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Abstract 
 
By signing the Paris Climate Agreement, The Netherlands has committed itself to curtail its CO2-
emissions in order to keep global warming well below 2°C above pre-industrial levels. Pivotal to 
achieve these targets is the phase-out of CO2-intensive electricity generation technologies and 
investments in renewables. Current investments aiming to decarbonise the electricity system are 
predominantly allocated to solar PV and off- and onshore wind energy. However, this trajectory 
might change as the development of Dynamic Tidal power (DTP) might soon enable The 
Netherlands to harvest the North Sea’s currently unutilised tidal currents to generate clean 
electricity. DTP uses a 30-70 kilometre long dam perpendicular to the coast to capture the North 
Sea’s tidal currents. The alternating currents that proceed parallel to the coast create a hydraulic 
head over the dam, which turbines in the dam convert into electricity. 
 
However, the variable availability of solar irradiation, wind, and tidal currents makes it 
increasingly complex and costly to match electricity supply and demand as their shares in the 
electricity mix increase. To ensure electricity security, freely dispatchable energy generators (e.g. 
natural gas, biomass or coal turbines) are deployed to cover the electricity load that could not be 
met by the variable renewable energy (VRE) generators. However, due to the fuel used to generate 
electricity, dispatchable energy sources tend to emit CO2 and bear higher marginal energy 
generation costs than VRES.  

To address this problem, the portfolio shares of solar PV, offshore wind, onshore wind and 
DTP that minimise the need for dispatchable backup capacity and the energy generation costs were 
computed in this study. Due to its novelty, special attention was paid to the effect of DTP on a VRE 
system’s ability to efficiently match supply and demand.  
 
In order to achieve these objectives a novel application of the Modern Portfolio Theory (MPT) was 
used. The MPT originates from the stock market but is often used to comprise VRE portfolios that 
maximise the electricity output. However, as the aim was to minimise the residual load, demand-
variability was introduced into the MPT. Existing literature had not covered this topic. Hence, by 
assessing to what extent including demand-variability in the MPT affects the selection of efficient 
VRE portfolios, this study filled a gap in the literature and serves as a starting point for future 
research into the application of the MPT. 
 
In total, three different electricity demand scenarios were optimised; the contemporary load profile 
(1), increased peak loads due to an extreme penetration of electric vehicles (EV) and electric heat 
pumps (HP) (2), and a flat load profile due to an extreme penetration of demand-responsive 
measures (3). The most efficient portfolio shares for each demand scenario were found by computing 
how 35GW should be distributed among solar PV, offshore wind, onshore wind and DTP in order 
to minimise the need backup capacity and the energy generation costs. 
 
The results of this study indicate that regardless of the demand profile, The Netherlands’ VRE 
system would be most costs-efficient in meeting demand when comprised of approximately 75% 
DTP and 25% offshore wind. However, only under the condition that the DTP-dams are 
geographically dispersed. Geographically dispersed DTP-dams, for example, located in Zeeland 
(south of The Netherlands) and off the coast of Texel (north of The Netherlands), cancels out the 
volatility in the electricity output caused by high and low tide. This reduces a VRE system’s 
volatility in electricity output and stabilises the electricity output from the dispatchable backup 
system, which minimises the system’s electricity generation costs.   

However, in terms of the amount of backup capacity required, it was found that a system 
comprised entirely of DTP with an integrated battery storage system would be even more efficient. 
The battery storage system eliminates all variability in the electricity output from DTP, which 
minimises the need for dispatchable backup capacity. However, as battery storage costs are 
significant (approx. 100,000 €/MWh), it is unlikely that a DTP-dam with a storage system large 
enough to flatten its electricity output is economically viable under the current market 
circumstances. This might change when DTP is combined with other storage systems or if battery 
storage costs reduce due to learning-effect, economies of scale or technical innovations.  
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As DTP is still in its initial development phase, it is not certain DTP will successfully penetrate the 
power generation market. If DTP fails to enter the market, the current VRE system (61% solar PV, 
8% offshore wind and 31% onshore wind) is fairly cost-efficient.  However, if the aim is to reduce 
the amount of dispatchable backup capacity required to ensure energy security, future investments 
should be allocated to offshore wind. 
 
The overarching conclusion is that there is no unequivocal VRE portfolio that is most efficient to 
meet demand as it depends on the perspective taken (required backup capacity versus electricity 
generation costs). However, this study shows that the current VRE system benefits from the 
inclusion of DTP, both in terms of the required amount of backup capacity and the system’s energy 
generation costs. Only if DTP is combined with a large battery storge system to flatten its electricity 
output do the system’s energy generation costs surpass the costs of the current VRE system. 

 
In regards to the effect of including demand-variability in the MPT, it was found that demand-
variability has a limited effect on the selection of efficient VRE portfolio shares. Only in a scenario 
(2) with increased peak loads did the share of offshore wind slightly increase. This is due to the fact 
that the peaks in electricity supply from offshore wind coincide with the peaks in demand from 
electric HP (winter).  
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List of acronyms and symbols 
 
 
CCGT   Combined Cycle Gas Turbine  
CF  Capacity factor  
CI  Confidence interval 
DTP  Dynamic Tidal Power 
ETS  Emission Trading System 
EV   Electric vehicle(s) 
HP  Heat Pump(s) 
LCOE  Levelized Costs of Energy          
MPT  Modern Portfolio Theory 
NPV   Net present value 
NRMSE  Normalised Root mean square error 
O&M  Operations & maintenance  
PV  Photovoltaics  
RES  Renewable energy sources 
RL  Residual load 
RMSE  Root mean square error 
RQ  Research question 
STD   Standard deviation  
TSO  Transmission System Operator 
VRE   Variable renewable energy 
VRES  Variable renewable energy sources 
 
!  Standard deviation (STD) 
"#$  Covariance  
%  Correlation coefficient  
&  Mean  
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1. Introduction 
 
This chapter first provides some indispensable background information. Subsequentially, section 
1.2 discusses the practical and academic problem this study addressed. Section 1.3. elaborates on 
the main objectives of this research and the research questions that were formulated to achieve 
these objectives. The last section also briefly elaborates on the fundamental assumptions 
undelaying this research, and the structure of the remaining of this report. 
 
1.1 Background  
 
In 2015, the growing recognition that global warming is unequivocal had led The Netherlands and 
186 other nations to sign the Paris Climate Agreement, to keep “global average temperature rise to 
well below 2°C above pre-industrial level, and to pursue efforts to limit warming to 1.5°C’’ [4]. As a 
result of the scientific consensus that climatic change is aggravated by the emission of greenhouse 
gasses, particularly carbon dioxide [5], The Netherlands has committed itself to reduce its CO2-
emissions. To curtail CO2-emissions, a transformation of the electricity sector is pivotal. Not only 
because the power generation market is responsible for 23% of the Netherlands’ CO2-emissions [6], 
but also because the transformation of numerous other CO2-intensive sectors depends on a 
sustainable electricity system. To accelerate the decarbonisation of its electricity system, The 
Netherlands has set the target to generate almost 100% of its electricity CO2-neutral by 2050 [7]. 

In The Netherlands’ current (2020) electricity mix, clean, renewable energy sources, in 
particular; wind (51%), solar PV (23%) and biomass (25%), account for 18.5% of the electricity 
generated [8]. Apart from 3% nuclear energy, the remaining is produced burning CO2-intensive 
fossil fuels, especially natural gas (77%) [8]. Hence, large investments in renewable energy 
technologies are needed to achieve 2050’s sustainability target.  
 
Most of the current investments aiming to decarbonise The Netherlands’ electricity system are 
allocated to solar PV and wind, with offshore wind gaining significant momentum over the past 
years [9]. However, due to the development of a novel energy technology, The Netherlands might 
soon be able to generate clean electricity by harnessing the North Sea’s tidal currents. Tidal 
currents are alternating horizontal movements of water driven by the regular rise and fall of the 
astronomic tides [10]. Hence, tidal currents are more predictable than solar irradiation and wind 
speeds [11]. As most conventional tidal power generators require flow speeds that are rarely met 
in the Dutch part of the North Sea [12] [13], tidal currents are currently unutilised. However, due 
to its size, Dynamic Tidal Power (DTP), a technology still in its initial phase of development, is 
theoretically capable of generating electricity at low water velocities. DTP uses a 30-70 kilometre 
long dam perpendicular to the coast to capture the North Sea’s tidal currents that proceed parallel 
to the coastline (fig. 1). The alternating currents create a water level difference on both sides of the 
DTP-dam (fig. 2), which turbines in the dam can convert into electricity (fig. 3). Theoretically, DTP 
can cover 55% of The Netherlands’ electricity load, a CE Delft study states [14].   
 

 
 

Figure 2: visualisation of the difference 
in water level over an exemplary DTP-

dam as a result of the tidal current [101]. 

Figure 3: impression of the 
turbines in a DTP-dam [100]. 

Figure 1: impression of a DTP-dam 
perpendicular to the cost [99]. 
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1.2 Problem definition  
 

The problem this research address is characterised by a practical and academic aspect. Both are 
discussed in this section.   
 
1.2.1 Practical problem definition 

 
Investments in solar PV, on-/offshore wind energy and DTP will significantly accelerate the 
abatement of carbon emissions but also hampers the electricity system’s ability to match supply 
and demand [11]. To explain this problem, a simplified representation of The Netherlands’ 
electricity system is visualised in figure 4. 
  Solar PV, wind energy and DTP are variable renewable energy (VRE) technologies, which, 
unlike dispatchable energy technologies (e.g. coal or natural gas power plants), cannot be deployed 
on request as they only generate electricity when the conditions are right. The electricity output 
from solar PV and wind energy depends on the weather, making their electricity output volatile 
and highly unpredictable. Although tidal currents are weather-independent and thus perfectly 
predictable, DTP’s electricity output remains variable due to the alternating tides. As a result of 
the fluctuating electricity output from VRE generators, it becomes increasingly difficult to match 
supply and demand as their shares in the electricity mix increase [15].   
  
To ensure electricity security during periods of little VRE output, The Netherlands deploys (fossil 
fuel-intensive) dispatchable backup generators to cover the residual load [15]. The residual load 
is ‘’the difference between actual power demand and the feed-in of non-dispatchable and inflexible 
generators’’ [16]. However, due to the fuel used to generate electricity (e.g. coal or natural gas), 
dispatchable energy sources tend to emit CO2 and bear higher marginal energy generation costs 
than VRE technologies. To minimise the need for backup capacity and the system’s energy 
generation costs, this study aimed to find the mix of solar PV, wind and DTP that minimises the 
residual load and the variance of the residual load. Because of its novelty, special attention was 
paid to whether DTP improves the current VRE system’s ability to match supply and demand. 
 
 

 
 
 

 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4: simplified representation of The Netherlands’ electricity system. 
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1.2.2 Academic problem definition 
 

A dominant method to comprise efficient VRE portfolios is the Modern Portfolio Theory (MPT) [17]. 
The MPT originates from the stock market but is often used as a tool to compute energy-generating 
portfolios. The MPT is unique compared to traditional energy planning tools, as it includes the 
correlation between the electricity outputs from individual energy-generating technologies [18]. By 
comprising VRE portfolios that draw from negatively correlating energy sources, the variance in 
electricity output from the system as a whole can be lower than the variance in electricity output 
from each independent VRE technology compromising the portfolio [18]. Traditionally, when the 
MPT is applied to the electricity market, the aim is to maximise a portfolio’s average electricity 
output and minimise its variance in supply [17]. This relation is characterised by a trade-off; a 
portfolio’s average electricity output increases proportionally with its variance [19].  However, 
rather than maximising the electricity output, this study aimed to find the VRE portfolios that 
minimise the residual load and the volatility of the residual load. This is different as electricity 
demand is not necessarily consistent, quite the contrary. Therefore, solely aiming for a consistent 
electricity output might still result in the need for dispatchable backup capacity.  
  
There is one study [20] that uses the residual load to gauge the efficiency of portfolios, but it fails 
to optimise the system by minimising the residual load. Cunha et al. [18] ratify that this objective 
is understudied by stating that ‘’future work addressing RES portfolios should also consider the 
demand variability and its relationship to RES power output aiming to minimise not only the 
variability of the portfolio output (standard deviation) but also to minimise the deviation between 
the demand and the RES production in each moment’’ [18]. To bridge this gap in the literature, this 
present study has developed a modified version of the MPT that minimises the mean residual load 
and its variance. This modified version of the MPT was applied to the case study of The Netherlands 
in order to find the portfolios of solar PV, wind and DTP that most efficiently meet demand. 
 
 
1.3 Research outline  

 
This section discusses the overarching objectives of this research and the research questions that 
were formulated to achieve these objectives. Subsequentially, this section briefly elaborates on; how 
these research questions were answered, the fundamental assumptions underlaying this research 
and how the rest of this report is structured. 
 
The objective of this research was three-folded. Firstly, this study aimed to find the portfolios of 
wind energy, solar PV and DTP that minimise the need for back-up capacity and energy generation 
costs. This information helps governmental energy planners to develop a roadmap towards the 
efficient integration of VRES. 

Secondly, this research aimed to provide insights into the extent to which incorporating 
tidal energy improves The Netherlands’ contemporary VRE system’s (wind and solar PV) ability to 
meet demand. This information is not only valuable for the DTP Foundation in The Netherlands 
but might also be of interest to other countries with a potential for tidal current energy. 

Third and last, this research intended to contribute to the further development of the MPT. 
Unlike existing studies that apply the MPT to the electricity market, this study included demand-
variability to find the VRE portfolios that minimise the residual load. As such, this study provides 
fundamental new insights into the role of electricity demand in the selection of efficient VRE 
portfolios. Hence, this study contributes to the academic discussion regarding the MPT and serves 
as a starting point for future research into the application of the MPT. 
 
To achieve the main objective of this research and find the most efficient VRE portfolios, the 
following research question was formulated; 
 
What are the efficient portfolios of onshore wind, offshore wind, solar PV and Dynamic 

Tidal Power to meet demand? 
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Research questions (RQ) 1-3 were formulated to obtain all the necessary input data in order to 
answer the main research question. To achieve the other two objectives of this research, and assess 
the effects of DTP on a VRE system’s ability to meet demand and to what extent including demand 
variability in the MPT affects the selection of efficient VRE portfolios, research questions 4 and 5 
were formulated. Hence, apart from the main research question, research questions 4 and 5 are 
also answered in the conclusion (chapter 7). 
 
RQ1.  What are the hourly electricity generation profiles of onshore wind, offshore wind, solar PV 

and DTP? 
 
RQ2. What is The Netherlands’ hourly electricity demand profile? 
 
RQ3. What are the energy generation costs of onshore wind, offshore wind, PV, DTP and a 

dispatchable backup system? 
 
RQ4 What are the effects of DTP on The Netherlands’ current VRE system’s ability to meet 

demand? 
 
RQ4. To what extent does including demand-variability in the MPT affect the selection of efficient 

VRE portfolios? 
 
To answer research questions 1-3, a literature study was conducted, and electricity output and 
demand data was derived from various sources. To answer research questions 4, 5 and the main 
research question, this study investigated how 35GW of installed capacity should be distributed 
among solar PV, offshore wind, onshore wind and DTP to efficiently meet demand. 35GW was 
initially optimised because it is similar to the current (2020) installed capacity in The Netherlands 
(33353 MW) [21]. However, in the sensitivity analysis, the system’s size was changed to 25 and 
45GW in order to assess whether a system’s size affects which portfolio shares are most efficient. 
 
A VRE portfolio’s efficiency is measured using two performance indicators; the amount of 
dispatchable backup capacity required to ensure energy security (I) and the system’s total energy 
generation costs (II). The latter thus includes the costs of the VRE system and the costs of the 
dispatchable backup system required to ensure energy security. The VRE portfolio that requires 
the least backup capacity and the system that bears the lowest energy generation costs are 
considered to be most efficient in meeting demand. These are not necessarily the same VRE 
portfolios. Hence, different portfolios can be most efficient depending on the performance indicator 
that is considered.  
 
It is important to stress that the 35GW electricity system that was optimised to find the most 
efficient VRE portfolios is a simplified representation of real-life. As a result, this study's scope was 
geographically demarcated, solely focusing on The Netherlands. Hence, it is assumed that The 
Netherland’s electricity system is a closed energy system. In real-life, electricity surplus or 
deficiencies can be partly offset by selling electricity to or purchasing electricity from neighbouring 
countries. However, for simplification reasons, international electricity trading was not included in 
this study, and electricity surplus and deficiencies were treated as equally inefficient.  

Secondly, The Netherland’s current electricity generation infrastructure was not taken into 
account in this study. Hence, when the electricity system was optimised, no constraints were set to 
the amount of capacity installed of specific energy technologies. This study thus optimised The 
Netherlands’ electricity system from scratch.  

A third assumption concerns the sequence in which energy generators are deployed to cover 
demand. This study assumed that VRE technologies are deployed first and that any residual load 
left is then covered by the dispatchable backup system. This assumption is derived from the real-
life electricity market, in which the energy technologies’ marginal costs determine the deployment 
sequence. As VRE technologies use no fuel and thus have marginal costs close to zero, they are 
deployed before dispatchable energy technologies that burn fuel to generate electricity. 
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The remaining of this report is structured as follows. The following chapter first elaborates on the 
relevant literature, aiming to explain the fundamentals of the MPT and how the existing literature 
applied the MPT to the electricity market. Chapter 3 explains the novel methodology that was 
developed to find the most efficient VRE portfolios. In chapter 4, the case study of The Netherlands 
and the input data for the optimisation model is discussed. Hence, this chapter answers research 
question 1-3. Chapter 5 presents the results and the VRE portfolios that are most efficient in 
meeting demand based on the two performance indicators. Chapter 6 reflects on the results 
presented in chapter 5 and the novel methodology that was used to derive these results. Especially 
the latter is reflected on in great detail as this study’s application of the MPT is entirely novel. In 
the seventh and concluding chapter, the answers to research questions 4, 5 and the main research 
question are provided. 
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2 Literature review  
 
In this chapter, the relevant literature regarding the Modern Portfolio Theory (MPT) is discussed. 
The MPT, initially proposed by Markowitz [22] in 1952, originates from the stock market and only 
later (1976) became an energy planning tool [23]. To acquire a thorough understanding of the MPT, 
section 2.1 first explains its original application to the financial markets. Subsequently, section 2.2 
explains how the MPT is used as an energy planning tool. Section 2.2 also reviews the existing 
literature applying the MPT to the electricity market in order to identify potential knowledge gaps. 
In section 2.3, the main limitations of the MPT, as described in the literature, are discussed. 
 
 
2.1 The Modern Portfolio Theory 
 
This section firsts provides some context and background theory about the trade-offs risk-averse 
investors make before investing in a financial asset. Subsequently, the fundamentals of the MPT 
are explained and how investors use the MPT as a tool to maximise the expected return on their 
investments while minimising the risk.  
 
Risk-averse investors prefer a safe income over a risky income of the same average amount [24]. 
Hence, before investing, investors will always evaluate the expected return and risk of a financial 
asset (e.g. stock). The expected return ('()!)) of a stock can be estimated by evaluating it historical 
returns. E.g. based on historical data from 2010-2015, the average percentage increase in value per 
euro invested is 2%. Comparing these average historical returns tells the investor how much she 
can expect to earn on a certain stock, and which stock is expected to yield the highest returns [25]. 

However, on average, a stock might yield high returns, if its returns are highly volatile, the 
investor might as well earn nothing. The volatility of a stock’s returns (eq. 2.1) is referred to as its 
risk and commonly measures by the standard deviation. The standard deviation is the root of the 
sum of the squared deviation from the mean (()! − ),)") divided by the number of observations 
minus 1 (- − 1)	[25]; 

 

! = 5
∑ ()! − )#7 )"!$%
!$&
- − 1

															('8. 2.1) 

 
A standard deviation (STD) of zero indicates that a stock’s returns are perfectly consistent and that 
the stock is risk-free [25]. When investing in a stock with a STD equal to zero, one can be certain 
to receive the expected return. The higher the STD, the more spread out a stock’s returns are and 
the riskier a stock becomes. If a stock’s volatility increases, investors expect a higher risk premium 
in order to compensate for the relatively higher risk they are taking [24]. As a result, a stock’s 
expected return increases proportionally with its risk and the investor is thus faced with a trade-
off [19]. 
 
Deviations in a stock’s return are usually the result of some sort of news. There are two types of 
news that might affect a stock’s return; firm-specific news and market news.  Firm-specific news is 
news about a single company and only affects the return on their stock (e.g. earnings 
announcements). Volatility caused by firm-specific news is uncorrelated among stocks and 
therefore also referred to as independent risk. On the other hand, market-wide news is news about 
the whole economy and affects all stocks simultaneously (e.g. increasing interest rates). This type 
of risk is also called common risk [25]. 
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2.1.1 Portfolio diversification 
 

The notion that stocks carry different types of risk is the foundation for the Modern Portfolio Theory 
(MPT). The fundamental idea behind the MPT is that investment diversification reduces the 
independent risk. By combining multiple stocks in a large portfolio rather than investing in a single 
stock, each stock’s independent risk averages out. Certain news might be good for some stocks, 
while bad for others, but the overall amount of good and bad news is relatively consistent. 
Diversification only averages out the independent risk. Hence, if a portfolio of multiple stocks 
carries both types of risk, the volatility declines until only the common risk remains. Due to this 
diversification, a portfolio’s risk can be less than the risk of each stock comprising the portfolio [25]. 
 
An investment portfolio is described by its portfolio weights, which indicate how the invested money 
is distributed among different individual stocks. E.g. if the invested resources are evenly 
distributed over two stocks, the portfolio weights are 0.5. The portfolio weights always add up to 1 
and cannot be negative.  To find the portfolio weights that maximise the diversification effects and 
the expected return, one needs to calculate the return and risk for different portfolio weights, and 
generate an efficient frontier [19]. 
 
2.1.2 Portfolio’s expected return and risk  

 
The return of a portfolio ('()')) with - stocks is simply the sum of the portfolio weights (:!) times 
the expected return on each stock ('()!)) [19]; 
 

'()') =;:! ∗ '()!)											('8. 2.2)

!$%

!$&
 

 
Unlike the return of a portfolio, a portfolio’s risk cannot be computed by simply multiplying the 
portfolio weights with the risk on the individual stocks. To account for the diversification effects, 
one also has to include the degree to which the stocks in the portfolio carry common risks, and their 
returns move together. The co-movement between the returns on different stocks is measured by 
the covariance and the correlation. The covariance is the product of the deviation of two returns 
()!/)) from their means (),!/)), divided by the number of observations (-)	[19]; 
 

"#$>)! , ))@ =
∑ ()! − )#7 ) ∗ ()) − )*7
!$%
!$& )

-
											('8. 2.3) 

 
If the two stocks’ returns tend to be above or below its average return at the same time, the two 
stocks move together, and their covariance is positive. The covariance is negative when the two 
stocks’ returns move in opposite directions; the return of one stock is above its average while the 
other is below its average. The sign of the covariance is easy to interpret, its magnitude on the other 
is not. Therefore, the correlation is often used to gauge the strength of the relationship between 
stock’s returns. The correlation is the covariance between two returns (eq. 2.3) divided by the 
standard deviation of the two individual stock’s returns (!>)!/)@) [19]; 
 

%>)! , ))@ =
"#$>)! , ))@

!()!) ∗ 	!>))@
														('8. 2.4) 

 
Dividing the covariance by the standard deviations ensures that the correlation is always between 
-1 and +1, enabling the easy gauging of the strength of the relationship between the two stock’s 
returns. The closer the correlation is to +1, the more common risk the two stocks carry and the 
more their returns tend to move together. The closer the correlation is to -1, the more the returns 
tend to move in opposite directions. If the correlation equals zero, the two stocks’ returns move 
neither together nor in the opposite direction and their returns are uncorrelated. When a portfolio 
consists of more than two stocks, the correlations (eq. 2.4) between all the different stocks have to 
be determined [19].  
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Now that the risk on the individual stocks (eq. 2.1) and the correlation between each stock’s returns 
(eq. 2.4) are known, we can calculate the risk (volatility) for portfolios with different weights. For a 
two stock portfolio this looks as following [19]; 
 

!>)'@ = C:!
" ∗ !()!)" + :)

" ∗ !>))@
"
+ 2 ∗ :!

" ∗ :)
" ∗ %>)! , ))@ ∗ 	!()!) ∗ !()))															('8. 2.5) 

 
Knowing that investors care about a portfolio’s expected return and the volatility, we must consider 
both simultaneously. By adjusting the portfolio weights (:!), the expected return on a portfolio (eq. 
2.2) and the associated risk (eq. 2.5) can be calculated for different portfolios. Doing so, results in a 
list of different portfolios shares, who’s weights always add up to 1, followed by their expected 
return and risk. However, how does one find the most efficient portfolio in this long list of possible 
portfolio combinations? 
 
2.1.3 The efficient frontier 
 
The most efficient portfolios can be found by plotting the calculated returns and risks of all the 
portfolios in a scatter plot. Figure 5 illustrates a simplified example of such a scatter plot. The 
horizontal axis indicates a portfolios expected return, and the vertical axis a portfolio's risk (STD). 
The large dots in the scatter plot are portfolios comprised of assets from a single company, for 
example, five Shell stocks. The small dots represent weighted portfolios that include assets from 
multiple firms, for instance; three Shell stocks and two Ørsted stocks. Note that when the 
investment portfolio is diversified among multiple stocks, the independent risk averages out and 
the portfolios volatility (risk) decreases. The minimum-variance frontier (blue line) marks all the 
portfolios with the lowest possible risk level for each expected return. The portfolio that eliminates 
all the independent risk, so that only the common risk remains, can be found at the uttermost left 
point on the minimum-variance frontier [19]. 
 
Although all portfolios on the minimum-variance frontier curtail risk to the minimum, they are not 
equally efficient. The dashed line marks the tipping point between efficient and inefficient 
portfolios. The portfolios located on the lower part of the minimum-variance frontier (under the 
dashed line) are inefficient as other portfolios yield a higher return for the same risk. The efficient 
portfolios are located on the upper part of the minimum-variance since no other portfolios offer a 
higher expected return with lower volatility. This part of the minimum-variance frontier is referred 
to as the efficient frontier and represents all portfolios that maximise the expected return for a 
given level of risk [18]. However, while it is easy to eliminate the inefficient portfolios, the efficient 
ones cannot easily be ranked. Investors will have to choose among them based on their own 
preferences for return versus risk.  
 

 

 
 
 

Figure 5: exemplary minimum-variance 
frontier [92]. 

Figure 6: the effect of correlation on a portfolio's 
volatility. Correlations of -1, -0.5, 0, 0,5 and 1  [19]. 
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The pivotal role of the correlation among stock’s returns in the MPT cannot be stressed enough and 
becomes evident in figure 6. When stocks bear a high level of common risk, and their returns are 
positively correlated, diversification results in little risk reduction. But as stocks carry more 
independent risk and their correlation decreases, the reduction in risk due to diversification 
increases. To such an extent, that when two stocks are perfectly negatively correlated (-1), it is 
possible to hold a portfolio that carries absolutely no risk. Stocks in the same industry face common 
risks, and their returns tend to move together (positive correlation). Therefore, it is most efficient 
to diversify among stocks whose returns are not affected by similar economic events [19]. 
 
 
2.2 The Modern Portfolio theory applied to the electricity market 
 
In energy planning, the least-cost approach has always been the favoured and most commonly used 
planning tool to select power generation assets [17]. The least-cost approach evaluates each 
electricity-generating technology according to its levelized cost of electricity (LCOE), expressed in 
€/MWh produced [23] [26]. By comparing the LCOE of each electricity generation technology, the 
technology with the lowest LCOE can be identified, which is assumed to be the best investment 
[26]. However, as energy planning has become tremendously complex due to factors, such as; the 
introduction of VRES, storage systems and demand-side flexibility, numerous authors (e.g. [17] 
[23]) argue that generation technologies cannot be selected solely based on the lowest LCOE 
anymore. The intermittency associated with certain electricity generation technologies and the 
complementary effects between technologies should also be included in the decision-making process 
[18] [23]. 
 
As a result of this increased complexity, numerous researchers (e.g. [27] [28] [29] [30] [31] [32]) 
started applying the Modern Portfolio Theory (MPT) to the electricity market as a more 
comprehensive alternative to the least-cost method. The fundamental idea behind the MPT, as 
described in section 2.1, remains the same when applied to a VRE system. The main difference is 
that the variance of returns on electricity generation technologies is not caused by firm-specific or 
market news, but by the availability or costs of the energy source used to generate electricity. For 
example, the electricity produced (return) by one MW of installed wind energy declines as wind 
speeds decrease. Hence, as VRES are not always available, the electricity output from VRE 
technologies tend to have a higher variance than the output from dispatchable energy sources. 
Similar to financial assets portfolios, composing energy generation portfolios that draw from 
negatively correlating energy sources reduces the variance in output of the whole portfolio [18]. 
 
Ever since Bar-Lev and Katz [28] applied the MPT to the electricity market in 1976 to analyse the 
relation between fossil resources and the power generation industry, the MPT has become a well-
established energy generation planning tool [23]. Based on what researches define as the return on 
an energy generation portfolio, the vast body of literature applying the MPT can be divided into 
two literature approaches, research focusing on; economic criteria and on power production criteria 
[23].  
 
Research focusing on economic criteria (e.g. [33] [34] [35]) delineate the most efficient electricity 
portfolios by maximising revenue (or minimising costs) for a given level of risk. By defining the 
expected return as the revenue generated from the sale of the electricity produced by the weighted 
portfolio and risk as the variance of the revenue, cost-risk efficient frontiers are generated [23]. The 
second literature stream consists of studies (e.g. [36] [37] [18]) that generate an efficient frontier 
by optimising the electricity output, measured in physical units of production, rather than 
monetary units [23]. Hence, the return on an energy portfolio is expressed as the number of 
electricity units generated per unit installed, which is known as the capacity factor (CF). The risk 
on a portfolio is the variance of the portfolio’s capacity factor.  

As this thesis aims to minimise the residual and its variance, measured in physical units 
of production, it can best be placed in the second literature stream.  
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As most researches focus on the monetary units of analysis, the literature stream using the MPT 
to optimise a system’s physical units is small. Cunha et al. [18] applied the MPT to Portugal’s 
historic wind, solar PV and reservoir hydro data to find the portfolios that maximise the electricity 
output and minimise the variance in supply. The authors found that reservoir hydropower’s 
electricity output positively correlates with wind power, and that PV negatively correlates with 
both hydro and wind power [18]. The authors also concluded that future research should consider 
the load variability, aiming to minimise not only the variability of the portfolio’s output but also 
the deviation between production and demand [18]. 

A recently published study [20], which aimed to compute the most efficient portfolios of 
geographically dispersed wind farms in South-Africa, including demand-variability. However, the 
authors first computed the portfolios that maximise the electricity output and subtract their output 
from the national demand profile to find the residual load. Van Vuren et al. [20] thus failed to 
optimise the system by minimising the residual load. The authors solely used the residual load as 
a means to gauge the efficiency of the portfolios. Hence, the existing literature has never optimised 
an electricity system by including demand-variability in MPT. The effect of demand-variability on 
the selection of efficient VRE portfolios is thus unknown, a knowledge gap this study aims to fill. 

 
Just as Vuren et al. [20] and Cunha et al. [18], most researches, aiming to analyse the effects of 
energy diversification, apply the MPT to well-established VRE technologies, such as; wind (e.g. [38] 
[29] [36] [39]), PV (e.g. [38] [29] [36] [39]), reservoir hydropower (e.g. [38] [29] [36]) and biomass 
(e.g. [29] [36] [39]). Though little has been documented about the diversification effects of tidal 
energy, one study [29] suggest that tidal technologies might reduce a portfolio’s risk when included 
in the energy mix. Allan et al. [29], optimised different scenarios for the Scottish 2020 generation 
mix and incorporated tidal energy in their analysis. Despite only including a maximum share of 5% 
tidal energy in their initial analysis, the authors doubled the share of tidal power in the sensitivity 
analysis. They found that the efficient frontier moved to the left, indicating the risk-mitigating 
effect of tidal energy [29]. However, there is no literature indicating that this positive effect 
preserves when tidal power covers more than 10% of the energy mix, which is the case with DTP. 
 
 
2.3 Limitations of the Modern Portfolio Theory 
 
The first, but most fundamental limitation of Markowitz’s MPT, is that the MPT derives future 
returns and risks on assets from historical data, assuming future representativeness [23]. In 
reality, there are many factors, such as; climate conditions, political factors, social factors or 
economic factors affecting the future return and risk on asset portfolios [30]. Therefore, A. Stirling 
[40] [41] claims that using only historical data to support the portfolio model might lead to 
erroneous results [23]. Some scientists just accept this limitation and state that the effect of 
unexpected events is already included in the historical data [29], while other authors try to mitigate 
this limitation by combining historical data with forecasts [31].  
 
Another limitation that materialises when Markowitz’s MPT is applied to the electricity market 
lies in the different nature of the assets [23]. Unlike financial assets, for which the MPT was 
originally designed, real assets such as energy-generating technologies, are indivisible into small 
shares, making them highly illiquid and difficult to trade [23]. Additionally, the length required to 
recover from an investment is much longer for real assets than financial assets. Hence, changing 
over from an inefficient to an efficient real asset portfolio involves very high costs, for which the 
MPT does not account [23]. 
 
A third limitation of the MPT occurs when renewable energy technologies are included in the 
optimisation model [23]. Just as conventional fossil energy sources, renewables are included in the 
MPT optimisation model based on their costs and risks. However, renewables are characterised by 
certain positive externalities, such as; the lack of CO2-emissions. But the MPT does not account for 
these externalities [34]. To overcome this limitation, numerous authors (e.g. [29] [33] [42]) include 
the CO2-emission costs into the technology’s costs structure in order to reduce the cost distance 
between polluting technologies and renewables. 
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3. Methodology 
 
The methodology used to achieve the objectives described in section 1.3 was, although based on the 
traditional MPT, entirely new. The methodology is characterised by three steps, which are 
visualised in figure 7. First, the VRE portfolio shares that minimise the mean residual load and 
the standard deviation (STD) of the residual load were computed. Second, for each VRE portfolio, 
the dispatchable backup capacity required to cover the residual load and ensure electricity security 
was determined. The required dispatchable backup capacity is the first performance indicator used 
to gauge how efficient a VRE portfolio is in meeting demand. And third, the computed backup 
capacity was added to the VRE system, and the entire system's energy generation costs were 
determined. The energy generation costs were used as the second performance indicator to gauge 
a VRE portfolio’s efficiency.   

Section 3.1, 3.2 and 3.3 elaborate in detail on these three steps. Throughout this chapter 
examples are used to demonstrate the methodology. 
  

 
 
3.1 Comprising efficient VRE portfolios 
 
In this section, the methodology used to find the VRE portfolios that minimise the mean residual 
load and the STD of the residual load is discussed. In section 3.1.1, the data collection method is 
elaborated. Section 3.1.2, 3.1.3 and 3.1.4 discuss how the data was prepared and how the proxy 
variables for the MPT optimisation were derived. How a portfolios’ mean residual load and the STD 
of its residual load was determined is outlined in section 3.1.5. Section 3.1.6 explains how the 
minimum-variance frontiers were generated by solving the optimisation problem. 
 
3.1.1 Data collection method 
 
Applying the MPT optimisation to the electricity market requires electricity output data from all 
electricity generation technologies included in the optimisation. As stressed before, this study 
included; solar PV, wind and Dynamic Tidal Power (DTP).  The wind and solar PV output data was 
drawn from the publicly accessible ENTSO-E Transparency Platform.  The ENTSO-E 
Transparency Platform collects the historical data each National Transmission System Operator 
(TSO) is obliged to provide since 2013 under the 543 EU regulation, which aims to make the 
electricity market more transparent [21].  
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Step 2: determine
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required to ensure
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Step 3: calculate the entire system’s energy generation costs.

Figure 7: visualisation of the three methodological steps. 
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However, unlike wind turbines and solar PV cells, there is no DTP-dam from which historical 
electricity output data could be drawn. Therefore, DTP’s electricity output was mathematically 
calculated by the DTP foundation using MATHLAB.  
 
Unlike other studies that have applied the MPT to the electricity market, this study also included 
demand-variability. Therefore, electricity demand data was obtained. Similar to the output data, 
the demand data was collected from the ENTSO-E Transparency Platform. In order to minimise 
random annual differences in electricity supply or demand, all the historical data was collected 
over three years (2017-2019) and converted into time intervals of an hour.  
 
 
3.1.2 Normalising electricity supply  
 
The electricity output on the ENTSO-E Transparency Platform are absolute values and thus 
depend on the amount of installed capacity. To allow for comparability among the energy 
generation technologies, their hourly electricity outputs were normalised by the respective installed 
capacity for each year (eq. 3.1). This was done for each hour in the period that was analysed (2017-
2019), and resulted in 26,280 capacity factors for each energy-generating technology. The hourly 
capacity factor indicates how much electricity each unit of installed capacity produces at a specific 
moment in time and is often expressed in percentages.  
 
 
 
 
Subsequentially, the hourly capacity factors were multiplied with the size of the VRE system that  
is being optimised (eq. 3.2). As elaborated in section 1.3, this study initially optimised a 35GW VRE 
system. In the sensitivity analysis the system size was changed to 25 and 45GW in order to assess 
whether the system’s size affects the outcome. For each energy generation technology and each 
hour in period that was analyse (2017-2019), the capacity factors were multiplied with 35GW. 
 
 
 
 
 
3.1.3 Computing the hourly residual load 

 
Existing studies have used the normalised electricity output to maximise a VRE system’s mean 
electricity output and minimise the STD of its output. However, this study aimed to find the VRE 
portfolio shares that minimise the mean residual load and the STD of the residual load. The hourly 
residual load is what is left after the output from VRE is subtracted from the actual electricity 
demand (eq. 3.3). 
 
 
 
 
To clarify the principle of the residual load, it is visualised in an example (fig. 8). The blue line 
illustrates the amount of electricity demanded from the system and the orange line illustrated how 
much electricity is supplied by 35GW of solar PV. For example, at 5 o’clock, the 35GW solar PV 
system’s electricity output is 13GW and demand is 16 GW, so the residual load is 3GW. A negative 
residual load indicates that the 35GW system produces more electricity than is demanded. In this 
study, electricity surplus and deficiencies were treated as equally inefficient. The residual load was 
determined for each energy-generating technology and hour in period that was analysed (2017-
2019). 

E#FGHIJKLM	LILNOFJNJOP	#QORQO = 	NHRHNJOP	SHNO#F	[%] =
U-JOK	RF#MQNLM	[L. V.		WX]

U-JOK	J-KOHIILM	[L. V.		WX]
						('8. 3.1) 

 

Y#QFIP	FLKJMQHI	I#HM	[WX] = ℎ#QFIP	LILNOFJNOP	MLGH-[WX]	− ℎ#QFIP	LILNOJONP	#QORQO[WX]			('8. 3.3	) 
 

Y#QFIP	LILNOFNJOP	#QORQO	[WX] = 	NHRHNJOP	SHNO#F	[%] ∗ [)'	KPKOLG+K	KJ\L	[35,000WX]					('8. 3.2) 
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3.1.4 Deriving the proxy variables  
 
After the hourly residual loads were determined for each energy generation technology, the proxy 
variables were derived. The proxy variables are not in itself directly relevant but serve as input 
parameters for the MPT optimisation. Three different proxy variables are needed; the energy 
technologies’ mean residual loads (I), the standard deviation (STD) of a technologies’ residual loads 
(II) and the correlation coefficients among all technologies’ residual loads (III).  
 
Proxy variable I: mean residual load 
A technology’s mean residual load is the average of all the hourly residual loads (eq. 3.4). A 
technology’s mean residual load indicates how much of the electricity demand, on average, could 
not be covered, if 35GW of that specific technology were to be deployed to cover demand.  
 

)^! =
)^!,& +	)^!,"…+	)^!,%

-
													('8. 3.4) 

 
Proxy variable II: standard deviation 
The STD of a technology’s residual load (!	()^!)) is the root of the sum of the squared deviations 
from its mean residual load (()! − ),)") divided by the number of observations minus 1 (- − 1) (eq. 
3.5). The STD of a technology’s residual load indicates how volatile the residual loud is, if 35GW of 
that specific technology were to be deployed to cover demand 
 
 

!	()^!) = 5
∑ ()^! − )^,,,,)"!$%
!$&

- − 1
																				('8. 3.5) 

 
Proxy variable III: correlation coefficient  
The correlation (eq. 3.6) between the residual loads of two energy-generated technologies 
(%>)^! , ) )̂@) is the covariance ("#$>)^! , ) )̂@) divided by the standard deviation of the two individual 
residual loads (!()^!)). The covariance (eq. 3.7) is characterised as the product of the deviation of 
two residual loads from its mean residual loads (()^! − )^#,,,,,)) divided by the number of observations 
(- ). The correlation coefficient varies between -1 to 1 and measures to what degree the two 
technologies’ residual loads move together. If two technologies’ residual loads tend to be above or 
below its mean residual load at the same time, the two stocks move together and their correlation 
is positive. The correlation is negative when the technologies’ residuals loads move in opposite 
direction and zero if there is no correlation.  The corelation coefficient has to be calculated for all 
possible combinations of two energy-generating technologies.  
 

3 
3 3.5 1

-3
-2.5 -2

12.00

13.00

14.00

15.00

16.00

17.00

18.00

04:00 05:00 06:00 07:00 08:00 09:00 10:00

D
em

an
d/

su
pp

ly
 [G

W
]

Time [h]

Visualisation residual load

Demanded from system Electrcity output 35GW solar PV system

Figure 8: visualisation residual load. 
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3.1.5 VRE portfolio’s mean residual load and standard deviation  
 
At this stage, we could determine the mean residual load and its standard deviation for a 35GW 
VRE portfolio that is comprised of a single energy technology. However, the goal is to combine 
multiple technologies in a portfolio. Hence, we are interested in a portfolio’s mean residual load (I) 
and the STD of a portfolio’s residual load (II). These can be computed using the technologies’ proxy 
variables.  
 
I portfolio’s mean residual load 
A VRE portfolio’s mean residual load ('>)^'@) is the sum of all the portfolio weights (:!) times the 
expected mean residual load of each technology ('()^!)) (eq. 3.8). Note that there are two 
constraints to the portfolio weights; portfolio weights always have to add up to a 100%  and portfolio 
weights cannot be negative. A VRE portfolio’s mean residual indicates how much of the electricity 
load, on average, could not be covered by the portfolio, if 35GW were to be installed according to 
the portfolios shares that that are plugged into the equation.  
 
 
 
 
 
 
 
II portfolio’s standard deviation 
Unlike the VRE portfolio’s mean residual load, its STD is not just the weighted average of each 
technology’s residual load, but also includes the correlation coefficient between technologies’ 
residual loads. The variance of a portfolio, is a multiplication of  the portfolio weights, the variance 
of each individual technology’s residual load and the mutual correlation between the residual loads 
(eq. 3.9). The STD of a VRE portfolio’s residual indicates how volatile the residual load is, if 35GW 
were to be installed according to the weights that are plugged into the equation. 
 

!>)^'@ = C:!
" ∗ !()^!)" + :)

" ∗ !>) )̂@
"
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3.1.6 Solving the optimisation problem: the minimum-variance frontier 
 
At this point, one can plug in any portfolio shares, as long as they accumulate to 100%, and derive 
the portfolio’s mean residual load and the STD of its residual load. However, the goal is the find all 
the VRE portfolios that minimise both the mean residual load and the STD of the residual load. 
These portfolios are best in meeting demand. This optimisation problem could be solved by plugging 
different portfolio weights in the equations (3.8 & 3.9) and compute the mean residual load and the 
variance of the residual load. This would, however, be very time-consuming. Therefore, Excel Solver 
was used to solve this optimisation problem.  
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Solver is a Microsoft Excel add-in program, which can be used to find optimum values. To find these 
optimum values, one has to define the objective function, the degrees of freedom, and the 
constraints. The objective function is an equation that is either minimised or maximised. The 
degrees of freedom are the variables that are adjusted in order to minimise or maximise the 
objective function. Constraints are certain conditions that need to be satisfied while finding the 
optimum value. 
 
To find the most efficient portfolios, the objective was to find the VRE portfolios that minimise the 
residual load and the volatility of the residual load. However, Solver cannot optimise two values 
simultaneously. Therefore, either the mean residual load or STD of the residual load had to be 
fixed. For this optimisation, the mean residual load was fixed and set as a constrain. Hence, the 
STD of a VRE portfolio’s residual load was the objective function. A portfolio’s STD changes as the 
portfolio weights are adjusted. Therefore, the energy technologies’ portfolio weights were the 
degrees freedom in this optimisation. However, the weights cannot be negative and must add up to 
100%, which were the second and third constraints. 
 
To find all the efficient VRE portfolio shares, the model was run as following. First, the mean 
residual load was fixed at a value that lies within the range of the individual technologies’ mean 
residual loads. The model was run and the STD and the corresponding portfolio shares were 
obtained. Hence, these are the portfolio shares that correspond with the first efficient VRE portfolio. 
Subsequentially, the mean residual load was increased with 500MW and the STD, and 
corresponding portfolio shares were obtained. This is the second efficient VRE portfolio. This 
process was repeated until the whole range of possible mean residual loads was covered. When all 
the mean residual loads and STDs are plotted in a scatter plot, the minimum-variance frontier is 
generated. Hence, the minimum-variance frontier is the outcome of the optimisation problem.  
 
Figure 9 illustrates an exemplary minimum-variance frontier. The vertical axis represents a 
portfolios mean residual load and the horizontal axis its STD. As explained in detail in section 
2.1.3, not all the portfolios on the minimum-variance frontier are equally efficient. Although all 
portfolios on the minimum-variance frontier minimise the STD of the residual load, only the 
portfolios on efficient frontier minimise both the STD and the mean residual load. In figure 9, the 
inefficient part of the minimum-variance frontier is coloured red, the efficient frontier is marked 
green. As a result, all the VRE portfolios on the minimum-variance frontier’s inefficient part (red) 
can be eliminated, leaving only the portfolios on the efficient frontier (green). 
 
Figure 10 illustrates an example of the portfolio composition of the VRE portfolios located on the 
efficient frontier (green line fig. 9). The vertical axis indicates the portfolio shares and the 
horizontal axis a portfolios mean residual load and STD. Hence, the latter corresponds with the 
vertical and horizontal axis of figure 9 and thus indicates where on the efficient frontier (green line 
in fig. 9) a portfolio is located. This study’s final results are similarly visualised.  

 
 

Figure 9: exemplary minimum-variance frontier. 
Red marks the inefficient part of the minimum-
variance frontier and green the efficient frontier. 

 

Figure 10: exemplary overview portfolio shares. 
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3.2 Dispatchable backup capacity 
 
Although the MPT allows for the elimination of some VRE portfolios, there are still multiple 
portfolios located on the efficient frontier. As these are considered equally efficient, it is impossible 
to determine which VRE portfolio is best in meeting demand and should be perused by energy 
planners. While other studies [18] leave this decision to the energy planner’s preferences, this study 
aimed to find an unambiguous answer to the question; which VRE portfolios are most efficient in 
meeting demand. Therefore, this study has gauged and compared the portfolios on the efficient 
frontier by mean of two performance indicators; the amount of dispatchable backup capacity that 
is required to cover a VRE portfolio’s residual load (1) and a system’s total energy generation costs 
(2). This section elaborates on the methodology that was used to determine the size of the required 
backup system. Section 3.3 explains how the system’s energy generation costs were determined.  
 
The size of a VRE portfolio’s backup system was derived from the characteristics of a VRE portfolio 
– its mean residual load and STD – and the assumption that the residual load data is normally 
distributed. Normally distributed data should be more or less shaped as a bell curve, which is 
visualised in figure 11. The horizontal axis is the value in question – the residual load in this 
instance – and the vertical axis is the number of data points for each value. To verify whether the 
residual load data lies within the margins to be considered normally distributed George et al. [43] 
boundaries for skewness1 and kurtosis2 (+2 / -2) were followed, the results can be found in             
appendix H.  
 
When data is normally distributed the STD, which indicates how tightly data is clustered around 
its mean, can be used to demarcate the confidence interval (CI). The CI is the probability that a 
number (i.e. an hourly residual load) falls between two specific values. Figure 11 visualises this 
concept; it is 68.3% certain that an hourly residual load data point lies within one standard 
deviation away from the mean residual load. More explicitly, if 100 random residual loads were to 
be drawn from the data set, 68 of them would lie one standard deviation away from the mean 
residual load. The other 32 values are either higher or lower than the value one standard deviation 
away from the mean, and are thus located at either end of the bell curve. When the number of 
standard deviations from the mean is increased, more data lies within this range, and the 
confidence interval inflates. The number of STD that corresponds with a certain confidence interval 
is called the z-score.  
 

 
 

 
1 ‘’Skewness is a measure of the asymmetry of the distribution of a variable’’ [93]. 
2 ‘’Kurtosis measures the tailedness of the distribution’’ [93]. 
 

Figure 11: visualisation normally distributed data 
set with a two-tailed confidence level. SD is 

standard deviations [85]. 
 

Figure 12: visualisation normally distributed data 
set with a 95% one-tailed confidence level [84]. 
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This property of normally distributed data and the fact that the portfolios’ mean residual loads and 
standard deviations are known, were used to determine the backup capacity. However, a backup 
system does not draw random residual loads from the data set. The moment backup capacity is 
installed, it starts covering the residual load from left to right – first covering small residual loads.  
Therefore, the confidence interval has to be set from left to right rather than from the mean towards 
the bell curve’s ends. This is called a one-tailed confidence interval and is visualised in figure 12. 
Note that for a 95% one-tailed CI, the remaining 5% of the residual load data is located at the end 
of one tail of the bell-curve, rather than being divided over the two tails. As a result, the z-score for 
a 95% one-tailed CI (1.645), is lower than the z-score for a 95% two-tailed CI (2).  
 
Similar as what is visualised in figure 12, this study used a 95% CI, which means that the backup 
should be able to cover 95% of the residual load left by a VRE portfolio. To be able to do so, the size 
of a VRE portfolio’s backup should be equal to its mean residual load (&()^-)), plus 1.645 times the 
STD of the portfolio’s residual load (!()^')) (eq. 3.10). Based on the amount of backup capacity, all 
the portfolios on the efficient frontier were gauged, and the one that requires the least backup is 
considered most efficient in meeting demand.  
 

dJKRHONHeIL	eHNfQR	NHRHNJOP = &()^-) + 1.645 ∗ !>)^'@							('8. 3.10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 
 
For this example, the MPT was used to find the VRE portfolios for a 35GW system that minimise 
the mean residual load and the STD. One of the portfolios on the efficient frontier is comprised 
30% solar PV and 70% wind, and has a mean residual load of 5,000 MW and a STD of 4,000 
MW. Hence, the amount of dispatchable back required to ensure 95% electricity security is equal 
to 5,0000+1.645*4,000=11,580 MW. So, when a 35 GW VRE system would be comprised of 35% 
solar PV (10.5 GW) and 70% wind (24.5 GW), it would require a backup capacity of 11.58 GW 
to ensure 95% energy security.  
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3.3 Energy generation costs 
 
Besides its required backup capacity, the portfolios on the efficient frontier were also gauged and 
compared based on their energy generation costs. The energy system with the lowest energy 
generation costs is considered to be most efficient in meeting demand. Hence, there is a VRE 
portfolio that it most efficient in terms of its required backup capacity and a most cost-efficient 
system, these are not necessarily the same portfolios. 
 
The energy generation costs were computed for the entire energy system, so for both the VRE 
portfolio and the backup capacity that is required to ensure energy security.  Hence, the backup 
capacity was added to the 35GW VRE system and the new portfolio shares were determined. 
Subsequentially, the new portfolio shares were multiplied with each technology’s individual energy 
generation costs. Although numerous studies have estimated technologies’ energy generation costs, 
this study computed them manually. This was done to acquire a thorough understand of the role of 
certain cost parameters and ensure that the same costs were included for each technology, making 
the results comparable. The technologies’ energy generation costs were computed using the 
levelized cost of energy (LCOE).  A technology’s LCOE is the nett present value (NPV) of the costs 
over its lifetime divided by the NPV of the electricity generated over its lifetime and is expressed 
in €/MWh [44] (eq. 3.11). 
 
 
 
 
 
 
 
 
 
Most input parameter for the LCOE calculation are self-explanatory, just note that the variable 
operating costs ([.) are only applicable to the dispatchable backup capacity, as VRE technologies 
do not use any fuels or emit CO2 when electricity is generated. Apart from the amount of electricity 
generated over a technology’s lifetime, all the input paraments were derived from the literature. 
The amount of electricity produced over a VRE technologies’ lifetime was determined based on its 
historical output data that was collected. As elaborated in section 3.1.2, from the historical data, 
each VRE technology’s hourly capacity factors were determined. The mean of the hourly capacity 
factors indicates how much electricity, on average, is produced per MW installed. When a 
technology’s average capacity factor it multiplied with its lifetime in hours, the amount of electricity 
a technology produces over its lifetime was found (eq. 3.12); 
 

'.[WXℎ] = H$LFHVL	NHRHNJOP	SHNO#F	[%] ∗ OLNℎ-#I#VP+K		IJSLOJGL	[ℎ]																'8. 3.12	 
 
Regarding the backup system, it is slightly more complicated to determine its capacity factor, as it 
depends on the characteristics of the VRE portfolio (mean residual load and STD), and thus differs 
for each portfolio. As elaborated in section 3.1.2, the capacity factor is the amount of electricity 
produced divided by the installed capacity. The installed dispatchable backup is known, as this was 
used as a performance indicator to determine a  VRE portfolio’s ability to meet demand. However, 
the amount of electricity produced is not known. At first, one would assume that the amount of 
electricity produced by the backup system is equal to a VRE portfolio’s mean residual load. 
However, the residual load also includes negative values, namely; when more electricity is produced 
by the VRE system then is consumed. As the dispatchable backup generator cannot store any 
electricity, only generate, setting the backup system’s electricity output equal to a VRE portfolio’s 
mean residual load would yield erroneous results.  

 
 
 

O = RLFJ#M	FH-VJ-V	SF#G	PLHF	1	O#	PLHF	- 
". = NHRJOHI	N#KOK	J-	RLFJ#M	O 
g. = SJhLM	#RLFHOJ-V	N#KOK	J-	RLFJ#M	O	 
'. = L-LFVP	VL-LFHOLM	J-	RLFJ#M	O 
[. = $HFJHeIL	#RLFHOJ-V	N#KOK 
F = MJKN#Q-O	FHOL 
- = SJ-HI	PLHF	#S	#RLFHOJ#-K 
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To overcome this issue, all the negative residual loads were set to zero, and the average of all the 
non-negative residual loads was computed. The average of the, non-negative, residual loads is equal 
to the amount of electricity produced by the backup. In practice, this means that the average 
electricity output from the backup system is slightly higher than the VRE portfolio’s mean residual 
load. Subsequently, the VRE portfolio’s mean, non-negative, residual load was divided by the 
backup system’s size. The resulting capacity factor was used to determine a backup system’s LCOE. 
This was done individually for each portfolio on the efficient frontier. 
 
Finally, the LCOE of each energy system located on the efficient frontier was computed by taking 
the sum of all the portfolio weights (:!) multiplied with the technologies’ LCOEs (^"!) (eq. 3.13). 
Subsequentially, all the portfolios’ LCOEs were compared in order to find the VRE system that is 
most costs-efficient in meeting demand.  
 

'>^"'@ =;:! ∗ ^"! 									('8. 3.13)

!$%

!$&
	 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: 
 
Using the same example as in section 3.2; a 35 GW VRE system comprised of 30% solar PV and 
70% wind with a mean residual load of 5,000 MW and STD of 4,000 MW. The required 
dispatchable backup capacity was found to be 11,580 MW. Using equation 3.11, the LCOE of 
solar PV and wind are determined and are 67.31 and 50.27 €/MWh. Additionally, it was found 
that the average, non-negative, residual load of the VRE portfolio is 4,500 MW, which means 
that the backup’s capacity factor is equal to 4,500 MW / 11,580 MW = 0.39 (39%). Using 
equation 3.11 a LCOE of 73.85 €/MWh was found. 
 
Before the system’s total energy generation costs are determined, the new portfolios shares are 
computed. The total system’s size is 35,000 MW VRE + 11,580 backup = 46,580 MW. So the 
new portfolio shares are ; 
Solar PV: (0.3*35,000)/46,580=0.23 (23%) 
Wind: (0.7*35,000)/46,580=0.53 (53%) 
Backup: 11,580/46,580= 0.24 (24%) 
 
So, the system’s total energy generation costs are; 
 
23% ∗ 67.31 €/MWh + 53% * 50.27 €/MWh + 24%*73,85 €/MWh = 59.84 €/MWh 
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4 Case study: The Netherlands  
 
The novel methodology described in chapter 3 was applied to the case study of The Netherlands in 
order to find the VRE portfolios that are most efficient in meeting electricity demand.  Besides 
VRES already deployed in The Netherlands – solar PV and wind – a novel energy-generating 
technology was included in this case study; Dynamic Tidal Energy (DTP). Therewith this case study 
served three purposes. Firstly, it enabled the validation of the novel application of the MPT and 
the assessment of whether including demand-variability in the MPT affects the selection of efficient 
VRE portfolios. Secondly, by determining the most efficient VRE portfolios, this study provides 
tangible information Dutch energy planners can use to develop a roadmap towards an efficient 
decarbonised energy system. Thirdly, it provides new insights into whether DTP has a positive 
effect on a VRE system’s ability to efficiently meet demand.  
 
This chapter elaborates the case study, in particular, the data used for the optimisation model. 
Section 4.1 and 4.2 discuss the supply side of the optimisation model. Section 4.1 elaborates on the 
VRE technologies currently deployed in the Netherlands (solar PV and wind), while section 4.2 
discusses Dynamic Tidal Power. The model’s demand side is discussed in section 4.3. Section 4.4 
elaborates on the energy generation costs. The last section provides an overview of the different 
scenarios and configurations that were optimised. 
 
4.1 Electricity supply solar PV and wind  
 
This section discusses the electricity supply from currently deployed VRE technologies, including 
solar PV, offshore wind and onshore wind. As visualised by figure 13, throughout the years, 
renewable energy technologies have acquired a more dominant role in The Netherlands’ electricity 
mix. Especially the installed capacity of solar PV has increased dramatically since the end of 2016.  
The installed capacity of onshore wind has also slightly increased, whereas offshore wind has 
remained the same over the last four years. However, the latter is about to change as The 
Netherlands aims to increase the installed capacity of offshore wind to 11GW by 2030 [45]. The 
installed capacity of solar PV and onshore wind is also bound to increase, as The Netherlands has 
set the target to increase the electricity generation from onshore renewable energy technologies to 
35TWh per year by 2030 [46]. 
 
The two following sections look into the electricity output from solar PV and wind. Section 4.1.1 
first elaborates how the electricity output data that was obtained. In section 4.1.2 the electricity 
output profiles of solar PV and wind are visualised and discussed.  
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Figure 13: installed solar PV, offshore wind and onshore wind capacity at the end of each year 2016-2019 [90]. 

 



 
 

 
 
 30 

4.1.1 Data collection 
 

This section elaborates on the method used to collect the electricity output data of solar PV and 
wind. The electricity output data of solar PV, onshore wind and offshore wind was collected from 
the ENTSO-E transparency platform over three years (2017-2019). The historical electricity output 
was measured for each quarter of an hour, which results in 140.160 data points. To make the 
dataset more manageable, these 15-minutes intervals were merged into hourly intervals by taking 
the average of the four intervals that comprise an hour. The resulting 26.280 data points for each 
technology – equal to the number of hours in three years – still capture the daily and yearly 
seasonality of the technologies’ electricity outputs.  
 
The ENTSO-E Transparency Platform distinguishes between; the actual generated output, the 
day-ahead forecasted output and the intra-day forecasted output. For this study, the actual 
generated output was used as it best captures the actual (re-)occurring weather patterns rather 
than the predicted weather patterns. However, one-third of 2019’s actual PV output data was not 
yet available on the ENTSO-E platform. 2019’s forecasted PV output data, on the other hand, was 
already published on the ENTSO-E Platform. To determine how accurately the forecasted output 
data corresponded with the actual output, and whether it could be used to substitute the missing 
data, 2017 and 2018’s forecasted PV output data was compared with the actual output data. This 
was done by calculating the Normalised Root Mean Square Error (RMSE). 
 
The NRMSE is the deviation of the prediction errors divided by the range of the observed data (eq. 
4.1). The NRMSE is frequently used in climatology, forecasting, and regression analysis to measure 
the difference between values predicted by a model (i.e. forecasted electricity output) and the values 
actually observed from the environment that is being modelled (i.e. actual electricity output) [47]. 
 

 
 
 
 
 
 
 
The lower the NRMSE, which can vary from zero to one, the smaller the prediction error is. 
Regarding 2017 and 2018’s forecasted PV data, only, 3,7% of all data points deviated relative to the 
actual electricity output. More importantly, the NRMSE was 0,012, which indicates a very small 
prediction error. Hence, the model used very accurately predicted the actual electricity output from 
solar PV cells. Assuming 2019’s predictions are equally accurate, 2019’s forecasted PV data was 
used to substitute 2019’s missing actual electricity output data.  
 
Though filling the blanks in 2019’s actual PV output with the forecasted output significantly 
reduced the amount of missing data, another 34 (0,13%) wind and 99 (0,38%) solar PV data points 
were missing. To ensure smooth and continuous output curves, these blanks in the historical data 
were also filled. Solar irradiation is characterised by a repeating daily and seasonal pattern. 
Therefore, the blanks were filled using the average hourly electricity output during that month. 
E.g. the missing data on 20-12-17 was filled with the average electricity output profile of December. 
On the other hand, wind speeds are more random and, unlike solar irradiation, not characterised 
by a specific daily pattern. Hence, the method used to substitute the missing solar PV data could 
not be used to fill the missing wind data. However, unlike the missing PV data, there were no large 
gaps in the wind data set (max. 15 hours). Additionally, based on the hours prior and after the 
missing data points, a clear electricity output trend over the missing hours was identified. 
Therefore, the missing wind data was subsisted by assuming that the electricity output changed 
linearly over the hours for which no data was available.  
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4.1.2 Electricity output solar PV and wind 
 
In this section, the electricity output profiles of solar PV and wind are visualised and discussed. To 
allow for comparability among the energy-generating technologies’ hourly electricity outputs, the 
electricity output data was normalised by the installed capacity. Figure 13 illustrates the installed 
capacity of solar PV, offshore wind and onshore wind at the end of each year. For the sake of 
simplification, this study assumed that the in- or decrease of installed capacity over each year was 
linear. For example, over 2017 (the end of 2016 to the end of 2017), the installed solar PV capacity 
increased with 776 MW, which means that on the scale of analysis used in this study – hours – the 
installed capacity increased with 88,6 KW. The change in the hourly installed capacity was added 
to the initially installed capacity. Subsequentially, the technologies’ hourly capacity factors were 
obtained by dividing the electricity output by the linear increasing installed capacity. The hourly 
capacity factors indicate how much units of electricity are produced per unit of installed capacity.  
 
Visualising the hourly capacity factors results in electricity output profiles. A small section of these 
output profiles are illustrated in figure 14. The vertical axis indicates the date and time and the 
vertical axis the hourly capacity factors for four random days in 2019. As there is no solar 
irradiation during the night, PV cells only produce electricity during the day, which makes their 
generation profiles fairly predictable. Only the magnitude of solar PV’s electricity output varies 
depending on the day-to-day circumstances (solar irradiation, temperature). Wind speeds, on the 
other hand, are much more erratic compared to solar irradiation, making their electricity output 
highly variable and difficult to predict.  
 

 
Figure 14: hourly electricity output per unit installed for 4 random days in 2019 [21]. 

 
To illustrate the seasonality of solar irradiation and wind speeds, each month’s average capacity 
factors for the years 2017-2019 were visualised in figure 15. It is clear that both solar irradiation 
and wind speeds are characterised by repeating patterns. Wind speeds tend to peak during autumn 
and winter (Oct. – Mar.), while solar irradiation peaks during spring and summer (Apr. – Sep.). 
Figure 15 also illustrates that, the average electricity output from solar PV cells is significantly 
lower than those from wind turbines. Although off- and onshore wind speeds are characterised by 
similar yearly profiles, on average, offshore wind turbines generate more electricity than wind 
turbines located on land. 
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Figure 15: Average monthly capacity factors for 2017-2019 [21]. 

 
4.2 Electricity supply Dynamic Tidal Energy  
 
Apart from currently deployed VRES, this case study also included Dynamic Tidal Power (DTP), a 
novel renewable energy technology that generates electricity utilising the North Sea’s tidal 
currents. This section first explains the mechanisms behind tidal currents and how they can be 
captured to generate electricity. Subsequently, section 4.2.1 elaborates on the data collection 
method and section 4.2.2 visualises and discuss the electricity output profiles.  
 
Tidal currents are driven by the rise and fall of the astronomic tides [8], which are slow and long-
period waves that move through the oceans in response to the gravitational pull of the sun and in 
particular the moon [48]. The gravitational pull of the sun and moon's causes the ocean to ‘’bulge’’ 
outwards on opposite sides of the earth, which causes a rise in the water level in places that are 
aligned with the moon and sun, and a decrease in water levels halfway between those two places 
(fig. 16) [49].  During every lunar day, which is 50 minutes longer than a solar day, the earth rotates 
through two tidal “bulges”  [49]. Hence, The Netherlands experience two high and two low tides 
every 24 hours and 50 minutes, with a period of 6 hours and 12.5 minutes between high and low 
tide [50]. 
 
Besides the earth’s rotation around its axis, the moon also revolves around the earth. The moon 
orbits in the same direction as the earth rotates around its axis, which explains why the earth takes 
50 minutes to catch up to the moon [49]. A lunar phase cycle (from new moon to new moon) is 29.5 
days. During this cycle the earth, sun, and moon align twice (full moon and new moon), during 
which the gravitational pull of the sun is added to the gravitational pull of the moon (fig. 17) [51]. 
Two days later, this results in spring tide; during which high tides are a little higher and low tides 
are a little lower than average [50]. Approximately seven days after each spring tide, during the 
first and third quarter moon, the sun and moon are at right angles to each other, which partially 
cancelling out each other’s gravitational pull. During this period of neap tides, high tides are a little 
lower and low tides are a little higher than average.  
 
As the North Sea is too small to be effected by the sun and moon’s gravitational pull, its tides are 
mainly driven by the Atlantic Ocean’ tidal waves [52]. Figure 18, illustrates that this tidal wave 
starts from the Atlantic Ocean and moves through the English Channel along the Dutch coastline 
into the North Sea. During high tide, water follows this path to flow into the North Sea. A brief 
slack period follows, the current switches direction, the velocity increases and the water flows out 
again [53]. This periodically alternating water flow parallel to the Dutch coastline is referred to as 
tidal currents [8]. Tidal currents peak four times a day, in between high and low tide. During spring 
tide, when the magnitude between high and low tide is the greatest, tidal currents in front of the 
Dutch coast can reach speeds of 0.8-1.2 m/s [9]. 
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However, to generate electricity from these tidal currents, most power converters require a 
minimum flow speed of 0.5 to 1.0 m/s, but preferably a speed between 1.5 and 3.5 m/s [13]. These 
ideal water velocities are rarely met in the Dutch territories of the North Sea. Hence, apart from 
some small-scale initiatives, The Netherlands currently does not utilises the North Sea’s tidal 
currents to produce electricity. However, Dynamic Tidal Power (DTP), a novel tidal stream 
technology also efficient at low water speeds, enables The Netherlands to harvest the North Sea’s 
energy potential. 
 
DTP captures the North Sea’s tidal currents using a 30-70 km long and 60-70 meter wide dam 
perpendicular to the coastline [54]. The periodically alternating tidal current creates a difference 
in water level amplitude between both sides of the dam [55].  The extra body of water on one side 
of the dam increases the water velocity as it flows through the 8 meter wide turbines installed in 
the dam (fig. 19) [54]. As the turbines can rotate in both directions, they generate electricity 
regardless of the direction – south to north (high tide) or north to south (low tide) – of the tidal 
current (fig. 20) [54].  
 
The electricity output from a DTP-dam predominantly depends on the velocity of the tidal currents, 
the water depth, and the dam’s length and design. An increase in tidal current speeds will increase 
the head over the dam and its electricity output. Similarly, when the water depth or length of the 
dam increases more water is pushed up against the dam, increasing the water speeds through the 
turbines (fig. 19) [55]. A design variable that greatly influences DTP’s electricity output is the shape 
of the dam’s ends. A coastal dam connected to land on one side yields the highest electricity outputs 
as the large land mass amplifies the head over the dam. An open sea dam’s efficiency can 
significantly be increasing by equipping the dam with so-called T- or Y shaped ends. Especially a 
Y-shaped dam, illustrated in figure 21,  is very effective in increasing the electricity output [56]. 
 
 
 
 

Figure 17: tidal variation due to the moon revolving 
around the earth [51]. 

 

Figure 18: tidal currents caused by the astronomic tides 
[86]. 

 
 

Figure 16: tidal variation due to the rotation of the 
earth [51]. 
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4.2.1 Data collection 
 
This section elaborates on the data collection method used to obtain the electricity output from 
DTP. Unlike wind turbines and solar PV cells, there is no DTP-dam from which historical electricity 
output data can be drawn. Therefore, DTP’s hourly electricity profile, capacity factors and installed 
capacity were mathematically calculated by the DTP foundation using MATHLAB. Since DTP is 
still under development, important characteristics (i.e. water depth, water velocity, length and 
design) that determine the dam’s efficiency are yet unknown. Hence, generic design parameters 
and environmental characteristics were used to derive DTP’s hourly generation profile. 

As a result, DTP’s electricity profile was derived modelling a 50 kilometres long dam located 
in the open North Sea. As explained in the previous section, a coastal dam connected to land would 
be more efficient. But as it is expected that such a dam would encounter fierce resistance from local 
communities, the electricity data corresponding with a dam in the open sea was used for this study. 
To maximise the efficiency of the open-sea dam, the modelled dam was equipped with two Y-shaped 
ends under an angle of 45 degrees, similar to the ones illustrated in figure 21. The water depth at 
the dam’s location is 35 meters and the tidal currents reach a maximum velocity of 1 m/s. These 
environmental characterises in combination with the design parameters results in a DTP-dam with 
an installed capacity of 14,4 GW. The hourly electricity output generated by the DTP-dam was 
modelled on an hourly interval for 29,5 days, equal to the number of days in one moon cycle. As 
this cycle continuously repeats itself, the data was duplicated proximately 37 times so it covers 
three years, similar to the wind and solar PV data derived from the ENTSO-E Transparency 
Platform.  

Figure 19: graphical illustration how the 
head over the DTP-dam increases water 

velocities [54]. 

Figure 21: visualisation of a Y-shaped DTP-
dam [54]. Text was translated to English. 

 

Figure 20; illustration of the 8 meter wide 
turbines that can rotate in both directions [83]. 
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4.2.2 Electricity output DTP-dam 
 
Apart from a single DTP-dam, this optimisation study also included two alternative technical 
configurations; two geographically dispersed DTP-dams and a DTP-dam with an integrated storage 
system. DTP is still in its initial phase of development, so including three different technical 
configurations provides more information useful for further developing DTP. This section will first 
discuss the electricity output from a single DTP-dam. The other two configurations are discussed 
in section 4.2.3 and 4.2.4. 
 
Just as for wind and PV, to ensure comparability, DTP’s electricity output data was normalised 
and expressed as a capacity factor by dividing it over the installed capacity (14,4GW). Plotting the 
hourly capacity factors of DTP for one moon cycle results in the output profile visualised in figure 
22. DTP’s electricity output perfectly follows the pattern of the tides. The large wave motion is 
caused by the moon’s orbiting around the earth and the resulting spring and neap tides. The earth’s 
rotating around its axis explains the daily fluctuations in electricity output. Four times a day, 
coinciding with high or low tide, slack water causes the electricity output to drop to almost zero. In 
between the moments of slack water, flow rates and the electricity outputs peak, with the highest 
peaks occurring during spring tides and the lowest during neap tides.  

Figure 22: hourly capacity factors of a single DTP-dam for one moon cycle. 

When the electricity output from the modelled DTP-dam is compared with the electricity output 
from wind turbines and solar PV cells in figure 23, it becomes evident how volatile the electricity 
output from tidal energy is. However, figure 23 also visualises that, unlike wind and solar PV 
energy, tidal energy is perfectly predictable due to its weather independency.  
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4.2.3 Electricity output two geographically dispersed DTP-dams 
 
For the second technical configuration a second, geographically dispersed, DTP-dam was added to 
the system. Introducing a second dam creates, what we will call, a natural storage system and 
reduces DTP’s volatile electricity output. As the tidal waves move in from the Atlantic Ocean, high 
tide first occurs in the South of The Netherlands and then proceeds north. Building a second dam 
thus offsets the volatility in electricity output caused by high and low tide, which reduces the overall 
volatility of DTP’s electricity output. The period between two electricity peaks is approximately 6 
hours, so to offset the tidal effect, the tidal wave would ideally take 3 hours to move from one to the 
other dam. This scenario could be approached by, for example, building a dam off the coast of 
Haringvliet in the South of The Netherlands and Texel in the North of The Netherlands. Near 
Haringvliet high and low tides occur 2 hours and 49 minutes earlier than off the coast of Texel [50]. 
Whether a DTP-dam at these specific locations is technically feasible is beyond the scope of this 
study.  
 
To simulate the electricity output from two geographically dispersed DTP-dams, a second output 
curve is added to the one-dam-scenario and shifted 3 hours. Averaging the cumulative hourly 
capacity factors results in the output profile shown in figure 24. As expected, a second dam 
significantly reduces the volatility in electricity output. Only the large wave motion in the output 
curve, brought about by spring and neap tide, remains. Note that the electricity output data used 
to compute the two-dam load profile was derived from a 50 kilometre long DTP-dam. However, the 
dams might be shorter in a two-dam scenario, which will slightly reduce their efficiency. Also, the 
dams perhaps affect each other’s electricity outputs, which was not accounted for in this load 
profile. 

Figure 24: hourly capacity factor two geographically dispersed DTP-dams. 
 
 
4.2.4 Electricity output single DTP-dam with an integrated storage system  
 
The third and last configuration included in this case study equips a DTP-dam with an integrated 
battery storage system. Due to the short and predictable periods between electricity peaks, a DTP-
dam can be equipped with a relatively small storage system to stabilise its electricity system. Such 
a storage system would store electricity during periods of peak production (high and spring tide) 
and discharge its stored electricity during periods in which little to no electricity is produced (low 
and neap tide). For simplification reasons, it is assumed that separate storage systems are used to 
offset high and low tide, and spring and neap tide. The first, smaller, battery system is used to 
offset the volatility in electricity supply caused by high and low tide. This storage system should be 
able to store 0.96 MWh per MW of DTP installed.  
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The second storage system is much larger and is used to offset the deviations in electricity supply 
caused by spring and neap tide. The second storage system should be able to store 18.96 MWh per 
MW DTP installed. The calculation supporting these claims can be found in appendix A. 
 
As visualised in figure 25, due to this integrated storage system, DTP’s electricity output is entirely 
consistent throughout the year. However, storing electricity is characterised by loses in the battery 
system. As a result, the average capacity factor of a DTP-dam with storage system is 3% lower in 
relation to a single DTP-dam’s capacity factor [57]. The average capacity factor of a single DTP-
dam, which was derived from the electricity output data supplied by the DTP-foundation, is 32%. 
Hence, the capacity factor of a DTP-dam with an integrated storage system is 31%.  

 
 
4.3 Electricity demand 
 
In this section, the demand side of the case study is discussed. As stressed by Boßmann et al. [58]  
‘’assessing the needs for investments in new electricity generation capacity requires sound 
assumptions about the future electricity load curve’’. Therefore, a literature review was conducted 
in order to forecast if and how the current load profile is expected to change. This has resulted in 
three different electricity demand scenarios. The different scenarios are visualised in figure 28 and 
29 (end of section 4.3) and are elaborated in section 4.3.1, 4.3.2 and 4.3.3. 
 
4.3.1 Demand scenario 1: contemporary load profile  
 
The contemporary electricity load profile is the first demand scenario that was included in this 
optimisation study. Similar to the solar PV and wind output data, the demand data was drawn 
from the ENTSO-E Transparency Platform from 2017 till 2019 and the fifteen-minute interval data 
was merged into hourly intervals. Over the three years analysed only three, non-consecutive, data 
points were missing. These blanks were filled taking the average load of the hours prior and after 
the missing data points in order to ensure a smooth load curve.   
  
The contemporary electricity demand profile is visualised in figure 28 and 29. The horizontal axis 
represents the time scale and the vertical axis the amount of electricity demanded from the system, 
expressed in GW. The different colours correspond with the different demand scenarios; orange 
represents scenario 1. It is observed that the current electricity load profile is characterised by a 
repeating pattern. During week and Saturdays, demand peaks in the evenings and mornings. On 
Sundays, electricity demand is significantly less and only peaks in the evening. Regardless of the 
day of the week, demand plummets during the night. Similar to wind speeds and solar irradiation, 
demand is also characteristics by a certain seasonality. So does electricity demand peak during the 
winter months and significantly decrease towards the summer. 

Figure 25: hourly capacity factor of a DTP-dam with an integrated battery storage system. 
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4.3.2 Demand scenario 2: increased peak loads due to EV and electric HP 
 
According to Boßmann et al. [58], electrification of specific industries can significantly increase 
demand and change the shape of the demand curve. In particular electric vehicles (EV) and electric 
heat pumps (HP) tend to affect the shape of the load curve [58]. Therefore the second demand 
scenario simulates a situation with an extreme penetration of EV and electric HP.  
  
To determine the demand profile for scenario 2, the load profile of a single EV and HP was derived 
from the literature [59] and multiplied with EV and HP’s potential in The Netherlands. 
Subsequentially, the extra load was projected on the contemporary load profile.  

Figure 26 illustrates the average expected charging profile of a single EV, which was 
derived from [59]. Since week and weekend day charging profiles differ, a distinction was made. An 
EV’s average daily electricity demand is 3,8 kWh for workdays and 3,1 kWh for the weekend. 
However, this electricity demand is not evenly distributed throughout the day, which is especially 
true for weekdays. So is the bulk of charging energy requirements demanded between 5 pm and 
midnight. On weekdays and in the weekend, electricity demand peaks around 9-10 pm, presumably 
due to the users charging to prepare for the start of the (working) day. The potential for EV is large 
in The Netherlands, as only 1,6% of all cars are currently electric [60]. Additionally, it is forecasted 
that by 2050, in the extreme scenario, the number of cars has increased by 34% relative to 2010 
[61]. In 2010 there were approximal 7,62 million cars in The Netherlands [62], which means that 
it is predicted that there will be 10,21 million cars in 2050. As this scenario tries to represent an 
extreme situation, it was assumed that everyone drives electric in 2050. Hence, the load curve of a 
single EV was multiplied by 10,21 million and projected on the load curve. 
 

 
Figure 26: average daily load profile of a single electric vehicle [59] 

Figure 27 illustrates the average electricity profile of a single electric HP during different months 
of the year. The curve was adapted from [59], who used thermal demand data from different UK 
house types. During winter months, electric HP's average electricity demand is the highest and 
then gradually decreases as temperatures rise. Regardless of the season, there are definite peaks 
in electricity demand visible in the morning as people wake up and in the evenings when people 
return home, both peaks tend to amplify as temperatures drop. According to Kleefkens [63], 
approximately 5,4 million homes are suitable to be equipped with an electric HP. For this extreme 
scenario, it was assumed that all these homes have an electric HP. 
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Figure 27: average daily load profile of a single heat pump [59], 

Figure 28 and 29 visualise the result when the extreme potentials of EV and HP are projected on 
the contemporary load profile. The penetration of EV results in significantly higher peaks in 
electricity demand during the evenings. The extra electricity consumed by electric HP causes 
electricity demand during the winter months to increase. Heat pumps also tend to have a small 
effect on morning peaks, as they appear more distinct than in the contemporary load profile. 
Overall, electric HP have the most effect on the shape of the load curve, especially from a seasonal 
perspective. 
 
 
4.3.3 Demand scenario 3: flat load profile due to demand-responsive measures 
 
Østergaard et al. [64] state that EV and HP can potentially be controlled and used to flatten the 
load curve. This reduction in peak loads can predominately be effectuated in the residential sector 
(e.g. heating) [65]. Therefore, this third scenario simulates a situation with an extreme penetration 
of demand-responsive measures. Demand-responsive measures are “changes in electric use by 
demand-side resources from their normal consumption patterns in response to changes in the price 
of electricity, or to incentive payments designed to induce lower electricity use at times of high 
wholesale market prices or when system reliability is jeopardized” [66].  
  
The changes in normal consumption patterns mean that the load will be more evenly distributed 
over the day, reducing peak hours. Tough there are studies [65] that have estimated the size of the 
demand-responsive potential in The Netherlands, these studies have not resulted in specific 
numbers that could be used to derive an hourly load curve required for this study. Therefore, an 
extreme scenario was simulated in which the load curve completely flattens due to demand-
responsive measures. As EV and HP have the potential to shift loads, this scenario has used the 
load derived after the inclusion of EV and HP (section 4.3.2). Hence this results in a scenario in 
which there is a high penetration of EV and HP in combination with an extreme penetration of 
demand-responsive measures. Figure 28 and 29 provide an overview of all the electricity demand 
scenarios, including the demand profile that was derived in this section. It is important to report 
that the flat load profile also allows for easy verification of the model later on this research.  
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Figure 28: overview of the electricity demand scenarios for an average week. 

Figure 29: overview of the electricity demand scenarios for the three years that were analysed. 
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4.4 Electricity generation costs 
 
As elaborated in section 3.3, the VRE portfolios on the efficient frontier were gauged and compared 
based on their LCOE. The LCOE is the NPV of the costs over a technology’s lifetime divided by the 
NPV of the technology’s electricity output over its lifetime and expressed in €/MWh. Computing a 
technology’s LCOE requires certain costs assumptions, such as; a technologies lifetime, its 
operation and maintenance (O&M) costs, the overnight capital costs, but also its yearly electricity 
output. Section 4.4.1 first discusses these input parameters. Subsequently, in section 4.4.2, the 
LCOEs of the individual VRE technologies and the backup system are determined.  
 
4.4.1 Costs assumptions 
 
A review of the literature discussing costs assumptions relevant to compute the LCOE has revealed 
a great bandwidth. These deviations in costs parameters appear to be driven by the geographical 
region. Hence, to most accurately determine the electricity generation costs for The Netherlands, 
all costs assumptions were derived from studies focusing on The Netherlands. The technologies’ 
average capacity factors, which, as elaborated in section 3.3, determine the electricity output over 
a technology’s lifetime, were derived from the hourly electricity output data. 
 
Table 1 illustrates the costs assumptions that were used to compute the LCOE of each energy-
generating technology. This study, does not include learning effects or economies scale, as such the 
costs of a single and two DTP-dams are assumes to be equal. Most parameters are self-explanatory 
and have been derived directly from the literature. Two aspects are however worth elaborating on 
in more detail; the grid connection costs and the flexible CCGT backup system.  
 
 
 Table 1: costs assumptions LCOE calculation 

1The battery’s size and lifetime was determined in section 4.2.4 and appendix A. System 1 offsets the fluctuations in electricity 
output as a result of high/low tide. System 2 offsets the fluctuations in electricity output as a result of neap/spring tide. 
2Weighted average cost of capital (WACC) are the expected cost of capital. This is the discount factor used to calculate the 
NPV of the costs and electricity output.  
3The capacity factor of a DTP-dam with storage system is approximately 3% lower due to electricity loses in the battery 
system. 
4Capacity factor CCGT varies as it depends on the characteristics of the VRE portfolio’s residual load (mean and variance). 

  Solar 
PV 

Offshore 
wind 

Onshore 
wind 

DTP excl. 
storage  DTP  Flexible 

CCGT 
Overnight capital costs 
[€/MW] 

590,000 
[67] 

1,750,000 
[68] 

1,100,000 
[69] 

1,690,000   
    [54] 

1,690,000      
[54] 

630,000 
[70] 

O&M costs [€/MW/y] 11,500 
[67] 

55,000 
[68] 

32,524 
[69] 

23,660  (1,4% of 
capital costs [54]) 

23,660 (1,4% of 
capital costs [54]) 

40,000  
[70] 

One-off maintenance costs 
in year 12 [€/MW] 

32,000 
[67] - - - - - 

Offshore grid costs [€/MWh] - 17.5 [68] - 5.25 1.75 - 
Size battery system 
[MWh/MW]1 - - - - 0.96 (system 1), 

18.96 (system 2) - 

Lifetime battery [y]1 - - - - 12 (system 1),  
60 (system 2) - 

Battery storage costs 
[€/MWh] - - - - 100,000  [54] - 

Fuel costs [€/MWh] - - - - - €46.08 
CO2 costs [€/MWh] - - - - - €10.10 
Lifetime [y] 25 [71] 25 [71] 25 [71] 60 [54] 60 [54] 25 [70] 
Construction time [y] 0.5 [71] 1.5 [71] 1 [71] 5 [72] 5 [72] 3 [71] 
WACC [%]2  4.3 [71] 4.3 [71] 4.3 [71] 4.5 [54] 4.5 [54] 4.3 [71] 
Average capacity factor [%]  9 43 25 32 313 0.01-1004 
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Flexible combined cycle gas turbine (CCGT) 
To cover the erratic residual loads left by VRE portfolios, the backup system should be freely 
dispatchable. Hence, the dispatchable backup system has to have a high ramp rate3. Therefore, this 
study used the characteristics of a flexible combined cycle gas turbine (CCGT) to derive the costs 
assumptions for the dispatchable backup system. Opposed to a normal CCGT, the electricity output 
from a flexible CCGT can easily be ramped up or down, increasing its ability to cover the residual 
load. However, this flexibility also increases the plant’s overnight capital and O&M costs by 40% 
in relation to a normal CCGT [70]. Additionally, due to its flexibility, its efficiency decreases and 
more fuel is used to generate one unit of electricity. A conventional CCGT has an efficiency of 60%, 
while a flexible CCGT’s efficiency is 50% [70].  

The fuel costs to generate one MWh of electricity are calculated in table 2 and included in 
the LCOE of the flexible CCGT. Based on a report from The Energy research Centre of the 
Netherlands (ECN) [73], the natural gas price was estimated to be around 6.40 €/GJ, which results 
in fuel costs of 46,08 €/MWh.  
 
Unlike renewable energy, burning natural gas to generate electricity emits CO2.  As elaborated in 
the literature review (section 2.3), when conventional energy technologies are included in the MPT, 
the costs associated with the negative externalities of emitting CO2 should be included in the cost 
structure. This will reduce the costs distance between polluting technologies and renewables and 
allows for a fair cost comparison. 

The costs of emitting CO2 from the production of electricity are covered by the EU Emission 
Trading System (ETS) [74]. Within this trading system companies receive or buy emission 
allowances, which allows them to emit CO2. Companies that have successfully reduced their 
emissions will sell their surplus of allowances to those companies for which its more costly to reduce 
its CO2-emissions than to by extra allowances.  Each year the number of allowances is reduced, 
which will drive up the price and stimulates more companies to abate CO2-emissions [74].  

Over the past year (2020), CO2 allowances were traded for approximately 25 €/ton CO2 [75]. 
Burning natural gas emits 56,10 kg of CO2 per GJ [76]. As is calculated in table 3, when a flexible 
CCGT’s efficiency is taken into account, 0,4 ton of CO2 is emitted to produce one MWh of electricity, 
which results in a CO2 price of 10.10 €/MWh.  
 
It is important to repeat that the absolute fuel and CO2 costs are variable costs, which depend on 
the amount of electricity produced over the CCGT’s lifetime. As the flexible CCGT is used to cover 
the residual load left by the VRE system, the amount of electricity produced by the CCGT depends 
on the characteristics of the VRE portfolio. As the average residual load increases, the CCGT will 
have to produce more electricity and its absolute fuel and CO2 costs will increase.  

 
 Table 2:  fuel costs CCGT         Table 3: CO2 costs CCGT 

 
 
 
 
 
 
 
 
 
 
 
 

 
3 Ramp rate is ‘’the rate at which a power plant can increase or decrease output’’ [96]. 

Fuel costs CCGT 
Electrical energy [GJ/MWh] 3.60 
Efficiency CCGT [%] 50 [70]  
Energy used to generate 1 MWh [GJ] 7.20 
Natural gas price [€/GJ] 6.40 [73] 
Fuel costs [€/MWh] 46.08 

CO2 costs CCGT 
CO2 emission factor natural gas [kg/GJ]  56.10 [76] 
Energy used to generate 1 MWh [GJ] 7.20 
CO2 emission [ton/MWh] 0.40 
CO2 price [Euro/ton] 25.00 [75] 
CO2 costs (Euro/MWh) 10.10 
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Grid connection 
Electricity generation technologies located onshore are connected to the existing onshore grid. In 
most instances, this requires a strengthening of the local electricity grid in order to support the 
feed-in of electricity. For solar PV, onshore wind and the flexible CCGT these grid costs are included 
in the O&M costs (solar PV) or overnight capital costs (onshore wind & CCGT) [67] [69] [70]. 

To utilise the offshore produced electricity, the energy technologies have to be connected to 
the onshore network by means of an offshore grid. The construction and maintenance of such a grid 
bear significant investment costs. To advance the energy transition and stimulate market parties 
to construct offshore wind farms, the Dutch government subsidises Tennet, the transmission 
system operator (TSO), to build and maintain an offshore electricity grid. Hence, grid connection 
costs associated with offshore wind and DTP are not included in the overnight capital costs nor in 
the O&M costs. To allow for a fair comparison among all energy generation technologies, the 
offshore grid costs were added to the LCOE.  
 
A study [68] that evaluated all Dutch wind farms’ gird costs, found that, although the exact costs 
depend on the specific location - the further ashore the more expensive the gird - grid costs for an 
offshore wind farm are around 17.5 €/MWh [68].  

Grid connection costs for a DTP dam with a storage system are expected to be a tenth of 
those [54]. Connecting a DTP dam to the onshore grid is less costly, as it requires fewer cables. The 
electricity output from wind turbines is first clustered at a hub before it is transmitted to land. 
Connecting all dispersed wind turbines to this hub requires a dense network of cables, which 
significantly increases the grid costs.  

Opposed to a DTP-dam with battery storage, the hourly electricity output from a DTP-dam 
without a storage system fluctuates. Rather than a consistent capacity factor (31%), the capacity 
factor of a DTP-dam without storage system fluctuates between 0% and 100%, with an average of 
32%. As a result, the offshore grid has to be designed for a capacity factor of 100%, rather than 
31%. Therefore, this study assumes that the grid connection costs for a dam without storage system 
are approximately three times as much as for a dam with a storage system. 
 
 
4.4.2 Levelized costs of energy 
 
Based on the methodology discussed in section 3.3 and the input parameters in table 1 the LCOE 
for each energy generation technology was determined. The resulting LCOEs can be found in table 
4 and the supporting calculations in appendix B. As the capacity factor (CF) of the flexible CCGT 
varies depending on the VRE portfolio’s characteristics, which are currently unknown, a costs range 
is included in table 4.  
 
Table 4: levelized costs of energy solar PV, wind, DTP and flex CCGT 

 
When the LCOEs are analysed the crucial role of the capacity factor becomes evident. Solar PV, 
which is characterised by the lowest overnight capital costs and O&M costs (table 1), has a 
relatively high LCOE. This is due to its small capacity factor (9%). The absolute costs of solar PV 
might be little, as it produces little electricity its costs per MWh are substantial. Similarly is 
observed for the flex CCGT, its costs increase rapidly as its deployment plummets. The LCOE of a 
DTP-dam with a storage system is significantly higher than the LCOE of a DTP-dam without 
storage costs. This is mainly driven by the significant storage costs, but loses in the battery system 
also play a minor role in the costs difference. Due to losses in the battery system, the capacity factor 
slightly decreases (-1%), increasing the costs per MWh produced.  
 
 
 

 Solar 
PV 

Offshore 
wind 

Onshore 
wind DTP DTP incl. 

storage Flex CCGT 

LCOE [€/MWh] 67.31 65.67 50.27 48.60  92.48 108.06(CF: 20%) – 
66.55 (CF: 100%) 
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4.5 Overview demand scenarios and technical configurations 
 
To summarise, this section provides an overview of the scenarios and technical configurations 
discussed in this chapter, and that were optimised using the novel methodology discussed in 
chapter 3. 
 
Regarding the supply side, three different variable renewable electricity generation technologies 
are included; wind energy, solar PV and Dynamic Tidal Power. For wind energy a distinction is 
made between; offshore and onshore wind. As DTP is still in its initial phase of development, three 
different design configurations are included in the case study; a single DTP-dam, a single DTP-dam 
with a storage system and two DTP-dams three tidal hours apart.  

To assess the effects of the incorporation of DTP on the contemporary VRE system’s 
performances, wind and solar PV were always the starting point for each scenario. Subsequently, 
the different DTP configurations were added to the system. This results in the following four 
scenarios; solar PV and wind (A), solar PV, wind and a single DTP-dam (B), wind, solar PV and two 
geographically dispersed DTP-dams (C), and solar PV, wind and a single DTP-dam with an 
integrated storage system (D). 

 
The demand side of the model is characterised by three different scenarios; the contemporary load 
profile (1), increased peak loads due to a high penetrations of EV and electric HP (2), and a flat load 
profile due to a high penetration demand-responsive measures (C). Table 5 visualises all the 
scenarios and configurations for which the most efficient VRE portfolios and associated energy 
generation costs were determined.  

 
As elaborated in the research outline (section 1.3), to find the most efficient portfolios for each 
scenario and configuration, this study investigated how 35GW of installed capacity should be 
distributed among solar PV, offshore wind, onshore wind and DTP to efficiently meet demand. 
Hence, regardless of the optimised scenario or configuration, the total VRE capacity is always 
35GW.  
  

 

 
 
 
 
 
 

 
 
 
 
 

                                                        Scenarios
Configurations:   

1. Contemporary 
load profile 

2. Increased peak 
loads  

3. Flat load 
profile  

A. Wind & solar PV 1.A 2.A 3.A 

B. Wind, solar PV & a single DTP-dam 1.B 2.B 3.B 

C. Wind, solar PV & 2  geographically dispersed 
DTP-dams 1.C 2.C 3.C 

D. Wind, solar PV & a single DTP-dam incl. 
storage system 1.D 2.D 3.D 

Table 5: overview of all the 35 GW VRE systems that were optimised. 
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5 Results  
 
In this chapter, the optimisation results for the different scenarios and technical configurations are 
presented. The results were obtained by plugging the data, discussed in chapter 4, in the novel 
methodology elaborated in chapter 3. The results are presented in the same sequence as in which 
the methodology was discussed. Hence, section 5.1 first presents the MPT optimisation results and 
the resulting minimum-variance frontiers for the different scenarios and configurations. 
Subsequentially, in section 5.2, the results of comparing the VRE portfolios on the efficient frontiers 
in terms of their required backup capacity are discussed. The results of gauging the VRE portfolios 
on the efficient frontier in terms of their energy generation costs are presented in section 5.3. In 
section 5.4, the results of sensitivity analysis, in which the VRE system’s size, confidence interval 
(CI) and CO2 costs were changed, are presented. 
 
5.1 Minimum-variance frontiers  
 
This section presents the modified MPT optimisation results and the resulting minimum-variance 
frontiers for each demand scenario and the technical configurations. Section 5.1.1 presents the 
result for electricity demand scenario A: the contemporary load profile. In section 5.1.2, the results 
obtained for demand scenario B (increased peak loads) are discussed. In the final section (5.1.3), 
the results that correspond with a flat load profile (scenario C) are elaborated.  

All three sections are structured the same. First, the proxy variables that were used for the 
optimisation model are discussed. Subsequentially, the results of the optimisation model – the 
minimum-variance frontiers – are presented. 

 
5.1.1 Demand scenario 1: contemporary load profile 
 
Table 6 represents the proxy variables that correspond with the contemporary electricity load 
profile (scenario 1) and a 35GW VRE system. The top row indicates the different electricity 
generation technologies that were included in this optimisation study. The second and third-row 
represent an energy technologies’ mean residual loads and the STD of their residual loads. The 
mean residual load indicates the amount of electricity that, on average, could not be covered by a 
particular technology, if 35GW of that particular energy technology is used to cover demand. The 
STD of the residual load indicates how volatile the residual load left by that energy technology is. 

The bottom three rows illustrate the correlation coefficients among the energy technologies 
their residual loads. The correlation coefficient indicates to what extent two technologies their 
residual loads tend to move together. If two technologies’ residual loads tend to be above or below 
their mean residual load simultaneously, the two technologies' residual loads move together, and 
their correlation coefficient is positive. On the other hand, a negative correlation coefficient means 
that two technologies’ residual loads move in opposite directions. 
   
Table 6 shows that solar PV is characterised by a high mean residual load and relatively low STD. 
Offshore wind, on the other hand, has a high STD, but low mean residual load. To such an extent 
that offshore wind’s residual load is negative, which indicates that a 35GW offshore wind system 
would, on average, generate more electricity than is demanded. The STD of the residual load left 
by offshore wind is slightly higher than onshore wind, which indicates that electricity output from 
offshore wind tends to be more erratic. Though the electricity output profiles of a single DTP-dam 
and two geographically dispersed DTP-dams are differently shaped (fig. 22 and 24), their average 
capacity factors and thus residual loads are equal. The STD of the residual load left by DTP rapidly 
declines when a second dam or a dam with a storage system was introduced into the system. 
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The correlation coefficients show that the residual loads from solar PV and on-/offshore wind tend 
to move in the opposite direction as their correlation coefficients are negative. As visualised in 
section 4.1.2, wind production peaks during the winter, while solar PV outputs peak in summers, 
which explains their negative correlation. Wind speeds above land and sea tend to follow the same 
profile, explaining why their residual loads are heavily correlated. Going by figure 23, it is unlikely 
that the positive correlation among the residual loads left by DTP and solar PV/wind is driven by 
the shape of their electricity output profiles. As the correlation coefficients increase as DTP’s 
electricity output stabilises due to a second dam or storage system, it seems like the correlations 
between DTP and solar PV/wind are driven by the shape of the demand profile rather than the 
shape of their electricity output profiles. The demand profile is the same for all technologies, which 
explains the positive correlation. 
 
Table 6: proxy variables 35GW VRE system and demand scenario 1: contemporary load profile. 

  
Using the proxy variables from table 6 and the MPT optimisation elaborated on in section 3.1.6, 
the energy generation portfolios that minimise the residual load’s STD for each level of mean 
residual load were computed. This optimisation problem was tackled through an iterative process 
at which the mean residual load was increased with 500MW, and the corresponding STD was 
determined using Excel solver. The minimum-variance frontiers, visualised in figure 30 illustrate 
the outcome of this optimisation problem.  

The vertical axis represents a VRE portfolio’s mean residual load and the horizontal axis 
the STD of a portfolio’s residual load. The minimum-variance frontiers thus indicate how volatile 
a portfolio’s residual load is for each level of mean residual load.  The four minimum-variance 
frontiers each correspond to one of the four technical configurations; solar PV and wind (A), solar 
PV, wind and a single DTP-dam (B), solar PV, wind and two geographically dispersed DTP-dams 
(C), and solar PV, wind and a DTP-dam with storage system (D).  
  
It is observed from figure 30, that the minimum-variance frontiers stretch from a mean residual 
load of approximately 10,000 MW to -2,000 MW. This corresponds with the maximum mean 
residual load (solar PV) and minimum mean residual load (offshore wind). The bent shape of the 
curve is the result of the correlation among technologies their residual loads. As was observed from 
the proxy variables, the residual loads left by solar PV and wind are negatively correlated. 
Combining these two electricity generation technologies into one portfolio (configuration A) partly 
cancels out their volatility, which reduces the overall STD of the portfolio’s residual load and 
explains the bent shape of minimum-variance frontier. 
 
Similar happened when a single DTP-dam was introduced into the system (configuration B). The 
minimum-variance frontier shifts left, which indicates that the STD of the portfolio’s residual load 
decreases. When two DTP-dams are introduced into the contemporary VRE system, the minimum-
variance frontier moves even further left. This is due to the fact that the electricity output from two 
geographically dispersed DTP-dams is perfectly negative correlated, which significantly reduces 
the volatility of DTP’s residual load. Hence, in configuration C it is not so much the correlation 
among DTP, solar PV and wind that reduces the STD of the portfolio’s residual load, but more the 
fact that the STD of one of the energy technology has decreased. Similar is observed in configuration 
D, where a DTP-dam with an integrated storage system was incorporated into the solar PV and 
wind system. The storage system has completely flattened DTP’s electricity output, leaving only 
the deviation caused by fluctuations in electricity demand. As a result, the STD of the portfolios’ 
residual loads has even further reduced, and the minimum-variance frontier moved left. 

  Solar 
PV 

Offshore 
wind 

Onshore 
wind DTP 2 DTP-

dams 
DTP incl. 

storage  
Mean residual load [MW] 9,913 -2,104 4,119 1,727 1,726 2,079 
STD of the residual load [MW] 5,071 10,567 7,838 10,067 4,885 2,130 
              
Correlation coefficients:           
Solar PV   -0.17 -0.12 0.07 0.14 0.31 
Offshore Wind     0.83 0.02 0.05 0.08 
Onshore wind       0.04 0.09 0.15 
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As elaborated on in section 3.1.6, all portfolios on the minimum-variance frontiers curtail the STD 
to the minimum, but they are not equally efficient. The portfolio on the uttermost left point on the 
four minimum-variance frontiers have the lowest STD and mark the tipping point between the 
efficient and inefficient part of the minimum-variance frontier. The portfolios located above this 
tipping point (on the dashed line) are inefficient since other portfolios (on the solid line) have a 
lower mean residual load for the same STD. To paraphrase, portfolios on the minimum-variance 
frontiers only minimise the STD, whereas the portfolios on the efficient frontier (solid line) also 
minimise the mean residual load. This makes these portfolios more efficient to meet demand. 
Therefore, all the VRE portfolios that are not located on the efficient frontier (solid line) were 
eliminated. 
 
 
5.1.2 Demand scenario 2: increased peak loads 
 
In the second demand scenario EV and electric HP were introduced into the system. As discussed 
and visualised in section 4.3.2 this increases the average electricity demand and peak loads, in 
particular during the winter months. It is important to note that the energy technologies' output 
profiles have not changed. Hence, any changes in the proxy variables or minimum-variance 
frontiers in relation to scenario 1 (contemporary demand profile) are solely caused by the altered 
demand profile. 
 
From table 7, it is observed that the proxy variables have indeed changed due to the new demand 
profile. As a result of the increased electricity consumption, the mean residual load of all energy 
technologies has increased with approximately 3,5GW. Except for offshore wind, the volatility of 
all the technologies’ residual loads also slightly increased. The latter is caused by the increased 
volatility of the demand profile due to the charging profiles from EV and use of electric HP. On the 
other, the STD of the residual load from offshore wind slightly decreased. This can be explained by 
the fact that the electricity output from wind turbines, especially those located offshore, tend to 
peak during winters. As this coincides with the increased electricity consumption from electric HP, 
the STD of the residual load left by offshore wind decreased. 

Figure 30: minimum-variance frontiers for a 35GW VRE system and the contemporary electricity demand 
profile (scenario 1). The solid part of the minimum-variance frontiers indicates the efficient frontier. 

-2,500

-1,500

-500

500

1,500

2,500

3,500

4,500

5,500

6,500

7,500

8,500

9,500

10,500

11,500

12,500

13,500

14,500

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000

Po
rt

fo
lio

's 
m

ea
n 

R
es

id
ua

l L
oa

d 
[M

W
]

Standard deviation portfolio's residual load [MW]

Minimum-variance frontiers 35GW VRE system 
Demand scenrario 1: contemporary load profile

Wind & solar PV Wind, solar PV & DTP
Wind, solar PV & 2 DTP-dams Wind, solar PV & DTP incl. storage system



 
 

 
 
 48 

From table 7, it is observed that all the correlation coefficients have become more positive due to 
the altered demand profile, which indicates that the residual loads tend to co-move to a greater 
extent in relation to scenario 1. The increased peak consumption from EV and electric HP has given 
the demand profile a more pronounced shape. As a result, the shape of the demand profile has a 
more significant effect on the shape of technologies their residual loads. And as the demand profile 
is the same for all energy technologies, their residual loads correlate more positively. 

 
 Table 7: proxy variables 35GW VRE system and demand scenario 2: increased peak loads. 

 
The above proxy variables were again plugged into equation 3.8 and 3.9 and Excel Solver was used 
to solve the optimisation problem and find the portfolios with the lowest STD for each level of mean 
residual load. The resulting minimum-variance frontiers are illustrated in figure 31.  

The most obvious that can be concluded from figure 31, is that the order of the minimum-
variance frontiers (left to right) has remained the same, which indicates that, despite the 
penetration of EV and electric HP, incorporating DTP  still reduces the volatility of a VRE system’s 
residual load. However, the distances between the four minimum-variance frontiers have reduced 
in relation to scenario 1. Due to the deployment of EV and electric HP, electricity peaks have 
increased, and the technology’s residual loads are more positively correlated. As elaborated in 
section 2.1.3, when the correlation coefficients approach 1, diversification becomes less effective in 
reducing the STD of a portfolio’s residual load. As a result, the minimum-variance frontiers lose 
their sharp curve, which indicates that the volatility-reducing effects of incorporating DTP into the 
contemporary VRE mix have slightly diminished. 
 
Apart from the shape of the minimum-variance frontier, its location in the plane has also changed. 
In scenario A (fig. 30), the minimum-variance frontiers stretched from a mean residual load of 
10,000  to -2,000 MW, and in the scenario with EV and electric HP (B) it goes from 14,000 to 
3,500MW.  This shift is in line with what was observed from the proxy variables, and indicates that 
the mean residual load has increased, regardless of the energy technologies included in the 
portfolios. No longer is there any 35 GW VRE portfolio that, on average, produces more electricity 
than is consumed. 
 
Similar to scenario 1, only those portfolios that minimise both the mean residual load and STD are 
located on the efficient frontier (solid line) and considered efficient. Hence, the VRE portfolios on 
the inefficient part of the minimum-variance frontier (dashed line) were eliminated.  
 
 

  Solar 
PV 

Offshore 
wind 

Onshore 
wind DTP 2 DTP-

dams  
DTP incl. 

storage 
Mean residual load [MW] 13,699 1,682 7,905 5.514 5,513 5,866 
STD of the Residual load [MW] 6,053 10,560 7,919 10,441 5,605 3,468 
              
Correlation coefficient:           
Solar PV   -0.06 0.03 0.20 0.37 0.60 
Offshore Wind     0.82 0.06 0.11 0.15 
Onshore wind       0.09 0.17 0.25 
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5.1.3 Demand scenario 3: flat load profile 

 
In scenario C, demand-responsive measures are introduced into the system with a high penetration 
of EV and electric HP (scenario B). As a result of this extreme load shifting, the resulting load 
profile is completely flat (fig. 28 & 29). Hence, the volatility of the residual loads are entirely the 
result of deviations in  a technology’s electricity outputs, and thus any changes in the weather or 
velocity of the tidal currents. 
 
The effects of this flat load curve can be observed in the table with proxy variables (table 8). Except 
for offshore wind, the STD of all technologies’ residual loads have decreased due to the stabilised 
electricity demand. In scenario B, electricity output from offshore wind (winter) peaked 
simultaneously with the increased electricity consumption caused by the use electric HP (winter). 
However, load shifting has completely flattened the demand curve, which has slightly increased 
the STD of the residual load left by offshore wind. Since the electricity output from a DTP-dam 
with storage system is consistent throughout the year, similar to electricity demand, the STD of its 
residual load equals zero. 

The mean residual loads have remained unchanged in relation to scenario B. Although 
demand-responsive measures have shifted peak loads and changed the shape of the demand curve, 
the cumulative amount of electricity consumed is the same, it is just better distributed.  
 
Now that the load curve is flat, it no longer affects the STD of the residual load. Therefore, the 
correlation coefficients are solely affected by the technologies’ deviations in electricity output.  As 
a result, the negative correlation between solar PV and wind has increased in comparison to 
scenario A and B. Furthermore, there is no correlation whatsoever between the electricity output 
from DTP and any of the other VRES, which confirms that, the in scenario A and B observed, 
positive correlations were solely driven by the shape of the demand profile. 
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Figure 31: minimum-variance frontiers for a 35GW VRE system and increased peak loads (scenario 2). The 
solid part of the minimum-variance frontiers indicates the efficient frontier 
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Table 8: proxy variables 35GW VRE system and demand scenario 3: flat load profile. 

 
Using Excel solver, equation 3.8 and 3.9, and the proxy variables the optimisation problem was 
solved, and the generated minimum-variance is visualised in figure 32. Due to the decreased 
correlation among the residual loads, the minimum-variance frontiers are characterised by a 
sharper curve in relation to both scenario A and B. which has increased the distance between the 
four minimum-variance frontiers. The latter indicates that introducing DTP into a system with a 
flat load profile has a greater effect on reducing the STD than in a system with average (scenario 
1) or high (scenario 2) peak loads. Especially a DTP-dam with an integrated storage system greatly 
affects the STD of  a VRE portfolios’ residual load. To such an extent that there is one VRE portfolio 
on the minimum-variance frontier which residual load bears no deviation whatsoever.  
 
Similar to what was observed from the proxy variables, introducing demand-responsive measures 
into a scenario with a high penetration of EV and electric HP (scenario 2) has only reduced the STD 
of the VRE portfolios’ residual loads. When scenario 2 (fig. 31) is compared with scenario 3 (fig. 32), 
it becomes clear that the minimum-variance frontier has not moved up nor down, indicating that 
the VRE portfolios’ mean residual loads have indeed remained the same.  
 
Similar as with the previous two scenarios, only the portfolios on the efficient frontier minimise 
both the mean residual load and the STD of the residual loads. Therefore, all portfolio that only 
minimise the STD and are located on the inefficient part of the minimum-variance frontier (dashed 
lines) are eliminated. 

  Solar 
PV 

Offshore 
wind 

Onshore 
wind DTP 2 DTP-

dams  
DTP incl. 

storage 
Mean residual load [MW] 13,699 1,682 7,905 5.514 5,513 5,866 
STD of the residual load [MW] 4,863 10,606 7,818 9,831 4,383 0 
              
Correlation coefficient:           
Solar PV   -0.19 -0.15 0.00 0.00 0.00 
Offshore Wind     0.83 0.00 0.01 0.00 
Onshore wind       0.01 0.02 0.00 

Figure 32: minimum-variance frontiers for a 35GW VRE system and flat load profile (scenario 3). The solid 
part of the minimum-variance frontiers indicates the efficient frontier 
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5.2 Most efficient portfolios: dispatchable backup capacity  
 
In the previous section, the MPT was used to generate the minimum-variance frontiers for each 
scenario and configuration. Subsequentially, the portfolios on the inefficient part of the mean-
variance frontiers were eliminated, leaving only those VRE portfolios that are located on the 
efficient frontier. These portfolios minimise both the mean residual load and the STD of the residual 
load. However, as is visualised by the efficient frontiers, a portfolio’s mean residual load and STD 
are characterised by a trade-off, making it impossible to select which portfolio is most efficient in 
meeting demand.  
 
Therefore, the dispatchable backup capacity required to cover the residual loads left by each 
portfolio was determined. This single value indicates how well a portfolio can meet demand and 
allows for easy comparability among the VRE portfolios. Hence, this enables selecting the most 
efficient VRE portfolios for each configuration and demand profile. As elaborated in section 3.2, the 
dispatchable backup capacity is a function of a VRE portfolio’s mean residual load, the STD of its 
residual load and a certain energy security level. For this study, the energy security level was set 
to 95%.  

This section will first discuss all the VRE portfolios’ energy generation shares on the 
efficient frontier and their required dispatchable backup capacity. Subsequentially, for each 
scenario and configuration, the portfolios that require the least backup capacity, and are considered 
to be most efficient in meeting demand, are presented. 

 
Figure 33 illustrates the portfolio shares and required dispatchable backup capacity for those VRE 
portfolios located on the efficient frontier. This particular figure corresponds with a VRE system 
comprised of solar PV, wind and DTP (configuration B) and the contemporary load profile (scenario 
1). However, similar graphs have been generated for all scenarios (1-3) and configuration (A-D), 
and can be found in appendix C. 

The horizontal axis of figure 33 indicates a VRE portfolio’s mean residual load (upper value) 
and STD (lower value). These values thus indicate where on the efficient frontier a certain VRE 
portfolio is located.  The first portfolio (left) marks the efficient frontier’s beginning (the utmost left 
point on the solid line).  As one goes down the horizontal axis, the mean residual load decreases 
and the STD increases, which corresponds with the trade-off visualised by the efficient frontier 
visualised in figure 30.  The left vertical axis represents the portfolio shares and the colours the 
different energy generation technologies. The right vertical axis indicates the dispatchable backup 
capacity required to cover 95% of the VRE portfolios’ residual load. The portfolio marked with the 
white dot requires the least backup capacity and is thus considered most efficient for that specific 
scenario and configuration. 
 
From figure 33, it is observed that the VRE portfolio with the lowest STD (left on efficient frontier) 
is comprised of different energy technologies, but predominantly solar PV. This illustrates the 
fundamental idea behind the MPT;  to minimise the volatility of a VRE portfolio’s residual load one 
should include energy technologies whose residual loads have a low STD, such as solar PV, and/or 
technologies whose residual loads negatively correlate (i.e. solar PV and wind). It is observed that 
a VRE portfolio’s STD increases when larger shares of offshore wind are introduced into the system. 
This is due to the volatile electricity output from offshore wind, but also since the diversification 
effects with solar PV diminishes.  On the other hand, increased penetration of wind decreases the 
mean residual load of the VRE system. This is due to the high average electricity output (capacity 
factor) from offshore wind turbines.  

From these observations, it can be concluded that both solar PV and offshore wind have a 
distinguished role in the energy mix. Solar PV tends to stabilise a portfolio’s residual load, while 
offshore wind causes the mean residual load to plummet.  
 
On the other hand, onshore wind only has a minor role in a small number of portfolios on the 
efficient frontier. The reason for this lies in the electricity output profiles from offshore and onshore 
wind. As the proxy variables have shown, the electricity output from offshore wind and onshore 
wind is heavily correlated and tend to follow the same pattern. As elaborated in section 2.1.3, a 
portfolio that includes two heavily correlated energy technologies, cancels out the diversification 
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effects, which increases a portfolio’s volatility. Hence, it is more efficient to combine either offshore 
or onshore wind in a portfolio with other, less positively (i.e. DTP) or even negatively (i.e. solar PV)  
correlating energy technologies. On average, offshore wind produces more electricity than onshore 
wind and thus has a greater effect on reducing a portfolio’s mean residual load. As a result, a VRE 
portfolio benefits more from the inclusion of offshore wind than onshore wind to reduce its required 
backup capacity. 
 
As observed from the proxy variables DTP lies somewhere between solar PV and offshore wind in 
terms of its electricity output and its volatility. As a result, including shares of DTP up to 40% 
capitalises on the diversification effect, but unlike wind and solar PV, including larger shares yields 
no significant benefits for the system. However, as can be seen in appendix C. this changes when a 
second, geographically dispersed DTP-dam was introduced into the system. The second dam causes 
DTP’s electricity output to stabilise to such an extent that its residual load becomes less volatile 
than that of solar PV. As a result, portfolios shares of DTP up 80% become efficient.  

Even though introducing a second dam made DTP superior to solar PV in terms of their 
mean residual load and volatility, solar PV still plays a minor role in some of the portfolios. This is 
only because solar PV’s electricity output negatively correlates with offshore wind. However, this 
correlation proves not to be strong enough when DTP is equipped with an integrated storage 
system. DTP's electricity output becomes entirely consistent, minimising its residual load's 
volatility and pushing solar PV out of the efficient portfolios. 
 
Regarding the required backup capacity, it is observed that portfolios at both ends of the efficient 
frontiers require the largest backup to ensure an energy security level of 95%. This can be explained 
by the fact that portfolios with a high mean residual load (left on efficient frontier), require a 
substantial amount of backup capacity to compensate the VRE portfolio’s low average capacity 
factor. On the other hand, portfolios whose residual load is highly volatile (right end of the efficient 
frontier), require a large backup system to compensate the VRE system’s erratic capacity factor. 
On average such backup system produces little electricity, the backup capacity just has to be 
available to quickly compensate the short but large electricity deficits left by the VRE system.  

 

 
For each scenario and configuration, the VRE portfolios that require the smallest backup system 
(marked by the white dot in the figures) were selected. These portfolios are considered most efficient 
in meeting demand and are visualised in figure 34.   

The horizontal axis indicates the different technical configurations (A-D) and the different 
electricity demand scenarios (1-4). Similar as in the previously discussed figure, the left vertical 
axis represents the portfolio shares and the right vertical axis the size of the dispatchable backup 
system required to cover 95% of the residual load left by the VRE system. The colours are also the 
same as in the previous figure and represent the different energy generation technologies.  
 
 

Figure 33: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 1: 
contemporary load profile. Technical configuration B: solar PV, wind & DTP. 
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What can be observed from figure 34, is that the contemporary VRE system, comprised of solar PV, 
onshore wind and offshore wind, is best capable of meeting demand when investments are more or 
less evenly distributed among solar PV and offshore wind. These portfolio shares best utilises the 
negative correlation among the electricity outputs from solar PV and offshore wind. As a result, the 
required backup capacity is minimised. When a single DTP-dam is introduced into the system, the 
diversification effects are maximised by investing approximately 30% in solar PV, 40% in offshore 
wind and 30% in DTP. As DTP’s electricity output stabilises due to the introduction of a second 
dam (configuration C) or battery storage system (configuration D), its dominance in the efficient 
VRE portfolios increases and replaces solar PV and offshore wind. 
 
Due to its consistent electricity output, a VRE system comprised of predominately DTP with storage 
(configuration D) requires the least backup capacity and is thus most efficient in meeting demand. 
Followed, by the configurations containing two geographically dispersed DTP-dams and a single 
DTP-dam. A system solely comprised of wind and solar PV requires the largest backup system to 
meet demand. Hence, in terms of the amount of backup capacity a system requires, it is found that 
the contemporary VRE system would benefit from the incorporation of DTP, regardless of its 
technical configuration. 
 
In regards to the electricity demand profile in relation to the VRE portfolio’s composition, two major 
observations can be made from figure 34. Firstly, it is observed that in a scenario were EV and 
electric HP penetrate the market and increase both the average electricity consumption as well as 
the peak loads, the VRE system benefits from larger shares of offshore wind. As was observed from 
the proxy variables and visualised in figure 29, the electricity output from wind, particularly 
offshore wind, tends to peak in the winter, which coincides with the peak loads from electric HP. 
Therefore, as the use of EV and especially HP increases, incorporating larger shares of offshore 
wind decreases the need for dispatchable backup capacity and thus improves a VRE system’s ability 
to meet demand.  

Secondly, it is observed that, regardless the technologies included in the VRE system, the 
use of demand-responsive measures to flatten peak loads caused by EV and electric HP have a 
backup-reducing effect. Hence, if the use of EV and HP were to increase, the system would benefit 
if this were to be accompanied by the incorporation of demand-responsive measures to distribute 
peak loads. This is especially true for a system with a DTP-dam with and incorporated storage 
system. 

Figure 34: overview of the 35GW VRE portfolios that minimise the required backup capacity. 
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5.3 Most efficient portfolios: electricity generation costs  
 
In the previous section, the portfolios on the efficient frontiers were gauged based on their required 
backup capacity. In this section, the same VRE portfolios are compared based on their energy 
generation costs. A VRE portfolio’s ability to meet demand together with the electricity generation 
costs of the entire system provide valuable insights into which VRE portfolio is most efficient.  
 This section first briefly restates the methodology that was used to determine the system’s 
energy generation costs. Thereafter, the electricity generation costs associated with all the VRE 
portfolios on the efficient frontiers are discussed. Subsequently, the energy systems that minimise 
the energy generation cost for each scenario and configuration are presented.  
 
The electricity generation costs were determined for the entire system, including both the VRE 
system’s generation costs and those of the CCGT backup capacity. Hence, the computed backup 
capacity to cover 95% of the residual load was added to the 35GW VRE system. For most 
configurations this resulted in a total system size of about 45-55 GW. Due to this increased system 
size, the portfolio shares changed, and were recomputed. Finally, the system’s electricity generation 
costs were calculated by multiplying the new portfolio shares with each technology’s LCOE, which 
were shown in section 4.4.2. 

Though already stressed in section 3.3, it is important to note that the LCOEs of the VRE 
technologies are consistent regardless of the portfolio composition, while the LCOE of the CCGT 
backup varies depending on the characteristics of the residual load left by a particular VRE 
portfolio.  
 
Figure 35 illustrates the results for configuration B (solar PV, wind and DTP) and the contemporary 
load profile (scenario 1). Similar figures were generated for the other scenarios and configuration 
and can be found in appendix D. 

The horizontal axis indicates a VRE portfolio’s mean residual load (upper value) and STD 
(lower value) and thus marks where a certain VRE portfolio is located on the efficient frontier (fig. 
30). The first portfolio (left) corresponds with the uttermost left point of the efficient frontier and 
as one goes down the horizontal axis the mean residual load decreases and the STD increases, 
which corresponds with the trade-off visualised by the efficient frontier. On the bottom graph, the 
left vertical axis represents each technology’s installed capacity in GW.  The right vertical axis 
indicates the system’s LCOE, expressed in € per MWh of electricity produced. As mentioned before, 
these costs include both the costs of the VRE system as well as its required backup. The top graph 
indicates the capacity factor of the CCGT backup.  
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Figure 35: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. 
Demand scenario 1: contemporary load profile. Technical configuration B: solar PV, wind & DTP. 
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From figure 35 it is observed that the capacity factor of the CCGT plummets as the mean residual 
load left by a VRE portfolio decreases and its STD increases. Due to the increasing STD, the backup 
system becomes increasingly larger to ensure a certain level of energy security (95%), while on 
average less electricity is generated by the CCGT. As a result, the amount of electricity produced 
per unit installed – the capacity factor –  decreases. 

Something else that is observed from figure 35 is that the CGGT’s declining capacity factor 
coincides with rising electricity generation costs. When a declining amount of electricity is produced 
per unit installed, the initial investment and fixed O&M costs are distributed among fewer units 
of electricity. This drives up the generation costs per unit produced by CCGT, which explains the 
increasing system’s costs. As a result of this phenomena,  the system that bears the lowest 
electricity generation costs –  marked by the white dot in figure 35 –  is characterised by a CCGT 
with a high capacity factor.  
 
The reason why the electricity generation costs stay relatively consistent at the beginning of the 
efficient frontier (left), despite the decreasing capacity factor of CCGT, is two-folded.  Firstly, the 
amount of CCGT backup capacity decreases, causing the increasing generation costs to weigh less 
heavily on the total system’s costs. Secondly, the generation costs of solar PV are higher than those 
of offshore wind, but in particular higher than those of DTP. Hence, when the share of solar PV 
decreases and is replaced by DTP, the generation costs of the VRE system slightly decrease. The 
decreasing cost of the VRE system partly offsets the increasing generation cost from the CCGT.  

The graphs in appendix D support the notion that the phenomes described above apply to 
all the configurations, except configuration D, which includes a DTP-dam with an integrated 
storage system 
 
Figure 36 illustrates the electricity generation costs for a system comprised of solar PV, wind and 
a DTP-dam with an integrated storage system (configuration D). Similar to the previously 
discussed results, this figure corresponds with electricity demand scenario 1 (the contemporary 
demand profile). The costs-graphs for demand scenario 2 and 3 can be found in appendix D.  

What strikes from figure 36, is that opposed to configuration A, B and C, the system’s costs 
curve and the CCGT’s capacity factor curve move together. The costs decrease while the capacity 
factor inflates, which is counterinitiative considering what was observed in the other configuration. 
However, this can be explained by the fact that in configuration D the system’s costs are no longer 
driven by the generation costs of CCGT, but by DTP’s electricity storage costs. Due to its storage 
system the residual load left by a system comprised almost entirely of DTP is very stable (STD of 
2,090 MW). This causes the CCGT’s capacity factor to reach almost 100%, driving down its 
electricity generation costs. However, DTP’s storage costs are so substantial, that the costs-
reduction caused by the CCGT’s high capacity factor is completely offset. As a result, it is more 
cost-efficient to have an inefficient backup system (low capacity factor) than to incorporate large 
shares of DTP with integrated battery storage. 

Figure 36: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. 
Demand scenario 1: contemporary load profile. Technical configuration D: solar PV, wind & DTP incl. storage. 
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The most cost-efficient systems were selected for all technical configurations (A-D) and demand 
scenarios (1-3). These portfolios are visual in figure 37. The horizontal axis indicates the different 
configurations and demand scenarios. The bottom’s graph right and left axis represents the 
system’s installed capacities and electricity generation costs. The top graph marks the capacity 
factors of the CCGT backup system.  

Its observed, that regardless of the electricity demand profile, configuration C is most cost-
efficient. Configuration C is followed by configuration A, B and finally D. Hence, it can be concluded 
that introducing a single DTP-dam and, to an ever greater extent, two geographically dispersed 
DTP-dams,  into the contemporary VRE systems drives down the energy generation costs. 
Incorporating a DTP-dam with integrated storage system, on the other hand, would significantly 
increase the system’s costs.  
 
The most cost-efficient portfolio shares differ dramatically compared with the VRE portfolio shares 
that required the least backup capacity (fig. 34). In regards to configuration A and B, offshore wind 
is almost entirely replaced by onshore wind. This is partly due to the fact that the energy generation 
costs of onshore wind are lower than those of offshore wind. However, this shift in portfolio shares 
is predominantly driven by the fact that the CCGT backup produces more electricity per unit 
installed (higher capacity factor) in a VRE system comprised of solar PV and onshore wind. And as 
was concluded from figure 35, a high CCGT capacity factor drives down the electricity generation 
costs of the total system.  

However, the greatest change in portfolio shares is observed in configuration D. Due to its 
high battery storage costs, DTP is replaced by offshore wind, even though this significantly reduces 
the CCGT’s capacity factor. Hence, it can be concluded, that in terms of the energy generation-
costs, including a DTP-dam with an integrated storage system is not efficient.  

On the other hand, the composition for the most efficient portfolios for configuration C have 
remained exactly the same in relation to the portfolio shares that required the least backup capacity 
(fig. 34).  
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Figure 37: overview of the 35GW VRE portfolios + CCGT backup that minimise the energy generation costs. 
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From figure 37, it is observed that the shape of the load curve has a small effect on the composition 
of the efficient portfolios. Similar as observed in section 5.2, when the average electricity 
consumption and peak loads increase due to EV and electric HP (scenario 2) a small increase in 
offshore wind is observed in configuration A and B.  The electricity output from offshore wind tends 
to follow the peaks in electricity consumption of electric HP. Hence, increased shares of offshore 
wind reduce the residual load’s volatility. This increases the CCGT’s capacity factor and drives 
down the system’s electricity generation costs.  

In configuration C, the different load profiles have little effect on the electricity generation 
costs or portfolio compositions. Increased peak loads tend to slightly increase the generation costs. 
This is a result of increased size of the CCGT back system, which causes the high costs of the CCGT 
to weigh heavier on the system’s total costs. However, these increased costs do not affect which 
portfolio shares are most efficient. In every demand scenarios, the three most efficient portfolios 
are comprised of approximately 25% offshore wind and 75% DTP. 

The changes in the demand profiles also resulted in some changes in configuration D.  In 
demand scenario 1, DTP still plays a minor role in the most cost-efficient portfolio, while DTP is 
completely replaced by offshore wind as the average electricity demand increases in scenario 2 and 
3. This is due to the fact that offshore wind tends to produce more electricity per unit installed than 
DTP, and thus reduces the amount of electricity that is produced by the CCGT 
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5.4 Sensitivity analysis 
 
To acquire a thorough understanding of how the optimisation model reacts to certain changes in 
the input parameters, a sensitivity analysis was conducted. For this sensitivity analysis, merely 
electricity demand scenario 1 – the contemporary load profile – was used. The sensitivity analysis 
includes all the technical configuration (A-D). 

For this sensitivity analysis, three different variables were adjusted; the system size, the 
confidence interval of the backup system and the CO2 price. Section 5.4.1 discusses the effects of 
changing the VRE system’s size from 35GW to 25 and 45GW. In section 5.4.2, the effects of 
increasing the confidence interval from 95% to 99% are presented. Finally, the CO2 price was 
increased from 25 to 200 €/ton CO2, the results of this are presented in section 5.4.3. 
 
5.4.1 System size 
 
The results presented so far are based on a 35GW VRE system, equal the size of the contemporary 
electricity system in The Netherlands. To evaluate whether the system’s size affects the 
composition of the portfolios and the amount of backup capacity required, the system size was 
adjusted. The system size in changed from 35 GW to 25 and 45GW.   
 
In- and  decreasing the VRE system’s size results in the proxy variables illustrated in table 9 and 
10. The table shows the mean residual load and STD, if the VRE system were to be comprised of 
25 or 45GW of solely one of the six energy technologies. The bottom three rows represent the 
correlation coefficients among technology’s residual loads.  

It is observed that for all energy technologies, the mean residual load decreases as the 
systems size increases. This is simply due to the fact that when more VRE capacity is installed, on 
average, more electricity is generated, which reduces the mean residual load. 

On the contrary, for all technologies expect a DTP-dam with storage system, the STD of the 
residual loads increase when the system was enlarged. The electricity output from a certain 
technology deviates between a certain range. For example, if 25GW of solar PV were to be installed, 
its electricity output could deviate between 0 and 25 GW, depending on the amount of solar 
irradiation. When the installed capacity is increased to 45 GW, the range in which the electricity 
output from solar PV can fluctuate expands, which increases the STD and that of its residual load. 

The electricity output from a DTP-dam with storage system does not fluctuate. Hence 
increasing its installed capacity does not affect its volatility in electricity output. The STD of the 
residual load left by a DTP-dam with storage system (2,130 MW), is solely the result of the 
fluctuations in electricity demand and thus does not change when the system’s size is adjusted. 
 
From the correlation coefficients, it is observed that the residual loads tend to be more negatively 
correlated when the system’s size increases. The smaller the system’s size, the more the correlation 
among the residual loads is dominated by the shape of the load curve. As the load curve is the same 
for each technology, their residual loads tend to be more positively correlated. But when the 
system’s size increases, the shaping-effect of the load profile on the residual load diminishes and 
the correlation is predominately driven by the volatility in electricity output. 
 
Table 9: proxy variables 25GW VRE system and demand scenario 1: contemporary load profile. 

 

  Solar 
PV 

Offshore 
wind 

Onshore 
wind DTP 2 DTP-

dams 
DTP incl. 

storage 
Mean residual load [MW] 10,803 2,221 6,665 4,957 4,956 5,209 
STD of the residual load [MW] 3,852 7,622 5,719 7,345 3,797 2,130 
              
Correlation coefficient:           
Solar PV   -0.11 -0.04 0.13 0.26 0.45 
Offshore Wind     0.83 0.05 0.10 0.16 
Onshore wind       0.08 0.16 0.25 
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Table 10: proxy variables 45GW VRE system and demand scenario 1: contemporary load profile. 

 
The proxy variables were used to generate the minimum-variance frontiers for each technical 
configuration and system size. From figure 38, it is observed that the efficient frontiers reach 
further into the negative values as the installed capacity increases. This indicates that a larger 
number of VRE portfolios on the minimum-variance frontier, on average, produce more electricity 
than is consumed. Additionally, the efficient frontiers move to the right when the system’s size is 
increased. This visualises what was observed from the proxy variables; when more capacity is 
installed the volatility increases.  

As was elaborated in section 5.1.1, changes in the correlation coefficients affect the 
sharpness of the curve in the mean-variance frontier. As was observed from the proxy variables, 
the larger the VRE system, the more negatively the technologies’ residual loads tend to correlate. 
This is also observed in figure 38, the curve in the minimum-variance frontier tens to sharpen when 
the system’s size increases.  

 
 
 
Similar to the results of the different demand scenarios, the portfolios on the inefficient part of the 
minimum-variance frontier (dashed line) were eliminated. The portfolio's shares of the VRE 
systems on the efficient frontier (solid line) are visualised in bar charts and can be found in 
appendix E. Subsequentially, for those portfolios on the efficient frontier, the backup capacity 
required to cover 95% of the residual load was determined, and the portfolios that required the 
least backup were selected. These most efficient portfolios are visualised in figure 39. The 
horizontal axis marks the different system sizes and configurations, while the vertical axis 
represents the portfolio shares (left) and required backup capacity (right). 

 
 
 

  Solar PV Offshore 
wind 

Onshore 
wind DTP 2 DTP-

dams 
DTP incl. 

storage 
Mean residual load [MW] 9,022 -6,429 1,572 -1,503 -1,504 -1,050 
STD of the residual load [MW] 6.360 13,549 10,007 12,825 6,037 2,130 
              
Correlation coefficient:           
Solar PV   -0.19 -0.15 0.04 0.08 0.22 
Offshore Wind     0.82 0.01 0.03 0.04 
Onshore wind       0.02 0.05 0.09 
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Figure 38: overview minimum-variance frontiers for a 25, 35 and 45 GW VRE system. 
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From figure 39 it is observed that, although the characteristics (mean residual load, STD and 
correlation) of the portfolios changed, the shares of the most efficient portfolio remained the same, 
regardless system’s size. Hence, one could conclude that the system’s size has little to no effect on 
which VRE portfolio shares are most efficient to meet demand. 

  
However, regarding configuration C and D, increasing the system’s size significantly reduced the 
need for dispatchable backup capacity, while little change is observed in configuration A and B.  
This can be explained by the fact that the electricity output from solar PV, wind and a single DTP 
dam know periods in which little to no electricity is produced. During these periods all the 
electricity to foresee in demand is produced by the backup. Increasing the system’s size slightly 
reduces the number of hours in which VRE technologies produce no electricity, however, they are 
not eliminated. Hence, regardless of the VRE system’s size, a system comprised of solely solar PV, 
wind and a single DTP-dam requires approximately the same amount of backup capacity to ensure 
a certain level of energy security.  

On the other hand, including a second geographically disperse DTP-dam or a DTP-dam 
with a storage system helps to distribute the electricity outputs, diminishing periods in which little 
to no electricity is produced. As a result, increasing the installed capacity reduces the need for a 
backup system. Therefore, it can be concluded that increasing the installed VRE capacity in order 
to reduce the need for backup capacity is only effective if the VRE system includes perfect 
negatively correlating VRE technologies (scenario C) or a storage system (configuration D).  
 

 
 
5.4.2 Confidence interval dispatchable backup system 
 
Until now the confidence interval (CI) of the dispatchable backup system was set to 95%, which 
means that the backup system should be large enough to cover 95% of the VRE portfolios' residual 
load. In this sensitivity analysis, the confidence interval is increased to 99%, simulating a scenario 
with a higher degree of energy security.  

 
As was elaborated in section 3.2, the size of a backup system with a 95% confidence interval 
corresponds with a VRE portfolio’s mean residual load plus 1.645 (z-value) times the STD of the 
residual load. In order to increase the level of energy security, the z-value was increased so that 
more outliers are covered by the backup system. For a one-tailed test with a confidence interval of 
99%, the z-score is 2.33 [74]. Hence, the equation to determine the size of the backup systems is as 
following (eq. 5.1);   
 

dJKRHONHeIL	eHNfQR	NHRHNJOP	("m: 99%) = &()^-) + 2.33 ∗ !>)^'@							('8. 5.1) 
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Sensitivity analysis: different VRE system sizes 25GW, 35GW and 45GW 
Demand scenario 1: contemporary load profile 
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Figure 39: overview most efficient VRE portfolios for different system sizes; 25, 35 and 45GW 
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Figure 40 illustrates the portfolio shares and backup capacity for a system comprised of solar PV, 
wind and DTP (configuration B). Similar graphs were generated for the other three configurations 
(A, C and D) and can be found in Appendix F. The horizontal axis indicates a portfolio’s mean 
residual load (upper value) and STD (lower value), and thus mark where on the efficient frontier a 
portfolio is located (fig. 30). The vertical axis indicates the portfolio shares (left) and the 
dispatchable backup capacity required (right).  The shares of the portfolios on the efficient frontier 
are not affected by the increased CI, and are thus the same as discussed in section 5.1.1. The red 
line, which was added to the figure, indicates the backup capacity required to cover 99% of the load 
left by a VRE portfolio. The white dot on the black and red line indicates which portfolio requires 
the least backup capacity. 
 
Figure 40 and the figures corresponding with the other configurations (appendix F) show that more 
backup is required as the level of energy security is increased. Based on the deflecting red line, this 
effect is the greatest for those VRE portfolios whose residual loads bear high a STD. A high STD 
indicates that the residual loads are spread out around the mean residual load. As a result, VRE 
portfolios whose residual loads have a high STD require much extra backup to increase the energy 
security just a little bit. 

On the other hand, when the STD is low, and the residual loads are clustered around the 
mean, a small increase in dispatchable backup capacity is sufficient to attain a much higher level 
of energy security. As a result of this disproportional need backup capacity, it is observed that as 
the CI increases, portfolios with a low STD and high mean residual load tend to become more 
efficient than portfolios with a high STD and low mean residual load. This phenomenon is also 
clearly visualised in figure 40, the white dot in the bar chart, which indicates the portfolio that 
requires the least backup, moves left as the CI increases. 

Figure 41 illustrates the most efficient VRE portfolios for each configuration and confidence 
interval. The horizontal axis indicates the four technical configurations (A-D) and the confidence 
intervals (95% and 99%). The vertical axis illustrate the portfolio shares (left) and the backup 
capacity required to cover either 95% or 99% of the residual load.  

Figure 41, shows that regardless of the technical configuration, the required backup 
capacity increases as a higher level of energy security is demanded from the system. Something 
else observed from figure 41, is that the shares of solar PV and onshore wind in the most efficient 
portfolios for configuration A-C increase when a higher level of energy security is demanded from 
the system. Onshore wind and in particular solar PV tend to stabilise a portfolio’s residual load, 
which, causes the required backup capacity to increase less rapidly when the CI is increased. Hence, 
increased levels of energy security require more stable VRE technologies.  

The portfolio composition of scenario D does not change when the CI is increased, because 
there is no portfolio whose residual load bears a lower STD than a portfolio compressed entirely 
from DTP with an incorporated storage system. 

Figure 40: portfolio shares and backup capacity for an increased confidence interval: 95%-99%. Technical configuration B: 
solar PV, wind & DTP. 
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5.4.3 CO2 price 
 
The results presented so far assumed a CO2 price of 25 euro per ton of CO2 emitted, equal to the 
price for which CO2 allowances were traded in 2020 [76]. However, as was elaborated in section 
4.4.1, the idea behind the Emission Trading System (ETS) is that each year the number of 
allowances is reduced to drive up the price and stimulate more companies to abate CO2-emission. 
To simulate an extreme reduction in CO2 allowances, the CO2 price was increased to 200 €/ton CO2 
in this sensitivity analysis. Table 11 illustrates that as a result of this increased CO2 price, the CO2 
costs per MWh produced by the CCGT increase from 10.10 (table 3) to 80.78 €. 
 

      Table 11: CO2 costs per MWh for an increased CO2 price  

 
 
 
 
 
 
 
Figure 42 illustrates the effects of the increased CO2 price on the system’s LCOE for technical 
configuration B. However, similar graphs were generated for the other three configurations (A, C 
and D) and can be found in appendix G. The dashed black line corresponds with the systems LCOE 
with CO2price of 25 €/ton CO2 and the dashed red line corresponds with a CO2 price of 200 €/ton 
CO2.  
 

CO2 costs CCGT 
CO2 emission factor natural gas [kg/GJ]  56.10 [76] 
Energy used to generate 1 MWh [GJ] 7.20 
CO2 emission [ton/MWh] 0.40 
CO2 price [Euro/ton] 200.00 
CO2 costs (Euro/MWh) 80.78 

Figure 41: overview most efficient VRE portfolios for different confidence intervals; 95% and 99%. 
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From figure 42, it is observed that the systems LCOE has increased regardless of the composition 
of the VRE system or the size of the backup system. Something else that can be seen from figure 
42 is that the most cost-efficient system is no longer located at the end of the efficient frontier, 
where the capacity factor is the highest, but somewhere halfway. As was concluded in section 5.3, 
the system’s costs of configuration A and B are driven by the capacity factor of the CCGT. When 
the CO2 price is relatively low, the CCGT capacity factor should be high so that its investment and 
fixed O&M costs are spread out. But when the CO2 costs increase, it becomes increasingly costly to 
produce electricity, so the overall system’s costs are the lowest when little electricity is generated 
by the CCGT. Hence, it is most cost-efficient when both the capacity factor and the size of the 
backup system are minimised. This why the most cost-efficient portfolios tend to lie halfway the 
efficient frontier, where the backup system is the smallest and the capacity factor has decreased. 
 

Figure 43 illustrates the most cost-efficient systems for each configuration and CO2 price. The 
horizontal axis indicates the four technical configurations (A-D) and the CO2 prices (25 and 200 €/ 
ton CO2). The vertical axis illustrates the installed capacity (left bottom), the capacity factor of the 
CCGT (left top) and the system’s LCOE (right). 

The first thing that is observed, is that the order of the most economic configurations has 
not changed, so is a configuration with solar PV, wind and two geographically dispersed DTP-dams 
still the most economical. In regards to the portfolio shares of configuration A and B, it is observed 
that offshore wind and DTP has replaced solar PV and onshore wind as a result of the increased 
CO2 price. This is simply explained by the fact that offshore wind and DTP have, on average, a 
higher capacity factor and thus tend to produce more electricity per MW installed than solar PV 
and onshore wind. This reduces the total amount of electricity that needs to be produced by the 
CCGT and thus the system’s LCOE 

 
No changes are observed in scenario C as a result of the increased CO2 price. As shown in appendix 
G, there is no other portfolio on the efficient frontier that requires a smaller backup system. So in 
any other systems, the costs of the CCGT weigh more heavily on the system’s total LCOE. This 
outweighs a CCGT with a lower capacity factor.   

On the other hand, large changes are observed in configuration D. The share of DTP with 
storage has increased dramatically due to the increased CO2 price. This due is to the fact that the 
system’s LCOE is no longer primarily driven by the storage costs, which was the case when the 
CO2 price was 25 euro. The increased CO2 price caused the costs of the CCGT to weigh heavily on 
the system’s total LCOE. As a result, it has become more economical to reduce the size of the backup 
system by incorporating larger shares of DTP with storage. 
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Figure 42: portfolio shares and energy generation costs for an increased CO2 price. Technical configuration B: solar PV, wind & 
DTP. 
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Figure 43: overview most efficient VRE portfolios for different CO2 prices; 25 & 200 €/ton CO2. 
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6 Discussion  
 
This chapter reflects on the results presented in the previous chapter and the novel methodology 
used to obtain the results. Section 6.1 first reflects on the novel application of the MPT and whether 
it has yielded any new insights. In section 6.2, the interpretation and implications of the main 
findings are discussed. Also, their relation to the literature and the theoretical background is 
elaborated. In the last section, the strengths and weaknesses of DTP are discussed, and suggestions 
for a market entry strategy are provided.   
 
6.1 Reflection on the methodology 
 
To fill the knowledge gap identified by Cunha et al. [18] and to find the VRE portfolios that 
minimise the mean residual load and variance, the MPT was modified. The MPT was modified by 
including demand-variability, something which was not done before. Subsequentially, for the 
portfolios that minimise the residual load and variance, the required backup capacity was 
determined based on the assumption that the residual load data is normally distributed. 
Thereafter, the portfolios’ energy generation costs were computed, and the VRE portfolios were 
gauged and compared based on these two performance indicators (required backup and costs).  

Section 6.1.1 reflects on whether including demand-variability in the MPT has yielded any 
new insights or unexpected results. In section 6.1.2, the limitations of the methodology developed 
are discussed. 
 
6.1.1 Effects including demand-variability 
 
In total, three different demand profiles were included: The Netherlands’ contemporary load profile 
(1), increased peak loads due to EV and HP (2), and a flat load profile due to an extreme penetration 
of demand-responsive measures (3). When the results of the different demand scenarios are 
compared, it becomes evident that the shape of the demand curve only has a limited effect on the 
composition of the efficient VRE portfolios. Only when peak loads increase due to an extreme 
penetration of EV and electric HP, does the share of offshore wind in the efficient portfolios slightly 
increase (2-13%). This effect is the greatest for a portfolio comprised of solely solar PV and offshore 
wind. Hence, the contemporary VRE system is relatively sensitive for increases in peak demand as 
it has the greatest effect on which portfolio shares are most efficient.  
  
Although it was expected that changing the demand profiles would have a larger effect on which 
VRE portfolio shares are efficient, it can be explain why this effect is limited. The deviations in 
electricity supply from VRE are much larger than the volatility in electricity demand. As a result, 
the shape of the output profile has a more decisive role which VRE portfolio shares minimise the 
residual load and its variance. Hence, the changes performed on the demand curve were too little 
to translate into major changes in the portfolio shares. However, based on the literature review 
conducted to derive the three demand profiles, it is unlikely that the demand profile will experience 
larger changes in the future than those simulated in this study. Overall, it can be concluded that 
including demand-variability in the MPT has a limited effect on the selection of efficient VRE 
portfolios.   
  
Although demand-variability only has a limited effect on which portfolios shares are most efficient, 
it significantly affects the magnitude of the residual load left by a VRE portfolio and its volatility. 
Hence, the amount of backup capacity is greatly affected by changes in demand. The required 
backup capacity increases when peak loads increase (scenario 2), and decreases when demand 
stabilises (scenario 3). This effect is the greatest for portfolios that are comprised of a DTP-dam 
with a storage system. 
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6.1.2 Methodological limitations 
 
This research was the first to apply the novel methodology presented in chapter 3. As such, certain 
limitation of the methodology emerged when this research was conducted. In this section, these 
limitations are elaborated, and important aspects that were not included in the methodology are 
discussed. 
 
First of all, the electricity system that was optimised to derive the results was a simplified 
representation of real-life and should be treated as such. There are, however, two simplifications 
that are worth elaborating on. Firstly, DTP’s electricity output profile was derived from the perfect 
astronomic tide, which is a sine function. However, in real-life, the tide is rarely a perfect sine wave, 
as it is affected by geographical features, such as; local relief on the sea’s bottom floor. Hence, DTP’s 
electricity output is affected by its specific location and might be more erratic than was assumed in 
this study. This also means that in regards to scenario C, where two geographically dispersed dams 
were introduced into the VRE system, it might not be possible in real-life to find two locations 
where the dams’ electricity outputs perfectly negatively correlate at all times. 
 
Secondly, as elaborated in the research outline (section 1.3), this study treated The Netherlands as 
a closed electricity system and did not include cross-border electricity trading. However, in real-
life, The Netherlands is connected to numerous countries through an international electricity 
transmission grid. This grid allows for the sale of electricity to neighbouring countries during 
periods in which more renewable electricity is produced than consumed. On the other hand, during 
periods of little VRE output, power deficiencies can be compensated by purchasing electricity from 
other countries, mitigating the need for dispatchable backup capacity.  

Hence, increasing the geographical scope of this research and including cross-border 
electricity trading would not only more accurately represent The Netherlands’ real-life electricity 
system, but is also expected to increase the system’s ability to match supply and demand. The 
extent to which cross-border electricity trading reduces the need for backup capacity depends on 
the degree to which the VRE outputs from the countries connected through an international grid 
correlate. If countries’ VRE electricity outputs positively correlate, they all face VRE surplus and 
deficiencies simultaneously, leaving little electricity to trade and offset supply and demand 
discrepancies. Therefore, one could argue that if the aim is to minimise the need for CO2-intensive 
backup capacity, an international rather than a national approach would be more efficient to 
allocate investments to VRE technologies. 
 
Another limitation of this research, closely related to the exclusion of cross-border electricity 
trading, lies in the fact that this study did not include the costs of electricity surplus (negative 
residual loads) impose on the system. Electricity deficiencies (positive residual loads) were covered 
by deploying a CCGT backup system. Accordingly, the backup system’s costs were included in the 
electricity system’s total energy generation costs. Although this study considered electricity 
deficiencies and surplus to be equally inefficient to determine the residual load and backup 
capacity, the costs associated with electricity surplus were not included in this study. 

In a closed electricity system with no international electricity trading or storage capacity, 
as was optimised in this study, VRE surplus are disposed of by curtailment. Curtailment is a 
deliberate reduction in the electricity output of a generator in order to match supply and demand 
[77]. For example, when the electricity output from wind turbines exceeds demand (electricity 
surplus), they can be turned away from the wind, so the blades stop rotating and producing 
electricity. Such curtailment measures cause a VRE technology to produce less electricity than 
what it could produce given the available resources. As a result, the costs per unit of electricity 
generated increases, driving up the VRE system’s total costs. As the share of VRE in the electricity 
system increases, the need to match supply and demand by means of curtailment increases, which 
causes the curtailment costs to weigh more heavily on the system’s total costs. It is expected that 
if curtailment costs were to be included in the costs structure of this study, VRE technologies that 
minimise peak outputs, for example, due to the use of a storage system (DTP configuration D) would 
become increasingly cost-efficient in meeting demand. 
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However, as discussed before, the Netherlands’ real-life electricity system is connected to 
other countries’ electricity systems, allowing for cross-border electricity trading. As a result, 
electricity surplus can partly be sold to neighbouring countries, which reduces the curtailment 
costs. It is important to note that the construction and maintenance of an international electricity 
grid are capital intensive. So even though a wide transmission grid might reduce national 
curtailment costs, these costs are (partly) replaced by the extra grid costs. 
 
Another cost-related limitation concerns the accuracy of the costs data used to derive DTP’s LCOE. 
For well-established energy technologies, including solar PV and wind, numerous studies have 
estimated their costs. However, as DTP is an untested technology, obtaining accurate costs data 
proved to be more difficult. For this study, DTP’s cost data was derived from the DTP foundation, 
which got their information from estimations made by contractors. As a result, it is expected that 
the DTP’s costs data is less accurate than the cost data used for solar PV and wind.  

This might partly explain why the LCOE of DTP is lower than those of solar PV and offshore 
wind. In general, one would expect that the costs of an untested electricity generation technology 
that has not experienced any learning-effects are higher than those of well-established energy 
technologies. DTP’s low LCOE is predominately driven by its O&M costs, which are estimated to 
be much lower than those of offshore wind. More research is required to assess whether this is truly 
the case and increase the overall accuracy of DTP’s costs assumptions. Besides a potential 
underestimation of the O&M costs, DTP’s low LCOE is also partly driven by its longer lifetime (60 
years) in relations to solar PV and wind (25 years). Due to this longer lifetime, DTP produces more 
electricity in its lifetime, and the overnight capital costs are divided over more units of electricity, 
driving down its LCOE.   

 
Moreover, this study did not include any forecasted cost reductions. For example, in this study, 
battery storage costs were estimated to be 100,000 €/MWh, but it is expected that these costs will 
drop as batteries are used on a large scale, and technical innovations and/or economies of scale 
make them less costly to produce [78]. Additionally, the construction of a second DTP-dam 
(configuration C) might be less costly than the first dam due to the insights that were acquired 
constructing the first DTP-dam (learning-effects). Similarly, offshore wind and solar PV’s electricity 
generation costs are expected to decline rapidly in the coming years [79] [80]. The LCOE of onshore 
wind, on the other hand, is expected to stabilise [80]. As the margins between technologies’ LCOEs 
are thin, incorporating these forecasted cost-reductions might yield different results than were 
found in this study. 
 
To derive a VRE technology’s residual load, this study used historical supply and demand data. 
However, as was stressed by A. Stirling [40] [41],  solely using historical data to support the 
portfolio model might lead to erroneous results (section 2.3). This limitation was partly mitigated 
by incorporating two alternative electricity demand scenarios. However, in regards to the electricity 
output profiles only one scenario was included, a technology’s contemporary electricity output. 
Although the output data was derived over three years (2017-2019) in order to minimise the effect 
of random events on the results, if two of those years were characterised by, for example, below-
average wind speeds, the data might be biased. Hence, the accuracy of the outcome could be 
improved by including different supply scenarios. Including different scenarios would also allow 
the inclusion of climate change effects on the output from VRE technologies. This was not included 
in this study but might play a role in the future. 
 
A more practical issue was caused by the choice for the specific demand scenarios. In each scenario, 
both the average electricity demand and the shape of the demand profile were deviated. Although 
this has yielded interesting results, it was sometimes difficult to distinguish which changes in the 
results were caused by the increased electricity consumption and which by the altered shape of the 
demand profile. 
 
To find the VRE portfolios that are most efficient in meeting demand, this study optimised a 35GW 
VRE system. Hence, the constraint was the amount of installed capacity, and the trade-off was how 
much capacity to allocate to each energy generation technology. However, this study did, for 
example, not restrict the amount of capital that could be invested in the VRE system, nor was there 
a minimum capacity factor that had to be met by the VRE system. 
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Introducing a budget constraint would significantly reduce the amount of capacity allocated to a 
DTP-dam with a battery storage, as its capital costs are substantial. On the other hand, a minimum 
capacity factor would discourage solar PV investments due to its small capacity factor. Hence, 
setting different constraints or introducing additional constraints might significantly affect the 
results found in this study. 
 
Another limitation lies in how the size of a VRE portfolios’ required backup capacity was 
determined. Going by the assumption that the residual load data was normally distributed, the 
backup's size was determined by multiplying a portfolios’ mean residual load, the STD of its 
residual load and the z-value that corresponds with a one-tailed confidence interval (CI) of 95% 
(1.645). However, when, in the sensitivity analysis the z-value was increased to 2.33 to correspond 
with a confidence interval of 99%, it is observed (fig. 40) that the backup capacity approaches a size 
of 22.5 GW, while the maximum electricity load in scenario 1 (the contemporary load profile) is 
approximately 19GW. Even though the confidence interval was increased, the backup system 
should not be larger than the maximum amount of electricity that is consumed. 

The issue causing this overestimation lies in the fact that, although the residual load data 
lies within George et al.’s [43] acceptable boundaries for kurtosis and skewness (-2/+2) to be 
considered normally distributed, the data tends to be negatively skewed. This phenomena is 
illustrated in figure 44 and means that the left tail of the distribution graph is longer and that more 
values are concentrated on the right end of the distribution graph. The distribution of the residual 
loads can be found in appendix H. As a results, there are no actual residual load data points 2.33 
standard deviations right from the mean anymore. The value found is larger than the maximum 
residual load in the data set, which explains the overestimation of the backup’s size.  

However, data is rarely perfect normally distributed and over- or underestimations are 
common in statistics when the z-score approach is used. This study in particular highlights this 
limitation since there is a clear upper boundary to the size of the backup system. Using the z-score 
thus allows for easy and relative accurate comparability among different portfolios. But if the aim 
is to determine the exact size of the backup system under extreme levels of energy security, a more 
comprehensive method should be used  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Overall, the methodology’s main benefit is the different steps in which one works towards the 
outcome. These steps provide clear insights into how specific changes in the parameters translate 
into the result. On the other hand, these different steps and the fact that all results need to be 
manually visualised are also the methodology’s weaknesses since it is quite a time-consuming 
process. Therefore, this methodology is most suitable for scientific purposed; to find relations 
between particular variables and acquire a thorough understanding of diversification effects in the 
electricity system. Because no expensive software is required, the mythology might also be 
beneficial for (small) companies, startups or NGO’s that are concerned with optimising the 
electricity systems of small or remote communities, for example, in sub-Saharan Africa. For 
governmental proposes and actual locating large-scale investments into energy-generating assets, 
the absolute outcomes generated using this methodology, especially the size of the backup system, 
may not be accurate enough. However, the theory behind the method (the MPT) could be used as 
the foundation to build a more sophisticated energy planning tool. 

Figure 44: visualisation negatively skewed 
data set [97]. 
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6.2 Interpretation of the main findings 
 

This research’s main goal was to find the portfolios of solar PV, wind and DTP that are most 
efficient in meeting The Netherlands’ electricity demand. Additionally, this study aimed to evaluate 
whether DTP improves the current VRE system’s efficiency to meet demand.  

This section first discusses the key findings and elaborates on the theoretical background 
supporting these findings and their relation to the existing literature. Subsequently, the findings 
are compared with The Netherland’s current VRE system in order to formulate how future energy 
investments should be allocated. 
 
From the MPT optimisation, it was found that there are three ways to decrease the volatility of a 
VRE system’s residual load and thus increase its ability to follow the demand curve. Firstly, 
incorporating VRE technologies whose electricity outputs negatively correlate reduces the overall 
STD of the portfolio’s residual load. Secondly, a system’s ability to follow the demand profile can be 
increased by stabilising the electricity output from an individual energy technology. Third and last, 
flattening the electricity demand curve also reduces the variance of an energy system’s residual 
load. These findings are in line with the fundamental theory behind the MPT discussed in the 
literature review (section 2.1), illustrating the validity of the novel application of the MPT.  

The rest of this section discusses how these fundamental mechanisms translate into which 
VRE portfolios are most efficient and what can be implied from these results. 
 
Based on the backup capacities required to ensure 95% energy security, it is observed that the 
current VRE system (configuration A) would be most efficient in meeting demand when comprised 
of offshore wind (approx. 45%) and solar PV (approx. 55%). This indicates that including onshore 
wind deteriorate a system’s ability to meet demand. This phenomenon was not found in the 
literature that was reviewed, which might be due to the fact that not many studies distinguish 
between on- and offshore wind. It can, however, be explained by the above-described mechanisms 
of the MPT. The electricity output from on- and onshore wind follow the same pattern and are thus 
positively correlated. However, the electricity output per unit installed (capacity factor) from 
offshore wind is much larger. As a result, offshore wind is more negatively correlated with solar 
PV. Hence, combining solar PV and offshore wind in one portfolio maximises the diversification 
effects and the amount of volatility that is eliminated, which minimises the required backup 
capacity.  
  
When DTP was introduced into the VRE system, it is observed that the required backup capacity 
declines and that the VRE system’s ability to meet demand improves. The magnitude of this effect 
and the share of DTP that is most efficient to include in the VRE system depends on DTP’s technical 
configuration. When a single DTP-dam is introduced, shares up to 30% are most efficient. This 
result provides an interesting new insight into the effect of tidal energy on an electricity system’s 
ability to follow the load curve. Allan et al. [29], found that tidal energy shares up to 10% have a 
volatility-mitigating effect, but did not assess whether this positive effect preserved when tidal 
energy penetration surpassed 10%. This study confirms that this is the case. In fact, the positive 
diversification effects of incorporating tidal energy are particularly noticeable when larger shares 
(up to 30%) of DTP are included in the electricity system. 
 
When a second DTP-dam, whose electricity outputs perfectly negatively correlate with the first 
dam, is introduced into the VRE system, the system’s ability to meet demand further increases. It 
also becomes efficient to introduce larger DTP shares into the VRE system; shares up to 75% are 
most efficient. In a 35GW VRE system, this would be similar to two 50 kilometre long DTP-dams 
(each dam has an installed capacity of approx. 14.4 GW). It would be most efficient if the remaining 
25% of installed capacity was comprised of offshore wind turbines. DTP’s share in the efficient VRE 
portfolios and the VRE system’s ability to meet demand even further increases when DTP is 
equipped with an integrated storage system to flatten its electricity output profile. To such an 
extent, that when DTP is equipped with a storage system, it becomes most efficient to comprise 
almost the entire VRE system out of DTP. To conclude, introducing two, geographically dispersed, 
DTP-dams (configuration C), but especially a DTP dam with an integrated storage system 
(configuration D), has a positive effect on a VRE system’s ability to match supply and demand. 
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There is another reason why configuration C and D are more efficient than configuration A and B. 
From the sensitivity analysis (section 5.4.1) it was observed that in regards to configuration A and 
B, changing the VRE system’s size has little to no effect on the amount of backup capacity that is 
required to ensure energy security. This means that even if an excessive amount of solar PV, wind 
or DTP were to be installed, the VRE system would not be able to cover electricity demand on its 
own. A relative large backup system will always be needed to cover the periods in which there is 
no solar irradiation, wind and/or tidal currents. Only when a second geographically dispersed DTP-
dam (configuration C) or storage system (configuration D) is introduced, does the amount of backup 
capacity rapidly decrease when more capacity is installed. Hence, in the long-term, investments in 
two DTP-dams or a DTP-dam with storage system are more efficient to increase the VRE system’s 
ability to meet demand. 
 
The cost analysis shows that the energy generation costs of VRE systems without battery storage 
(A, B and C) are driven by the CCGT backup required to cover its residual load. More specifically, 
by the size of the CCGT backup system and the capacity factor of the CCGT. The backup system's 
size determines how heavily the CCGT costs weigh on the system’s total energy generation costs. 
The capacity factor indicates how much electricity is produced per unit installed. It was found that 
when CO2 price is low (25 €/ton CO2) VRE portfolios whose CCGT have a high capacity factor are 
most cost-efficient. But when the CO2 price (200 €/ton CO2), and thus the marginal costs of the 
CCGT, increases, a decreasing capacity factor is most economical. This perfectly illustrates the 
fundamental idea behind the EU ETS that was described in section 3.3 - when the CO2 price 
increases due to a declining number of CO2 allowances, it becomes increasingly costly for CO2-
intensive generators to produce electricity. 
 
On the other hand, configuration D's energy generation costs are primarily driven by the battery 
storage costs. As a result, configuration D is characterised by the highest energy generation costs, 
regardless of the CO2 price and its portfolio composition. In terms of the costs, configuration D is 
followed by configuration B, and configuration A. Configuration B is most cost-efficient when 
comprised of; 60% solar PV, 5% offshore, 23% onshore wind and 12% DTP, and configuration B is 
most cost-efficient when comprised of 69% solar PV, 2% offshore wind and 29% onshore wind. When 
the CO2 price inflates the share of offshore wind in scenario A and B slightly increases as it produces 
more electricity per unit installed and thus reduces the output from the CCGT. This result confirms 
that the model correctly translates CO2 price incentives to the result. Configuration C is the most 
cost-efficient and its portfolio shares are not affected by changes in the CO2 price. In fact, the 
portfolio shares that required the least backup capacity (75% DTP and 25% offshore wind), are also 
most cost-efficient. 
 
As this study has shown that the size of the VRE system has little to no effect on the composition 
of the efficient VRE portfolios, above key findings are compared with The Netherlands’ current 
VRE portfolio, even though it is smaller than the 35GW system that was optimised in this study. 
The Netherlands’ current VRE mix (2020) is comprised of 61% solar PV (6874MW), 8% offshore 
wind (957 MW) and 31% onshore wind (3527 MW).  

Hence, if DTP fails to enter the power generation market and The Netherlands relies on 
solar PV and wind to decarbonise its electricity market (scenario A), it would be most cost-efficient 
if investments were allocated to solar PV and onshore wind at the expenses of offshore wind. 
However, if the aim is to minimise the need for backup capacity the share of offshore wind should 
be increased dramatically (to 45%) and replace all the installed onshore wind capacity and a part 
of solar PV.   

If DTP successfully penetrates the power generation market, this study has shown that 
investments in DTP increase the current VRE system’s ability to meet demand and decrease its 
energy generation costs. From a costs perspective, the current VRE system would benefit most from 
the incorporation of two, geographically dispersed, DTP-dams. Especially when combined with 
offshore wind, in a 75:25 ratio. This configuration would also dramatically reduce the need for 
backup capacity. Although most costly, the need for backup capacity is minimised when a DTP-
dam with an integrated storage system is introduced into the contemporary VRE system. 
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To conclude, there is no unequivocal VRE portfolio that is both most cost-efficient and requires the 
least backup capacity. Therefore, other aspects that were not included in this research should also 
be weighted before deciding whether a DTP-dam should be constructed or how much capital should 
be allocated to which VRE technology. 

For a starter, the electricity balancing costs a VRE technology poses to the electricity system 
as a whole should be included in a more comprehensive way. This study did include the costs to 
connect VRE technologies to the existing grid and the costs to compensate for electricity deficiencies 
by means of a CCGT backup system. However, as elaborated in section 6.1.2, numerous other 
balancing costs, such as, the costs associated with; electricity curtailment and an international 
electricity grid were not included in this study. As these costs are expected to weigh heavily on the 
system’s total energy generation costs when VRE penetration increases, they should be quantified 
and taken into account before any large investments in VRE technologies are made.  

Another important costs aspect that should be taken into account was pointed out by De 
Llano-Paz et al. [23]. The transition from an inefficient to an efficient energy portfolio involves high 
costs, for which the MPT does not account. Hence, if one aims to significantly deviate from the 
current VRE investment trajectory, these costs have to be added to the system’s total costs and 
included in the decision-making process. Transition costs could be avoided by setting constraints 
to the minimum or maximum amount of capacity installed of certain energy technologies. Such 
constraints were not included in this optimisation study, 

Besides more sophisticated costs aspect, it is also important to include certain social aspects 
in the decision-making process. For example, investments in VRE result in the phase-out of 
conventional energy generators, which means that certain jobs will disappear. These people should 
be able to find work in the renewable energy industry or be retrained to work in other sectors. 
Besides the social impact this has on the people that are let go, this obviously also bears substantial 
costs. Moreover, social acceptance might play a significant role in the allocation of investments. 
The degree of social acceptance or the lack of it might favour certain VRE technologies even though 
they might not be most efficient or economical. Additionally, the effects of VRE technologies on 
other environmental aspects than CO2-emissions should be considered. For example, VRE 
technologies’ impact on the ecology, the recyclability of amortised VRE installation and the 
environmental effects of the subtraction of minerals and other natural building materials required 
for the construction VRE installations.  
 
That being said, several arguments supporting the notion that future investments should be 
allocated to offshore wind and two geographically dispersed DTP-dams. Firstly, the Netherlands 
aims to phase-out natural gas for heating, which will increase the use of electric HP. As the peaks 
in electricity consumption of electric HP (winter) coincidence with the peaks in electricity output 
from offshore wind, increased shares of offshore wind will enable the electricity system to better 
cope with the phase-out of natural gas. Secondly, offshore wind produces more electricity per unit 
installed and thus has the potential to abate more CO2. This will not only be increasingly important 
when CO2 prices increase, the extra electricity might also be useful in the future to produce 
hydrogen. Thirdly, though a DTP-dam with storage system requires less backup capacity, its 
substantial energy generation costs make this configuration economical unviable in the 
contemporary power market. However, introducing two geographically dispersed DTP-dams 
reduces the need for backup capacity and the energy generation costs and is, therefore, a better 
alternative. Fourth, unlike a system comprised of solely solar PV and wind, in a VRE system that 
includes two geographically dispersed DTP-dams, increasing the VRE system’s size rapidly declines 
the need for CO2-intensive backup capacity. 
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6.3 Market entry strategy Dynamic Tidal Power  
 
The previous section concluded that DTP would positively affect the current VRE system’s costs 
and the need for backup capacity. Hence, it would be beneficial for the transformation of The 
Netherlands’ electricity system if DTP were to penetrate the energy generation market. Therefore, 
this section elaborates on some of DTP’s strengths and weaknesses in order to increase DTP’s 
chances of successfully entering the power generation market. It also provides some suggestions to 
highlight or tackle these strengths and weaknesses, which might help develop a market entry 
strategy. The content discussed in this section is based on information from people spoken with 
throughout this research process and knowledge obtained from this research and during the 
master’s programme. 
 
Firstly, it was found that two geographically dispersed dams are most cost-efficient. However, as a 
DTP-dam’s efficiency increases exponentially with its length and a DTP-dam thus has to be tens of 
kilometres long, it is unlikely that two dams will be constructed simultaneously. However, 
equipping a single dam with a small battery storage system would result in a similar electricity 
output profile and only slightly increase the energy generation costs.. In this research, two battery 
storage systems were used to offset all the deviations in electricity supply. The first battery system 
was used to offset the volatility caused by high and low tide, and the second to offset deviations due 
to neap and spring tide. However, if the latter storage system were to be eliminated, the output 
profile would be the same as if two geographically dispersed DTP-dams were constructed. Such a 
storage system would increase DTP’s LCOE from 48.60 to 51.37 €/MWh.  

Another alternative would be to oversize the storage system, so it could also compensate for 
deviations caused by other VRES. Actively matching supply and demand could also generate extra 
cashflows, as electricity can be stored when electricity prices are low and sold during peak hours 
when prices inflate. 
 
However, such a storage system does not necessarily have to be comprised of batteries. A pumped 
hydropower storage lake in the North Sea might be an interesting alternative for battery storage. 
As visualised in figure 45, a pumped hydropower storage lake would require a watertight ring-
shaped dike in the North Sea that is approximately ten kilometres long and six kilometres wide. 

When more VRE is produced than consumed or when the electricity prices are low, seawater 
is pumped from the lake into the surrounding sea. Subsequentially, when little renewable energy 
is produced and electricity prices are high, seawater flows back into the lake, driving a turbine that 
generates electricity. Hence, similar to a battery storage system, a pumped hydropower storage 
lake can be used to match supply and demand and mitigate curtailment costs.  

A lake with a surface of 40 square kilometres and a depth of 32 to 40 meters could store 
20,000 MWh of electricity [81]. A 50 kilometres DTP-dam in the open North Sea with an installed 
capacity of 14,4GW would require 13,824 MWh storage capacity (0.96 MWh/MW installed, 
appendix A) to offset the volatility in the electricity output caused by high and low tide. Hence, a 
pumped hydropower storage lake could theoretically offset DTP’s volatility in electricity output 
caused by high and low tide, which would result in a similar output profile as if two geographically 
dispersed dams were to be deployed.  

However, in the current design, the pumped hydropower storage lake's installed capacity 
is 1,500MW, which is not enough to compensate for the volatility caused by high and low tide. 
However, when the lake is full, it can generate 1,500MW for at least 12 consecutive hours [81]. 
Therefore, a pumped hydropower storage lake seems to be more suitable for long term storage, for 
example, to partly offset DTP’s volatility in electricity output caused by neap and spring tide or to 
store wind energy to compensate for wind-droughts. Unlike battery storage systems, a pumped 
hydropower storage lake enables sector coupling and is characterised by several positive 
externalities. So could the storage lake and its surrounding dam facilitate residentials, tourism, 
fish farming and agriculture [81]. 

 
 
 
 
 



 
 

 
 
 73 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DTP’s size also results in strengths and weaknesses that are unrelated to the electricity market. 
So does its size allow for sector coupling; the Y-shaped ends of the dam could be used for seafaring, 
or a road on the dam could be used to access a the potential offshore expansion of Schiphol airport. 
Moreover, wind turbines could be built on top of the dam, or the dam could be used as a base from 
which maintenance on offshore wind farms is carried out.  

The downside of its bulky size is that it is likely that the a DTP-dam greatly affects the 
surrounding ecology, morphology and shipping. Additionally, due to its size, DTP’s overnight 
capital costs are substantial, which, in combination with its novelty, makes it questionable whether 
market parties in The Netherlands’ liberal electricity market are willing to invest in DTP. Similar 
issues are, for example, observed in regards to the construction of nuclear power plants. Market 
parties seem to be inclined to invest in proven renewable technologies, such as; wind and solar PV. 
 
However, while these weaknesses could be tackled by doing excessive research, there is a social 
issue that is more difficult to address, namely, the social acceptance of DTP. Over the course of the 
past few years, fierce resistance against numerous renewable energy projects has emerged. Due to 
its size, possible effects on the local (marine) environment and the fact that a DTP-dam hampers 
numerous other activities deployed on the North Sea (e.g. fishing, shipping and recreation), it is 
expected that DTP will also encounter fierce resistance. Therefore, this issue might require more 
attention than is currently paid to it. 
 
Therefore, as a final note, this research would like to suggest two possible ideas that might increase 
the social acceptance of DTP. First, it could help to have someone who is known in the media to 
advocate for DTP. Not only will this start the discussion about DTP, it can also help to move DTP 
up the political agenda. A colleague from the Ministry of Infrastructure and Water Management 
(Rijkswaterstaat), suggested to get Ed Nijpels, former politician, involved.  

Secondly, a study [82] in Germany has proven that co-ownership significantly increases the 
social acceptance of renewable energy projects. By comparing two wind farms in East Germany 
villages, the social acceptance regarding wind energy was measured through a survey. In 
Zschadraß, a wind park was for 20% owned by community organisations, while in Nossen the wind 
farm was owned by 54 individual stockholders, of whom only two lived in Nossen. The researchers 
found that 62% of the people in Zschadraß were positive towards the local wind farm, opposed to 
26% in Nossen [82]. Perhaps co-ownership could also mitigate the potential social resistance 
against DTP. Parties that might be interested in co-ownership are; the Dutch government, 
community organisations, climate organisations, power plant constructors, or even commercial 
companies aiming for a sustainable image. Afterall, who does not want to be the co-owner of the 
world’s first DTP-dam. 

Figure 45: visualisation of a pumped hydropower storage lake in the North Sea [81]. 
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7 Conclusion and recommendations  
 
This chapter first provides the answers to the research questions presented in section 1.3 and the 
conclusions drawn from this study. Subsequentially, section 7.2 provides recommendations and 
suggestions for future research.  
 
 
7.1 Conclusion 
 
To keep global warming well below 2°C above pre-industrial levels, The Netherlands aims to reduce 
its CO2-emissions and decarbonise its power generation industry. To bring about this transition, 
CO2-intensive energy generators have to be phased out and replaced by renewables. Currently, 
investments aiming to decarbonise the power generation industry are predominately allocated to 
solar PV, offshore wind and onshore wind. But due to the development of Dynamic Tidal power 
(DTP), The Netherlands might soon be able the harvest the currently unutilised North Sea’s tidal 
currents to generate clean electricity. However, the intermitted nature of solar irradiation, wind 
speeds, and tidal currents makes it increasingly difficult and costly to match demand and supply 
as their penetration in the electricity mix increase. 

Therefore, this research’s main objective was to determine the efficient portfolios of solar 
PV, offshore wind, onshore wind, and DTP to meet electricity demand. This research also asked 
how including DTP affects The Netherlands’ current VRE system’s efficiency to meet electricity 
demand. To achieve these objectives a modified version of the Modern Portfolio Theory (MPT) was 
used. The MPT was modified by including demand-variability, something that had not been done 
before. Hence, by assessing to what extent including demand variability in the MPT affects the 
selection of efficient VRE portfolios, this study filled a gap in the literature. 
 
Firstly, it is concluded that DTP improves The Netherlands’ current VRE system’s efficiency to 
meet demand. DTP penetration curtails the number of hours in which little to no electricity is 
generated by the VRE system, which diminishes the need for dispatchable backup capacity. This 
effect is significantly enhanced when a second, geographically dispersed, DTP-dam is introduced 
into the electricity system. A second dam mitigates the deviation in electricity supply caused by 
high and low tide and thus reduces the need for backup capacity. A DTP-dam with an integrated 
storage system eliminates all deviations in electricity supply, which maximises DTP’s positive 
effect on a VRE system’s ability to meet demand.  

Depending on its technical configuration, DTP also positively affects the current VRE 
system’s energy generation costs. The inclusion of a single DTP-dam has a moderate cost-reducing 
effect. This cost reduction is driven by the declining amount of backup capacity required to ensure 
energy security and the more consistent electricity output from the backup system. However, it is 
most cost-efficient to introduce two, geographically dispersed, DTP-dam into the current VRE 
system. On the other hand, a DTP-dam with a battery storage system large enough to offset all the 
deviations in electricity supply would significantly increase the current VRE system’s energy 
generation costs. This this due to the fact that battery storage costs are currently still substantial.  
 
Regarding the question of which portfolios shares of solar PV, offshore wind, onshore wind, and 
DTP are most efficient to meet electricity demand, there is no unequivocal conclusion. From a costs 
perspective, a VRE portfolio comprised of (two) geographically dispersed DTP-dams, and offshore 
wind in a 75:25 ratio would be most efficient to meet demand. However, in terms of the amount of 
dispatchable backup capacity a system requires to ensure electricity security, a system comprised 
entirely of DTP with an integrated battery storage system is most efficient. Hence, to make a 
weighted decision regarding the allocation of capital to VRE technologies, aspects not investigated 
in this research, such as, the costs associated with electricity surplus, the degree of social 
acceptance, and the environmental and ecological effects should also be included. 
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From the three different demand scenarios for which the VRE portfolios were optimised, it is 
concluded that including demand-variability in the MPT has a limited effect on the selection of  
efficient VRE portfolios. In a scenario with increased peak loads due to an extreme penetration of 
electric vehicles (EV) and heat pumps (HP), the efficient VRE portfolios tend to be characterised by 
slightly larger offshore wind shares. This is because peak demands of HP coincide with peak 
outputs from offshore wind turbines. Apart from that, demand-variability has little effect on the 
composition of efficient VRE portfolios. The variability in electricity demand is relatively limited in 
relation to the volatility in electricity outputs from VRES. Hence, selecting efficient VRE portfolios 
predominately revolves around finding energy technologies that minimise the deviation in 
electricity supply when combined in a portfolio.  

However, demand-variability does affect the amount of dispatchable backup capacity a VRE 
portfolio requires to ensure energy security. When electricity demand is better distributed, and the 
demand profile flattens, the required dispatchable backup capacity dwindles. 

 
 
7.2 Recommendations and suggestions for future research 
 
This section lists some recommendations and suggestions for future research, which are derived 
from both this report and the relevant literature that was reviewed for this study.  
 
Firstly, this study treated the Netherlands as a closed energy system and did not include electricity 
transmission among neighbouring countries. To assess its effect on the need for backup capacity, it 
would be interesting if future research were to increase the scope and include cross-border 
electricity trading. Increasing the scope would also allow for the inclusion of geographically 
dispersed solar PV and wind farms, which might increase the systems’ ability to meet demand. 
 
In terms of the electricity output from VRE, this study only included a single scenario. To increase 
the results' robustness, it would be valuable if future research were to include multiple supply 
scenarios. One aspect recommended to include is the effect of climate change on the output from 
VRE technologies. Additionally, future research should also include forecasted cost reductions due 
to learning effects, economies of scale and technical innovations. Including different economic 
scenarios would increase the sustainability and timelessness of the results. 
 
To find the most efficient VRE portfolios, the total amount of installed VRE capacity was restricted 
(35GW) in this study, and the aim was to optimise its distribution among different energy 
generation technologies. However, it would be interesting if future research applying a similar 
methodology would consider different or additional constraints. For example,  a limitation on the 
total amount capital invested in a VRE system or an average capacity factor that must be met by 
the VRE system. 
 
Additionally, future research aiming to include demand-variability in the MPT should deviate the 
demand profiles by either increasing the mean load or the shape of the load profile. Simultaneously 
changing both the mean load and the shape of the load profile has proven to make it difficult to 
interpret the results. 
 
One of the limitations of the methodology used was that it overestimated the backup system's size 
when the level of energy security was increased. Future research could aim to improve this 
methodology or develop a more sophisticated approach to estimate the size of the required backup 
system.  
 
In this study, it was found that the shape of the electricity demand curve has a limited effect on 
the composition of the efficient VRE portfolios. Therefore, when the aim is to find efficient VRE 
portfolios, it is recommended to primarily focus on comprising portfolios that include energy 
technologies whose electricity outputs negatively correlate.  
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It is recommended that the DTP-foundation focuses on the development of a DTP-dam that offsets 
the volatility in electricity supply caused by high and low tide. This can be achieved by deploying 
two geographically dispersed dams whose electricity outputs negatively correlate or by introducing 
a small storage system. The development of a DTP-dam with a battery storage system large enough 
to offset all variability in electricity output (high/low tide and neap/spring tide) is discouraged, as 
battery storage costs are currently still too high. 
 
In regards to the storage system, this study only included a battery storage system. As there are 
numerous other storage systems (e.g. a pumped hydropower storage lake), future research should 
also assess the viability of a DTP-dam in combination with other means of electricity storage. 
Additionally, this study's battery storage system was solely used to offset the deviation in electricity 
supply from the DTP-dam. However, as such a system could also be used to actively match supply 
and demand and generate extra cashflows, future research should include an autonomous storage 
system and assess its viability. 
 
And finally, to enrich the discussion-making process regarding the allocation of investments to VRE 
technologies, future research should aim to quantify all the balancing costs (e.g. electricity 
curtailment, grid expansion and storage systems) attributed to specific VRE technologies. These 
costs, in combination with the costs to switch over from an inefficient to an efficient energy 
portfolio, should also be included in the decision-making process before investments in VRE 
technologies are made.  

In line with this, future research could focus on developing a pricing mechanism, similar to 
a carbon-pricing system, that ensures that VRE generators are financially held accountable for the 
balancing costs they impose on the system. This would ensure that negative externalities 
(balancing services) imposed on third parties (the TSO) are remunerated and might also encourage 
technical innovations aiming to reduce the need for balancing services 
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8 Personal reflection and acknowledgements 
 
This thesis research has allowed me to perform my own research, which has taught me many 
things, some of which I would like to share in this section. As I could not have done this research 
without some people, I would also like to take this opportunity to gratefully thank them. 
  
My thesis research preparation started as early as in December 2019, when I got in touch with Bas 
Jonkman and Walther Walraven for the first time to discuss the possibility to write my thesis about 
Dynamic Tidal Power. Thanks to them my enthusiasm for DTP was fueled, and even after writing 
so much about it I am still greatly interested in it. In March, when I returned from my Erasmus 
programme, the aim was to start with my thesis straight away.  However, a frustrating period 
followed as it was rather difficult to gather a graduation commission in the middle of a pandemic. 
I experienced it to be quite challenging to get in touch with the right professors, not being able to 
meet face-to-face as the greatest barrier. However, after several changes in my graduation 
commission, I eventually got my kick-off form signed and could officially start.  
  
Since that moment, it was quite a smooth process. Contact with my first, second and external 
supervisor was good, and I have the feeling that we really established a relation of the past six 
months. I really enjoyed the weekly meetings with Rob Stikkelman. He looked at things from a 
different perspective than I do myself, which really helped me to increase my thesis's overall 
quality. Working and studying from home; it was pleasant to also be able to talk about other things 
than my thesis during our weekly meetings. Therefore, I would like to gratefully thank Rob 
Stikkelman for all the guidance he provided and the time he invested in me and my research. I am 
also pleased with the way in which Enno Schröder helped me, especially in regards to a units issue 
in my thesis. Though not being my first supervisor, he spent quite some time helping me, for which 
I would like to thank him.  
  
Having Bas Jonkman and Walther Walraven involved in my research process brought so much 
knowledge and two whole different perspectives to the table. Both really helped me grasp the idea 
behind DTP and provided me with so much relevant information and indispensable data. Regarding 
the latter, I would like to thank Walther Walraven in particular; he provided most of the DTP data 
used in this study.  
  
Though I am sure that all the different perspectives on my research have increased the quality, I 
also experienced it to be quite challenging from time to time. Everyone had its own perspective on 
my research, and I was sometimes struggling to choose which trajectory to follow. This has also 
taught me to be more direct in my communication and better manage expectations. In line with 
this, if I were to do a similar research again, I would probably choose to either develop a new 
methodology or include a novel technology. Doing both simultaneously in one study perhaps made 
the scope too large. From a more practical standpoint, it also resulted in quite the workload, 
especially since I also worked for the Dutch government (Rijkswaterstaat) throughout the process. 
Apart from that, I feel that I have acquired so much new knowledge, not only about the electricity 
market, DTP or modelling but also how to conduct a proper scientific research and how to defend 
your research choices.   
  
Last but not least, I would like to thank my family and friends for the mental support. Having 
people around me with whom I could share successes and difficult moments really helped me.   
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Appendix A: Battery system DTP 
 
 
To manually calculate the size and lifetime of the battery system required to flatten out DTP’s 
electricity output, the battery system will be divided into two systems. The first system is used to 
offset the fluctuation in electricity output as a result of high and low tide which is caused by the 
rotations of earth. The second battery system stores electricity during spring tide to discharge it in 
during neap tide in order to offset the fluctuation in electricity output caused by the orbiting of the 
moon. Both systems together will create a consistent flow of electricity. For this calculation the 
following input parameters visualised in table 12 were used. 
 

Table 12: input parameters for battery storage calculation 
 

.                                                                        

 

1Derived from electricity output data provide by the DTP foundation. 

 
Battery system 1: to offset daily fluctuation in electricity output caused by high and low tide 
 
According to the DTP foundation a battery system to offset the fluctuations of high and low tide 
should have a size of 12,5% of the daily electricity output [54]. Hence, the battery system should 
need to have a size of; 
 

dHJIP	LILNOFNJOP	#QORQO = 0.32 ∗ 24ℎ = 7.68
WXℎ

WX	J-KOHIILM
 

 
lJ\L	eHOOLFP	KPKOLG = 7.68	WXℎ ∗ 12% = 0.96

WXℎ

WX	J-KOHIILM
 

 
Based on 4 charging cycles per day (fig. 46), the battery’s lifetime is; 
 

^JSLOJGL	eHOOLFP	KPKOLG =
18,000

4 ∗ 365
= 12.33	PLHFK 

 
So, the battery system should have a size of 0.96 MWh per MW of DTP installed and has a lifetime 
of 12 years.  
 

 
 

 

Input parameters battery system 
Lifetime battery [charging cycles] 18,000 [54]  
Capacity factor DTP 0,321 

Figure 46: visualisation of the storage system to offset the fluctuations in electricity output caused by high and 
low tide [54]. 
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Battery system 2: to offset daily fluctuation in electricity output caused by spring and neap tide 
 
The size of the battery system in relation to its production has not been determined by the DTP 
foundation yet. Hence, this will be calculated manually using the electricity output data provided 
by the DTP foundation. Figure 47 represents the electricity output curve after the daily fluctuations 
have been flattened out due to battery system 1. The red line represent the capacity factor of a 
DTP-dam after the its electricity output has been flattened. The blue line is a DTP-dam’s average 
capacity factor. The aim to compute the area between the red and blue line; that is the amount of 
electricity that needs to be stored and discharged.  
 

 
Table 13 represent the daily capacity factors that are visualised in figure 47. The orange shaded 
rows is the area underneath the red line and above the blue line, during which the battery is 
discharging its electricity to compensate neap tide. The green shaded cells is the area above the red 
line and underneath the bleu one, during which the battery is recharging.  
 
The cumulative area underneath the graph is 0.79 MW/MW installed. As each day has 24 hours, 
the total area underneath the red line, and size of the battery system, is; 
 

lJ\L	eHOOLFP	KPKOLG = 0.79 ∗ 24ℎ = 18.96
WXℎ

WX	m-KOHIILM
 

 
So the size of the storage system to offset the fluctuations in electricity output caused by spring 
and neap tide should be 18.86 MWh per MW of DTP installed. As can be seen in figure 47, the 
system has 2 charging cycles per 29,5 days (moon cycle). Hence, the lifetime of the battery will be 
long enough to cover the 60 years lifetime of the dam. 
 
 
 
 
 
 
 
 
 
 
 

Figure 47: visualisation of the storage system to offset the fluctuations in electricity output caused by neap and spring tide. 
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Day 

Capacity factor DTP-
dam with storage 
system 1 

Average capacity 
factor DTP-dam 
(baseload) 

Area under/above 
graph  

Cumulative area 
under/above 
graph  

 1 0.48 0.32 0.16   
 2 0.46 0.32 0.14   
 3 0.41 0.32 0.09   
 4 0.34 0.32 0.02   

Discharging 
electricity 

from storage 
system 

5 0.26 0.32 -0.06 -0.79 
  
  
  
  
  
  

6 0.19 0.32 -0.13 
7 0.15 0.32 -0.17 
8 0.14 0.32 -0.18 
9 0.17 0.32 -0.15 

10 0.23 0.32 -0.09 
11 0.30 0.32 -0.02 

Recharging 
battery 
system 

12 0.37 0.32 0.05 0.83 
  
  
  
  
  
  
  

13 0.42 0.32 0.10 
14 0.46 0.32 0.14 
15 0.48 0.32 0.16 
16 0.48 0.32 0.16 
17 0.45 0.32 0.13 
18 0.40 0.32 0.08 
19 0.32 0.32 0.00 

Discharging 
electricity 

from storage 
system 

20 0.24 0.32 -0.08 -0.78 
  
  
  
  
  
  

21 0.18 0.32 -0.14 
22 0.14 0.32 -0.18 
23 0.15 0.32 -0.17 
24 0.18 0.32 -0.14 
25 0.24 0.32 -0.08 
26 0.32 0.32 0.00 

 27 0.38 0.32 0.06   
 28 0.43 0.32 0.11   
 29 0.47 0.32 0.15   
 30 0.50 0.32 0.18   

Table 13: daily capacity factors of a single DTP -dam for one moon-cycle (29,5 days). The green shaded 
rows mark the values above the mean capacity factor and the red shaded rows the values below the 
mean capacity factor. 
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Appendix B: LCOE calculation  
 
Appendix B1: Solar PV 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

590,000 777,885
11,500 11,557
32,000 67.31

25
0.5

4.3%
0.09

Year
Overnight capital 
costs [€/MW] O&M costs [€]

One-off maintenance 
costs [€]

Discount 
factor

PV of 
costs [€]

Entry 590,000 590,000
1 5,750 95.88% 5,513
2 11,500 91.92% 10,571
3 11,500 88.13% 10,135
4 11,500 84.50% 9,718
5 11,500 81.02% 9,317
6 11,500 77.68% 8,933
7 11,500 74.47% 8,565
8 11,500 71.40% 8,212
9 11,500 68.46% 7,873

10 11,500 65.64% 7,548
11 11,500 62.93% 7,237
12 11,500 32,000 60.34% 26,247
13 11,500 57.85% 6,653
14 11,500 55.47% 6,378
15 11,500 53.18% 6,116
16 11,500 50.99% 5,863
17 11,500 48.88% 5,622
18 11,500 46.87% 5,390
19 11,500 44.94% 5,168
20 11,500 43.08% 4,955
21 11,500 41.31% 4,750
22 11,500 39.60% 4,555
23 11,500 37.97% 4,367
24 11,500 36.41% 4,187
25 11,500 34.91% 4,014

777,885

Year
Yearly electrcity 
output [MWh] Discount factor PV of output [MWh]

Entry
1 394 95.88% 378
2 788 91.92% 725
3 788 88.13% 695
4 788 84.50% 666
5 788 81.02% 639
6 788 77.68% 612
7 788 74.47% 587
8 788 71.40% 563
9 788 68.46% 540

10 788 65.64% 517
11 788 62.93% 496
12 788 60.34% 476
13 788 57.85% 456
14 788 55.47% 437
15 788 53.18% 419
16 788 50.99% 402
17 788 48.88% 385
18 788 46.87% 370
19 788 44.94% 354
20 788 43.08% 340
21 788 41.31% 326
22 788 39.60% 312
23 788 37.97% 299
24 788 36.41% 287
25 788 34.91% 275

11,557

NPV costs [€]

NPV costs

NPV output [MWh]

Outcome

LCOE [€/MWh]
NPV output [MWh]
NPV costs [€]

Input parameters

O&M costs [€/MW/y]
Overnight capital costs [€/MW]

NPV electrcity output

Capacity factor 
WACC
Construction time [y]
Lifetime [y]
One-off maintenance costs in year 12 [€/MW]
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Appendix B2: Offshore wind 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1,750,000 3,393,846
55,000 51,680

17.5 65.67
25

1.5
4.3%
0.43

Year
Overnight capital 
costs [€]

O&M 
costs [€]

Offshore grid 
costs [€]

Discount 
factor

PV of costs 
[€]

Entry 1,750,000 1,750,000
1 0 95.88% 0
2 27,500 16,480 91.92% 40,428
3 55,000 65,919 88.13% 106,572
4 55,000 65,919 84.50% 102,178
5 55,000 65,919 81.02% 97,965
6 55,000 65,919 77.68% 93,927
7 55,000 65,919 74.47% 90,054
8 55,000 65,919 71.40% 86,342
9 55,000 65,919 68.46% 82,782

10 55,000 65,919 65.64% 79,369
11 55,000 65,919 62.93% 76,097
12 55,000 65,919 60.34% 72,960
13 55,000 65,919 57.85% 69,952
14 55,000 65,919 55.47% 67,068
15 55,000 65,919 53.18% 64,303
16 55,000 65,919 50.99% 61,652
17 55,000 65,919 48.88% 59,110
18 55,000 65,919 46.87% 56,673
19 55,000 65,919 44.94% 54,337
20 55,000 65,919 43.08% 52,096
21 55,000 65,919 41.31% 49,949
22 55,000 65,919 39.60% 47,889
23 55,000 65,919 37.97% 45,915
24 55,000 65,919 36.41% 44,022
25 55,000 65,919 34.91% 42,207

3,393,846

Year
Yearly electrcity 
output [MWh]

Discount 
factor [%]

PV of output 
[MWh]

Entry
1 0 95.88% 0
2 1,883 91.92% 1,731
3 3,767 88.13% 3,320
4 3,767 84.50% 3,183
5 3,767 81.02% 3,052
6 3,767 77.68% 2,926
7 3,767 74.47% 2,805
8 3,767 71.40% 2,690
9 3,767 68.46% 2,579

10 3,767 65.64% 2,472
11 3,767 62.93% 2,371
12 3,767 60.34% 2,273
13 3,767 57.85% 2,179
14 3,767 55.47% 2,089
15 3,767 53.18% 2,003
16 3,767 50.99% 1,921
17 3,767 48.88% 1,841
18 3,767 46.87% 1,765
19 3,767 44.94% 1,693
20 3,767 43.08% 1,623
21 3,767 41.31% 1,556
22 3,767 39.60% 1,492
23 3,767 37.97% 1,430
24 3,767 36.41% 1,371
25 3,767 34.91% 1,315

51,680

Input parameters Outcome
Overnight capital costs [€/MW] NPV costs [€]
O&M costs [€/MW/y] NPV output [MWh]

NPV electrcity output

NPV output [MWh]

Offshore grid costs [€/MWh]

NPV costs

NPV costs [€]

Lifetime [y]
LCOE [€/MWh]

Construction time [y]
WACC
Capacity factor 
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Appendix B3: Onshore wind 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1,100,000 1,561,174
32,524 31,053

Lifetime [y] 25 50.27
Construction time [y] 1.0
WACC 4.3%

0.25

Year
Overnight capital 
costs [€]

O&M 
costs [€]

Discount 
factor

PV of costs 
[€]

Entry 1,100,000 1,100,000
1 0 95.88% 0
2 32,524 91.92% 29,898
3 32,524 88.13% 28,665
4 32,524 84.50% 27,483
5 32,524 81.02% 26,350
6 32,524 77.68% 25,264
7 32,524 74.47% 24,222
8 32,524 71.40% 23,224
9 32,524 68.46% 22,266

10 32,524 65.64% 21,348
11 32,524 62.93% 20,468
12 32,524 60.34% 19,624
13 32,524 57.85% 18,815
14 32,524 55.47% 18,039
15 32,524 53.18% 17,296
16 32,524 50.99% 16,583
17 32,524 48.88% 15,899
18 32,524 46.87% 15,244
19 32,524 44.94% 14,615
20 32,524 43.08% 14,013
21 32,524 41.31% 13,435
22 32,524 39.60% 12,881
23 32,524 37.97% 12,350
24 32,524 36.41% 11,841
25 32,524 34.91% 11,353

1,561,174

Year
Yearly electrcity 
output [MWh]

Discount 
factor 

PV of output 
[MWh]

Entry
1 0 95.88% 0
2 2,190 91.92% 2,013
3 2,190 88.13% 1,930
4 2,190 84.50% 1,851
5 2,190 81.02% 1,774
6 2,190 77.68% 1,701
7 2,190 74.47% 1,631
8 2,190 71.40% 1,564
9 2,190 68.46% 1,499

10 2,190 65.64% 1,437
11 2,190 62.93% 1,378
12 2,190 60.34% 1,321
13 2,190 57.85% 1,267
14 2,190 55.47% 1,215
15 2,190 53.18% 1,165
16 2,190 50.99% 1,117
17 2,190 48.88% 1,071
18 2,190 46.87% 1,026
19 2,190 44.94% 984
20 2,190 43.08% 944
21 2,190 41.31% 905
22 2,190 39.60% 867
23 2,190 37.97% 832
24 2,190 36.41% 797
25 2,190 34.91% 764

31,053

Input parameters Outcome
Overnight capital costs [€/MW] NPV costs [€]
O&M costs [€/MW/y] NPV output [MWh]

NPV electrcity output

NPV output [MWh]

NPV costs [€]

NPV costs

LCOE [€/MWh]

Capacity factor 
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Appendix B4: DTP  
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1,690,000 2,313,548
23,660 47,602

5.3 48.60
Lifetime [y] 60
Construction time [y] 5.0
WACC 4.5%

0.32

Year
Overnight capital 
costs [€]

O&M 
costs [€]

Offshore grid 
costs [€]

Discount 
factor

PV of costs 
[€]

Entry 1,690,000 1,690,000
1 0 0 95.69% 0
2 0 0 91.57% 0
3 0 0 87.63% 0
4 0 0 83.86% 0
5 0 0 80.25% 0
6 23,660 14,717 76.79% 29,469
7 23,660 14,717 73.48% 28,200
8 23,660 14,717 70.32% 26,986
9 23,660 14,717 67.29% 25,824

10 23,660 14,717 64.39% 24,712
11 23,660 14,717 61.62% 23,648
12 23,660 14,717 58.97% 22,629
13 23,660 14,717 56.43% 21,655
14 23,660 14,717 54.00% 20,722
15 23,660 14,717 51.67% 19,830
16 23,660 14,717 49.45% 18,976
17 23,660 14,717 47.32% 18,159
18 23,660 14,717 45.28% 17,377
19 23,660 14,717 43.33% 16,629
20 23,660 14,717 41.46% 15,913
21 23,660 14,717 39.68% 15,227
22 23,660 14,717 37.97% 14,572
23 23,660 14,717 36.34% 13,944
24 23,660 14,717 34.77% 13,344
25 23,660 14,717 33.27% 12,769
26 23,660 14,717 31.84% 12,219
27 23,660 14,717 30.47% 11,693
28 23,660 14,717 29.16% 11,190
29 23,660 14,717 27.90% 10,708
30 23,660 14,717 26.70% 10,247
31 23,660 14,717 25.55% 9,805
32 23,660 14,717 24.45% 9,383
33 23,660 14,717 23.40% 8,979
34 23,660 14,717 22.39% 8,592
35 23,660 14,717 21.43% 8,222
36 23,660 14,717 20.50% 7,868
37 23,660 14,717 19.62% 7,529
38 23,660 14,717 18.78% 7,205
39 23,660 14,717 17.97% 6,895
40 23,660 14,717 17.19% 6,598
41 23,660 14,717 16.45% 6,314
42 23,660 14,717 15.74% 6,042
43 23,660 14,717 15.07% 5,782
44 23,660 14,717 14.42% 5,533
45 23,660 14,717 13.80% 5,295
46 23,660 14,717 13.20% 5,067
47 23,660 14,717 12.63% 4,848
48 23,660 14,717 12.09% 4,640
49 23,660 14,717 11.57% 4,440
50 23,660 14,717 11.07% 4,249
51 23,660 14,717 10.59% 4,066
52 23,660 14,717 10.14% 3,891
53 23,660 14,717 9.70% 3,723
54 23,660 14,717 9.28% 3,563
55 23,660 14,717 8.88% 3,409
56 23,660 14,717 8.50% 3,263
57 23,660 14,717 8.14% 3,122
58 23,660 14,717 7.78% 2,988
59 23,660 14,717 7.45% 2,859
60 23,660 14,717 7.13% 2,736

2,313,548

Input parameters Outcome
Overnight capital costs [€/MW] NPV costs [€]
O&M costs [€/MW/y] NPV output [MWh]

Capacity factor 

Offshore grid costs [€/MWh]

NPV costs [€]

NPV costs

LCOE [€/MWh]
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Year
Yearly electrcity 
output [MWh]

Discount 
factor 

PV of output 
[MWh]

Entry
1 0 95.88% 0
2 0 91.92% 0
3 0 88.13% 0
4 0 84.50% 0
5 0 81.02% 0
6 2,803 77.68% 2,177
7 2,803 74.47% 2,088
8 2,803 71.40% 2,002
9 2,803 68.46% 1,919

10 2,803 65.64% 1,840
11 2,803 62.93% 1,764
12 2,803 60.34% 1,691
13 2,803 57.85% 1,622
14 2,803 55.47% 1,555
15 2,803 53.18% 1,491
16 2,803 50.99% 1,429
17 2,803 48.88% 1,370
18 2,803 46.87% 1,314
19 2,803 44.94% 1,260
20 2,803 43.08% 1,208
21 2,803 41.31% 1,158
22 2,803 39.60% 1,110
23 2,803 37.97% 1,064
24 2,803 36.41% 1,021
25 2,803 34.91% 978
26 2,803 33.47% 938
27 2,803 32.09% 899
28 2,803 30.76% 862
29 2,803 29.50% 827
30 2,803 28.28% 793
31 2,803 27.11% 760
32 2,803 26.00% 729
33 2,803 24.92% 699
34 2,803 23.90% 670
35 2,803 22.91% 642
36 2,803 21.97% 616
37 2,803 21.06% 590
38 2,803 20.19% 566
39 2,803 19.36% 543
40 2,803 18.56% 520
41 2,803 17.80% 499
42 2,803 17.06% 478
43 2,803 16.36% 459
44 2,803 15.69% 440
45 2,803 15.04% 422
46 2,803 14.42% 404
47 2,803 13.82% 388
48 2,803 13.25% 372
49 2,803 12.71% 356
50 2,803 12.18% 342
51 2,803 11.68% 327
52 2,803 11.20% 314
53 2,803 10.74% 301
54 2,803 10.30% 289
55 2,803 9.87% 277
56 2,803 9.46% 265
57 2,803 9.07% 254
58 2,803 8.70% 244
59 2,803 8.34% 234
60 2,803 8.00% 224

47,602

NPV electrcity output

NPV output [MWh]
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Appendix B5: DTP incl. storage system  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1,690,000 4,264,920
23,660 46,115

1.8 92.48

Size battery system [MWh/MW]
0.96 (system 1), 
19.00 (system 2)

Lifetime battery [y] 12 (system 1), 
60 (system 2)

100,000
Lifetime [y] 60
Construction time [y] 5
WACC 4.5%

0.31

Year
Overnight capital 
costs [€]

O&M 
costs [€]

Offshore grid 
costs [€]

Battery storage 
costs [€]

Discount 
factor PV of costs [€]

Entry 1,690,000 1,992,000 3,682,000
1 0 0 95.69% 0
2 0 0 91.57% 0
3 0 0 87.63% 0
4 0 0 83.86% 0
5 0 0 80.25% 0
6 23,660 4,752 76.79% 21,818
7 23,660 4,752 73.48% 20,878
8 23,660 4,752 70.32% 19,979
9 23,660 4,752 67.29% 19,119

10 23,660 4,752 64.39% 18,295
11 23,660 4,752 61.62% 17,508
12 23,660 4,752 96,000 58.97% 73,361
13 23,660 4,752 56.43% 16,032
14 23,660 4,752 54.00% 15,342
15 23,660 4,752 51.67% 14,681
16 23,660 4,752 49.45% 14,049
17 23,660 4,752 47.32% 13,444
18 23,660 4,752 45.28% 12,865
19 23,660 4,752 43.33% 12,311
20 23,660 4,752 41.46% 11,781
21 23,660 4,752 39.68% 11,274
22 23,660 4,752 37.97% 10,788
23 23,660 4,752 36.34% 10,324
24 23,660 4,752 96,000 34.77% 43,259
25 23,660 4,752 33.27% 9,454
26 23,660 4,752 31.84% 9,047
27 23,660 4,752 30.47% 8,657
28 23,660 4,752 29.16% 8,284
29 23,660 4,752 27.90% 7,927
30 23,660 4,752 26.70% 7,586
31 23,660 4,752 25.55% 7,259
32 23,660 4,752 24.45% 6,947
33 23,660 4,752 23.40% 6,648
34 23,660 4,752 22.39% 6,361
35 23,660 4,752 21.43% 6,087
36 23,660 4,752 96,000 20.50% 25,508
37 23,660 4,752 19.62% 5,574
38 23,660 4,752 18.78% 5,334
39 23,660 4,752 17.97% 5,105
40 23,660 4,752 17.19% 4,885
41 23,660 4,752 16.45% 4,675
42 23,660 4,752 15.74% 4,473
43 23,660 4,752 15.07% 4,281
44 23,660 4,752 14.42% 4,096
45 23,660 4,752 13.80% 3,920
46 23,660 4,752 13.20% 3,751
47 23,660 4,752 12.63% 3,590
48 23,660 4,752 96,000 12.09% 15,041
49 23,660 4,752 11.57% 3,287
50 23,660 4,752 11.07% 3,146
51 23,660 4,752 10.59% 3,010
52 23,660 4,752 10.14% 2,880
53 23,660 4,752 9.70% 2,756
54 23,660 4,752 9.28% 2,638
55 23,660 4,752 8.88% 2,524
56 23,660 4,752 8.50% 2,415
57 23,660 4,752 8.14% 2,311
58 23,660 4,752 7.78% 2,212
59 23,660 4,752 7.45% 2,117
60 23,660 4,752 7.13% 2,025

4,264,920

Input parameters Outcome
Overnight capital costs [€/MW] NPV costs [€]
O&M costs [€/MW/y] NPV electrcity output [MWh]
Offshore grid costs [€/MWh] LCOE [€/MWh]

Capacity factor 

Battery storage costs [€/MWh]

NPV costs

NPV costs [€]
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Year
Yearly electrcity 
output [MWh]

Discount 
factor

PV of output 
[MWh]

Entry
1 0 95.88% 0
2 0 91.92% 0
3 0 88.13% 0
4 0 84.50% 0
5 0 81.02% 0
6 2,716 77.68% 2,109
7 2,716 74.47% 2,022
8 2,716 71.40% 1,939
9 2,716 68.46% 1,859

10 2,716 65.64% 1,782
11 2,716 62.93% 1,709
12 2,716 60.34% 1,639
13 2,716 57.85% 1,571
14 2,716 55.47% 1,506
15 2,716 53.18% 1,444
16 2,716 50.99% 1,385
17 2,716 48.88% 1,327
18 2,716 46.87% 1,273
19 2,716 44.94% 1,220
20 2,716 43.08% 1,170
21 2,716 41.31% 1,122
22 2,716 39.60% 1,076
23 2,716 37.97% 1,031
24 2,716 36.41% 989
25 2,716 34.91% 948
26 2,716 33.47% 909
27 2,716 32.09% 871
28 2,716 30.76% 835
29 2,716 29.50% 801
30 2,716 28.28% 768
31 2,716 27.11% 736
32 2,716 26.00% 706
33 2,716 24.92% 677
34 2,716 23.90% 649
35 2,716 22.91% 622
36 2,716 21.97% 597
37 2,716 21.06% 572
38 2,716 20.19% 548
39 2,716 19.36% 526
40 2,716 18.56% 504
41 2,716 17.80% 483
42 2,716 17.06% 463
43 2,716 16.36% 444
44 2,716 15.69% 426
45 2,716 15.04% 408
46 2,716 14.42% 392
47 2,716 13.82% 375
48 2,716 13.25% 360
49 2,716 12.71% 345
50 2,716 12.18% 331
51 2,716 11.68% 317
52 2,716 11.20% 304
53 2,716 10.74% 292
54 2,716 10.30% 280
55 2,716 9.87% 268
56 2,716 9.46% 257
57 2,716 9.07% 246
58 2,716 8.70% 236
59 2,716 8.34% 227
60 2,716 8.00% 217

46,115

NPV electrcity output

NPV output [MWh]
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Appendix B6: Flexible CCGT  
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

630,000 4,171,109
40,000 54,220

Fuel costs [€/MWh] 46.08 76.93
CO2 costs [€/MWh] 10.10
Lifetime [y] 25
Construction time [y] 3.0
WACC 4.3%

0.50
*Capacity factor varies (0.01-1.00) as it depends on the characteristics of the residual load.
For this exemplary calculation a capacity factor of 0.50 is used. 

Year
Overnight capital 
costs [€]

O&M 
costs [€] Fuel costs [€]

CO2 costs 
[€]

Discount 
factor

PV of 
costs [€]

Entry 630,000 630,000
1 0 0 0 0.00% 0
2 0 0 0 0.00% 0
3 0 0 0 0.00% 0
4 40,000 201,830 44,229 84.50% 241,724
5 40,000 201,830 44,229 81.02% 231,758
6 40,000 201,830 44,229 77.68% 222,203
7 40,000 201,830 44,229 74.47% 213,043
8 40,000 201,830 44,229 71.40% 204,259
9 40,000 201,830 44,229 68.46% 195,838

10 40,000 201,830 44,229 65.64% 187,765
11 40,000 201,830 44,229 62.93% 180,023
12 40,000 201,830 44,229 60.34% 172,602
13 40,000 201,830 44,229 57.85% 165,486
14 40,000 201,830 44,229 55.47% 158,663
15 40,000 201,830 44,229 53.18% 152,122
16 40,000 201,830 44,229 50.99% 145,850
17 40,000 201,830 44,229 48.88% 139,837
18 40,000 201,830 44,229 46.87% 134,072
19 40,000 201,830 44,229 44.94% 128,545
20 40,000 201,830 44,229 43.08% 123,245
21 40,000 201,830 44,229 41.31% 118,164
22 40,000 201,830 44,229 39.60% 113,293
23 40,000 201,830 44,229 37.97% 108,622
24 40,000 201,830 44,229 36.41% 104,144
25 40,000 201,830 44,229 34.91% 99,850

4,171,109

Year
Yearly electrcity 
output [MWh]

Discount 
factor 

PV of output 
[MWh]

Entry
1 0 95.88% 0
2 0 91.92% 0
3 0 88.13% 0
4 4,380 84.50% 3,701
5 4,380 81.02% 3,549
6 4,380 77.68% 3,402
7 4,380 74.47% 3,262
8 4,380 71.40% 3,128
9 4,380 68.46% 2,999

10 4,380 65.64% 2,875
11 4,380 62.93% 2,756
12 4,380 60.34% 2,643
13 4,380 57.85% 2,534
14 4,380 55.47% 2,429
15 4,380 53.18% 2,329
16 4,380 50.99% 2,233
17 4,380 48.88% 2,141
18 4,380 46.87% 2,053
19 4,380 44.94% 1,968
20 4,380 43.08% 1,887
21 4,380 41.31% 1,809
22 4,380 39.60% 1,735
23 4,380 37.97% 1,663
24 4,380 36.41% 1,595
25 4,380 34.91% 1,529

54,220

NPV costs [€]

NPV electrcity output

NPV output [MWh]

Input parameters Outcome
Overnight capital costs [€/MW] NPV costs [€]
O&M costs [€/MW/y] NPV output [MWh]

NPV costs

LCOE [€/MWh]

Capacity factor *
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Appendix C: Efficient portfolio shares and backup capacity  
 
 
Appendix C1: Demand scenario 1 – contemporary load profile 
 

Figure 49: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 1: contemporary load profile. Technical 
configuration B: solar PV, wind & DTP. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 

Figure 48: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 1: contemporary load profile. Technical 
configuration A: solar PV & wind. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient).  

Figure 50: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 1: contemporary load profile. Technical 
configuration C: solar PV, wind & 2 DTP-dams. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration A: solar PV & wind

Solar PV Offshore Wind Onshore wind Dispatchable CCGT capacity (CI: 95%)
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration C: solar PV, wind & 2 DTP-dams

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)
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Appendix C2: Demand scenario 2 - increased peak loads 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP incl. storage Dispatchable CCGT capacity (CI: 95%)

Figure 51: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 1: contemporary load profile. Technical 
configuration D: solar PV, wind & DTP incl. storage. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 2: increased peak loads

Technical configuration A: solar PV & wind

Solar PV Offshore Wind Onshore wind Dispatchable CCGT capacity (CI: 95%)

Figure 52: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 2: increased peak loads. Technical 
configuration A: solar PV & wind. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 2: increased peak loads

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)

Figure 53: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 2: increased peak loads. Technical 
configuration B: solar PV, wind & DTP. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Appendix C3: Demand scenario 3 - flat load profile 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 2: increased peak loads

Technical configuration C: solar PV, wind & 2 DTP-dams
Solar PV Offshore Wind Onshore wind 2 DTP-dams Dispatchable CCGT capacity (CI: 95%)

Figure 54: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 2: increased peak loads. Technical 
configuration C: solar PV, wind & 2 DTP-dams. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 2: increased peak loads

Technical configuration D: solar PV, wind & DTP incl. storage system

Solar PV Offshore Wind Onshore wind DTP incl. storage Dispatchable CCGT capacity (CI: 95%)

Figure 55: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 2: increased peak loads. Technical 
configuration D: solar PV, wind & DTP incl. storage. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 3: flat load profile

Technical configuration A: solar PV & wind

Solar PV Offshore Wind Onshore wind Dispatchable CCGT capacity (CI: 95%)

Figure 56: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 3: flat load profile. Technical 
configuration A: solar PV & wind. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 



 
 

 
 
 97 

 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

5.0
7.5
10.0
12.5
15.0
17.5
20.0

0%
20%
40%
60%
80%
100%
120%

11,000 10,500 10,000 9,500 9,000 8,500 8,000 7,500 7,000 6,500 6,000 5,500 5,000 4,500 4,000 3,500 3,000 2,500 2,000 1,682

3,575 3,600 3,669 3,778 3,924 4,103 4,312 4,552 4,824 5,122 5,441 5,779 6,132 6,498 6,874 7,260 7,751 8,612 9,765 10,606

D
is

pa
tc

ha
bl

e 
C

C
G

T 
ca

pa
ci

ty
 [G

W
]

Po
rt

fo
lio

 s
ha

re
s

Portfolio's mean residual load (upper value) & STD [MW] 

Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 3: flat load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)

Figure 57: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 3: flat load profile. Technical 
configuration B: solar PV, wind & DTP. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 3: flat load profile

Technical configuration C: solar PV, wind & 2 DTP-dams

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)
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Efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 3: flat load profile

Technical configuration D: solar PV, wind & DTP incl. storage system

Solar PV Offshore Wind Onshore wind DTP incl. storage Dispatchable CCGT capacity (CI: 95%)

Figure 58: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 3: flat load profile. Technical 
configuration C: solar PV, wind & 2 DTP-dams. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 

Figure 59: efficient portfolio shares and required dispatchable backup capacity for a 35GW VRE system. Demand scenario 3: flat load profile. Technical 
configuration B: solar PV, wind & DTP incl. storage. Note; the white dot marks the portfolio that requires the least backup capacity (most efficient). 
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Appendix D: Efficient portfolio shares, backup capacity and 
system’s LCOE  
 

 
Appendix D1: Demand scenario 1 – contemporary load profile 
 
 

 
 

 
 
 

Figure 60: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the capacity 
factor (CF)  of the CCGT. Demand scenario 1: contemporary load profile. Technical configuration A: solar PV & wind. Note; the white dot marks the 
most cost-efficient system. 
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Electricity generarion costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP
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Figure 61: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the capacity 
factor (CF) of the CCGT. Demand scenario 1: contemporary load profile. Technical configuration B: solar PV, wind & DTP. Note; the white dot marks 
the most cost-efficient system. 
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Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration A: solar PV & wind
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Appendix D2: Demand scenario 2 - increased peak loads 
 

Figure 62: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 1: contemporary load profile. Technical configuration C: solar PV, wind & 2 DTP-dams. 
Note; the white dot marks the most cost-efficient system. 

Figure 63: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF)  of the CCGT. Demand scenario 1: contemporary load profile. Technical configuration D: solar PV, wind & DTP incl. 
storage. Note; the white dot marks the most cost-efficient system. 

Figure 64: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 2: increased peak loads. Technical configuration A: solar PV & wind. Note; the white dot 
marks the most cost-efficient system. 
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Electrcity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration C: solar PV, wind & 2 DTP-dams
Solar PV Offshore Wind Onshore wind 2 DTP-dams Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 2: increased peak loads

Technical configuration A: solar PV & wind
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Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. storage system
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Electricity generarion costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Figure 65: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 2: increased peak loads. Technical configuration B: solar PV, wind & DTP. Note; the white 
dot marks the most cost-efficient system. 
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Electrcity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration C: solar PV, wind & 2 DTP-dams

Solar PV Offshore Wind Onshore wind 2 DTP-dams Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Figure 66: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF)  of the CCGT. Demand scenario 2: increased peak loads. Technical configuration C: solar PV, wind & 2 DTP-dams. Note; 
the white dot marks the most cost-efficient system. 
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Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. storage system
Solar PV Offshore Wind Onshore wind DTP incl. storage Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Figure 67: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 2: increased peak loads. Technical configuration D: solar PV, wind & DTP incl. storage. 
Note; the white dot marks the most cost-efficient system. 
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Appendix D3: Demand scenario 3 - flat load profile 
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Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 3: flat load profile

Technical configuration A: solar PV & wind
Solar PV Offshore Wind Onshore wind Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Figure 68: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 3: flat load profile. Technical configuration A: solar PV & wind. Note; the white dot marks 
the most cost-efficient system. 
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Electrcity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 3: flat load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT (CI: 95%) System's LCOE Capacity factor CCGT
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Figure 69: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 3: flat load profile. Technical configuration B: solar PV, wind & DTP. Note; the white dot 
marks the most cost-efficient system. 
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Efficient portfolios and energy generation costs for a 35GW VRE system + CCGT backup 
Demand scenario 3: flat load profile

Technical configuration c: solar PV, wind & 2 DTP-dams
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Figure 70: electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 3: flat load profile. Technical configuration C: solar PV, wind & 2 DTP-dams. Note; the white 
dot marks the most cost-efficient system. 
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Figure 71:  electricity generation costs efficient 35GW VRE portfolios and their required CCGT backup capacities. Top graph illustrates the 
capacity factor (CF) of the CCGT. Demand scenario 3: flat load profile. Technical configuration D: solar PV, wind & DTP incl. storage. Note; the 
white dot marks the most cost-efficient system. 
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Appendix E: Sensitivity analysis - system size  
 
 
Appendix E1: Efficient portfolio shares and backup capacity - 25GW VRE  
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Sensitivity analysis system size: fficient portfolio shares and required backup capacity for a 25GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration A: solar PV & wind
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Figure 72: sensitivity analysis for and increased system size (25GW). Demand scenario 1: contemporary load profile. Technical configuration A: solar PV & wind. Note; 
the white dot marks the most efficient system. 
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Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP

Solar PV Offshore Wind Onshore wind DTP Dispatchable CCGT capacity (CI: 95%)

Figure 73: sensitivity analysis for and increased system size (25GW). Demand scenario 1: contemporary load profile. Technical configuration B: solar PV,  wind & 
DTP. Note; the white dot marks the most efficient system. 
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Figure 74: sensitivity analysis for and increased system size (25GW). Demand scenario 1: contemporary load profile. Technical configuration C: solar PV,  wind & 2 
DTP-dams. Note; the white dot marks the most efficient system. 



 
 

 
 
 104 

 
Appendix E2: Efficient portfolio shares and backup capacity - 45GW VRE  
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Sensitivity analysis system size: efficient portfolio shares and required backup capacity for a 25GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. sotorage
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Figure 75: sensitivity analysis for and increased system size (25GW). Demand scenario 1: contemporary load profile. Technical configuration C: solar PV,  wind & DTP 
incl. storage. Note; the white dot marks the most efficient system. 
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Sensitivity analysis system size: efficient portfolio shares and required backup capacity for a 45GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration A: solar PV & wind
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Figure 76: sensitivity analysis for and increased system size (45GW). Demand scenario 1: contemporary load profile. Technical configuration A: solar PV & wind. Note; 
the white dot marks the most efficient system. 
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Figure 77: sensitivity analysis for and increased system size (45GW). Demand scenario 1: contemporary load profile. Technical configuration B: solar PV,  wind & 
DTP. Note; the white dot marks the most efficient system. 
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Sensitivity analysis system size: efficient portfolio shares and required backup capacity for a 45GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration C: solar PV, wind & 2 DTP-dams
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Figure 78: sensitivity analysis for and increased system size (45GW). Demand scenario 1: contemporary load profile. Technical configuration C: solar PV,  wind & 2 
DTP-dams. Note; the white dot marks the most efficient system. 
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Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. sotorage
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Figure 79: sensitivity analysis for and increased system size (45GW). Demand scenario 1: contemporary load profile. Technical configuration C: solar PV,  wind & DTP 
incl. storage. Note; the white dot marks the most efficient system. 



 
 

 
 
 106 

Appendix F: Sensitivity analysis - increased confidence 
interval  
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Sensitivity analysis CI: efficicient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration A: solar PV & wind
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Figure 80: sensitivity analysis for and increased CI 95% - 99%. Demand scenario 1: contemporary load profile. Technical configuration A: solar PV & wind. Note; 
the white dot marks the most cost-efficient system. 
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Sensitivty analysis CI: efficient portfolio shares and required backup capacity for a 35GW VRE system 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP
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Figure 81: sensitivity analysis for and increased CI 95% - 99%.. Demand scenario 1: contemporary load profile. Technical configuration B: solar PV, wind & DTP. 
Note; the white dot marks the most cost-efficient system. 
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Sensitivity analysis CI: efficient portfolio shares and required backup capacity for 35GW VRE system
Demand scenario 1: contemporary load profile

Technical configuration C: solar PV, wind & 2 DTP-dams

Solar PV Offshore Wind Onshore wind 2 DTP-dams Dispatchable CCGT capacity (CI: 95%) Dispatchable CCGT capacity (CI: 99%)

Figure 82: sensitivity analysis for and increased CI 95% - 99%. Demand scenario 1: contemporary load profile. Technical configuration C: solar PV, wind & 2 DTP-
dams. Note; the white dot marks the most cost-efficient system. 
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Sensitivity analysis CI: efficient portfolio shares and required backup capacity for 35GW VRE system
Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. storage

Solar PV Offshore Wind Onshore wind DTP incl. storage Dispatchable CCGT capacity (CI: 95%) Dispatchable CCGT capacity (CI: 99%)

Figure 83: sensitivity analysis for and increased CI 95% - 99%. Demand scenario 1: contemporary load profile. Technical configuration D: solar PV, wind & DTP 
incl. storage. Note; the white dot marks the most cost-efficient system. 
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Appendix G: Sensitivity analysis - increased CO2 price  
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Figure 84: sensitivity analysis for and increased CO2 price from 25 to 200 €/ton CO2. Demand scenario 1: contemporary load profile. Technical configuration A: solar 
PV & wind. Note; the white dot marks the most cost-efficient system. 
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Sensitivity analysis CO2 price: Electrcity generarion costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration B: solar PV, wind & DTP
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Figure 85: sensitivity analysis for and increased CO2 price from 25 to 200 €/ton CO2. Demand scenario 1: contemporary load profile. Technical configuration B: solar 
PV, wind & DTP. Note; the white dot marks the most cost-efficient system. 
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Sensitivity anaysis CO2 price: Electrcity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile
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Figure 86: sensitivity analysis for and increased CO2 price from 25 to 200 €/ton CO2. Demand scenario 1: contemporary load profile. Technical configuration C: 
solar PV, wind & 2 DTP-dams. Note; the white dot marks the most cost-efficient system. 
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Sensitivity analysis CO2 price: Electricity generation costs efficient 35GW VRE portfolios + CCGT backup 
Demand scenario 1: contemporary load profile

Technical configuration D: solar PV, wind & DTP incl. storage system
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Figure 89: sensitivity analysis for and increased CO2 price from 25 to 200 €/ton CO2. Demand scenario 1: contemporary load profile. Technical configuration D: 
solar PV, wind & DTP incl. storage. Note; the white dot marks the most cost-efficient system. 
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Appendix H: Distribution residual loads  
 
 
 
                       Table 14: normal distribution parameters 

  
 
 
 
 
 
1For the data to be considered normally distributed kurtosis and skewness should be within -2 and 
+2 [43]. 
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0

100

200

300

400

500

600

-2
5,
93
2

-2
4,
28
1

-2
2,
63
0

-2
0,
98
0

-1
9,
32
9

-1
7,
67
8

-1
6,
02
7

-1
4,
37
7

-1
2,
72
6

-1
1,
07
5

-9
,4
24

-7
,7
74

-6
,1
23

-4
,4
72

-2
,8
21

-1
,1
71 48
0

2,
13
1

3,
78
2

5,
43
2

7,
08
3

8,
73
4

10
,3
85

12
,0
35

13
,6
86

15
,3
37

16
,9
88

M
or
e

F
re

q
u

en
cy

Residual load DTP

Distribution residual load - DTP

Frequency

0
50

100
150
200
250

300
350
400

-2
,4
00

-2
,0
13

-1
,6
27

-1
,2
41

-8
54

-4
68 -8
1

30
5

69
1

1,
07
8

1,
46
4

1,
85
0

2,
23
7

2,
62
3

3,
00
9

3,
39
6

3,
78
2

4,
16
8

4,
55
5

4,
94
1

5,
32
7

5,
71
4

6,
10
0

6,
48
6

6,
87
3

7,
25
9

7,
64
6

M
or
e

F
re

q
u

en
cy

Residual load DTP incl. storage

Distribution residual load - DTP incl. storage

Frequency


