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Eigenmode distortion is a novel quantitative methodology developed to objectively evaluate motion cueing fidelity

in flight simulation. It relies on an explicit coupling of linearized vehicle and Motion Cueing Algorithm dynamics.

Modal analysis subsequently performed on this coupled system reveals the degree of distortion imposed by theMotion

CueingAlgorithmon to the dynamics of the simulated vehicle. Eigenmode distortion therebyprovides unprecedented

insight into the combined dynamics of the two systems alongmodal coordinates. Comparedwith existingmethods for

motion cueing fidelity assessment, the eigenmode distortion method enables a systematic analysis of the coupled

vehicle and Motion Cueing Algorithm dynamics. This is mainly because it does not consider the Motion Cueing

Algorithm in isolation and does not inherently rely on assumptions regarding the excitation of the simulated vehicle

dynamics.This paper outlines the theoretical foundationof the eigenmodedistortionmethodand includes a case study

on helicopter longitudinal dynamics and a sensitivity analysis to demonstrate its utility. The results presented in this

paper shown that the eigenmodedistortionmethod can reveal interactions between theMotionCueingAlgorithmand

the vehicle dynamics that are currently not captured by other established methods, such as the Sinacori–Schroeder

criteria and the Objective Motion Cueing Test.

Nomenclature

A, B, C, D = linear system state, input, and out-
put matrices

fx, fy, fz = specific force, m∕s2
g = gravitational acceleration, m∕s2
Kp, Kq, Kr = ClassicalWashout Algorithmmotion

gains in rotational motion channels
Kx, Ky, Kz = Classical Washout Algorithm motion

gains in translationalmotion channels
mi = mode participation factor of ith sys-

tem mode
p, q, r = angular rates expressed in vehicle

body-aligned reference frame, rad∕s
q = auxiliary state vector used in state-

space formulation of Motion Cue-
ing Algorithm filters

r = state vector expressed in modal
coordinates

u = input vector
u, v, w = velocities expressed in body-

aligned reference frame, m∕s
V = matrix of left eigenvectors corre-

sponding to linear system

W = linear system modal matrix
w, v = right and left eigenvectors
x = state vector
y = output vector
fX; Y; Zgu, fX; Y; Zgv,
fX; Y; Zgw

= force stability derivatives w.r.t.
velocity, 1∕s

fX; Y; Zgp, fX; Y; Zgq,
fX; Y; Zgr

= force stability derivatives w.r.t.

angular velocity, m∕�s ⋅ rad�
fL;M;Ngu, fL;M;Ngv,
fL;M;Ngw

= moment stability derivatives w.r.t.
velocity, rad∕�s ⋅m�

fL;M;Ngp, fL;M;Ngq,
fL;M;Ngr

= moment stability derivatives w.r.t.

angular velocity, 1∕s
δ0, δ1s , δ1c , δθ = collective and cyclic control deflec-

tions, % or rad
δ□ = linearized quantity
ζ = Classical Washout Algorithm filter

damping ratio
λ = eigenvalue
Φ = vector containing Euler attitude

angles, rad
ϕ, θ, ψ = roll, pitch and yaw attitude angles, rad
ω1x

, ω1y
, ω1z

= Classical Washout Algorithm filter
break frequency in channel 1, rad∕s

ω2x
, ω2y

= Classical Washout Algorithm fil-
ter break frequency in channel 2,
rad∕s

ω3p
, ω3q

, ω3r
= Classical Washout Algorithm filter

break frequency in channel 3, rad∕s
□ = generic symbol placeholder

Subscripts

e = equilibrium state
1,2,3 = Classical Washout Algorithm chan-

nel number

Superscripts

c = quantity pertaining to coupled sys-
tem formulation
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r = quantity expressed in the inertial
reference frame

m = quantity pertaining to Motion Cue-
ing Algorithm dynamics in coupled
system formulation

p = quantity pertaining to vehicle dynam-
ics in coupled system formulation

s = quantity expressed in the simulator
body-aligned reference frame

I. Introduction

H ISTORICALLY, qualification of motion cueing systems
(MCSs) in full flight simulators (FFSs) used for pilot training

relies heavily on subjective assessment by qualified pilots [1]. In fact,
currently prescribed regulations stipulate that “until there is an
objective procedure for determination of the motion cues necessary
[ : : : ], motion systems should continue to be tuned subjectively”
([1] p. 75).
Over the years, there have been several contributions toward the

formulation of more quantitative criteria for motion cueing fidelity
assessment.Perhaps thebest knownare theSinacori–Schroeder criteria
first proposed by Sinacori [2] and later refined by Schroeder [3]. These
criteria stipulate acceptable boundaries on motion distortion** in the
frequency domain. A decade ago, Advani and Hosman [4,5] proposed
a more general approach, the Objective Motion Cueing Test (OMCT),
based on the measurement of the linear frequency response of the
integrated MCS. The MCS comprises the Motion Cueing Algorithm
(MCA) and the motion platform hardware in conjunction with all its
associated control laws. OMCT therefore provides insight into the
amplitude and phase distortion induced by the MCS, for a range of
different sinusoidal motion inputs. After application of the method at
various independent institutions and subsequent refinement [6], the
International Civil Aviation Authority (ICAO) adopted the test in its
manual of criteria for the qualification of flight simulation training
devices (FSTDs) in2009 ([7] II-Att F-1).Currently, a preliminary set of
criteria based on industry best practice is available for fixed-wing
aircraft FSTD [8] and the FAA requires that the OMCT be applied to
all newly qualified simulators [9]. The validation and refinement of the
OMCT criteria is an ongoing process and is performed in close
cooperation with partners from both academia and industry [10–15].
An important caveat of these frequency-domainmethods is that they

consider the MCS in isolation and do not explicitly include aircraft-
and/or pilot-specific factors. More specifically, in OMCT, vehicle
dynamics and pilot control inputs are abstracted to a set of single sines
applied to theMCS. These input signals have a fixed set of amplitudes
at 12 prescribed frequencies ranging from0.1 to 15.8 rad∕s, with fixed
amplitudes considered to be representative. To better represent the
conditions the MCS encounters during flight, Dalmeijer et al. [16]
extended the OMCT for application in the rotorcraft domain by
replacing the fixed sinusoids by signals that more closely resemble a
helicopter’s behavior in a certainmaneuver. They found that rotorcraft-
specific (i.e., “tailored”) OMCT input signals are able to expose
interactions inmotion cueing signals that are not captured in the present
OMCT. Nonetheless, the signals remain specific to a combination of
vehicle and task. A change in either requires a redefinition of the
frequency domain data and, hence, might result in substantially differ-
ent results. Moreover, processing of the vehicle- and task-specific
frequency domain data was shown to be highly sensitive to interpilot
variability. Thus, tailored OMCT results remain difficult to generalize
across different in vehicles, tasks and pilots, making their use as a
qualification test unfeasible. The method proposed in this paper will
address these issues.
Despite its limitations, OMCT has proven to be a well-established

and valuable tool to gain broad insight into the dynamic properties of
theMCS, particularly in the realm of fixed-wing flight simulation for
pilot training and certification. However, some applications may
benefit from a more focused approach that foregoes the definition

of explicit MCA excitation signals and instead directly leverages

knowledge embedded in a vehicle dynamics model. This is a

common practice in, e.g., the evaluation of aircraft handling qualities

[17], where in conjunction to frequency domain metrics, criteria are

specified in terms of time-domain responses and dynamic mode

properties (i.e., short period, phugoid, etc.) [18,19]. The novel

method proposed in this paper, named eigenmode distortion (EMD),

aligns particularly well with the latter as it also relies on modal

analysis to quantify the effect of the MCA in terms of the distortion

of the simulated vehicle dynamics. Specifically, it provides insight

into the combined simulated vehicle and MCA dynamics along a set

of decoupled (i.e., modal) coordinates. Existing applications of

modal analysis are vast and span multiple scientific and engineering

disciplines. In aerospace, it is perhaps best known for its utility in

structural vibration analysis and control [20–22], aerodynamics [23],

as well as aircraft stability analysis [24,25] and flight control system

design [26–28].

The main contributions of this paper are twofold. First, it presents

the theoretical foundation of EMD, which primarily relies on modal

analysis, as applicable to any linearizable combination of vehicle and

MCA. This also includes an example derivation of the method for the

case of six-degree-of-freedom (6-DOF) aircraft motion cued using

the well-known Classical Washout Algorithm (CWA) [29]. These

mathematical derivations form the basis of earlier work that relies on

the EMD method, e.g., [30–32]. Second, the paper aims to demon-

strate the applicability of the EMD method. This is accomplished

using an example application of EMD using the dynamics of the

Bo-105 helicopter, which shows how themethod allows new insights

to be gained into the coupled dynamics of the simulated vehicle and

MCA. In addition, results from a preliminary pilot-in-the-loop

experiment [30] are used to introduce the mode participation factor

(MPF) as a useful metric to facilitate in task-specific MCA tuning

based on EMD.

The paper is structured as follows. First, the technical background

regarding the significance of modal analysis is presented in Sec. II,

which includes a proposition for a system structure to capture the

coupled vehicle and MCA dynamics. Then, in Sec. III, the dynamics

of a commonly appliedMCA, theCWA, are explained and linearized.

Section IV subsequently completes the formulation of the coupled

system and presents its sought eigenstructure. In Sec. V, a case study

and sensitivity analysis is included to exemplify the utility of the

novelmethodology. Finally, Sec.VI introduces theMPFusing results

from a preliminary pilot-in-the-loop experiment.

II. Eigenmode Distortion

The EMD method relies on the algebraic coupling of simulated

vehicle andMCA dynamics and the subsequent application of modal

analysis to the resulting coupled system.Algorithm 1 summarizes the

method in three steps. Because modal analysis is at the core of the

EMD method, this section first highlights the significance of modes

for the analysis of dynamic systems. To that end, Sec. II.A introduces

the notion of modes and its relation to the time-domain response of a

dynamic system. Then, Sec. II.B outlines the idea of leveraging

modal analysis for application to motion cueing fidelity evaluation.

Algorithm 1: The three steps of the Eigenmode distortion method

Step 1: Obtain a linear(ized) model of the vehicle dynamics, containing
expressions for the human-perceived quantities (i.e., specific forces
and angular rates) either implicitly or explicitly. This model can be
derived analytically or can be obtained empirically.

Step 2: Linearize the applicable MCA. Any MCA can be used as long as it
can be feasibly linearized.

Step 3: Couple the two separate linear models of the vehicle and MCA
dynamics. This coupled model can then be subjected to a modal
coordinate transformation in order to extract information on theMCA-
induced modal distortion of human-perceived quantities in terms of
the vehicle’s dynamic modes.**In terms of phase and magnitude at a frequency of 1 rad∕s, where pilot

manual control is predominant.
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A. System Response in Terms of Eigenmodes

The property that makes modes attractive for the analyses of linear

dynamic systems is that they represent the response characteristics of

the system along decoupled coordinates [33]. These coordinates are

often collectively termed the “modal coordinates,” the “eigenstruc-

ture,” or, simply, the “modes of the system.” Any motion can be

described by a combination ofmodes, and an undisturbed systemwill

continue along its excited modes. As such, the modes provide a more

natural representation of a system’s state and its evolution as com-

pared with, e.g., more synthetic Fourier coefficients used by OMCT.

This section will show how the modes of a generic linear system can

be retrieved and how modes are related to the dynamic response

characteristics of the system.
Given a linear, nonsingular, and time-invariant systemof order n in

the form

_x � Ax� Bu

y � Cx (1)

one can define a transformation of the state vector, x, i.e.,

x � Wr (2)

such that

_r � W−1AWr�W−1Bu

y � CWr (3)

The system in Eq. (3) is said to be similar to the one in Eq. (1), in

the sense that the dynamic characteristics of the system are unaf-

fected. In fact, the input–output relation from u and y remains

unchanged. This furthermore holds for any (nonsingular) choice of

the transformation matrixW. However, a special choice forW exists

such that [33]

W−1AW � Λ � diag�λ1; λ2; : : : ; λn� �

2
666664

λ1 0 · · · 0

0 λ2 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · λn

3
777775 (4)

In this case, the matrix A is said to be diagonalized and
λ1; : : : ; λi; : : : ; λn are real- or complex-valued scalars known as
the eigenvalues of the system. In turn, the columns of W, i.e.,
w1; : : : ;wi; : : :wn, have the property:

Awi � λiwi and wT
i ⋅wj � 0 ∀ i ≠ j (5)

Or, in words, the matrix W is orthogonal and its columns are
eigenvectors of the system. W is also often referred to as the modal
matrix, which effectively decouples the system into its n linearly
independent modal coordinates. An individual mode of the system,
then, can be uniquely specified as

mi � fλi;wig (6)

The type (e.g., stable vs unstable, oscillatory vs nonoscillatory) of
the response in a given mode is determined by the eigenvalue
associated with that mode. In turn, the eigenvector associated with
a mode defines the relative contribution of, and the relation between,
the individual states of the system in that mode. This property is
commonly referred to as the mode shape.
An example of modes and their corresponding shapes is shown in

Fig. 1, depicting the eigenvalues and the associated eigenvectors of a
3-DOF model of the Bo-105 helicopter longitudinal dynamics, in
the complex plane. Aircraft modes play an important role in stability
and control analysis and design [24,25]. Their prevalence from the
early age of aviation has led to well-established names for many
common modes.
The typical longitudinal modes for a hingeless helicopter such as

the Bo-105 are the pitch subsidence, heave subsidence, and phugoid.
Figure 1 shows that the pitch subsidence and heave subsidence are
stable aperiodic modes with frequencies of approximately 3.7 and

Fig. 1 Eigenvalues of a 3-DOF linear model of the Bo-105 helicopter in hover, depicted in the complex plane, together with the modes they excite in the
four state variables.
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0.32 rad∕s, respectively. The phugoid is an unstable oscillatorymode

with a natural frequency of approximately 0.4 rad∕s and a damping

ratio of −0.04. Also shown in the figure are the eigenvectors asso-

ciated with each mode. The elements comprising these eigenvectors

are the contributions of the four states in the 3-DOF model in each

respective mode. These states are the perturbed velocities along the

longitudinal (δu) and vertical (δw) vehicle body axes as well as the

perturbed pitch attitude (δθ) and rate (δq).
For complexeigenvalues, the corresponding eigenvector coefficients

are also complex valued. Hence, each state has a magnitude and phase

relative to the other states. This relation is best visualized in a complex

plane representation of the eigenvector coefficients. This is illustrated

for the phugoidmode in Fig. 1, fromwhich it can be seen that δu is the

dominant translational component and δθ is the dominant rotational

component. Real eigenvalues are accompanied by real-valued coeffi-

cients in the corresponding eigenvectors. In this case, each state has a

relativemagnitudewith respect to other states and is either proportional

or inversely proportional to the other states. Thus, the relative relation

between real-valued coefficients in an eigenvector can be conveniently

represented in a bar plot. This is illustrated in Fig. 1 for the pitch

subsidence and heave subsidence modes, where δq and δw, respec-
tively, appear as the dominant contributors. Finally, note that eigenvec-

tors are essentially dimensionless, in that they can be arbitrarily scaled

and normalized, and plotted in a dimensionless way (as in Fig. 1). In

this process, however, the relative relation between the coefficients in

each eigenvector is preserved.
The state response of the system is directly related to its modes

through [33]:

x�t� �
Xn
i�0

2
4 �vTi x0�eλi t|����{z����}

Zero Input Response

�
Z

t

0

vTi Bu�τ�eλi�t−τ� dτ|����������������{z����������������}
Zero State Response

3
5wi (7)

where the row vectors vTi are left eigenvectors of the system, which in

this case are the rows of a matrix VT obtained from ††

VT � W−1 (8)

The state response is composed of two parts [see Eq. (7)]. The zero

input response (ZIR) captures the contribution to the response due to

a direct perturbation of the state itself (i.e., the initial values

response). The zero state response (ZSR) only contributes to the

response as a result of external inputs. To obtain a response that is

isolated to a single system mode, the ZIR corresponding to x0 � wi

can be evaluated.‡‡

An example of ZIRs corresponding to themodes in Fig. 1 is shown

in Fig. 2. This figure highlights a number of analogies between the

modal domain and the time domain. For example, the responses

corresponding to the phugoid mode are unstable and show that δu
dominates in terms of amplitude and exhibits lead (i.e., precedes in

time)with respect to δθ (see dashed lines at firstminimum).Also note

that all responses in the phugoid mode oscillate with the same

frequency. Furthermore, δu and δq appear to be approximately in

phasewith one another. In Fig. 1, these properties of the response can

also be deduced from the relative angle and magnitude between the

phugoid eigenvector coefficients in the complex plane. This charac-

teristic lies at the heart of the EMD method. In case of the aperiodic

Fig. 2 State responses of isolated modes in a 3-DOF linear model of the Bo-105 in helicopter hover.

††Note that many combinations ofV andW exist such thatVTAW � Λ and

vTi ⋅wj � 0 ∀ i ≠ j [33]. Therefore, in contrast to eigenvalues, the left and

right eigenvectors of a linear system are generally not unique. The choice

VT � W−1 is convenient because it implies that vTi ⋅wj � 1 ∀ i � j, which in
turn implies that Eq. (7) holds without introducing additional scaling as a

result of the implicit inner products of vTi and wi.
‡‡For periodic modes with complex eigenvectors, the equivalent ZIR is

obtained by setting x0 � 2Re�wi�.
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subsidence modes, it can be seen that the further left the eigenvalue

lies in the complex plane (i.e., the smaller the time constant), the
faster the response.
Given an arbitrary (initial) state or input, Eq. (7) also reveals the

extent towhich the ith systemmode is excited as a result of perturbing

the system. This information is present in the terms vTi x0 and v
T
i Bu.

Hence, these terms are often referred to asMode Participation Factors

(MPFs) (e.g., [25]). From Eq. (2), one can also directly express a
(measured) system state in terms of its modal coordinates using

r�t� � W−1x�t� (9)

This constitutes an alternative and more complete measure of the
participation of each individual systemmode in the state response, as
it includes the contributions of both the ZIR and ZSR.

B. From Mode Assignment to Distortion

The main contribution of this paper is the application of modal
analysis to the problem of motion cueing fidelity in vehicle simu-

lation. An explicit linear(ized) model structure that couples typical
(linearized) vehicle and MCA dynamics will be proposed:

δ _xc �
�
Ap 0

Apm Am

��
δxp

δxm

�
�
�
Bp

Bm

�
δup � Acδxc �Bcδup

δyc �
�
Cp 0

Cpm Cm

��
δxp

δxm

�
�
�
Dp

Dm

�
δup �Ccδxc �Dcδup (10)

The state vectors δxp and δxm that together form the coupled system
state δxc in Eq. (10) contain states that describe the evolution of the

linearized vehicle and MCA dynamics, respectively. Here, the δ nota-
tion is used to emphasize the fact that Eq. (10) describes the perturba-

tion dynamics of the coupled vehicle–MCA system. The matrices Ap

and Am are the respective system matrices corresponding to δxp and
δxm. The matrix Apm couples the dynamics of both systems, whereas

the coupled system itself is excited solely by the input vector δup

through the matrices Bp and Bm (combined in the matrix Bc). The

matrices Ap and Bp are determined by the pure vehicle dynamics and
may change, e.g., as a function of forward flight speed. Conversely,Am

changes purely as a function of parameters in the MCA, whereas Amp

and Bm depend on both vehicle dynamics and MCA parameters. For

analysis, the coupled system output yc can be chosen to contain
quantities perceived by the human vestibular system (i.e., perception

states), both before and after distortion by theMCA. These are specific
forces and angular rates [34] that are a linear combination, determined

by the matrices Cc andDc, of the states in xp and xm.

The key advantage of the formulation in Eq. (10) is that it accom-
modates modal analysis of the coupled system, as described in
Sec. II.A. This is analogous to eigenstructure assignment [28], in
the sense that a mechanism is introduced that strongly affects the
dynamic properties of the closed-loop system. In eigenstructure
assignment, this mechanism (i.e., state feedback) is introduced pur-
posefully with the aim of shaping the dynamic characteristics of the
closed-loop system. However, in Eq. (10), the presence of the MCA
dynamics has the undesired (yet inevitable) side effect of distorting
the actual vehicle dynamics before being perceived by a human
operator in a motion-base flight simulator. The newly proposed
method therefore enables a systematic analysis of this MCA-induced
distortion of human-perceived quantities in terms of the vehicle’s
eigenstructure.
In the following sections, the necessary elements in Eq. (10)will be

discussed, starting with a linearization of the CWA. In this process,
the motion state vector xm is defined, and expressions for both Am as
well as Cm are obtained. Subsequently, human-perceived quantities
(i.e., specific forces and angular rates) will be expressed in terms of
the vehicle dynamics states in xp. It will become apparent that these
constitute the definition of the Apm, Bm, Cp, Cpm, and Dm matrices
and thus complete the definition of the coupled system in Eq. (10).

III. Linearizing the Classical Washout Algorithm

From Algorithm 1, it can be seen that obtaining a linear representa-
tion of theMCAunder consideration is necessary for the application of
EMD. This section outlines the process to obtain a linear model of a
commonly applied simulator MCA, namely, the CWA [29]. Figure 3
shows a schematic representation of the CWA. This figure shows that
the inputs to the CWA are the vehicle specific forces and angular
velocities, i.e., the quantities perceived by the humanvestibular system
[35]. In the CWA, three distinct mechanisms are applied to feasibly
reproduce these quantities in the simulator. The purpose of channel 1 is
to reproduce high-frequency components of the specific forces. Chan-
nel 2 is often referred to as the tilt coordination channel, enabling the
use of motion platform rotation for reproducing sustained (i.e., low-
frequency) specific force components. This channel is optional and
only active for specific forces acting in the horizontal plane [29]. Note
that tilt coordination introduces an artificial coupling between transla-
tional and rotational motion that does not typically exists in, e.g.,
aircraft dynamics. Finally, channel 3 is responsible for reproducing
high-frequency contributions in the angular velocities of the vehicle.
To not divert from themain contributions of this paper, the reader is

referred to [36] for the detailed mathematical derivation of the
linearized CWA dynamics. However, it is equivalent to that applied
elsewhere (e.g., [37]) and the end result relies on a number of

Fig. 3 The three channels of the Classical Washout Algorithm [29].
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restrictive yet reasonable assumptions to capture the dynamics of the

CWA in 6 DOF in linear form:
1) TheCWA is linearized about the neutral state of the simulator, in

which the simulator is assumed to be stationary with an attitude equal
to zero. This is a reasonable assumption because the CWA itself
ensures that the simulator always returns to this state. Moreover, due
to mechanical constraints inherent in most conventional contempo-
rary motion platforms, excursions from the neutral position remain
relatively small.
2) The vehicle dynamics are linearized with respect to an equilib-

rium state, which means that (sustained) translational and rotational
accelerations are assumed zero in the model. To linearize the CWA, it
was furthermore assumed that rotational rates of the vehicle in
equilibrium are also zero.
3) The rate limit in channel 2 of the CWA is omitted because it

cannot be feasibly linearized. However, the (unconstrained) effect of
tilt coordination is preserved in the linearization.
Figure 4 summarizes the final schematic obtained for the linearized

CWA. It can be seen that, even though many operations have been

simplified (e.g., transformations between body and inertial quantities),

still many of the inherent interaxis couplings that play a role in EMD

remain. Most notably, the rotational dynamics of the CWA in roll and

pitch affect the simulated specific forces in sway and surge, respec-

tively, through the addition and subtraction of gravitational compo-

nents. In turn, the roll and pitch dynamics of the simulator are also

influenced by the vehicular specific forces through tilt coordination.

The vertical specific force and yaw rate channels, however, do appear

as uncoupled DOFs in the linear CWA model.
Figure 4 also shows that the linear dynamics of the CWA are fully

determined by a selection of scaling gains,K□, as well as the various

filtersH1□
,H2□

andH3□
. The configurable parameters that appear in

these equations are the break frequenciesω1□
,ω2□

, andω3□
aswell as

the common damping ratio ζ. Reflecting back to the coupledmodel in
Eq. (10), it is evident that to capture the linear CWA dynamics, a
motion state vector, xm, can be defined as

δxm �
h
qT1x qT1y qT1z qT2x qT2y qT3p qT3q qT3r �Φs�T

i
T

(11)

where q1□ , q2□ , and q3□ are auxiliary state vectors that appear as a

result of the conversion of the CWA filters H1□
, H2□

, and H3□
to

state-space form, and Φs is a vector that contains the simulator
attitude. The outputs of the linear CWA depicted in Fig. 4 that are
of primary interest are the (perturbed) human-perceived specific
forces and angular rates. Thus the motion output vector ym can be
defined as

δym � �
δfsx δfsy δfsz δps δqs δrs

�
T (12)

Based on the definitions in Eqs. (11) and (12), combined with the
results from the CWA linearization [36], it is possible to obtain
expressions for the matrices Am, Bm, and Cm also appearing in
Eq. (10). The reader is referred to [36] for the detailed definitions
of these matrices.

IV. Obtaining the Coupled System Eigenstructure

The final step in the EMDmethod, as seen fromAlgorithm 1, is the
coupling of the vehicle and MCA dynamics and the subsequent
application of modal analysis to the coupled system eigenstructure.
From Fig. 4, it is apparent that the inputs to the CWA are the vehicle
perturbed specific forces and rotational rates. This section shows how
these quantities can be obtained and expressed in terms of the vehicle
dynamics states. This constitutes the last step in the derivation of the
coupled vehicle–MCA system proposed in Eq. (10). Subsequently, it
is shown how to obtain and exploit the eigenstructure of the coupled
system in order to obtain ameasure of the amount of distortion in each
human-perceived quantity as a result of motion filtering.

A. Human-Perceived States from Vehicle Dynamics

To couple the linear vehicle and CWA dynamics, expressions for
human-perceived quantities (i.e., specific forces and angular rates) in
perturbed form are necessary. To this end, the linear vehicle dynamics
are defined first:

δ _xp � Apδxp � Bpδup

δyp � Cpδxp �Dpδup (13)

In this formulation, the linear vehicle dynamics are governed byAp

and Bp, with accompanying vehicle state and input vectors δxp and
δup, respectively. For aircraft and rotorcraft, the classical formula-
tions of the linear rigid-body dynamics widely applied for stability
analysis and flight control system design (see, e.g., [24,25]) can be
used directly. For rotorcraft δxp and δup are defined as

δxp � � δu δv δw δϕ δθ δp δq δr �T
δup � � δθ0 δθ1c δθ1s δθ0tr �T (14)

The desired quantities in the vehicle output vector yp are the
perturbed specific forces and rotational rates, i.e.,

δyp � � δfx δfy δfz δp δq δr �T (15)

Comparing Eq. (14) and Eq. (15), it is evident that the perturbed
rotational rates are already present in the perturbed state vector. To
obtain (linear) expressions for the perturbed specific forces, the
vehicle translational equations of motion (see, e.g., [36]) can be used:

_V � f�xp; up� � Tbi�ψ ; θ;ϕ�g − ω × V (16)

whereV ≡ � u v w �T and f�xp; up� ≡ Fcg�xp; up�∕m. Hence, the

specific forces appearing inEq. (16) are the resultant nongravitational
forces acting on the vehicle per unit mass. These quantities can also

Fig. 4 A schematic of the linearized Classical Washout Algorithm for a
full motion simulator.
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be expressed in linearized form (see, e.g., [36]). This yields the
following generic expression for the linearized specific forces:

δf□ � δF□
cg

m
� □uδu�□vδv�□wδw�□pδp�□qδq�□rδr

�□θ0δθ0 �□θ1c
δθ1c �□θ1s

δθ1s �□θ0tr
δθ0tr (17)

where□ is a placeholder for the translational vehicle DOFs. (i.e., X,
Y, and Z). Equation (17) expresses the perturbed specific forces as a
linear combination of the vehicle states and inputs. Combined with
the insight that the vehicle rotational rates appear directly in the state

vector, it is possible to specify the Cp and Dp matrices appearing in
Eq. (13). These lead directly to the necessary definitions of Apm, Bm,
Cpm, andDm appearing in Eq. (10). The reader is referred to [36] for

the detailed definitions of these matrices.

B. Extended Eigenvectors of the Coupled System

In Sec. II, the significance of modes to characterize vehicle

dynamics was discussed. The eigenvalues of a linear system were
shown to reveal information about stability, frequency, and damping
of the characteristic vehicle modes. Furthermore, the eigenvector

associated with each mode was found to expose the mode shape
through the relative magnitude and phase (for complex eigenvalues)
between the various states contained in the model. Finally, it was

shown that the vehicle response could be described in terms of its
modal coordinates, where theMPFs were introduced as a measure of

the contribution of each mode in the vehicle’s state response. In this
subsection, the eigenstructure of the coupled system in Eq. (10) will
be used to quantify the effect of the MCA dynamics on the existing

vehicle modes in terms of human-perceived quantities.
This information can be obtained by applying a modal coordinate

transformation to the coupled system. Thiswas outlined in Sec. II and
resulted in Eq. (3). In summary, the state vector could be expressed as
[see Eq. (2)]:

xc � Wcrc or rc � �Wc�−1xc (18)

where Wc is the modal matrix containing the eigenvectors of the
coupled system matrix, i.e., Ac in Eq. (10). Subsequent premultipli-

cation ofWc with the coupled system output matrixCc from Eq. (10)
yields the extended modal matrix:

CcWc � �
wλ1

yc wλ2
yc · · · wλm−1

yc wλm
yc
�

�

2
666666666666664

wλ1
fx

wλ2
fx

· · · wλm−1
fx

wλm
fx

..

. ..
. ..

. ..
.

wλ1
r wλ2

r · · · wλm−1
r wλm

r

wλ1
fsx

wλ2
fsx

· · · wλm−1
fsx

wλm
fsx

..

. ..
. ..

. ..
.

wλ1
rs wλ2

rs · · · wλm−1
rs wλm

rs

3
777777777777775

(19)

From this equation, it can be seen that the Cc matrix scales and
combines the right eigenvectors of Ac such that a different set of

eigenvectors is obtained, in terms of both the vehicle andCWA-filtered
perception states. These extended eigenvectors are a linear combina-
tion of the original eigenvectors inWc and, in Eq. (19), are denoted by

wλi
yc . The superscript λi signifies that the eigenvector corresponds to the

ith eigenvalue of the matrix Ac, with i ∈ Z: i ∈ �1; m�. Here,m is the

number of eigenvalues (i.e., the rank) of matrixAc. The subscript yc is
used to signify the extended eigenvectors pertaining to the system
output vector yc and distinguishes them from the eigenvectors inWc

pertaining to the coupled system state vector xc. Finally, the quantities

wλi
□
denote the extended eigenvector coefficients pertaining to both

unfiltered (i.e., vehicle output) and filtered (i.e., motion output)

perception states. The dimension of the extended modal matrix is
therefore 12 ×m (for 6-DOF motion), where each column is an
eigenvector of Ac.
Because of the block triangular structure of the matrix Ac [see

Eq. (10)], them eigenvalues (and eigenvectors) of Ac consist of the n
eigenvalues ofAp aswell as the k eigenvalues ofAm [38]:m � n� k.
As noted earlier, the internal dynamics of the CWAeffectively distort
the dynamics of the human-perceived quantities governed by the
vehicle dynamics. To quantify this distortion, it is of interest to
compare the extended eigenstructures of the uncoupled and (CWA-)
coupled vehicle dynamics. This information is readily contained in
the extended modal matrix defined in Eq. (19). Namely, of the m
eigenvectors in the extended modal matrix, only the n eigenvectors
corresponding to the n eigenvalues of Ap are of interest. The remain-
ing k eigenvectors in the extended modal matrix correspond to the
eigenvalues of Am, which capture how the individual dynamic ele-
ments in the CWA distort the human-perceived vehicle dynamics.
Thus, a new extendedmodalmatrix can be constructed fromEq. (19),
which only contains the n eigenvectors corresponding to the eigen-
values of Ap:

�CcWc��n � �
wλ1

yc wλ2
yc · · · wλn−1

yc wλn
yc

�

�

2
666666666666664

wλ1
fx

wλ2
fx

· · · wλn−1
fx

wλn
fx

..

. ..
. ..

. ..
.

wλ1
r wλ2

r · · · wλn−1
r wλn

r

wλ1
fsx

wλ2
fsx

· · · wλn−1
fsx

wλn
fsx

..

. ..
. ..

. ..
.

wλ1
rs wλ2

rs · · · wλn−1
rs wλn

rs

3
777777777777775

(20)

where the subscript �n signifies the n columns of CcWc in Eq. (19)
that correspond to λ1 : : : λn, i.e., the eigenvalues of A

p. The result in
Eq. (20) is the foundation of the proposed EMD methodology,
because it allows for the direct comparison of the unfiltered vehicle

mode shapes (captured by the coefficients wλ□
fx

through wλ□
r ) as well

as their CWA-filtered equivalents (captured by the coefficients wλ□
fsx

through wλ□
rs ). Consequently, it becomes possible to quantify the

degree of modal distortion imposed by the MCA dynamics. In the
next section, the utility of the new EMD methodology outlined here
will be demonstrated using a case study.

V. Eigenmode Distortion: A Case Study

This section applies the EMD method to a motion cueing evalu-
ation of the 3-DOF hover dynamics of the Bo-105 helicopter (see
Fig. 1). First, the visualization of the MCA-induced modal distortion
obtained fromEq. (20) will be explained. Subsequently, the effects of
changing the break frequency of the high-pass filter in the pitch
channel of the CWAwill be examined as an example.

A. Visualization of MCA-Induced Modal Distortion

To demonstrate the new EMD methodology, the linear vehicle
model is coupled to the CWA dynamics according to Eq. (10). The
linearizedmodel of the CWA in Sec. III was derived for the generic 6-
DOF case, but is simplified by omitting the lateral CWA channels
(i.e., roll, sway, and yaw) in Fig. 4 as well as their corresponding
states and outputs from Eqs. (11) and (12). Note that this simplifica-
tion is done only for the sake of brevity and ease of representation. It
does not inhibit the application of the EMDmethod to 6-DOF vehicle
dynamics.
In effect, for the 3-DOF longitudinal case, the extended eigenvec-

tor coefficients of interest remaining in Eq. (20) correspond to δf�s�x ,

δf�s�z , and δq�s�. A modal distortion portrait illustrates the effect of
the MCA on the vehicle’s eigenmodes. Figure 5 shows examples of
modal distortion portraits pertaining to the MCA-induced distortion
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in each mode of the 3-DOF model of the Bo-105 helicopter.

The CWA parameters selected for this example are listed in Table 1.

These correspond to the baseline CWA parameters used in [16], with

the exception of ζ and ω1bz
, which were set to values of 0.7071 and 0,

respectively.

The distortion of the aperiodic pitch and heave subsidences is

represented by a set of horizontal bars, showing the magnitude of

both the unfiltered and filtered contributions of the human-perceived

quantities. The arrows in the figure indicate the induced modal

distortion from the unfiltered (i.e., vehicle) to the filtered (i.e., after

MCA) quantities. The distortion of periodic modes is shown in the

complex plane and will be discussed in more detail below. Also note

that the eigenvectors associated with the dynamic modes are normal-

ized and can be scaled arbitrarily; thus the axes are not labeled.

In the example shown, amplification of δfsx with respect to δfx is
seen for both the pitch and heave subsidencemodes. This phenomenon

is a manifestation of transient amplification, i.e., the amplification of

the (transient) response by a factor larger than can be expected based on

the frequency response [39]. The term iswell established in the fields of,
e.g., biochemical networks [40] and semiconductor plasmas [41]. In the
pitch subsidence mode, attenuation of δqs with respect to δq is also
observed, whereas in the heave subsidence mode δfsz is also strongly
attenuated with respect to δfz. This attenuation is expected and is a
result of the scaling and high-pass filtering in channels 1 and 3 of the
CWA. It is also important to note, however, that these observations
reveal nothing about the relative importance of the human-perceived

quantities. This is true in particular when comparing δq�s� to δf�s�x and

δf�s�z , because their units differ (i.e., rad∕s vsm∕s2). The corresponding
modal time traces are also shown in Fig. 6 and, as expected, are
consistent with the findings from the modal distortion portraits.
The modal distortion of the periodic phugoid mode is represented

in the complex plane, as also shown in Fig. 5. In contrast to aperiodic
modes, here the human-perceived quantities are subjected to arbitrary
distortions in phase ranging from 0° to 180° in either clockwise (lag)
or counterclockwise (lead) directions. From the figure, it is deduced
that δfsx in the phugoid is affected most by the MCA dynamics, as it
shows a phase lag of approximately 135° and is strongly amplified at
the same time. The pitch rate δqs is also strongly affected and shows a
phase lead in excess of 90°with respect to δq aswell as an attenuation
of its amplitude. It also appears that δfz (in hover) has a limited
contribution and that δfsz is strongly attenuated to the point where its
contribution can no longer be discerned in the phugoid. Again, the
corresponding modal time traces are shown in Fig. 6.
Although the modal distortion portraits reveal the effects of the

MCA on the individual human-perceived quantities, they also show
how the induced distortion affects the relation between these quan-
tities. For example, for the pitch subsidence, δq is seen to dominate
the response in terms of its absolute amplitude when compared with
δfx. However, as a result of the MCA, δfsx becomes larger in
amplitude than δqs. A similar result is seen in the relation between

δq�s� and δf�s�x in the phugoidwhere, as a result of theMCA, the phase
lead of δqs with respect to δfsx is reduced from approximately 180° to
only 90°. At the same time, the contribution of δfsx with respect to δq

s

in the phugoid is found to increase substantially.

B. Sensitivity Study

Dalmeijer et al. [16] exposed an interesting relation between
variations in the break frequency of the high-pass filter in the CWA
pitch channel and the resulting response of the specific force repro-
duced in surge. To investigate whether the same effect is observed
when EMD is applied, ω3q

as listed in Table 1 is increased and the
resulting modal distortion portraits are examined. The most notable
results, appearing in the pitch subsidence and phugoid modes, are
shown in Fig. 7 for values of ω3q

ranging from 0.8 (baseline) up to

6.0 rad∕s. The heave DOF is omitted from the analysis, as the
changes in both the heave subsidence mode as well as δfsz with
varying ω3q

are found negligible.

From Fig. 7b, the most significant effect of increasing ω3q
appears

in theMCA-induced distortion of the phugoidmode. For the baseline
value of 0.8 rad∕s, a strong amplification of the simulated specific
force in surge could be distinguished with substantial phase lag. This
is also evident from the time responses shown in Fig. 6. As ω3q

is

increased, it can be seen that the MCA-induced amplification as well
as the phase lag of δfsx diminish. For values of ω3q

in excess of

3.0 rad∕s, the amplification of the simulated specific force in surge
becomes attenuation. The effect on δqs in the phugoid mode is not
shown in the figure because of its strongly diminishing amplitude as
ω3q

is increased. However, the phase lag of δqs with respect to δq is

found to reduce from 180° to 90° as ω3q
is increased. In effect, the

contributions of δfsx and δqs remaining in the phugoid mode are
largely a consequence of the applied tilt coordination in the CWA.
From the EMD analysis discussed thus far, it appears that con-

straining the rotational vehicle DOF in the MCA is beneficial for
reproducing the low-frequency phugoid mode in helicopters. This
result is in agreement with the findings from the tailored OMCT
analysis in [16]. In EMD, however, the consequence of larger values
for ω3q

becomes apparent from the MCA-induced distortion of the

Fig. 5 MCA-inducedmodal distortion of human-perceivedquantities in

a 3-DOF linear model of the Bo-105 helicopter in hover.

Table 1 Classical Washout

Algorithm parameters used in the
EMD case study (filter break
frequencies are in rad∕s)

Parameter Value

Kx 0.7

ω1x
1.0

ω2x
2.0

Kq 0.7

ω3q
0.8

Kz 0.5

ω1z
2.5

ω1bz
0

ζ 0.7071
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pitch subsidence mode. Namely, as ω3q
is increased up to the

approximate value of the frequency of the mode under consideration

(i.e., 3.3 rad∕s), it is seen from Fig. 7a that the effect is rather limited

and even results in a mild amplification of δqs (i.e., transient amplifi-

cation).However, asω3q
is increased beyond 3.0 rad∕s, δqs is found to

stronglydiminish in amplitudewith respect to δq. At the same time, the

amplification of δfsx with respect to δfx also becomes smaller. Inter-

estingly, however, the contribution of δfsx does remainmore than twice

as large compared with δfx even for ω3q
� 6.0 rad∕s.

This example shows how an EMD analysis can be used to sys-

tematically analyze the coupled dynamics of the simulated vehicle

and the MCA. In this case, the analysis leads to the insight that the
rotational dynamics of theMCAmost strongly affect the longitudinal

specific force cue in the phugoid mode. The physical effect of this

distorted mode on the actual motion cues experienced by the pilot in

the simulator, however, remains rather abstract. Although it is evident

that the longitudinal specific force cue is improved asω3q
is increased

(i.e., with attenuation pitch motion cues), there are no intuitive

fidelity criteria or boundaries in the modal domain akin to those

offered by, e.g., the Sinacori–Schroeder criteria or OMCT. Although

it is possible to define similar boundaries in the modal domain as
demonstrated, e.g., for application to haptic feedback systems by Fu
et al. [42], this is more complicated for motion cueing fidelity. This is
because individual vehicle modes are rarely excited in isolation.
Instead, pilot inputs and disturbances typically result in the excitation
of multiple modes simultaneously as expressed in Eq. (7). Therefore,
knowledge regarding which modes to prioritize in MCA tuning for
specific tasks is necessary before meaningful criteria can be defined.
A potentially useful metric toward that end is presented in the next
section.

VI. Mode Participation Factor

To quantify the extent to which each mode contributes to the
simulated vehicle’s overall dynamic response, the MPF can be used.
The term was briefly introduced in Sec. II.A. Given a (measured)
state vector at time t, xp�t�, the dynamic response can be obtained in
terms of the modal coordinates using Eq. (18):

δrp�t� � W−1�t�δxp�t� � W−1�t��xp�t� − xpe �t��

a) b)

Fig. 7 MCA-induced modal distortion in the a) pitch subsidence (3.7 rad∕s) and b) phugoid (0.4 rad∕s) modes with increasing ω3q .

Fig. 6 Time responses corresponding to MCA-induced modal distortion of human-perceived quantities shown in Fig. 5.
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Here, xpe �t� andW−1�t� are the vehicle state in the linearization point
and the inverse modal matrix, respectively, valid at time t. For a
maneuver with a duration T, the overall participation of the ith mode

can subsequently be formulated as

mi �
Z

T

0

jrpi �t�j dt ∀ i ∈ �1; n� (21)

where rpi �t� are the elements of vector δrp�t� and n are the number of

modes. For complex-valued eigenmodes (e.g., the phugoid of an

aircraft), rpi �t� are complex-valued scalars and appear in conjugate

pairs. The overall mode participation of a complex-valued eigen-

mode is therefore the sum of the two conjugate pairs appearing

in δrp�t�.
An illustrative example of the use of MPFs can be found in

Miletović et al. [30]. Here, a preliminary experiment is documented

to evaluate EMD-basedmotion cueing configurations tailored to each

mode in the 3-DOF longitudinal dynamics of theAH-64 helicopter in

hover. This yielded three motion cueing configurations, namely,

pitch subsidence motion (APM), heave subsidence motion (AHM),

and phugoid motion (PHM). The CWA parameters and correspond-

ing values for each condition are included in Table 2. In addition to

these three configuration, a no-motion (NM) configuration was also

incorporated in the experiment.
All motion cueing configuration were evaluated with two heli-

copter test pilots on the SIMONA Research Simulator at TU Delft,

The Netherlands. The pilots were asked to perform the precision

hover mission task element (MTE) from [19] in the presence of

turbulence, with each repetition of the task lasting approximately

30 s. The reader is referred to [30] for further details on the

individual motion cueing configurations as well as the experimental

setup. In this paper, only the measured task performances andMPFs

are further discussed.
Figure 8 shows the MPFs for each motion cueing configuration

evaluated. From the figure, it can be seen that the measured MPFs

vary substantially across the experimental conditions and between

the two pilots.When considering themedianMPFs corresponding to

eachmotion configuration, however, the relative contribution of each

mode remains approximately constant. The phugoidmode appears to

dominate the vehicle response in all conditions, followed by the pitch

and heave subsidences, respectively. Another common result is that

the phugoid and pitch subsidenceMPFs are larger in condition AHM

than in the other conditions. This could indicate that the excitation of

these modes is stronger when pitch and surge motion cues are absent.

This is not corroborated by the MPFs corresponding to the NM

condition of pilot 1, which are remarkably small in comparison to

the other conditions with motion.
Figure 9 shows the accompanying task performance in terms of

longitudinal and vertical position root-mean-square (RMS) error.

Interestingly, from this figure, it is apparent that the stronger excita-

tion of the phugoid and pitch subsidence modes in condition AHM

does not necessarily translate to a larger longitudinal positionRMSas

compared with the other conditions. On the other hand, for pilot 2 in

particular, there seems to be a strong relation between substantially

smaller longitudinal and vertical position RMSs and generally

smaller MPFs in condition APM. Although the MPFs in condition

APM for pilot 1 are similar to those for pilot 2, a smaller position

RMS compared with the other conditions is only observed in the

vertical direction.

Fig. 8 Mode participation factors per experimental condition.

Table 2 Classical Washout
Algorithm parameters per

experimental condition (filter
break frequencies are in rad∕s)

Parameter APM AHM PHM

Kx 0.3 0.5 0.8

ω1x
1.25 2.0 1.0

Kz 0.8 1.2 0.2

ω1z
1.2 0.8 2.0

Kq 1.0 0.5 0.8

ω3q
0.0 2.0 0.5
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Although inconclusive in terms of the relative favorability of the
three different motion configurations evaluated, these results do
highlight some interesting properties of the MPF. For example, the
median MPFs suggest a constant relative distribution of the individ-
ual modes’ overall contributions across the evaluated motion con-
ditions and pilots. In addition, there is some evidence that measured
MPFs are correlated with the motion cues present in the different
simulator DOFs, a result also corroborated by other experiments
performed to date [31,32,36]. As such, knowledge of the MPFs can
potentially facilitate targeted EMD-based tuning of the MCA for
specific maneuvers and tasks.

VII. Discussion

EMD constitutes a new perspective on motion cueing fidelity in
vehicle simulation. It relies on linear(ized) and subsequently coupled
mathematical models of the simulated vehicle and the MCA, which
enable the application of modal analysis to quantify the distortion of
the vehicle’s characteristic modes of motion due to the dynamics of
the MCA. Compared with existing methods, such as the Sinacori–
Schroeder criteria and the OMCT, a more in-depth understanding
about the effect of the MCA on the simulated vehicle’s perceived
dynamics can be obtained.
A case study revealed the effect of couplings between the different

simulator DOFs in theMCA that are not directly apparent from other
methods, such as the OMCT [16]. This is true particularly for the
surge and pitch DOFs and highlights the role of the various MCA
parameters in relation to the simulated vehicle dynamics. In part,
these insights can be attributed to the ability of EMD to account for
the transient vehicle andMCA responses [39] as opposed to only the
steady-state responses assumed in OMCT.
The paper also addressed how EMD enables targeted tuning of the

MCA for arbitrary vehicle dynamics and their associated dynamic
modes, most notably through the use of MPFs. This was exemplified
using earlier work, i.e., [30], fromwhich notable results pertaining to
MPFs were briefly highlighted. In this study, EMD was used to tune
the MCA in order to portray the longitudinal dynamic modes of a
helicopter in hover, after which the resulting configurations were
evaluated using a preliminary pilot-in-the-loop experiment in a
motion-base flight simulator. Interestingly, the measured MPFs,
though subject to substantial variance across runs and pilots, show
a constant distribution of the participation of each mode in the
measured dynamic response.Moreover, there appears to be a relation
between the presence (or absence) of motion cues and the measured
MPF magnitudes. These results suggest that the MPF can serve as a
vital bridge between the task and the modal domain in which EMD
operates. For example, for rotorcraft, one could study typical MTEs
used in the evaluation of handling qualities [19] to determine the
modes that dominate the dynamic response. Subsequently, EMD
can be applied to tailor motion cues to these specific modes [36].
This is especially interesting for applications involving handling
qualities evaluations, where motion cues tailored to specific modes
could better support the pilots’ assessment of the vehicle’s handling
qualities.

In other recent studies, namely, [31,32], EMD was also used to
tune the MCA to portray a fixed-wing aircraft’s short period and
Dutch roll modes for a pitch attitude capture and a yaw disturbance
rejection task, respectively. Both studies also report pilot-in-the-loop
experiments, where the EMD-based configurations were evaluated
and compared with configurations obtained using other motion tun-
ing strategies. To date, the results from these various experiments
suggest that pilots do not generally favor EMD-basedmotion settings
subjectively over, e.g., OMCT-based motion settings. On the other
hand, there is evidence that EMD-based motion tailored to portray
specific dynamic modes results in an improved suppression of the
respective (undesired) modes’ contribution to the measured vehicle
response (i.e., lower MPFs) [32]. The latter further reinforces the
synergistic utility of MPFs to bridge the gap between the task and a
quantitative motion cueing fidelity analysis based on EMD.
Nonetheless, like OMCT, EMD represents MCA-induced motion

distortion in a rather abstract and, barring relative dimensions between
human-perceivedquantities, essentially dimensionless domain.Although
abstraction is necessary to permit the systematic analysis that the EMD
method offers, it also means that the severity of certain motion dis-
tortions cannot be judged directly from the perspective of the human
operator, i.e., by including human perceptual limitations. To partly
alleviate this limitation, an extension to EMD where the extended
eigenvectors of the coupled system are scaled using human perception
thresholds has been proposed [32]. EMD also requires that linear
models of both the simulated vehicle andMCAdynamics are available,
which may not be straightforward in some applications (e.g., training
simulators, adaptive MCAs). This does not mean that EMD has no
value for such applications, however. For example, EMD could still be
used to define more representative OMCT input signals that better
capture typical interactions between DOFs present in the vehicle
dynamics. OMCT tests that stimulatemultipleDOFs, such as the pitch
tests, could be refined to better capture typical vehicle dynamics, based
on insights from EMD. For applications where vehicle and MCA
models are readily available and where modal analysis better aligns
with established practice (e.g., flying and handling qualities research/
evaluation), EMD is likelymore applicable than existing methods. For
the moment, EMD still lacks intuitive criteria or boundaries by which
to assess motion fidelity akin to, e.g., the Sinacori–Schroeder criteria
and themore recentOMCTcriteria. In time, these could be determined
using MPF distributions across a wide range of different tasks.
Futurework is primarily aimed at further investigating the utility of

the EMDmethod, in conjunction with MPFs, for task-specific MCA
tuning, as well as accommodating applications to other vehicle types.

VIII. Conclusions

This paper introduced EMD as a novel methodology to analyze the
intricate interaction between the simulated vehicle andMCAdynamics
in motion-base simulators. EMD relies on the application of modal
analysis to an algebraically coupled system containing both the vehicle
and MCA dynamics in linear(ized) form. The effect of the MCA is
quantified as the distortion of the coupled system’s eigenvectors

Fig. 9 Horizontal and vertical position RMS’s per experimental condition.
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expressed in termsof human-perceivedquantities (i.e., angular rate and
specific force) in each of the simulated vehicle modes.
A case study involving helicopter dynamics was used to demon-

strate the applicability of the method and to highlight the key insights
that can begained fromEMD.Most notably, itwas shown that the pitch
dynamics of the MCA strongly affect the longitudinal specific force
cue in the phugoid mode. This relation is not as apparent from other,
existing methods for motion fidelity evaluation such as the OMCT.
The paper furthermore introduced the MPF as a metric to capture

the extent to which individual vehicle modes contribute to the (mea-
sured) state response. Results from a preliminary experiment were
used to demonstrate the utility of the metric and suggest that a
correlation exists between MPFs and the presence of motion cues
in the different simulator DOFs. Together, EMD andMPFs therefore
constitute a systematic and model-based framework to facilitate
tuning and evaluation of MCAs.
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