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Stelling 1. De coéfficiénten {a;(z)};2, van de differentiaalvergelijking genoemd in
stelling 3.1 van dit proefschrift hebben de volgende eigenschap :

iai(z)=_sin1ra T F( 1

= r (a+2)(a+3)" '\ a+4

—:t),a>—1.

Voor niet-negatieve gehele waarden van o geldt :

00

> (,i)a-'(w) = (=1)"*ay(~z), k=1,2,3,....

=k

Stelling 2. De polynomen {Lz'Mli""'MN (:t)}:o uit het eerste deel van dit proef-
schrift kunnen z6 worden gekozen dat T

dk La,Mu,Ml,...,M)v(m)
dz* " =0

onafhankelijk is van M; voor k= 0,1,2,...,N.

Stelling 3. Ten onrechte wordt vaak beweerd dat alle stelsels orthogonale polynomen
{P.(z)};e, met graad[P,(z)] = n voldoen aan een drie terms recurrente betrekking van
de vorm

2Po(2) = AnPasr(z) + BuPa(z) + CaPas().

Stelling 4. Veel stelsels orthogonale polynomen {P,(z)}._, met graad(P.(z)] = n
voldoen aan een recurrente betrekking van de vorm

zP,(z) = ApPryi(z) — (An + Cp) Po(z) + CoPaoa(z).

Hoewel dit niet geheel triviaal is geldt deze eigenschap ook voor de klassieke Laguerre
polynomen {Lg")(z)}m_ . Bovendien geldt, dat de polynomen {Lz'M (x)}oo_ beschreven
in hoofdstuk 3 van ditnﬁroefschrift alleen aan een dergelijke recurrente betrgﬁfcing voldoen
asM=0ofa=0.

Stelling 5. De algemeen gebruikte definitie van de q-differentie operator

D, f(z) := {2 = 1(a%) (’(”l) = 5)(:’)

is onvolledig en daarom onjuist.




~ Stelling 6. Voor elke functie f : R — R waarvan de n® afgeleide met n > 2 in het
punt z = 0 bestaat geldt

(n) .
(D2£) (0) = bm D f(z) = f—ﬁ(i"ﬂ;ﬂ-

Stelling 7. Laat k en h functies zijn analytisch op {z € C|Im(2) > 0}, continu op
{z € C|Im(z) 2 0, z # 0} en begrensd voor |z| — 0.
Stel verder dat voor zekere a > 0 geldt :

k(2) = € {ao + (—?- +0 (z"'“)} voor |z| = oo en Im(z) >0

¥ +
h(z) = ei'{bg’ + %l_ +0 (z—l—a)} + et {cf,t + f;_ +0 (z_l_a)}
voor Re(z) — £ oo lokaal uniform in Im(z) op [0, 00).

Laat K en H; de Mellin getransformeerden zijn van respectievelijk k£ en hy, waarbij
hy(t) :== h(t) en h_(t) := h(—t) voor t > 0.
Stel dat
[Hi(s) — e™H_(s)] K(1—5)=1, 0 < Re(s) < 1.

Dan geldt voor iedere reéle functie f die van begrensde variatie is in een omgeving
van z en die voldoet aan

/e'mlf(t)ldt < 0o voor zekere >0
o

de volgende integraaltransformatie-inversieformule :

A+18 oo
lim [ hatyds [ k) fdy = 5 {f(@ +0) + f(z = 0)}, = > 0.
=2+iB )

Stelling 8. Ten onrechte heeft de korfbalsport nog steeds niet het aanzien dat het
verdient. De afschaffing van het middenvak zal dit aanzien wellicht verbeteren, maar
is in zekere zin vergelijkbaar met de afschaffing van het net bij sporten zoals tennis,
badminton en volleybal.

Stelling 9. Het is afkeurenswaardig dat in veel steden parkeermogelijkheden voor
motoren zonder zijspan volgens de geldende regels ontbreken.



Stelling 10. De invoering van het zogenaamde blok-onderwijs aan de Technische
Universiteit Delft heeft precies het gewenste effect : bij ieder vak wordt de student in
het geheel niet gehinderd door enige kennis van voorgaande vakken.

Stelling 11. Mede gelet op de voorgaande stelling valt te overwegen om bij het
blok-onderwijs elk jaar dezelide vakken te geven.

Stelling 12. Iedere wetenschapper zou een zekere mate van didactische vaardigheid
moeten bezitten. Het valt daarom te overwegen iedere Assistent in Opleiding een cursus
didactiek te laten volgen.

Stelling 13. De benaming Assistent in Opleiding (AIO) is denigrerend. Deze zou
daarom wellicht vervangen kunnen worden door Aankomend Onderzoeker (AO).

Stelling 14. Door te spreken over gewonnen staan suggereren dammers en schakers
ten onrechte dat een partij vanaf dat moment altijd foutloos zal worden uitgespeeld.

Stelling 15. Bij het voortgezet onderwijs in de moderne talen ligt het accent veel te
veel op de kennis der literatuur in plaats van de spreek-, lees- en schrijfvaardigheid.

Stelling 16. Door het achterwege laten van stellingen die geen betrekking hebben
op het onderwerp van het proefschrift zou een promovendus een verdedigbare stelling
kunnen hebben.
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Introduction

In [22] and [23] H.L. Krall studied orthogonal polynomials satisfying fourth order differ-
ential equations. Moreover, he classified all sets of orthogonal polynomials {P,(z)}>,
with degree[P,(z)] = n which satisfy a fourth order differential equation of the form

Pu(2) (@) + po(2)y (@) + pal@)y"(2) + Pr(@ ) (2) + pole)u(z) = 0

where {pi(z)}i_, are polynomials with degree[p;(2)] < ¢ and {p,(z)};., are independent
of the degree n. These sets of orthogonal polynomials include those which were called the
classical orthogonal polynomials at that time, namely the Legendre, Laguerre, Hermite,
Bessel and Jacobi polynomials. He also found three other sets of orthogonal polynomials
satisfying a fourth order differential equation of this type. In [20] A.M. Krall studied these
new sets of orthogonal polynomials in more details and named them the Legendre type,
Laguerre type and Jacobi type polynomials. These polynomials are generalizations of the
classical Legendre, Laguerre and Jacobi polynomials in the sense that the weight function
for these orthogonal polynomials consists of the classical weight function together with
a Dirac delta function at the endpoint(s) of the interval of orthogonality.

Later L.L. Littlejohn studied more generalizations of the classical Legendre polyno-
mials in this way and named them after H.L. Krall : the Krall polynomials. These Krall
polynomials are orthogonal on the interval [—1, 1] with respect to the weight function

1
%5(z+1)+—§6(z—1)+c, A>0,B>0 and C > 0.

See [24] and [25]. These polynomials do not fit in the class of polynomials which satisfy
a fourth order differential equation of the above type. The Krall polynomials satisfy a
sixth order differential equation of a similar form.

AM. Krall and L.L. Littlejohn did some work on the classification of higher order
differential equations having orthogonal polynomial solutions. They tried to classify all
differential equations of the form

S pi(z)y(z) =0, r € {2,3,4,...},
=0

where {p;(z)}]_, are polynomials with degree[p;(z)} < i and {p;(z)}._, are independent
of n having orthogonal polynomial solutions {P,.(z)}.>, with degree[P,(z)] = n. See [26]
and [21].

ix



X INTRODUCTION

In [19] T.H. Koornwinder found a general class of orthogonal polynomials which
generalize the Legendre type, Jacobi type and Krall polynomials. These polynomials are
orthogonal on the interval [—1, 1] with respect to the weight function

T'a+8+2)
20404 (a + 1)I(B + 1)

(1-2)*(1+2)° + Mé(z+ 1)+ Né(z — 1).

As a limit case he mentioned the polynomials {Lz'M (.7:)}20__0 which are orthogonal on the
interval [0, 00) with respect to the weight function

1

mz € + M6($).

These polynomials generalize the Laguerre type polynomials. Many important properties
of these polynomials are listed in [13].

In section 3.5 we show that these generalized Laguerre polynomials {Lz’M (:c)}:o:o
satisfy a differential equation of the form

M3 a(@)y®(e) + ov"(z) + (@ + 1 - )y/(&) +ny(z) = 0

=0

which is of infinite order in general. For M = 0 it reduces to the differential equation
for the classical Laguerre polynomials. In the nonclassical case M > 0 only for integer
values of « this differential equation is of finite order 2a + 4.

Most classical orthogonal polynomials mentioned before can be generalized by con-
structing an inner product in the following way. Let w(z) denote the weight function for
the classical orthogonal polynomials we want to generalize and let [a, b] be the interval of
orthogonality of these polynomials, where b might be infinity in the Laguerre case. Now
we consider the inner product

b 0 (e}
<f9>= [w@)f(e)g(e)de + 3. Mif Ha)g®(a) + L N;FO(Bg(H)  (00.1)

=0 j=0

where M; > 0and N; > 0forall ¢,j =0,1,2,.... In the Laguerre case we only have one
endpoint of the interval of orthogonality, so the last sum does not appear in that case.

In [3] and [4] H. Bavinck and H.G. Meijer studied generalizations of the Jacobi poly-
nomials in this way in the symmetric case o = # and with only first derivatives in the
inner product. In fact they computed the polynomials which are orthogonal with respect
to

T(2a+2) | e
22041 (P(a + 1)}* J, (1-2*)" f(e)g(z)de +

+ M [f(-1)g(=1) + f(Dg(D] + N [f(-1)g'(-1) + F(1)g'(1)]

< f,g>=
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where a > -1, M > 0and N > 0.
F. Marcellan and A. Ronveaux similarly studied orthogonal polynomials in a general
setting in [30]. They studied inner products of the form

<f9>= [ w@)f()(e)de + 3N)(e)

—00

where A > 0, c is real, r is a nonnegative integer and w(z) is a positive weight function
defined on the real line.

It is important to realize that the inner product (0.0.1) cannot be obtained from any
weight function in general. Since many properties of the classical orthogonal polyno-
mials depend on the existence of a positive weight function we cannot expect the new
generalized orthogonal polynomials to have properties such as a three term recurrence
relation. Further we cannot expect the polynomial with degree n to have exactly n real
and simple zeros which are located in the interior of the interval of orthogonality. This
interval of orthogonality is not even defined in the general case. So it is significant to
study these new families of orthogonal polynomials.

Although one can derive some results in general, see for instance [30], we have chosen
to explore an explicit example in detail. So we study generalizations of the classical
Laguerre polynomials which are also further generalizations of the Laguerre type and
Koornwinder’s generalized Laguerre polynomials . In this case we only have one endpoint
of the interval of orthogonality of the classical orthogonal polynomials.

In chapter 1 we give the definition of the classical Laguerre polynomials and some
of their properties. Moreover, some notations and terminology are introduced in that
chapter.

In chapter 2 we give the definition and some important properties of the new gener-
alized Laguerre polynomials . Most of its contents was published before in [15].

In chapter 3 we list some properties of Koornwinder’s generalized Laguerre poly-
nomials . Most of these properties were given in [13] too. In section 3.5 we give a proof
of the differential equation of infinite order mentioned before. This is a joint work with
J. Koekoek published in [10].

" Chapter 4 deals with another special case of the polynomials defined in chapter 2. This
is the simplest case where the inner product cannot be derived from a weight function.
We give some results concerning the zeros in this and some other special cases. Some
results given in this chapter were published before in a joint work with H.G. Meijer in
(18].

This is part one of this thesis.

In part two we consider a q-analogue of the classical Laguerre polynomials. This
g-analogue was studied in detail by D.S. Moak in [31]. This is not the only g-analogue
of the Laguerre polynomials. Similar results can be found for other g-analogues. We
have chosen these q-Laguerre polynomials as an example. These particular g-Laguerre
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polynornials satisfy two different kinds of orthogonality relations. These results are given
in chapter 5. ‘

In chapter 6 we give the definition and some properties of the generalizations of these
g-Laguerre polynomials. These polynomials can be considered as g-analogues of the
polynomials given in chapter 2. The results given in this chapter were published before
in [16] and [17].

In chapter 7 we consider a special case which was treated before in [14]. In this
chapter we give some results concerning the zeros of these polynomials which contradict
possible conjectures which may arise from the results in chapter 4.
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Chapter 1

The classical Laguerre polynomials

1.1 Some notations and terminology

A (positive) weight function w(z) on an interval [a,d], which might be infinite, is a
nonnegative integrable function for which
b
/ w(z)dz > 0.

The polynomials {pn(z)}.e, with degree[p,(z)] = n are called orthogonal polynomials
on the interval [a, b] with respect to the weight function w(z) if

b

/w(:z:)pm(z)pn(a:)dx = hnbmn, hn >0

a

where 8,,, denotes the Kronecker delta defined by

1 if m=n

6,,.,.::{ mn=20,1,2,....
0 if m#n

The interval [a, }] is called the interval of orthogonality.

From now on we always work in the space of all real polynomials, i.e. polynomials
with real coefficients. An inner product <,> is a positive definite symmetric bilinear
form. This means that for all polynomials f, ¢ and h and for each real number \ we
have

<f7g>=<gaf>
<fig+h>=<fg>+<f,h>

<M, g>=<f,Ag>=A< f,g>
<f,f>20and <f,f>=0 ifandonlyif f=0
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The polynomials {p,(z)}s>, with degree[p,(x)] = n are called orthogonal polynomials
with respect to the inner product <, > if

< PmyPr > = hpbmn, hn > 0.

Given an inner product <,> the polynomials {p.(z)}rr, with degree[p,(z)] = n
which are orthogonal with respect to that inner product are uniquely determined except
for a multiplicative constant. One set of polynomials {r,(z)};-, orthogonal with respect
to this inner product can be constructed by using the Gram-Schmidt orthogonalization
process as follows.

We start with the monomials {z"},., which span the space of all polynomials. Then
we define

ri(z), n=1,2,3,....

An induction argument easily shows that these polynomials {r,(z)},~, are orthogonal
with respect to the inner product <,>. Every other set of polynomials {p,(z)}e, with
degree[p,(z)] = n orthogonal with respect to this inner product <, > satisfies the relation
Pu(2) = Cpra(z) for all n where {C,}27 | are nonzero constants. These constants are often
chosen such that the polynomials {p,(z)}oe, all satisfy the same normalization condition.

1.2 The hypergeometric series

The hypergeometric series ,F, is defined by

Z) _ i (al,ag,...,a,,)k Zk (121)

qu( a1,02,...,0y £
= )
&2 (b1, b2, bk !

by, by, .. )b,

where
(a1, @3, .., ap)k = (ar)r(az)i - -+ (ap)k
with
(a)o:=1 and (a)r:=a(a+1)(a+2)---(a+k—-1), k=1,2,3,....

When one of the numerator parameters a; equals —n where n is a nonnegative integer
the hypergeometric series is a polynomial. Otherwise the radius of convergence p of the
hypergeometric series is given by
oo if p<qg+1
p=31 if p=g+1

0 ifp>qg+1l.
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In the special case p = 2, ¢ = 1 and 2 = 1 we have a summation formula which is
known as Vandermonde’s summation formula

-n,b _(c—b)a _
2F1( . 1)— oR ,c#0,—-1,-2,...,n=0,1,2,.... (1.2.2)
Later Gauss found another summation formula in this case :
a,b I'(c—a—b)I(c)
? =t "< c—a-— -1,-2,.... 2.
2F1( . 1) I‘(c—a)F(c—b)’C a—5b>0,c#0,-1,-2, (1.2.3)

1.3 The definition and properties of the classical La-
guerre polynomials

For & > —1 the classical Laguerre polynomials {LS:")(.'B)}:O can be defined by

L) = (n:a)lFl( a—-fl x)
(n+a) " (=n) ot

n k:o(o"*'l)k—’H
n (_1\k
Z( kl') (:’_"Z)m", n=0,1,2,.... (1.3.1)
k=0 *

From this definition we easily see that
{a) (_l)n n
L) (z) = i + lower order terms, n =0,1,2,.... (1.3.2)

These polynomials are orthogonal on the interval [0, 00) with respect to the weight
function ﬁ;lrl—)x"e"’. The orthogonality relation is

L S o n+a
F—(mo/x e *LEN () L) (w)dz = ( . )Smn, mn=012....  (13.3)

An easy consequence of the definition (1.3.1) is
L(0) = '(n : a), n=0,12,.... (1.3.4)

The polynomials {LS,")(a:)}m_o satisfy a second order linear differential equation

2y"(z) + (@ + 1 — o) y'(z) + ny(z) = O, (135)

which is often called the Laguerre equation.



6 CHAPTER 1

The three term recurrence relation is

(n+ 1)L$f21(“') +(z-2n—a—1)L(z) +(n + O‘)Lsua—)l(l') =0,

n=1,23,... (13.)
LOz)=1 and L(z)=a+1-z.
They satisfy the simple differentiation formula £L0)Nz) = —LE*( ) or more gen-
eral
DFLE(z) = (-1)FL*P(2), k=10,1,2,...,n, n=0,1,2,.... (1.3.7)

We will use another simple relation for the classical Laguerre polynomials
L) (z) = LN (z) — %Ls:")(z), n=0,12,..., (1.3.8)

which is equivalent to formula (5.1.13) in [32] and which is easily shown to be correct by
using the definition (1.3.1).

If we differentiate (1.3.8) once, multiply by = and apply the Laguerre equation (1.3.5)
we find

nIE(@) + (o + 1) L(z) = a:-‘-i%Ls,"“)(:c), n=01,2....  (139)

This relation will be used in chapter 2 and chapter 3.
Finally, we have a Christoffel-Darboux formula

n+a\ & L)L)
(x—y)( n )’g P,
k
= (n+1) [LN(2) L (v) — L)L W)] , n=0,1,2,.... (1.3.10)
In the so-called confluent form the Christoffel-Darboux formula reads
. . 2
n+a i {Li )(I)}
n k=0 k + @
k

=(n+1) L&a)l(z)j—Ls,a)(m - L@ x)iLs‘a)l(x) ,n=0,1,2,.... (1.3.11)
T dg dz "t




Chapter 2

Generalizations of the classical
Laguerre polynomials

2.1 The definition and the orthogonality relation

Consider the inner product

) N
<fig>= ra:'_—l)ofw"e'zf(x)g(z)dx + 2 M, f(0)g“)(0), (2.1.1)

v=0

a>-1, Ne{0,1,2,...} and M, >0forallve {0,1,2,...,N}.

We will determine the polynomials {L" Mo M. ’MN(::)} which are orthogonal with
respect to the inner product (2.1.1). It is clear from the Gram-Schmidt orthogonal-
ization process that there exists such a set of polynomials {L"’ Mo My,...Mn (:c)} with

degree [L"‘ Mo M. My (z)] = n. So we may write, by using (1.3.7)

LyMoMieMu(g) = 3 A DFLEN () = ST(-1)F A LN (2), n=0,1,2,..., (2.1.2)
k=0 k=0
where L{®)(z) denotes the classical Laguerre polynomial defined by (1.3.1) and the coeffi-
cients {Ax}}_, are real constants which may depend on n,a, My, My, ..., My. Moreover,
each polynomial L&-Me:M.+MN(z) is unique except for a multiplicative constant. We will
choose this constant such that

L200-9(z) = lea)(,,)_ (2.1.3)

By using the representation (2.1.2) and (1.3.2) we easily see that the coefficient &, of
z™ in the polynomial LgMo-Mi My () equals

k= CD 4 ' | (2.1.4)

n!

7
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This implies that Ao # 0.
Let p(z) = z™. We choose Lg™o M1~ "M¥ (z) = 1 for the moment and we will determine

the polynomials {L"' Mo, Mi 'M"(z)} in such a way that < p, L&MoMi-My 5 = () for
all m € {0,1,2,...,n — 1}.
By using the deﬁmtlon (1.3.1) and Vandermonde’s summation formula (1.2.2) we find

/ z**tme~ L) (1) de
0

Lol

_ (n+a)"z‘f'(——n+k)jr(a+m+j+l)=
-k) & (@t k+1);!
_k)l‘(m+a+1)2F1(”"+k’m+°‘+1|1)=

k+a+1

1l

(n;TjIc—l)l"(m+a+1), k=01,2,...,n, mn=0,1,2,.... (2.15)

First we consider the case that n > N+2and N+1<m<n-1. Then it is clear
that
p™(0)=0 forall v€{0,1,2,...,N}.

Since

n-m-1\_  (pn-—m-1)! _
( o k )—(n—k)!l‘(k—m)_o for k=0,1,2,...,m and m<n

we see, by using (2.1.5), that < p, L&:MoMir-MN > = ( is equivalent to

5 (1) A A T —op(atk)
0 = ma+me 'tL"_ z)dz
k§+l Ma+ 1) e (2)
m+a+1) %
= T 11y ey —1.
Tat1) k_%.:“( 1) N4 m=N+1,N+2...,n
If we substitute m =n - 1,n — ., N + 1 respectively we easily obtain
Any2=Anpz=--=A,=0 for n>2N+2.

Hence, the expression (2.1.2) reduces to

N+1
LoMoMuMi(gy = 3° A D*L)(z) (2.1.6)
k=0

forn > N +2. For n < N +1 (2.1.6) is trivial. In that case the coefficients {Ak}k—n+1
can be chosen arbitrarily. This proves that the polynomials {L"‘ Mo, M, M (:z)}
be defined by (2.1.6) for all n € {0,1,2,...}.
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In order to define the coefficients {A,,}f:’:;,l we now have to consider for n =1,2,3,...
< p, L3MoMiMy 5 — 0 for m =0,1,2,...,min(n — 1, N). (2.1.7)
Since p(z) = =™ we easily see that
p™(0) = m,,, v=0,1,2,...,N.
Hence, (2.1.7) implies, by using (2.1.1), (2.1.5), (2.1.6), (1.3.4) and (1.3.7), that

L(m+ a4 1) ™A+ (n -m-—1
—_— -1 A
T(a+1) k=§+l (1) n—k Kt

min(n,N+1) n+a
+(-)mIM, S (- 1)"( k)A"‘O m=0,1,2,...,min(n — 1, N),

k=0
where

<:) =0 for u#~1,-2,-3,... and v=—1,-2,-3,....

This condition is necessary and sufficient for the orthogonahty Forn > N +1 thisis a
system of N + 1 equations for the N + 2 coefficients {A;},_ +1 .If1<n< N+1 we have
n equations for the n + 1 coefficients {A;};_,. Since

—m—1
(n m ):( nta ):0 for k>n+1 and m=0,1,2,...,min(n — 1,N)

n—k n—m-—=k
n—m-—1 _ n—m-—1
n—k ) \k—-m-1
we simply write

I'(m+a+1) & n—m-—
Tt 20 oa s

and

N+l n+a«a
+(=1)"m! My, Z( 1)"( k)A,,_o m=0,1,2,...,min(n — 1, N).

However, we will define the coefficients {Ak}kN;Sl in such a way that

(0 > ey
)M, S (- 1)"( nta )A,,_o m=0,1,2,...,N (2.1.8)

k=0
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is valid for all n € {0,1,2,...}. For n > N +1 this is the same system of equations. For
n < N we have added the following conditions on the arbitrary coefficients {A,,}N+1

k=n+1 :
N+1 _ N+1
(m + a) E (m +1—n)-m A, = M, Z(_l)k (n n+a )Ak

m oyt (k—=m—1)! ‘ prd -m-—k
form=n,n+1,n+2,...,N, since (:) = (—1)“&'7";‘5. Hence
N+1
(n-}-a) Z A = M, Ay
n k=n+1
. N+1 . .
("”‘f”) LGt Deenict g0 521,23,...,N—n.
nt+i ), S, (k=n—i-1)
This implies for n < N that Anys = Angs = -~ = Avg1 = 0 and ("$*) App1 = MaAo.
However, in the sequel we only need
n+a
( n ) (An+1 + A«,H.Q + -+ AN+1) = MnAo for n S N. (2.19)

o0

With (2.1.6) and (2.1.8) we have found the polynomials {Lg:MoMi--Mx(z)}l™ . We

changed the choice of LyMoMi-MN () — 1 such that (2.1.6) also holds for n = 0. This

can be done since each polynomial L2MoMi-My(z) is unique except for a multiplica-

tive constant. In view of the chosen normalization (2.1.3) these polynomials clearly are

generalizations of the classical Laguerre polynomials {Ls.‘")(z)}w_o defined by (1.3.1).
Finally, we note that (2.1.8) for m = N leads to "

N+a N+l n+a '
( N )AN+1 = My Z(—1)’°<n CN_ k)Ak. (2.1.10)

k=0

This implies that Ay, = 0 for My = 0.
Now we will show that

< LgMoMuenMuy, LMo My > = (" : a)Ao(Ao + A+ Avp). (2111)

This implies that

Ao(A0+A1+"'+AN+1) > 0. (2112)
In order to show that (2.1.11) is true we note, by using (2.1.4) and the orthogonality,
that

-1 .
< L::MlivvaN’Lz-Moanw--»MN > = ( ) Ag < zﬂ’L:.MO.er-wMN(z) > .
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Now we use (2.1.6), (1.3.7) and (2.1.5) for m =n to find forn > N +1

N+1 k
n yo,Mo,M,...My — ( 1) n+rx —z 7 (a+k)
<z" L (z) > Zo atD) l)Ak/ e "L (z)dz
D(n+a+1)H
= (=1) A
(1) " T(a+1) ,;, -
This proves (2.1.11) in the case n > N + 1.
For n < N we find
< zn’L:.Mo:Ml.....Mn(m) S = (_1)"]:‘(11n(+—j_-]lj)l')_ Z Ak +( 1)nn|M A()
k——

Now we use (2.1.9) to conclude that (2.1.11) is also true for n < N.
Hence, we have obtained the orthogonality relation

< L;.Mo,Mx.---,MN,Lz,Mo,Mx,---,MN >

= (n:a)Ao(Ao+A1+~--+AN+1)5mm myn=0,1,2,.... (2.1.13)

If Mo= My = - = My = 0(2.1.8) and (21.3) lead to Ao = 1 and A4, = A, = - -
Any = 0 Thls implies that (2.1.13) is a generalization of (1.3.3), since L3:%%0(z)
LN ().

2.2 Another representation

In this section we will prove the following three relations involving the classical Laguerre
polynomials :

D" LEY(z) = (n — k)D*LP(z) 4 (a + k + 1)D*LE(z), £ =0,1,2,..., (2.2.1)

c*DF LR () = }k:(—l)"’"’ (’:) (¢ — n)i(a + k), D'L(2), £ =0,1,2,... (2.2.2)

i=0
and

k(& (F-n)p—i - .
kLO)(z) = kot ‘DL (z), k=0,1,2,.... 2.
D*LY)(z) g(‘)(a+i).-(a+2i+1),,_.~’”DI’" (z), k=0,1,2, (2.2.3)
Relation (2.2.1) which is a generalization of relation (1.3.9) is used to prove relations
(2.2.2) and (2.2.3). The relations (2.2.2) and (2.2.3) can be used to show that definition
(2.1.6) is equivalent to

N+1

L:'MO'MI"“’MN(.‘Z:) — Z BkmkaLs‘“'H‘)(x)’ (224)
k=0 .
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N+1

for some coefficients {Bk}g__'_';,l. These coefficients are related to the coefficients {Ax},—, -

By using relation (2.2.2) we find

N+1 ) k
A; = 2(—1)'+k(i)(i —n)-i(a+k)iBe, t =0,1,2,... ,N+1.
k=t

1 N+1 i (k—n)‘_k
By = ——— =k A k=0,1,2,...,N+1.
. (a+k)k§(k)(a+2k+l)j_k ? *

To prove (2.2.1) we use induction on k. For k = 0 relation (2.2.1) reduces to relation
(1.3.9). This shows that it is a generalization of (1.3.9).
Now we assume that (2.2.1) holds for k = m — 1. Then we find by using (1.3.8) :

D™ L (z) = za‘iwD"'Lg'“)(x)
= % [zD™ L+ (2)| — D™LEH (=)
- ;; (7 +1—m)D™ " LE(z) + (a + m)D" L (2)] - D"LEH ()
= (n—m)D"LP(2) + (e +m +1)D™ LN (z).

This proves relation (2.2.1).

Now we prove relation (2.2.2) which is a second generalization of (1.3.9). Again we
use induction on k. For k = 0 relation (2.2.2) is trivial. For k = 1 it reduces to (1.3.9).
This shows that it is another generalization of (1.3.9).

Now we assume that (2.2.2) holds for ¥ = m — 1. Hence

zm-le—lLaa+m—1)(z)

= ”.2:—1(—1)“\"'-1 (m : 1) (t = n)p-1-i(l@+m— 1);D'L(z). (2.2.5)

=0
If we take the derivative of (2.2.5) and multiply by = we obtain
memLS‘o&m—l)(w) + (m _ l)xm—le—lLs‘a+m—l)($)

=z mX_ZI(—l)‘*'"“‘ (m : 1) (i = Wmor—i(e + m — 1D LG (). (2.2.6)

=0

Now we multiply equation (2.2.5) by m—1 and subtract it from equation (2.2.6) obtaining

m—1 _
szmlea+m—l)(z) = E (_1)i+m—1 (m i 1) (t _ n)m_l—‘(a +m— 1)' x
=0

x [zD*LE(z) - (m — 1)D'LEN(2))] .-
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We replace a by a + 1 and use (2.2.1) and (1.3.8) to find

DL = 30 (T sk e x
- x [(n=m —i+1)D'LENz) + (a + m + i) D LEN(z)] .
Hence ,
z™ D™ L+ (g)
= '72‘:01(—1)“”"1 (m : 1) (n—m—1i+41)(§ — n)p-1-i(e + m);D'L(z) +

+ '21(—1)#7"—1 (m : 1) (i — n)m_1-i(@ + m)iypy DL (2)

m-1

= Y (=1)*™(i — n)m_1-i(a + m); x

- x [(n-q__ll)(i-l—n)‘(mz'_l)("‘m*”l)] DL +

-+ (_1)’:—1(" —m 4 1)(=n)pm1 L(2) 4 (a + M) D™ L) ()
= 21(”1)“'" (T) (i — n)m—i(e + m); D' LEN(z) +
+ (=)™ (=n)m L (z) + (a + m)m D™ L (z)
= 2("1)”"' (Tzn) (i — n)m-i(a + m);D'LY(z).

This proves relation (2.2.2).
To prove relation (2.2.3) we start with relation (2.2.2) and write it in the following
way :
k ) k
Ck(.'l') = Z(—-l)ﬂ-k (z>(1 - n)k_.-(a + k),’D,'(J?), k= 0, 1, 2, RN (227)
=0 )
It is not difficult to see that the system defined by (2.2.7) has a unique solution for
{D:(z)}2y. We will show that this solution is given by

(=3 (i (4 —=n)ij Ci(z). i =
Dy( )—Z(.) (a+j)j(a+2j+1).-_,-"’( ), 1=0,1,2,.... (2.2.8)

=0 J

To prove this we substitute (2.2.8) in the right-hand side of (2.2.7)

ko . @ )

1=0 j=0
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and show that this equals Ci(z). Changing the order of summation and using

(G = n)imi(i = n)emi = (G = 2)i—j
e ()0)-es

_ X j (G=n) —io k)i-i(a + k)i
Sk(:c)—jz:%(—l) +k( ) t k)J Ci(= )z(a+2]+1), G=

we find

Now we use the fact that
(@ + k)iy; = (a + k)j(a+ K+ )

to see that the last sum equals

o G =Rlat k) HE-Ret ki
T(], k) o Z (Ot + 2] + 1);_j(i —])' - 'Z% (a + 2] + 1).z'+

SIG - Riat+k+5) j—ka+k+j
N (‘”k)’z-% (o +2j + L)id! z("”)”F‘( a+2j+1 ‘1)

By using Vandermonde’s summation formula (1.2.2) we obtain

T(jk)=(a+k)‘_(l'"_k_+_l_)_’°:f_= > Ik
y ’(a+2j+1)k—j (a+k)k, ]=k

Hence, since
k
(=) = g(—l)f“( ) U= i em b

we have ( R
Q k

This proves (2.2.8) and therefore (2.2.3).

(a1, °He) = Cil2)-

2.3 Representation as hypergeometric series

n+a)l & ™
x)—( n )'nzé:ocm'_'r!

From (2.1.6) and (1.3.1) we obtain

+a N+1 —_n
Lﬁ‘MmM’ ,,,,, My (z) = (n ) AD"Fy (
n E___% a+1
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where

C, = ’%1 (mik 4 (=P Nf:l(m C(mtat ke D )
"G @t Do " (@F Dmpn k=0 * N+1-k %k

From (2.1.12) it follows that Ao+ A; + --- + An41 # 0. So we may write
(=)m  (m+Bo)(m+By)---(m+ Bn)

Cn=(A+4A+ - +4
(Aot dt ot N+l)(a+N+2)m (o + 1N
for some complex numbers g;, j =0,1,2,...,N. Since
m+ﬂj=ﬂj(—ﬂzﬁf)L for B; #0,-1,-2,...
'3 )m

we find in that case

o cae +

LyMoMur-My(z) = Z:[il_ l)ﬁ (n n a) (Ao+ A1+ + Any1) X
_n)ﬂ0+1,ﬂ1 +1,...,88+1

XN+2F N2 ( a+N+280 b1 8v |%) (23.1)

In the case that §; is a nonpositive integer for some j we have to take the analytic
continuation of (2.3.1).

For My=M,=--=My=0wehave Ag=land 4, =4, =---=Ay;; =0. In
that case we find ’

_ (=n)m m4a _ (=n)n  (Mm+a+1)yy
N P N CE Ari) Wy iy v
(=n)m___ (m+fo)(m +B1)---(m + Bn)
(a+ N +2), (a+1)nsr

where .
Bi=a+j+1,j=0,1,2,...,N.

We then find for (2.3.1) :

,0,0,...0 _ [(nta -n,a+2,a+3,...,a+N+2

Ly ‘ (z) = ( n )N+2FN+2(a+N+2,a+1,a+2,...,a+N+1Ix)
n+a —_n
() (o

So (2.3.1) can be considered as a generalization of the hypergeometric series representa-
tion of the classical Laguerre polynomials {Lgf‘)(a:)}j_o given in (1.3.1).
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2.4 A second order differential equation

In [18] we found a second order linear differential equation satisfied by the polynomials
{Lg'M'N (z)}:o_o. The method used there can be applied in the general case, but in [9]
we found a more simple and elegant proof of the second order linear differential equation
for the polynomials {Lﬁ’M"'Ml""'MN (z)}::o. We will give this latter proof here.

Theorem 2.1. The polynomials {Lz'MmM' e MN (z)}m_0 satisfy a second order linear
differential equation of the form -

epaeW(2) — (@) (@) + npo(2)y(e) = O (24.1)
where po(z), pi(z) and p,(z) are polynomials with
po(z) = Ag(Ao+ Ay + -+ Any41) zVt! 4+ lower order terms
p1(z) = Ao (Ao + Ay + -+ + Any1) zV*2 + Jower order terms (24.2)

po(z) = Ao (Ao + A1+ + Anya) Nt 4+ lower order terms
and

p(z) = zph(z) + (z — o — N — 2) ps(z). (2.4.3)

Proof. We start with the differential equation (1.3.5) for the classical Laguerre
polynomials {Lff’)(x)}:o_o :

& d
L L@ — )~ @)(z) = 0. 4.4
g5 LY@ + (e +1-2) L (z) + nLy(z) =0 (244)
Differentiation of (2.4.4) leads to

e D**2 L) (z)+(a+k+1—z) D LEN(z) +(n—k)D* L) (z) =0, k= 0,1,2,.... (24.5)

By using k = N — 1 in (2.4.5) we find from (2.1.6)

N
2Ly MMM () = 3 by(@) D)

k=0
where
bk(:c) = Akz, k= 0,1,2,...,N -2
bN-](z) = AN_1$ - (n - N + I)AN-H

bn(z) = Anz — (a+ N — z2)Anpa-
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Then we take k = N — 2 in (2.4.5) to obtain

N-1
Isz-Mo.Mx,---.MN(z) - Z bk(z)Dklea)("D)
k=0

where .
be(x) = abi(x), k=0,1,2,...,N -3
bn-2(z) = zby_s(z) — (n — N + 2)bn(2)

by-1(z) = 2by_y(z) — (e + N — 1 — 2)bp(2).
Repeating this process we finally find by taking k = 0 in (2.4.5)

2P LMo Mive M (g) = go(2) L§(z) + (2) - L) (246)

for some polynomials g and ¢, satisfying

go(z) = Apz™ + lower order terms
(24.7)
qi(z) = (A1 + A2 +--- + Any1) =V + lower order terms.
Differentiation of (2.4.6) gives us
d
N____ a, Mo, Mq,...Mn N-1yo,Mo,My,...My
i L3 (z)+ Nz" 'L} (z)
= @)+ lao(e) + h(e)] L) + i (0) s L ).
Now we multiply this by z and use (2.4.4) and (2.4.6) to find
o1 L pMoMe M (3) = ro() (@) +ri(e) L) (248)
dr dz
where
ro() = zgo(e) — Ngo(z) — ngi(2)
(2.4.9)
ri(z) = zgo(z) + zg1(2) + (z — a — N — 1)qs(2).
It follows from (2.4.7) and (2.4.9) that
ro(z) = —n (A1 + A2+ -+ + An41) 2V + lower order terms
(2.4.10)
ri(z) = (Ao + Ay + -+ - + An41) V! + lower order terms.
In the same way we obtain from (2.4.8) by using (2.4.4)
d? d
N+2 ¥  7o,Mo,My,...MN — (a) Bl £ 9] .
S L2 (z) = so(z) L™ (z) + sl(az)dz Li(2) (2.4.11)
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where
30(z) = 2r(z) = (N + ro(a) = nra()
(2.4.12)
s1(z) = zro(z) + zri(z) + (2 — a — N — 2)ri(=).
And applying (2.4.10) to (2.4.12) we find
[ so(z) = —n(Ag+ A1+ + Any1) 2V + lower order terms
(2.4.13)
s1(z) = (Ao + A1+ - + Any1) zN*2 4+ lower order terms.

Now we eliminate the derivative of the classical Laguerre polynomial from (2.4.6) and
(2.4.8) and find

[20(2)rs(2) — ai(@)ro(@)] L (2)

= o (o) () = () LA )

Since L{*)(0) = (“:"‘) # 0 we conclude that

go(z)r1(z) — q1(@)ro(z) = =" pa(2) (24.14)
for some polynomial p;. In the same way we obtain from (2.4.6) and (2.4.11)
wo(@)si(®) — a(@)sole) = Vpa(z) (24.15)

for some polynomial p;. And from (2.4.8) and (2.4.11) it follows that
ro(z)s1(z) — r1(x)so(z) = nzV ' po(z) (2.4.16)
for some polynomial py. Here we used the fact that
go(z) = Aoz" and ro(x) = so(z) =0 for n =0,

which follows from (2.4.6), (2.4.9) and (2.4.12).
In view of (2.4.6), (2.4.8) and (2.4.11) it is clear that the determinant

:):NLz'M‘)'MI r--,MN(x) 90(z) @ (z)

zN"'l(;izLﬁ’MmM"‘“'M"(z) ro(z) ri(z)

d?
IN+2EL:'M°’M"""M"(I) so(x) sl(z)
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must be zero. The first column of this determinant can be divided by zV. Hence, by
using (2.4.14), (2.4.15) and (2.4.16), we find

LoMoMs:M (1) 9(z) q(z)
IiLa,Mo,Ml ..... MN(.’E) 7'0(1:) 1'1(1?)
0 = dz™"
2(PL‘,,'MD,MI ..... Mn
o (@) so(z) ()

Vi) 1 LMoo () — 5413, (5) L o)
+ $N+1 npo(x)L:,Mo,Mx ,...,MN(&:).

This proves (2.4.1).

Now (2.4.2) easily follows from (2.4.14), (2.4.15) and (2.4.16), by using (2.4.7), (2.4.10)
and (2.4.13).

Finally we prove (2.4.3). Differentiation of (2.4.14) gives us

2" pi(z) + Nz 'pa(2) = go(2)ri(2) + o(2)ri(z) — g1(@)ro(z) — @(z)r().
Now it follows by using (2.4.14), (2.4.12), (2.4.9) and (2.4.15) that

2" [zpy(2) + (2 — a — N - 2)py(<)]
z [go(2)r1(z) + go(2)ri(z) — qi(z)ro(2) — qu(2)ro(z)] +
+(2 — a = 2N - 2) [go(z)r1(z) — @1 (2)ro(2)]
90(z) [zro(z) + 2r{(2) + (2 — & ~ N = 2)ry(z)]} +
— q1(z) [zro(z) — (N + D)ro(z) — nri(z)] +
— zqo(z)ro(z) — Ngo(z)ri(z) — ngi(z)ri(z) +
+zgo(z)ri(z) — zqi(z)ro(2) — (2 — & — N — 1)g1(2)ro(z)
9o(z)s1(z) — q1(z)30(x) + r1(z) [zg5(z) — Ngo(z) — nar(2)] +
—ro(z) [2g0(z) + 241 (2) + (z — @ — N — D)s(2)]
0(2)s1(2) — q1(2)s0(2) + ra(2)ro(z) — ro(e)r1(z) = z"pi(2).
We simply divide by zV to obtain (2.4.3). This proves the theorem.

HMy=M =--=My=0wehave A = 1 and 4) = A; = -+ = Ay41 = 0.
Moreover, we have L3%%%(g) = L{®)(z). This implies that (2.4.6) is valid with go(z) =
zV and ¢1(z) = 0. Then it follows from (2.4.9) that ro(z) = 0 and ry(z) = 2V*+'. And
from (2.4.12) we then obtain so(z) = —n2V*! and 8;(2) = (2 — @ ~ 1)z¥*+. So we have,
by using (2.4.14), (2.4.15) and (2.4.16) that py(z) = 2N+, pi(2) = (z — o — 1)zV+! and
po(z) = zN*1. Hence, for My = M; = --- = My = 0 the differential equation (2.4.1) can
be divided by z¥*! to yield the Laguerre equation (1.3.5). This shows that (2.4.1) can
be considered as a generalization of (1.3.5).
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2.5 Recurrence relation

All sets of polynomials {P,(x)}.>, with degree[P,(z)] = n which are orthogonal on an
interval with respect to a positive weight function satisfy a three term recurrence rela-
tion. The classical Laguerre polynomials for instance, satisfy (1.3.6). The polynomials
{Lf’;m My MN (a:)}:o_o in general fail to have this property, but we will prove the following
resuli.

Theorem 2.2. The polynomials {Lﬁ’M"'M"""M" (:c)}zo_o satisfy a (2N + 3)-term re-
currence relation of the form -

n+N+1
N LMo MM () Y EMLeMMMy(g) n=0,1,2,.... (251)
k=max(0;n—-N-1)

Proof. Since z¥+1[&Mo:MisMN(z) is a polynomial of degree n + N + 1 we have

n+N+1
zN+1L:'M°‘M"""MN(:c) — Z E’(‘")L:’Mo'M”""MN(.T,), n=0,1,2,... (2.5.2)
k=0

for some real coefficients E,(:"), k=0,1,2,...,n+ N +1.
Taking the inner product with L&Mo-Mi--My(z) on both sides of (2.5.2) we find by
using (2.1.1) forn =0,1,2,... and m=0,1,2,...,n+ N +1:
< L’G';MO.ML----MN’L::;MOyMlv"»MN > .E’(:)
=< $N+1L:,M0,M1,...,MN(1,),L;:n,Mo,Mx,...,MN(x) >

=< $N+1L:!';M0.MlanN(x),L:;MOyMly---uMN(w) > . (2.5.3)

In view of the orthogonality property of the polynomials {Lz'MmM‘""'M" (:c)}:o=o we con-
clude that E{) = 0 for m + N + 1 < n. This proves (2.5.1).

The coefficients {Ak}g:ol in the definition (2.1.6) depend on n. To distinguish two
coefficients with the same index, but depending on a different value of n we will write
Ay(n) instead of A;. Comparing the leading coefficients on both sides of (2.5.2) we obtain
by using this notation and (2.1.4)
kn (—1)N+ (n+t N+ Ag(n)

n! Ao(n + N+ 1)

Er(a'-:-)N+l = FnynN+1 #0,n=0,1,2,....

If we define (compare with (2.1.11))
An =< L:'MODMII'"IMN,Lﬁ1M0'MIV""MN S = (n -TI; a) Ao (Ao + Al +ot AN+1)

then we find by using (2.5.3), (2.1.4) and the orthogonality that

E(n) _ kn—N—lAn

n_N_l—maéO, n=N+1,N+2,....
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2.6 A Christoffel-Darboux type formula
From the recurrence relation (2.5.1) we easily obtain

(xN-O-l _ yN+1) L:,Mu,M; ,...,My(x)L:,Mo,Mx,...,MN(y)

k+N+1
— E E,(:) [L;,Mo.Ml.-u.MN(z)L:-MO'M! ,m.MN(y) +
m=max(0,k—-N-1)

_ L:‘,MooMl....,MN(y)L:|MO:Mln---yMN(x)] , k=0,1,2,
We divide by A; and sum over £k =0,1,2,...,n :

L:'Mo My, My (:E)L:’Mo My, My (y)

(z,N+l _ yN+1) 55

k=0 Ak
n k4+N+1 E(k) Mo M M
— Z E Am [L:’MO'M"""MN(.’I:)L:' 0,M1,..., N(,y) +
k=0 m=max(0,k—N-1) k

.. (26.1)

— Lfn,Mo,Ml,...,MN(y)L:yMOyMly...'MN(w)] , = O’ 1’ 2, P

Now we use (2.5.3) to see that

(k) (m)
%:ik_, k—-N-1<m<k+N+1, km=0,12,....

Now we have the following situations :
For n < N we have

m T m=k+N+1

m=k

N+1

m=k-N-1

0 o N+l Sk
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and for n > N + 1 we have

. m=k+N41
m1 =k N4+
m=k
N+1
k /m:k—N—l

0 n-N-1 N+1 n — k

n k+N+1 n k+N+1 n k+N+1

Y Y =Y Y +Y y=% %

k=0 m=max(0,k—-N-1) k=0 m=max(0,k—-N-1)} k=n—N m=n+l k=n—-N m=n+l
So it follows from (2.6.1) by using this observation that

Mo My ,...M Mo, My,...M,
( N+1 _ N+1) i Ly Mo M N(z)Ly T M(y)
T Y A

k=0

= i M Er(p’i [L""M"’M‘""'MN(:I:)L“’M"’MI""'M"(y) +
Ak m k

k=max(0,n~N) m=n+l
_ L‘:"’MO'Ml"“’M"(y)L:'M°‘M’""’MN(:C)] (262)

forn=0,1,2,.... This can be considered as a generalization of the Christoffel-Darboux

formula (1.3.10) for the classical Laguerre polynomials. ’
If we divide the Christoffel-Darboux type formula (2.6.2) by = — y and let y tend to

z then we find the confluent form

n La,Mo.Ml.---,MN(I)}z
N { k
(N + 1)z g A
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n k+N+1 (k) Mo Ms o M d Mo Mo M
= XX et (@) Lt Mt (z) 4
Ak d.’l:

k=max(0,n—N) m=n+1

_ L:;MD,MI.....MN (x)%L:,Mo,Ml My (.7:)

for n =0,1,2,.... This formula can be considered as a generalization of (1.3.11).



Chapter 3

Koornwinder’s generalized Laguerre
polynomials

3.1 The definition, the orthogonality relation and
some elementary properties

Koornwinder’s generalized Laguerre polynomials {Lz'M (:c)}:o_o are orthogonal on the
interval [0, 0c0) with respect to the positive weight function

L

mx“e"’ + M&(I) (311)

The generalized Laguerre polynomials {Lg'M (z)}:o_o form a special case of the polyno-
product (2.1.1) reduces to
1 (= v
=" op—% -1, M >0. 1.2
<h9>=5G7D / ae~*f(z)g(z)dz + Mf(0)g(0), a > —1, M 20.  (3.1.2)

For simplicity we always write ]o\gl instead of My in this chapter.
The polynomials {Lﬁ*" (z)}n_o are defined by

= |oem( 3] @+ (") pEE, n =012 (19)

In this case the system of equations (2.1.8) for the coefficients {Ax}+, simply yields

a2 )

24
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A solution which also admits the normalization L&°(z) = L{®)(z) is

A0=1+M("+°‘) and 4, =M("+°‘).

n—1 n

By using (1.3.7) and (1.3.4) we easily find forn > 1

o - ()21

- (" ! "‘) = L{(0). (3.1.4)
This formula remains valid for n = 0. More general we have
dk a,M
(o}

- e orma() (1)

- (i) ey e

From the definition (3.1.3) it follows that

(aﬂf 1) (n . a) ["Lsua’(w') +(a+ 1)%’“5‘“)("")] '

By using the relation (1.3.9) this implies that

LoM(z) = LE) (=) +

M n+a)l d
oM — 72 = _[lo+1) = RN

This is the representation (2.2.4) with

B()= 1 and Bl = ZQL—H)-(n:a).

To find the representation as hypergeometric series we note that

o, n+a) & z™
)= ("4 5 eny

where =
S o B e
= (_a(f%’f; [(m+a+1)+(m+a+1)M(:’:';) +(m—n)M(n:a)]

@i (e}

(a + 1)m+1



26 CHAPTER 3

Hence

L2M(z) = (" : “) [1 + M(n +‘: + 1)] é) (a(—;%’"nj(m + 7)“’%, (3.1.5)

where +1
a
y= T AT > 0. (3.1.6)
1+ Mk ) )
Since (r+1)
Y m
m+y=
=T Bm
we have from (3.1.5)
oM _[(nta —n,v+1 ‘
Ln (z) = ( n )2F2( a+2,7 lz) N (3.17)

where 7 is defined by (3.1.6).
By using (2.1.11) we find that the orthogonality relation is

<LgM LM > = (":") x
x [1+M(Z+‘;)] [1+M(n+:+l)] Sn, myn=0,1,2,..., (3.1.8)

where the inner product <, > is defined by (3.1.2).

3.2 A second order differential equation

In order to find the second order differential equation (2.4.1) in this case we note that
(2.4.6) equals the definition (3.1.3). Differentiation of (3.1.3) gives us

A My nta\l d n+a) d
dan ()= [1+M(n_l)] de,, (:c)+M< n )dsz,, (z).

Now we use the Laguerre equation (1.3.5) to obtain
d oM _ n + (44 + 1 d (a)
z%L" (z) = [1 + M( n )] :cdan (=) +

n+a
n

n+aoa
n

—(a+ 1)M( ) ;-Ls;*)(z) - nM( )Lsf)(z). (3.2.1)
T
This equals (2.4.8) so we can proceed in the same way. Another way leading to the
same result is the following.
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Elimination of the derivative of the classical Laguerre polynomial from (3.1.3) and
(3.2.1) leads to

@Ee) = dE o) - ("} oL o) (3:22)

where

o(z) = [1+M("+:+1)] —(a+1)M("+“)

r(z) = [1 + M(" + “)] a(z) + nM? (" :“)2.

By using (3.1.3) and (3.2.2) we find a second order linear differential equation for Koorn-
winder’s generalized Laguerre polynomials {Lﬁ'M (a:)}:0 of the form

ax(@)y"(2) + a1(@)/(<) + ao(e)y(z) = O (32.9)

where

[ ay(e) = M2 (” : "‘) 2acr(ac)

ar(z) = M(” : ") [1 + M(" ta 1)] or(z) +

-M ( n )q(x)r(m) + M? (" + “)2 [r(z) — zr'(z)] (3:24)

A

ao(z) = {r(z)}’ - [1 + M( )] q(z)r(z) +
- (" %) Wr(a) - ae)r ).

\

Some tedious computations show that

) | SR

and that the differential equation given by (3.2.3) and (3.2.4) can be divided by M?("%*) :
so that we obtain a differential equation of the form.

zpa(z)y"(2) — pi(2)y'(z) + npo(z)y(z) = 0 » (3.2.6)
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where
pa(z) =r(z)
] p(z) = (a+1)M (n * a) —(a+1-2)r(z) (3.2.7)
po(z) —r(z)—M\’H-a) [1+M(n+a+1)]

with r(z) defined by (3.2.5). Note that the polynomials py(z), pi(x) and py(z) all have
the same leading coefficient

P L))

For M = 0 the differential equation given by (3.2.6) and (3.2.7) can be divided by
r(z) in order to find the Laguerre equation (1.3.5).

3.3 The three term recurrence relation

The polynomials {Lﬁ'M (m)}r_o are orthogonal on the interval [0, 00) with respect to the
positive weight function (3.1.1). Hence, they satisfy a three term recurrence relation of
the form

eL3M(z) = A L2M(2) + BoLoM(2) + CaL3M(2), n = 1,2,3,. (33.1)

for some real coefficients A,,, B, and C,.

In order to find these coefficients we compare the coefficients of z"*! on both sides of
(8.3.1) to obtain by using (3.1.3) and (1.3.2)

1+M("+“)
n-—1
1+M(n+:+1)

By taking the inner product with Ly (:t) on both sides of (3.3.1) we find by using the
orthogonality relation (3.1.8)

A, =—(n+1) n=123,.... (3.3.2)

n+a+l
1+M( ° )

1+M(n+a)

< LiM(e). 2L an1(2) > _
<L$L1(w),L" (z)>

n = —(n+a) ,n=123.... (333)

1
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If we substitute z = 0 in (3.3.1) and use (3.1.4) we find

ntatl) (P [P TN =0, n=1,2,3,...
n+1 n n—1

or simplified

(n+a)n+a+)As+(n+1)(rn+a)B,+n(n+1)Cr,=0,n=1,2,3,.... (3.34)
Now it easily follows from (3.3.2), (3.3.3) and (3.3.4) that
1+M('::‘:) 1+M("+:+1
B,=(n+a+1) +n ,yn=1,23,.... (33.5)
(") (1)

With (3.3.1), (3.3.2), (3.3.3) and (3.3.5) we have found the three term recurrence
relation for Koornwinder’s generalized Laguerre polynomials .

3.4 The Christoffel-Darboux formula

In this section we will derive the Christoffel-Darboux formula for Koornwinder’s gener-
alized Laguerre polynomials {L"‘ M (m)}n o

In this special case the Christoffel-Darboux type formula (2.6.2) reduces to the com-
mon Christoffel-Darboux formula

aMx
”),;,L ( )L My) _

[L,.“(z)L"M(y) LyM(wLeM(@)]  (84.1)

where (compare with (3.1.8))

Api= < LOM LM 5 (":"‘) [1+M( 1)] [1 +M("+:+1)] (3.4.2)

and A, is defined by (3.3.2) for n =1,2,3,... and Ag:= — (1 + M)\,
If we divide (3.4.1) by z — y and let y tend to = we find the confluent form

LaM T
k_o{ ,\k( )} bW [L"M( ) L..+1( )~ Liﬂ(z)%L:'M(z)]. (34.3)

Hence, with (3.4.1), (3.4.3), (3.3.2) and (3.4.2) we have found the Christoffel-Darboux
formula for Koornwinder’s generalized Laguerre polynomials {L;'."M (a;)}:°=o

(= —v) (n + a) [1 4 M(n +a+ 1)]’ $ LyM(@) LM (y)
n

k=0 Ak
= (n+1) [LoM(2)LaM(y) - Li{(2) LM ()] , n=10,1,2,. (344)
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and its confluent form
(9 beum £
= (n+1) [L,,“(x)—L“ M(g) - L M(x)—-L,,,,,(x)] ,n=0,1,2,.... (34.5)

It is clear that for M = 0 the formulas (3.4.4) and (3.4.5) respectively reduce to the
Christoffel-Darboux formulas (1.3.10) and (1.3.11) for the classical Laguerre polynomials.

3.5 A higher order differential equation

In this section we will prove the following theorem.

Theorem 3.1. For M > 0 the polynomials {Lf’;“ (z)}:o satisfy a unique differential
equation of the form -

M éai(w)yﬁ)(z) +zy"(2) + (e +1—2z)y(z) + ny(z) =0, (3.5.1)

where {a;(z)}:2, are continuous functions on the real line and {ai(z)}iz, are independent
of n.

Moreover, the functions {a;(z)};e, are polynomials given by

ao(z) = (n+a+1)

n-—1
(3.5.2)

ai(e) = 3 E( 1)'+’+‘(°‘+:)(“+2)( +3)i 2, i=1,2,3,....

1—1

It is clear that for M =0 (3.5.1) reduces to the Laguerre equation (1.3.5).

Note that for a # 0,1,2,... we have degree[a;(z)] =i, i = 1,2,3,.... This implies
that if M > 0 the differential equation (3.5.1) is of infinite order in that case.
For nonnegative integer values of a we have

degree[a;(z)] =1, 1=1,2,3,...,a+2
degreelai(z)] =a+2, i=a+3,a+4,a+5,...,2a +4

ai(z) =0, i=2a+52a0+6,2a+7,....

This implies that for nonnegative integer values of a and M > 0 the differential equation
(3.5.1) is of order 2 + 4.
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Proof. We will use the notation a¢(z) := ao(n,a, z) and ai(z) := aia,z) for i =
1,2,3,.... In order to show that the polynomials {Lﬁ’M(z)}n_o for M > 0 satisfy a

unique differential equation of the form (3.5.1), we set y(z) = LM () in (3.5.1) and use
the definition (3.1.3) and the Laguerre equation (2.4.4) to find

M [1 +M (" + "‘) ga (2)D'LE)N(z) + M? (" : ") ga (@)D L) (=) +

+ M(n : a) [I%L(a)(z) +atl-2)7 L“”(w) + "iL(a)(z)] =

Now we use (2.4.5) for k = 1 to obtain

M[Sa@p1@ + (") Lowe) - (V1) )| +

=0

+M? [(z + “) Y a@)D'LEN(=) + (” + “) Y a (x)D-'HLs,a)(z)] =0

=0
for all real 2, « > =1, M > 0 and n = 0,1,2,.... Since the expressions between square
brackets are independent of M this requires that
o a(2) D' L® ntald o (nte) @ e
ga.(m)D Li(z) + ( n ) den () n 7 =L (z) = (3.5.3)
and - -
nY ai(2)D'LE(z) + (e +1) Y ai(z)D*' LN (z) = 0 (3.5.4)
=0 =0
for all real z and n =0,1,2,....
First we show that (3.5.3) and (3.5.4) have at most one solution for {a;(z)};2,. This
means that we have to show that
3 a(z)D'LP(z) =0, n=0,1,2,... (3.5.5)
i=0
and
nY ai(z)D'LENz) + (@ + 1) Y ai(z) DL (2) =0, n =0,1,2,... (3.5.6)
i=0 =0
only have the trivial solution. Note that (3.5.5) and (3.5.6) imply for all real z
ao(n, a, )L () + > ai(e, 2)D'L¥(z) =0, n=0,1,2,... (3.5.7)

=1

and

ao(n, a :c)—L(")(z) + Ea,(a )DL (z) =0, n =0,1,2,. (3.5.8)

=1
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Substitution of n =0 and n = 1 in (3.5.7) and (3.5.8) gives us
ao(0,a,2) =0, ag(1,a,2z) =0 and a;(e,z) =0 for all real .
Now we set n = 2 in (3.5.8) to obtain
ao(2,a,z) = 0 for all real = except possibly for z = a + 2,

being the zero of £ L(“)(z) Now we use the continuity of ao(x) to conclude that
ao(2,a,z) = 0 for a.ll real z. Then we obtam from (3.5.7) by setting n = 2

az(a,z) =0 for all real z.

Repeating this process we finally find
{ ao(z) = ap(n,a,z) =0 forallreal 2 and n=0,1,2,...

ai(z) = ai(a,z) =0 forallreal z and: =1,2,3,....

This proves that (3.5.5) and (3.5.6) only have the trivial solution. Hence, (3.5.3) and
(3.5.4) have at most one solution.

Now we will show that (3.5.2) is a solution for (3.5.3) and (3.5.4).

We start with

$ @D = £ (3 1) (11 T @+ 9D

where z is real and n is a nonnegative integer. Changing the order of summation twice
we obtain

iae(m)D‘Lﬁ.")(x)
- ,.El( 1):+1(a+ :) Z( .1) (a+2)( 9D
_ J_El( 1)a+1(a+1) "_0((, Jlr);' (a-:—z)( .
) _'2‘2‘( Y <a+2)( +3)‘,§(Of“)(zﬂ)'p'h““’(w) (3.5.9)

Now we use the definition of the classical Laguerre polynomials (1.3.1) to find

£ e - (L)L (T ) et

o\ -1/ G+ =1 k=0
= (”:“) 3 Cpa™, i=0,1,2,...,  (3510)
m=1
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where

= 56D

= 1) (@ + 1igm(i + 5)(m — j)!

(—n)itm ml a1 1
— _am j — —, m=1,2,3,....
@i 2\ JeFTFDmoTr " b

Since (i + j + 1)! = (¢ + 1)!(z + 2);,

at+l) (—a—1); an ' 1 J( m + 1);
( j )‘( V= = G - ) o)

we obtain

(=n)itm 1 -m+1,-a—1
_ ‘ 1 ,m=1,23,....
2 (a+ Digm (m—l)!(z+1)!‘Fl 14+ 2 1}, m 2,3

Now we use the summation formula (1.2.3) to find for m = 1,2,3,...
c (—1)igm 1 I'm+a+i+2)T(i+2)
i (@4 igm (m —DIE+DIT(m+:i+ D+ i+ 3)
(_n)i+m(a + ] + 3)m—1
(a4 1igm(m — D)@ + m)!

Hence, with (3.5.9) and (3.5.10) we have

S a(@ D)
n+ta a+2 (—n)itm (@+14+3)m
( 2 (] )( 9 2 e B T DG
— (n, + a) f: f: (= = 2)i(=n)ism(a + 3)ism—1 ™,

n ) iSim Ma+ Digm(m — 1)@ + m)!

Now we use the facts that (—n)itm = (—n)m(—n + m);, (i + m)! = m!(m + 1); and

(a+ 3)izm—1 _oa+tit+tm+l
(0 +1igm (e +1)(a+2)

to find
()
ga;(x)D'LS,“)(x) = —-m X

Z (=)m 2™ E(—a 2)i(~n + m);

m=1 (m )' m' =0 (m + 1),1'

‘(a+i+m+1).
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We split the last sum into two parts and use the summation formula (1.2.3) obtaining

g (e (r:)+'1")" i 4 i4m 1)
= (a+m+1)F ( TaT Ao 1) +
T
- (wom LI, (ot e e )
= (a+1)("+°‘+1)(-;{—"1)—+[(m+2a+3)n+(a+1)(a+2)]

Hence
ga'_(z)pmg)(x) _ _(_1-;_5<n +a) (n + : + 1) N
Do v

for all real ¢ and n =0,1,2,....
To complete the proof of (3.5.3) we use (3.5.2) and (1.3.1) to find

st () a1 s

- (PRI e () e -l
- (VR e e ()i
T 0 [
xg%[“(’¢+2a+3)+(a+1)(a+2)]ﬁ

for all real z and n = 0,1,2,.... With (3.5.11) and (3.5.12) we have proved (3.5.3).
To prove (3.5.4) we observe (compare with (3.5.9)) that

Ea (x)D|+1L(a)($) —_— Z( 1): ( a+ 2)( + 3) Z (a + 1) z 'DI+J+1L(G)(3:)
=1 =0 i=1 (z + ])
for all real z and n = 0,1,2,.... In the same way as before we find

Lo
n

j=1 ]—1 (,+J)' m=1

x [(m + 20+ 3)n + (o + D+ 2)] - ml), (3.5.11)

(3.5.12)
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where for m =1,2,3,...

_x~[atl (=n)itm+1 _ _(mitmpa(e+i+3)m
Dm = Jz=:1 (j - 1) (@+ Digmtr G+ )Um —5)!  (a+ Digmaa(m — DIGE +m)!’
Hence
S ai(@)D* L{(2)

T n+a) & ox (@ = 2)i(—n)iymir(@ + B)igm-1_m
( ) :‘3 g Mo+ Digmpr(m = DIG+m)

] (n+a) z(n)mﬂw Fl(_a-z,—n+m+1ll)

(a+1(a+2) Dim m+1

m'-l

n+a
( ) E (=n)m1 2™ P(n + a +2)I(m + 1)
e+ )(a+2) = (m-!m! m+a+ 3)'(n)

_(‘n + a) (n +a+ 1) 5”: (=)msr =™ ) (3.5.13)

n J\ n-1 ) B G@F Dues 1)
With (3.5.11) and (3.5.13) we have found that

23 ai(@)DIE(@) + (a + 1) 3 ai(e) D L (=)

i=1 i=1

(n+a)(n+a+1)
- X
n n—1

x,gl(?(w:%[(m+2a+3)n+(a+1)(a+2)+(“+l)(m_”)]W_ij)!
_ ntalfn+a+l\ X (—n)m call
— —(n+a+1)( )( n—1 )m2=1 (a4 1myar (m —1)! (3.5.14)

for all real z and n =0,1,2,....
To complete the proof of (3.5.4) we use (3.5.2) and (1.3.1) to see that for all real z
andn=0,1,2,...

nao(#)LE(#) + (a + Dao(z) = L)
(n+a)(n+a+ 1) f:——-——(_n)" [n(a+k+1)+(—n+k)(a+1)]-g,i—t

n n—1 k=0 (a + 1)k+1

(n+a+1) <n + a) (n : i -1+- 1) g (a(;’g’zﬂ © ikl)!, (3..5.15)
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With (3.5.14) and (3.5.15) we have proved (3.5.4).
This shows that Koornwinder’s generalized Laguerre polynomials {Lﬁ'M (z)}io__o sat-
isfy the differential equation defined by (3.5.1) and (3.5.2).




Chapter 4

Other special cases and
miscellaneous results

4.1 Another special case

In this section we consider the inner product

1 7 o, _—T ! (]
<h9> =155 / 2%~ f(2)g(z)dz + M F(0)g(0) + N f'(0)g'(0), i

a>-1, M>0, N>0.

This is a special case of the inner product (2.1.1). In this chapter we mostly write M
and N instead of My and M, respectively.

For N > 0 the inner product (4.1.1) cannot be obtained from any weight function,
since then < 1,22 > # < z,7 >.

Since many of the well-known properties of orthogonal polynomials depend on the
existence of a positive weight function, we may not expect the polynomials which are
orthogonal with respect to the inner product (4.1.1) to satisfy a three term recurrence
relation and to have real and simple zeros which are located in the interior of the interval
of orthogonality. Moreover, since we are dealing with an inner product which cannot be
obtained from a weight function we cannot speak of an interval of orthogonality.

In this chapter we will investigate the properties of the polynomials {Lﬁ'M'N (:v)}”_o
which are orthogonal with respect to the inner product (4.1.1). These polynomials were
found in [11] and later described in more details in [18]. In this case it is quite easy yet
to establish the definition (2.1.6) since the system of equations (2.1.8) for the coefficients
{AL ) is still manageable.

It turns out that the representation (2.3.1) as hypergeometric series is quite control-
lable : one can quite easily establish the behaviour of the coefficients {@:;}, in this
case.

o0

37
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Finally, we have some results concerning the zeros of these orthogonal polynomials
in this yet simple case. We state and prove these results in this and some other special
cases in this chapter. '

4.2 The deﬁnition, the orthogonality relation and

some elemen ary plupexues

The polynomials {Lﬁ'M'N (:c)}"___o which are orthogonal with respect to the inner product
(4.1.1) are defined by

LIMN(g) = AL (2) + A1 LE)(z) + Az—‘p—LM(z), (4.2.1)

where

e ]) R ()

rermeer ) ()

| em () e o) e i)

A = N n+a + MN [n4+a\fn+a+l
[ 2T la+)\n-1) " (a+1?\ n J\ n-1 )
It is clear that for N = 0 we have

LoMO(g) = [1 + M(" + ")] LO(z) + M(" + “) ‘;LSf)(zy) = LoM(z).

1

These are Koornwinder’s generalized Laguerre polynomials described in the preceding
chapter. Of course, for M = N = 0 we have the normalization L2%°(z) = L{)(z).
Note that

In this case the system of equations (2.1.8) for the coeflicients {A )22} reduces to a
system of two equations

A+ (n-DA+ M [("+a)Ao— (:+“)A,+ ("+°‘)Ag] =0

s IS e I AE

(4.2.4)
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A straightforward tedious computation shows that (4.2.2) is a solution for (4.2.4) which
admits the normalization L3%%(z) = L{®)(z).
The orthogonality relation is (compare with (2.1.13))

< L&MN [aMN o _ (":a)Ao(A0+A1+A2)5mm m,n=0,1,2,...,
where the inner product <, > is given by (4.1.1).
By using (4.2.1), (4.2.2), (1.3.4) and (4.2.4) we obtain
MLy™N(0)
= () (D) ()4
n n -
= Al - (n - l)Ag
n+4+a MN rh4a n+a+1 n+a+l
= () as( ) U ) e ()
_ n+a N n+a+l
- 1) -G ()
Hence, for M > 0 we have

woro- ()] s

For M = 0 we find the same formula by direct computation. Note that L2MN(0) does
not depend on M.
In the same way we obtain from (4.2.1), (4.2.2), (1.3.4), (1.3.7) and (4.2.4) :

d o MN _ n+a n+a n+a
), = (IS (5 (5))

= (a+1)A2
n+a MN [(n4+alfnt+a+l
= N(n—1)+<a+1>( n )( n-1 )
Hence, for N > 0 we have
d oMN _ [n+a M (nt+a)fnt+a+l
R S

For N = 0 we find the same by direct computation. Note that { LLaMN (:t)} does

not depend on N and that { "L"’MN(:t)} _,<0forn=1,2,3,.
The second representation (2.2.4) in this case reads

LEMN(2) = BoL(z) + Bua e LE)(a) + Baa® o, L49)), (42.7)
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where

( : N n+a+l
Bt (s )

g M (n+a) N(a+2) (n+a>
Ta+D\ n /T (@+)(a+3)\n-2 (12.8)

B”=m+JXaZ2Xa+$(ZtT)+

+ MN nt+alfnt+a+l
‘ (e+1)(a+2)(a+3)\ n n-1 J°
This representation easily follows from the definition (4.2.1) and (4.2.2) by using (2.2.3).

Note that (4.2.5) and (4.2.6) easily follow from this definition (4.2.7) and (4.2.8).
From (4.2.8) we easily see that

B; >0 and B, >0.
Later we will show that By, < 0 if N > 0 and n is sufficiently large.

4.3 Representation as hypergeometric series

If we write
m

aMN/ .y _ (Pt ¢ z"
L (=)= ( n )Eocmm!,
then we have in this case
(_")m (“n)m+1 (_n)m+2
Cn = A A A
[(a Dt Gt Dot T (@t D

_(m m+a m+a
(a+1),,.+2[A°( t+a+l)(m+a+2)+

+ Ay(m — n)(m + a + 2) + Ax(m — n)(m —n +1)]
(=n)m (m+ Bo)(m + B1)
at3)m @+D@+2)

(Ao + Ay +A2)(

where

{ (Ao + A1+ A2)(Bo+ B1) = (2a + 3) Ao + (@ + 2 — n)A; — (2n — 1)A; 3.)
43.1
(Ao + A1 + A2) foBr = (a + 1)(a +2) Ao — n(a + 2)A; + n(n — 1)4s.

Hence, for fo # 0,—1,-2,... and B, #0,-1,-2,... (2.3.1) reduces to

oM, _[n+a Bobh -n,fo+1,5+1
L"MN(:Z)—( n )m(Ao+A1+A2)3F3( a+3yﬂ0)1ﬂl |z)
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By using (4.2.5) we conclude that

Bopr 1 N nt+a+l
W(Ao-i‘fh'fw‘lz)—l _(a+l)( n—o ) (4.3.2)

and therefore

e (1) a1 (AR ) oo

Since ("£%)Cy = (—1)"4o # 0 we have fy # —n # fi. If fo € {0,~1,~2,...,—n +1}
or f; € {0,~1,-2,...,—n+ 1} we simply have to take the analytic continuation of
(4.3.3). For ffo < —n and B; < —n formula (4.3.3) remains valid.

The following example shows that 8y and (81 need not to be real. If we take a = 0,
M =0, N =1 and n =1, then it follows from (4.2.2) that Ay =1, A; =0 and A, = 1.

So we have in that case by using (4.3.1)

Bo+ P =1 and Bofh =1.
Hence
(Bo — :31)2 = (Bo+ ﬂ1)2 ~ 4B = -3 <0.

Now we will examine f§y and f, in somewhat greater detail. First, we take N > 0.
With (4.2.3) we have Ay + 4, + 4; > 1 > 0. Since

n+a) Fn+a+1) pot
T TPn—i+Dl(a4+i+1) TD(ati+1)

for n — oo (4.3.4)

n-—1

we conclude that the right-hand side of (4.3.2) is negative for N > 0 and n sufficiently
large. Without loss of generality this implies that

Bo<0 and B >0
for n sufficiently large. Further we have with (4.2.6)

n+a n(Bo +1)(B1 +1)
_.( n )(A0+A1+A2)(a+1)(a+2)(a+3)
_ (n:a)cl _ {%L:,M.N(x)} _0<0, n=1,23,....

Hence
(Bo+1)(B+1)>0 for n=1,2,3,....

We conclude that
—1<f<0 and B; >0

if n is large enough.
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By using (4.3.4) we find from (4.2.2) for n — oo :

N(a + 2) na+3 .
£ M=
@+)a+3)(at3) it M=0
~ 43.5
MN nrert if M>0 .
aiDa )@t atd = 777
N na+2
—_— if M=0
@+ DI(a+2) '
Ay ~ (4.3.6)
2MN niats
X f M
| a1 )T Diers ~M>0
and
N na+1 R
(@a+1)T(a+2) if M=0
A2 ~ & . (4.3.7)
MN nlat? .
| (a+1)?T(a+ 1)I(a+3) it M>0.
Hence, for n — oo we have
(2a +3)40+ (a+2—n)4; —(2n—1)A; ~
Na na+3
if M=
EF D@9 Ta+2) : 0
~ 4.3.8
MN nlatd 438
if M>0.

@t a+2)Na+ Di(a+9)

Now it follows from (4.3.1), (4.3.2), (4.3.5), (4.3.6), (4.3.7) and (4.3.8) forn — 00 :

a

ﬂo+/31~{
-1

and
—(a+1)

BoP ~ _(a+1)(a+2)T(a+3)

if M=

Mna+l
Hence for M = 0 we have for n — oo :

0

if M>0

if M=0

if M>0.

Bo— -1 and A s a+1l

and for M > 0 we have for n — oo :

po— —1 and B — 0.
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If N = 0 we have Koornwinder’s generalized Laguerre polynomials . In that case we
have (compare with (3.1.7) and (3.1.6)) :

raMoy_ [Pt o -n,y+1
spwee) = ("m0 ).

a+1 > 0.
1+M("+a+l)

where

‘)/:
n

Note that we have in this case

{‘y=a+1 f M=0

¥y—0 if M>0 and n — oo.

4.4 The zeros

All polynomials {P,(z)}se, with degree[P,(z)] = n which are orthogonal on an interval
with respect to a positive weight function have the nice property that the polynomial
P,(z) has n real and simple zeros which are located in the interior of the interval of
orthogonality. Qur polynomials {L,""'M’N (:c)}:o_o fail to have this property. However, we
will prove the following theorem.

Theorem 4.1. The polynomial L3M"N(x) has n real and simple zeros. At least n—1
of these zeros lie in (0, o).
In other words : at most one zero of L¥™N(z) lies in (—o0,0].

Proof. For n > 1 we have < 1, L3™¥N(z) > = 0. Hence
_t 7:c°‘e"’L“’M’N(a:)dz + MLXMN(0) =0
Mla+1) J » " ’

This implies that the polynomial L2MN(z) changes sign on (0, 00) at least once. Sup-
pose that z,z;,...,2; are those zeros of LMV (z) which are positive and have odd
multiplicity. Define .
P(z) 1= ka(z ~ 21)(z — 23) -+ (2 — 2),

where k, = i’—nl,):Ao denotes the leading coefficient in the polynomial L&MN(z). This
implies that
p(a)LEMN(2) > 0 forall z > 0.
Now we define
h(a) = (= + d)p(z)



44 CHAPTER 4

in such a way that h'(0) = 0. Hence

0 = #'(0) = dp'(0) + p(0)-

Since ) (d 11 1
P = — = - — —_— s —_—
oo {dz In |p(z)|}mn (z1 Ftet x,,) <0
we have 2(0)
= - >0
7(0)
Hence

h(z)L2MN(z) > 0 for all z > 0.
This implies that

1 (> ]
<R LoMN 5 = — = [ g%~ h(z) LaMN (z)dz + MA(0)L™"(0) > 0.
IN(a+1) .0/

Hence, degree[h] > n which implies that k > n — 1. This implies that all positive zeros
must be simple.

So we have : at most one zero of L3/ (z) is located outside the interval (0, 00).
This immediately implies that all zeros of L3V (z) are real. This proves the theorem.

Now we will examine the nonpositive zero of L&*MN(z) in somewhat greater detail.
First we will prove the following result.

Theorem 4.2. If N > 0 and n is sufficiently large the polynomial L3M™(z) has a

zero z,, in (—o0,0].
For M > 0 this nonpositive zero is bounded :

1 /N
- = /—=< <0. 4.
Z\IM_:::,._O (44.1)

2z, — 0 for n — oo. (4.4.2)

For all M > 0 we have

Proof. From (2.1.4) and (4.2.3) we obtain that L¥MN(z) > 0 for all z < —B if
B > 0 is sufficiently large. This implies that the polynomial LaMN(z) has a zero in
(—00,0] if and only if LZMN(0) < 0. By using (4.2.5) and (4.3.4) we conclude that
L2MN(0) < 0 for N > 0 and n sufficiently large.

Now we take N > 0 and n large enough such that L&MN(z) has a zero =, in (—00,0}.
Let z1,23,...,Zn1 denote the positive zeros of L&M"N(z) and define

r(z):= (2 —z1)(z — 22) - (2 — Tn-1)
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Then we have
LeMN(z) = = ) ~—=Ayr(z)(z — z,), z, < 0. (44.3)

Since degree[r] = n — 1 we have

2%~ r}(z)(z — z,)dz +

0 = <rrgh s =Sy,

_ =
nl

F(a1+ 1) /

—1)"
r}(0)z, + ( n!) AoN7'(0) [r(0) — z,7'(0)]).  (4.4.4)
Since the integral in (4.4.4) is positive we must have
~Mr?(0)z, + Nr'(0) [r(0) — z,r'(0)] < 0.

Hence

0 <~ [M{r(0)} + N {r'(0)}"] 2n < —Nr(0)'(0) = N Ir(0)r'(0)],
since r(0) and r’(0) have opposite signs. It follows that

~2VMN [r(0)r'(0)| 2 < — [M{r(0)}* + N{r'(0)}?] za < N |r(0)r'(0)].

Hence

-2vVMNz, < N.

This implies that for M > 0 the zero z, is bounded :

1[N
—_— | — < < (.
s\ ag <o =0
This proves (4.4.1).

It remains to show that (4.4.2) is true. From Taylor’s theorem we have for z < 0 :

LoMN(g) = La.M,N(0)+${iLa,M,N(z)} + xz{ d LaMN(m)} +
n n dz n 220 d 2 £=0
3 &8
+ % { Ly MN(z)} 2 <€<0. (4.4.5)
z=§

In view of Rolle’s theorem every zero of 2 2 L2MN(z) lies between two consecutive zeros
of L2MN(z). In (4.2.6) we have seen that {d L"MN(:c)} < 0. Hence, all zeros of
£ LaMN(z) are positive. This implies that L LaMN(z) is negatlve and increasing for

z < 0. In the same way we conclude that <& L" M.N(z) must be positive and decreasing
for £ < 0. Hence

{ddssLﬁMN(:t)} <0 for < €<
z z={
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From (4.4.5) we conclude
L2MN(z) > az? + bz +¢, 7 <0, (44.6)
where, by using (4.2.5) and (4.2.6)
¢ = LIMN(0) = (n:a) [1 N (n+a+1)]

\ ' @+ 1)\ n-2

\

and

_ |4 amn _ _[n+ay_ M (ntea)fntatl
(gl =-(20) w0 (0)
And by using the representation (4.2.7), (4.2.8), (1.3.4) and (1.3.7) we find

d2 o,M,N
2a = {EEEL“ (m)}zao

(r5)rmrn( e (s )
(a{i(i?&? ;)?3 v 5 (Z ! ‘;) (n s 1) *

*(a+1)2(2£N2)(a+3)(n:a)(n:ﬁ1)(n:igz)'

By using (4.3.4) we find for n — oo :

N n2cx+3
“(a+DT(a+ 1) (a+4)
na+l

"T(a+2)

Cc~

forall M >0,

f M=0
b~
M niot2

“{a+ ) T(a+ 1)l(a +3) it M>0

N n2a+5

2(c + 1)(a + 4) T(a + 2)l(a + 4) if M=0

MN ndo+é
(a+1)*(a + 2)(a + 3) T(a + 1)I(a + 3)[(a + 5)
This implies for the sum of the roots of az? + bz +c=0ifn — oo :
2a+1)(a+4)(a+4)
b Nnoté
a (a+1)(a+ 2)(a + 3){a
Nnott

if M>0.

f M=0

+5 ¢ M>o0
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and for the product of the roots

_Aat)(at+d) £ M=0
c n?
¢ (@ +1)(a+2)I(a+5) .

- Vot if M >0.

Hence b
—~——0 and €0 for n— oo.
a a

In view of (4.4.6) the nonpositive zero z,, of L&MN(z) lies between the two roots of
az? + bz + ¢ = 0. Hence
z, — 0 for n — 0.

This proves (4.4.2) and therefore the theorem.
Finally we will prove the following theorem.

Theorem 4.3. Let N > 0 and let n be sufficiently large such that the polynomial
LaMN(1) has a zero z, in (—00,0]. Let z; < 3 < -++ < T,—; denote the positive zeros
of L*MN(z). Then we have

0< —z, < 21, (44.7)

Proof. For z, = 0 (4.4.7) is trivial. So we take z, < 0.
In (4.2.6) we have seen that {%Lg'M’N(a:)}I:O < 0 for n =1,2,3,.... This implies,
by using (4.4.3), that
(-1
n!
Since r(0) = (—1)*"'z1z2 - zn—y and

’r((g)) - {;;lnh(:c)l} - (xl] 4 f; PR znl_])

=0

)" 49 [r(0) — 2ar'(0)] < 0.

we obtain

A 1 1 1
—_?ml-"?z"'?'n—l[1+$n(—+—+-“+ )]<0.
n: Ty T2 Tp-1

Now we use (4.2.3) to conclude that

zn(—1-+-l—+~~+ ! )>-1.

T T2 Tn-1

Since z, < 0 this implies
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Hence
-z, < I3.

This proves (4.4.7) and therefore the theorem.

4.5 More results concerning the zeros

Now we consider the inner product

<fg>= ﬁ [ e f(@)o(z)dz +
° 4 Mof(0)9(0) + M, f(0)'(0) + Maf"(0)g"(0),
a>-1, My>0, My >0 and M; >0

and the polynomials {Lz'M"J"""“’(:c)}co which are orthogonal with respect to this inner
e

product. For these polynomials we prove the following theorem.
Theorem 4.4. The polynomial L3MeMi:M2(z) has at least n — 2 positive zeros.

Proof. For n > 1 we have < 1, L&MoMiMa(g) 5 = 0. Hence
ey [ o I )z + ML M2(0) =0
)

This implies that the polynomial L3MoMi1:Mz(z) changes sign on (0, 00) at least once.
Suppose that zi,23,...,z: are those zeros of L2Mo-M:Mz( 1) which are positive and
have odd multiplicity. Define
p(z) = kn(z — 21)(z — T2) - - (T — 74),

where k, denotes the leading coefficient in the polynomial L&MoM1:M2(z) This implies
that

p(z)LoMoMiMa(g) > 0 for all z > 0.
Now we define
h(z):= (:::2 +az + b) p(z)
in such a way that £'(0) = 0 = h”(0). Hence
{ 0 = p/(0) + ap(0)

0 = bp"(0) + 2ap’(0) + 2p(0).
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This implies
_ 20)p(0)
2{p(0)}" — p(0)p"(0)

1)
2{p(0)}" - p(0)p"(0)
Suppose that yy,ys,...,yx-1 are the zeros of p’(z). Then we have z; < y; < z;4, for
1=1,2,...,k — 1. This implies

'f,'-((% - {.j;mlp(xn}z:f—(1;+-1-+“'+wl)

(1 1 1)
<—-{—+—=—+ -+

Ty T2 Tg-1

1 1 1 d IIO

S_(—+_+...+___)={d_1n]p/(x),l} _P()
z =0

Vi Y Yho1 - P0)

Hence
{£'(0)}" - p(0)p"(0) >0,
since p(0) and p’(0) have opposite signs. This implies that a > 0 and b > 0. Hence

h(z)LEMoMiM2() > 0 for all z > 0.
This implies that
< h, L:'Mo.Ml,Mz >

; T &L= a,Mo, My M a, Mo, M, M,
a5 1) 0/ Ol (z)dz + Moh(0)L? (0) > 0.

Hence, degree[h] > n which implies that k¥ > n — 2. This proves the theorem.
This theorem might suggest that the maximal number of zeros of L&Mo-Mi.:Mn ()
which may be located outside (0,00) equals N. The following theorem shows that this

is not true.

Theorem 4.5. Let {Sn(z)},>, with degree[S.(z)] = n denote the polynomials which
are orthogonal with respect to the inner product

< f,g>= I"(a;-}-l) O/mae—xf(m)g(x)d:c + M f(0)g(0) + Rf(f)(o)g(r)(O),

a>—-1, M>0,R>0 and r € {1,2,3,...}.
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Then the polynomial S,(z) has n real and simple zeros. If n < r these zeros all are
positive. If n > r at least n — 1 of these zeros are positive.

Note that, except for the normalization, we have, by using (2.1.10)

r—1 seros

i e,
.5',.(:1:) = Lz'M-O, 0, PP ,O,R(z)'
Proof. As before we have for n > 1: < 1,5,(z) > = 0. Hence
—_——1 7 X - _
T@+1) / 2% 5a(2)dz + M5,(0) = 0.

This implies that S,.(:c) changes sign on (0,00) at least once.
Suppose that z;,x3,. ..,z are those zeros of S,(z) which are positive and have odd
multiplicity. Define

‘ () = ka(z —z)(x — 23) - - - (2 — 21),
where k, denotes the leading coefficient in the polynomial S,(z). This implies that
p(z)Sa(z) 20 forall =z > 0.
If n < r we have S{(0) = 0. Hence

<pSa>= F(Z1+_1) o/ 2%~ p(2)S,(2)dz + Mp(0)Sa(0) > 0.

This implies that degree[p(z)] > n which proves that all zeros of S,(z) are positive in
that case.

Now we consider the case that n > r. Suppose that degree[p(z)] < n — 2. Then we
have

< p(z),Sa(z) > =0 and < zp(z),Sn(z) > =0.
Hence

Talrﬁ [ s%e*p(=)Su(z)ds + Mp(0)S,(0) + Rp(0)S$(0) =0
and ’ N
—1_ atl -7z (r=1) (r) _
T(a+1) [a*1e"p(a)Su(z)da + RrpD(0)S(0) = 0.

Since the integrals are positive and Mp(0)S,(0) > 0, this implies that R > 0 and
P(0)84)(0) < 0 and pV(0)S)(0) < 0.
Hence |
PO {SOO) >0

which contradicts the fact that p~1(0)p{”)(0) < 0. Hence degree[p(z)] > n — 1 or
k > n — 1. This proves the theorem.
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Chapter 5

A qg-analogue of the classical
Laguerre polynomials

5.1 Introduction

The second part of this work deals with some q-analogues of the generalized Laguerre
polynomials {Lﬁ'MmM"'“'M" (w)}m_0 of the first part. The ¢ in the word g-analogue stands
for a number which acts as a base usually chosen in (—1,1) or (0,1).

The g-theory is based on the simple observation that

lim 1-4 =a.
gt 1—g¢q
The number 11—"_9‘1: is often called the base number of a.

Many important classical functions in analysis have one or more g-analogues. So a
g-analogue of a function is not unique. For instance the exponential function has two
important different q-analogues denoted by e, and E,. For details the reader is referred
to the book [6] of G. Gasper and M. Rahman.

In this chapter we give the basic definitions and formulas which we will use in the
second part of this work. Further we define one q-analogue of the classical Laguerre
polynomials {Lﬁf")(z)}w_o. We have chosen this particular q-analogue as an example.
For other g-analogues similar results will arise.

The main idea is to show that the results of part one of this work extend to the q-
case and that some results concerning the zeros of the generalized q-Laguerre polynomials
essentially differ from those of part one (the limit case ¢ T 1).

5.2 Some basic formulas

In this section we summarize some definitions and formulas we need from the g-theory.
For details the reader is referred to [6).
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We always take 0 < g < 1 in the sequel.
The g-shifted factorial is defined by

{ (a;9)o=1
(a;9)n = (1 —a)(1 —ag)(1 —ag?)---(1 —ag""'), n=1,2,3,....

For negative subscripts the g-shifted factorial is defined by

1
(@0 = T e —ag ) (1 —ag )
a#q¢,d%¢%,...,¢", n=1,23,.... (5.2.1)
Further we have for all integers n
(25 ¢)o
8 Q)n =
(59) (a4™; @)oo

where

(a; @)oo := ﬁ (1 — aq") .

k=0
We will use two simple formulas involving these g-shifted factorials :

(a; Q)u+k = (a; Q)ﬂ(aq“; q)h k,n=0,1,2,... (5‘22)

and .
(@' ™ q)n = (a7 () (a;q)m, a #0, n=0,1,2,.... (5.2.3)

We have a q-analogue of the binomial coefficient given by

nl _ (6D ‘
[k]q T CT (524)

limn]= ™).
et Lkl k

The basic hypergeometric series or g-hypergeometric series is defined by

¢ Ay, Q2. .. 5 Gy
rYs
bl»bZ""abs

It is easy to see that

g z) =3 (“1’“2’---,ar;q),.(_1)(1+s-r)nq(1+._,)(;)zn
, azo (01,02, 051 g)n CH) ’

where
(a1,825 -+ 5 Gr; @ i= (615 Onl92; O * * - (@r; Dn-

This basic hypergeometric series was first introduced by Heine in 1846. Therefore it is
sometimes called Heine’s series.
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The g-hypergeometric series is a g-analogue of the hypergeometric series defined by
(1.2.1) since
4.

i L USRI i
1?11’45‘(91 P

-1 148~r F Qp, O,y ..., Oy
q,(q ) ) ( ﬂl’ﬂ% . 7;33

The g-binomial theorem

160 (

is a g-analogue of Newton’s binomial series

1Fo ( f Z) = E ———(Z?nz" =(1-2)"% |2| < 1.
n=0 *
If a = 0 this leads to

€q(2) == 160 ( E

s |2l <1

(@@ n _ (4210
) nz-‘;(q, T (%90

2 20 1
2| =) ——=—— |z| <1, 5.2.5
! ) ,;.o(q;q)n (% 9)oo 2 (5:25)

which can be seen as a g-analogue of the exponential function since
l;gx e (1~ q)2) = €.

We will use another summation formula

_n’b
201 ( ? q;

c

cq”\ _ (5 9)n
b )  (69)n (5:2.6)

which is often referred to as the q-Vandermonde summation formula since it is a g-
analogue of (1.2.2).
The g-difference operator D, is defined by

f@)=flez) g
Df(a):={ (-9* (5.2.7)
f(0), z=0
where the function f is differentiable in a neighbourhood of £ = 0. We easily see that
lim D, f(z) = f(2).
For functions f analytic in a neighbourhood of = = 0 this implies

(D;£) (0) == (D (D27'£)) (0) = A n,(O) ((lq’q)’)‘n n=1,23,.... (5.2.8)
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Another easy consequence of the definition (5.2.7) is
D, [f(yz)} = 7 (Dof) (y2), 7 real

or more general

D} (f(ve)] = 7" (D;f) (), 7 realand n=0,1,2,.... (5.2.9)
We easily find from (5.2.7)
D, [f(z)9(z)] = f(gz)Dqg(z) + 9(z) Dy f(z) (5.2.10)

which is often referred to as the q-product rule. This q-product rule can be generalized
to a q-analogue of Leibniz’ rule

D3 [f(z)g(z)] = I‘Z-%[ ] (D% f) (¢*z) (D) (=), (5.2.11)

where [ ] denotes the g-binomial coefficient defined by (5.2.4).

We a.lso have g-integrals. Here we only give the definition for the g-integral on (0, 00).
More about g-integrals can be found in section 1.11 of the book [6] of Gasper and Rahman.
The g-integral of a function f on (0, 00) is defined by

j Ftdgt = (1=0) 3 fa ) (5:2.12)

k=-oc0

provided that the sum on the right-hand side converges. This definition of the g-integral
on (0, 00) is due to F.H. Jackson. See [8]. It can be shown that

lim / f(t)dyt = 0/ f(t)dt

for functions f which satisfy suitable conditions. For details the reader is referred to [1]
and to references given in [6].
In [7] Jackson defined a g-analogue of the gamma function :

(qv 9)oo 1-z
T (.’E (@) (1 g . (5.2.13)

Note that this q-gamma function I'j(z) satisfies the functional equation
1-4°
Lz +1) = T:-;I‘q(x), F(1)=1

Jackson also showed that
liﬂl Ly(z) = T(=).
q
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For details the reader is referred to section 1.10 of [6] and to [1].
In [2] R. Askey gave a proof of the following integral formula which is due to Ra-
manujan :
/ 1"( —a)'(a+1)
(-1 —q)z D To(-a) 7

If & = k is a nonnegative integer we have to take the analytic continuation

I'(—a)I(a+1) (—a+ E)(-a)

a>—1. (5.2.14)

T T e Rn eyl @t
(=1)*(¢7*;g)xIng!
. (1—;)k+1 T(k+1)
_ @2 g
a-gm

For the residue of the q-gamma function the reader is referred to formula (1.10.6) in [6].
We remark that we have in view of (5.2.5)

1
—————(_(1 By o =e(-(1—¢q)zx)— e

-x

as g1 1.

From (5.2.14) it is clear that

I'(—a)l(a+1)
Fy(—a)

Finally we have a basic bilateral series which is defined by
a, az,. a
¢ ( bls b21
The special case r = s = 1 can be summed :

1% (

This summation formula is due to Ramanujan. A proof of this summation formula can
be found in 2] and [6). :

>0 forall o> —1.

) (al,az, 3 Qp; q)n/ (s—7) (a—r)( )
= 1 S—r)n z
G ) 2 b bage DS

(a q)n (q,a_lba az,a—lz_lq; q)oo -1
2t = a bl < |z] < 1. (5.2.15
o) = & Gtee = Gpmn e < <1 (5219

5.3 The definition and properties of the q-Laguerre
polynomials

In this section we state the definition and some properties of the q-Laguerre polynomials
{L("‘)(w, q)} . These gq-Laguerre polynomials were studied in detail by D.S. Moak in
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[31]. For more details concerning these polynomials the reader is referred to [12} and
(31].

Leta>-1and 0<g¢g<1.

The g-Laguerre polynomials {L("‘)(a:, q)} are defined by

+1. -n
L(a)(l" a) = Lqi’—q)li s ( q_‘ L la: —(1 bl 0)0""'““2\
mA CHT ) L N A R
k
_ @0 @ -t @)t L, (53.1)
(G o (2**'; 2)e(g O ' T
We easily see that
lim L) (25 ¢) = L{(=),
where L{®)(z) denotes the classical Laguerre polynomial defined by (1.3.1).
By using (5.2.3) we obtain
L (z;q) = (—1)"0"("“’)(2—']_-%)—:5" + lower order terms, n =0,1,2,....  (5.3.2)
39)n

These q-Laguerre polynomials {L(")(z q)} satisfy two different kinds of orthogo-
nality relations, an absolutely continuous one a.nd a discrete one. These orthogonality
relations respectively are

Ly(—a) T z® (@) ( @ (z: 0z = (@ 9)n
I(—o)I(a+1) ST L 0 = e o

and

L (cq*; q) L (cg; o ’q)"«s n >0 5.3.3
;,_Z_:(,‘,(-C(1 —q)q Do (et L ed30) = (G )ng™ (553)
where the normalization factor A equals
00 qka+k
A=

By using the fact that

(—C(l — q); q)oo
(=e(1 = a);9)x

we obtain from Ramanujan’s sum (5.2.15) witha = —¢(1 —¢), =0 and z = gt

(—e(1 = 0)¢": )0 =

00 ka+k a+1 -1 -1 —a.
q (¢, —c(1 — @)g°**, —c (1 - ¢)"'q"* D)oo
A=Y = ) 5.3.4
wit (—c(1 - 9)g*9) (g*+, —c(1 - q),—c (1 — ¢)"'¢; D)oo (53.4)
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Note that (5.3.3) can also be written in terms of the g-integral defined by (5.2.12) :

LS,‘:’)(ct; q)Lff’)(ct;q)dqt = CRl T G, >0

1 o
F(,/(—C(l—tl)t;q)oo CHR

where A* equals

o o] ta
A= | ——————dt 5.3.5
e (5:3.5)
As a g-analogue of (1.3.4) we have
LE:")(O; q) — (9 a‘I)n’ n=20,1,2,.... (5.3.6)

(a)n

The g-Laguerre polynomials satisfy a second order q-difference equation which can
be stated in terms of the q-difference operator defined by (5.2.7) as
1 - qa+1
DI+ |1 - 0] (DL qzi)+ L i) = 0, (387
which is a g-analogue of the Laguerre equation (1.3.5).
Further we have a three term recurrence relation

1_.

—zL{)(z;9) = (1_:(1_)q2n+—a+1 L)\ (z59) +
1 — gntett 1-¢" e @ (4.
[(1 _ q)q2n+a+1 + (1 o q)q2n+a ( rq) + ( q) nta Ln—l(x: q)

and a Christoffel-Darboux formula

(**; @)n & q"(ﬁ;q)kac")(w;q)Li")(y;q)
(e =95 (q,q)n :’:: (@59
]_._

(T:;)q"*—"“ (L&) (2 9) L (w3 0) — L (23 ) L (w3 9)] - (5:38)

If we divide by  — y and let y tend to x we obtain the confluent form of the Christoffel-
Darboux formula

(@°1; @) & (g Ok { L3 q)}2

(G = (q"“'q)k
1 g™t 7@ L (@) 7@
A= g n+1($,¢1)d (z59) — Ly (=; Q)— ne1(T:9)| - (5.3.9)

The g-analogue of the differentiation formula (1.3.7) yields
DELO(z;q) = (—1)kHe+R Ll (e ), k=10,1,2,...,n, n =0,1,2,.... (5.3.10)
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Finally, we prove the following q-analogue of (1.3.8) :
LS:H-I)(‘Q’; q) = Ls-na)(qx; Q) - Dqu‘a)(-'t; Q)v n=0,12,.... (5'3'11)

For n = 0 this relation is trivial. For n > 1 we have, by using (5.3.10) and the
definition (5.3.1)

LO(gz; q) — D L(w:q) = L&)(gz; 9) + ¢* ' LI (g3 9)
k
(q:x+1;q)" " (g™ q)kq(?)(l - q)k (q"+°‘+2z)k

= +
(G = (g5 9)a(g; @)k
n— -n. ,' o k
+ ¢ (€% Qnr =2 (a7 rgD (A — @)* (¢™++2z)
(Gn-1 =5 (g% (g O
n —-n k k
_ (@~ (g ;gD (1 — @) (¢ +12) 9
(O ) (g Qrs1(g; Ok
1-g" .
x |1—g*tH 4 qa+11 ‘1-"(1 —gq +k)]
—q
n -1 b4 n4o k
(@5 0)a & (0750 (1 - @ (g™ *22) _ LE (g5 q).
(6O = (g°+%; )r(g; Ok "

This proves (5.3.11).
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Generalizations of a g-analogue of
the classical Laguerre polynomials

6.1 The definition and the orthogonality relations

We will try to determine the polynomials {L,";'"”m"”1 """ My (g q)}m_0 which are orthogonal
with respect to the inner product

4

Ty(—a) 7 z*
M—a)la+D) ] 1= a0

+ ﬁ’: M, (D:;f) (0) (D;’g) (0), (6.1.1)

=0

<fig> = f(z)g(z)dz +

[ a>-1, Ne{0,1,2,...} and M, >0 forall v€{0,1,2,...,N}.

We will show that these orthogonal polynomials can be defined by

N+1 '
Lz,Mo,Ml ..... MN(.’B; q) — Z q-k(a'fk)Ak (D:;LS:’)) (q'kz;q), n=0,1,2,... (612)
k=0

for some real coefficients {Ak}kN__:zl. Moreover, we will prove the following two orthogo-

nality relations

Ty(~-a) T z Mo, Mi ..M Mo, My, M.
L: 0 411 3oy VIN x; Lz’ 0,V1yeee, /N :E; dm +
Fa)a 7D ] 0= pmale (54) (=39)

+ % M, (D;L;,MO,MI,...,MN) (O;Q) (D;Lg’Mo’M"""MN) (0; q)

v=0

a+1, " N+41 N
= ((qq—;qj’;%Ao (;0 q""”(2)Ak) bmny myn = 0,1,2, ... (6.1.3)
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and

l o qka+k

) k-z: (_c(l - q)qk; q) L:;Mo,Mh---'MN(ch; q)Lz,Mo,Ml,...,MN(ch;q) +

+ 37 M, (DyLgMeMswMr) (03) (D LEMoM-M) (03)

v=0
a+l, N+1

(T"ﬁ)—’?—nuo (Z q"k-(é‘)A,.) by My =0,1,2,... (6.1.4)
r3/n k=0

where A is given by (5.3.4) and ¢ > 0 is an arbitrary constant. This second orthogonality
relation can also be written in terms of the g-integral defined by (5.2.12) as

1 7 te
= La.Mn.Ml,---,MN ct'q La,Mo.Mx....,MN(ct. q)d t+
At J (-—C(l - q)t;q)oo m ( 9 ) n ’ q

+ iv: M, (D;L;’M"'Ml’""MN) (0;q) (D:L:,Mo,Ml,...,MN) (0; q)

rv=0

@50, (R g ) _
= Gt (kz:%q G) Ay ) 6, myn =0,1,2,...
where A* is defined by (5.3.5).

First we will determine the polynomials {Lz'MmM”'“’MN (=; q)}:o_o which are orthogo-
nal with respect to the inner product (6.1.1). The Gram-Schmidt orthogonalization pro-
cess assures us that such a set of polynomials exists with degree[ L2Mo-Mir-MN (g g)] = n.
So we may write by using (5.3.10)

LyMoMsr-Mi(ziq) = 3 (=1} AL (z30)
k=0

= Y ¢ MeP 4 (DELY) (¢7*e50), n=0,1,2,..., (6.1.5)

k=0

where L{®)(z; ¢) denotes the g-Laguerre polynomial defined by (5.3.1) and the coeflicients
{Ax};_, are real constants which may depend on n,a, Mo, My, ..., My and q. Moreover,
each polynomial L&Mo-Mi-MN(z: ) is unique except for a multiplicative constant. We
will choose this constant such that

Ly0%%(z;q) = L{(w;9)-

By using the representation (6.1.5) and (5.3.2) we easily see that the coefficient k, of
z" in the polynomial L2Mo:Mir-Mn(z:q) equals

kp = (—1)”4"("“)%_‘7‘)”)‘—",40. (6.1.6)
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This implies that Ay # 0.

Let p(z) = ¢™. First of all we choose LM Mi-MN (5.0} = 1 for the moment and
we will try to determme the polynomials {L""M°'M" Mn (g, q)} in such a way that
< p(z), LgMoMiMy (g g) > = 0 for all m € {0,1,2,...,n —1}.

We use the definition (5.3.1) of the q-Laguerre polynomials and Ramanujan’s integral
formula (5.2.14) to obtain for ¥ =0,1,2,...,n and m,n =0,1,2,...

za+m "
S — e
| Ca-dmonrt =9
- (q"“‘“ Dni T (071 9);gB)(1 = g)igirtetVi T getmid
(GOt = (a****159);(g; 9); 2 (- —q)w,q)
(@ @)y "k (g qxékl—@wwwﬁhm —a—m-j)la+m+j+1)
(q) q)n—k =0 (qa+k+1 q)J(qv q)J (—a m— })

Now we use the definition (5.2.13) of the g-gamma function and the identities (5.2.2) and
(5.2.3) to find

Py(—a)(—a—m — ) (a+m+j+1)
T(-a)T(a + DTy(—a —m —J)
= (1- q)-m-jq—(a+1)m-—(';')q—(a+m+1)j-(g)(qa+1;q)m(qa+m+1;q)j_

—-a~-m—j,

3 9)oo

—_ (__1Ymt] - —m—j(q
=0T -g (4% @)oo

Hence, by using the summation formula (5.2.6) we find
Ty(—a) T zotm L@*h
z;q)dz
T—ala+D) ] CA-degL »* &9

_ (@M )n @O (arym=(3),4, (154 o
(G @Dt (1—g)m il g+ ’

(€™ Onk (O g+ m=(3)
= arim= k=0,1,2,...,n, m,n=0,1,2,.... (6.1.7
(@ Dar (1—gm " oo (B17)

Now we have by using (6.1.5) and (6.1.7)

Ty(—a) / ot
NN +D) ] (-1 - =0,

LaMoMi M (g 03 dr

@5 On —(ariym-(3) k(@5 Dk
—1)FE 2R A, mun =0,1,2,....
o ° 3 P

First we consider the case that n > N +2 and N +1<m < n — 1. Then it is clear
that
(D:p) (0) =0 forall v € {0,1,2,...,N}.
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Since _
("™ @)n-k =0 for £=0,1,2,...,m and m<n

we see that < p(z), L“'M°'M"""MN(::; q) >, = 0 is equivalent to

o+t
(5 0m ‘("“""'( ) 3 (e ik g g = N4, N 42, n— 1.
(1 ) k=m+1 (q» )n k
If we substitute m =n — 1,n — ., N + 1 respectively we easily obtain
AN+2=AN+3="'=A,,,=0 for n2N+2

Hence, the expression (6.1.5) reduces to 136 12)forn >N +2 Forn < N+1(6.12)is
trivial. In that case the coefficients { A }jtny; can be chosen arbitrarily. This proves that

the polynomials {L“ Mo My, MN (g, q)} can be defined by (6.1.2) foralln € {0,1,2,...}.

In order to define the coefficients {Ak} o+ we now have to consider for n = 1,2,3,.
< p(x), LoMoMiMu (4. g > =0 for m =0,1,2,...,min(n - 1,N). (6.1.8)

Since p(x) = 2™ we have by using (5.2.8)

(D;’p) 0)= (gq, q)')n"‘s"'w v=0,1,2,...,N.

Hence, (6.1.8) implies, by using (6.1.1), (6.1.2), (6.1.7), (5.3.10) and (5.3.6), that

a+l, - min(n,N+1)
(g ’qz:'ﬂq—(a+l)m—(2) Z (- l)k(q aQ)n—kA +
(1—-9) k=m+1 (¢ @)n—k
(q; Q)m min(rV+1) (Q"+k+'"+1 Q)n-k—m k
+ () ARt M, -1)* ’ g™ A, =0,
R L Vg .

for m =0,1,2,...,min(n — 1, N). We remark that the definition (5.2.1) implies that
(€39)-n _ (1=g™HA-g™")---(1-¢°) _
(G9)-n (A—g™)(A=-g ") -(1=-¢7)
fory—n>0andn=1,2,3,.... Hence
(@™ Dn-k _ (@™ Q) kom
(Q; Q)n—k (q; q)n—k—m
fork>n+1landm=0,1,2,...,min(n — 1, N). Note that we have by using (5.2.4)

=0

(€™ Dnk _ ["‘m'l] = ["—m—l = @k
q

= m < n.
(4 @n—x n—k k—m-—1J, (¢;9)k-m—1
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This allows us to write

(qa+1;q)mq—(a+1)m—( ) Z ( l)k(q ’q)k —m— 1A ¥

1—gm [ (q,q)k-m 1
(q q)m ( (qa+k+m+ 7q)n k—m k
+ (—1ym 2 m_gmmta) pr 1 g™ A =
( ) (1 )m kz-;;)( ) (qv q)n—k—m *

for m = 0,1,2,...,min(n — 1, N). However, we will define the coefficients {Ak}kN'Zl in

such a way that

(g aQ)m —(a+l)m—-( ) w(g™ ,Q)k—m 1
(Q7 Q) k_%,:.,.l( 1) (q) q)k—m—l Ak +
+ (_l)mqm(m+a)Mm Z(_l)k (qa+k+m+ s k=

g™ AL =0 6.1.9
k=0 (9; Q)n—k-m ? k ’ ( )

for m =0,1,2,...,N is valid for all n € {0,1,2,...}. For n > N + 1 this is the same
system of equatlons For n £ N we have added the following conditions on the arbitrary
coefficients {Ax}n " e

(qa-l-l;q)m —(a+1)m—( ) (q )q)k—m 1
(Q;Q)m 7 k..%;-l( 1) (q:q)k—m 1 At

a+k+m+1

N+1
+ (_l)mqm(m+a)Mm Z (_1)1: (g § Dn—k—m mkAk =0,

k=0 (g; q)n—k—

where m =n,n +1,n+2,...,N. Since we have by using (5.2.3) for k > n +1
n— —n—-1_—(*7" =1 nk—(*)=(n+1
(@ Qkoner = (=113 (g o = (15 1)~ C3) (g5 )4y

this implies

atl, N+1
@50 —(arin-(3)-("4") Y ()4, = g rrang, 4,
CH k=n+41

q (¢ vq)n+tq—(cx+l)(n+|) -("F) x

(q’ q)n+: Ni
X E (- l)k(q 3 Qemni A= 0,:=1,23,...,N—n.
\ =nitl (qvq)k—n —i—1
This implies for n < N that A,z = A3 =---= ANy =0 and

a+1; n _—n(nt+oa n - ntl n{n+o
(Q(q' q)¢1) q (nto+1)+n(n+1)-("} )An+l =g (n+ )M,,Ao.
b n
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However, in the sequel we only need

o1, N+1
qn(n-l'a) M,Ay = (L(q..q’)_q)"q—n(n-*a-’-l) Z an-(;) A for n < N. (6.1.10)
3 n k=n+1

Now we have found the representation (6.1.2) where the coefficients {Ax} k_ol satisfy
(R 1 0\ Ngote tl-\aé we l‘"\nr\ﬂcl’] the choice of T T"‘M"'M" 'MN('r ﬂ‘ =1 Q'I'I(‘h that {6 1. 2‘ also

\Vedov)e GUAnget Lac Lalnie O

holds for n = 0.
To complete the proof of the orthogonality relation (6.1.3) we note that it follows
from (6.1.2), (5.3.2) and the orthogonality we just proved that

< L::MOlev--vMN(w; q), L:,Mo,Mx ...-.Mn(z; q) >,

1—4q)*
(_l)nqn(n+a) (( : g) AO < :E"’ L:,Mo,Mj,...,Mn(w;q) >q .

q7 n
Now we obtain from (6.1.1), (6.1.2) and (6.1.7) form=n >N +1
a+l. ) ( q) "
< :B",Lz’Mo'Ml""’MN T3 > = M —(a+1)n-(2) 1)* N 5 Dn-k 4
(z39) >, T gr ¢ kz_;( i P S

( l)n((l 14)111 —n(n+oa+1) Z an ( )Ak

This proves (6.1.3) in the case that n > N + 1.
For n £ N we find by using (6.1.10)

< xn’ Lz,Mo,Mx,...,MN(z;q) >q = (q__’_qﬁ —(a+l)n—( )Z( l)k(q ,‘I)n— A +

(1- ‘1)" k=0 ) -
+ (-1 ((1q’ ‘1)')-" ) M, Ao
(‘1 ,Q)n —n(nta+l) & nk—(%)
= -1 n(n q 2) A,
=) T-qr’ kz_;, *

This proves (6.1.3).
Finally, to prove the second orthogonality relation (6.1.4) we only need to show that
form=0,1,2,...,n

ko+k
q (a+t)
L
PR e e CORERC AT
— ® atm
= Ty(—a) T L) (z;9)dz, i =0,1,2,...,n, (6.1.11)

()@t D] ~0-9za. "

where A is given by (5.3.4) and ¢ > 0 is an arbitrary constant.
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By using the definition (5.3.1) of the g-Laguerre polynomial we find for m = 0,1,2,. ..

i": q

koo (—¢(1 — 9)g%9),

kot-k

N
(ea*)™ L+ (cak; q)

_ (@ )i B (g5 )58 (1 — g)igtet 3 gletmtitik
(Gn-i = (g**++159);(g;9); joty (—e(1 = 9)a%;9),,
Now we use (5.3.4) twice to obtain
1 & gtttk (¢ —(1 = )g Y, e (1 - )T )

A, = (—e(1- )"0 (q@r™H+1 —c(1 — g)ge*!, —c1(1 — ¢)~1¢"*; @)oo

Hence, by using (5.2.3)

X ettt (Y Qi (L = )T T s
A = (1 - 9)¢F59)0 (—e(1 - 0)g°*; Q)msj
(@ Dmts (1)

(1 — gyr+iglatim+n ¢

1 = qka+k B\ (i), k.
iz (=c(1 - 9)¢*0)oo (eg")" L% (eq; q)

k=—o00

So we have by using the g-Vandermonde summation formula (5.2.6) and (5.2.2)
oatit+l. o+l m —n+t a+m+l
(q . ’q)n i (q 5q1:n q—(a+1)m—(2)2¢1 ( q aa+q€+1 q;qn—m)
(D (1—9) q
i—m, Ao+l m
- @ 9hmile ’ql’"q'("“)"‘-(e), i=0,1,2,...,n, mn=0,1,2,....
(G Dn-i (1—19)

In view of (6.1.7) this proves (6.1.11) and therefore the orthogonality relation (6.1.4).

6.2 Another representation

In this section we will show that the polynomials {Lf‘.'M“’M’""'MN (z; q)}:o_o given by (6.1.2)
can also be written as

N+1
LMoMiMy (g, 0y = 3~ g=Het2k) g, ok (D,’; ng+k)) (¢ *2;9), (6.2.1)
k=0

where the coefficients {B}}}-+" are related to the coefficients {A:}21 found in the pre-
ceding section in the following way

ey N1 . n—k+1, Aotk o).
A= q( +1) Z q—k(a+k+1) [k] (q aQ)k—a(q 1Q)sB’” i=0,1,2,...,N+1
q

k=i i (1 - q)k
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and

(1—g)f N k[ (@ )iek
By = SO (ke §7 (g J+"[ @20k 4k —0,1,2,...,N +1
= @ ,-2( "l o (541 q)-k % T

where the g-binomial coefficient is defined by (5.2.4).
In order to prove this we prove the following q-analogues of (1.3.9), (2.2.1), (2.2.2)
and (2.2.3)

1-—

T i L"’(qw q) +

.————1 o
= q)gri il (L) (239) = 2D LS+ (25.9), (6.2.2)

1— n—k
eDF LN (zyq) = ——L—g* (DELE) (g259) +

a+k+

1-¢

(—I_WDI‘HL(CY)(J; q) (623)

k k n—k+1. fagoxtk. 4).
o - g q)k-i\q q)i
o (Dize) hasa) = o3 [1] C
i= q

x ¢~ ()~ (DIL) (¢~ z;q), (6.2.4)
and ' |
q—k(a+k) (D:Ls‘a)) (q_k.’t; q)
Lok [F] @Skl 0) (1) (i pe)) (g~
= (=1 [ ] e -(8)e (DiLe+) (¢ z; q), (6.2.5
g)( ) 7 . (qa+,; q)i(q“+2'+l; q)k—iq ( q ) (q )q)’ ( )

respectively for k,n =0,1,2,.
First we prove (6.2.2). For n = 0 this relation is trivial. So we assume that n > 1.

By using (5.3.10) for k = 1 and the definition (5.3.1) of the g-Laguerre polynomials we
find

1-

1 a
1-¢ A-d"" 5@
T L (g7; 9)+( q) i D L3 (239)
= 117.1’3&")(436;4) - ———L(““’(qx q)
1-¢"(¢**h @) o (¢ ;q)kq( )(1 — )k (g+>+2z) +
1-¢ (9= 1= (4% w95 D

o n— - k k
1 (¢ ) T (@ kB (L — 9 (g 2)
1-¢ (691 15 Cat )N
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(€0 9 (€™ Qum1gD (1 — @) (g™o+2a)
(@91 = (**Y Qrar (g O ,
x [(1 —q n)(l _ qa+k+l) _ (1 _ q-n+k)(1 _ qa+l)]
o n— -1 k+1 n+o k
(@ nm (@ ue(F) (1 = ) (et
(6 Dn19" =0 (g**3; (s O
= —¢**22 L8 (gz;q) = =D, L (a3 q),

since 1 k41 . k
q—n+( 2 ) (qn+a+2x) — q(z) (q"+°’+3$) qa+2x'

This completes the proof of (6.2.2).
Now we will prove relation (6.2.3) which is a generalization of relation (6.2.2). From
the g-analogue of Leibniz’ rule (5.2.11) we obtain

Dk [xD L(a+1)(x q)] =q ka+1L(a+1)(z q)+ q DkL(a-H)(m q).

Now we use relation (6.2.2) and (5.3.11) to find
¢ e DEM L) (25 q)

= D! [:z;D L) (2 q) ] - —¢ D"‘L("‘“)(z q)

- T (D"L‘“’)(qz,q)+ DEIL i 0) +

1 (1 q)q““
1

- I_Tq (DELE) (g3 9) + D"“L‘“)(x, )

1-— qn—k o 1-— qa+k+ o
= T‘}-—qzk (DEL )) (97;9) +WDH1L( N3 q)-

If we divide by ¢* we find (6.2.3). This completes the proof of (6.2.3).

To prove relation (6.2.4), which is another generalization of (6.2.2), we use induction
on k. For k = 0 relation (6.2.4) is trivial. For k = 1 it reduces to (6.2.2). Now we assume
that (6.2.4) is true for k = m — 1. Hence

z™1 (D?—1L$:x+m-1)) (q—m+lx; 7

= g "‘2':’ [m - 1] (€™ Qmoica (g™ )
; ' (1-g)!
X q'(é)‘(“"‘""l)" (D;L,(“’)) (¢7'z;9).  (6.2.6)
By using the q-product rule (5.2.10) and (5.2.9) we obtain
D, [z (DFLE+m D) (¢ s g)]

X

1— qm-»l
™1 (D;anla-i-m-l)) (q—m+l$; q)+ T ™2 (D?—1L£a+m—1)) (q—m+1w; q).
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We multiply by = and use (6.2.6) and (5.2.9) to find

AT
™ (DmL(a+m—1))( —m+1 )

- (m—l)"‘ Z [m—— 1] (q"_m+2s(ql)m—:—)l(qa+m 1;‘1): -(2) —(a+m— 1)1
=0 —gm!

r . s ‘e AN e . s = s —s \]
x o' (D L) (¢ s0) = o (DiL) (g #34)|

We replace a by a + 1 and z by ¢~'z to obtain
g™ z™ (DmL(a+m)) (q—mz. q)

B E [m ] (Gt ).= STC ST IO RCEOUN
i=0 (1 - Q)m -t

, ) . — am=-1 R .
x |g=1 (DI LD (¢ 1230) - =L — (DILEY) (¢ 25 9)] -
1-¢

Now we multiply by ¢™ and use (6.2.3), (5.3.11) and (5.2.9) to find
=™ (DpLE*™) (a7 234)
= qm2—m+1 mi—:l [m - 1] (qn—m+2)q)m—t-1(qa+myq)| _( ) (a+m)t

=0 (1 - q)m—
___._1 —4 i (e) 1— gt i+17(0) (,—i-1
*1Tq (DL ) ICx $,Q)+(—WEE(D¢ LY (g7 e q) +
_ 1 ;-q- (DtL(a)) (q-lx’ q) + (Dt+lL(a)) ( —t—lz;q)]
- "‘Z':‘ [ - 1] (@™ Omoi=1(87750): ()=o)
=0 (1 - q)m

x (1 _ n-m—i+1) (DiL(a)) (q—s‘z, q) +

m2e=[m—1 (qn—m+2’q)m_ (qa+m,q)| _( ) (atm)i (i (a)
+ Z[i—l]q a-gr ’ (D287 (a”59)
2(¢"™ Y Om 2(g°t ,q)m - -
g @ g e (DrLE) (g7™239)
N (6 Dn-t @ ODnoia (0T 0k ()t o

+q"‘2 Z

= (606 Dm-i (L-gm
x [gi(1 = "1 = ") + (1= g1 - )] (DLLY) (a7'3)

2(¢"™ ! Om (™ O _(m
= T Dm pay g gy 4 gt L1 Dm (F)(atmim (D g () 2 q) +
iy (z:9) +4q T—gm ¢ ( ) (g™™=;9)
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1
m n-m+1, i otm, ‘ _ SRy i la .
Z;[ ] = (1)_q)(,f,’ 19 =)t (D) (g7 ).

This equals (6.2.4) for ¥ = m. This completes the proof of (6.2.4).
Finally, we will prove relation (6.2.5). We define

Ci(z) = (1 — g)fq ¥ o* (DELE) (¢7*23q), £k =0,1,2,...
Dy(z) = ¢~G) (DiLE) (¢7'z; 9), i=0,1,2,....

This implies that (6.2.4) can be written as
Ci(z) = z ] (" si(@®; 0)ig~ ¥ Dy(z), £ =10,1,2,.... (6.2.7)
i=0

It is not difficult to see that the system defined by (6.2.7) has a unique solution for
{Di(z)};2o. We will show that this solution is given by

. it G)
Di(z) = ga)++1% E( 1)'+J[ ] (qaf‘j 5 (;32;;141 G =012, (629)

To prove this we substitute (6.2.8) in the right-hand side of (6.2.7)

Si(z) = ii(_l)&jq(;')ir(;)—(k—l)i [’Z] [J] ("~ @h-i(g°H*; @)i(g™ '+1,Q)z-jcj(w)

i=0=0 (g°+9;9);(q*+2+1; q)i_j

and show that this equals Cy(z).
From (5.2.2), (5.2.3) and (5.2.4) we obtain

( n—k+1, n—t41, n—k+1,

’Q)k (q )q)i—] = (q 7q)k -3

! J

We use this to find after changing the order of summation

k n—k+
O o s
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Now we use (5.2.2) and the summation formula (5.2.6) to find for the second sum

k i=k. oY, .(g2tk. o). .
TG,k = 3 AL DD

= (9°+2j+1"1)i—j(‘1; Q)i-j
_ a+k q) q z (qj_ ‘I) (qa+k+J’Q)|
et (¢**9)i(gs q) ~

= (" q)id ik, gt
- q ,q)Jq 2¢1 qa+2_1+l 99

(@ @r-j
(¢*+5+; )e—j’

which equals zero for j = 0,1,2,...,k — 1. So we have

= (¢"**9)i¢

Sz) = Z[’“] @50k 26)-4 ()T, )

S, (@%59);

a k. X 2
(R DO r0(0) = Cufo).

This proves (6.2.5).

6.3 Representation as basic hypergeometric series
If we write
La,Mo,Ml,...,MN(x ( ’q)n E C q("‘) (u+a+1)m(1 Q)m

; q) (‘17 L’ [/ ——, (q’ Q)m

then it follows from (6.1.2) and (5.3.1), by using (5.2.2) and (5.2.3) that

S (@5 Omr r-(8) 4,
= (@ Qmk
(q ,Q)m N+1

- k
@+ @)menst (g™ Or(@ ™ v gr-eg™ (2) 4.
) m k=0

Cn

Note that
N+1

F(z):= 3 (7% (@™ 2 0)var-rg™ () 4y
k=0

is a polynomial in z of degree at most N + 1. The coefficient of Z¥t1in F(z) equals

N41
(_1)N+1q(N+1)(a+1)+(”;“) 3 q-(a+l)’=-(:)Ak.
k=0
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Note that it follows from (6.1.3) and (6.1.4) that
N+1 .
FO)=Y ¢*Ga, #0.

k=0
This implies that all zeros of F(2) can be written as (complex) powers of ¢. If

N+1 .
3 g Ce=(0) 4, £ 0, (6.3.1)
k=0
then the polynomial F(2) has degree N + 1. In that case we may write
N¥1 o[k
F(g™) = 3 (¢ ™™ u(@™H ™ o™ ()4,
k=0

N+1 X
(X e 0ar) a-ga - - x

(@t O (P Do - (P Om
(9% )m (8”5 Q)m - (¢P¥; Q) m
for some complex §;, j =0,1,2,...,N. Hence, by using

X

a+N+2

(qaﬂ; Q)m+N+1 = (qa+l; @n4(g @) m,

which follows directly from (5.2.2), we have

1—g®)(1—g®)---(1—¢*) (B e
La,Mo,M,,A..,MN ; — ( q nk (2)A
" (=i9) (**5Q)Nm 24 k)

k=0
(¢**1;q) Potl gbrtl PNt

-n
= q nt+a+l
X : —(1- z). (632
(g:9)n N+2¢N+2( g@tN+2 gbo obr  gpv | D (1-a)g ) (6.3.2)

If (6.3.1) is not satisfied, then F(z) is a polynomial of a degree less than N + 1. In
that case we find a representation as a ¢ basic hypergeometric series where k < N + 2
in a similar way.

6.4 A second order g-difference equation

In this section we will show that the polynomials {Lz'Mli’""M” (z; q)}:o_o satisfy a second

order g-difference equation. The method found in [9] can be applied in this case too. We
prove the following theorem.

Theorem 6.1. The polynomials {Lz'M"'M"""MN(z;q)}oo_o satisfy a second order q-
difference equation of the form B
zpz(w)D:L:,Mo.Mx....,MN(_,E; q) — Pi(z) (Dqu,Mo,Ml,‘..,MN) (qz3q) +

1-¢ |
1 —qq Po(z) Ly Mot (qz; g) = 0 (6.4.1)

+
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where Po(z), Pi(x) and Py(z) are polynomials with

’

N+1
Py(z) = ¢**t' Ao (Z q""'(:)Ak) zN*! 4 Jower order terms

k=0
N+1

N a2 s \;"*nk—(:\‘\ N42 , 1 I 7y

s r)=¢ "Ao| 29 /Ak} T <+ lower oruer verius \V.2.2)
k=0

N+1
L Py(z) = Ao (Z q""_(:)A,,) 2V 4 Jower order terrns

k=0
and

Py(gz) = zD,Pa(z) + [q‘”’"”w - 1—1(1——— Py(z). (6.4.3)

1-

Proof. We consider the g-difference equation (5.3.7) for the g-Laguerre polynomials:
By using the fact that

LE(g 7 z;9) = L (z;9) + ¢7(1 — ¢)z (D, L) (¢7'w39)

which follows directly from (5.2.7), we write this g-difference equation (5.3.7) in the
following form

1 — qotl . _
Q‘zz (D:Ls.ﬂ)) (q_zm; Q)+ [ 1 _q . - qn+ax] (DqLS‘ )) (q 1z, QO+
+ 11::‘%9““4"’(@ q)=0. (6.4.4)

If we let D¥ act on (6.4.4) and use the q-analogue of Leibniz’ rule (5.2.11) we obtain

1-— qa+k+l

z (DH2L®) (g7 25 ¢) + ¢+ [ T

- q"+°'z] (DELE) (g7 "259) +

1— n—k
+ —I—:qq—q°'+3k+3 (D:LS,")) (¢7*2;9) =0, k=0,1,2,.... (6.4.5)

Now we consider the definition (6.1.2). We multiply by  and use (6.4.5) for k = N—1
to find

N
IL'a‘,Mo,Ml,...Mn(z; q) — E bk(l') (D:Ls:’)) (q_"z;q) (6.46)
k=0
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where

[ Op(z) = ¢ *H 4z, k=0,1,2,..., N -2

1— qa+N

bN(.‘E) — q_N(a+N)AN.’L' _ q—(N+l)(a+N) [ T—q

Now we multiply (6.4.6) by = and use (6.4.5) for k = N — 2 to obtain

-1
12L:’M°’M"""M”(m; q) — Z bk(z) (D;clea)) (q—km;q)

N
k=0

where

( bi(z) = zby(z), k=0,1,2,...,N -3

b 1—gm 2 a+3N-3
P-ale) = abn-a{o) = T a ()
7 1 - at+N-1
ST (B R

Repeating this process we finally obtain by using (6.4.5) for k =0

@ LoMoMiv--M (g ) = po()LE)(230) + pi(s) (Do L&) (g 223.0)

for some polynomials po(z) and p,(z) which satisfy

po(x) = Agz™ + lower order terms

N+1 .
pi(z) = g~ et (Z q"k‘(z)Ak) zV 4 lower order terms.

k=1
Now we use the g-product rule (5.2.10) to obtain from (6.4.7)

1-— N
q .’EN_IL:'MO'MI'""MN(qx; q) + xNDqu,Mo,Ml,...,MN(m; q)

1-¢

= Dypo(2)L)(gz; 9) + [po(2) + Depr(2)] (Do L)) (w59) +
+¢7pi(e) (DILE)) (a7 9)-

We multiply by z and replace z by ¢~'z to obtain
1-q"
(1-q)g"

_ 1- n—N.
by1(z) = q—(N—l)(a+N—1) Ay 1z — qa+3N (N+1)(a+N+1) 1'1

i q"+a$] AN+lv

.‘ENL:'MO'M"""MN(I;q) 4+ q—N—lmN-f-l (Dqu,Mo,M;l,...,MN) (q—ll‘; q)

75

(6.4.7)

(6.4.8)
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= ¢7'2(Depo) (g7 2) L) (23 9) +
+¢7' [po(g"2) + (Dapr) (¢7'2)] (DL®) (47225 9) +
+ ¢ %2py(¢ 7 z) (DILE) (¢7%2; 9).
Now we use (6.4.4) and (6.4.7) to find

g+ (D, LaMoMir-My) (g=1g; g) = ro(2)LE) (25 q) + ra(z) (DoL{?) (g7 239)  (64.9)

where
ro(z) = ¢"* [q“z (Depo) (g7 “Hpi(g'z )] -4 po( )
. o i (6.4.10)
ri(z) = ¢ [pol(g™'2) + (Dyp1) (¢7'2)] +
1—goH 1-
- -ﬁ—q 1']?1(9 'z) — g px()
By using (6.4.8) and (6.4.10) we easily see that
" N+1
ro(z) = —ll—g—--q"""'1 (Z q"k‘(:)Ak) z™ + lower order terms
-9 k=1
(6.4.11)

N+t
ri(z) = (Z q"""(:)A,‘) 2NVt + lower order terms.
k=0

In the same way we obtain from (6.4.9)

1-— qN+1
1-g¢
= D,ro(z)L{(g2;9) + [ro(2) + Dori(2)) Do LN(w30) + g7 r(z) (DZLD) (g7 23 9)-

:BND,;L::'M"'M‘""'MN(Q}; q) + q—lxN-H (D:L:'MO'M“'“'MN) (q'-—lw; q)

Multiplying by = and applying (6.4.4) again gives us by using (6.4.9)
N+ (D2LZMoMr-My) (g=25; q) = so(z) L) (25 q) + s1(x) (D, L) (¢7'z79) (6.4.12)

where

@) = "

N+1

- 1-¢
*ri(g lx)] - qz—qu—"o(z)

-1

s1(z) = ¢"*2z [ro(g ") + (D,,rlzl(q“x)] (6.4.13)
— g3 %__ oz| rig o) - ql rl(z)
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By using (6.4.11) we easily see that

so(z) = 1 — q (Z ()4 ) N+1 1 lower order terms
q
(6.4.14)

N+1 .
81(z) = g"tot? <Z q"k_(2)A,,) zM¥*? + lower order terms.
k=0

Elimination of (DqLSf)) (g7'z;q) from (6.4.7), (6.4.9) and (6.4.12) gives us in view of
(5.3.6)
po(z)ri(z) = pr()ro(e) = =" Py (z)

po(z)s1() — pr(2)so(z) = =V P} (z) (6.4.15)

ro(2)s1(z) — r1(2)so(z) = qq NP (z)

for some polynomials P;(z), P;(z) and P;(z). Here we used the fact that for n = 0 it
follows from (6.4.7) that po(z) = Agz"N. Therefore we have from (6.4.10) and (6.4.13) :

7‘0(.’1)) = 80(.’1}) =0,
Now we conclude from (6.4.7), (6.4.9) and (6.4.12), by using (6.4.15)

SNIgMeMMy(zig)  po(e) pa(e)
0 = | 2" (D LyMeMiin) (i) rofe) rale)

g+2 (D2LgMoMiMy) (g7%2;q) so(z) 1(2)
$2N+2P;(-‘E) (D:L:’MO'MI’W’MN) (q—-Zz; q) +
_ $2N+1Plt($) (Dng,Mo,Ml,...,MN) (q-lw; q) +

1—¢
1 qq x2N+1PO*(m)Lz'M°'M]Y".’MN(:C;q).

We divide by z?V+! to obtain

2 P}(z) (DL MoMirM) (722, q) — Py(x) (Do LyMoMir-Mr) (g7'z; g) +
1

—_nn
+ ToE Py @)Ly M (330) = 0

We replace = by ¢’z and use the fact that
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which follows directly from (5.2.7), to find
¢z P} (q'z) DL Mo Mor-Mi (2, g) 4
— [Pi(¢%2) + a(1 ~ 4)a Py(¢*)] (DyLaMoMir-Mn) (gz;q) +
1-
1—
which proves (6.4.1) if we define
¢V Py(z) = ¢*P;(¢'2)

+

¢Vt Pi(z) := P}(¢*z) + q(1 — ¢")zP5(¢’x) (6.4.16)

¢*V+4Py(z) := F5(¢’2).
It easily follows from (6.4.15), (6.4.8), (6.4.11) and (6.4.14) that

4

N+1
Py(z) = ¢"*3A, (E q""‘(:)Ak) z¥*! 4+ lower order terms

k=0

N+1
J Pi(z) = ¢"*tot24, (Z q""‘(:)Ak) zN+2 4 lower order terms (6.4.17)
k=0

N+t
P}(z) = A (Z q"""(:)Ak) zN¥*! } lower order terms.
\

k=0

Now (6.4.2) follows from (6.4.16) and (6.4.17).
It remains to show that (6.4.3) is true. To prove this we note, by using (5.2.7) and
(6.4.16), that (6.4.3) is equivalent to

(1- Q) [P}(g2) + (1 - )P} (ga)]
= ¢**MHP}(z) - @P;(gz) + (1 - q)g™ N2 Pi(z). (6.4.18)

Now we will prove (6.4.18).
From (6.4.10) it follows by using the definition (5.2.7) that

(1 - g)ro(gz) = ¢"*'po(2) — gpolgz) — (1 — ¢")g* ¥ *2py()
(1 - grs(ge) = (1 - )™+ apo(z) + ¢N 2y (z) — apr(gz) + (6.4.19)
+ (1 = q)g"t* N +2zp ().

Now we use (6.4.15) and (6.4.19) to see that
eV [P}(gz) + (1 - ¢")zP3(gz)]
0N [po(g2)31(g2) — p1(g2)30(gz)] + (1 — q)g™ ¥ [ro(gz)s1(gz) — ri(gx)s0(qz)]
[po(2) — (1 = ¢™)g* ' pu(2)] s1(g2) +

- [(1 - @)zpo(z) + ¢*'pu(z) + (1 - q)q"+°’+l::p1(.t)] so(gz). (6.4.20)

i
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By using (6.4.13) and (5.2.7) we find
(1= )so(gz) = ¢"*7ro(2) — g*ro(gz) — (1 = ¢")g™* " **ri(2)

(1 - g)s1(gz) = (1 — )¢ Haro(z) + ¢*tV*ry(z) — ¢*ra(g2) +
+ (1 = g)g™ro Nz ().

(6.4.21)

Hence, by using (6.4.20) and (6.4.21) we obtain
(1 - g)=" [P} (g=) + (1 - ¢")xP3(g2)]
= ¢V po(2)ri(z) — pi()ro(2)] + (1 — 9)g™ N +4z [po(@)rs(2) — pa(@)ro(e)] +
+ [(1 - 9)apo(2) + ¢ p1() + (1 — 9)g™**+apy(2)] rolge) +
— [¢po(z) = (1 = ¢")g***pa()] r1(g2).
Finally, we use (6.4.19) and (6.4.15) to find
(1 = g)z" [P} (gz) + (1 ~ ¢")oP3(g2)]
= g™+ [po(z)ry(2) — pr()ro(2)] + (1~ 9)g> N *z [po(2)r(2) - pr()ro(e)] +
+[(1 = 9)g7*'ri(g2) + ¢7V*2pi(g2)] ro(gz) +
= [(1 = 9)g™*ro(gz) + 47V *?po(gz)| r1(g2)
¢V [po(2)ri(2) — pa(@)ro(z)] + (1 = 9)g° ¥z [po()rs(2) — pa()ro(z)] +
— ¢ V*? [po(gz)r1(gz) — p1(gz)ro(gz))
= 2 [¢**NHP;(2) + (1 - )"V e Py(2) — ¢* P} (g2))] -

This proves (6.4.18) and therefore (6.4.3).
This completes the proof of the theorem.

6.5 Recurrence relation

In this section we will prove the following theorem.

Theorem 6.2. The polynomials {Lﬁ'M"'M"""M"(z;q)}oo_o satisfy a (2N + 3)-term
recurrence relation of the form
$N+1 L:’M"'M"""MN(:I:; q)

n+N+1
= 3 EM pgMoMie-My (oo 0y 1 =0,1,2,.... (6.5.1)
k=max(0,n~N~1)

Proof. Since ¢V+! L[3:MoMirMN(g: g) is a polynomial of degree n + N + 1 we have

n+N41
xN-{-le,Mo,M],...,MN(z; q) = E EI(FN)L:,MOth-..,MN(m; q)’ n —= 0’ 1’ 2, PN (6.5.2)
k=0
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for some real coefficients E{™, k =0,1,2,...,n+ N + 1.
Taking the inner product with L&MeMi-MN(z. ¢) on both sides of (6.5.2) we find by
using (6.1.1) forn =0,1,2,...and m =0,1,2,...,n+ N +1:

< L:;Mo.Mh---,MN(I; q)’L;’:‘.Mo,Ml,---.MN(z; q) >, .E'(:)
=< :Z:N“L‘:’"M"'M"""M"(z;q),Lf,’;M"’M"""MN(:t;q) >q

N4 7o, Mo Mi oM i 4 7Moo MM e o) (6 B )
=<z Ly (z;q), Ly, (T;9) >4 . (6.9.9)

In view of the orthogonality property of the polynomials {Lz'M°'M1""'M" (m;q)}:_o we
conclude that E{) = 0 for m + N 41 < n. This proves (6.5.1).

The coefficients {Ax}n s in the definition (6.1.2) depend on n. To distinguish two
coefficients with the same index, but depending on a different value of n we will write
Ai(n) instead of A,. Comparing the leading coefficients on both sides of (6.5.2) we obtain
by using this notation and (6.1.6)

k
.E,,(I“) n
+N+1 = k N4

N+1 —(N+1)(2n+a+N+1)( v Ao(n) =0.1
= (-1) g Ao(n+N+1)#0 n=20,1,2

If we define
A, =< Lz,Mo,M; MN(.’E q), L% Mo, My,.. ,MN(z q) > = .(.q__’.q_)". (E an (Z)Ak)
(41, q)" k=0
then we find by using (6.5.3), (6.1.6) and the orthogonality that
EMy_ = wl;éo, n=N+1,N+2,....

n=N-1 7 knAn-Ncl

6.6 A Christoffel-Darboux type formula

From the recurrence relation {6.5.1) we easily obtain
Mo, Mi ..M, Mo, My ..M
(N4 — yHr) LpMorbartin (g g) L MorMioe My )

k+N+41 Mo M. M
= Y. B [LgMoMeMu(g; g) LMo M (y; g) 4
m=max(0,k—N-1)

_ L;:MO:MI ,...,MN(y; q)LZ,Mo.Ml’m,MN(I; q)] N k =3 0, 1, 2, cees (6-6-1)
We divide by Ay and sum over k¥ =0,1,2,...,n
n L(’:,Mo ,M; ,...,ij(z; q)L:,Mo,Ml ,...,MN (y; q)

($N+1 _ yN+1) Z

k=0 Ak
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n k+N+1 (%)
— Z Z 'im [L;x';Mo.Ml,...,MN(x;q)L:,Mo,Mh...,MN(y;q)+
k

k=0 m=max(0,k—N-1)
— Ls;Mo,Ml,....MN(y; q)L:,Mo,Ml oMy ((l:; q)]

forn=0,1,2,....
Now we use (6.5.3) to see that
E® (m)
—t = yk=N-1<m<k+N+1,km=0,1,2,....
Ak Am

Now we have the following situations :
For n < N we have

m T m=k+N+1

m=k

N+41

m=k-N-1

+ k+N+1 n  k+N+1
k=0 m=max(0,k-N-1) k=0 m=0 k=0 m=n+l k=0 m=n+1

and for n > N + 1 we have

n k+N+1
(0,k~N
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=k
mT m=k4+N+1
m=k
/
N+1
\ /m:k—N—l
0 n-N-1 N+1 n — k

n k+N+1 n n n k+N+1 n k+N+1

> X =X X +¥ X=X )

k=0 m=max(0,k—N-1) k=0 m=max(0,k-N-1) k=n—-N m=n+l k=n-N m=n+l

So it follows from (6.6.1) by using this observation that

n szMO-Mh---;MN(x; q)L‘;:rMOanw-yMN(y; q)

(xN+1 _ yN+1) Z

k=0 Ak
n KN+ (k)
= Z Z % [L:"':MO,Mlv--,MN(x; q)Lz,Mo.le-yMN(y;q) +

k=max(0,n—N) m=n+1
_ L;’MO'MI""’MN(‘!}; q)L:’Mo'Ml""’MN(w;Q)] (662)

forn =0,1,2,.... This can be considered as a generalization of the Christoffel-Darboux
formula (5.3.8) for the q-Laguerre polynomials.

If we divide the Christoffel-Darboux type formula (6.6.2) by = — y and let y tend to
z then we find the confluent form

uMO»Mlv vMN(x )}2

(N+1):cNZ {

A
n k N
_ Z +Z+1 E(k) [LQMO’M]_, 'MN(.’IJ q) LaMo,Ml, ’MN(I: q)+
k=max(0,n—N) m=n+1 A

d
_ L:I’Mo’Ml""'MN(JB; q)d_xL:,MoyMl,n..MN(x; q)

forn =0,1,2,.... This formula can be considered as a generalization of (5.3.9).




Chapter 7

A special case

7.1 The definition, the orthogonality relations and
some elementary properties

In this chapter we consider a special case of the inner product (6.1.1). We consider the
inner product

[>o]

Ty(—a) z*
I'(—a){a+1) J (- - q)z;q)mf(z')g(z)da: +
+ M f(0)g(0) + N (D,f)(0)(D,g)(0),  (7:1.1)

<fvg>q=

a>-1, M>0 and N > 0.

In this chapter we always write M and N instead of My and M, respectively.

Note that the definition (5.2.7) implies that (D, f) (0) := f'(0).

We have an explicit representation for the polynomials {Lz'M’N (z; q)}:o_o which are
orthogonal with respect to this inner product (7.1.1). -

For N > 0 the inner product (7.1.1) cannot be obtained from any weight function,
since then < 1,22 > # < z,z >. We will investigate some properties of the polynomials
{Lf‘"M*N (z; q)}:o_o. In this section we give the definition, the orthogonality relations and
some elementary properties and in the next section we give some results concerning the
zeros of these polynomials. The system of equations (6.1.9) can quite easily be solved
explicitly in this case, so that we have an explicit representation for the polynomials

{LaMN(z; )} .
The polynomials {Lz'M’N (z; q)}:o_0 which are orthogonal with respect to this inner
product (7.1.1) are defined by

L3MN(zq) = AoL{)(259) + Arg~*) (D,L) (¢7'z;9) +
+ A2g7* (DILY) (¢7%259) (7.1:2)

83
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where
(A= 14 ML D0
(401 n at2 a1y [ at3.
+ Ngrors(1 =) g )1— g(1 - qz(l — ") (@*"%i na
20+3 ((11: qq):+ a —(;1::2;)4)11—1 (an;(q‘I)i"‘l_)nn—?
a:.MNq (=g"){1 — ¢ (G0 (G2
A= M(‘I(q. q’)‘l)n +N 2a+2(1 = ¢ ) (€% @)n1 + (7.1.3)
i 9)n

(1-g¢*) (& qgn_l
+ MNq2a+2 (1 - q) 1- q2) (qa+l; Q)n (qa+4; ‘I)n—z
(1-¢t)2 (g5 (45002

Ag = Nq2a+2 (1 — q) (qa+2; q)n—l
(1-¢**1) (gi@n - s
+ MN g+ (1-9) (¢**Y0)n (°3@)n

h (1-¢*1)2 (5@ (¢Dn-1
For N = 0 this leads to
at2.
L2M(z;q) = L3M9(z;q) = ”M@Gé)?—."f} LO(ziq) +
(@ Dn _(at) @) (-1
+ M~~~ g\@ D, L) (q¢" ;5 9),
@a)n ° ( ! )( )

which is a q-analogue of Koornwinder’s generalized Laguerre polynomial L&™(z) defined
by (3.1.3).
Since 0 < ¢ < 1 and & > —1 we have

1-g<1—g" for n22 and ¢(1-¢**")=¢g-¢"*t? <1—¢g**2
Hence
1-¢)(1=-¢"")~-gq(1-¢)(1—¢**") >0 for n>2.
So it follows from (7.1.3) that
Ag>1, A, >0 and A; > 0. (7.1.4)
The orthogonality relations (6.1.3) and (6.1.4) reduce to the following orthogonality

relations :

a+l,
< LEMN(3;q), L3MN(z;q) >, = L—30n 4, (Ao + ¢" A1 + ¢ 42) bpun,

T (G9)ne"
where the inner product <, >, is defined by (7.1.1) and
1 & ghotk LEMN gk \LEMN( ok
2 N (cqh; ) LaM M (cg*; ) +

A=, (—e(l-9)d%9) s
+ MLZMN(0; ) L3MN(0;g) + N (D, LMN) (0;9) (D L3™ ™) (05 )
(@**5 9)n

Ao (Ao + ¢" A1 + ¢ 1 A3) b,
(4 9)ng" o (Ao + "+ ¢ 4s)
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where A is given by (5.3.4) and ¢ > 0 is an arbitrary constant. In terms of the q-integral
defined by (5.2.12) the latter orthogonality relation yields

1 12 M,N o,M,N
—_— N g TP . Vv, . d t
At b/ (—C(l - q)t;q)ooLm (Ct’ Q)Ln (Ctv Q) q +
+ MLEMN(0;q) LM N (05 g) + N (DoLEMN) (0; ) (Do L&MN) (0;.9)

(¢** 9)n 2n1
= M a4k A+ P Ay 6,
(4 Dng® o(dota"dr+477 )
where A* is defined by (5.3.5).
From the definition (7.1.2) we find by using (5.3.6), (5.3.10) and (7.1.3)

" 1— (qa+4. q)n—2
La,M,N 0; — ( 1q) [ - N 2044 q ) 7.1.5

" e = (%9 T (400 (T15)
and

_ o1, a+3,
(D,LaMN) (0;q) = c.+1(¢1 ,q)n-l_Man 1-¢ (@50)a (@ @1 (7.1.6)

(¢ 9)n 1-¢** (g;0)n (4 9)n

The second representation (6.2.1) in this case reads

LyMN(z;q) = BoL{)(z;q)+q Bz (D,LEHY) (¢7'w50) +
+gq ) Byz? (DILE) (47°39),

where /
. 1 —q (qa+4 q)n—
B N 2a+4
° 1—-¢* (¢;¢)n-2
By = Mg+ 29 @ 50n |y ocars (1= =¢™) (0" 9)ns
) 1-¢** (¢;9)n (1= ¢**) (1= ¢°*3)  (g; q)n2
4047 (1 - q)3 ( a+2»9)n-1
B; = Ngq (1= g1 — ¢>+2)(1 — qa+3) (4 )nt a: y
+ MNg*+" (1-g° (™5 0)n (4% 0)u- 1
\ (1-¢**1)2(1 = ¢*+2)(1 - ¢*+3) (g59)n  (¢59)n1

The (formal) representation as basic hypergeometric series (6.3.2) in this case reads

a+l, ) l—q (qa+4,q) 3
La,M,N z; — (q 14 )n [1 _ Nq2ﬂ+4 yq)n %
) (40w 1-¢**" (g @)n-2

-n A f41 v+l
xata (128 0 |a-a-orrene),
? b
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for some complex § and 4 which satisfy

v @ Ao+ (L+ ) A+ (6 4 ) A

8
e Ao + g Ay + ¢ 1A,

>0

and
q2a+3A0 + qa+2A1 + Ag

A. L amA. L an-14,
“=y r 3 “=1 1 7 i 3

P = > 0.

The following example shows that ¢° and ¢” need not to be real. If we take a = 0,
M =0, N =1 and n = 1, then it follows from (7.1.3) that 4o = 1, 4; =0 and A; = ¢°.
So we have in that case

b =049y o 20T

¢ +4q 11 ¢ and ¢°¢" 1+

Hence \ -
B N2 _ (.8 7\ By — 3¢°(1-q°)

—_ = + —4 = ———

(@) = (@ + ) -4 =200,

7.2 The zeros

We will prove the following theorem concerning the zeros of the polynomial LaMN(z: g).

Theorem 7.1. The polynomial L2M:N(z;q) has n real and simple zeros. At least
n — 1 of these zeros are positive.
In other words : at most one zero of L3M"N(z; q) lies in (— o0, 0].

Proof. For n > 1 we have < 1, L&MN(z;4) >, = 0. Hence

Ty(-a) T z* M,N M,N
L3 (x5 q)dz + ML (0;9) = 0.
Ma)la+D){ CO-omon = &9 (0:9)

This implies that the polynomial L&M:N(z; ¢) changes sign on (0, c0) at least once. Sup-
pose that ,z3,...,z; are those zeros of L&M:N(z; ¢) which are positive and have odd
multiplicity. Define

p(z) i=ku(z —z1)(z — 22) - (2 — 24),
where k,, denotes the leading coefficient in the polynomial L3M"N(z; ¢). This unphes that
p(2)LEMN(2:9) > 0 forall z > 0.

Now we define
h(z) = (= + d)p(a)
in such a way that (D;h)(0) = 0. Hence, by using (5.2.7)

0 = (D;h) (0) = K(0) = dp/(0) + p{0).
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Since 0 p .
PO _[d Y (2 T __)
20) ~ {dx In lp(JC)I}I=0 = (x1 to bt ) <O
we have ()
14
=-——=>0.
r(0)
Hence

h(z)L&MN(z;9) >0 for all z > 0.
This implies that

< b, L3MN 5

_ Ty(—a) T z® DLEMN (2 Vdz oMN/q.
T T(—a)(a+1) / (—(1= Q)z;‘I)ooh( YL (z; ¢)dz + MR(0)Ly™" (0;¢) > 0.

Hence, degree[h] > n which implies that k¥ > n — 1. This implies that all zeros of
LM (z: q) must be simple.

So we have : at most one zero of L&M™:N(z;q) is located outside the interval (0, c0).
This immediately implies that all zeros of LMV (z; q) are real. This proves the theorem.

Now we examine the nonpositive zero of L3MN(z;q) in somewhat greater detail.
From (6.1.6) it follows, by using (7.1.4), that L2MN(z;¢) >0forallz < ~Bif B> 0is
sufficiently large. Hence, the polynomial L*MN(z;q) has a zero in (—oo, 0] if and only
if LE&MN(0;¢) < 0. Now we use (7.1.5) to conclude that the polynomial L&M:N (z39) has
a nonpositive zero if and only if
a+4

1—gq (‘1 ) Q)n—ﬂ
1 - Ng+t ’ <0. 7.2.1
L et (¢ Q)n-2 ~ (72.1)

This implies that N > 0 and n > 2. We define

(qn+4;q)n—2
f n) = —————,
) (4 9)n-2
Then we have (o ) 1 "
5 a1 -
n + 1) = = n) > n), 7.2.2
4 ) (¢ 9)n-1 1—gn-1! f(n) > f(n) ( )
since n + «+2>n+1>n-—1. Hence f(n) is an increasing function. But
. (qa+4; q)oo
lim f(n) = “—121%
Ay F) (9:9)oo
Now we look at 1 »
Flayq,N) = 1— Ngro+t 1= (€50 (7.2.3)

1-¢* (3@
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Since "
lim qﬁa+4 1- q (q sq)oo =0
al0 1- qa+1 (q’ q)oo
for all @ > —1 this need not to be negative even for large values of N. For each N there
is a value of ¢ with 0 < ¢ < 1 such that F(a,q,N) > 0, where F(a, g, N) is defined by
(7.2.3). This implies that we cannot guarantee the existence of a nonpositive zero for
N > 0 and n suficiently large ag in the case of the nnlvnnmta]n {r""M’Nf'r\l . Note

vV Gl 70 DUNTAClivay st /T Swo aaa bast LGST L SdaT o
n=

that

LYMN(z) = lim LM (25 g).

But in view of (7.2.1) and (7.2.2) it is clear that if L2MN(z;q) has a nonpositive zero
for some positive integer n, then Lﬂﬁ”(z,q) has one too. Moreover, we have : the
polynomial L&MN(z;q) has a nonpositive zero for every sufficiently large n if and only
if F(a,q,N) < 0, where F(a,q, N) is defined by (7.2.3).

Now we prove the following theorem.

Theorem 7.2. If the polynomial L3MN(z;q) has a nonpositive zero z,, then we

have for M >0 :
1 /N
—_ | — < < 0.
2\/M__xn_0

Proof. Suppose that the polynomial L3N (z; ¢) has a nonpositive zero z,. Then it
is clear that N > 0 and n > 2.
Let 4,3, ...,%,_1 be the positive zeros of L3MN(z; ¢) and define

r(z):=(z —z1)(z — 22) (2 — ZTn_1)-

Then we have in view of (6.1.6)

L2MN(z:q) = knr(z)(z — T4), Tn < 0. (7.2.4)
Since degree[r(z)] = n — 1 we have
0 = <r(z),LyMN(z;9) >,
k Lo(=a) d ri(z)(z — zn)dz +

"N(-a)l(a+1) ) (—(1-9)7;0)
— Mk, r*(0)z, 4+ Nk,r'(0)[r(0) — z.7'(0)].  (7.2.5)
Here we used the fact that (D,r)(0) = r'(0). Since the integral in (7.2.5) is positive we

conclude that
—Mr*0)x, + Nr'(0) [r(0) — z,.r'(0)] < O.

Hence

0 < — [M{r©)) + N {F(0))}] 2a < ~Nr(0)r'(0) = N [r(0)r'(0)},
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since r(0) and r'(0) have opposite signs. Now it follows that

~2VMN [r(0)'(0)| 2a < — [M {r(0)} + N {r'(0)}*] 22 < N |r(0)r(0)].

Hence

—2VMNz, < N.
This implies that for M > 0 the zero z, is bounded :

1[N
—_— < < 0.
s\ ar S S0

Finally we prove the following result.

This proves the theorem.

Theorem 7.3. Suppose that the polynomial L3MN(z; ) has a zero z,, in (—o0,0].
Let £, < 2, < -+ < Z,_; denote the positive zeros of L2M"N(z;q). Then we have

0< -2, < 24. (7.2.6)

Proof. For z, = 0 (7.2.6) is trivial. So we assume that z, < 0. From (7.1.6) it
follows that (Dqu'M'N) (0;¢) < 0 for n =1,2,3,.... This implies, by using (7.2.4) and
(5.2.7), that

k, [r(0) — z,7'(0)] < 0.
Since r(0) = (—1)*"'z1z3 - - 2,-y and

%’%:{%mh(zn} =-($il+:—2+---+$:_l)

=0

we obtain

1 1 1
(—l)n—lknzlzz...zn_l [1+a:,, (x—+_+...+ )] <0.
1

T2 Tp-1

Now we use (6.1.6) and the fact that Ag > 1 to conclude that

1 1 1
Tal—+—+ -+ > 1.
Z1 Z2 Tn-1

Since r, < 0 this implies

1 1 1 1 1
-_—>—4+—+-+ > —
Ty 1 22 Tp-1 T
Hence
—Zn < Ip.

This proves (7.2.6) and therefore the theorem.
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Summary

We study polynomials {L“ Mo, My,...My (a:)} which are orthogonal with respect to the
inner product

v=0

o0 N
<h9> = gy [ 2 H@u@a + 3 M50 0)

a>-1, Ne€{0,1,2,...} and M, >0 for v€{0,1,2,...,N}.

These polynomials are generalizations of the classical Laguerre polynomials {L("‘)(x)} -

since L&%%%z) = L{)(z) and of Koornwinder’s generalized Laguerre polynomials
{Lzl"’(w)}ﬂ=0 found in [1] since L3MO00-0(g) = L2M ().

Since the inner product above cannot be obtained from any weight function in general
the classical theory of orthogonal polynomials cannot be applied to derive properties of
these new orthogonal polynomials {L" Mo, M,.... My (ar:)}n_0

In this thesis we give two definitions, an orthogonality relation and a representation
as hypergeometric function for these polynomials. Moreover, we derive a second order
differential equation, a recurrence relation and a Christoffel-Darboux type formula for
these polynomials {L“'M°'M" My (x)} —

In some special cases some resultsnconcerning the zeros of these orthogonal polyno-
mials are given.

Finally, a differential equation is proved for Koornwinder’s generalized Laguerre poly-
nomials {L"’ M (:t:)} which is of infinite order if M > 0 and @ > —1 is not an integer.
For a € {0,1,2,. } this differential equation is of finite order 2« + 4 provided that
M > 0.

The second part of this thesis deals with some g-analogues {L""M°'M1' -“MN (g q)}
of the polynomials {L"‘ Mo My, My (x)} described in the first part. These q-analogues

are generalizations of the q-Laguerre polynomlals {L(‘*)(w, q)} studied by Moak in [2].
For these orthogonal polynomials two definitions, two orthogona.hty relations and a

representation as basic hypergeometric function are given. Moreover, we prove a second

order g-difference equation, a recurrence relation and a Christoffel-Darboux type formula
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for these polynomials {L‘,",‘M"'M"""MN(-'” ;9)}:0'

In a special case we derive some results concerning the zeros of these generalized
q-Laguerre polynomials.

[1] : T.H. KOORNWINDER : Orthogonal polynomials with weight function (1—z)*(1+z)?
+ Mé(xz + 1) + N§(x — 1). Canadian Mathematical Bulletin 27(2), 1984, 205-214.

[2] : D.S. MOAK : The g-analogue of the Laguerre polynomials. Journal of Mathematical
Analysis and Applications 81, 1981, 20-47.




Samenvatting

In dit proefschrift bestuderen we polynomen {Lﬁ'MmM"'"'M"' (z)}:o_o die orthogonaal zijn
met betrekking tot het inwendig product -

v=0

0 N
<fg>= ﬁ / 2%e~ f(2)g(2)do + 3 M, F(0)g)(0),

a>-1, Ne{0,1,2,...} and M, >0 for v € {0,1,2,...,N}.
Deze polynomen zijn generalisaties van de klassieke Laguerre polynomen {Lﬁ,")(z)}:o,
want L300-0(z) = L{®)(z) en van de gegeneraliseerde Laguerre polynomen {Lg'M (.1:)}:0_0
die gevonden werden door Koornwinder in [1] omdat L3M00--0(z) = L[aM(z).

Omdat het bovenstaand inwendig product in het algemeen niet kan worden verkre-
gen uit een gewichtsfunctie kan de klassieke theorie van de orthogonale polynomen niet
worden toegepast om eigenschappen van deze nieuwe orthogonale polynomen af te leiden.

In dit proefschrift geven we twee definities, een orthogonaliteitsrelatie en een repre-
sentatie als hypergeometrische functie. Bovendien leiden we een tweede orde differen-
tiaalvergelijking af voor deze polynomen {Lz'M"'M"“"M" (a:)}co_o, evenals een recurrente
betrekking en een soort Christoffel-Darboux formule. i

In sommige speciale gevallen worden enkele resultaten betreffende de nulpunten van
deze orthogonale polynomen afgeleid.

Tenslotte wordt nog een differentiaalvergelijking voor de polynomen {Lg'M (:c)} o
van Koornwinder bewezen. Deze differentiaalvergelijking is van oneindige orde als M >0
en a > —1 geen geheel getal is. Voor a € {0,1,2,...} is deze differentiaalvergelijking
van de (eindige) orde 2a + 4 als M > 0.

o0

Deel twee van dit proefschrift gaat over q-uitbreidingen {Lg'MmM"'"’MN (z; q)}:o_0 van
de polynomen {Lz'M“ MMy (:::)}:o_0 uit het eerste deel. Deze g-analoga zijn generalisa-

ties van de q-Laguerre polynomen {L,(,"‘)(:c; q)}:o_o die werden bestudeerd door Moak in

[2].
Voor deze orthogonale polynomen worden twee definities, twee orthogonaliteitsrela-
ties en een representatie als q-hypergeometrische functie bewezen. Bovendien worden
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een tweede orde q-differentie vergelijking, een recurrente betrekking en een soort Chris-
toffel-Darboux formule afgeleid voor deze polynomen {Lf{'M"'M’""'MN (z;9) e

In een speciaal geval leiden we nog enkele resultaten af omtrent de nulpunten van
deze gegeneraliseerde g-Laguerre polynomen.

[1] : T.H. KOORNWINDER : Orthogonal polynomials with weight function (1—z)*(1+z)?
+ Mé(z + 1) + Né(z — 1). Canadian Mathematical Bulletin 27(2), 1984, 205-214.

[2] : D.S. MoAK : The g-analogue of the Laguerre polynomials. Journal of Mathematical
Analysis and Applications 81, 1981, 20-47.
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