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Abstract — Since several decades anti-lock braking systems rely 
on rule-based control strategies. Extensive literature review 
highlighted the possibility that significant improvements could be 
achieved if ABS controllers were redesigned taking advantage of the 
technological improvements achieved in the last decade. This work 
aims to verify this statement and quantifying the potential 
improvement by design of a novel ABS algorithm. The controller, 
based on state-of-the-art hardware, uses a Model Predictive Control 
(MPC) approach and potentially available wheel information as the 
pillars of its design. The newly proposed ABS is then tested on 
Toyota’s high-end vehicle simulator and benchmarked against its 
industrial counterpart. A comprehensive set of manoeuvres, 
including friction jumps and rough road braking scenarios, is 
deployed to assess performance and robustness of the presented 
design. The analysis showed substantial reduction of the braking 
distance and improved steering-ability. Furthermore, robustness 
against external factors is demonstrated to be comparable with the 
industrial benchmark. 

Keywords—Antilock Braking System, wheel slip control, Model 
Predictive Control, load sensing, high-end simulation  

I. INTRODUCTION 
Anti-Lock Braking System (ABS) is an active safety 

technology used to control wheel dynamics during severe braking. 
The system aims at maximizing braking performance while 
keeping the vehicle’s ability to steer. The ABS control objective is 
practically achieved by monitoring the applied brake torque by 
means of pressure modulation.  

Being a safety system, ABS must be robust to all possible 
conditions that could be encountered, such as different friction 
surfaces, uneven roads and sudden changes in adhesion. 
Additionally, the dynamics of the wheel slip becomes faster as the 
velocity decreases, and it is therefore key to counteract this effect 
[1]. Moreover, the vehicle velocity and thus longitudinal wheel slip 
signal, as well as the tire-road friction coefficient require 
estimation. Lastly, the plant to be controlled (elastically suspended 
wheel, braking servo system and disc-pad interaction) presents 
significant nonlinearities and delays which limit the controller’s 
bandwidth. Besides, the main nonlinearity arises from the strong 
tire saturation behaviour.  

Since the first reliable automotive application by Bosch in 1978 
[1, 2] a wide variety of approaches have been proposed for ABS 
control. In literature, two control variables have traditionally been 
used: wheel acceleration ω̇ and longitudinal wheel slip λ. 

The angular acceleration approach has the main advantage that 
this can be measured with a wheel encoder. Furthermore, 

controllers of this type are able to keep the wheel slip in a 
neighbourhood of the optimal point without explicitly using the 
value of optimal wheel slip.  

On the other hand, wheel slip control is simpler from a 
dynamical point of view and less sensitive to friction coefficient 
estimation errors. Moreover, slip control has the feature that the 
applied torque converges to a fixed value, hence, it shows no 
oscillations compared to wheel acceleration control [4], [5]. 
Nonetheless, the slip measurement requires the estimation of 
vehicle speed. Therefore, noise sensitivity of the controller is a 
critical issue [1]. Additionally, set selection point is extremely 
crucial, and, since it is impossible to find a unique value for every 
road condition, a set point adaption must be implemented [3]. 

ABS could be made more robust and less complex if the tire 
longitudinal forces were used. Wheel force information, in fact, 
would allow to easily estimate the friction coefficient peak [6]. 
Additionally, when used in the formulation of model-based, 
optimization-based control approaches, tire forces’ availability 
allows to eliminate the need of a tyre model and, with it, some 
nonlinearities and tedious trigonometric functions that may slow 
down the optimization solver. Load-sensing bearings allow to 
reconstruct wheel forces with sufficient accuracy and bandwidth 
and thereby enable their application in vehicle dynamics control in 
the near future [7]. Based on the above-mentioned considerations, 
a slip-based approach augmented with the use of wheel force 
information is investigated in this work.  

The control strategy was selected after in-depth analysis of the 
main ABS control trends proposed by researchers and OEMs. A 
brief summary of the conclusions is now presented; nonetheless, 
more detailed discussions can be found in [8, 9]. Two macro 
directions were identified in literature: the first one, comprising of 
dynamic threshold-based, fuzzy logic and neural network 
controllers, achieves the control objective by discretely modulating 
brake pressure for each wheel; the second one, including PID, 
robust, sliding mode, optimal and model predictive controllers, 
assumes the possibility of continuously modulating brake pressure.  

Among continuous controllers, MPC represents an opportunity 
to improve dynamic performance and robustness of the current 
state-of-the-art controllers; however, the prediction and 
optimization behind it make it computationally very intensive. It is 
believed that the use of wheel force measurements in the 
prediction, in place of a tire model, will significantly improve the 
MPC real time capability. The goal of this work is thus to design a 
novel ABS model predictive controller augmented with wheel 
information and quantify the potential improvement over 
nowadays rule-based systems.  
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In the next sections, an overview of the steps performed to 
achieve the research objective is given. First, the proposed 
controller is explained in section II; a brief introduction of the 
simulation set-up is then given in section III; assessment of the 
newly proposed controller is subsequently described in section IV; 
section V discusses some of the results obtained; lastly, important 
conclusions about the feasibility and performance of the proposed 
control strategy are drawn in section VI. 

II. PROPOSED ABS CONTROLLER 
Model Predictive Control uses a dynamic model of the system 

to predict its evolution over a finite time interval, called the 
prediction horizon (𝑇$). The predicted behaviour is then optimized 
via control inputs with respect to a given optimality criterion (𝐽) 
reflecting the control objectives. The criterion is formulated as a 
cost function and system constraints and solved at each sampling 
period. After computation of the optimal control sequence, only the 
first control move is applied in closed loop. In the next sampling 
interval, the entire process is repeated using the most recent state 
measured, a process known as receding horizon control. Because 
of the high nonlinearity of the slip dynamics, to guarantee 
sufficient accuracy of predictions, and therefore avoid large plant-
model mismatch, a nonlinear model is used for predictions.  

The model, shown in (1), consists of nine differential 
equations: four equations describe the wheel slip dynamics of each 
wheels (�̇�'(); an additional four augmentation equations (�̇�)*+) allow 
controlling the torque rate (𝑑𝑇-*+) instead of the brake torque; lastly 
one equation describes the chassis longitudinal dynamics �̇�. Effects 
related to brake actuator dynamics and longitudinal weight transfer 
are also considered. Electro-hydraulic brake system behaviour can 
be represented by a first order dynamics with time constant 𝜏. On 
the other hand, longitudinal weight transfer can be approximated 
by its static part. Lastly, online feed of wheel force data allows 
complete description of the tire dynamics. 
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 (1) 

In (1) 𝐹[*+  is the longitudinal tire force, 𝑎[	 the longitudinal 
acceleration, 𝑣  the chassis velocity, 𝐼_  the wheel’s rotational 
inertia, 𝐿 the wheel base, 𝑅_ the tire’s loaded radius, 𝑚c the sprung 
mass, 𝑚de  and 𝑚ee  the portions of the total mass resting on the  
front and rear axles respectively. 
The state vector is then:  

x = gT4:;λ:;, T4:S, λ:S, T4S;, λS;, T4SS, λSS, vi
j (2) 

Optimization-based brake torques, 𝑑𝑇)*+, result from iteratively 
solving a constrained Optimal Control Problem (OCP). In its 
general form and assuming the state to be measurable, the OCP is 
formulated as follows: 

											minimizeo(∙),s(∙) 	t O‖y(t) − yBxA(t)‖yL + ‖u(t) − uBxA(t)‖SLQdt
T{|j}

T{
 

																			+	‖y(t~ + T�) − yBxA(t~ + T�)‖�																		L 	���������������������������������
�

	 

						x(t~) = x�~																																					Initial	conditions
								ẋ(t) = fOx(t), u(t)Q																			Vehicle	dynamics
							y(t) 	= gOx(t), u(t)Q																		Output	mapping
		x���(t) ≤ x(t) ≤ x��F																			State	constraint
		u���(t) ≤ u(t) ≤ u��F																		Actuator	contraint
								Q ∈ R�~

� ,						R ∈ R�~� ,							P ∈ R�~
�

 

(3) 

The solution of the OCP is the result of minimizing the cost 
function 𝐽, in which: Q and P are non-negative definite weight 
matrices penalizing the deviations of the outputs (y) from their 
reference values yref, and R is positive definite weight matrix 
penalizing the deviations of the inputs u from their reference values 
uref. Weight matrices can therefore be used as tuning parameters.  

State and input constraints, reported in Table I, were chosen 
according to the following reasoning:  
• Since the focus is braking dynamics, the slip is constrained 

such that solutions are searched in the range between 0 and 1.  
• The lower bound for the chassis velocity is set to 0 to prevent 

the vehicle from going backwards, while the upper-bound is 
selected equal to the vehicle’s maximum speed.  

• The brake torques’ lower bound is placed at 0 Nm as negative 
number would mean that a driving torque is applied. The upper-
bound is again set at the system’s maximum capability; Given the 
different sizing of front and rear brakes, two values are found.  

• Limits for the brake torque rates are also set at the pressure 
actuator’s limits. Since the EHB pressure increase rate is 
around 1300bar/s and assuming the system is 30% slower in 
damping pressure, the torque rate bounds are set to �̇�)���= 
42000Nm/s and �̇�)��  = 30000Nm/s. As for stability reasons 
it is advisable for rear wheels to follow the front ones in the 
event of a lock up, the rear pressure increase rate is reduced 
for the rear axle.  

TABLE I.  STATE AND INPUT BOUNDS 
Variable Unit Lower-bound Upper-bound 

Tbfr [Nm] 0 3500 
Tbrr [Nm] 0 1700 
λij [-] 0 1 
v [m/s] 0 53 

Ṫ4AB [Nm/s] -35000 42000 

Ṫ4BB [Nm/s] -35000 35000 

The tool used as modelling environment to define the optimal 
control problem is ACADO Toolkit. ACADO is an open-source 
software environment for dynamic optimization which supports 
self-contained C code [10]. Its most appealing features is the task 
scheduling of the Real Time Iteration (RTI) scheme which splits 
one iteration into two phases: a preparation phase, where the NLP 
is linearized, discretized and condensed; and a feedback phase, 
where the condensed QP is solved. Since operations are 
independent from the optimization’s initial state (x0), the 
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preparation can be executed before measurements arrive. In this 
way, real-time performances within the milli- or micro-seconds 
range can be achieved depending on the application [11].  

The OCP problem is solved by the dense QP solver qpOASES, 
an open source structure-exploiting active-set solver that supports 
warm start particularly suited for MPC applications [12]. The most 
important solver settings are reported in Table II, the complete list 
can be found in [13]. 

TABLE II.  IMPORTANT CONTROLLER SETTINGS 
Variable Value 

Prediction horizon (Tp) 100 ms 
Sampling time (Ts) 5 ms 

Controller frequency (fCTRL) 250 Hz 

As mentioned, the MPC is the core of this novel ABS 
formulation; nonetheless, other elements are also important for its 
correct behaviour. The full controller structure is shown in Fig. 1. 

 
Fig. 1. ABS controller scheme.  

The reference adaption block reads longitudinal 𝐹[*+and normal 
force 𝐹¡*+ at each step and, after calculating the friction coefficient 
𝜇'(, outputs the target wheel slips 𝜆'(	based on a 3D-map obtained 
from tire testing. The slip targets, together with other signals 
coming from the vehicle and driver subsystems, are then passed to 
the activation logic.  

The activation logic is responsible for cycling through three 
possible controller states: ABS Off, ABS On, ABS On - Low 
Speed. Based on a state machine, the controller’s mode and target 
state are selected. Whenever the ABS is inactive the NMPC acts as 
a driver brake request follower. Activation of the ABS controller is 
triggered based on some predefined wheel deceleration thresholds 
for front and rear wheel pairs. In a range from 1 m/s to 𝑉¤¥¦, the 
ABS operates as a slip target follower. On the other hand, below 1 
m/s, where the wheel dynamics is too unstable to control, the brake 
torque is kept constant to avoid any under-braking.  

The selected control mode is implemented by the online weight 
adjustment logic via selection of the entries of the weight matrices 
Q, P and R (where R is equal to Q). In this formulation Q and P are 
diagonal matrices containing state weights and control weights 
respectively. When the driver is in control, the MPC is forced to 
track the driver demand using the following weight entries: 

§Wj4©ª
,W«©ª,𝑊­4ªª

,W®BB,W¯,Wj̇°©ª
,Wj̇°ªª

± (4) 

= [50	, 0	, 50	, 0	, 0.5 × 10¶·, 1 × 10¶·] 
On the other hand, in low speed ABS mode, the controller is 

made inert by using:  
§Wj4©ª

,W«©ª,𝑊­4ªª
,W®BB,W¯,Wj̇°©ª

,Wj̇°ªª
± 

												= [0	, 0	, 0	, 0	, 0	, 5 × 10·	, 5 × 10·] 
(5) 

Lastly, when the ABS is working in its normal mode, the 
controller acts as a slip reference tracker. Since the vehicle velocity 
acts as a time-scale factor for the slip dynamics [1], cost weights 
are defined so to track the slip target with an increasingly larger 
control effort to cope with the progressively higher slip frequency: 

§Wj4©ª
,W«©ª,𝑊­4ªª

,W®BB,W¯,Wj̇°©ª
,Wj̇°ªª

± 

																														= [0	, 5 × 10¹	, 0	, 3.7 × 10¼	, 0	, 𝑓AB(v)	, 𝑓BB(v)] 
(6) 

Where: 𝑓AB(v)  and 𝑓BB(v)	  are two monotonically decreasing 
functions.  

Current state, target state, online force measurements and cost 
weights are then sent to the NMPC which calculates the optimal 
inputs. The prescribed brake torques then act as a target for the low-
level ABS controller which operates the hydraulic unit. Corner 
pressures are then applied to the vehicle which closes the loop. 

III. VEHICLE SIMULATOR 
Performance of the proposed controller was assessed on the 

high-end simulation set-up, shown in Fig. 2. Each of the main vehicle 
subsystems was developed in the appropriate simulation suite, 
namely, MATLAB Simulink for the controller, Simpack for the 
vehicle, Dymola for the brake system and MF Swift for the tire. The 
models were then interconnected to replicate full vehicle behaviour. 

 
Fig. 2. Vehicle co-simulation layout 

The vehicle model is realized following a multibody approach 
and largely validated against test data. Flexible bodies behaviour 
subsystems compliance were measured on dedicated test benches 
and reproduced either by correct modelling of the element (e.g. for 
springs and dampers) or by the insertion of compliant constraints at 
specific locations. Hydraulics brake system behaviour is replicated 
following a multiphysics approach, while for the EHB, where the 
nonlinearity is less, a first order TF was sufficient. The Short 
Wavelength Intermediate Frequency Tire (SWIFT) model, 
described in [14], was used in combination with a detailed tire 
property file. Lastly, the approach taken to reproduce sensor 
behaviour is to alter the information coming from the simulation so 
to match signal quality identified by the sensor’s data sheet. 

Validation was first performed for each subsystem and later in 
co-simulation. Longitudinal vehicle behaviour with the rule-based 
controller in-the-loop was correlated against EBD and ABS 
braking on track. Simulation output from 130-0 km/h high friction 
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braking is compared to six equivalent tests in Fig. 3. As can be 
seen, overall behaviour and pressure cycles, are closely matched. 
Deviations at low speed are caused by the tire not being tested in 
the lower speed range while generating the tire property file. 

 
Fig. 3. ABS braking validation results 

IV. ASSESSMENT 
To assess the proposed controller and identify the performance 

margins compared to industrial solutions, the NMPC is 
benchmarked against a rule-based logic provided by Toyota. The 
two controllers are then simulated on eight scenarios, presented in 
Table III. In addition to smooth road braking, performance during 
friction transitions and on rough roads was also evaluated. Friction 
jumps follow the homologation rules mandated by the European 
UN transport division. Rough pavements were obtained using 
laser-scanning techniques on existing road sections.  

Since the control blackbox used as a benchmark contained a 
series of other assistance systems together with ABS (e.g. VSC), 
simulation scenarios were selected so to only trigger the ABS. That 
is: reference trajectory was a straight line. Nonetheless, in case 
some yaw is caused by the controller actions, the driver model is 
tuned to countersteer as non-professional driver would do. 

TABLE III.  ABS BRAKING SCENARIOS 

 
Initial 

Velocity 
[km/h] 

Exit 
Velocity 
[km/h] 

Avg. friction 
[-] 

Surface 
layout 

Dry asphalt 130 0 0.9 Smooth 

Wet asphalt 90 0 0.7 Smooth 

Packed snow 40 0 0.3 Smooth 

μ-jump 120 0 1.1 0.6 Smooth 

μ-jump 60 0 0.75 à 0.35 Smooth 

μ-jump 70 0 0.3 à 1 Smooth 

Red bricks 70 0 0.65 Rough 

Belgian stones 40 0 0.3 Rough 

Understanding the relative margins with respect to the rule-
based benchmark and where these originate was achieved by 
implementing effect-related performance indicators. Different KPI 
sets apply to each of the three groups of manoeuvres. Each 
indicator and the aspect it focuses on is listed in this paper, 
nonetheless, a more detailed explanation can be found in [13]. 

Steady state and transient performances, as well as human 
factors and actuator wear, are evaluated on smooth roads by the 
following KPPI set:  
• ABS index of performance – Overall braking 

ABSIP	 =
d¿ÀÁ
dÁÂ�Ã

 

• Brake distance – Overall Braking 

BD =	t vÅÆ¿dt
T©

TÇ
 

• Mean fully developed deceleration – Steady state 
MFDD = [aÉF]~.~·Ê{

~.ËÊ{  
• ABS efficiency  – Steady state  

η¿ÀÁ =
[aÉF]~.~·Ê{

~.¹Ê{

µÉg  

• Peak-to-peak – First control cycle 
ω�x�Â =Î

ω��F,Â − ωÏ�T,Â
ω��F,Â	Â

	; k = [FL, FR]˄[RL, RR] 

• Integral time-weighted average of longitudinal jerk – Comfort  

ITAEÔÕ = t t|JF|	dt
T©

TÇ
 

• Integral torque variation – Actuator wear  

IACAj° = t ÎÙṪ4,ÂÙ
Â

dt
T©

TÇ
; k = [FL, FR, RL, RR] 

• Integral pitch variation – Driver distance perception 

IPV = t Ùψ̇Ù	dt
T©

TÇ
 

Performance metrics used for the friction jumps are only 
focused on investigating the controllers’ behaviour in relation to 
the friction transition. Two key aspects here are transient 
performance and lateral stability and they are: 
• Mean deceleration at jump – Underbraking after jump 

AÛF,Üs�� = t aF	dt
AÝÞß}|àD

�ÝÞß}
 

• Minimum deceleration at jump – Underbraking at jump 
𝐴F,��� = min[aF]�ÝÞß}

AÝÞß} 

• Recovery time – Underbraking after jump 
TBxâ = [t]�ÝÞß}

±·%¿ÛÕ 

• Peak-to-peak – Fist control cycle after jump 
ω�x�ÂÝÞß} =Î

ω��F,Â − ωÏ�T,Â
ω��F,Â	Â

	; k = [FL, FR]˄[RL, RR] 

• Maximum yaw rate at jump – Lateral stability 
ψ̇å¿æ = maxgψ̇i�ÝÞß}

AÝÞß} 

For rough roads some of the indicators for smooth ones are 
reused, however the metric is now is their change with respect to 
an equivalent manoeuvre performed on a smooth surface. 
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V. RESULTS 
Detailed results for each of the eight ABS braking scenarios 

can be found in [13]; however, one per group will be shown here. 
Specifically: smooth dry asphalt, friction jump from dry-wet, and 
Belgian stones. For the friction transition the full analysis 
procedure is discussed, while for the other two scenarios, only a 
spider plot summarizing the findings is examined.   

A first general understanding of the manoeuvre outcome is 
achieved by looking at the time-histories of the main signals of 
interest. Referring to Fig. 4, it is clear how after the controller 
activates, front brake torques are kept increasing to take advantage 
of the longitudinal weight transfer while rear ones are reduced. 
When the vehicle starts to pitch back the behaviour is reversed. 
Steady state would eventually be reached; however, at 2.5s the 
friction jump is experienced and brake torques readily reduced. 
Thanks to predicted behaviour optimization, underbraking is 
limited and the torques converge to their optimal value net of 
vehicle pitching. 

 
Fig. 4. Friction jump dry-wet time histories – NMPC.  
Looking at the acceleration plot it is evident how the controller 
manages to stay very close to the physical maximum, both before 
and after the transition. Comparison between the wheel speeds and 
vehicle speed, shown in the top-right graph of Fig. 5, highlights the 
absence of the typical rule-based ABS control cycles. The 
longitudinal slip distribution graph of the front-left wheel points 
out how the slip is contained in a narrow band close to its optimal 
value; here in fact, two defined peaks, each associated with a 
specific friction coefficient, are identified. Moreover, very limited 
density is seen outside the stable area of the slip-force curve.  

TABLE IV.  FRICTION JUMP DRY-WET - ABSOLUTE KPI READINGS 

 Rule-based NMPC 

AF,���@jump − [m/sL] 2.52 4.38 

TBxâÏêxBo − [ms] 580 360 

AÛF − [m/s	] 4.07 5.88 

Peak	to	Peak	front − [%] 66.60 14.67 

Peak	to	Peak	rear − [%] 26.77 13.35 

ψ̇å¿æ − [deg/s] 1.83 0.93 

Using the previously presented metrics, the result can now be 
further analysed, and aspect-specific readings, shown in Table IV, 
produced. The minimum longitudinal acceleration at the jump 
reveals considerably less underbraking in response to the friction 
change for the NMPC controller with respect to its rule based 

equivalent. Similarly, the time needed to regain steady state is also 
noticeably less. As a result, the mean deceleration value sizably 
higher. Peak-to-peak metrics show how the first control cycle after 
the jump is deeper for the benchmark. Lastly, although lateral 
stability is retained in both cases, the maximum yaw rate underlines 
the superiority of the proposed approach also on this aspect.  

 
Fig. 5. Friction jump dry-wet – Relative KPI readings 

In order to have a good understanding of how the relative gain 
originates, each KPI is then normalized to 100% for the best 
performing controllers, and relative performance is plotted on a 
spider chart. Figure 5 shows how, for this specific manoeuvre, the 
performance advantage is well distributed across all aspects. This 
is not the case for Fig. 6, showing the relative results for the dry 
asphalt braking from 130km/h. Here, although the NMPC is 
outperforming the current logic generally all the simulated 
manoeuvres, its main advantage is in the absence of first cycle 
overshoot, as particularly evident from the peak-to-peak indicators. 
Surely however, as a much larger portion of the braking manoeuvre 
is spent in stationary conditions fewer percentage points of 
difference in steady state performance also correspond to a 
remarkable improvement. Jerk and pitch related indices also reveal 
a substantial human factors gains. Moreover, the IACA, clears the 
concerns about actuator wear.   

 
Fig. 6. Smooth dry asphalt braking – Relative KPI readings 
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On Belgian cobblestones, shown in Fig. 7, the NMPC is again 
outscoring the benchmark on overall braking performance 
deterioration; despite this, considerably higher torque fluctuations 
are needed to achieve it, as seen from the IACA. This is motivated 
by the tuning of the NMPC to be very reactive on smooth roads 
and friction transition but perhaps too aggressive on rough roads. 
Jerk performance is also notably affected; however, one could 
argue that the difference is minor as the ride is already rough. All 
in all, possible concerns related to model mismatch caused by 
system variability and noise, were well addressed by simulation on 
rough roads. As showed by the brake distance and ABS efficiency 
metrics, deceleration-wise degradation is within the target 
identified by the benchmark controller. The transient performance 
gain is also retained as underlined by the peak-to-peak indicators. 

 
Fig. 7. Rough road braking on belgian stones – Relative KPI readings 

VI. CONCLUSIONS 
The analysis showed that the proposed logic generally 

outperforms the rule-based control on each of the simulated 
manoeuvres. The improvements are mainly due to a much 
smoother and precise control action which destabilizes the wheel 
dynamics much less than the current logic does with its repeated 
control cycles (increase, decrease, and hold pressure). Transient 
behaviour was found to be the main improvement point thanks the 
optimization of the system’s predicted behaviour. On average, 
based on the three smooth road manoeuvres, the first ABS control 
cycle was found to be around 75% better than for the rule-based 
controller. Similarly, following a jump in the friction coefficient, 
the NMPC was shown to be approximately 50% faster to recover 
from the friction jump. Steady state tracking was also improved by 
an average of 15%. Additionally, again thanks to smoother and 
more precise control action, the velocity at which the controller 
needed to be switched to low speed mode was reduced by around 
50% [13]. Lastly, occupants’ comfort was also enhanced and 
actuator abuse demonstrated to be within what is caused by the 
benchmark. 

Regarding robustness aspects, no issues were found with the 
optimization problem failing to find a solution. Moreover, the 
proposed control strategy proved to recover from friction jumps 
faster than the benchmark and with significantly lower vehicle jerk 
and yaw rate. Furthermore, the Nonlinear Model Predictive 
controller showed lower performance degradation levels related to 
noise injection by the road profile. Minor real-time concerns where 

highlighted at the beginning of the braking manoeuvre as well as 
for the first few milliseconds after a friction jump occurred. Causes 
were identified; however, considering the controller was not run on 
dedicated hardware, it was decided to leave this point open for 
future investigations. Lastly, it is worth recalling that the NMPC 
comes with a considerably lower number of tuning parameters 
(roughly two order of magnitude lower than the equivalent rule-
based logic). 

In conclusion, this research proved the application of Nonlinear 
Model Predictive approach in the field of anti-lock braking control 
to be extremely promising, and motivates future research targeted 
at clarifying all those points that remain open. Despite the extent of 
this work, the conclusions drawn are applicable only to pure 
longitudinal dynamics context, nonetheless the use of wheel force 
information and the model-based approach undoubtedly simplifies 
the extension of the controller to a more general context. 
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