𝑢
𝜕𝑦 + 𝜌𝑙

2 |𝜕𝑢𝜕𝑦 |
𝜕𝑢
𝜕𝑦) (2.39)

In order to determine the mixing length 𝑙 in the above equation, the nearest wall is considered:
[20]

𝑙 = 𝑘𝑦 0 ≤ 𝑦 ≤ ℎ
2

𝑙 = 𝑘𝑦′ 0 ≤ 𝑦′ ≤ ℎ
2

(2.40)

The definition of 𝑦 and 𝑦′ is shown in Figure 2.4. The film thickness is divided into the top and
bottom half with the nearest wall being either the rotor or the housing of the bearing.

Rotor

Bearing Housing

Figure 2.4: Distance from the nearest wall for determining the Prandtl mixing length.

In principle, Equation 2.39 can be integrated at this point. However, Constantinescu followed
Prandtl’s approach and subdivided both the top and bottom half of the film thickness in a viscous sub-
layer and a log-law region resulting in a total of four distinct regions throughout the film thickness.
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In the viscous sub-layer it is assumed that the turbulent fluctuations are damped out by the presence
of the wall and the viscous stresses are dominant. In the log-law region the molecular viscosity is
assumed negligible compared to the components of the Reynolds stress tensor. By applying these
assumptions in the analysis of different flow situations (corresponding to positive or negative pressure
or velocity gradients for example), the velocity profile throughout the entire thin film is approximated.
These velocity profiles indicate that the mean velocity as a result of pure shear (Couette flow) is equal
for laminar and turbulent flows. The mean velocity as a result of pressure-induced flow (Poiseuille
flow), however, is reduced for turbulent flows as compared to laminar flows. Constantinescu plotted
the different values of the mean pressure flow as a function of both axial and circumferential pressure
gradients and Reynolds number. Empirical relationships for axial and circumferential flow follow by
curve fitting of the data. These empirical relations can then be used to correct the pressure terms in
a derivation similar to the procedure presented in section 2.1. The final result is the following form of
the Reynolds equation in which the Poiseuille flow terms are corrected for the effects of turbulence:

𝜕
𝜕�̄� (

�̄�ℎ̄3
�̄� 𝐺𝑥

𝜕�̄�
𝜕�̄� ) +

𝜕
𝜕�̄� (

�̄�ℎ̄3
�̄� 𝐺𝑧

𝜕�̄�
𝜕�̄� ) = Λ

𝜕(�̄�ℎ̄)
𝜕�̄� + 2Λ𝜕�̄�ℎ̄𝜕�̄� (2.41)

With 𝛼𝑥 = 0.0136, 𝛽𝑥 = 0.90 , 𝛼𝑧 = 0.0043 and 𝛽𝑧 = 0.96, the semi-empirical turbulence correction
factors are written as:

𝐺𝑥 = (1 +
𝛼𝑥
12𝑅𝑒

𝛽𝑥)
−1

(2.42)

𝐺𝑧 = (1 +
𝛼𝑧
12𝑅𝑒

𝛽𝑧)
−1

(2.43)

The correction factors Equation 2.42 and Equation 2.43 are valid for Reynolds numbers within the
range of 1000 < 𝑅𝑒 < 30000.

The governing equations presented above are based on simplified turbulent theory in which the
effect of turbulent fluctuations on the mean flow is modelled using the Prandtl mixing length hypothesis.
The result is the inclusion of turbulent viscosity into the Reynolds equation. Durany, Pereira-Pérez and
Varas performed a 3D large Eddy simulation using a Smagorinsky-type model in order to determine the
range of validity of the simplified turbulent model as presented in this section. [21] In their work they
considered the modelling of thrust pad bearings. They concluded that the results in terms of pressure
and load capacity are adequate for lubrication flows in the laminar-turbulent transient regimes. In
fully turbulent flow regimes the pressures and load capacities were underestimated by the model of
Constantinescu. Considering that the models as discussed in this section are computationally efficient
and seem to present conservative estimates of the bearing performance characteristics they are deemed
sufficient for the current analysis.

2.4. Perturbed Reynolds Equation
In the previous sections, the unsteady Reynolds equation was derived. In principle, a time-integration
of the Reynolds equation could be coupled with the rotor-dynamic equations of motion in order to
analyse the dynamic characteristics of gas bearing supported rotors. This would allow for determining
the complete non-linear rotor orbits, but such a procedure is rather computationally expensive. In this
work, a perturbation method is used to solve the equations instead. By introducing small harmonic
motions around the journal equilibrium position a perturbed density field can be computed. This allows
for the calculation of stiffness and damping coefficients to be used in a linearized rotor-dynamic model.
Since the purpose of the analysis is only to predict the onset of instability and not to compute the
evolution of rotor orbits, this perturbation method is deemed sufficient.

The perturbation method for solving the Reynolds equations and obtaining the stiffness and damping
coefficients was first published by Lund.[22] Lund used the method to obtain the bearing impedances
for tilting pad journal bearing and a three-lobe journal bearing. For compressible flows, the bearing
impedances are a function of the excitation frequency of the journal. Guenat and Schiffmann applied
the method to obtain a frequency-dependent perturbed density field for bearings subject to non-ideal
thermodynamic effects.[23] In their work, the viscosity of the fluid was assumed to be constant. Bi, Han
and Yang applied the frequency perturbation method to obtain a perturbed pressure field by embracing
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perturbations in all variables including viscosity.[24] Dynamic characteristics were presented for a plain
journal bearing operating with supercritical carbon dioxide as a lubricant.

In this work, a similar approach will be used where the Reynolds equation is solved using the
perturbation method in order to obtain the perturbed density field. The starting point of the derivation
is the unsteady, turbulent Reynolds equation written in terms of the effective bulk modulus 𝜅𝑇𝑒:

𝜕
𝜕�̄� (ℎ̄

3�̄�𝑇𝑒𝐺𝑥
𝜕�̄�
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3�̄�𝑇𝑒𝐺𝑧
𝜕�̄�
𝜕�̄� ) = Λ

𝜕 (�̄�ℎ̄)
𝜕�̄� + 2Λ(𝜕�̄�ℎ̄)𝜕�̄� (2.44)

The effective bulk modulus is defined in terms of the bulk modulus and dynamic viscosity as:

𝜅𝑇𝑒 =
𝛽
𝜇 (2.45)

The effective bulk modulus is normalized using the conventions of the bulk modulus and viscosity.
It is used here mainly as a short-hand notation since the effects of bulk modulus and viscosity will be
analysed separately.

In a stable, steady-state condition the bearing will operate at a steady eccentricity 𝜖0 and attitude
angle 𝜓0 otherwise expressed as the 𝑋− and 𝑌−components of the eccentricity as:

𝜖0𝑋 = 𝜖0𝑐𝑜𝑠 (𝜓0)
𝜖0𝑌 = 𝜖0𝑠𝑖𝑛 (𝜓0)

(2.46)

A small harmonic motion with non-dimensional excitation frequency 𝛾 = 𝜔
Ω is introduced around

this equilibrium position leading to a disturbance in the steady state film thickness given by:

ℎ̄(�̄�) = ℎ̄0(�̄�) + ℎ̄𝑑(�̄�) = 1 − 𝜖0𝑋𝑐𝑜𝑠 (�̄�) − 𝜖0𝑌𝑠𝑖𝑛 (�̄�) − 𝜖1𝑋𝑐𝑜𝑠 (�̄�) 𝑒𝑖𝛾�̄� − 𝜖1𝑌𝑠𝑖𝑛 (�̄�) 𝑒𝑖𝛾�̄� (2.47)

This disturbed film thickness will in turn lead to a disturbance in the steady state density field �̄�0
and effective bulk modulus �̄�𝑇𝑒0:

�̄� = �̄�0 + 𝜖1𝑋�̄�1𝑋𝑒𝑖𝛾�̄� + 𝜖1𝑌�̄�1𝑌𝑒𝑖𝛾�̄� (2.48)

�̄�𝑇𝑒 = �̄�𝑇𝑒0 + 𝜖1𝑋 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑋𝑒𝑖𝛾�̄� + 𝜖1𝑌 (

𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑌𝑒𝑖𝛾�̄� (2.49)

The partial derivative of the effective bulk modulus with respect to density at constant temperature
can be evaluated by applying the chain rule:

𝜕𝜅𝑇𝑒
𝜕𝜌 |

𝑇
= 𝜅𝑇𝑒

𝜌 + 𝜌𝜇
𝜕2𝑝
𝜕𝜌2 |𝑇 −

𝜅𝑇𝑒
𝜇
𝜕𝜇
𝜕𝜌 |𝑇 (2.50)

Furthermore, the turbulence correction factors are a function of the local Reynolds number and
therefore of film thickness ℎ̄, density �̄� and viscosity �̄�. The perturbed turbulence correction factors
can be derived using the chain rule and are presented below:

𝐺 = 𝐺0 + 𝜖1𝑋 [(
𝜕𝐺
𝜕�̄� )0

�̄�1𝑋 + (
𝜕𝐺
𝜕ℎ̄ )0

𝑐𝑜𝑠(�̄�) + (𝜕𝐺𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

�̄�1𝑋] 𝑒𝑖𝛾�̄�+

𝜖1𝑌 [(
𝜕𝐺
𝜕�̄� )0

�̄�1𝑌 + (
𝜕𝐺
𝜕ℎ̄ )0

𝑠𝑖𝑛(�̄�) + (𝜕𝐺𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

�̄�1𝑌] 𝑒𝑖𝛾�̄� (2.51)

The partial derivatives of the turbulence correction factors are written as:

(𝜕𝐺𝜕�̄� )0
= −𝐺20𝛽

𝛼
12𝑅𝑒

𝛽
0
1
�̄�0

(2.52)
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(𝜕𝐺𝜕ℎ̄ )0
= −𝐺20𝛽

𝛼
12𝑅𝑒

𝛽
0
1
ℎ̄0

(2.53)

(𝜕𝐺𝜕�̄� )0
= 𝐺20𝛽

𝛼
12𝑅𝑒

𝛽
0
1
�̄�0

(2.54)

Finally, now that expressions have been obtained for all the perturbed quantities of interest Equa-
tion 2.47, Equation 2.48, Equation 2.49 and Equation 2.51 can be substituted into the unsteady
Reynolds equation Equation 2.44. All higher-order terms are neglected and only the zeroth order
and first-order terms remain. The zeroth order terms and the first order terms in 𝑋− and 𝑌− directions
can be grouped and separated. The zeroth order equation is written as:

𝜕
𝜕�̄� (ℎ̄

3
0𝐺0𝑥�̄�𝑇𝑒0

𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0𝐺𝑧0�̄�𝑇𝑒0

𝜕�̄�0
𝜕�̄� ) = Λ

𝜕 (�̄�0ℎ̄0)
𝜕�̄� (2.55)

The first order equation for a perturbation in 𝑋-direction:

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0𝐺𝑥0

𝜕�̄�1𝑋
𝜕�̄� ) + 𝜕

𝜕�̄� (ℎ̄
3
0�̄�𝑇𝑒0𝐺𝑧0

𝜕�̄�1𝑋
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑋𝐺𝑥0

𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑋𝐺𝑧0

𝜕�̄�0
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑥
𝜕�̄� )0

+ (𝜕𝐺𝑥𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑋
𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑧
𝜕�̄� )0

+ (𝜕𝐺𝑧𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑋
𝜕�̄�0
𝜕�̄� )

= − 𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑥0 + (

𝜕𝐺𝑥
𝜕ℎ̄ )0

] 𝑐𝑜𝑠(�̄�)𝜕�̄�0𝜕�̄� ) −
𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑧0 + (

𝜕𝐺𝑧
𝜕ℎ̄ )0

] 𝑐𝑜𝑠(�̄�)𝜕�̄�0𝜕�̄� )+

Λ 𝜕𝜕�̄� (�̄�0𝑐𝑜𝑠(�̄�) + �̄�1𝑋ℎ̄0) + 𝑖2𝛾Λ (�̄�0𝑐𝑜𝑠(�̄�) + �̄�1𝑋ℎ̄0) (2.56)

Similarly, the first order equation for a perturbation in 𝑌-direction:

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0𝐺𝑥0

𝜕�̄�1𝑌
𝜕�̄� ) + 𝜕

𝜕�̄� (ℎ̄
3
0�̄�𝑇𝑒0𝐺𝑧0

𝜕�̄�1𝑌
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑌𝐺𝑥0

𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑌𝐺𝑧0

𝜕�̄�0
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑥
𝜕�̄� )0

+ (𝜕𝐺𝑥𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑌
𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑧
𝜕�̄� )0

+ (𝜕𝐺𝑧𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑌
𝜕�̄�0
𝜕�̄� )

= − 𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑥0 + (

𝜕𝐺𝑥
𝜕ℎ̄ )0

] 𝑠𝑖𝑛(�̄�)𝜕�̄�0𝜕�̄� ) −
𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑧0 + (

𝜕𝐺𝑧
𝜕ℎ̄ )0

] 𝑠𝑖𝑛(�̄�)𝜕�̄�0𝜕�̄� )+

Λ 𝜕𝜕�̄� (�̄�0𝑠𝑖𝑛(�̄�) + �̄�1𝑋ℎ̄0) + 𝑖2𝛾Λ (�̄�0𝑠𝑖𝑛(�̄�) + �̄�1𝑋ℎ̄0) (2.57)

Equation 2.55 can be solved for the steady-state density field along with the steady effective bulk
modulus and turbulence correction factors. Once this steady-state solution is obtained, the second-
order linear partial differential equations Equation 2.56 and Equation 2.57 can be solved for �̄�1𝑋 and
�̄�1𝑌 respectively.

2.5. Foil Modelling in Gas Bearings
The theory presented in the previous sections dealt with the modelling of the gas film as applicable
to rigid bearings. A simple example of a rigid bearing is a plain journal bearing in which no enhance-
ments to the geometry are made to increase overall bearing performance. Such bearings typically lack
sufficient load capacity and stability for practical applications. Amongst the most promising bearing
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geometries is the gas foil bearing. Gas foil bearings are compliant surface bearings which deform un-
der the action of increased pressure in the gas film. A schematic of a first-generation gas foil journal
bearing is shown in Figure 2.5. [2] The compliant geometry consists of a bump foil and a top foil. Both
the bump and top foil are typically spot welded to the housing of the bearing. The gas film is entrapped
between the top foil and the surface of the shaft. The aerodynamic pressures that are generated as a
result of the rotation of the shaft cause the elastic bump foils to deform leading to a redistribution of
the film thickness. This will in turn lead to a redistribution of the pressure field as compared to rigid
bearings.

Figure 2.5: Schematic of a first-generation gas foil journal bearing.[2]

The so-called first-generation gas foil bearings have a constant structural stiffness in circumferential
and axial directions. More advanced designs in which the structural stiffness is varied in one or more
directions are typically referred to as second and third-generation gas foil bearings, respectively. [9]
In this work, only the modelling of first-generation gas foil journal bearings will be considered.

The first models of gas foil journal bearings were presented by Heshmat, Walowit and Pinkus as early
as 1983.[25] In their work the compliant structure of bump and top foil is modelled as a simple elastic
foundation in which the structural deformation is linearly proportional to the pressures within the gas
film. In the following decades, more sophisticated models have been proposed in scientific literature.
San Andrés and Ho Kim, for example, present a model of gas foil journal bearings in which the top foil
is modelled using a finite element method. [2] In their work both a 1D and 2D finite element model
are presented accounting for the sagging of the top foil as a result of pressure variations in either
circumferential or both circumferential and axial direction. Carpino and Talmaga have presented a
method in which the fluid dynamics governed by the Reynolds equation is combined with the structural
deflections in a single fully coupled finite element.[26] The use of elaborate finite element models for
the structural deflections, however, can significantly increase the complexity and computational time
of the solver. Furthermore, the improved accuracy of such methods compared to simple elastic models
has proven to be relatively modest relative to the increased complexity of the computation. For this
reason, the methods presented by Heshmat, Walowit and Pinkus still find application in recent literature
on the modelling of gas foil bearings. In this work, this simple elastic model will be used in order to
analyse the performance of gas foil journal bearings operating with non-ideal compressible flows.

A schematic of a gas foil bearing in which the structural deformations are approximated using a
simple elastic model is shown in Figure 2.6. As shown in the figure, the bump foil structure is replaced
with linear springs around the circumference of the bearing. The pressure exerted on the top foil will
cause these springs to locally deform which will lead to an increase of the film thickness as compared
to a rigid foundation.

In Figure 2.7 a schematic is shown in which a local bump structure is replaced with an elastic spring.
Following the work of San Andrés and Ho Kim, the deformation of the bump foil structure is denoted
by 𝑤𝑑. [5] The structural deflections as shown in the figure can be calculated using the pressure in
the lubricating film:
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Rotor

Bearing HousingTop Foil Bump Foil Model

Figure 2.6: Schematic of a gas foil bearing where the bump foil is modelled using a simple elastic model.

𝑤𝑑 =
𝛿𝑝
𝐾𝑓

(2.58)

The parameter 𝛿𝑝 refers to an axially averaged pressure difference between the fluid above and
underneath the top foil. For the steady-state pressure field, this pressure difference is written as:

𝛿𝑝0 =
1
𝐿 ∫

𝐿/2

−𝐿/2
(𝑝0 − 𝑝𝑟𝑒𝑓) 𝑑𝑧 (2.59)

The steady non-dimensional film thickness accounting for the bump foil structural deflections can
now be written as:

ℎ̄0 = 1 − 𝜖 cos (�̄� − 𝜓) + 𝑆𝛿�̄�0 (2.60)

Where 𝑆 = 𝑝𝑟𝑒𝑓
ℎ0𝐾𝑓

is defined as the compliance ratio. It is a non-dimensional parameter defining the

ratio of fluid film stiffness to structural stiffness. Note that the film thickness depends on the structural
deflections through Equation 2.60. Solving the steady-state Reynolds equation (Equation 2.55) requires
knowledge of the film thickness distribution and therefore of the bump foil deflections. Since the
structural deflections are in turn dependent on the fluid film pressures the numerical procedure will
involve the simultaneous solution of the fluid and structural models.

Top Foil

Bearing Housing Bearing Housing

Top Foil

Rotor Surface Rotor Surface

Figure 2.7: Modelling of the bump foil structure by elastic springs. Local bump foil deflections are indicated with 𝑤𝑑.
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Similar to the analysis of plain journal bearings, the calculation of the linearized stiffness and damp-
ing coefficients requires the solution of the perturbed density field. For gas foil bearings, however,
the perturbations in the pressure field will lead to small changes in the structural deflections. The
perturbed film thickness for a gas foil journal bearing is computed as:

ℎ̄ = 1 − 𝜖0𝑋𝑐𝑜𝑠 (�̄�) − 𝜖0𝑌𝑠𝑖𝑛 (�̄�) + 𝑆𝛿�̄�0 − 𝜖1𝑋𝑐𝑜𝑠 (�̄�) 𝑒𝑖𝛾�̄� − 𝜖1𝑌𝑠𝑖𝑛 (�̄�) 𝑒𝑖𝛾�̄�+
𝑆

(1 + 𝑖𝛾𝑆)
(𝛿�̄�1𝑋𝜖1𝑋 + 𝛿�̄�1𝑌𝜖1𝑌) 𝑒𝑖𝛾�̄� (2.61)

With 𝛿�̄�1𝑋 and 𝛿�̄�1𝑌 representing the axially averaged perturbation in the pressure field in response
to a journal displacement in 𝑋− and 𝑌− direction respectively:

𝛿�̄�1𝑋 =
1
𝐿 ∫

𝐿/2

−𝐿/2

𝜕�̄�
𝜕�̄� |𝑇

�̄�1𝑋𝑑𝑧

𝛿�̄�1𝑌 =
1
𝐿 ∫

𝐿/2

−𝐿/2

𝜕�̄�
𝜕�̄� |𝑇

�̄�1𝑌𝑑𝑧
(2.62)

The parameter 𝛾𝑆 represents a structural damping coefficient.[5] This parameter represents the
effects of material hysteresis and dry-sliding friction between the top and bump foils and is typically
taken to be around 0.40. The derivation of the first-order equations for the perturbed density field is
as presented before and the resulting equation applicable for gas foil bearings is shown below for �̄�1𝑋:

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0𝐺𝑥0

𝜕�̄�1𝑋
𝜕�̄� ) + 𝜕

𝜕�̄� (ℎ̄
3
0�̄�𝑇𝑒0𝐺𝑧0

𝜕�̄�1𝑋
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑋𝐺𝑥0

𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (ℎ̄

3
0 (
𝜕�̄�𝑇𝑒
𝜕�̄� )

0
�̄�1𝑋𝐺𝑧0

𝜕�̄�0
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑥
𝜕�̄� )0

+ (𝜕𝐺𝑥𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑋
𝜕�̄�0
𝜕�̄� )+

𝜕
𝜕�̄� (ℎ̄

3
0�̄�𝑇𝑒0 [(

𝜕𝐺𝑧
𝜕�̄� )0

+ (𝜕𝐺𝑧𝜕�̄� )0
(𝜕�̄�𝜕�̄�)0

] �̄�1𝑋
𝜕�̄�0
𝜕�̄� )+

𝜕
𝜕�̄� (3ℎ̄

2
0

𝑆
(1 + 𝑖𝛾𝑆)

𝛿�̄�1𝑋�̄�𝑇𝑒0𝐺𝑥0
𝜕�̄�0
𝜕�̄� ) +

𝜕
𝜕�̄� (3ℎ̄

2
0

𝑆
(1 + 𝑖𝛾𝑆)

𝛿�̄�1𝑋�̄�𝑇𝑒0𝐺𝑧0
𝜕�̄�0
𝜕�̄� ) =

− 𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑥0 + (

𝜕𝐺𝑥
𝜕ℎ̄ )0

] 𝑐𝑜𝑠(�̄�)𝜕�̄�0𝜕�̄� ) −
𝜕
𝜕�̄� (ℎ̄

2
0�̄�𝑇𝑒0 [3𝐺𝑧0 + (

𝜕𝐺𝑧
𝜕ℎ̄ )0

] 𝑐𝑜𝑠(�̄�)𝜕�̄�0𝜕�̄� )+

Λ 𝜕𝜕�̄� (�̄�0𝑐𝑜𝑠(�̄�) + �̄�0
𝑆

(1 + 𝑖𝛾𝑆)
𝛿�̄�1𝑋 + �̄�1𝑋ℎ̄0) + 𝑖2𝛾Λ(�̄�0𝑐𝑜𝑠(�̄�) + �̄�0

𝑆
(1 + 𝑖𝛾𝑆)

𝛿�̄�1𝑋 + �̄�1𝑋ℎ̄0) (2.63)

An equation similar to Equation 2.63 can be written for �̄�1𝑌.

2.6. Bearing Performance Characteristics
Once the steady-state and perturbed density fields are computed, the bearing performance charac-
teristics can be obtained. Within this work, the load-carrying capacity will be used as a measure of
the steady-state bearing performance. The critical mass is used to investigate effects related to rotor-
dynamic stability.

In order to compute the bearing load capacity, the static pressure field is integrated around the
shaft. The components of the bearing load capacity are obtained as:

𝑊𝑥 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄� cos(�̄�)𝑑�̄�𝑑�̄� (2.64)

𝑊𝑦 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄� sin(�̄�)𝑑�̄�𝑑�̄� (2.65)
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𝑊 = √𝑊2𝑥 +𝑊2𝑦 (2.66)

In which the non-dimensional pressure is redefined as �̄� = 𝑝
𝑝𝑟𝑒𝑓

and can be computed as a function

of the density field and the reference temperature using the thermodynamic software programs. A
non-dimensional form of the bearing load capacity is defined as:

�̄� = 𝑊
𝑅2𝑝𝑟𝑒𝑓

(2.67)

The dynamic characteristics are governed by the bearing impedances which are determined using
the components of the perturbed pressure field as:

𝑍𝑥𝑥 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄�𝑥 cos(�̄�)𝑑�̄�𝑑�̄� (2.68)

𝑍𝑦𝑥 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄�𝑥 sin(�̄�)𝑑�̄�𝑑�̄� (2.69)

𝑍𝑥𝑦 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄�𝑦 cos(�̄�)𝑑�̄�𝑑�̄� (2.70)

𝑍𝑦𝑦 = −𝑅2𝑝𝑟𝑒𝑓∫
𝐿/𝐷

−𝐿/𝐷
∫
2𝜋

0
�̄�𝑦 sin(�̄�)𝑑�̄�𝑑�̄� (2.71)

Where the non-dimensional perturbed pressure field can again be computed using a thermodynamic
software program and the perturbed density field as:

�̄�𝑥,𝑦 =
𝜌𝑟𝑒𝑓
𝑝𝑟𝑒𝑓

𝜕𝑝
𝜕𝜌 |𝑇�̄�𝑥,𝑦 (2.72)

Note that the bearing impedance consists of the stiffness and damping coefficients. For the 𝑍𝑥𝑦
component for example:

𝑍𝑥𝑦 = 𝐾𝑥𝑦 + 𝑖𝜔𝐶𝑥𝑦 (2.73)

With 𝜔𝑒𝑥 the excitation frequency at which the shaft is perturbed.

Gas Dynamic
Journal Bearings

Rotor of mass

Figure 2.8: Simplified schematic of a rigid rotor supported on gas dynamic bearings.

The stiffness and damping coefficients can be used in a linearized rotor-dynamic model in order
to analyse the stability of the rotor. Rotors supported by gas dynamic bearings typically operate at
a rotational speed well below the first rotor bend mode. In this work, the dynamics of a rigid rotor-
bearing system will therefore be considered. As an example, a simplified schematic is shown of a
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symmetric rotor-bearing system with two identical bearings in Figure 2.8. The cylindrical rigid body
mode will be analysed where the longitudinal axis of the rotor remains parallel to the initial orientation
and the whirl motions within both bearings are in phase.

The equations of motion of the rotating system with the linearized bearing reaction forces can then
be written as:

[𝑚𝑟𝑜𝑡 0
0 𝑚𝑟𝑜𝑡] [

Δ�̈�
Δ�̈�] + [

𝐶𝑥𝑥 𝐶𝑥𝑦
𝐶𝑦𝑥 𝐶𝑦𝑦] [

Δ�̇�
Δ�̇�] + [

𝐾𝑥𝑥 𝐾𝑥𝑦
𝐾𝑦𝑥 𝐾𝑦𝑦] [

Δ𝑋
Δ𝑌] = [

0
0] (2.74)

With 𝑚𝑟𝑜𝑡 the mass of the rotor and Δ𝑋 and Δ𝑌 indicating the deviation from the rotor equilibrium
position in 𝑋- and 𝑌-direction respectively. Note that Equation 2.74 is valid for a rotor without external
forcing caused by mass imbalance. In this analysis, only the self-sustained motions are considered.
The potential growth of small amplitude journal motions from the equilibrium position leading to sub-
synchronous vibration is a typical instability observed in hydrodynamic journal bearings.[27]

The Laplace transformed notation of Equation 2.74 with the mass matrix indicated with 𝑀 and the
impedance matrix indicated with 𝑍 can be written as: [28]

[𝑀𝑠2 + 𝑍] �⃗�𝑒𝑠𝑡 (2.75)

The impedance matrix is written using the components defined by Equation 2.73. The vector �⃗�
contains the amplitudes of the journal motion around the equilibrium rotor position. Whether these
amplitudes grow or decay in time is governed by the sign of the damping coefficient 𝜆 of the Laplace
variable 𝑠 = 𝜆 + 𝑖𝜔. Equation 2.75 can be split into two independent equations governing the forward
and backward rotor whirls by diagonalization of the impedance matrix leading to the equivalent bearing
impedances:[27]

𝑍𝑒𝑞 =
1
2 (𝑍𝑥𝑥 + 𝑍𝑦𝑦) ±

√1
4 (𝑍𝑥𝑥 − 𝑍𝑦𝑦)

2 + 𝑍𝑥𝑦𝑍𝑦𝑥 = 𝑢(𝜔𝑒𝑥) + 𝑖𝑣(𝜔𝑒𝑥) (2.76)

The parameters 𝑢 and 𝑣 in Equation 2.76 represent the equivalent stiffness and damping of the
bearing, respectively. As the equation indicates, these parameters both depend on the rotor excitation
frequency 𝜔𝑒𝑥 = 𝛾Ω. This is also apparent from the appearance of the ratio of excitation frequency
to rotor speed 𝛾 in the perturbed density equations (Equation 2.56 and Equation 2.57) and this is a
result of the compressibility of the gas. In order to find the point where the rotor motion just becomes
unstable, the neutral stability point is considered. At neutral stability the real part of the Laplace variable
𝑠 is zero (𝜆 = 0). In order for the diagonalized Equation 2.75 to hold, the equivalent damping (𝑣(𝜔𝑒𝑥))
must be zero. At this condition the critical mass can be written as:

𝑚𝑐𝑟 =
𝑢(𝜔𝑒𝑥)
𝜔2𝑒𝑥

(2.77)

In other words, in order for the rotor-bearing system to become unstable at a given rotational speed
Ω the mass carried by one journal bearing is given by Equation 2.77. The whirling motion or excitation
frequency 𝜔𝑒𝑥 at which this instability occurs is such that the bearing equivalent damping is zero. Note
that Equation 2.77 can be re-arranged as:

𝜔𝑒𝑥 = √
𝑢(𝜔𝑒𝑥)
𝑚𝑐𝑟

(2.78)

Indicating that the whirl frequency is equal to the undamped natural frequency of the rotor-bearing
system with mass 𝑚𝑐𝑟. This mass will be referred to as the critical mass and it indicates a limit mass
that the bearing can carry dynamically. The difference between the critical mass and the actual rotor
mass presents a stability margin for bearing operation at a given rotational speed. Note that a rotor
is typically supported by two journal bearings. The system would then become unstable at a given Ω
if the total rotor mass 𝑚𝑟𝑜𝑡 is larger than twice the critical mass assuming that the two bearings are
identical. A non-dimensional form of the critical mass parameter will be used in this work defined as:

�̄�𝑐𝑟 =
𝑚𝑐𝑟Ω2ℎ0
𝑅2𝑝𝑟𝑒𝑓

(2.79)
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This section is concluded with a summary of the different equations used to obtain the performance
parameters for either a plain journal bearing or a gas foil bearing as shown in Table 2.2. The table
indicates that the same steady-state or zeroth-order Reynolds equation is solved for both types of
bearings. The difference, however, is in how the film thickness is evaluated. This difference also
translates into different forms of the first-order or perturbed Reynolds equation used to obtain the
critical mass.

Bearing Performance Parameter Bearing Type Equation Label
Perturbed film thickness PJB Equation 2.47
Load capacity PJB Equation 2.55

Critical mass PJB
Equation 2.56
& Equation 2.57

Perturbed film thickness GFB Equation 2.61
Load capacity GFB Equation 2.55

Critical mass GFB
Equation 2.63
(similar form for 𝑌-component)

Table 2.2: Form of the (Reynolds) equation used to solve for the perturbed film thickness and performance parameters of plain
journal bearings and gas foil bearings.

2.7. Numerical Solution Method for the Reynolds Equation
In the previous sections, the flow equations governing the gas dynamic bearings have been presented.
The steady-state non-dimensional density field can be obtained by solving Equation 2.55. The per-
turbed density field is governed by Equation 2.56 and Equation 2.57 for a plain journal bearing and can
be extended for gas foil bearings as done for the 𝑋-component in Equation 2.63. In this section, the
numerical solution of these equations is discussed as implemented in the computational tool developed
as part of this research. The tool is called GasBearingSim and the link to the GitHub repository can
be found in Appendix A. Finally, this chapter and the computational tool are summarized by means
of flow diagrams indicating the step-by-step procedure used to obtain the steady-state and dynamic
characteristics of gas foil journal bearings. An overview will be given of the equations solved at each
step of the numerical procedure.

In order to solve the partial differential equations the appropriate boundary conditions need to be
specified. For the steady-state or zeroth order Reynolds equation, a Dirichlet boundary condition is
applied at the axial sides of the bearing imposing a steady-state density equal to the density in the
surrounding compartment. A periodic boundary condition is applied in circumferential direction. For
gas foil bearings the density at the circumferential location of the top and bump foil spot weld is also
imposed to equal the reference density due to a slight gap between the top foil leading and trailing
edges. The boundary conditions for the zeroth order equation are written formally as:

�̄�0 (�̄�, −𝐿/𝐷) = �̄�0 (�̄�, 𝐿/𝐷) = 1
�̄�0 (0, �̄�) = �̄�0 (2𝜋, �̄�) for a PJB

�̄�0 (0, �̄�) = �̄�0 (2𝜋, �̄�) = 1 for a GFB
(2.80)

For the perturbed Reynolds equations and the associated perturbed density fields a Dirichlet bound-
ary condition is again applied at the axial sides of the bearing. The perturbations from the steady-state
density are imposed to be zero at the sides. The perturbed density field is periodic in circumferential
direction with zero perturbations at the foil weld location for a gas foil bearing:

�̄�1𝑥,𝑦 (�̄�, −𝐿/𝐷) = �̄�1𝑥,𝑦 (�̄�, 𝐿/𝐷) = 0
�̄�1𝑥,𝑦 (0, �̄�) = �̄�1𝑥,𝑦 (2𝜋, �̄�) for a PJB

�̄�1𝑥,𝑦 (0, �̄�) = �̄�1𝑥,𝑦 (2𝜋, �̄�) = 0 for a GFB
(2.81)

To solve the equations, the partial derivatives need to be discretized. In literature the finite
difference and finite element methods are the most common approaches to solving the Reynolds
equation.[29] The Reynolds equation is a convection-diffusion equation in which the compressibility
number Λ determines the relative significance of the convective terms compared to the diffusive terms.
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For low bearing numbers, the equation has an elliptic nature where the diffusive terms dominate the
solution. For large bearing numbers, the convective terms become dominant and the equation be-
comes increasingly parabolic. In the latter case, the numerical scheme might have trouble satisfying
the downstream boundary conditions with numerical oscillations as a result. A typical remedy of this
problem is the use of upwind schemes in the numerical procedures. In this research, however, the com-
pressibility numbers of interest are well below 100 and numerical oscillations do not cause significant
problems. Therefore, a second-order central differencing scheme is used. The first- and second-order
derivatives of the general flow parameter 𝜉 indicating, for example, the density can then be written in
circumferential and axial direction as:

(𝜕𝜉𝜕�̄� )𝑖,𝑗
=
𝜉𝑖+1,𝑗 − 𝜉𝑖−1,𝑗

2Δ�̄� + 𝒪 (Δ�̄�2) (2.82)

(𝜕
2𝜉
𝜕�̄�2)𝑖,𝑗

=
𝜉𝑖+1,𝑗 − 2𝜉𝑖,𝑗 + 𝜉𝑖−1,𝑗

Δ�̄�2 + 𝒪 (Δ�̄�2) (2.83)

(𝜕𝜉𝜕�̄� )𝑖,𝑗
=
𝜉𝑖,𝑗+1 − 𝜉𝑖,𝑗−1

2Δ�̄� + 𝒪 (Δ�̄�2) (2.84)

(𝜕
2𝜉
𝜕�̄�2 )𝑖,𝑗

=
𝜉𝑖,𝑗+1 − 2𝜉𝑖,𝑗 + 𝜉𝑖,𝑗−1

Δ�̄�2 + 𝒪 (Δ�̄�2) (2.85)

In order to evaluate the finite difference equations, the gas film is discretized using the computa-
tional grid shown in Figure 2.9. The grid contains 𝑛 + 1 nodal points in circumferential direction and
𝑚+1 points in axial direction. The parameters Δ�̄� and Δ�̄� represent the spacing between the nodes in
circumferential and axial direction, respectively.

Figure 2.9: Discretization of the fluid domain in circumferential and axial directions.

In order to determine a suitable number of grid nodes in circumferential and axial direction for the
computational mesh, a grid refinement study is performed. In Figure 2.10 the relative error is plotted
in terms of load capacity and critical mass as compared to a reference solution on a refined mesh with
𝑛 = 150 and 𝑚 = 100. The relative error is defined for the load capacity as:

Relative Error =
�̄� − �̄�𝑟𝑒𝑓
�̄�𝑟𝑒𝑓

(2.86)

With a similar definition of the relative error for the critical mass. The plots show a relative error
of load capacity smaller than 1% for a mesh with about 300 nodes, whereas the critical mass requires
more refinement in order to obtain the same accuracy. The load capacity ratio seems to converge
faster for equal number of intervals in axial and circumferential direction for an axial width-to-diameter
ratio of 1. The relative distribution of grid points in axial and circumferential direction seems to have
less of an influence on the critical mass as compared to the load capacity according to the figures.

The Reynolds equation is non-linear since the bulk modulus and dynamic viscosity depend on the
local value of the density. Furthermore, for gas foil bearings the foil deflections and thus film thickness
depend on the local pressure difference between the thin film and the fluid under the top foil. This
pressure difference is in turn a function of the density field. In order to linearize the equation, the
thermodynamic fluid properties and the foil deflections are evaluated using the density computed at the
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(a) Non-dimensional load capacity.
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(b) Non-dimensional critical mass.

Figure 2.10: Convergence of non-dimensional load capacity and critical mass as function of grid refinement for 𝑛 = 𝑚 and
𝑛 = 3𝑚. Reference solution is computed with 𝑛 = 150 and 𝑚 = 100.

previous iteration. Therefore, to start the iteration procedure an initial estimate of the non-dimensional
density field is required which is typically taken to be �̄� = 1 throughout the domain. The bulk modulus
and viscosity are then computed as a function of this local density and the reference temperature 𝑇𝑟𝑒𝑓
by means of the thermodynamic software programs RefProp or CoolProp. [30], [31] The discretization
of the Reynolds equation then leads to the following linear system to be solved for the non-dimensional
density:

𝐴 (�⃗�) ⋅ ⃗̄𝜌 = �⃗� (2.87)

In which the matrix 𝐴 is a function of the density and therefore needs to be re-evaluated at each iter-
ation. A Gauss-Seidel successive under-relaxation method is applied to iteratively compute the solution
of the non-linear problem through successive solution of the discretized linear system of equations:

⃗̄𝜌
𝑘+1

= ⃗̄𝜌
𝑘
+ 𝜅 (𝐴−1 (�⃗�𝑘) ⋅ �⃗� − ⃗̄𝜌

𝑘
) (2.88)

For most computations in this research, a relaxation factor of 𝜅 = 0.3 to 0.5 was found to be
sufficient for convergence. A convergence threshold can be defined as follows:

max(| �̄�
𝑘+1 − �̄�𝑘
�̄�𝑘 |) < 10−6 (2.89)

Although for coarser meshes this threshold can typically be set to a larger value (e.g. 10−4).
Note that the procedure described above assumes that the film thickness is known, which requires

the knowledge of bearing eccentricity 𝜖 and attitude angle 𝜓. In practice, the applied external load is
often known instead or the bearing eccentricity is known but the attitude angle is unknown. In these
cases, a Newton-Raphson procedure is applied in order to find the equilibrium position of the shaft.

In order to solve the first-order equations governing the perturbed density field again a second-
order central differencing scheme is applied. The equations are second order, linear partial differential
equations and discretization directly leads to a linear system for the perturbed density requiring no
successive approximation method. In order to set up the linear system, however, the steady-state
solution needs to be computed first.

The complete procedure of computing the performance characteristics of a gas foil bearing can be
summarized using flow diagrams. In Figure 2.11 a flow diagram is shown indicating the steps in obtain-
ing the solution to the steady-state or zeroth order Reynolds equation. The diagram summarizes the
computation for a given external load to be supported by the bearing at a given rotational speed. The
different steps and iterative methods involved are indicated. Some of the steps shown in Figure 2.11
are numbered in green. In Table 2.3 an overview is given of the associated equations solved in the
corresponding steps. The rows of the table are ordered in accordance with the flow diagram. Some of
the most important parameters obtained upon solving the equations are indicated in the table as well.
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Figure 2.11: Flow diagram of the solution procedure used to obtain the steady-state bearing properties.

Step Objective In Iterative Loop Type of Model Parameters Solved For Equation
1a Discretize Reynolds equation Yes Partial differential equation 𝐴 (�⃗�) and �⃗� Equation 2.55

1b Update density field Yes Discretized linear system ⃗̄𝜌
𝑘+1

Equation 2.88

2
Update foil deflections and
film thickness Yes Algebraic 𝑤𝑑 and ℎ̄

Equation 2.58
& Equation 2.60

3
Compute thermodynamic
parameters Yes Thermodynamic software �̄� and �̄� RefProp/CoolProp

4
Check convergence of
density field Yes Algebraic | �̄�

𝑘+1−�̄�𝑘
�̄�𝑘 | Equation 2.89

5
Compute thin film
pressure distribution No Thermodynamic software �̄�0 RefProp/CoolProp

6 Compute load capacity No Integration 𝑊𝑥 and 𝑊𝑦
Equation 2.64
& Equation 2.65

Table 2.3: Summary of the steps and equations involved in computing the steady-state load capacity of a gas foil bearing.

The procedure for calculating the solution to the first-order perturbed Reynolds equation and ob-
taining the dynamic bearing characteristics is shown in Figure 2.12. The figure shows how the iterative
method is applied to approximate the shaft excitation frequency at which the bearing has zero equiva-
lent damping. The steps are again numbered in green to the right of the blocks. The numbers refer to
Table 2.4, which indicates the relevant equations that are solved at each step. Note that the equations
presented in the table are associated to the analysis of gas foil bearings. The relevant equations might
differ slightly for plain journal bearings as was shown in Table 2.2.
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Figure 2.12: Flow diagram of the solution procedure used to obtain the dynamic bearing properties.

Step Objective In Iterative Loop Type of Model Parameters Solved For Equation
1 Obtain steady-state solution No Steady-state analysis �̄�0, �̄�𝑇𝑒0, 𝐺0 and ℎ̄0 Table 2.3
2 Update excitation frequency Yes Root-finding procedure 𝜔𝑒𝑥 Newton-Raphson

3a
Discretize perturbed Reynolds
equations Yes Partial differential equation 𝐴 (�⃗�) and �⃗� Equation 2.63

3b
Solve both first order perturbed
Reynolds equations Yes Discretized linear system �̄�𝑥𝑎𝑛𝑑�̄�𝑦 Equation 2.87

4
Compute perturbed pressure
field Yes Thermodynamic software �̄�𝑥 and �̄�𝑦

Equation 2.72
& RefProp/CoolProp

5
Compute bearing stiffness
and damping coefficients Yes Integration 𝐾𝑖,𝑗 and 𝐶𝑖,𝑗

Equation 2.68 -
Equation 2.71

6
Check if equivalent damping
equals zero Yes Algebraic 𝑣 (𝜔𝑒𝑞) Equation 2.76

7 Compute critical mass No Algebraic 𝑚𝑐𝑟 Equation 2.77

Table 2.4: Summary of the steps and equations involved in computing the rotor-dynamic critical mass of a gas foil bearing.
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Results for Rigid Gas Bearings

Over the last decades, gas dynamic bearings have found application in small-scale turbomachinery
such as air cycle machines, environmental control systems or cryogenic pumps. For most of these
applications, the lubricant behaves like an ideal gas and there has been no necessity to investigate
the effects of non-ideal flows on the bearing performance. Modelling of bearings operating under
such conditions allowed the governing equations to be simplified considerably. Although there is an
increased interest in high-pressure gas lubrication in recent scientific literature, there is still a lack of
generalization of non-ideal thermodynamic effects on lubrication flows. In this chapter, the performance
of rigid gas bearings or plain journal bearings will be addressed. The focus is on how the bearing
performance is affected by non-ideal thermodynamic effects in terms of steady-state load capacity and
rotor-dynamic critical mass. The numerical results as obtained using the models presented in chapter 2
will be verified and interpreted from a conceptual point of view. Initially, the discussion will be limited
to laminar lubrication flows, followed by an analysis of the effects of turbulence in the final section of
the chapter.

3.1. Verification of the Numerical Model
The computational model developed in this research will be used as a tool for gaining understanding of
the physics in thin films of fluids in ideal and non-ideal thermodynamic conditions. Since there is little
experimental data available at this stage for validation purposes, the software tool will be verified using
numerical results available in scientific literature. The work of Guenat will be used to this end since his
work shows results including non-ideal thermodynamic effects on steady and dynamic characteristics
of plain journal bearings. [11] The solution of the Reynolds equation for laminar flows will be verified
first. Afterwards, the inclusion of turbulence effects through the turbulent correction factors will be
discussed.

The results presented in this section are for a plain journal bearing lubricated with the refrigerant
R134a. For the simulations including non-ideal thermodynamic effects a reduced temperature of 1.0
was considered. Values between 0.1 and 0.8 have been used for the reduced pressure. The considered
thermodynamic states are plotted on the reduced T-s thermodynamic plane of R134a along with the
contours of the generalized isentropic pressure-volume exponent in Figure 3.1.

3.1.1. Laminar Flow
The first simulation is done for a bearing operating at a compressibility number of Λ = 1. The shaft has
a non-dimensional eccentricity ratio of 𝜖 = 0.6. The pressure distribution is calculated at the mid-span
of the bearing as shown in Figure 3.2. Results are shown for a computation using non-ideal flow effects
with an ambient thermodynamic state of 𝑃𝑟 = 0.75 and 𝑇𝑟 = 1.0 in Figure 3.2a. The same computation
is done by applying the ideal gas assumption as shown in Figure 3.2b. The results show a decrease
in peak pressure and a redistribution of the pressure field for non-ideal flows. A good agreement is
shown between the computed results and the results presented by Guenat.

In order to characterize the influence of non-ideal thermodynamic effects and fluid compressibility
on the bearing load capacity, the load capacity ratio is introduced:

29
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Figure 3.1: Bearing operating conditions for R134a as used for verification plotted on the reduced T-s thermodynamic plane.
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Figure 3.2: Verification of the mid-span pressure distribution for non-ideal and ideal gasses.

�̄�𝑟 =
�̄�𝑛𝑔
�̄�𝑖𝑔

(3.1)

Where the subscripts 𝑛𝑔 and 𝑖𝑔 indicate non-ideal gas and ideal gas respectively. In Figure 3.3a
the load capacity ratio is plotted for R134a at 𝜖 = 0.2. The plot shows different values of the reduced
temperature and pressure corresponding to different degrees of fluid compressibility. A decreasing
trend is shown for the load capacity ratio versus compressibility number. The numerical results compare
well with the results of Guenat.

In Figure 3.3b the locus of eccentricity is shown upon increasing the applied load. The results
correspond to a bearing operating with R134a at Λ = 1. The components 𝜖𝑋 and 𝜖𝑌 relate to the
eccentricity 𝜖 and 𝜓 according to:

𝜖𝑋 = 𝜖 cos(𝜓)
𝜖𝑌 = 𝜖 sin(𝜓)

(3.2)

For increasing load on the bearing the eccentricity increases. The plot shows an initial attitude
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angle of almost 90 degrees with a decreasing trend with increasing load. The eccentricity and attitude
angle are shown to be different for different levels of fluid compressibility. Good agreement is obtained
between numerical results and the results of Guenat.
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Figure 3.3: Verification of Load capacity ratio and steady-state eccentricity.

In order to characterize the influence of fluid compressibility on the dynamic characteristics of
bearings, the critical mass ratio is introduced. The critical mass ratio specifies the ratio of the critical
mass for a bearing lubricated with a non-ideal gas to a bearing lubricated with an ideal gas:

�̄�𝑟 =
�̄�𝑐𝑟,𝑛𝑔
�̄�𝑐𝑟,𝑖𝑔

(3.3)

The critical mass ratio is plotted for a plain journal bearing lubricated with R134a at 𝜖 = 0.2 in
Figure 3.4. Note that the figure shows results of two different simulations. In Figure 3.4a the critical
excitation frequency at which instability occurs is found using a root finding procedure for the imaginary
part of the equivalent bearing impedance as explained in the previous chapter. Qualitatively, the trends
agree with the results of Guenat. However, there is a small offset between the presented results. A
possible explanation is the fact that there is a slight discrepancy between the excitation frequency
found. The critical mass is sensitive to changes in the ratio of excitation frequency to shaft rotational
speed as found in the root-finding procedure. In Figure 3.4b the same plot is shown in which the
normalized excitation frequency is tuned manually and a better agreement is shown. The normalized
excitation frequency as found manually is within 4% of the value found by a root finding procedure.
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Figure 3.4: Verification of the laminar critical mass ratio.
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3.1.2. Turbulent Flow
In order to investigate the effect of different Reynolds numbers on the bearing performance in a
conceptual way, the Reynolds number can be set manually within the developed computational tool.
In this section, the load capacity ratio and critical mass ratio are computed as a function of the bearing
compressibility number for different Reynolds numbers. The numerical results are again compared to
results presented by Guenat. [11]

The load capacity ratio for turbulent flow is presented in Figure 3.5. Results are shown for Reynolds
numbers of 𝑅𝑒 = 5000, 10000 and 20000. The plot shows a larger decrease in load capacity ratio for
increasing Reynolds numbers which will be discussed later in this chapter. A good agreement is shown
with the data from literature.
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Figure 3.5: Verification of the turbulent load capacity ratio at different Reynolds numbers.

Finally, the dynamic bearing performance is verified for bearings operating in the turbulent regime.
The critical mass ratio is plotted for Reynolds numbers of 𝑅𝑒 = 5000, 10000 and 20000 as shown
in Figure 3.6. Similar to the steady-state load capacity ratio, the critical mass ratio drops faster as
a function of compressibility number for increasing Reynolds numbers. Note that the plots show a
discrepancy with the results from literature similar to the laminar critical mass ratio presented before.
The discrepancy appears to be larger for increasing Reynolds numbers.

In Figure 3.7 the same plot is shown in which the normalized excitation frequency is tuned manually
to within 4% of the value found in a root finding procedure. In this way the agreement with data from
literature can be improved, reinforcing the hypothesis that the error is due to a discrepancy in critical
normalized excitation frequency. Note that although a slight offset is found in numerical results in the
comparison with the results of Guenat, the discrepancy seems to be relatively small for compressibility
numbers of interest. Given that the root finding procedure for obtaining the critical excitation frequency
is mathematically the correct way to obtain the critical mass, this procedure has been applied in all
subsequent analyses of bearing stability.
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Figure 3.6: Verification of the turbulent critical mass ratio.
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Figure 3.7: Verification of the turbulent critical mass ratio using manually set excitation frequency ratio.
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3.2. Steady-State Bearing Performance
In this section, the steady-state bearing performance will be addressed. The steady-state performance
is characterized by the bearing load capacity in this research. The basic principles of the generation
of hydrodynamic pressure in journal bearings are discussed along with the influence of non-ideal ther-
modynamic effects on the resulting pressure field. The non-dimensional bulk modulus is shown to be
the governing parameter introducing the non-ideal thermodynamic effects on bearing performance.

The results presented in this section are mostly for plain journal bearings lubricated with siloxane
MM. For the simulations including non-ideal thermodynamic effects a reduced temperature of 1.1 was
considered. For the reduced pressure, values between 0.5 and 2.2 have been considered in order to
illustrate the physical concepts. The aforementioned thermodynamic states are plotted on the reduced
T-s thermodynamic plane of siloxane MM along with the contours of the generalized isentropic pressure-
volume exponent in Figure 3.8.
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Figure 3.8: Bearing operating conditions for siloxane MM as considered in the current analysis plotted on the reduced T-s
thermodynamic plane.

3.2.1. Fundamental Operating Principles
The steady-state Reynolds equation (Equation 2.55) as derived in chapter 2 is repeated below. The
different terms related to Poiseuille flow and Couette flow are indicated in the equation.
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Couette Flow Term

(3.4)

As indicated in the equation, the fluid film is governed by the combined effects of Poiseuille flow and
Couette flow. In order to generate a converging gap, an offset exists between the centre of the rotor
and the centre of the bearing housing. This offset is referred to as the eccentricity. The driving Couette
flow drags the fluid into an aerodynamic wedge which results in increased hydrodynamic pressure as
illustrated in Figure 3.9. The largest pressures are typically found near the point of minimum film
thickness and as a result, a net pressure force is exerted on the rotor.

The trend of load capacity as a function of bearing eccentricity is shown in Figure 3.10. The
figure shows zero load capacity for a bearing at zero eccentricity. For a given rotational speed Ω or
bearing compressibility number Λ an increase in eccentricity will result in an increased non-dimensional
load capacity. Initially, a linear trend can be observed which ultimately gives way to a strong rise in
non-dimensional load capacity at large eccentricities. The plot also shows a larger sensitivity to the
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Figure 3.9: Schematic representation of the aerodynamic wedge action generating an increase in pressure.

lubricant thermodynamic state at large eccentricities. Note that increasing the load on the bearing for
a given rotational speed or reducing the rotational speed for a given bearing loading will result in larger
eccentricities.
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Figure 3.10: Effect of increasing shaft eccentricity on non-dimensional load capacity for a bearing lubricated with siloxane MM
at Λ = 3.0.

By increasing the compressibility number, the driving Couette flow will start to dominate the flow
physics in the Reynolds equation as indicated in Equation 3.4. The increasing compressibility number
will directly affect the pressure distribution in the fluid film. In Figure 3.11 the mid-span pressure
distribution is shown in a polar plot for a bearing lubricated with siloxane MM at an eccentricity of
𝜖 = 0.7. Increased bearing compressibility numbers lead to larger pressures. Note that the results are
plotted for operation at equal attitude angles.

The effect of increased compressibility number on load capacity is shown in Figure 3.12. The figure
shows results for a bearing lubricated with siloxane MM at 𝜖 = 0.2 A strong rise in non-dimensional
load capacity is shown for low speed numbers. At large rotational speed, the Couette flow becomes
dominant and the non-dimensional load capacity ultimately reaches a plateau.
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Figure 3.11: Effect of increasing bearing compressibility number on mid-span pressure distribution for siloxane MM at 𝑇𝑟 = 1.1
and 𝑃𝑟 = 0.5 with 𝜖 = 0.7.
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Figure 3.12: Effect of increasing bearing compressibility number on non-dimensional load capacity for a bearing lubricated with
siloxane MM at 𝜖 = 0.2.

3.2.2. Non-dimensional Bulk Modulus
In Figure 3.12 the results are plotted for bearings operating in the dense gas regime and for an ideal gas.
It is observed that the non-ideal flows exhibit a lower non-dimensional load capacity in particular for
large Λ. To see how the non-ideal thermodynamic effects influence the flow dynamics the compressible
Reynolds equation (Equation 3.4) is consulted. The equation shows that the non-dimensional bulk
modulus and dynamic viscosity are the only fluid properties that enter the computational model and
influence the resulting density field. In order to analyse the effect of the non-dimensional bulk modulus
the normalized density field is plotted at mid-span for a bearing lubricated with siloxane MM at Λ = 3.0
and 𝜖 = 0.7 assuming iso-viscous flow in Figure 3.13a. Results are shown for a computation assuming
ideal gas conditions as well as for 𝑃𝑟 = 0.5 and 𝑃𝑟 = 0.8 at 𝑇𝑟 = 1.1. Note that the two latter cases
correspond to a non-dimensional bulk modulus of �̄� = 0.86 and �̄� = 0.76 respectively. The figure
shows an increase in the maximum density for a decrease in non-dimensional bulk modulus. Referring
to Equation 3.4 this increased density can be attributed to a decreased Poiseuille flow. The Poiseuille
flow components in the Reynolds equation have a diffusive nature and therefore act to smoothen
out the density field. A reduced non-dimensional bulk modulus corresponds to a fluid with increased
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compressibility and this effectively has a similar impact as increasing the compressibility number Λ in
the Reynolds equation.
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(a) Mid-span density distribution.
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Figure 3.13: Mid-span non-dimensional density and pressure distributions for siloxane MM with Λ = 3.0 and 𝜖 = 0.7 at different
reduced reference pressures.

Although a decreased non-dimensional bulk modulus leads to an increase in maximum density in the
fluid film, Figure 3.13b shows a decreased maximum pressure for the 𝑃𝑟 = 0.5 and 𝑃𝑟 = 0.8 solutions.
The increased compressibility of the fluid closer to the thermodynamic critical point results in larger
densities but lower peak pressures. In order to investigate the effects on overall load capacity from a
different perspective, the ratio of non-ideal to ideal load capacity is used:

�̄�𝑟 =
�̄�𝑛𝑔
�̄�𝑖𝑔

(3.5)

The load capacity ratio is plotted for siloxane MM operating at different thermodynamic states
in Figure 3.14. As a result of the reduced peak pressures compared to an ideal gas the solutions for
𝑃𝑟 = 0.5 and 𝑃𝑟 = 0.8 show load capacity ratios below one. The effect is more pronounced at increasing
bearing speed numbers Λ as the driving Couette flow generates larger densities and therefore locally
the influence of fluid compressibility is increased. Furthermore, a solution is shown for super-critical
siloxane at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 2.2. This bearing is operating with large densities in the liquid-like part of
the super-critical regime where the non-dimensional bulk modulus is increased to �̄� = 1.07 resulting in
load capacity ratios larger than one. Increased values of the bulk modulus result in larger film pressures
and therefore larger load capacity. Due to its association with increased pressure variations for given
density variations the bulk modulus is sometimes referred to as the stiffness of the fluid.

Contour plots of the non-dimensional bulk modulus are visualized on the reduced T-s thermodynamic
plane for siloxane MM using NiceProp in Figure 3.15.[3] For large temperatures and low pressures the
plot shows values of non-dimensional bulk modulus closer to one. In the limit of an ideal gas, the
non-dimensional bulk modulus is equal to one, as:

�̄�𝑟𝑒𝑓 ≡
𝜌𝑟𝑒𝑓
𝑝𝑟𝑒𝑓

𝜕𝑝
𝜕𝜌|𝑇

=
𝜌𝑟𝑒𝑓
𝑝𝑟𝑒𝑓

𝑅𝑇𝑟𝑒𝑓 = 1 for an ideal gas. (3.6)

Near the saturated vapour line and in the proximity of the thermodynamic critical point the fluid
exhibits increased compressibility leading to values of �̄� < 1 with a limiting value of �̄�𝑐 = 0 at the
critical point. For super-critical fluids, the non-dimensional bulk modulus can be either lower than or
larger than the value for ideal gasses. In particular Figure 3.15 shows strongly increasing values in the
liquid-like regime where the fluid increasingly behaves like an incompressible medium.
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Figure 3.14: Effect of fluid compressibility on load capacity ratio for a bearing lubricated with siloxane MM at 𝜖 = 0.2.
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Figure 3.15: Contour plots of non-dimensional bulk modulus on the T-s thermodynamic plane for siloxane MM.

3.2.3. Effect of Molecular Interactions
In scientific literature on thermodynamics, the fluid compressibility factor 𝑍 is often used as a measure
of non-ideality of a gas. The compressibility factor is defined such that:

𝑝 = 𝑍𝜌𝑅𝑇 (3.7)

The compressibility factor is plotted for siloxane MM as a function of reduced pressure for different
values of reduced temperature in Figure 3.16. From the definition of the compressibility factor the
relation between non-dimensional bulk modulus and compressibility factor can be derived:

�̄� = 1 + 1
𝑍
𝜕𝑍
𝜕�̄� |𝑇

(3.8)

The non-dimensional bulk modulus and compressibility factor are plotted together in Figure 3.17
for siloxane MM at 𝑇𝑟 = 1.1 and 𝑇𝑟 = 1.3.
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Figure 3.16: Compressibility factor as a function of reduced pressure for siloxane MM.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Pr

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Z, 

Z, Tr = 1.1
, Tr = 1.1

Z, Tr = 1.3
, Tr = 1.3

Figure 3.17: Comparison between non-dimensional bulk modulus and compressibility factor for siloxane MM.

For ideal gasses the volume of the gas molecules is negligible and there are no inter-molecular
forces. In practice, this assumption becomes reasonable for gasses with increasingly low pressures
(𝑃𝑟 → 0). Figure 3.17 illustrates that the compressibility factor and non-dimensional bulk modulus both
equal one for this limiting case. In Figure 3.19 the qualitative behaviour of inter-molecular forces is
shown as a function of distance between the molecules. Ideal gasses fit in this figure for the limit as
𝑅 → ∞. As the reduced pressure and therefore density is increased, the distance between molecules
decreases and the intermolecular forces are no longer negligible causing the ideal gas assumption to
break down. As shown in Figure 3.19 and schematically in Figure 3.18a the attractive forces between
molecules become dominant causing both the compressibility factor and non-dimensional bulk modulus
to drop below one. As the density is increased much further the volume of the gas particles becomes
non-negligible relative to the volume of the gas causing repulsive forces between molecules. At a
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certain value of reduced pressure for a given reduced temperature, the attractive and repulsive forces
cancel out and the net inter-molecular force is zero. This corresponds to the minimum point of the

compressibility factor 𝑍. Since 𝜕𝑍
𝜕�̄� |

𝑇
= 0 at this point, Equation 3.8 states that the non-dimensional

bulk modulus is equal to one. Although the ideal gas hypotheses are invalid at this point, the inter-
molecular forces approximately cancel out and the non-dimensional bulk modulus has a value equal to
the ideal gas value. Upon further increase of the density the repulsive forces between molecules start
to dominate as illustrated schematically in Figure 3.18b causing both 𝑍 and �̄� to increase. In the limit
as the reduced pressure keeps increasing the fluid will behave more and more like an incompressible
medium.

(a) Attractive forces between molecules. (b) Repulsive forces between molecules.

Figure 3.18: Dominant molecular interactions for different fluid regimes.
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Figure 3.19: Inter-molecular forces as a function of distance between molecules.

The effect of the non-dimensional bulk modulus on the load capacity ratio can be visualized by
plotting contours of the load capacity ratio on the reduced T-s thermodynamic plane as shown in
Figure 3.20 for a plain journal bearing operating at Λ = 3.0 and 𝜖 = 0.2 for siloxane MM. For bearings
operating near the saturated vapour line, partial condensation of the gas film can occur as a result of
the isothermal compression. Since the compressible Reynolds equation Equation 3.4 does not account
for condensation these results have been discarded. Note that a strong reduction of load capacity
is shown in the proximity of the thermodynamic critical point where the compressibility of the fluid
is significant. A strong increase in load capacity is shown in the liquid-like part of the super-critical
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flow regime where the fluid becomes incompressible. A strong similarity can be observed in qualitative
behaviour between load capacity ratio in Figure 3.20 and non-dimensional bulk modulus in Figure 3.15.
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Figure 3.20: Contours of load capacity ratio on the T-s thermodynamic plane for siloxane MM with 𝜖 = 0.2 and Λ = 3.0.

3.2.4. Effect of Working Fluid
In Figure 3.21 the compressibility factor and non-dimensional bulk modulus are plotted for hydrogen,
carbon-dioxide and siloxane MM as a function of reduced pressure for 𝑇𝑟 = 1.1. The three fluids
have different molecular complexities with siloxane having the largest molecular weight, followed by
carbon dioxide and hydrogen. For larger molecular weights, the slope of the vapour saturation line in
the reduced T-s plane tends to be positive, whereas it is negative for simple fluids like hydrogen as
illustrated in Figure 3.22. The different molecular complexity of the fluid influences the distribution of
�̄� on the reduced T-s plane as shown for hydrogen and carbon dioxide in Figure 3.23.
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Figure 3.21: Compressibility factor and non-dimensional bulk modulus for fluids with different molecular complexities.

If the dynamic viscosity is assumed constant throughout the gas film, the non-dimensional bulk
modulus is the only parameter introducing differences between working fluids. In the limit of an ideal
gas, the variation of the non-dimensional bulk modulus throughout the gas film can be written as:
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�̄� = 𝜌
𝑝𝑟𝑒𝑓

𝜕𝑝
𝜕𝜌|𝑇

= 𝜌
𝑝𝑟𝑒𝑓

𝑅𝑇𝑟𝑒𝑓 =
𝜌
𝜌𝑟𝑒𝑓

= �̄� for an ideal gas (3.9)

Since the Reynolds equation is solved for the density field, the evaluation of the bulk modulus in
the numerical procedure no longer requires the use of a fluid library and the solution is independent
from the type of working fluid for a given compressibility number Λ.
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Figure 3.22: Saturation dome for fluids of different molecular complexity in the reduced T-s plane.
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Figure 3.23: Contour plots of non-dimensional bulk modulus for hydrogen and carbon-dioxide.

3.2.5. Effect of Bearing Width
Finally, the influence of the bearing width on the steady-state load capacity is addressed. In Figure 3.24
the non-dimensional load capacity divided by the axial width to diameter ratio is plotted for siloxane
MM at 𝜖 = 0.2. For increasing bearing width, this ratio asymptotically reaches a constant value. If the
bearing gets narrower, however, this ratio is decreased as a result of the dominating axial leakage flow.
This leakage flow is a direct result of the axial pressure gradients and is modelled within the Reynolds
equation through the presence of the axial Poiseuille flow. For small values of 𝐿/𝐷, Figure 3.24 shows
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a reduction in the influence of the non-ideality of the fluid flow. The reduced peak pressures generated
in compressible fluids are compensated by the reduced axial leakage flow that these peak pressures
generate.
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Figure 3.24: Effects of bearing width on non-dimensional load capacity.

The leakage flow caused by finite bearing widths leads to the undesirable effects of reduced load
capacity and reduced stability, particularly for small bearings. Another type of rigid bearing that shows
promising performance characteristics, particularly for such small-scale bearings is the herringbone
grooved journal bearing as shown in Figure 3.25. [4] Within such a bearing, grooves are machined
onto the surface of the rotor or bearing housing. Under the action of the driving Couette flow the
fluid entrapped within the grooves cannot move exactly in the circumferential direction. Instead, it will
follow the geometry of the grooves towards the centre of the bearing. In this way, the gas is effectively
pumped towards the centre of the bearing leading to larger peak pressures or reduced axial leakage
flows which in turn lead to an increased load capacity and bearing stability.

Figure 3.25: Herringbone grooved journal bearing of EPFL.[4]

3.3. Dynamic Bearing Performance
In this section, the dynamic characteristics of plain journal bearings are documented and discussed.
The stiffness and damping characteristics are computed numerically with the developed software tool.
The non-dimensional critical mass is used in order to analyse the non-ideal thermodynamic effects on
bearing stability.
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3.3.1. Fundamental Operating Principles
As discussed in the previous chapter, the small harmonic motions of the shaft around its equilibrium
position introduce perturbations in the density and pressure field. These perturbations cause reaction
forces which are introduced in the linearized rotor-dynamic equations of motion through the stiffness
and damping coefficients. The schematic in Figure 3.26 shows a simplified analogy between the bearing
impedances and a mechanical spring damper system. The impedances consist of the direct stiffness
and damping coefficients (𝑘𝑥𝑥 , 𝑘𝑦𝑦 , 𝑐𝑥𝑥 , 𝑐𝑦𝑦) and the cross-coupled stiffness and damping coefficients
(𝑘𝑥𝑦 , 𝑘𝑦𝑥 , 𝑐𝑥𝑦 , 𝑐𝑦𝑥). The cross-coupled impedances are responsible for the potential occurrence of an
instability which is characteristic for journal bearings.

Figure 3.26: Analogy between bearing impedances and mechanical spring-damper systems.

In Figure 3.27 the bearing impedances are plotted as a function of compressibility number Λ. The
bearing is lubricated with siloxane MM with 𝑃𝑟 = 0.5 and 𝑇𝑟 = 1.1 at 𝜖 = 0.2. The direct stiffness
is small in both directions for low compressibility numbers and increases with Λ. The magnitude of
the cross-coupled stiffness increases rapidly at low compressibility numbers, reaches a maximum, and
then drops again as Λ increases. The trends in the behaviour of the direct and cross-coupled damping
coefficients are switched as compared to the stiffness coefficients.
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Figure 3.27: Non-dimensional stiffness and damping coefficients for a bearing lubricated with siloxane MM at 𝑇𝑟 = 1.1 and
𝑃𝑟 = 0.5 with 𝜖 = 0.2.

The increase of the direct stiffness is analogous to the increase in non-dimensional load capacity
as presented in the previous section. As the bearing compressibility number is increased the driving
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Couette flow will generate larger peak pressures for a change in bearing position which translates into
a larger bearing stiffness. The same trend is observed for the cross-coupled stiffness for low Λ.

The occurrence of the cross-coupled stiffness components can be explained by analysing the at-
titude angle of the bearing. In Figure 3.28 the attitude angle is plotted as a function of the bearing
compressibility number. For small Λ the attitude angle reaches values of almost 90∘ whereas 𝜓 de-
creases asymptotically to zero for infinitely large speed numbers. The effect of an increased attitude
angle is a more asymmetrical loading condition which leads to increased cross-coupling of stiffness
components.
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Figure 3.28: Attitude angle as a function of compressibility number for a plain journal bearing lubricated with siloxane MM at
𝜖 = 0.2.

The effect of cross-coupled stiffness is shown schematically in Figure 3.29. A small perturbation
of the rotor from its equilibrium position causes a reaction force in an orthogonal direction which can
lead to an elliptical rotor orbit around the equilibrium eccentricity. This motion can become unstable
leading to growing amplitudes of the rotor orbits. This instability is often referred to as sub-synchronous
vibration or half-frequency whirl as this motion typically occurs at a frequency of about half the shaft
speed.

Figure 3.29: Schematic illustration of sub-synchronous whirling motions in a journal bearing.



46 3. Results for Rigid Gas Bearings

In order to analyse the effects of non-ideal flows on bearing stability it is useful to consider the
physical phenomenon responsible for large attitude angles and cross-coupled stiffness. In Figure 3.30
a schematic is shown of a plain journal bearing supporting an externally applied load𝑊𝑒𝑥𝑡. The bearing
is at an equilibrium eccentricity 𝜖 and attitude angle 𝜓 as shown in the figure. The figure illustrates
two distinct regions of the gas film. Region 1 is upstream of the point of minimum film thickness
and experiences a positive circumferential pressure gradient. Region 2 is downstream of the point of
minimum film thickness and experiences a negative circumferential pressure gradient.

Figure 3.30: Schematic of a bearing at attitude angle 𝜓 supporting an external load 𝑊𝑒𝑥𝑡. Regions 1 and 2 experience positive
and negative circumferential pressure gradients, respectively.

The adverse pressure gradient in region 1 causes the pressure-induced Poiseuille flow to be in the
opposite direction of the driving Couette flow. In region 2 the pressure gradient is favourable and the
Poiseuille and Couette flow are in the same circumferential direction. An exaggerated representation
of the velocity profiles over the film thickness for both regions is shown in Figure 3.31. A mean velocity
over the film thickness can be defined as:

𝑢𝑚 =
1
ℎ ∫

ℎ

0
𝑢𝑑𝑦 (3.10)

And the mean velocity in region 1 will be smaller than in region 2:

𝑢𝑚,1 < 𝑢𝑚,2 (3.11)

If region 1 and 2 are taken at circumferential locations such that the film thicknesses are equal,
conservation of mass requires the mass fluxes to be equal which in turn requires the density in region
1 to be larger than in region 2:

𝜌1𝑢𝑚,1 = 𝜌2𝑢𝑚,2
𝜌1 > 𝜌2

(3.12)

The increased density causes increased pressure and an asymmetrical loading condition. The pre-
vious argument shows the connection between large attitude angles and large Poiseuille flow com-
ponents. Increasing the compressibility number reduces the relative importance of the Poiseuille flow
terms in the Reynolds equation and leads to smaller differences in density and pressure between region
1 and 2.

3.3.2. Non-dimensional Bulk Modulus & Compressibility Number
The reduced attitude angle and cross-coupled stiffness at larger bearing speed numbers are reflected
in Figure 3.32 which shows the non-dimensional critical mass for a bearing lubricated with siloxane
MM at 𝜖 = 0.2. By increasing the compressibility number the non-dimensional mass threshold for
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Figure 3.31: Exaggerated velocity profiles over the film thickness for region 1 and 2 corresponding to positive and negative
pressure gradients.

instability increases. At infinitely large Λ the non-dimensional critical mass asymptotically reaches a
constant value which is in agreement with the observation in Figure 3.27 where the direct stiffness and
cross-coupled damping reach a plateau and the cross-coupled stiffness and direct damping reduce to
near zero. The figure shows results for ideal gasses as well as for non-ideal flows at 𝑇𝑟 = 1.1 with
𝑃𝑟 = 0.5, 𝑃𝑟 = 0.8 and 𝑃𝑟 = 2.2. Note that the effect of the non-ideal thermodynamic state of the fluid
is either to increase or decrease the bearing stability depending on the non-dimensional bulk modulus
and bearing compressibility number.
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Figure 3.32: Non-dimensional critical mass as a function of bearing compressibility number at 𝜖 = 0.2 for a bearing lubricated
with siloxane MM.

To investigate the effect of fluid compressibility the critical mass ratio is plotted in Figure 3.32 for
a bearing operating in the aforementioned thermodynamic conditions. The figure shows a decreased
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stability for fluids with �̄� < 1 and an increased stability for fluids with �̄� > 1 relative to an ideal gas for
large Λ. Interestingly, the opposite is true for small Λ.
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Figure 3.33: Critical mass ratio as a function of bearing compressibility number at 𝜖 = 0.2.

The increased or decreased stability as a result of the compressibility of the fluid as a function of Λ
can be explained by using the ratio of non-ideal to ideal attitude angle:

�̄�𝑟 =
𝜓𝑛𝑔
𝜓𝑖𝑔

(3.13)

The ratio of attitude angles is plotted in Figure 3.33. Note that 𝜓𝑟 tends to one for infinitely large
values of Λ which is beyond the range of values shown on the horizontal axis in the figure. The
reduced attitude angle and therefore increased stability at low Λ for �̄� < 1 can be explained using two
arguments. First, the reduced values of �̄� cause a reduced significance of the Poiseuille flow term in
the Reynolds equation Equation 3.4. As discussed earlier, this causes a more symmetric density field
between regions upstream and downstream of the point of minimum film thickness. Furthermore,
the increased compressibility of the fluid causes a lower peak pressure responsible for the asymmetry
which ultimately leads to a reduced attitude angle as compared to an ideal gas with �̄� = 1.

This favourable effect of fluid compressibility fades out at large bearing speed numbers since the
attitude angle naturally reduces under such conditions. The compressibility of the fluid then acts mainly
to reduce the direct stiffness components causing a more unstable bearing.

Contours plots of the critical mass ratio on the reduced T-s thermodynamic plane have been created
using NiceProp for two different operating conditions. In Figure 3.35a the critical mass ratio is shown
for siloxane MM at 𝜖 = 0.2. In Figure 3.35b the same contour plot is shown for a bearing operating
at Λ = 3.0. The different flow regimes become apparent by comparing the figures. For Λ = 0.1 an
increased relative stability is shown for compressible fluids as a result of the Poiseuille flow dominated
lubricating flow. For Λ = 3.0 the Couette flow has become dominant and the plot shows reduced
stability for increased compressibility in proximity to the thermodynamic critical point.
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Figure 3.34: Normalized attitude angle for siloxane MM at different operating conditions with 𝜖 = 0.2.
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Figure 3.35: Contours of critical mass ratio on the T-s thermodynamic plane for siloxane MM with 𝜖 = 0.2 at Λ = 0.1 and Λ = 3.0.

3.4. Effect of Viscosity
In the previous sections, the discussion mainly focused on the effect of the non-dimensional bulk
modulus to characterize the non-ideal thermodynamic effects. The presented results assumed iso-
viscous flow in which the dynamic viscosity did not vary throughout the gas film. In Equation 3.4 it
can be seen, however, that the dynamic viscosity does enter the Reynolds equation. In this section,
the effect of viscosity variations throughout the lubricating film will be discussed.

In order to see how the viscosity might influence the load capacity and critical mass of a bearing, the
dynamic viscosity is plotted relative to the viscosity of ambient pressure air in Figure 3.36 for siloxane
MM using NiceProp. It is shown that the viscosity changes are relatively modest and mostly a function
of temperature in the dense gas regime but they can become significant for super-critical fluids in the
liquid-like regime.

In the limiting case of an ideal gas, the dynamic viscosity is typically modelled by Sutherland’s law
as shown in Equation 3.14. [32] The law is derived using kinetic theory and idealized inter-molecular
force potentials. It shows that for an ideal gas, viscosity is a function of temperature only and is
independent from pressure and density. It was shown in the previous section that the non-dimensional
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Figure 3.36: Contour plots of normalized dynamic viscosity on the T-s thermodynamic plane relative to sea level pressure air.

bulk modulus reduces to the non-dimensional density and therefore there is no dependency on the type
of working fluid if the gas behaves in an ideal way. Sutherland’s law implies that, for an ideal gas, the
iso-thermal analysis does not model any viscosity variations throughout the gas film. The normalized
dynamic viscosity will be one throughout the domain and its evaluation no longer requires the use of a
fluid library. The resulting load capacity and critical mass will therefore be independent from the type
of working fluid for an ideal gas and the solution of the Reynolds equation does not require the use of
a thermodynamic software program.

𝜇
𝜇𝑟𝑒𝑓

= ( 𝑇
𝑇𝑟𝑒𝑓

)
3/2 𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆 (3.14)

For a non-ideal gas, the variations in viscosity should, in theory, be taken into account by using
the fluid library. In practice, however, the changes in viscosity as a function of density are relatively
small for the practical bearing speed numbers of interest in this research. For the effect of variations in
viscosity to be significant in terms of the resulting bearing characteristics, the bearing would typically
operate in the super-critical regime. Furthermore, the compressibility number Λ should be large in
order to facilitate the iso-thermal compression required to achieve substantial viscosity gradients. It
should be noted, however, that under these conditions the assumption of negligible thermal expansion
in the thin film as presented in section 2.2 might not hold.

3.5. Turbulence Effects
In the analysis presented in the previous sections, the thin film flow was assumed to be laminar.
However, the regions where flow non-ideality becomes relevant are typically characterized by high
densities and pressures. Furthermore, some fluids of interest can have low values of viscosity. NASA
has performed experimental research on the power losses in gas foil bearings operating at increased
pressures. [18] The experiments show that at increased pressures the inertia of the flow is no longer
negligible relative to the viscous shear stresses. The fluid inertia can cause transition to occur in the gas
film, ultimately leading to turbulent flow. In this section, the effects of fluid inertia are considered by
introducing the turbulence correction factors into the solution of the Reynolds equation. The effects of
varying Reynolds number on bearing load capacity and critical mass is discussed. Finally, the connection
between flow non-ideality and turbulence in plain journal bearings is addressed.

In order to investigate the effect of different Reynolds numbers, the ambient Reynolds number
based on the rotor rotational speed Ω and nominal bearing clearance ℎ0 is recalled:
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𝑅𝑒 =
𝜌𝑟𝑒𝑓Ω𝑅ℎ0
𝜇𝑟𝑒𝑓

(3.15)

Note that the local Reynolds number can vary throughout the gas film since properties such as the
film thickness, density and viscosity can change.

3.5.1. Effect on Steady-State Characteristics
In Figure 3.37 the non-dimensional load capacity is shown for a bearing lubricated with siloxane MM
at 𝑃𝑟 = 0.5 and 𝑇𝑟 = 1.1. Results are plotted for laminar flow and for turbulent flow at 𝑅𝑒 = 5000 and
𝑅𝑒 = 15000. The figure shows an increased load capacity at low bearing compressibility numbers as a
result of the turbulent flows. For larger Reynolds numbers the increase becomes more significant. As
the bearing speed number increases the effects of Reynolds number on load capacity diminishes and
in the limit for very large Λ the laminar and turbulent solutions approach the same constant value.
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Figure 3.37: Non-dimensional load capacity for siloxane MM at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 0.5 with 𝜖 = 0.2 for various ambient Reynolds
numbers.

The effect of turbulence on the Reynolds equation can be explained by reference to Equation 3.4.
The turbulence correction factors 𝐺0𝑥 and 𝐺0𝑧 appear in the circumferential and axial Poiseuille flow
terms respectively. Note that according to Equation 2.42 and Equation 2.43 the turbulence correction
factors will have values smaller than one. Consequently, the effect of turbulent flow in the Reynolds
equation is to decrease the significance of the Poiseuille flow terms. Turbulence effects in the Reynolds
equation, therefore, seem to have a similar effect as the bearing speed number Λ and decreases in the
non-dimensional bulk modulus as discussed in the previous sections.

The effects of turbulence on the Reynolds equation can be explained by reference to Figure 3.38.
The figure shows the qualitative shapes of the velocity profiles for laminar and turbulent Poiseuille and
Couette flows. The effect of the turbulent fluctuations in the flow is to transport kinetic energy to the
walls. This leads to increased velocity gradients and wall shear stresses as indicated in the figure.
Similar to the previous section, a mean velocity over the film thickness can be defined as:

𝑢𝑚 =
1
ℎ ∫

ℎ

0
𝑢𝑑𝑦 (3.16)

For pure Couette flow it can be shown that this mean velocity over the film thickness is equal for
laminar and turbulent flow:

𝑢𝑚,𝑡𝑢𝑟𝑏 = 𝑢𝑚,𝑙𝑎𝑚 (3.17)
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Poiseuille Flow Couette Flow

Figure 3.38: Qualitative shapes of the velocity profiles for laminar and turbulent Poiseuille and Couette flow.

For pure Poiseuille flow, however, the turbulence effectively acts as an increased viscosity leading to
more resistance to pressure induced flow. The result is a decreased mean velocity for Poiseuille flow:

𝑢𝑚,𝑡𝑢𝑟𝑏 < 𝑢𝑚,𝑙𝑎𝑚 (3.18)

Within the Reynolds equation, the driving Couette flow therefore becomes increasingly dominant
for increased Reynolds numbers. This in turn leads to larger peak density and pressures generated
within the gas film with an increased load capacity as indicated in Figure 3.37 as a result. Since the
Poiseuille flow terms within the Reynolds equation naturally become less significant at large Λ, the
effect of turbulence at a given Reynolds number for larger bearing compressibility numbers becomes
less important. Note, however, that increasing the bearing compressibility number in practice typically
means operating the bearing at a larger rotational speed which will also increase the ambient Reynolds
number.
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Figure 3.39: Attitude angle for siloxane MM at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 0.5 with 𝜖 = 0.2 for various ambient Reynolds numbers.

3.5.2. Effect on Dynamic Characteristics
In Figure 3.39 the attitude angle is plotted for the laminar and turbulent flow cases. The figure shows a
significant decrease in attitude angle for moderate values of Λ which is in agreement with the discussion
of the previous sections where the reduction in attitude angle was linked to a reduced pressure flow.
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Figure 3.40: Non-dimensional critical mass for siloxane MM at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 0.5 with 𝜖 = 0.2 for various ambient Reynolds
numbers.

The effect of turbulent flows on bearing stability is analysed by reference to the non-dimensional
critical mass in Figure 3.32. The results are plotted again for siloxane MM at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 0.5
for 𝜖 = 0.2. An increased stability is shown for low values of Λ whereas the stability is reduced as
compared to laminar flows for large Λ.
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(a) Non-dimensional direct stiffness.
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Figure 3.41: Non-dimensional direct and cross-coupled stiffness coefficients for a bearing lubricated with siloxane MM at 𝑇𝑟 = 1.1
and 𝑃𝑟 = 0.5 with 𝜖 = 0.2 at various Reynolds numbers.

In order to conceptualize the effects of turbulence on bearing stability the stiffness and damping
coefficients are plotted for laminar and turbulent flows. The stiffness coefficients are compared in
Figure 3.41 and the damping coefficients are shown in Figure 3.42. The figures show that the direct
stiffness coefficients are larger for turbulent flows at low Λ and asymptotically reach equal values for
large Λ. This trend is analogous to the trend of non-dimensional load capacity as discussed earlier.
The cross-coupled stiffness coefficients peak at lower bearing speed numbers for turbulent flows. As Λ
increases after this peak, the turbulent flows show smaller cross-coupling between the two orthogonal
directions which might explain the increased stability observed in Figure 3.40 for low speed numbers.

The plots of non-dimensional damping coefficient indicate a quicker rise of both direct and cross-
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Figure 3.42: Non-dimensional direct and cross-coupled damping coefficients for a bearing lubricated with siloxane MM at 𝑇𝑟 = 1.1
and 𝑃𝑟 = 0.5 with 𝜖 = 0.2 at various Reynolds numbers.

coupled damping coefficients at small bearing speed numbers. The direct damping coefficients peak
at relatively low Λ and are significantly smaller for turbulent flows as Λ increases to moderate values.
Furthermore, the cross-coupled damping coefficients seem to be slightly larger in magnitude for larger
Reynolds numbers. Since the cross-coupled damping coefficients seem to have a detrimental effect
and the direct damping a beneficial effect in terms of stability this might explain the reduced critical
mass in Figure 3.40 for moderately increased compressibility numbers.

3.5.3. Connection with Non-Ideal Thermodynamic Effects
The connection between turbulence and non-ideal thermodynamic effects is shown in Figure 3.43.
Similar results have first been presented for R134a at comparable conditions by Guenat.[11] The plots
show a stronger decrease in load capacity and critical mass ratios at low compressibility numbers for
turbulent flows. This trend can again be explained by the larger pressure flows for low Reynolds num-
bers leading to a smoother density and pressure field. Larger variations and increased peak densities
for turbulent flows will introduce the effect of flow non-ideality in a more significant way as indicated
in the figures.
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Figure 3.43: Load capacity and critical mass ratios for a bearing lubricated with siloxane MM at 𝑇𝑟 = 1.1 and 𝑃𝑟 = 0.5 with
𝜖 = 0.2 at various Reynolds numbers.

The contours of load capacity and critical mass ratios for turbulent flow at 𝑅𝑒 = 15000 are plotted
on the reduced T-s thermodynamic plane in Figure 3.44. Comparing these figures to the same plots of
a laminar flow bearing operating at similar conditions in Figure 3.20 and Figure 3.35b it is observed that
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both load capacity and critical mass ratios deviate from unity more significantly, indicating the more
pronounced effect of non-ideal flows in turbulent flow lubrication.
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(a) Load capacity ratio.
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Figure 3.44: Contours of load capacity and critical mass ratio on the reduced T-s thermodynamic plane for siloxane MM with
𝜖 = 0.2 and Λ = 3.0 for turbulent flow at Re = 15000.

3.6. Chapter Conclusion
In this chapter, the performance characteristics of rigid gas bearings have been considered. The nu-
merical solver was verified using openly available data from scientific literature. The impact of non-ideal
thermodynamic effects on the non-dimensional load capacity and critical mass of plain journal bearings
was discussed.

The non-ideal thermodynamic effects affect bearing performance mainly through the non-dimensional
bulk modulus. Compressible flows in the dense gas regime or near the thermodynamic critical point
typically have a non-dimensional bulk modulus smaller than one whereas super-critical fluids in the
liquid-like regime can have values larger than one. In the limit of an ideal gas, the non-dimensional
bulk modulus becomes exactly equal to one. Values of the non-dimensional bulk modulus smaller than
one typically act to reduce the load capacity as compared to ideal gasses. The same is true for the
critical mass parameter at large compressibility numbers. Dynamic viscosity is shown to have limited
influence when it comes to introducing non-ideal thermodynamic effects in thin films.

For high-pressure gasses, the thin lubrication film can become turbulent. Increased Reynolds num-
bers are shown to increase the non-dimensional load capacity at low bearing numbers. The stability
of the bearing is either increased or decreased depending on whether the compressibility number is
small or large. Turbulence has the tendency to increase the significance of non-ideal thermodynamic
effects in thin film flows.





4
Results for Gas Foil Bearings

For practical applications, plain journal bearings typically lack sufficient stability and load capacity for
reliable operation. Compliant foundations as used in gas foil bearings can be designed to significantly
increase the bearing load capacity and stability.[9] In order to tailor the stiffness of the bump foil
structure as done in second or third-generation gas foil bearings a numerical tool capturing the relevant
fluid-structure interaction would be useful. In this chapter, the numerical model for gas foil bearings as
discussed in chapter 2 is verified. Furthermore, the characteristics of the compliant bearings such as
load capacity and attitude angle will be analysed and compared to plain journal bearings. The current
work focuses on the analysis of so-called first-generation gas foil bearings in which the bump foil
stiffness is uniform in both axial and circumferential directions. Up till now, the analysis has been done
using non-dimensional numbers which allowed for conceptual understanding of the ongoing physical
phenomena. In the final section of this chapter, the dimensional load capacity will be computed for gas
foil bearings of suitable dimensions for operation with the laboratory mini-ORC turbine of the ORCHID
facility of the TU Delft.

4.1. Verification
The simple elastic foundation model of the compliant bump foil will be verified by comparison with data
from scientific literature. In particular, the work of Kim and San Andrés is used as a reference.[5] In
their work a heavily loaded gas foil bearing operating with ambient pressure air is simulated. Results
of the static load are plotted versus the minimum film thickness, attitude angle and journal eccentricity.
For the dynamic bearing characteristics the stiffness and damping coefficients are plotted as a function
of excitation frequency. Kim and San Andrés have validated their data using experimental test results.

The steady-state bearing characteristics are calculated first using the developed numerical model.
The results are plotted along with the reference data in Figure 4.1. The figures show the dimensional
journal eccentricity, attitude angle and minimum film thickness plotted against the load capacity. The
dimensions and operating conditions of the gas foil bearing under consideration are summarized in
Table 4.1.

Parameter Value
Bearing Radius, 𝑅 19.05 𝑚𝑚
Bearing Width, 𝐿 38.1 𝑚𝑚
Nominal Bearing Clearance, ℎ0 31.8 𝜇𝑚
Compliance Ratio, 𝑆 0.67
Rotational Speed, Ω 30000 RPM
Loss Coefficient, 𝛾𝑆 0.0

Table 4.1: Bearing parameters used in the work of Kim and San Andrés. [5]

The figures show an increasing bearing load capacity for an increasing journal eccentricity as was
also observed for plain journal bearings in the previous chapter. Note that the journal eccentricity
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is increased significantly beyond the nominal bearing clearance indicating that the bearing is heavily
loaded. Increasing the eccentricity beyond the nominal bearing clearance is possible only if the bump
foil deflections are large enough to avoid physical contact. In order to compute the density and pressure
field within the gas film of a bearing operating at such conditions it was found that the relaxation factor
in the Gauss-Seidel iterative method had to be reduced to 𝜅 ≈ 0.1 in order for the solution to converge.
In particular, during the first iterations of the numerical procedure, under-estimation of the pressure
in the minimum film thickness region can lead to under-estimation of the structural deflections. This
in turn causes the calculated local film thickness to be negative leading to divergence of the solution.
Proper initialization of the density field along with sufficient under-relaxation has shown to solve the
issue.
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Figure 4.1: Verification of the eccentricity, attitude angle and minimum film thickness versus load capacity for a gas foil journal
bearing.

As the static load and the eccentricity increase, the attitude angle decreases as shown in Figure 4.1b.
The minimum film thickness also decreases with increasing bearing loading as a larger aerodynamic
wedge is required to generate sufficient pressure (Figure 4.1c). The results obtained using the devel-
oped computational tool seem to agree well with the computational results presented by Kim and San
Andrés for the steady-state performance.

Finally, the computed dynamic characteristics of the bearing will be compared to the reference data.
In order to do so, the steady state eccentricity, attitude angle and pressure field are first obtained for a
gas foil bearing supporting a 50𝑁 static load using the Netwon-Raphson method discussed in chapter 2.
The bearing impedances can then be computed as a function of the excitation frequency. The resulting
direct and cross-coupled stiffness coefficients are plotted in Figure 4.2. The direct damping coefficients
are plotted in Figure 4.3. Note that both the computed stiffness and damping coefficients do not
completely agree with the reference data. The direct stiffness is slightly overestimated by the developed
tool. In contrast, the cross-coupled stiffness is underestimated.

Although the exact numerical values of the computed impedances do not fully match with the
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(a) Direct stiffness coefficients.
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(b) Cross-coupled 𝑘𝑥𝑦 coefficient.
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(c) Cross-coupled 𝑘𝑦𝑥 coefficient.

Figure 4.2: Verification of the direct and cross-coupled dimensional stiffness coefficients.

reference data, the qualitative patterns of the behaviour of the impedances as a function of excitation
frequency are very similar. The error is likely caused by a bug in the code. Within this chapter, the
statements made on the dynamical characteristics such as stiffness, damping and the critical mass will
therefore only be qualitative. For further quantitative analysis of dynamical aspects related to gas foil
bearings the software model requires improvement. The steady-state characteristics, however, seem
to match well with the data provided by Kim and San Andrés and the results related to the load capacity
or attitude angle as discussed in this chapter can be considered more accurate.
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Figure 4.3: Verification of the direct damping coefficients.



60 4. Results for Gas Foil Bearings

4.2. Analysis of Gas Foil Bearings
The performance characteristics of gas foil bearings are compared to plain journal bearings at similar
operating conditions in this section. The presented results are under the assumption of laminar flow.
The bearings are lubricated with siloxane MM with the ambient fluid in the bearing compartment at a
reduced pressure and temperature of 𝑃𝑟 = 0.8 and 𝑇𝑟 = 1.1, respectively.

4.2.1. Load Capacity
In the previous chapter, plain journal bearings operating at different ambient thermodynamic conditions
were compared by enforcing equal eccentricity ratio. For gas foil bearings, however, the bump foil
structure deforms allowing for eccentricity ratios larger than one at heavily loaded conditions. In order
to compare the results with rigid bearings, operation at equal minimum film thickness is considered
instead of equal eccentricity. A plot showing the dimensional load capacity as a function of minimum
film thickness is shown in Figure 4.4. The gas foil bearing has a compliance ratio of 𝑆 = 0.4. This
compliance ratio was defined in chapter 2 as the ratio of the reference pressure to the product of
nominal bearing clearance ℎ0 and bump foil stiffness per unit area 𝐾𝑓. The local structural deflection
can then be calculated using the pressure difference between the gas film and the fluid underneath
the top foil:

�̄�𝑑 = 𝑆𝛿�̄� ≈ 𝑆
𝜕�̄�
𝜕�̄� |𝑇 (�̄� − 1) (4.1)

In chapter 2 it was stated that the compliance ratio defines the ratio of the stiffness of the fluid to
the stiffness of the structure. Furthermore, in chapter 3 the bulk modulus was presented as a measure
of the stiffness of the fluid. Then from the above equation and the definition of the compliance ratio
the following relation holds:

𝑆𝜕�̄�𝜕�̄� |𝑇 =
𝑝𝑟𝑒𝑓
ℎ0𝐾𝑓

𝜕�̄�
𝜕�̄� |𝑇 =

𝜌𝑟𝑒𝑓
ℎ0𝐾𝑓

𝜕𝑝
𝜕𝜌 |𝑇 (4.2)

The final term in the equation above shows that the compliance ratio is connected to the bulk
modulus. This justifies the interpretation of this parameter as a ratio of fluid stiffness to structural
stiffness. For ideal gasses, the bulk modulus and thus the fluid stiffness reduces to the pressure of the
gas.
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Figure 4.4: Dimensional load capacity as a function of minimum film thickness for a gas foil bearing (GFB) and a plain journal
bearing (PJB) at Λ = 0.1 and Λ = 1.0 for a nominal film thickness of ℎ0 = 21.8𝜇𝑚.

For plain journal bearings, the surface is infinitely stiff and therefore the compliance ratio is zero. The
behaviour of both bearing types is shown in the figures. The load capacity increases as the eccentricity
is increased from zero and the minimum film thickness is accordingly reduced from the nominal value
of ℎ0 = 21.8𝜇𝑚. The figures show that this increase is slightly more pronounced for plain journal
bearings upon initial decrease of the minimum film thickness. As the eccentricity is increased further,
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the load capacity increases non-linearly. The deflection of the bump foils allows the gas foil bearing
to reach larger eccentricities for the same value of the minimum film thickness. Figure 4.4 shows a
slightly larger load capacity for the gas foil bearing as the minimum film thickness gets small. Another
way to interpret the plots is by stating that the gas foil bearing can generate the same load capacity
at a larger minimum film thickness for highly loaded conditions. A larger minimum film thickness will
in turn lead to smaller power losses for example.
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Figure 4.5: Dimensional load capacity as a function of bearing speed number Λ for a PJB and a GFB.

The bearing load capacity is plotted as a function of the compressibility number for a PJB and a
GFB in Figure 4.5. The gas foil bearing is operating at an eccentricity of 𝜖 = 0.6. The eccentricity of
the plain journal bearing is such to create an equal minimum film thickness. The plot shows a slightly
larger load capacity at low rotational speeds for the PJB. As the rotational speed or compressibility
number increases, larger pressures are generated in the gas films which ultimately results in a slight
advantage in terms of load capacity for the GFB.

Overall, the plots in Figure 4.4 and Figure 4.5 show that the rigid gas bearing and the first-generation
gas foil bearing exhibit approximately equal load capacities. This conclusion is in agreement with the
findings in scientific literature.[9] Furthermore, this indicates the necessity of tailoring the bump foil
stiffness to really benefit from the potential performance increase that gas foil bearings have to offer.
In a second-generation gas foil bearing, for example, the stiffness can be varied in axial direction such
as to reduce the fluid leakage from the foil edges. According to literature, this could approximately
double the load capacity as compared to first-generation gas foil bearings.[9] These effects can be
captured by the Reynolds equation through the reduced axial Poiseuille flow as discussed in chapter 3.
Further analysis of gas foil bearings with enhanced bump foil structures is, however, beyond the scope
of the current work.

4.2.2. Attitude Angle and Stability
The steady-state attitude angle is plotted as a function of the compressibility number in Figure 4.6.
Both the rigid and the compliant bearing show a decrease in attitude angle with Λ. At low bear-
ing speed numbers, however, the gas foil bearing shows significantly lower attitude angles. In the
previous chapter, the attitude angle was linked to the effect of the Poiseuille flow on the pressure
distribution. Upstream of the point of minimum film thickness, an increased pressure is observed and
a reduced pressure is observed downstream of the minimum film thickness. For a gas foil bearing the
increased pressure upstream will increase the foil deflection, leading to a larger local film thickness.
This will in turn lead to a smaller pressure locally as compared to a rigid bearing. The opposite effect
occurs downstream of the minimum film thickness. This redistribution of the film thickness through foil
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deflections in a gas foil bearing causes the effect of the Poiseuille flow to be less significant compared
to rigid bearings which leads to smaller attitude angles.
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Figure 4.6: Attitude angle as a function of bearing speed number Λ for a PJB and a GFB.

The overall reduction of attitude angle for gas foil bearings allows for a more symmetrical loading
condition. As discussed in chapter 3 this is favourable for the stability of the bearing. This increased
stability is one of the main advantages of using gas foil bearings as compared to plain journal bearings.
The non-dimensional critical mass for both bearings is plotted in Figure 4.7 where a loss coefficient of
𝛾𝑆 = 0.4 is assumed for the GFB. The plot shows a larger critical mass for the gas foil bearing, hinting
at an improved dynamic performance compared to the rigid bearing. It is noted, however, that this
figure should only be interpreted in a qualitative sense given the inaccuracy in the computed bearing
impedances for the GFB as discussed in the previous section.
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Figure 4.7: Non-dimensional critical mass as a function of bearing speed number Λ for a PJB and a GFB.
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4.3. Application to the ORCHID turbine
The feasibility of applying gas foil bearings to support the rotor of a mini-ORC turbine is finally in-
vestigated. The laboratory mini-ORC turbine of interest is used in the Organic Rankine Cycle Hybrid
Integrated Device (ORCHID) at the TU Delft. The working fluid of the turbine is siloxane MM and in
order to prevent contamination of the organic fluid in the thermodynamic cycle this will also be used as
a lubricant in the bearing. Note that this research only considers the application of journal bearings and
the use of gas foil thrust bearings is to be investigated further in future work. At design conditions, the
thermodynamic state in the bearing compartment is assumed to be defined by 𝑃𝑟 = 0.94 and 𝑇𝑟 = 1.1
corresponding to the turbine inlet conditions. This thermodynamic state is shown in the reduced T-s
plane along with the contours of the generalized isentropic pressure-volume exponent in Figure 4.8.
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Figure 4.8: Assumed bearing operating conditions for siloxane MM for operation with the ORCHID turbine plotted on the reduced
T-s thermodynamic plane.

The rotational speed of the rotor is 98000 rotations per minute. The dimensions of the gas foil
bearing are set to allow compatibility with the mini-ORC turbine. Initially, the compliance ratio is set
to 0.4 as this provides a reasonable starting point for the current analysis. This compliance ratio
can, however, be tuned for improved performance in future work. The nominal bearing clearance is
assumed to be ℎ0 = 31.8𝜇𝑚. This nominal bearing clearance is partially dependent on the accuracy of
the manufacturing of the bearing and the value chosen here is taken equal to existing GFBs presented
in literature.[5] The geometry and operating conditions used for the simulations are summarized in
Table 4.2.

Parameter Value
Lubricant Siloxane MM
Reduced Pressure, 𝑃𝑟 0.94
Reduced Temperature, 𝑇𝑟 1.10
Bearing Radius, 𝑅 5 𝑚𝑚
Bearing Width-to-Diameter Ratio, 𝐿/𝐷 1
Nominal Bearing Clearance 31.8 𝜇𝑚
Design Rotational Speed, Ω 98000 RPM
Compliance Ratio, 𝑆 0.4

Table 4.2: Bearing geometry and design operating conditions of the ORCHID turbine.

Using the data presented in the table, the bearing compressibility number is found to be Λ = 0.01.
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The low value of the bearing speed number is a direct result of the relatively high pressure of the
lubricant in combination with the small size of the considered bearing. The consequence is potentially
low stability of the rotor supported by gas dynamic bearings. The Mach number based on the peripheral
speed is given as 𝑀𝑈 = 0.39 at the reference thermodynamic state and design rotational speed. In
order to check the validity of the assumptions used in the derivation of the compressible Reynolds
equation the product of the Grüneisen parameter, the Mach number squared and the Prandtl number is
shown in Figure 4.9a. The figure shows that the effect of thermal expansions is negligible at operating
conditions sufficiently far away from the thermodynamic critical point. Furthermore, the assumption
of constant density over the film thickness is valid away from the critical point as well as shown by the
ratio of specific heats in Figure 4.9b.
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Figure 4.9: Plot showing the validity of the assumptions of the compressible Reynolds equation for the GFB operating with
siloxane MM at 98000 RPM.

Under the aforementioned conditions, the steady-state bearing performance is computed. The
results are shown in Figure 4.10 The flow regime is considered turbulent and the Reynolds number
based on the nominal bearing clearance is calculated as 𝑅𝑒 = 11045 which is within the range of
validity of the turbulence correction factors of Constantinescu.

The bearing load capacity is plotted as a function of journal eccentricity ratio in Figure 4.10a for
rotational speed of 30000 RPM, 60000 RPM and the design condition of 98000 RPM. Note that the
eccentricity ratio can be increased beyond a value of one particularly for larger rotational speeds as
this will generate the required pressure in the gas film to deflect the bump foil.

The minimum film thickness is plotted against load capacity in Figure 4.10b for the same rotational
speeds. At design rotational speed, the maximum estimated load capacity is in the order of 20𝑁.
Although the exact mass of the rotor is not known it is assumed to stay below 1𝑘𝑔. If this will be the
case, the figures indicate sufficient load capacity at design speed considering that the rotor would be
carried by two gas foil journal bearings.

Finally, the attitude angle is plotted against load capacity in Figure 4.10c. A steep drop of attitude
angle is shown with increased loading as expected. This reduction of the attitude angle is favourable
for bearing stability as discussed in previous sections.

The plots of the steady-state load capacity against journal eccentricity, minimum film thickness and
attitude angle show the potential of using a gas foil journal bearing to support the rotor of a mini-
ORC turbine. Further investigation will be required, however, to accurately predict the critical mass
and stability of the rotor-bearing system. The critical mass is not plotted since the values might be
inaccurate as discussed. It should also be noted that the gas foil bearing considered in this section is of
very small size. The feasibility of manufacturing such bearings should be taken into account in further
analysis and design work. Finally, in order to optimize the design, parameters like the compliance ratio
might be varied to yield larger load capacity and critical mass as well as to reduce windage power
losses.
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Figure 4.10: Journal eccentricity, minimum film thickness and attitude angle versus load capacity for a gas foil journal bearing
with suitable dimensions for operation with the ORCHID turbine.

4.4. Chapter Conclusion
In this chapter, the numerical models predicting the performance of gas foil bearings have been dis-
cussed. The models have been verified using the numerical results of Kim and San Andrés for heavily
loaded gas foil bearings lubricated with ambient pressure air.[5] Although the steady-state performance
parameters match well with the reference data, there seems to be a bug in the part of the code calcu-
lating the stiffness and damping coefficients. Results of a first-generation gas foil bearing have been
compared with a plain journal bearing of equal size. Both bearings exhibit approximately equal load
capacities as also indicated in scientific literature. A significant increase in load capacity of the gas foil
bearing can, however, be obtained by tailoring the bump foil stiffness in future work. The attitude angle
of gas foil bearings appears to be significantly smaller which is favourable for rotor-dynamic stability.
The numerical model has finally been applied to compute the steady-state performance that can be
obtained if the technology is used to support the ORCHID turbine. A load capacity of up to 20𝑁 is
predicted for a single gas foil journal bearing at design operating conditions. It should be noted that
no attempt was made to optimize the current design of the bearing. Furthermore, the analysis of the
rotor-dynamic stability and the thrust bearings should be considered in future work.
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Conclusion & Recommendations

5.1. Conclusion
The work documented in this dissertation investigated the performance of gas dynamic bearings lu-
bricated with non-ideal compressible flows. To this end, a sophisticated numerical model has been
developed to solve the steady-state Reynolds equation for three-dimensional, turbulent lubricating
flows leading to the prediction of the bearing load capacity. By means of a perturbation method, the
perturbed density field was obtained leading to the definition of the linearized stiffness and damping
coefficients and the rotor-dynamic critical mass. The influence of non-ideal thermodynamic effects was
analysed in a conceptual way by means of non-dimensional numbers. Finally, the effect of structural
compliance has been introduced, leading to the prediction of the steady-state load capacity of a gas
foil bearing suitable for operation with the ORCHID turbine. The main conclusions drawn from this
research are listed below:

• Gas dynamic bearings operating within the dense gas or supercritical flow regime are character-
ized by high pressures leading to low bearing speed numbers (Λ). This leads to an increased
significance of pressure-induced flow or Poiseuille flow within the bearing. The result is a limited
non-dimensional load capacity and critical mass.

• The effect of non-ideal thermodynamic properties of the fluid on the non-dimensional load ca-
pacity is mainly characterized by the non-dimensional bulk modulus of the fluid. Increased fluid
compressibility leads to a non-dimensional bulk modulus below one (�̄� < 1). This lowers the
peak pressures within the gas film, resulting in reduced load capacity as compared to ideal gas
lubrication flows.

• The effect of non-ideal thermodynamic properties of the fluid on the bearing non-dimensional
critical mass is mainly characterized by the non-dimensional bulk modulus of the fluid as well. For
compressible flows with �̄� < 1, low bearing speed numbers lead to an increased non-dimensional
critical mass as compared to ideal gas flows. Large bearing speed numbers lead to a decreased
non-dimensional critical mass compared to ideal gas flows. This effect is opposite for fluid flows
with �̄� > 1.

• The effect of different working fluids has been analysed for bearings operating at equal film
thickness distribution and bearing speed numbers. For non-ideal compressible flows under these
conditions, the effect of different working fluids is introduced through variations in the non-
dimensional bulk modulus and dynamic viscosity. The iso-thermal variations in non-dimensional
dynamic viscosity, however, have negligible influence for practical bearing speed numbers of
Λ < 5. There is no effect of different working fluids for ideal gas flows under the given conditions.

• The effects of turbulence on lubrication flows have been considered. Turbulence at increased
Reynolds numbers tends to resist the pressure-induced Poiseuille flow in the thin film. This
leads to larger pressure peaks and larger non-dimensional load capacity compared to laminar
flows, particularly at low bearing speed numbers. The non-ideal thermodynamic effects are more
pronounced for increased Reynolds numbers as a result of the larger pressure peaks.
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• The performance of a first-generation gas foil bearing has been compared to a plain journal
bearing. Siloxane MM at a reduced pressure of 𝑃𝑟 = 0.8 and a reduced temperature of 𝑇𝑟 = 1.1
was used as a lubricant considering a nominal bearing clearance of ℎ0 = 21.8𝜇𝑚. Both bearings
exhibit approximately equal load capacities as a function of minimum film thickness and bearing
speed number. The gas foil bearing operates at an attitude angle up to 30∘ lower at low bearing
speed numbers. This indicates the potential increase in bearing stability with respect to plain
journal bearings.

• Results obtained using the computational model show the potential feasibility of applying gas foil
bearings to support the rotor of the ORCHID turbine in terms of steady-state load capacity. At
design operating conditions, the gas foil bearing considered shows a predicted maximum load
capacity of up to 20𝑁.

5.2. Recommendations
The present work has aimed to address the knowledge gap related to the application of gas dynamic
bearings and gas foil bearings in particular for systems operating at high pressures and with non-
conventional working fluids in ideal and non-ideal thermodynamic conditions. Some recommendations
are presented for future work related to the developed computational tool and in particular to the
analysis of gas foil bearings for application with the ORCHID turbine:

• The implementation of the numerical method for obtaining the stiffness and damping coefficients
for gas foil bearings should be re-evaluated. The discrepancy of the results compared to data
from scientific literature as presented in chapter 4 should be understood and addressed.

• The critical mass should be analysed for a gas foil journal bearing of appropriate dimensions for
operation with the ORCHID turbine. The present work shows the potential of gas foil bearings
in terms of increased stability as compared to rigid bearings. The bearing stability will remain,
however, an important design constraint that is likely to be more stringent than bearing load
capacity.

• The power loss within the gas (foil) bearing should be analysed for turbulent lubricating flows.
As discussed in this manuscript, experimental results show a strong increase in power loss for
high-pressure lubricants which could be detrimental to the system performance.

• More advanced design configurations of gas foil bearings should be investigated in an attempt to
improve bearing load capacity and stability. Examples include the variation of structural stiffness
in circumferential and axial directions, including a bearing pre-load or combining the advantages
of gas foil bearings and grooved dynamic bearings as was presented by Guenat.[11]

• The potential inclusion of thermal effects within the modelling might be considered. As men-
tioned, viscous dissipation can be significant for high-pressure fluids leading to non-negligible
temperature effects and thermal expansions of the fluid and/or structure.

• The computational tool could be extended to allow performance predictions of gas foil thrust
bearings capable of supporting axial loads on the rotors. To this end, the Reynolds equation
can be converted to cylindrical coordinates and the appropriate boundary conditions are to be
selected.

• The implementation of the bearing models in the design process of the turbomachinery and rotor
components should be investigated further. Optimal system performance might be obtained by
considering an integrated design approach. To this end, the computational cost of the numer-
ical tools discussed in this work should be reduced or the application of model order reduction
techniques might be considered.
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A
Link to the Python Repository

The numerical solver developed during this research is a Python-based computational tool that dis-
cretizes the partial differential equations and solves the associated systems of equations. The code is
contained in a GitHub repository which can be found using the following link:

https://github.com/WesseldeWaart/GasBearingSim.git

In order to gain access to the GitHub repository please contact Dr. Ir. Matteo Pini (M.Pini@tudelft.nl)
or Wessel de Waart (wesseldewaart@gmail.com).

The code is written in Python 3.6 and has the following pre-requisites:

• NumPy

• SciPy

• Pandas

• MatPlotLib

• tqdm

• tkinter

• CoolProp

• RefProp (optional, for certain fluids)

The code is run from the ’GBSmain’ script. This will open up a graphical user interface in which
the various bearing properties of interest can be entered. Alternatively, the bearing properties can be
read from a configuration file by checking the box ’Input from configuration file’ in the graphical user
interface. A number of predefined configuration files are included in the ’Input’ folder of the repository.
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