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S U M M A R Y
The matrix–vector wave equation is a compact first-order differential equation. It was origi-
nally used for the analysis of elastodynamic plane waves in laterally invariant media. It has
been extended by various authors for laterally varying media. Other authors derived a sim-
ilar formalism for other wave phenomena. This paper starts with a unified formulation of
the matrix–vector wave equation for 3-D inhomogeneous, dissipative media. The wave vec-
tor, source vector and operator matrix are specified in the appendices for acoustic, quantum
mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismo-
electric waves. It is shown that the operator matrix obeys unified symmetry relations for all
these wave phenomena. Next, unified matrix–vector reciprocity theorems of the convolution
and correlation type are derived, utilizing the symmetry properties of the operator matrix.
These theorems formulate mathematical relations between two wave states in the same spa-
tial domain. A unified wavefield representation is obtained by replacing one of the states in
the convolution-type reciprocity theorem by a Green’s state. By replacing both states in the
correlation-type reciprocity theorem by Green’s states, a unified representation of the ho-
mogeneous Green’s matrix is obtained. Applications of the unified reciprocity theorems and
representations for forward and inverse wave problems are briefly indicated.

Key words: Electromagnetic theory; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

The basic equations for wave propagation in an inhomogeneous medium can be organized in a compact matrix–vector wave equation. This
equation expresses the vertical derivative of a wave vector in terms of an operator matrix acting on this wave vector. This specific form of the
wave equation is useful, for example, to evaluate wave problems in media of which the medium parameters vary more rapidly in the vertical
direction than in the lateral directions. It is also particularly useful for situations in which the vertical direction is the preferred direction of
wave propagation. However, the theoretical treatment of the matrix–vector wave equation in this paper is not limited to these special situations.

The matrix–vector wave equation finds its roots in early work on the analysis of plane waves in laterally invariant media. Thomson (1950)
introduced a matrix formalism for the analysis of elastodynamic plane waves propagating through a stratified solid medium. Haskell (1953)
used the same formalism to analyse the dispersion of surface waves in layered media. Backus (1962) used similar concepts to derive long-wave
effective anisotropic parameters for stratified media. This approach has become known as Backus averaging (Mavko et al. 2009). Gilbert &
Backus (1966) used the matrix–vector wave equation to derive so-called propagator matrices for elastodynamic wave problems in stratified
media. Woodhouse (1974) extended the formalism for arbitrary anisotropic inhomogeneous media and used it for the study of surface waves
in laterally varying layered media. Frasier (1970), Kennett et al. (1978), Frazer & Fryer (1989) and Chapman (1994) used the matrix–vector
wave equation to derive symmetry properties of reflection and transmission responses of laterally invariant media. Haines (1988), Kennett
et al. (1990), Koketsu et al. (1991) and Takenaka et al. (1993) exploited the symmetry properties of the matrix–vector wave equation to derive
so-called propagation invariants for laterally varying layered media and used this for modelling of reflection and transmission responses
of such media. Using the same symmetry properties, Haines & de Hoop (1996) and Wapenaar (1996b) derived reciprocity theorems and
representations for the acoustic wave vector.

The matrix–vector wave equation has been used by many authors as the starting point for decomposition into coupled wave equations for
downgoing and upgoing waves, for example for modelling in horizontally layered media (Kennett & Kerry 1979; Kennett & Illingworth 1981),
for wide-angle propagation in laterally variant media (Fishman & McCoy 1984; Weston 1989; Fishman 1992), and for deriving reciprocity
theorems for coupled downward and upward propagating waves (Wapenaar & Grimbergen 1996; Thomson 2015a,b), generalized Bremmer
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Unified matrix–vector wave equation 561

Table 1. Wavefield vectors q1 and q2 for the different wave phenomena considered in this paper. Labels A to G refer
to the appendices in which these wave phenomena are discussed in more detail.

q1 q2

A: Acoustic p v3

B: Quantum mechanic ψ 2�
mi ∂3ψ

C: Electromagnetic E0 =
(

E1

E2

)
H0 =

(
H2

−H1

)

D: Elastodynamic −τ 3 = −
⎛
⎝ τ13

τ23

τ33

⎞
⎠ v =

⎛
⎝ v1

v2

v3

⎞
⎠

E: Poroelastodynamic

( −τ b
3

p f

) (
vs

φ(v f
3 − vs

3)

)

F: Piezoelectric

( −τ 3

E0

) (
v

H0

)

G: Seismoelectric

⎛
⎝ −τ b

3
p f

E0

⎞
⎠

⎛
⎝ vs

φ(v f
3 − vs

3)
H0

⎞
⎠

series representations for reflection data (Corones 1975; Haines & de Hoop 1996; Wapenaar 1996a; de Hoop 1996b) and representations for
seismic interferometry (Wapenaar 2003).

This paper discusses the matrix–vector wave equation and its symmetry properties for a range of wave phenomena in a unified way
(Section 2 and Appendices A to G). The treatment builds on earlier systematic treatments of different wave phenomena by Auld (1973), Ursin
(1983), Kennett (1983), Müller (1985), Wapenaar & Berkhout (1989), de Hoop (1995, 1996a), Gangi (2000), Carcione (2007) and Mittet
(2015). The matrix–vector wave equation forms the basis for the derivation of unified matrix–vector reciprocity theorems (Section 3) and
representations (Section 4), analogous to those for the acoustic wave vector (Haines & de Hoop 1996; Wapenaar 1996b).

2 T H E U N I F I E D M AT R I X – V E C T O R WAV E E Q UAT I O N A N D I T S S Y M M E T RY
P RO P E RT I E S

2.1 The matrix–vector wave equation

The unified matrix–vector wave equation has the form

∂3q = A q + d. (1)

Here q is the wavefield vector, d the source vector and A the operator matrix. All quantities are defined in the space–frequency domain, hence
q = q(x, ω), etc., where x denotes the Cartesian coordinate vector (x1, x2, x3) and ω the angular frequency. The positive x3-axis is pointing
downward. Operator ∂3 stands for the spatial differential operator ∂/∂x3. The vectors and matrix in eq. (1) are partitioned as follows:

q =
(

q1

q2

)
, d =

(
d1

d2

)
, A =

(
A11 A12

A21 A22

)
, (2)

hence,

∂3q1 = A11q1 + A12q2 + d1, (3)

∂3q2 = A21q1 + A22q2 + d2. (4)

The vectors q1 and q2 are specified in rows A to G of Table 1 for the different wave phenomena considered in this paper. The wavefield
quantities contained in these vectors are defined in Appendices A to G. For acoustic and quantum mechanical waves (rows A and B), q1 and
q2 are scalars. For electromagnetic, elastodynamic and poroelastodynamic waves (rows C to E) they are 2 × 1, 3 × 1 and 4 × 1 vectors,
respectively (superscripts b, f and s in row E stand for bulk, fluid and solid, respectively). Rows F and G represent coupled electromagnetic
and (poro)elastodynamic waves. For piezoelectric waves (row F), constitutive eqs (F1) and (F2) account for the coupling. For this situation the
vectors q1 and q2 are combinations of those for electromagnetic and elastodynamic waves (rows C and D). For seismoelectric waves (row G),
constitutive eqs (G1) and (G2) account for the coupling. In this case the vectors q1 and q2 are combinations of those for electromagnetic and
poroelastodynamic waves (rows C and E).

In all cases, except for quantum mechanical waves, the vectors q1 and q2 are defined such that they constitute the power-flux density j
in the x3-direction via

j = 1

4
(q†

1q2 + q†
2q1), (5)
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562 K. Wapenaar

where the superscript † denotes transposition and complex conjugation. For quantum mechanical waves, j represents the probability current
density in the x3-direction. Vectors d1 and d2 and operator matrices A11, A12, A21 and A22 are defined in Appendices A to G for the different
wave phenomena. The operator matrices contain specific combinations of space-dependent medium parameters (or, for quantum mechanics,
the potential V and mass m) and spatial differential operators ∂1 and ∂2 (standing for ∂/∂x1 and ∂/∂x2, respectively).

Eq. (1), with the operator matrix specified in the appendices, may be used as a starting point for generalizing many of the applications
mentioned in the introduction (analysis of surface waves, derivation of long-wave effective medium parameters, derivation of propagator
matrices, decomposition into downgoing and upgoing waves, modelling wide-angle propagation in laterally variant media, etc.). A discussion
of these applications is beyond the scope of this paper. Here we focus on the symmetry of the operator matrix and its use in unified reciprocity
theorems and representations.

2.2 Symmetry properties of the operator matrix

We discuss the symmetry properties of the operator matrix. First, consider a scalar operator U , containing space-dependent parameters and
differential operators ∂1 and ∂2. We introduce its transpose U t and adjoint U† via their integral properties∫

A

(U f )g d2xH =
∫
A

f (U t g) d2xH (6)

and∫
A

(U f )∗g d2xH =
∫
A

f ∗(U†g) d2xH. (7)

Here xH is the horizontal coordinate vector (x1, x2), superscript ∗ denotes complex conjugation, A denotes an infinite horizontal integration
boundary at arbitrary depth x3, and f = f(x) and g = g(x) are space-dependent functions with sufficient decay along A towards infinity. Eq. (6)
implies

(UVW)t = W tV tU t , (8)

where also V and W are scalar operators. Eqs (6) and (7) imply

U† = (U t )∗. (9)

For the special case that U = ∂1, eq. (6) implies (via integration by parts) ∂ t
1 = −∂1. Similarly, ∂ t

2 = −∂2. Hence,

∂ t
α = −∂α, (10)

where Greek subscripts take on the values 1 and 2. Using this property and eq. (8), we find for example for the operator in eq. (A22),
(∂αbαβ∂β )t = ∂βbαβ∂α (Einstein’s summation convention applies to repeated subscripts). Since bαβ = bβα , this implies (∂αbαβ∂β )t = ∂βbβα∂α

= ∂αbαβ∂β and, using eq. (9), (∂αbαβ∂β )† = (∂αbαβ∂β )∗ = ∂αb∗
αβ∂β .

Next, we consider an operator matrix U , of which the entries are operators containing space-dependent parameters and differential
operators ∂1 and ∂2. Analogous to eqs (6) and (7), we introduce its transpose U t and its adjoint U † via∫

A

(U f)t g d2xH =
∫
A

f t (U t g) d2xH (11)

and∫
A

(U f)†g d2xH =
∫
A

f†(U †g) d2xH, (12)

where f = f(x) and g = g(x) are space-dependent vector functions with sufficient decay along A towards infinity. Eq. (11) implies that U t

involves transposition of the matrix and transposition of the operators contained in the matrix. For example, for a 2 × 2 operator matrix U ,
we have(
U11 U12

U21 U22

)t

=
(
U t

11 U t
21

U t
12 U t

22

)
. (13)

Eq. (11) implies

(UVW)t = W tV tU t , (14)

where also V and W are operator matrices. Eqs (11) and (12) imply

U † = (U t )∗. (15)

Using eqs (8), (10) and (14), it follows that operator matrices A11, A12, A21 and A22, defined in Appendices A to G, obey the following
symmetry relations

At
11 = −A22, (16)
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Unified matrix–vector wave equation 563

At
12 = A12, (17)

At
21 = A21. (18)

In Appendices A to G we define adjoint medium parameters (or, for quantum mechanics, an adjoint potential). When a medium is
dissipative, its adjoint is effectual, and vice versa (de Hoop 1987, 1988; Wapenaar et al. 2001). A wave propagating through an effectual
medium gains energy. Effectual media play a role in the reciprocity theorems and representations, discussed in Sections 3 and 4. An adjoint
medium parameter is denoted by an overbar. An operator with an overbar means that the medium parameters contained in that operator
are replaced by their adjoints. For example, for the operator in eq. (A22) we have 1

iω ∂αbαβ∂β = 1
iω ∂α b̄αβ∂β . Since b̄αβ = b∗

αβ this becomes
1

iω ∂αbαβ∂β = 1
iω ∂αb∗

αβ∂β = −( 1
iω ∂αbαβ∂β )∗.

For the operator matrices in Appendices A to G in an adjoint medium we have

Ā11 = A∗
11, (19)

Ā12 = −A∗
12, (20)

Ā21 = −A∗
21, (21)

Ā22 = A∗
22. (22)

Using eq. (15), we find from eqs (16) to (22)

A†
11 = −Ā22, (23)

A†
12 = −Ā12, (24)

A†
21 = −Ā21, (25)

A†
22 = −Ā11. (26)

From eqs (16) to (26), we find for the operator matrix A defined in eq. (2)

At N = −NA, (27)

A∗J = JĀ, (28)

A†K = −KĀ, (29)

with

N =
(

O I
−I O

)
, J =

(
I O
O −I

)
, K =

(
O I
I O

)
, (30)

where O and I are zero and identity matrices of appropriate size. Symmetry relations in the wavenumber-frequency domain for the special
case of a laterally invariant medium (or potential) are given in Appendix H.

3 M AT R I X – V E C T O R WAV E F I E L D R E C I P RO C I T Y T H E O R E M S

In wave theory, a reciprocity theorem formulates a mathematical relation between two states (wavefields, sources and medium parameters)
in the same spatial domain. An early reference for the acoustic reciprocity theorem is Rayleigh (1878), who referred to it as Helmholtz’s
theorem. Lorentz (1895) formulated a reciprocity theorem for electromagnetic fields. Early references for elastodynamic reciprocity theorems
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564 K. Wapenaar

Figure 1. Configuration for the matrix–vector reciprocity theorems, eqs (36) and (37). The combination of boundaries ∂D0 and ∂D1 is called ∂D in these
equations.

are Knopoff & Gangi (1959) and de Hoop (1966). Auld (1979) and Pride & Haartsen (1996) formulated reciprocity theorems for piezoelectric
and seismoelectric waves, respectively. Comprehensive overviews of the history of reciprocity theorems and their applications are given by
Fokkema & van den Berg (1993), de Hoop (1995) and Achenbach (2003).

Matrix–vector wave eq. (1) and symmetry relations (27) and (29) underly unified matrix–vector reciprocity theorems in an inhomogeneous
medium (or potential). We consider two states A and B, characterized by independent wave vectors qA(x, ω) and qB(x, ω), obeying matrix–
vector wave eq. (1), with source vectors dA(x, ω) and dB(x, ω), and operator matrices AA(x, ω) and AB(x, ω). The subscripts A and B of these
operator matrices refer to the, possibly different, medium parameters in states A and B. We assume that outside a finite domain, the medium
(or potential) and its adjoint are lossless in both states. We consider a spatial domain D enclosed by two infinite horizontal boundaries ∂D0

and ∂D1 (with ∂D1 below ∂D0), together denoted by ∂D, see Fig. 1. The starting point for deriving reciprocity theorems for the wavefields in
states A and B is formed by the quantities ∂3{qt

ANqB} and ∂3{q†
AKqB} in domain D. Applying the product rule for differentiation gives

∂3{qt
ANqB} = (∂3qt

A)NqB + qt
AN(∂3qB), (31)

∂3{q†
AKqB} = (∂3q†

A)KqB + q†
AK(∂3qB). (32)

Note that eq. (10), which defines the transpose of the horizontal differential operator ∂α , does not apply to the vertical differential operator
∂3. Hence, we may replace (∂3qt

A) by (∂3qA)t in eq. (31), and (∂3q†
A) by (∂3qA)† in eq. (32). Using wave eq. (1) for both states in the right-hand

sides of eqs (31) and (32), integrating both sides of these equations over domain D and applying the theorem of Gauss to the left-hand sides,
we obtain∫

∂D

qt
ANqBn3d2xH =

∫
D

[(
(AAqA)t + dt

A

)
NqB + qt

AN
(
ABqB + dB

)]
d3x (33)

and∫
∂D

q†
AKqBn3d2xH =

∫
D

[(
(AAqA)† + d†

A

)
KqB + q†

AK
(
ABqB + dB

)]
d3x. (34)

Here n3 is the vertical component of the outward pointing normal vector on ∂D, with n3 = −1 at the upper boundary ∂D0 and n3 = +1 at the
lower boundary ∂D1. The integrals on the right-hand sides can be written as∫

D

{· · · }d3x =
∫ x3,1

x3,0

dx3

∫
A

{· · · }d2xH, (35)

where x3, 0 and x3, 1 denote the depths of ∂D0 and ∂D1, respectively. Hence, at each depth level between ∂D0 and ∂D1 we can use the integral
properties of transpose and adjoint operators, as formulated by eqs (11) and (12). Together with the symmetry relations (27) and (29) for
operator AA, we thus obtain the following matrix–vector reciprocity theorems∫

D

(
dt

ANqB + qt
ANdB

)
d3x =

∫
∂D

qt
ANqBn3d2xH +

∫
D

qt
AN(AA − AB)qBd3x (36)

and∫
D

(
d†

AKqB + q†
AKdB

)
d3x =

∫
∂D

q†
AKqBn3d2xH +

∫
D

q†
AK(ĀA − AB)qBd3x. (37)

Eq. (36) is a convolution-type reciprocity theorem (Fokkema & van den Berg 1993; de Hoop 1995) because products like qt
ANqB in the

frequency domain correspond to convolutions in the time domain. Eq. (37) is a correlation-type reciprocity theorem (Bojarski 1983) because
products like q†

AKqB in the frequency domain correspond to correlations in the time domain. These matrix–vector reciprocity theorems have
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Unified matrix–vector wave equation 565

been previously derived for acoustic waves (Haines & de Hoop 1996; Wapenaar 1996b). Because these theorems follow from the unified
matrix–vector wave eq. (1), with unified symmetry relations (27) and (29), they hold for all wave phenomena listed in Table 1. In the next
section we use these theorems as the basis for matrix–vector wavefield representations. Here we consider some special cases of these theorems.

Power balance
When the sources, medium parameters and wavefields are identical in both states, we may drop the subscripts A and B. In this case

eq. (37) simplifies to∫
D

1

4

(
d†Kq + q†Kd

)
d3x =

∫
∂D

1

4
q†Kqn3d2xH +

∫
D

1

4
q†K(Ā − A)qd3x. (38)

Because 1
4 q†Kq = 1

4 (q†
1q2 + q†

2q1) = j , the first term on the right-hand side is the power flux (or probability current) through the boundary
∂D = ∂D0 ∪ ∂D1 (i.e. the power leaving the domain D). Hence, eq. (38) formulates the unified power balance. The term on the left-hand side
is the power generated by the sources in D and the second term on the right-hand side is the dissipated power in D.

Propagation invariants
When there are no sources in D and the medium parameters in D are equal in the two states, the domain integrals in eq. (36) vanish,

hence∫
∂D0∪∂D1

qt
ANqBn3d2xH = 0, (39)

or, since n3 = −1 at ∂D0 and n3 = +1 at ∂D1,∫
∂D0

qt
ANqBd2xH =

∫
∂D1

qt
ANqBd2xH. (40)

Since this holds for any choice of the domain D, we infer that the quantity∫
A

qt
ANqBd2xH, (41)

with A denoting a horizontal plane at arbitrary depth x3, is a unified propagation invariant (i.e. it is independent of the depth x3 of A). On the
other hand, when the medium parameters are each other’s adjoints in the two states, we find in a similar way from eq. (37) that the quantity∫

A

q†
AKqBd2xH (42)

is a unified propagation invariant. Propagation invariants have been extensively used in the analysis of symmetry properties of reflection and
transmission responses and for the design of efficient numerical modelling schemes for acoustic and elastodynamic wavefields (Haines 1988;
Kennett et al. 1990; Koketsu et al. 1991; Takenaka et al. 1993).

4 M AT R I X – V E C T O R WAV E F I E L D R E P R E S E N TAT I O N S

4.1 Representation of the convolution type

A wavefield representation is obtained by replacing one of the states in a reciprocity theorem by a Green’s state (Knopoff 1956; de Hoop 1958;
Gangi 1970; Pao & Varatharajulu 1976). Here we derive a unified matrix–vector wavefield representation from the matrix–vector reciprocity
theorem of the convolution type (eq. 36).

We introduce the Green’s matrix G(x, xA, ω) (with the same dimensions as matrix A) as the solution of the unified matrix–vector wave
eq. (1), with the source vector d replaced by a diagonal point-source matrix. Hence

∂3G = AG + Iδ(x − xA), (43)

where I is an identity matrix and xA defines the position of the point source. We let G represent the forward propagating solution of eq. (43),
which corresponds to imposing causality in the time domain, that is, G(x, xA, t) = O for t < 0, where O is a zero matrix (the relation
between functions in the time- and frequency domain is defined by the Fourier transform, eq. A7). Before we derive the unified wavefield
representation, we first derive a reciprocity relation for the Green’s matrix. To this end we define a second forward propagating Green’s matrix
G(x, xB, ω), with its point source at xB. We assume that xA and xB are both situated in D. We replace qA and qB in reciprocity theorem (36)
by G(x, xA, ω) and G(x, xB, ω), respectively. Accordingly, we replace dA and dB by Iδ(x − xA) and Iδ(x − xB), respectively. Both Green’s
matrices are defined in the same medium, hence, AA = AB . This implies that the second integral on the right-hand side of eq. (36) vanishes.
When Neumann or Dirichlet boundary conditions apply on ∂D, or when the medium outside ∂D is homogeneous, the first integral on the
right-hand side of eq. (36) vanishes as well. We thus obtain

NG(xA, xB, ω) + Gt (xB, xA, ω)N = O. (44)

Using N−1 = −N this gives

G(xA, xB, ω) = NGt (xB, xA, ω)N, (45)
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566 K. Wapenaar

which is the unified source–receiver reciprocity relation for the Green’s matrix.
Next, we use the same reciprocity theorem to derive a representation for the actual wavefield vector q. We let state B be the actual state

(i.e. actual wavefield, source and medium parameters). For convenience we drop the subscript B from qB, dB and AB . For state A we choose
again the Green’s state. Hence, we replace qA by G(x, xA, ω) and dA by Iδ(x − xA). Operator AA may be defined in a reference medium or in
the actual medium. Making these substitutions in eq. (36), pre-multiplying all terms by −N, using eq. (45) and −NN = I, we obtain

χ (xA)q(xA, ω) =
∫
D

G(xA, x, ω)d(x, ω)d3x −
∫

∂D

G(xA, x, ω)q(x, ω)n3d2xH +
∫
D

G(xA, x, ω){A − AA}q(x, ω)d3x, (46)

where χ (xA) is the characteristic function, defined as

χ (xA) =

⎧⎪⎨
⎪⎩

1, for xA inside D,
1
2 , for xA on ∂D,

0, for xA outside D.

(47)

The left-hand side of eq. (46) is the actual wavefield vector q, observed at xA (when xA is inside D). The right-hand side contains, respectively,
a contribution from the source distribution d(x, ω) inside D, a contribution from the wavefield q(x, ω) at the boundary ∂D, and a contribution
from the contrast operator A − AA, applied to the wavefield q(x, ω) inside D. This unified matrix–vector wavefield representation holds for
all wave phenomena listed in Table 1.

This representation can often be simplified, which leads to different applications. For example, when the medium outside the domain D

is homogeneous, source free and identical in both states, the boundary integral on the right-hand side vanishes. The remaining representation
(with AA defined in a reference medium) forms a basis for the analysis of forward scattering problems. On the other hand, when AA is
defined in the actual medium (i.e. AA = A) and the domain D is source free, only the boundary integral on the right-hand side remains. In
this case, eq. (46) is a generalization of the Kirchhoff-Helmholtz integral (Morse & Feshbach 1953; Born & Wolf 1965; Pao & Varatharajulu
1976; Berkhout 1982; Frazer & Sen 1985), which finds applications in forward wavefield extrapolation problems.

4.2 Representation of the correlation type

Representations of the correlation type find their application in inverse source problems (Porter & Devaney 1982; de Hoop 1995), inverse
scattering problems (Devaney 1982; Bojarski 1983; Bleistein 1984; Oristaglio 1989), imaging (Porter 1970; Schneider 1978; Berkhout 1982;
Maynard et al. 1985; Esmersoy & Oristaglio 1988; Lindsey & Braun 2004), time-reversal acoustics (Fink & Prada 2001), and Green’s
function retrieval from ambient noise (Derode et al. 2003; Wapenaar 2003; Weaver & Lobkis 2004). There are several ways to approach the
representation of the correlation type. The homogeneous Green’s function representation (Porter 1970; Oristaglio 1989) elegantly covers most
of the aforementioned applications for scalar wavefields. It is obtained by replacing both states in the reciprocity theorem of the correlation
type by Green’s states. Here we derive a unified representation for the homogeneous Green’s matrix by substituting two Green’s matrices into
the matrix–vector reciprocity theorem of the correlation type (eq. 37).

Before we discuss the homogeneous Green’s matrix, we introduce the Green’s matrix of the adjoint medium, Ḡ(x, xA, ω), as the forward
propagating solution of the following matrix–vector wave equation

∂3Ḡ = ĀḠ + Iδ(x − xA). (48)

Pre- and post multiplying all terms by J and subsequently using eq. (28) gives

∂3JḠJ = A∗JḠJ + JJδ(x − xA). (49)

Taking the complex conjugate of all terms and using JJ = I gives

∂3JḠ∗J = AJḠ∗J + Iδ(x − xA). (50)

Subtracting all terms in this equation from the corresponding terms in eq. (43) we obtain

∂3Gh(x, xA, ω) = AGh(x, xA, ω), (51)

with

Gh(x, xA, ω) = G(x, xA, ω) − JḠ∗(x, xA, ω)J. (52)

Because Gh(x, xA, ω) obeys a matrix–vector wave equation without a source term, we call it the homogeneous Green’s matrix. The second
term on the right-hand side represents a backward propagating wavefield in the adjoint medium.

Next, we use the correlation-type reciprocity theorem (eq. 37) to derive a representation for the homogeneous Green’s matrix Gh. For
state A we choose the Green’s matrix in the adjoint medium, hence, we replace qA by Ḡ(x, xA, ω), dA by Iδ(x − xA), and AA by Ā. For state B
we choose the Green’s matrix in the actual medium, hence, we replace qB by G(x, xB, ω), dB by Iδ(x − xB), and AB by A. With these choices
the contrast operator ĀA − AB = ¯̄A − A vanishes. Making these substitutions in eq. (37), taking xA and xB both inside D, pre-multiplying
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all terms by K, using eqs (45) and (52), KK = I and K = JN = −NJ, we obtain

Gh(xA, xB, ω) =
∫

∂D

KḠ†(x, xA, ω)KG(x, xB, ω)n3d2xH. (53)

This unified homogeneous Green’s matrix representation holds for all wave phenomena listed in Table 1. It forms the basis for generalizing
the applications mentioned at the beginning of this section.

5 C O N C LU S I O N S

A unified matrix–vector wave equation is presented for acoustic, quantum mechanical, electromagnetic, elastodynamic, poroelastodynamic,
piezoelectric and seismoelectric waves. For most cases a 3-D inhomogeneous, anisotropic, dissipative medium is considered. The unified
equation may be used as a basis for generalizing various applications of the elastodynamic matrix–vector wave equation, such as the analysis of
surface waves, the derivation of long-wave effective medium parameters, the derivation of propagator matrices, decomposition into downgoing
and upgoing waves, modelling wide-angle propagation in laterally variant media, etc.

The operator matrix in the matrix–vector wave equation obeys unified symmetry relations. These symmetry relations underly unified
reciprocity theorems of the convolution and correlation type, which, in turn, form the basis for representations of the wave vector and the
homogeneous Green’s matrix. Reciprocity theorems and representations find applications in forward modelling problems, inverse source and
inverse scattering problems, imaging, time-reversal methods and Green’s function retrieval from ambient noise. The unified treatment in this
paper provides a starting point for generalizing these applications to a broad range of wave phenomena.
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A P P E N D I X A : A C O U S T I C WAV E S

The basic equations for acoustic wave propagation are the linearized equation of motion

∂t mi + ∂i p = fi (A1)

and the linearized deformation equation

− ∂t� + ∂ivi = q (A2)

(de Hoop 1995; Willis 2012). Here mi = mi(x, t) is the momentum density as a function of spatial position x and time t, p = p(x, t) is the
acoustic pressure, � = �(x, t) the cubic dilatation, vi = vi (x, t) the particle velocity, and fi = fi(x, t) and q = q(x, t) represent the sources in
terms of external force density and volume-injection rate density, respectively (the function q should not be confused with vector q and its
components q1 and q2 in eqs (1) and (2)). Operator ∂ i stands for differentiation in the xi-direction. Lower-case Latin subscripts (except t) take
on the values 1, 2 and 3, and Einstein’s summation convention applies to repeated subscripts. Operator ∂ t stands for the temporal differential
operator ∂/∂t. The constitutive relations for an inhomogeneous, anisotropic fluid are given by

mi = ρi jv j , (A3)

� = −κp, (A4)

where ρ ij = ρ ij(x) and κ = κ(x) are the mass density and compressibility, respectively. To account for anisotropy, the mass density is defined as
a tensor. Although ideal fluids are by definition isotropic, inhomogeneities at the micro scale can often be represented by effective anisotropic
parameters at the macro scale. For example, a periodic stratified fluid can, in the long wavelength limit, be represented by a homogeneous
fluid with an effective transverse isotropic mass density tensor and an effective isotropic compressibility (Schoenberg & Sen 1983). The mass
density tensor is symmetric, that is, ρ ij = ρ ji. Substituting the constitutive relations (A3) and (A4) into eqs (A1) and (A2) yields

ρi j∂tv j + ∂i p = fi , (A5)

κ∂t p + ∂ivi = q. (A6)

We define the temporal Fourier transform of a space- and time-dependent function h(x, t) as

h(x, ω) =
∫ ∞

−∞
h(x, t)exp(iωt)dt, (A7)

where i is the imaginary unit. For notational convenience, we use the same symbol (here h) for quantities in the time domain and in the
frequency domain. We use eq. (A7) to transform eqs (A5) and (A6) to the frequency domain. The time derivatives are thus replaced by −iω,
hence

− iωρi jv j + ∂i p = fi , (A8)

− iωκp + ∂ivi = q, (A9)
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with p = p(x, ω), vi = vi (x, ω), fi = fi(x, ω) and q = q(x, ω). In a lossless medium, the parameters ρ ij(x) and κ(x) are real-valued and
frequency independent. To account for losses, we replace them by complex-valued, frequency-dependent parameters ρ ij = ρ ij(x, ω) and κ =
κ(x, ω) (de Hoop 1995; Carcione 2007).

The quantities p and v3 constitute the power-flux density j in the x3-direction, via

j = 1

4
(p∗v3 + v∗

3 p). (A10)

We choose these quantities for the 1 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 = p, q2 = v3. (A11)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, v1 and v2, from eqs (A8) and
(A9). To this end, we first introduce the inverse of the mass density tensor, the so-called specific volume tensor ϑhi = ϑhi(x, ω), via

ϑhiρi j = δh j , (A12)

with δhj denoting the Kronecker delta. On account of the symmetry of the mass density tensor and eq. (A12), the specific volume tensor is
symmetric as well, hence ϑhi = ϑ ih. Applying ϑhi to both sides of eq. (A8), using eq. (A12), gives

− iωvh + ϑhi∂i p = ϑhi fi . (A13)

We separate the derivatives in the x3-direction from the lateral derivatives in eqs (A13) and (A9), according to

∂3 p = ϑ−1
33

(−ϑ3β∂β p + iωv3 + ϑ3i fi

)
, (A14)

∂3v3 = iωκp − ∂αvα + q. (A15)

Einstein’s summation convention applies also to repeated Greek subscripts (which take on the values 1 and 2). The particle velocity vα needs
to be eliminated from eq. (A15). From eq. (A13) we obtain

vα = 1

iω

(
ϑαβ∂β p + ϑα3∂3 p − ϑαi fi

)
. (A16)

Substituting eq. (A16) into eq. (A15), using eq. (A14), we obtain

∂3v3 = iωκp − 1

iω
∂α

(
ϑαβ∂β p + ϑα3∂3 p − ϑαi fi

) + q

= iωκp − 1

iω
∂α

(
ϑαβ∂β p + ϑα3ϑ

−1
33

(−ϑ3β∂β p + iωv3 + ϑ3i fi

) − ϑαi fi

)
+ q. (A17)

We define

bαi = ϑαi − ϑα3ϑ
−1
33 ϑ3i , (A18)

with bα3 = 0 and bαβ = bβα on account of ϑhi = ϑ ih. Eqs (A14) and (A17) have the form of eqs (3) and (4), with q1 and q2 defined in
eq. (A11), 1 × 1 vectors d1 and d2 defined as

d1 = ϑ−1
33 ϑ3i fi , d2 = 1

iω
∂α(bαβ fβ ) + q, (A19)

and 1 × 1 operator matrices A11, A12, A21 and A22 defined as

A11 = −ϑ−1
33 ϑ3β∂β, (A20)

A12 = iωϑ−1
33 , (A21)

A21 = iωκ − 1

iω
∂αbαβ∂β, (A22)

A22 = −∂αϑα3ϑ
−1
33 . (A23)

The notation in the right-hand side of these equations should be understood in the sense that differential operators act on all factors to the
right of it. For example, operator ∂αbαβ∂β , applied via eq. (4) to p, stands for ∂α(bαβ∂βp), etc. Operators A11, A12, A21 and A22 obey the
symmetry relations (16) − (18). We define adjoint acoustic medium parameters as κ̄ = κ∗, ϑ̄hi = ϑ∗

hi and hence b̄αβ = b∗
αβ . Operators Ā11,
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Unified matrix–vector wave equation 571

Ā12, Ā21 and Ā22 in the adjoint medium are defined as in eqs (A20)–(A23), but with κ , ϑhi and bαβ replaced by κ̄ , ϑ̄hi and b̄αβ , respectively.
These operators obey relations (19)–(22).

For the special case of an isotropic fluid we have ϑhi = 1
ρ
δhi , with ρ denoting the mass density of the isotropic fluid. For this situation

eqs (A20)–(A23) reduce to the well-known expressions

A11 = A22 = 0, (A24)

A12 = iωρ, (A25)

A21 = iωκ − 1

iω
∂α

1

ρ
∂α, (A26)

(Corones 1975; Ursin 1983; Fishman & McCoy 1984; Wapenaar & Berkhout 1989; de Hoop 1996b).

A P P E N D I X B : Q UA N T U M M E C H A N I C A L WAV E S

Schrödinger’s wave equation for a particle with mass m in a potential V = V(x) is given by (Messiah 1961; Merzbacher 1961)

i�∂tψ = − �
2

2m
∂i∂iψ + V ψ, (B1)

where ψ = ψ(x, t) is the wave function and � = h/2π , with h Planck’s constant. We use eq. (A7) to transform this equation to the
space–frequency domain, which means we can replace ∂ t by −iω. This gives

�ωψ = − �
2

2m
∂i∂iψ + V ψ, (B2)

with ψ = ψ(x, ω). To account for losses, we replace V(x) by a complex-valued, frequency-dependent function V(x, ω). The quantities ψ and
2�
mi ∂3ψ constitute the probability current density j in the x3-direction, via

j = 1

4

2�

mi

(
ψ∗∂3ψ − ψ∂3ψ

∗). (B3)

We choose these quantities for the 1 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 = ψ, q2 = 2�

mi
∂3ψ. (B4)

To arrive at a set of equations for these quantities, we first recast eq. (B2) (using the fact that � and m are constants) as

∂3

( 2�

mi
∂3ψ

)
= 4i

(
ω − V

�

)
ψ − 2�

mi
∂α∂αψ. (B5)

This equation, together with the trivial equation

∂3ψ = mi

2�

( 2�

mi
∂3ψ

)
, (B6)

have the form of eqs (4) and (3), with q1 and q2 defined in eq. (B4), d1 = d2 = 0, and 1 × 1 operator matrices A11, A12, A21 and A22 defined
as

A11 = A22 = 0, (B7)

A12 = mi

2�
, (B8)

A21 = 4i
(
ω − V

�

)
− 2�

mi
∂α∂α. (B9)

Operators A12 and A21 obey the symmetry relations (17) and (18). We define the adjoint potential as V̄ = V ∗. Operators Ā12 and Ā21 for
the adjoint potential obey relations (20) and (21).

A P P E N D I X C : E L E C T RO M A G N E T I C WAV E S

In the space–frequency domain, the Maxwell equations for electromagnetic wave propagation read (Landau & Lifshitz 1960; de Hoop 1995)

− iωDi + Ji − εi jk∂ j Hk = −J e
i , (C1)
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572 K. Wapenaar

− iωBk + εklm∂l Em = −J m
k , (C2)

where Em = Em(x, ω) is the electric field strength, Hk = Hk(x, ω) the magnetic field strength, Di = Di(x, ω) the electric flux density, Bk =
Bk(x, ω) the magnetic flux density, Ji = Ji(x, ω) the induced electric current density, J e

i = J e
i (x, ω) and J m

k = J m
k (x, ω) are source functions

in terms of external electric and magnetic current densities and, finally, εijk is the alternating tensor (or Levi-Civita tensor), with ε123 = ε312

= ε231 = −ε213 = −ε321 = −ε132 = 1 and all other elements being equal to 0. The constitutive relations for an inhomogeneous, anisotropic,
dissipative medium are given by

Di = εik Ek = ε0εr,ik Ek, (C3)

Bk = μkm Hm = μ0μr,km Hm, (C4)

Ji = σik Ek, (C5)

where εik = εik(x, ω), μkm = μkm(x, ω) and σ ik = σ ik(x, ω) are the permittivity, permeability and conductivity tensors, respectively. The
subscripts 0 refer to the parameters in vacuum and the subscripts r denote relative parameters for the anisotropic medium. These tensors obey
the symmetry relations εik = εki, μkm = μmk and σ ik = σ ki, respectively. Substituting the constitutive relations (C3)–(C5) into Maxwell’s
electromagnetic field eqs (C1) and (C2) yields

− iωEik Ek − εi jk∂ j Hk = −J e
i , (C6)

− iωμkm Hm + εklm∂l Em = −J m
k , (C7)

with

Eik = εik − σik

iω
. (C8)

A matrix–vector wave equation for electromagnetic waves in an isotropic stratified medium is given by Ursin (1983) and van Stralen
(1997). This has been extended for an anisotropic stratified medium by Løseth & Ursin (2007). Here we derive the matrix–vector wave
equation for electromagnetic waves in a 3-D inhomogeneous, anisotropic, dissipative medium.

The quantities

E0 =
(

E1

E2

)
and H0 =

(
H2

−H1

)
(C9)

constitute the power-flux density j in the x3-direction, via

j = 1

4
(E†

0H0 + H†
0E0) = 1

4
(E∗

1 H2 − E∗
2 H1 + H ∗

2 E1 − H ∗
1 E2). (C10)

We choose these quantities for the 2 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 = E0, q2 = H0. (C11)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, E3 and H3, from eqs (C6) and
(C7). We start by rewriting these equations as

− iωE1E0 − iωE3 E3 + ∂3H0 − ∇2 H3 = −Je
0, (C12)

− iωE t
3E0 − iωE33 E3 + ∇ t

1 H0 = −J e
3 , (C13)

− iωμ1H0 − iωμ3 H3 + ∂3E0 − ∇1 E3 = −Jm
0 , (C14)

− iωμt
3H0 − iωμ33 H3 + ∇ t

2 E0 = −J m
3 , (C15)

with

E1 =
(
E11 E12

E12 E22

)
, E3 =

(
E13

E23

)
, μ1 =

(
μ22 −μ12

−μ12 μ11

)
, μ3 =

(
μ23

−μ13

)
, (C16)
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Unified matrix–vector wave equation 573

∇1 =
(

∂1

∂2

)
, ∇2 =

(
∂2

−∂1

)
, Je

0 =
(

J e
1

J e
2

)
, Jm

0 =
(

J m
2

−J m
1

)
. (C17)

Eq. (10) implies

∇ t
1 =

(
−∂1 −∂2

)
, ∇ t

2 =
(

−∂2 ∂1

)
. (C18)

We separate the derivatives in the x3-direction from the lateral derivatives in eqs (C14) and (C12), according to

∂3E0 = iωμ1H0 + iωμ3 H3 + ∇1 E3 − Jm
0 , (C19)

∂3H0 = iωE1E0 + iωE3 E3 + ∇2 H3 − Je
0. (C20)

The field components E3 and H3 need to be eliminated. From eqs (C13) and (C15) we obtain

E3 = E−1
33

(
−E t

3E0 + 1

iω
∇ t

1 H0 + 1

iω
J e

3

)
, (C21)

H3 = μ−1
33

(
−μt

3H0 + 1

iω
∇ t

2 E0 + 1

iω
J m

3

)
. (C22)

Substituting eqs (C21) and (C22) into eqs (C19) and (C20) we obtain

∂3E0 =
(
μ3μ

−1
33 ∇ t

2 − ∇1E−1
33 E t

3

)
E0 +

(
iωμ1 − iωμ3μ

−1
33 μt

3 + 1

iω
∇1E−1

33 ∇ t
1

)
H0 + 1

iω
∇1(E−1

33 J e
3 ) − Jm

0 + μ3μ
−1
33 J m

3 , (C23)

∂3H0 =
(

iωE1 − iωE3E−1
33 E t

3 + 1

iω
∇2μ

−1
33 ∇ t

2

)
E0 +

(
E3E−1

33 ∇ t
1 − ∇2μ

−1
33 μt

3

)
H0 − Je

0 + E3E−1
33 J e

3 + 1

iω
∇2(μ−1

33 J m
3 ). (C24)

Eqs (C23) and (C24) have the form of eqs (3) and (4), with q1 and q2 defined in eq. (C11), 2 × 1 vectors d1 and d2 defined as

d1 = 1

iω
∇1(E−1

33 J e
3 ) − Jm

0 + μ3μ
−1
33 J m

3 , (C25)

d2 = −Je
0 + E3E−1

33 J e
3 + 1

iω
∇2(μ−1

33 J m
3 ), (C26)

and 2 × 2 operator matrices A11, A12, A21 and A22 defined as

A11 = μ3μ
−1
33 ∇ t

2 − ∇1E−1
33 E t

3, (C27)

A12 = iω(μ1 − μ3μ
−1
33 μt

3) + 1

iω
∇1E−1

33 ∇ t
1 , (C28)

A21 = iω(E1 − E3E−1
33 E t

3) + 1

iω
∇2μ

−1
33 ∇ t

2 , (C29)

A22 = E3E−1
33 ∇ t

1 − ∇2μ
−1
33 μt

3. (C30)

These operators obey the symmetry relations (16)–(18). We define adjoint electromagnetic medium parameters as ε̄ik = ε∗
ik , μ̄km = μ∗

km and
σ̄ik = −σ ∗

ik . Using eq. (C8) it follows that Ēik = E∗
ik . Similar relations hold for E1, E3, μ1 and μ3, which contain the parameters Eik and

μkm. Operators Ā11, Ā12, Ā21 and Ā22 in the adjoint medium obey relations (19)–(22). Explicit expressions for the operator matrices in an
isotropic medium are given in the supplemental material, section 1.

A P P E N D I X D : E L A S T O DY NA M I C WAV E S

In the space-frequency domain, the elastodynamic equations of motion and deformation read (Achenbach 1973; Aki & Richards 1980; de
Hoop 1995; Willis 2012)

− iωmi − ∂ jτi j = fi , (D1)
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574 K. Wapenaar

iωekl + 1

2
(∂kvl + ∂lvk) = hkl , (D2)

where mi = mi(x, ω) is the momentum density, τ ij = τ ij(x, ω) the stress tensor, ekl = ekl(x, ω) the strain tensor, vk = vk(x, ω) the particle
velocity, and fi = fi(x, ω) and hkl = hkl(x, ω) are source functions in terms of external force density and deformation-rate density, respectively.
The stress, strain and deformation-rate tensors obey the symmetry relations τ ij = τ ji, ekl = elk and hkl = hlk. The constitutive relations for an
inhomogeneous, anisotropic, dissipative solid are given by

mi = ρi jv j , (D3)

ekl = sklmnτmn, (D4)

where ρ ij = ρ ij(x, ω) and sklmn = sklmn(x, ω) are the mass density and compliance tensors, respectively. These tensors obey the symmetry
relations ρ ij = ρ ji and sklmn = slkmn = sklnm = smnkl, respectively (Aki & Richards 1980; Dahlen & Tromp 1998). Substituting the constitutive
relations (D3) and (D4) into eqs (D1) and (D2) yields

− iωρi jv j − ∂ jτi j = fi , (D5)

iωsklmnτmn + 1

2
(∂kvl + ∂lvk) = hkl . (D6)

We introduce the stiffness tensor cijkl = cijkl(x, ω) as the inverse of the compliance tensor sklmn, according to

ci jkl sklmn = si jkl cklmn = 1

2
(δimδ jn + δinδ jm). (D7)

The stiffness tensor obeys the symmetry relation cijkl = cjikl = cijlk = cklij. Multiplying all terms in eq. (D6) by cijkl, using the symmetry
relations τ ij = τ ji and cijkl = cijlk, we obtain an alternative form of eq. (D6), according to

iωτi j + ci jkl∂lvk = ci jkl hkl . (D8)

A matrix–vector wave equation for elastodynamic waves in an inhomogeneous anisotropic medium is given by Woodhouse (1974). Here
we review this derivation, which also serves as a starting point for the derivation of the matrix–vector wave equations for poroelastodynamic
waves (Appendix E), piezoelectric waves (Appendix F) and seismoelectric waves (Appendix G). The quantities −τ 3 and v (which are 3 × 1
vectors, with (τ 3)i = τi3 and (v)i = vi ) constitute the power-flux density j in the x3-direction, via

j = 1

4
(−τ

†
3v − v†τ 3) = 1

4
(−τ ∗

i3vi − v∗
i τi3). (D9)

We choose these quantities for the 3 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 = −τ 3, q2 = v. (D10)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, 3 × 1 vectors τ 1 and τ 2 (with
(τ j )i = τi j ), from eqs (D5) and (D8). We start by rewriting these equations as

− iωρv − ∂ jτ j = f, (D11)

iωτ j + C jl∂lv = C jlhl , (D12)

where ρ and Cjl are 3 × 3 matrices, with (ρ)i j = ρi j , ρ t = ρ, (Cjl)ik = cijkl, Ct
jl = Cl j , and where f and hl are 3 × 1 vectors, with (f)i = fi and

(hl)k = hkl. We separate the derivatives in the x3-direction from the lateral derivatives in eqs (D11) and (D12), according to

− ∂3τ 3 = iωρv + ∂ατ α + f, (D13)

∂3v = C−1
33

(
−iωτ 3 − C3β∂βv + C3lhl

)
. (D14)

The field components τ 1 and τ 2 need to be eliminated. From eq. (D12) we obtain

τ α = − 1

iω

(
Cαβ∂βv + Cα3∂3v − Cαlhl

)
. (D15)

Substituting eq. (D14) into (D15) and the result into eq. (D13), we obtain

− ∂3τ 3 = ∂α

(
Cα3C−1

33 τ 3

) + iωρv − 1

iω
∂α

(
Uαβ∂βv − Uαlhl

)
+ f, (D16)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/1/560/5145850 by Bibliotheek TU

 D
elft user on 17 D

ecem
ber 2018



Unified matrix–vector wave equation 575

with

Uαl = Cαl − Cα3C−1
33 C3l , (D17)

where Uα3 = O and Ut
αβ = Uβα on account of Ct

jl = Cl j . Eqs (D16) and (D14) have the form of eqs (3) and (4), with q1 and q2 defined in
eq. (D10), 3 × 1 vectors d1 and d2 defined as

d1 = f + 1

iω
∂α

(
Uαβhβ

)
, (D18)

d2 = C−1
33 C3lhl , (D19)

and 3 × 3 operator matrices A11, A12, A21 and A22 defined as

A11 = −∂αCα3C−1
33 , (D20)

A12 = iωρ − 1

iω
∂αUαβ∂β, (D21)

A21 = iωC−1
33 , (D22)

A22 = −C−1
33 C3β∂β . (D23)

These operators obey the symmetry relations (16)–(18). We define adjoint elastodynamic medium parameters as c̄i jkl = c∗
i jkl and ρ̄i j = ρ∗

i j .
Similar relations hold for Cjl, Uαβ and ρ, which contain the parameters cijkl and ρ ij. Operators Ā11, Ā12, Ā21 and Ā22 in the adjoint medium
obey relations (19)–(22). Explicit expressions for the operator matrices in an isotropic medium are given in the supplemental material,
Section 2.

A P P E N D I X E : P O RO E L A S T O DY NA M I C WAV E S

In the space–frequency domain, the basic equations for poroelastodynamic wave propagation in an inhomogeneous, anisotropic, dissipative,
fluid-saturated porous solid read (Biot 1956a,b; Pride et al. 1992; Pride & Haartsen 1996)

− iωρb
i jv

s
j − iωρ

f
i jw j − ∂ jτ

b
i j = f b

i , (E1)

− iω

η
ki jρ

f
jlv

s
l + wi + 1

η
ki j∂ j p f = 1

η
ki j f f

j , (E2)

iωτ b
i j + ci jkl∂lv

s
k + Ci j∂kwk = ci jkl h

b
kl + Ci j q

f , (E3)

− iωp f + Ckl∂lv
s
k + M∂kwk = Ckl h

b
kl + Mq f , (E4)

with

w j = φ(v f
j − vs

j ), (E5)

vb
j = φv

f
j + (1 − φ)vs

j = vs
j + w j , (E6)

τ b
i j = φτ

f
i j + (1 − φ)τ s

i j = −φδi j p f + (1 − φ)τ s
i j , (E7)

f b
i = φ f f

i + (1 − φ) f s
i , (E8)

ρb
i j = φρ

f
i j + (1 − φ)ρs

i j . (E9)
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576 K. Wapenaar

Superscripts b, f and s stand for bulk, fluid and solid, respectively. The wavefield quantity v j = v j (x, ω) is the averaged particle velocity in
the bulk, fluid or solid (depending on the superscript), w j = w j (x, ω) is the filtration velocity, τ ij = τ ij(x, ω) the averaged stress in the bulk,
fluid or solid and pf = pf(x, ω) the averaged fluid pressure. The stress tensors are symmetric, i.e., τ ij = τ ji. The medium parameter ρ ij =
ρ ij(x, ω) is the mass density of the bulk, fluid or solid (depending on the superscript). Furthermore, kij = kij(x, ω) is the dynamic permeability
tensor, η = η(x, ω) is the fluid viscosity parameter and φ = φ(x) the porosity. Moreover, cijkl = cijkl(x, ω), Cij = Cij(x, ω) and M = M(x, ω) are
stiffness parameters of the porous solid. The medium parameters obey the following symmetry relations ρ ij = ρ ji, kij = kji, cijkl = cjikl = cijlk

= cklij and Cij = Cji. The source function fi = fi(x, ω) is the volume density of external force on the bulk, fluid or solid. For many source types
the forces on the bulk and fluid are equal but in the following they will be treated distinctly. The source functions hb

kl = hb
kl (x, ω) and qf =

qf(x, ω) are the volume densities of external deformation rate on the bulk and volume-injection rate in the fluid (Wapenaar & Berkhout 1989;
Pride 1994; de Hoop 1995; Grobbe 2016). The deformation rate tensor is symmetric, that is, hb

kl = hb
lk . For later convenience, we eliminate

∂kwk from eq. (E3), using eq. (E4). This yields

iωτ b
i j + c′

i jkl∂lv
s
k + iω

M
Ci j p f = c′

i jkl h
b
kl , (E10)

with c′
i jkl = c′

i jkl (x, ω) defined as

c′
i jkl = ci jkl − 1

M
Ci j Ckl . (E11)

A matrix–vector wave equation for normal-incidence poroelastodynamic waves in a stratified isotropic medium is given by Norris
(1993) and Gurevich & Lopatnikov (1995). This has been extended for oblique-incidence poroelastodynamic waves in a stratified anisotropic
medium, separately for P-SV and SH propagation, by Gelinsky & Shapiro (1997). Here we derive the matrix–vector wave equation for
poroelastodynamic waves in a 3D inhomogeneous, anisotropic, dissipative, fluid-saturated porous solid. The quantities −τ b

3, pf, vs and w3

(with (τ b
j )i = τ b

i j and (vs)i = vs
i ) constitute the power-flux density j in the x3-direction, via

j = 1

4
(−(τ b

3)†vs + p f ∗w3 − (vs)†τ b
3 + w∗

3 p f ) = 1

4
(−τ b∗

i3 vs
i + p f ∗w3 − vs∗

i τ b
i3 + w∗

3 p f ). (E12)

We choose these quantities for the 4 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 =
(

−τ b
3

p f

)
, q2 =

(
vs

w3

)
. (E13)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (E1), (E2), (E10) and
(E4). We start by rewriting these equations as

− iωρbvs − iωρ f i jw j − ∂ jτ
b
j = fb, (E14)

− iω

η
kρ f vs + i jw j + 1

η
ki j∂ j p f = 1

η
ki j f f

j , (E15)

iωτ b
j + C jl∂lv

s + iω

M
c j p f = C jlh

b
l , (E16)

− iωp f + ct
l ∂lv

s + M∂kwk = ct
l h

b
l + Mq f , (E17)

where ρ, k and Cjl are 3 × 3 matrices, with (ρ)i j = ρi j , ρ t = ρ, (k)ij = kij, kt = k, (C jl )ik = c′
i jkl , Ct

jl = Cl j , and where cj, fb, hb
l and ij are

3 × 1 vectors, with (cj)i = Cij, (fb)i = f b
i , (hb

l )k = hb
kl , and (ij)i = δij. Eqs (E14)–(E17) form the starting point for deriving matrix–vector

equations in the form of eqs (3) and (4), with q1 and q2 defined in eq. (E13). The other quantities (τ b
1, τ b

2, w1 and w2) need to be eliminated.
The detailed derivation can be found in the supplemental material, Section 3. The 4 × 1 vectors d1 and d2 are defined as

d1 =
(

iω
η
ρ f iαit

αk
(
I + 1

b i3it
3k−1iγ it

γ k
)
i j f f

j − iω
ηb ρ f iαit

αki3 f f
3 + fb + 1

iω ∂α

(
Uαβhb

β

)
1
b

(−it
3k−1iαit

αki j f f
j + f f

3

)
)

, (E18)

d2 =
(

C−1
33 C3lhb

l

−∂α

(
1
η
it
αk

(
I + 1

b i3it
3k−1iγ it

γ k
)
i j f f

j − 1
ηb it

αki3 f f
3

)
+ 1

M ut
αhb

α + q f

)
(E19)

and the 4 × 4 operator matrices A11, A12, A21 and A22 as

A11 =
(
A11

11 A12
11

A21
11 A22

11

)
, A12 =

(
A11

12 A12
12

(A12
12)t A22

12

)
, (E20)
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Unified matrix–vector wave equation 577

A21 =
(

A11
21 A12

21

(A12
21)t A22

21

)
, A22 = −At

11. (E21)

Here

A11
11 = −∂αCα3C−1

33 , (E22)

A12
11 = − iω

η
ρ f

(
I − 1

b
ki3it

3k−1i3it
3

)
kiβ∂β − ∂α

1

M
uα, (E23)

A21
11 = 0t , (E24)

A22
11 = −1

b
it
3k−1i3it

3kiβ∂β, (E25)

A11
12 = iωρb − 1

iω
∂αUαβ∂β − ω2

η
ρ f iαit

α

(
k − 1

b
ki3it

3k−1i3it
3k

)
iβ it

βρ f , (E26)

A12
12 = iω

b
ρ f ki3it

3k−1i3, (E27)

A22
12 = −η

b
it
3k−1i3, (E28)

A11
21 = iωC−1

33 , (E29)

A12
21 = − iω

M
C−1

33 c3, (E30)

A22
21 = iω

M2
ct

3C−1
33 c3 + iω

M
+ ∂α

1

η

(
it
αkiβ − 1

b
it
αki3it

3k−1i3it
3kiβ

)
∂β, (E31)

with 0 denoting a zero vector and

Uαβ = Cαβ − Cα3C−1
33 C3β, (E32)

uα = cα − Cα3C−1
33 c3, (E33)

b = 1 − it
3k−1iαit

αki3. (E34)

Operators A11, A12, A21 and A22 obey the symmetry relations formulated in eqs (16)–(18). We defined the adjoints of the medium
parameters cijkl and ρ ij in Appendix D (where ρ ij now has superscript b or f). Moreover, we define k̄i j = k∗

i j , η̄ = −η∗, C̄i j = C∗
i j and M̄ = M∗.

Similar relations hold for Cjl, ρb, ρ f , k and cj, which contain the parameters c′
i jkl = ci jkl − 1

M Ci j Ckl , ρb
i j , ρ

f
i j , kij and Cij. Operators Ā11, Ā12,

Ā21 and Ā22 in the adjoint medium obey relations (19)–(22). Explicit expressions for the operator matrices in an isotropic medium are given
in the supplemental material, section 3.

A P P E N D I X F : P I E Z O E L E C T R I C WAV E S

Piezoelectric waves are governed by the equations for electromagnetic waves (Appendix C) and elastodynamic waves (Appendix D), in which
two of the constitutive relations need to be modified to account for the coupling between the two wave types. For piezoelectric waves, the
modified constitutive relations are (Auld 1973)

Di = εik Ek + di jkτ jk, (F1)
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578 K. Wapenaar

ekl = dklm Em + sklmnτmn . (F2)

The field quantities and medium parameters (except dijk) have been defined in Appendices C and D. Parameters εik in eq. (F1) and sklmn in
eq. (F2) are defined under constant stress and constant electric field, respectively. The coupling tensor dijk = dijk(x, ω) obeys the symmetry
relation dijk = djik = dikj. Eq. (F1) replaces constitutive relation (C3) and is substituted, together with constitutive relations (C4) and (C5), into
the Maxwell eqs (C1) and (C2). Eq. (F2) replaces stress–strain relation (D4) and is substituted, together with constitutive relation (D3), into
eqs (D2) and (D1). Subsequently, all terms in the latter equation are multiplied by cijkl, using eq. (D7) as well as the symmetry relations τ ij =
τ ji and cijkl = cijlk. The basic equations for coupled electromagnetic and elastodynamic waves thus read

− iωEik Ek − εi jk∂ j Hk − iωdi jkτ jk = −J e
i , (F3)

− iωμkm Hm + εklm∂l Em = −J m
k , (F4)

− iωρi jv j − ∂ jτi j = fi , (F5)

iωτi j + ci jkl∂lvk + iωci jkldklm Em = ci jkl hkl , (F6)

with Eik = εik − σik
iω .

A matrix–vector wave equation in the quasi-static approximation for 2-D piezoelectric waves in an anisotropic stratified medium is
given by Honein et al. (1991), Wang & Rokhlin (2002) and Zhao et al. (2012). Here we derive the exact matrix–vector wave equation for
piezoelectric waves in a 3-D inhomogeneous, anisotropic, dissipative, piezoelectric medium. The quantities −τ 3, E0, v and H0 (with E0 and
H0 defined in Appendix C and τ 3 and v defined in Appendix D) constitute the power-flux density j in the x3-direction, via

j = 1

4
(−τ

†
3v + E†

0H0 − v†τ 3 + H†
0E0) = 1

4
(−τ ∗

i3vi + E∗
1 H2 − E∗

2 H1 − v∗
i τi3 + H ∗

2 E1 − H ∗
1 E2). (F7)

We choose these quantities for the 5 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 =
(

−τ 3

E0

)
, q2 =

(
v

H0

)
. (F8)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (F3) to (F6). Using the
notation introduced in Appendices C and D, we rewrite eqs (F3)–(F6) as

− iωE1E0 − iωE3 E3 + ∂3H0 − ∇2 H3 − iωDt
1kτ k = −Je

0, (F9)

− iωE t
3E0 − iωE33 E3 + ∇ t

1 H0 − iωDt
3kτ k = −J e

3 , (F10)

− iωμ1H0 − iωμ3 H3 + ∂3E0 − ∇1 E3 = −Jm
0 , (F11)

− iωμt
3H0 − iωμ33 H3 + ∇ t

2 E0 = −J m
3 , (F12)

− iωρv − ∂ jτ j = f, (F13)

iωτ j + C jl∂lv + iωC jl

(
D1lE0 + D3l E3

) = C jlhl , (F14)

with

D1k =

⎛
⎜⎝ d11k d12k

d21k d22k

d31k d32k

⎞
⎟⎠, D3k =

⎛
⎜⎝ d13k

d23k

d33k

⎞
⎟⎠. (F15)

Eqs (F9)–(F14) form the starting point for deriving matrix–vector equations in the form of eqs (3) and (4), with q1 and q2 defined in eq. (F8).
The other quantities (τ 1, τ 2, E3 and H3) need to be eliminated. The detailed derivation can be found in the supplemental material, section 4.
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Unified matrix–vector wave equation 579

The 5 × 1 vectors d1 and d2 are defined as

d1 =
(

f + 1
iω ∂α(U′

αβhβ ) − 1
iω ∂α

(
(E ′

33)−1UαβD3β J e
3

)
1

iω ∇1

(
(E ′

33)−1(J e
3 − Dt

3αUαβhβ )
) − Jm

0 + μ3μ
−1
33 J m

3

)
, (F16)

d2 =
(

C−1
33

(
C′

3mhm − (E ′
33)−1C3lD3l J e

3

)
−Je

0 + (E ′
33)−1E ′

3 J e
3 + 1

iω ∇2(μ−1
33 J m

3 ) + (D′
1α)t Uαβhβ

)
(F17)

and the 5 × 5 operator matrices A11, A12, A21 and A22 have the form defined in eqs (E20) and (E21), where

A11
11 = −∂α(C′

3α)t C−1
33 , (F18)

A12
11 = −∂αUαβD′

1β, (F19)

A21
11 = ∇1(E ′

33)−1Dt
3kCk3C−1

33 , (F20)

A22
11 = μ3μ

−1
33 ∇ t

2 − ∇1(E ′
33)−1(E ′

3)t , (F21)

A11
12 = iωρ − 1

iω
∂αU′

αβ∂β, (F22)

A12
12 = − 1

iω
∂α(E ′

33)−1UαβD3β∇ t
1 , (F23)

A22
12 = iω

(
μ1 − μ3μ

−1
33 μt

3

) + 1

iω
∇1(E ′

33)−1∇ t
1 , (F24)

A11
21 = iω

(
C−1

33 − (E ′
33)−1C−1

33 C3lD3lD
t
3kCk3C−1

33

)
, (F25)

A12
21 = −iωC−1

33 C3lD
′
1l , (F26)

A22
21 = iω

(
E ′

1 − E ′
3(E ′

33)−1(E ′
3)t

) + 1

iω
∇2μ

−1
33 ∇ t

2 , (F27)

with

Uαβ = Cαβ − Cα3C−1
33 C3β, (F28)

E ′
1 = E1 − Dt

1αUαβD1β, (F29)

E ′
3 = E3 − Dt

1αUαβD3β, (F30)

E ′
33 = E33 − Dt

3αUαβD3β, (F31)

U′
αβ = Uαβ + (E ′

33)−1Uαγ D3γ Dt
3δUδβ , (F32)

C′
3m = C3m + (E ′

33)−1C3lD3lD
t
3αUαm, (F33)
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580 K. Wapenaar

D′
1l = D1l − (E ′

33)−1D3l (E ′
3)t , (F34)

with Uα3 = O. Operators A11, A12, A21 and A22 obey the symmetry relations formulated in eqs (16)–(18). We defined the adjoints of the
medium parameters Eik , μkm, cijkl and ρ ij in Appendices C and D. Moreover, we define d̄ i jk = d∗

i jk . Similar relations hold for E1, E3, μ1, μ3,
Cjl, ρ, D1k and D3k, which contain the parameters Eik , μkm, cijkl, ρ ij and dijk. Operators Ā11, Ā12, Ā21 and Ā22 in the adjoint medium obey
relations (19)–(22).

A P P E N D I X G : S E I S M O E L E C T R I C WAV E S

Seismoelectric waves are governed by the equations for electromagnetic waves (Appendix C) and poroelastodynamic waves (Appendix E),
in which two of the constitutive relations need to be modified to account for the coupling between the two wave types. In this appendix we
consider an isotropic medium (the derivation for the anisotropic situation is disproportionally long). For seismoelectric waves, the modified
constitutive relations are (Pride 1994; Pride & Haartsen 1996)

Ji = σ Ei + L(−∂i p f + iωρ f vs
i + f f

i ), (G1)

wi = L Ei + k

η
(−∂i p f + iωρ f vs

i + f f
i ). (G2)

The field quantities, sources and medium parameters (except L) have been defined in Appendices C and E (except that tensors are now replaced
by scalars). Here L = L(x, ω) accounts for the coupling between the elastodynamic and electromagnetic waves and vice versa. Eqs (G1) and
(G2) contain the same coupling coefficient L (due to Onsager’s reciprocity relation, Pride (1994)). Eq. (G1) replaces the isotropic version
of constitutive relation (C5) and is substituted, together with the isotropic versions of constitutive relations (C3) and (C4), into the Maxwell
eqs (C1) and (C2). Eq. (G2) replaces the isotropic version of eq. (E2). The basic equations for coupled electromagnetic and poroelastodynamic
waves thus read

− iωρbvs
i − iωρ f wi − ∂ jτ

b
i j = f b

i , (G3)

− iωρ f vs
i + η

k
(wi − L Ei ) + ∂i p f = f f

i , (G4)

iωτ b
i j + ci jkl∂lv

s
k + Cδi j∂kwk = ci jkl h

b
kl + Cδi j q

f , (G5)

− iωp f + Cδkl∂lv
s
k + M∂kwk = Cδkl h

b
kl + Mq f , (G6)

− iωεEi + σ Ei + L(−∂i p f + iωρ f vs
i ) − εi jk∂ j Hk = −J e

i − L f f
i , (G7)

− iωμHk + εklm∂l Em = −J m
k . (G8)

For the isotropic medium we have

ci jkl = (KG − 2

3
Gfr)δi jδkl + Gfr(δikδ jl + δilδ jk), (G9)

where Gfr is the shear modulus of the framework of the grains when the fluid is absent and KG is the Gassmann modulus (Pride et al. 1992).
The permittivity and permeability are defined as ε = ε0εr and μ = μ0μr. The subscripts 0 refer to the parameters in vacuum and the subscripts
r denote relative parameters. For εr and μr we have (Pride 1994)

εr = φ

α∞
(κ f − κ s) + κ s, (G10)

μr ≈ 1, (G11)

where κ f and κ s are the dielectric parameters of the fluid and solid, respectively, and α∞ is the tortuosity at infinite frequency. For later
convenience, we eliminate ∂kwk from eq. (G5), using eq. (G6). This yields

iωτ b
i j + c′

i jkl∂lv
s
k + iω

C

M
δi j p f = c′

i jkl h
b
kl , (G12)
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Unified matrix–vector wave equation 581

with c′
i jkl = c′

i jkl (x, ω) defined as

c′
i jkl = ci jkl − C2

M
δi jδkl . (G13)

Also for later convenience, we add L times eq. (G4) to eq. (G7) in order to compensate for the term L(−∂i p f + iωρ f vs
i ). This yields

− iωEEi + η

k
Lwi − εi jk∂ j Hk = −J e

i , (G14)

with

E = ε − 1

iω

(
σ − η

k
L2

)
. (G15)

A matrix–vector wave equation for oblique-incidence seismoelectric waves in a stratified isotropic medium, separately for P-SV-TM and
SH-TE propagation, is given by Haartsen & Pride (1997), White & Zhou (2006) and Grobbe (2016). Here we derive the matrix–vector wave
equation for a 3-D inhomogeneous, isotropic, dissipative, fluid-saturated porous solid. The quantities −τ b

3, pf, E0, vs, w3 and H0 constitute
the power-flux density j in the x3-direction, via

j = 1

4
(−(τ b

3)†vs + p f ∗w3 + E†
0H0 − (vs)†τ b

3 + w∗
3 p f + H†

0E0)

= 1

4
(−τ b∗

i3 vs
i + p f ∗w3 + E∗

1 H2 − E∗
2 H1 − vs∗

i τ b
i3 + w∗

3 p f + H ∗
2 E1 − H ∗

1 E2). (G16)

We choose these quantities for the 6 × 1 vectors q1 and q2 in eqs (3) and (4), hence

q1 =

⎛
⎜⎝ −τ b

3

p f

E0

⎞
⎟⎠, q2 =

⎛
⎜⎝ vs

w3

H0

⎞
⎟⎠. (G17)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (G3), (G4), (G12), (G6),
(G14) and (G8). We start by rewriting these equations as

− iωρbvs − iωρ f i jw j − ∂ jτ
b
j = fb, (G18)

− iωρ f it
i v

s + η

k

(
wi − L(jt

i E0 + δ3i E3)
) + ∂i p f = f f

i , (G19)

iωτ b
j + C jl∂lv

s + iω
C

M
i j p f = C jlh

b
l , (G20)

− iωp f + C it
l ∂lv

s + M∂kwk = C it
l h

b
l + Mq f , (G21)

− iωEE0 + η

k
Ljαwα + ∂3H0 − ∇2 H3 = −Je

0, (G22)

− iωEE3 + η

k
Lw3 + ∇ t

1 H0 = −J e
3 , (G23)

− iωμH0 + ∂3E0 − ∇1 E3 = −Jm
0 , (G24)

− iωμH3 + ∇ t
2 E0 = −J m

3 , (G25)

with most of the vectors and matrices defined in Appendices C and E. In addition, ji is a 2 × 1 unit vector, with (ji)β = δβi. Eqs (G18)–(G25)
form the starting point for deriving matrix–vector equations in the form of eqs (3) and (4), with q1 and q2 defined in eq. (G17). The other
quantities (τ b

1, τ b
2, E3, w1, w2 and H3) need to be eliminated. The detailed derivation can be found in the supplemental material, Section 5.

The 6 × 1 vectors d1 and d2 are defined as

d1 =

⎛
⎜⎝ fb + iωρ f k

η
iα f f

α + 1
iω ∂α

(
Uαβhb

β

)
1

iωE
η

k L J e
3 + f f

3

−Jm
0 + ∇1

(
1

iωE J e
3

)
⎞
⎟⎠, (G26)
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582 K. Wapenaar

d2 =

⎛
⎜⎝

C−1
33 C3lhb

l

q f + 1
M ut

αhb
α − ∂β

(
k
η

f f
β

)
−Je

0 + ∇2

(
1

iωμ
J m

3

) − Ljα f f
α

⎞
⎟⎠ (G27)

and the 6 × 6 operator matrices A11, A12, A21 and A22 as

A11 =

⎛
⎜⎝A11

11 A12
11 A13

11

0t 0 0t

O 0 O

⎞
⎟⎠, A12 =

⎛
⎜⎝ A11

12 A12
12 O

(A12
12)t A22

12 A23
12

O (A23
12)t A33

12

⎞
⎟⎠, (G28)

A21 =

⎛
⎜⎝ A11

21 A12
21 O

(A12
21)t A22

21 A23
21

O (A23
21)t A33

21

⎞
⎟⎠, A22 = −At

11. (G29)

Here

A11
11 = −∂αCα3C−1

33 , (G30)

A12
11 = −iωρ f k

η
iα∂α − ∂α

1

M
uα, (G31)

A13
11 = iωρ f Liαjt

α, (G32)

A11
12 = − 1

iω
∂αUαβ∂β + iω

(
ρbI3 + iω(ρ f )2 k

η
iαit

α

)
, (G33)

A12
12 = iωρ f i3, (G34)

A22
12 = −η

k

(
1 − 1

iωE
η

k
L2

)
, (G35)

A23
12 = 1

iωE
η

k
L∇ t

1 , (G36)

A33
12 = iωμI2 + ∇1

1

iωE ∇ t
1 , (G37)

A11
21 = iωC−1

33 , (G38)

A12
21 = −iω

C

M
C−1

33 i3, (G39)

A22
21 = iω

C2

M2
it
3C−1

33 i3 + iω

M
+ ∂β

k

η
∂β, (G40)

A23
21 = −∂β Ljt

β, (G41)

A33
21 =

(
iωE − η

k
L2

)
I2 + ∇2

1

iωμ
∇ t

2 , (G42)

where I3 is a 3 × 3 identity matrix, I2 a 2 × 2 identity matrix and

Uαβ = Cαβ − Cα3C−1
33 C3β, (G43)
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Unified matrix–vector wave equation 583

uα = C(iα − Cα3C−1
33 i3). (G44)

Operators A11, A12, A21 and A22 obey the symmetry relations formulated in eqs (16)–(18). We define the adjoints of the medium
parameters ε, μ, σ , cijkl, ρ (with superscript b or f), k, η, C and M similar as in Appendices C, D and E but for the isotropic situation. Moreover,
we define L̄ = −L∗. Operators Ā11, Ā12, Ā21 and Ā22 in the adjoint medium obey relations (19)–(22). Explicit expressions for the operator
matrices are given in the supplemental material, Section 5.

A P P E N D I X H : S Y M M E T RY P RO P E RT I E S O F T H E O P E R AT O R M AT R I X I N T H E
WAV E N U M B E R - F R E Q U E N C Y D O M A I N

We derive symmetry properties of the operator matrix for the special case of a laterally invariant medium (or potential) in the wavenumber-
frequency domain. We define the spatial Fourier transform of a space- and frequency-dependent quantity h(x, ω) as

h̃(kα, x3, ω) =
∫
A

h(x, ω)exp(−ikαxα)d2xH, (H1)

with kα for α = 1, 2 representing the horizontal wavenumbers. Lateral derivatives ∂αh(x, ω) in the space-frequency domain are replaced by
products ikα h̃(kα, x3, ω) in the wavenumber-frequency domain. We denote the Fourier transform of ∂α as ∂α⇒ikα . Similarly, for an operator
matrix U in a laterally invariant medium, containing the differential operator ∂α , we denote the Fourier transform as U (∂α) ⇒ Ũ (kα). Using
eqs (10) and (15), we find

{U (∂α)}t ⇒ {Ũ (−kα)}t , (H2)

{U (∂α)}∗ ⇒ {Ũ (−kα)}∗, (H3)

{U (∂α)}† ⇒ {Ũ (kα)}†. (H4)

We use eq. (H1) to transform eq. (1) to the wavenumber-frequency domain, according to ∂3q̃ = Ãq̃ + d̃. We find the symmetry properties of
Ã(kα, x3, ω) by applying eqs (H2)–(H4) to the left-hand sides of eqs (27)–(29). This gives

{Ã(−kα, x3, ω)}t N = −NÃ(kα, x3, ω), (H5)

{Ã(−kα, x3, ω)}∗J = J ˜̄A(kα, x3, ω), (H6)

{Ã(kα, x3, ω)}†K = −K ˜̄A(kα, x3, ω). (H7)
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