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Science is a wonderful thing
if one does not have to earn one’s living at it.

Albert Einstein
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Summary

Spacecraft orbit and attitude dynamics have been classically seen as two separated
subjects, since the effect of attitude in orbit dynamics was deemed too small to be
considered, or simply, modeled as noise in the estimation process for most satellites.

In the eighties, a study by [1] showed that for a very large spacecraft, approxi­
mately the size of the International Space Station, the effect of the attitude in the
orbit dynamics should be considered.

The advancement in miniaturization, communications, estimation, and control
has created a new tendency: groups of small spacecraft achieving a mission that
before was only possible with a large spacecraft, or even, enabling new possibilities
that were not viable with a single spacecraft, such as constellations of more than a
hundred spacecraft that monitor the Earth faster than ever before. In this case, the
Planet Labs constellation is one of the best known examples, with the possibility of
photographing any specific place on Earth within hours [2], something not possible
with current single satellites. There are many examples of proposed distributed
space systems (DSS) missions for technology demonstration with objectives ranging
from Earth, planetary, solar or astrophysics science.

The increasing performance requirements had led engineers and scientist to
apply Precise Orbit Determination (POD) approaches to comply with more rigor­
ous mission requirements. However, despite the advancement in spacecraft rel­
ative dynamics (SRD) estimation methods, classically the assumption that relative
spacecraft orbital and attitude dynamics are not coupled has been deemed accurate
enough for most estimation and control purposes, due to the fact that the coupling
effect is too small to affect the required accuracy of most missions.

Nevertheless, recent works are taking into account the joint representation of
attitude and orbital dynamics for improved guidance, navigation and control perfor­
mance, in order to use dynamics models that better represent the physical world.

This PhD research has the objective to establish and characterize an integrated
approach to the estimation of orbit and attitude for satellite formations. Here, the
impact of a sophisticated spacecraft relative dynamics model is treated theoretically
and applied, taking into account the coupling between orbit and attitude dynamics
on observability. As source of the dynamic coupling we consider the atmospheric
drag, the largest non­gravitational effect affecting spacecraft trajectories in Low­
Earth Orbit (LEO).

This thesis work aims to solve the question of whether the coupling influences
the estimation of relative dynamics of spacecraft, by determining the effect of this
phenomenon in a simulated scenario of two spacecraft flying in an along­track
configuration, with an initial separation of 1000 km. Here, while the magnitude of
the external areas of both spacecraft remains the same, the size of the spacecraft is
changed ranging from volumes of 30x10x10 cm (3 units Cubesats) up to 240x40x40

ix
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x Summary

cm. Orbit altitudes are changed from 300 km up to 700 km. Circular, equatorial
orbits are used in the propagations.

Despite this limited scenario, this work provides a methodological framework
that allows the application of this analysis to any formation flying scenario.

This is achieved first by using the Observability Gramian (OG). The OG is a
method that determines the level of observability of linear time­variant systems.
Using a linearization of the space­state equations describing the orbit and attitude
absolute and relative states of two spacecraft, it is possible to determine the level
of observability of different scenarios. Here it is shown that the coupling created by
the atmospheric drag perturbation for spacecraft in low­Earth Orbit (LEO) enables
full observability of the states which is not possible without such coupling, with
the level of observability changing when the altitude or the spacecraft mechanical
characteristics are changed. It is shown that full observability is achieved even for
limited observability cases when only the relative position or the relative attitude of
the spacecraft is known. These effects have been present in previous works, but
the OG method enables the possibility to rank numerically different measurement
scenarios. For this reason, the OG is a tool that may help spacecraft designers take
decisions regarding type or location of sensors, for example, that may improve the
performance of the selected estimation method.

Secondly, an Extended Kalman Filter (EKF) is used to show how the coupling
between orbit and attitude dynamics caused by the atmospheric drag force and
torque improves the estimation of relative dynamics of spacecraft, even when full
observable scenarios are used. For this, an EKF that considers this coupling is
applied. A second estimator, where the perturbation was simulated using only
white­Gaussian noise, is used for comparison purposes, a common practice to sim­
ulate non­considered perturbations. In order to show that the ”coupled” estimator
is better in any case that the ”uncoupled” estimator, the uncoupled estimator noise
was varied up to the point of achieving the best possible estimation performance.

At a 300 km altitude orbit, the coupled estimator shows an improvement of
6.9 m in the average position estimation compared to the so called ”uncoupled”
estimator for two 3­unit Cubesats flying in an along­track configuration. Even for
altitudes up to 650 km, with two 240x40x40 cm Cubesats, the coupled estimator
showed an improvement of 3.5 m in the average position estimation. At altitudes
above 700 km, the differences between the two estimators are negligible.

The research methodologies used in this work make direct use of the nonlinear
equations that describe the orbit and attitude absolute and relative dynamics of the
system. For this reason, the methodology presented here may be expanded for the
evaluation of any measurement scenario, any kind of orbit, from circular to highly
elliptical, and any number of spacecraft. Therefore, there is a large area of future
research in the subject of the evaluation of coupled orbit and attitude spacecraft
dynamics for estimation purposes.
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Samenvatting

De baan­ en attitude dynamica van ruimtevaartuigen worden normaal gesproken
als afzonderlijke thema’s gezien, omdat het effect van attitude in baandynamica
te gering werd geacht om in overweging te nemen, of simpelweg als ruis werd
gemodelleerd in het schattingsproces voor de meeste satellieten.

In de jaren tachtig liet onderzoek door [1] zien dat voor zeer grote ruimtevaar­
tuigen, van grofweg het formaat van het International Space Station (ISS), het
effect van attitude in baandynamica meegenomen zou moeten worden.

De vooruitgang in miniaturisering, communicatie, schatting en regelsystemen
heeft tot een nieuwe tendens geleid: groepen van kleine ruimtevaartuigen die een
missie volbrengen die voorheen alleen mogelijk was met een groot ruimtevaartuig,
of sterker nog, nieuwe mogelijkheden creëren die niet haalbaar waren met één
enkel ruimtevaartuig, zoals constellaties van meer dan honderd ruimtevaartuigen
die sneller dan ooit de aarde monitoren. In dit geval is de Planet Labs constellatie
één van de bekendste voorbeelden, met de mogelijkheid om binnen enkele uren
[2] elke gewenste plek op aarde te fotograferen, iets dat niet mogelijk is met de
huidige alleenstaande satellieten. Er zijn veel voorbeelden van voorgestelde Distri­
buted Space Systems (DSS) missies voor technologiedemonstraties met variërende
doelen; van aard­ en zonnewetenschappen, planetaire wetenschappen tot astrofy­
sica.

De toenemende prestatie­eisen heeft ingenieurs en wetenschapers geleid tot
het toepassen van Precise Orbit Determination (POD) benaderingen om te voldoen
aan meer rigoureuze missie­eisen. Echter, ondanks de vooruitgang in Spacecraft
Relative Dynamics (SRD) schattingsmethodes, wordt de aanname dat de baan­ en
attitude dynamica niet gekoppeld zijn nauwkeurig genoeg geacht voor de meeste
schattings­ en regeldoeleinden. Reden voor deze aanname is dat het effect van
de koppeling te gering is om de vereiste nauwkeurigheid bij een groot deel van de
missies te beïnvloeden.

Desalniettemin wordt in recente studies de gezamenlijke representatie van baan­
en attitude dynamica in beschouwing genomen als verbeterde besturing, navigatie
en regelprestaties, om zo dynamische modellen te gebruiken die een betere afspie­
geling vormen van de fysieke wereld.

Dit doctoraal onderzoek heeft als doel het vaststellen en karakteriseren van een
geïntegreerde aanpak van de schatting van baan en attitude van sattelietformaties.
Hier wordt de impact behandeld, zowel theoretisch als toegepast, van een verfijnd
ruimtevaartuigmodel van relatieve dynamiek, met in acht neming van de koppeling
tussen baan­ en attitude dynamica in waarneembaarheid. Als bron van de dynami­
sche koppeling wordt de luchtweerstand genomen, het grootste niet­gravitationele
effect dat ruimtevaartuigen beïnvloedt in Low­Earh­Orbit (LEO).

xi
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xii Samenvatting

Dit proefschrift heeft als doel de vraag te beantwoorden of de koppeling de
schatting van relatieve dynamica in ruimtevaartuigen beïnvloedt, door het effect
van dit fenomeen te bepalen in een gesimuleerd scenario van twee ruimtevaar­
tuigen vliegend in een along­track configuratie met een initiële afstand van 1000
km. Terwijl het oppervlakte van beide ruimtevaartuigen hetzelfde blijft, wordt
hier de grootte van de ruimtevaartuigen veranderd variërend van oppervlaktes van
30x10x10 cm (3­unit Cubesats) tot 240x40x40 cm. De hoogte varieert van 300 km
tot 700 km. Circulaire, equatoriale banen worden in de propagatie gebruikt.

Ondanks het gelimiteerde scenario levert dit werk een methodologisch frame­
work dat de toepassing van deze analyse toestaat op elk scenario van formatie­
vlucht.

Dit wordt in eerste instantie bereikt door het gebruik van de Observability Gra­
mian (OG). De OG is een methode die het niveau van waarneembaarheid van li­
neaire tijdsvariante systemen bepaalt. Door gebruik te maken van een linearisatie
van de ruimtetoestandvergelijkingen waarmee de absolute en relatieve staat van
baan en attitude van twee ruimtevaartuigen worden beschreven, is het mogelijk
om het niveau van waarneembaarheid van verschillende scenario’s te bepalen. Hier
wordt aangetoond dat de koppeling gecreëerd door een stoornis in de luchtweer­
stand voor ruimtevaartuigen in LEO volledige waarneming van de toestand mogelijk
maakt ­ iets dat niet mogelijk is zonder deze koppeling ­ met een veranderend ni­
veau van waarneembaarheid als de hoogte of de mechanische karakteristieken van
het ruimtevaartuig worden gewijzigd. Er wordt aangetoond dat zelfs bij gevallen
met gelimiteerde waarneembaarheid een volledige waarneembaarheid wordt be­
reikt als alleen de relatieve positie of de relatieve attitude van het ruimtevaartuig
bekend zijn. Deze effecten zijn in eerdere studies aanwezig geweest, maar de
OG­methode maakt het mogelijk verschillende meetscenario’s numeriek te rang­
schikken. Dit maakt dat de OG een instrument is dat ruimtevaartontwerpers zou
kunnen helpen bij het nemen van beslissingen, over bijvoorbeeld het type of de
locatie van sensoren, die de uitvoering van de geselecteerde schattingsmethode
zouden kunnen verbeteren.

Ten tweede wordt een Extended Kalman Filter (EKF) gebruikt om te laten zien
hoe de koppeling tussen baan­ en attitude dynamica, veroorzaakt door luchtweer­
stand en krachtmoment, de schatting van relatieve dynamica van ruimtevaartuigen
verbetert. Zelfs gebruikmakend van volledig waarneembare scenario’s. Hiervoor
wordt een EKF toegepast die met deze koppeling rekening houdt. Er wordt een
andere schatter gebruikt voor vergelijkingsdoeleinden, waarbij de verstoring alleen
door Gaussische witte ruis is gesimuleerd. Het is gebruikelijk dit soort ruis in te
zetten om niet beschouwde verstoringen te stimuleren. Om te laten zien dat de
“gekoppelde” schatter in elk geval beter is dan de “niet­gekoppelde” schatter, is de
ruis van de niet­gekoppelde schatter gevarieerd tot de best mogelijke schattings­
uitvoering is bereikt.

Bij een 300 km hoge baan laat de gekoppelde schatter voor twee 3­unit Cu­
besats vliegend in een along­track configuratie een verbetering zien van 6.9 m in
de gemiddelde positieschatting ten opzichte van de zogeheten “niet­gekoppelde”
schatter. Zelfs op hoogtes van 650 km, met twee 240x40x40 cm Cubesats, laat



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 13PDF page: 13PDF page: 13PDF page: 13

Samenvatting xiii

de gekoppelde schatter een verbetering van 3.5 m zien in de gemiddelde positie­
schatting. Bij hoogtes van meer dan 700 km is het verschil tussen beide schatters
verwaarloosbaar.

De onderzoeksmethodologieën die in deze studie zijn toegepast, maken direct
gebruik van niet­lineaire vergelijkingen die de absolute en relatieve baan­ en at­
titude dynamica van het systeem beschrijven. Hierdoor is het mogelijk de hier
gepresenteerde methodologie uit te breiden naar de evaluatie van elk soort meet­
scenario, baan (van circulair tot zeer elliptisch) en elk aantal ruimtevaartuigen. Er
is nog veel ruimte voor toekomstig onderzoek naar de evaluatie van gekoppelde
baan­ en attitude ruimtevaartdynamica voor schattingsdoeleinden.
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Preface

I believe every single PhD research is a great adventure. Mine has been life chang­
ing, without a doubt.

I come from a country where space engineering development did not exist when
I was a child. I watched on television in my childhood astronaut Franklin Chang­
Díaz, a Costarrican­born going to space. It was the hero of all Costarrican children
in the eighties and nineties. I believe his accomplishments influenced a generation.
I can say, for sure, they had a deep impact in me.

I do not even remember when I became in love with space. I may even say I
was born loving space. But, nevertheless, I was born in a non­space fairing nation.
When I was a child, I believed it was not fair that because I was Costarrican, I could
not even dream with developing spacecraft unless I left the country.

I was a lucky child. My house was full of books. But not only that. My parents
always helped me to learn whatever I wanted to learn the most, with no pressure,
just for the joy of learning. I had an amazing childhood surrounded by Lego (which
I used to create spacecraft, of course), books and freedom.

When I was about to decide what to study, I always said that I studied electronic
engineering because it was not possible to study aerospace engineering in Costa
Rica. It is still not possible, but I know that dream will become a reality soon. I
loved becoming an electronic engineer, and I knew it was a path to pursue space.
I was not wrong.

When I was working in industry, Luis Paulino Méndez, then the director of the
electronic engineering school at the Costa Rica Institute of Technology (TEC) asked
me to join them as a lecturer. He told me his intention was for me to pursuit
a graduate degree. At that time, it was clear to me that I wanted to become a
researcher, so there I was, with an offer to follow the path to pursue what I felt
was my destiny. That one call became one of the fundamental moments of my life.
I said yes (of course). Today, with Prof Méndez as the current president of TEC and
I am about to defend my thesis, the only one thing that I can say to him is thank
you for believing in me.

I came to the Netherlands because I wanted to learn to be a researcher. As
a lecturer at the Costa Rica Institute of Technology, it was clear to me that my
favorite area when I studied electronic engineering was systems and control. It
was at that moment that Carlos Meza, who is now my colleague at TEC help us
contact Prof Jacqueline Scherpen and Dr. Dimitri Jeltsema. They offered my friend
Mauricio Muõz and myself the possibility to come to the Netherlands to specialize in
systems and control at the Dutch Institute of Systems and Control, and later start
our PhD studies. They opened the doors of the Netherlands to us. For that, thank
you Carlos, Jacqueline and Dimitri.

xv
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xvi Preface

I started pursuing my PhD studies at the ”Applied Mathematics” group of EMI
at TU Delft. I still remember how Shah helped me getting my first bicycle in the
Netherlands, how much he helped me and how much I learned from him, from
mathematics to sharing Ramadan with people from Pakistan and India. Also, how
Katerina took me to Delftians and introduce me to the first group of friends that
I had, all they way to the point that my only social day was Thursdays every two
weeks. There I met Joe, Tom, Vera, Dana, Thomas, Dhiradj, Gian Luca, Alicja and
so many other people. Those were wonderful and fruitful times.

It was in 2011 when my space adventure began: the Central American Associ­
ation for Aeronautics and Space (ACAE) proposed in Costa Rica the idea to create
the first Central American satellite. I joined ACAE remotely as the first director of
”Project Irazú”. Together, ACAE and TEC started the dream of making Costa Rica
a space faring nation via the construction of the first Central American Satellite, a
CubeSat.

Yes, it was crazy. I did not know a thing about satellites! But, lucky me, I was
at TU Delft. I knew that because I was there, I could study whatever I wanted
if offered as a course. In the pursue of the perfect course to learn about space
projects development, I found the course ”Introduction to Space Engineering” by
Prof Eberhard Gill. That was it! That was the course I had to join. But I did not only
joined the course, I asked the people in charge if I could talk to them to explain
them why I wanted to be there.

It was then when I met Dr. Jian Guo and Jasper Bouwmeester. They asked me
”why don’t you join our current satellite project, Delfi­n3Xt?”. Of course, I said yes.
There I was, officially, part of a satellite project, in my free time and as a voluntary.
It was that opportunity the chance that I always wanted to have, and for that, thank
you Jian and Jasper.

While I was pursuing my PhD in Applied Mathematics, the group there realized
that I was more attracted to space engineering than applied mathematics. For this
reason, they asked me if I wanted to change my PhD research to Prof Gill’s group,
Space Systems Engineering (SSE). It was at that time that I realized how the Dutch
culture of openness was working in my favor. I asked Prof Gill, of course, if I could
join.

I still remember as if it happened yesterday, when an email by Prof. Gill said that
I was accepted to pursue my PhD in Space Systems Engineering with his group.
There, I cried of happiness. I was about to learn about space engineering at TU
Delft, while cooperating to create the first Costarrican satellite. There are no words
to express how privileged I still feel to have this opportunity.

Of course, this is not the end of the story. It was just the beginning of the
learning process to become a researcher. A space researcher. At the SSE group, I
met some of the most important people in my life. The PhD students, Arash, Jing,
Rui, and Prem welcomed me from day one there. I felt home. Prem, from that day
on, became like my big brother, and all the way until today, he has always been
there for me, specially on the difficult times. For that, I will be greatful for life.

Then, more PhD students and friends also came to SSE: Dadui, Minhe, Marsil,
Dennis, Fiona, Linyu and my old good friend Johan. Together, having lunch and
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Preface xvii

walking after work, I learned about the world, and our joint dreams about space. I
will miss them for life. Thank you for everything.

Of course, faculty members were always there for us, both at the faculty and
sometimes in amazing discussions outside the office with a couple of beers in be­
tween. There, sharing with Angelo, Hans, Stefano, Barry, Trevor, Tatiana, was
amazing.

Special thanks should go, without doubt to Debby. She should win ”best Man­
agement Assistant” of TU Delft, every single year. You were always there for me
Debby, thank you.

I meet many students at De Atmosfeer, the bar at the faculty. There, I had
some of the best discussions and celebrations of my life, including the launch of
Delfi­n3Xt, the first satellite where I ever worked. The master students and the
Astrodynamics groups of the faculty became our friends.

Also, my adventures at Delft cannot be narrated without special attention to
the Costarrican group there at the Netherlands, who kept Costa Rica ”close” to
me. Carmen, Johan, Andres, Andrea, Sebastian, Carlos, Laura, Jose, Edgar, Juan,
Katherin, Julian, Marcos, Miguel, Daniel, Maricruz and Michael (yes, we were a lot),
I miss you all!

Studies, of course, were not only beer and fun. Very hard times came, and
the difficulties of learning about space engineering, and astrodynamics given my
background, was quite an experience. Other difficulties arose. And I must say, the
patience and help of Prof Gill and specially Dr. Jian Guo, saved my thesis.

I have to leave Delft three years ago now because my father became ill. On
those hard times, it was not only my family in Costa Rica who were there for ey,
but my friends in the Netherlands.

When I came to Costa Rica, I had the opportunity to be part of the final technical
group who developed and operated the satellite of Project Irazú. Thanks to the
effort of many people, and the contributions of even more Costarricans, the satellite
was released in orbit in May 11th, 2018, from the International Space Station, and
remained operational for around two years.

Today, after all the difficulties of finishing my thesis remotely, and even when the
Covid­19 pandemic helped me from being in Delft defending my thesis, I cannot be
but grateful for all the opportunities and friends I have. I know when this emergency
finishes, space will become again a source of dreams for humanity. I believe this is
the last decade in history when humans are only present in one celestial body.

Even when mentioned before, in my heart, a special recognition should go to
Jian, Prem, Prof. Gill, Mauricio, and my mother Mirna and father Adolfo. I will
definitely not be here today if it weren’t for you. Please know I will be grateful for
life. This thesis is also yours.

This thesis is dedicated to Adolfo Chaves­Campos, my dad. His legacy will always
live on.

Adolfo CHAVES JIMÉNEZ
Delft, June 26th, 2020
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1
Introduction

If you want to make an apple pie from scratch,
you must first create the universe.

Carl Sagan

The first principle is that you must not fool yourself and you are the easiest
person to fool.

Richard Feynman

1.1. Background
Since humankind was able to reach space for the first time in 1957 with the Sput­
nik satellite, an aluminum sphere of 58 cm­diameter aluminum and just 84 kg of
mass [3], science, technology, and in general all kind of disciplines have benefited
significantly from having a platform flying in space. The advancement in technol­
ogy, driven significantly in the 50’s and 60’s by the space engineering development
of the ”Cold War” enabled more capabilities: from meteorological observations,
telecommunication, to navigation systems such as the GPS, GLONASS, Galileo and
BeiDou.

In order to support this advancement, satellites were, in the early decades of
spaceflight, typically growing in size, to support their increasingly complex tasks.
At the same time, often, a mission was associated with a single satellite.

Nevertheless, despite the advancement in launching technologies, the cost of
using a rocket to place its payload in orbit was, and still is, very expensive. How­
ever, the advancement of launching technologies is currently reducing this cost
dramatically. For example, Jones compares the cost of the NASA’s space shuttle of

1
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about $ 1.5 billion to launch 27500 kg to Low Earth Orbit (LEO) ($ 54500/kg) to
the advertised cost of $62 million to launch 22,800 kg to LEO by SpaceX’s Falcon
9 ($ 2720/kg). This reduction in cost illustrate that, in general, commercial launch
has reduced the cost to LEO by a factor of 20 [4].

Figure 1.1: Launch cost per kilogram to LEO in current dollars for various launch systems shown against
the first system launch date. [4].

At the same time, the advancement in electronics fabrication techniques has led
to an exponential increase in performance of integrated circuits. This phenomenon
has been reflected in the empirical observation made by Moore that ”component
density and performance of integrated circuits doubles every two years” [5]. This
statement is commonly known as the ”Moore Law” which has correctly predicted
this increasing trend since it was stated in 1975.

This increase in density and performance of integrated circuits has enabled engi­
neers to implement solutions that increase the capabilities of satellites, for example,
by designing more capable spacecraft with less power and mass requirements than
what would have been possible a few years ago. At the same time, using miniatur­
ized spacecraft in groups instead of a single spacecraft to realize a mission provides
for certain applications benefits in terms of efficiency or capabilities.

The trend of miniaturization is reflected, specially, in the growing use of small
satellites called ”CubeSats”. These satellites are build in units of 10x10x10 cm
cubes, where 1 cube is called 1U. Then, two cubes together form a 2U Cubesats
and so on. They started as teaching tools and for technology demonstration, but
the technology has matured enough to be used as platforms for space and earth
sience mission within agencies like NASA [6].
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Figure 1.2: ESA Sentinel 3 Satellite, an example of a satellite using Precise Orbit Determination (POD)
techniques (source [10]).

In this framework, missions and spacecraft design using distributed space sys­
tems (DSS) are witnessing an emerging paradigm shift from traditional large single
satellites to DSS acting in a collaborative manner. Several types of missions would
be hardly achievable if not for a distributed spacecraft approach. An example of
this is the long baseline space interferometry for synthetic aperture radar imaging
of the TanDEM­X and TerraSAR­X mission [7]. Here, the two spacecraft, flying in
formation allow an antenna separation of 500 m to 4000 m, unreachable using any
currently existing single spacecraft.

The increasing performance requirements had led engineers and scientist to
apply Precise Orbit Determination (POD) approaches to comply with more rigor­
ous mission requirements. An example is given in [8]. Here, an 8­channel dual­
frequency GPS receiver in combination with precise dynamical and measurement
models is used for the geolocation of the observations of the European Space
Agency Swarm Mission, launched in 2013 to study the dynamics of the Earth’s
magnetic field. Another example is the Sentinel­3 mission [9], where the mea­
surements of the sea surface heights highly depend on the accurate knowledge of
the spacecraft orbit, and the targeted uncertainty in radial direction is less than
2 cm. This is done in this case using a GPS receiver, a Doppler Orbitography and
a Radiopositioning Integrated by Satellite Instrument and a complementary laser
retroreflector for satellite laser ranging (see Figure 1.2).

In the small spacecraft realm, efforts like the PRISMA demonstration mission
[11], with a full autonomous formation flying of two spacecraft, one of 150 kg and
another of 40 kg, with an absolute and relative orbital accuracy of 2 mm and 0.1 mm
respectively, show the growing interest of using small spacecraft for applications
that require precise formation flying (see Figure 1.3).
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Figure 1.3: The PRISMA formation with the MAIN (left) and TARGET (right) satellites [12].

In order to enable DSS technologies, challenging research problems need to
be solved. Among them, a critical field for mission success is spacecraft relative
position and attitude estimation and control. For example the Darwin mission [13]
features a distributed radiotelescope with the objective to detect Earth­like planets,
where the required position stability is 5 nm over distances of 500 m between the
spacecraft.

On the other hand, in the last years there has been a tendency towards de­
clining financing budgets, provoking missions to be cancelled or to be partially or
totally replaced by more cost­efficient missions. The latter is the case for the Dar­
win mission itself, that is not expected to go beyond its initial study [14]. However,
some of its characteristics are now being planned for OLFAR, a space­based inter­
ferometer system, based on a swarm of 25­100 nanosatellites in a lunar orbit to
map celestial radio sources in the frequency range of 0.1 ­ 10 MHz [15, 16]. There
is a trend of replacing conventional satellites, of the size of a van, for swarms of
smaller satellites working in collaboration. To illustrate this trend, Figure 1.4 shows
different imaging satellites, giving a clear idea of the size differences. A satellite
as the WorldView 3 NOAA satellite [17] has multispectral imaging capabilities that
cannot be matched by a single PlanetLabs Imaging Nanosatellite. Nevertheless,
PlanetLabs claims that its constellation has daily imaging capabilities of any part of
the Earth. These capabilities were reported to allow a fast response to disasters
such as the Nepal earthquake of 2015 ([2]), something impossible to accomplish
with a single, large satellite.

Types of Distributed Space Systems
Distributed space systems (DSS) may be classified in different ways, depending on
different parameters. For example, Shaw et al. proposed that satellite systems may
be interpreted as information transfer systems, where each satellite and ground
station is a node in a network [19]. From here, it is possible to identify two formal



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

1.1. Background

1

5

Figure 1.4: Comparison of imaging satellites: small satellites used in swarms vs large, conventional
satellites. The concept of the spacecraft constellation by Planet Labs shows the utility of small spacecraft
in formation, like the Dove satellite shown here [18].

types of DSS: constellations and clusters [20].
According to [20], constellations relate to scenarios with multiple and sparsely

distributed satellites, which typically do not require precise formation control, but
may require propulsive station­keeping. They usually communicate independently
to ground (Ground Links) with rare use of cross­communication between satellites
(Crosslinks). The Planet Labs multiple CubeSats system is a recent example of a
constellation. Their goal is “to provide medium­to­high resolution imaging of the
entire planet, on a daily, recurring basis” [21]. They are using inexpensive 2.5 unit
(2.5 U) CubeSats (a length of approximately 20 cm height and 2.5 liters of volume),
launched from e.g. the International Space Station for this purpose. Figure 1.5
shows the launch of Planet Labs satellites from the ISS.

Figure 1.5: Separation of two CubeSat from the ISS to build up the PlanetLabs constellation ([22]).
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Clusters, in contrast, refer to scenarios where the satellites are close together
in a similar orbit to achieve a common mission target. If the cluster requires that
the satellites maintain precise positions and orientation with respect to each other,
the system is referred to as a formation (Formation Flying). The PRISMA mission,
previously introduced in this chapter, is an example of this concept. This mission
conducted a spaceborne autonomous formation flying experiment (SAFE), that aims
to demonstrate a fully autonomous, robust and precise formation flying of two
spacecraft. Here, the guidance, navigation and control (GNC) system is designed
to provide an accuracy of better than 25 m at distances between 100 to 2000 m,
in order to represent the requirements of future formation flying missions [11]. If
satellites do not require the precise maintenance of position or orientation with
respect to each other, the system is classified as a ”Free Flying” cluster .

Another classification of DSS, based on the distance between the satellites and
the requirements of the control of their distances, is proposed in [23]. From the
point of view of distance, the systems may be distinguished as local systems, with
separations between spacecraft of a few meters, regional separation of a few 10
meters to several hundred of kilometers, to global systems with separation of more
than a thousand kilometers. From here, DSS may be classified as

• Rendezvous and docking DSS: Typically involves two objects moving in
the vicinity of each others. Example: ESA’s Automatic Transfer Vehicle (ATV),
that docks with the International Space Station (ISS) (Figure 1.7).

• Formation Flying (FF) DSS: FF is typically associated with a small number
of spacecraft, flying in coordination, at regional intersatellite separations. Ex­
ample: the Gravity Recovery and Climate Experiment (GRACE), launched in
2002. Its formation consists of two spacecraft with a separation of 250 km.
Its objective is to obtain a better understanding of the gravity field of Earth:
any irregularities in the Earth’s gravity field cause small changes in the sepa­
ration of the two spacecraft, that have an intersatellite link with an accuracy
of 1 μm.

• Constellation DSS: Constellations refer to sets of satellites that achieve
global coverage of Earth. Control accuracies of constellations are often low,
and typically done at the ground control center. The US Global Position Sys­
tem (GPS), the corresponding Russian system GLONASS and the European
system Galileo are all examples of constellations.

• Swarm: Swarms of satellites consist of several ten to several thousand of
spacecraft deployed, with little control accuracy, that rely on the amount of
satellites to acomplish a mission.

This classification is illustrated in Figure 1.6.

Applications of Distributed Space Systems
DSS may also be classified according to their intended mission. In 2015, [26]
classified thirty­nine small satellite DSS missions with respect to the applications
they were designed for (see Figure 1.9 ).
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Figure 1.6: Distributed systems in space can be categorized with respect to their inter­satellite separation
and their requirements on control accuracy (source [23]).

Figure 1.7: Artist’s impression showing ATV docking with ISS, and example of a rendezvous and docking
DSS (source [24]).
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Figure 1.8: Illustration of the twin Gravity Recovery and Climate Experiment (GRACE) satellites in orbit,
and example of a formation flying mission (source [25]).

Figure 1.9: Categorization of thirty­nine multi­satellite missions based on their mission type, formation
type and number of satellites (source [26]).
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These categories are:

• Earth ScienceMissions: Any mission with the goal to contribute to scientific
understanding of the Earth system dynamics. The authors cite, among many
examples, the ”Dynamic Ionosphere CubeSat Experiment” (DICE) (see Fig­
ure 1.10), a multi­university mission led by the Utah State University, where
two 1.5U identical CubeSats are used to measure different parameters of the
ionosphere [27].

• Planetary Science Missions: These missions are executed with the pur­
pose to understand the planets and small bodies in our solar system. One
example of a DSS Planetary Science mission is the ”CubeSat Constellation at
Mars” mission concept, led by the NASA Jet Propulsion Laboratory (JPL), with
a constellation of sixty CubeSats around Mars, to study the electrical activity
of this planet [28].

• Astrophysics Missions: Missions with the objective to understand the uni­
verse. The advancement of technology has enabled the possibility of obtain­
ing valuable information from small satellites flying in formation. One example
is the ”OLFAR Mission” [29], led by Delft University of Technology, where a
swarm of 50­100 identical nanosatellites would be deployed in the Moon orbit
to observe the universe at frequencies below 30 MHz (see Fig. 1.11).

• Heliophysics Missions: These missions aim to study the very nature of the
Sun and its effects on its surrounding space [30]. For example, a constellation
of 6U Cubesat has been proposed to study the helioseismology and magnetic
field of polar regions [31].

• Technology Demonstration Missions: These missions aim to ”demon­
strate the application of state­of­the­art technology in space” [26]. An ex­
ample is the mission concept ”High­speed, Multispectral, Adaptive Resolution
Stereographic CubeSat Imaging Constellation” (HiMARC), led by Stanford Uni­
versity, that aims to launch four 3U synthetic aperture optical telescopes to
provide stereographic imaging of Earth and other targets [32].

GNC Capabilities and Requirements of Distributed Space Systems
The Guidance, Navigation and Control (GNC) subsystem of a spacecraft is defined as
the system that includes the functionality for both orbit and attitude determination
and control. For certain types of DSS, the GNC subsystem plays a crucial role as
position and attitute requirements are driving the mission design.

The advancement on GNC technology is reflected by the use of GPS receivers,
improvements on the efficiency of radio tracking, miniaturization of microelectrome­
canical devices (MEMS), and the general advancement in electronics performance
(reflected in the Moore’s Law mentioned before). Combining this with the improve­
ment of the model of the dynamics of spacecraft, enable the possibility of using, for
certain applications, small satellites in formation instead of a large spacecraft to ac­
complish a mission. At the same time, new kind of missions that were not possible
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Figure 1.10: Artist’s rendition of the DICE spacecraft in orbit (source [33]).

Figure 1.11: Impressions of one of the CubeSats of OLFAR Mission (source [34]).
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System Classification Performance TRL Status
Reaction Wheels Actuator 0.001­0.3 N m peak torque,

0.015­8 N m s storage
9

Magnetorquers Actuator 0.1 Nm peak torque, 1.5 Nms
storage

9

Star Trackers Sensor 25 arssec pointing knowledge 9
Sun Sensors Sensor 0.1∘ accuracy 9
Earth Sensors Sensor 0.25∘ accuracy 9
Gyroscopes Sensor 1∘ h−1 bias stability, 0.1∘

h−1/2 random walk
9

GPS Receivers Sensor 1.5 m position accuracy 9
Integrated Units System 0.002∘ pointing capability 6

Table 1.1: GNC Subsystems capabilities [35]

with previous technology are now feasible with several satellites in formation. For
example, the previously mentioned astrophysics mission OLFAR, where, because of
the low frequency used to observe the universe (below 30 MHz) the aperture size
of the instrument must be in the order of 100 km. For this reason, this aperture is
proposed to be implemented by using formation flying of small satellites [29].

Regarding GNC technology, the NASA report ”Small Spacecraft Technology State
of the Art” from 2015 [35] summarizes the state of the art of GNC subsystems for
small satellites (see Table 1.1). Here, the technology it classified by its ”technol­
ogy readiness level” (TRL). According to NASA’s definition of TRL, a TRL of 1 or 2
indicates a situation of relatively high risk. 6 to 8 represent low­risk categories [36].

The NASA report explains that ”the current trend in small spacecraft is the minia­
turization of the existing technology. While 3­axis stabilized, GPS­equipped 100 kg
class spacecraft have been flown over a decade, it has only been in the past few
years that such technologies have become available for 10 kg class spacecraft”.

New kind of missions are designed to take advantage of the current miniaturiza­
tion trend. Due to this fact, several missions have been executed or proposed. To
name a few examples of applications, [37] reports the capabilities that are enabled
by the use of precision formation flying of two or more satellites, like interferome­
try, study of black holes or technology demonstrations. A few illustrative examples
of this growing trend and the associated GNC requirements of such missions are
summarized in Table 1.2.

1.1.1. Relative Spacecraft Dynamics
While the above section has focused on applications, architectures, and technology
capabilities for DSS, the advancement in these areas rely in a crucial way on the
underlying absolute and relative dynamics of spacecraft. For example, sensors of
a GNC subsystem will sense absolute or relative position, velocity or angular rates,
used for spacecraft dynamics estimation; and the actuators of a GNC subsystem
will enable the spacecraft control.
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Mission Short Description GNC requirements
MASSIN Mission concept: long tele­

scopes using formation flying
and diffractive optics.

Inter­space distance of
1000 km. Alignment pre­
cision and stability to keep
the image on detectors of
≈100 mm in size. Retro­
spective knowledge of drift
changing the direction of
inter­spacecraft vector needs
to be commensurate with the
resolution [37]

TPF­I/Darwin Two missions studies: one
from NASA, another from ESA
for infrared nulling interfer­
ometry purposes

Pointing maintenance to 10­
50 milli­arcsec. Relative or­
bital accuracy 5 nm [13].

MAXIM Proposal: Study of black
holes via X­ray imaging.

Distances on the order of 10­
20 km. Precision require­
ments still under study [38].

PRISMA Technology demonstration
mission for satellite for­
mation flying and in­orbit
servicing (operation from
2010 to 2014)

Distances of 100 to 2000 m.
Absolute orbital accuracy 2
mm. Relative orbital accu­
racy 0.1 mm [11].

Table 1.2: Navigation requirements of selected Formation Flying missions. Elaborated from the infor­
mation at [37].



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

1.1. Background

1

13

Here dynamics is understood as the relationship between kinematics, forces,
and torques affecting motion [39]. Kinematics is the branch of mechanics that
studies aspects of motion apart from considerations of masses, forces and torques
[40].

In this work, absolute dynamics modeling is understood as the description of a
single spacecraft motion in terms of its orbit and attitude. The measurement and
estimation of the dynamics is done either with the spacecraft own sensors to know
its state for orbit and attitude with respect to the celestial body, like sun sensors
(for its orientation with respect to the sun), magnetometers (for its orientation with
respect to the magnetic field of Earth), GPS devices (to know its absolute position
with respect to a frame that co­rotates with Earth) or measurements done from a
celestial body such as the Earth, like radar tracking [41]. Typically, the absolute
dynamics of a single spacecraft are described in an inertial reference frame.

On the other hand relative dynamics modeling is the description of the motion of
any object with respect to the other. An example is when a spacecraft determines
its attitude with respect to another spacecraft using a camera, or its relative position
using GPS­like devices [42]. Typically, relative dynamics rely on non­inertial frames,
due to the fact that the spacecraft used as a reference is usually assumed to be in
motion.

When the relative dynamics of two spacecraft is described, typically a leader
or chief spacecraft is defined as the one which hosts the reference frame for the
description of the relative dynamics, while the follower or deputy is defined as the
spacecraft which states are described with respect to the leader.

The first analytical solution for the relative spacecraft orbit dynamics represen­
tation was established in 1960 by Clohessy and Wiltshire (CW) [43]. This approach
assumes that the orbit of a chief spacecraft is circular, the Earth gravity field is
represented by its point mass, the distance between spacecraft is very small com­
pared to the orbital radius, and neglects any other perturbations. This leads to a
series of linear time­invariant equations that describes the relative position of both
spacecraft. As [44] describes, the solution of the CW equations was concerned with
rendezvous, hence the long­term solution of the equations was not a major concern.
Extensions of this work were done to include elliptic Keplerian orbits (for example
in [45]), without including any external perturbations. Latter results include repre­
sentation of orbital disturbances (see for example [46] and [47]). However, in all
these works, only the orbital dynamics were considered.

To the best knowledge of the author, the problem of spacecraft attitude rela­
tive dynamics modeling has been closely related to the joint relative orbit­attitude
dynamics modeling problem. The advancements in this area are described in the
next section.

1.1.2. Joint Representation of Orbit and Attitude Dynamics
In an ideal hypothetical situation, where a spacecraft would be considered as a
point mass with its motion based on external forces (ignoring e.g. propulsion) its
orbit dynamics would fundamentally not depend on the spacecraft’s attitude.

Nevertheless, perturbations such as the atmospheric drag introduce a coupling
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effect between orbit and attitude dynamics since the spacecraft’s area with respect
to the direction of the atmospheric particles, called effective area, causes drag
acceleration and this effective spacecraft area depends on the spacecraft attitude.
On the other part, any nonsymmetrical object of finite dimensions in orbit is subject
to gravitational torque, caused by the variation of the Earth’s gravitational force over
the field. This means that any model that does not consider the coupling effect of
orbit and attitude dynamics introduced by perturbations may be suboptimal.

However, despite the advancement in spacecraft relative dynamics estimation
methods, classically the assumption that relative spacecraft orbital and attitude
dynamics are not coupled has been deemed accurate enough for most estimation
and control purposes, due to the fact that the coupling effect is too small to affect
the required accuracy of most missions.

Nevertheless, recent works are taking into account the joint representation of
attitude and orbital dynamics for improved guidance, navigation and control perfor­
mance, in order to use dynamics models that better represent the physical world.
For example, in the case of the joint representation of relative dynamics of space­
craft for control purposes, in [48, 49] the gravity­induced mutual coupling between
orbital and attitude dynamics is taken into account when solving a spacecraft rel­
ative dynamics tracking problem using nonlinear control techniques. In [50] the
coupling effect generated by the gravity gradient and the solar pressure is consid­
ered in the engineering model of the spacecraft formation control system for a space
interferometry mission. Similarly, in [51] it is described how the gravity gradient,
solar pressure and atmospheric drag are a source of coupling between attitude and
orbital dynamics. Later, this dynamics model is applied for control purposes in [52].
Furthermore, the coupling effect generated by actuation is considered in [53–57].
The modeling of coupled dynamics for deep space missions is reported in [58, 59].
Practical use of the coupling between attitude and orbital dynamics is proposed by
[60], where the differential drag between spacecraft is employed to control their
relative distance.

A joint orbit and attitude representation for estimation purposes, was formu­
lated by Chodas, as early as 1982 [1, 61]. He formulated an engineering model for
an Extended Kalman Filter (EKF) where the joint orbit and attitude dynamics are
coupled by perturbation forces and torques including the gravity gradient, aerody­
namic torques and atmospheric drag for a very large spacecraft (7000 m2 surface
area) in a very low orbit (250 km altitude). This work is however limited to the
analysis of a single spacecraft.

A research of similar characteristics may be found in the study done to track de­
bris present in Geosynchronous Orbit (GEO) [62], with tracking done from ground.
Due to their orbit, the dominant perturbation affecting both orbit and attitude dy­
namics is the solar radiation pressure.

In 1999, Psiaki [63] estimates both the orbit and the attitude of a single satellite
by using only magnetometers and sun sensors. In this work the coupling between
both states is given by the fact that the measurement depends on both orbit and
attitude, not on the dynamics model.

In other papers addressing joint estimation of relative orbit and attitude dynam­
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ics, like [64–68], a vision­based navigation system (VISNAV) provides the measure­
ments of the spacecraft dynamics. In this scenario, the information provided by
the VISNAV system allows a joint estimation of both position and attitude relative
dynamics. The objective of the cited works where VISNAV is applied is not to de­
termine how the coupling affects the estimation for the measurement of relative
dynamics, but instead, how the estimation performance is affected by the use of
different estimation algorithms, with an Extended Kalman Filter (EKF) in [64, 68], a
square­root sigma­point Kalman filtering in [65], and an Unscented Kalman Filtering
in [66, 67]. The work by [69] employs a similar joint estimation, where the coupling
is a product of the measurement method. However, in this case, elevation, and az­
imuth between the target and the chaser, are measured by a laser rangefinder, a
charge­coupled device (CCD), a rate gyroscope and one star sensor, installed on
the chaser to measure its rate and attitude parameters.

In [70–73] the coupling between relative orbit and attitude dynamics for estima­
tion purposes prompts from the assumption that the spacecraft orbit and attitude
dynamics dynamics are modeled from arbitrary points on the spacecraft, not the
center of mass or pressure of the spacecraft. Therefore, it is known as ”kinematic
coupling”.

However, unlike the cited control application examples, the dynamic coupling be­
tween orbital and attitude dynamics has not been taken into account for estimation
purposes. This simplification is typically justified by assuming that the magnitude
of this coupling effect is negligible.

Nevertheless, to the best knowledge of the author, no work has been published
yet where the coupling between the attitude and orbital dynamics caused by exter­
nal perturbations is adopted in spacecraft relative dynamics models to improve their
estimation accuracy, in a similar fashion as it has been done for a single spacecraft
in the cited work of Chodas [1, 61], or in the same way that has been done for
control purposes, in the aforementioned articles [48–60] .

Explicitly adopting the coupling between relative orbit and attitude may result
in better a priori estimation of spacecraft dynamics during the mission analysis and
preparation stage. Despite the fact that typically there is no need for that because
the effect is small, there are applications that may benefit from a more accurate
model, for example, control using differential drag, as done in [74]. Coupling may
be added to a posteriori orbit and attitude determination processes, in order to im­
prove its performance whenever there are no restrictions on computational power,
and also to use this cross relation to estimate, for example, the atmospheric density
producing a dynamic coupling between relative orbit and attitude.

Finally, taking into account such coupling may help improving the onboard filter­
ing process of spacecraft relative dynamics, which is the main focus of this thesis,
and the reason why real­time filtering techniques as the Kalman Filter are used
in Chapter 6. Even when the approach presented in this thesis is CPU­intensive,
the ongoing improvement on computational capability may enable its extended use
even for small spacecraft in the near future, in order to improve the performance
of the estimation process.
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1.1.3. Magnitude of the Atmospheric Drag
In order to have a first notion of the magnitude of the atmospheric drag, the pertur­
bation effect used in this thesis as the source of coupling, lets start with the widely
accepted equation for atmospheric drag force [41]

𝑎𝑎𝑎𝑎 = −
1
2
𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑚 𝐴𝑒𝑓𝑣2𝑠 �̂�𝑣𝑣𝑠 , (1.1)

where 𝜌(𝑟𝑟𝑟) is the atmospheric density, 𝑚 is the mass of the spacecraft, 𝑣𝑣𝑣𝑠 the
velocity of the spacecraft surface with respect to the atmosphere and �̂�𝑣𝑣𝑠 = 𝑣𝑣𝑣𝑠/|𝑣𝑣𝑣𝑠|
a unit vector, 𝐶𝐷 the drag coefficient of the spacecraft, and 𝐴𝑒𝑓 the effective area
of the spacecraft, with the dynamics described using the inertial frame.

The torque effect produced by the atmospheric drag when the spacecraft is
described as a set of areas is given by

𝜏𝜏𝜏𝑎 = −
1
2𝜌(𝑟𝑟𝑟)

𝑠

∑
𝑖=1
𝐶𝐷,𝑖𝐴𝑖(�̂�𝑛𝑛𝑖𝑣𝑣𝑣𝑠)(𝑑𝑑𝑑𝑖 ×𝑣𝑣𝑣𝑠), (1.2)

with 𝑠 is equal to the amount of planar surfaces composing the spacecraft,𝐴𝑖
the magnitude of area 𝑖 and �̂�𝑛𝑛𝑖 a unit vector perpendicular to the area 𝑖 and 𝑑𝑑𝑑𝑖 the
distance vector between the center of pressure of area 𝑖 and the center of mass of
the spacecraft.

Both equations show a dependency of atmospheric density with respect to both
altitude and the effective area of the spacecraft. The effective area for the torque
equation (1.2) is expressed as 𝐴𝑖(�̂�𝑛𝑛𝑖𝑣𝑣𝑣𝑠). For more details with respect to the deriva­
tion of the equations, please refer to Chapter 3.

Given that the effective area of the spacecraft varies with respect to attitude,
the atmospheric drag torque of a single spacecraft varies accordingly. For a 3­unit
CubeSat (a satellite with a volume of 10x10x10 cm3), the smallest spacecraft used,
the largest of the planar areas is three times larger than the smallest planar area.
For two spacecraft in formation, this may lead to considerable differences in drift.

In order to use Eq. 1.1 to have a first idea of the magnitude of drag in spacecraft
dynamics, the change in their magnitude with respect to altitude is illustrated here.
First, taking as a reference a satellite in a circular orbit, the orbital velocity of the
spacecraft is given by ([41])

𝑣𝑣𝑣𝑐𝑖𝑟𝑐 = √
𝜇
𝑎 (1.3)

with 𝜇 the gravitational coefficient of the Earth and 𝑎 the semi­major axis, that
in this case, is equal to the altitude. From this equation Figure 1.12 is obtained.
Here, the orbital velocity below 2000 km is shown, because it is in this zone that
the work of this thesis is concerned.

Now, with respect to atmospheric density, [75, Ch.4] provides a table with the
magnitude of 𝜌(𝑟𝑟𝑟)with respect to altitude as a result of the use of the Harris­Preister
model. Based on this table, the variation of atmospheric density is illustrated in
Figure 1.13, for both the case of minimum and maximum atmospheric density. The
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Figure 1.12: Orbital velocity with respect to altitude for a circular orbit from 200 to 20000 km (left) and
from 200 to 2000 km (right).
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Figure 1.13: Atmospheric density with respect to altitude according to the Harris­Preister model. Based
on table in [75, Ch.4].

variation of the atmospheric density at the same altitude between the minimum
and the maximum is a function of the solar activity level.

Finally, to illustrate the magnitude of the atmospheric drag, take Figure 1.14,
where the Harris­Preister model is used to model the atmospheric density, in order
to calculate the fraction of orbital energy lost per revolution (for an explanation on
the Harris­Preister model, the reader is referred to [41]). The term Force/area is
used here to parametrize how many Newtows per square meter are affecting the
spacecraft. From Equation 1.1, this relation leads to

𝑚𝑎𝑎𝑎𝑎
𝐴𝑒𝑓

= −12𝐶𝐷𝜌(𝑟𝑟𝑟) 𝑣
2
𝑠 �̂�𝑣𝑣𝑠 , (1.4)

meaning that, when this parametrization is used, the force/area relation de­
pends both on velocity (Figure 1.12) and the atmospheric density (Figure 1.13),
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Figure 1.14: Influence of Drag for a 1000 kg satellite, 100 square meter drag area, and 𝐶𝐷 = 2.2.
Harris­Preister model atmosphere [76].

both physical parameters that depend on the altitude.
As shown in Figure 1.14, a bit less than 1% of the orbital energy is lost per

revolution when the altitude is 300 km, with a relation Force/Area of more than
10−3 N/m2 in this specific case. The influence of this effect, from the point of view
of relative dynamics, is the subject of this thesis.

In this work, it is assumed that the atmospheric density is known. Nevertheless,
for completeness, it is important to notice that the modeling of the atmospheric
density is a very active field, with several advancements in the last years, due to
the availability of precise data from satellites in orbit. Figure 1.15 shows some of
these models. For more information, refer to [76].

1.2. Overall Objectives
This PhD research has the objective to establish and characterize an integrated
approach to the estimation of orbit and attitude for satellite formations. Here, the
impact of a sophisticated spacecraft relative dynamics model taking into account
the coupling between orbit and attitude dynamics on observability, theoretically and
applied, is treated. As source of the dynamic coupling we consider the atmospheric
drag, the largest non­gravitational effect affecting spacecraft trajectories in Low­
Earth Orbit.

Coupling influence in observability
The classical research method used to asses the observability of spacecraft navi­
gation problems is the direct use of one or several estimators. This approach is
clearly valuable and leads often to strong conclusions regarding the effect of differ­
ent measurement technology, estimation methods or engineering dynamics models
in the observability of the system. Nevertheless, the use of estimators to evaluate
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Figure 1.15: Development of models of atmospheric density of LEO [76].

observability is constrained by the limitations of the estimation method of choice.
On the other hand, systems theory provides mathematical methods to evaluate

observability, like the use of the Observability Gramian for Linear Time­Variant (LTV)
systems [77] or the use of the Lie Algebra method for nonlinear systems [78]. These
methods lead to general conclusions about observability, that do not depend on the
constraints of the estimation method, in contrast to the direct use of a filter for
analysis purposes.

Despite the fact that these methods are of common use in systems theory, there
are only few examples of their use in the evaluation of the observability of spacecraft
relative dynamics (for example [63, 79–83]).

The use of systems theory observability methods for the evaluation of rela­
tive spacecraft dynamics has another advantage: observability determination tech­
niques use the same linearized models of systems as controllability determination
techniques. This means that all developments on coupling in the observability area
may directly lead to respective advances in the controllability area and vice versa.

Influence in estimation performance
In the last years, it has been stated that accounting for the coupling between orbit
and attitude dynamics in the representation of spacecraft relative dynamics leads
to models that improve the accuracy of the algorithms for control [48–52] and
estimation [1, 61].

In order to validate this statement, a representation where the atmospheric
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drag constitutes the coupling effect between orbit and attitude relative dynamics is
evaluated and analyzed in order to determine how this joint representation can be
exploited for estimation purposes.

Complementing the observability analysis, an estimator can be employed to
demonstrate the impact of coupling between orbit and attitude on the state of the
satellite formation.

1.3. Research Questions
The objective of this research is to determine how the coupling of orbit and attitude
affects the estimation of the relative dynamics of spacecraft. To determine this, two
research questions are formulated.

1. How does the coupling between attitude and orbit dynamics affect the ob­
servability of the relative dynamics of spacecraft?

2. How can the coupling between attitude and orbit dynamics be used to improve
the estimation for relative dynamics of spacecraft?

The first question is general and refers to the concept of observability from sys­
tem analysis. With this approach, it is possible to characterize the impact of coupling
on the dynamics without the limitation of the estimation technology. Nevertheless,
it is fundamental to show how estimation results are affected by such coupling. This
is the realm of the second question. Both questions are addressed using the atmo­
spheric drag as the source of coupling between orbit and attitude dynamics, taking
into account both the force and the torque produced by atmospheric drag in LEO.
The use of the nonlinear orbit and attitude equations in this work enables its use
also for the evaluation of other formation flying scenarios, such as the collocation
of geostationary satellites and their coupling due to the solar radiation pressure, its
use in orbits with high inclinations, or the use of more than two satellites, to name
a few.

1.4. Research Methodology
In order to answer the two research questions, a specific set of methodologies is
employed.

First, a reference scenario for this research work is defined. This comprises
two spacecraft in a circular and equatorial orbit around the Earth which dynamics
are described by state­space equations. The orbit and attitude dynamics of the
first spacecraft, named ”chief” are described using its absolute state: Cartesian
coordinates are used for the position and velocity, and the attitude quaternion for
its orientation.

The dynamics of the second spacecraft, named ”deputy”, are described as a
function of its relative states with the respect to the chief: its relative position
and attitude using the first spacecraft as the reference. Cartesian coordinates are
used for the orbit dynamics description, to be able to use the direct physical force
description of the perturbation, in this case, atmospheric drag. This choice enables
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the use of this general model with any other perturbing forces (J2, solar pressure, for
example, may be added without any extra difficulty) to any possible orbit scenario
(e.g. highly eccentric orbits and large intersatellite distances). In contrast, adding
the effect of perturbations such as J2 to the orbital elements description requires
special procedures, and is normally constrained to special scenarios, as for example
it is done by [84], where the 𝐽2 model is linearized and valid only for orbits with
small eccentricity.

This allows that the method proposed in this thesis may be used for any for­
mation flying mission scenario without considerable changes. The relative rotation
quaternion of the second spacecraft with respect to the first spacecraft is employed
to describe its relative attitude dynamics.

It is noted that since we focus on observability with respect to dynamics, we use
a very simple model for measurements. The measurements model is based on the
assumption that all states measurements are done from the chief spacecraft, both
its absolute dynamics with respect to the center of the Earth and the deputy relative
dynamics with respect to the chief, using a space state description. This scenario is
useful, for example, in the cases of uncooperative deputy spacecraft rendezvous and
docking, with purposes of debris removal. Another example is formations where
one spacecraft has better capabilities for navigation, or fractionated spacecraft,
where the navigation is done by one module. In these scenarios some, very simple
spacecraft, may not have a navigation module, but instead, the dynamics estimation
of the complete constellation may be supported by more capable spacecraft. At the
same time, this model is scalable to any number of deputy spacecraft.

The source of dynamics coupling used in this work is the atmospheric drag force
and torque, due to its importance as the strongest non­gravitational force affect­
ing spacecraft in very low Earth orbit. In order to better isolate the effect of this
particular perturbation from other perturbations, an equatorial orbit was selected
such that the best possible separation from the J2 effect is achieved, justifying the
assumption of not taking such effect into account. This leads to a clear separa­
tion of the effect of the atmospheric drag coupling, and therefore supports a better
description of its effect on improving the spacecraft dynamics estimation.

In order to answer the first research question in general, independent from
the estimation method, the concept of Observability Gramian (OG) is used. The
OG is a method that allows the determination of the observability level of a linear
time­variant (LTV) system described by space­state equations.

The advantage of the OG method over other observability determination meth­
ods, is that the application of alternative methods like the Lie­Algebra method for
nonlinear systems (see for example [78] for a description of this method), typically
only allows to conclude whether a system is observable or not. Thus two observable
scenarios may not be compared with each other by evaluating their observability
using the Lie­Algebra method. The application of the OG method to a system leads
to a ”observability level” result, allowing the comparison of the observability level
of two or more observable scenarios.

In order to use this method with the nonlinear dynamics of the scenario defined
in this work, the gradient of the two­spacecraft system equations is analytically



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

1

22 1. Introduction

determined. The partial derivatives of the absolute dynamics without perturbations
are known [1]. However, the partial derivatives of the perturbed dynamics required
to obtain the gradient of the two spacecraft set dynamics are derived in this thesis.

Due to the fact that the partial derivatives of the complete system had to be
calculated to obtain the system gradient, all the space­state equations describing
the spacecraft dynamics had to be described as a function of the spacecraft states,
including all rotation matrices. This let to the series of analytical partial derivatives
results presented in Chapter 4. This result is called here the symbolic gradient.
These derivations are verified by propagating both the analytical result and the
result of computing numerically the partial derivatives.

In order to calculate the gradient of the system equations, first, the spacecraft
set dynamics are propagated using their nonlinear equations. The symbolic gradient
is used in combination with the results of the spacecraft states from this propagation
in order to calculate the gradient numerical value in every calculation step. In this
way, the nonlinear system dynamics are simulated as if they were part of a LTV
system. The result of the gradient in every step is used to calculate the value of
the OG.

The OG result is used to determine the observability level of different scenar­
ios, evaluating its variability as a function of the change of the effective areas of
the spacecraft and the orbit altitude used of the formation. Due to the fact that
the masses of the spacecraft are not changed in any propagation, the change of
the effective areas may be seen as the change of the ”area­to­mass” ratio of the
spacecraft in formation flight.

To answer the second research question, it has to be shown that considering the
coupling between orbit and attitude on the dynamics model leads to an improved
estimation on the application level. To accomplish this, the Extended Kalman Filter
(EKF) is selected. The EKF is a widespread method used for spacecraft dynamics
estimation, and makes use of the linearization of the dynamics model needed to
propagate the OG results. To show that an EKF using coupling on the dynamics
model is better than not using it, the filter is applied with two models: a model
where the perturbations are simulated using white­Gaussian noise, and adjusting
their magnitude to the best possible performance, and another using the coupled
orbit­attitude model. For the former estimator, the best possible performance is de­
fined as the best result in the estimation error variance of the orbit relative position
after the complete propagation of dynamics is done.

1.5. Thesis Structure
This thesis is divided in two parts. The chapters 1­3 set up the necessary back­
ground in order to be able to answer the research questions. The chapters 5 and 6
correspond to the solution of the research questions of this research work. In Fig.
1.16, the structure of the thesis is shown. Here, the innovations developed for the
thesis are highlighted in yellow.

In Chapter 2, the theoretical background necessary to obtain the results of the
investigation is explained. Here, we introduce the use of attitude quaternions and
the reference frames to be used for the description of the spacecraft dynamics.
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Figure 1.16: Thesis structure. Two parts are highlighted: the first one refers to the body of knowledge
needed to answer the two research questions, and the second addresses the innovations from this thesis
(in yellow).
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Then, the dynamics of a single spacecraft (Chief) orbiting the Earth are described.
Finally, the dynamics of a ”Deputy” spacecraft relative to the ”Chief” spacecraft are
introduced. This leads to a complete description of the orbit and attitude dynamics
of the two­spacecraft system.

In Chapter 3, the atmospheric drag perturbations, consisting of the atmospheric
drag force and torque are introduced. These perturbations are described as the
source of coupling between orbit and attitude dynamics. In order to consider the
differential propagation into the dynamics models, the expressions for the atmo­
spheric drag force and torque of the deputy spacecraft with respect to the chief
spacecraft are derived in the orbital and body frames, respectively.

Both Chapters 2 and 3 constitute the complete model of the spacecraft dynamics
used in the subsequent chapters.

In Chapter 4 the linearization of the models described in Chapter 2 and 3 is
done. The linearization expressions are fundamental for the use in the observability
analysis and estimation processes in the next chapters. These symbolic results lead
to a symbolic Observability Gramian.

The second part of the thesis comprises two chapters with the results and in­
novations of this research.

Chapter 5 introduces the Observability Gramian (OG) as a method for the ob­
servability analysis. Here, the results of the use of the OG for the observability
analysis of two spacecraft are presented. Special focus is given to the cases where
observability is only possible using the coupling.

Chapter 6 uses the Extended Kalman Filter as a modeling tool to determine di­
rectly the results of the coupling. Here, it is shown that after the filters converge,
the filter using the dynamics model that includes coupling shows a better perfor­
mance in terms of the orbit dynamics error.

Chapter 7 summarizes the results of the thesis. It summarizes the research,
highlights the motivations and presents, on a more abstract level, its conclusions.
Next, it is explained how this work may be extended in the future: for example, the
use of the linearization expressions for controllability analysis in the same fashion
as the observability analysis is done in Chapter 5, and the use of more complex
models to evaluate coupled dynamics estimation based on the results of Chapter 6.
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Spacecraft Relative Orbit and

Attitude Dynamics

This chapter introduces the theoretical background necessary for the devel­
opment of this thesis. In here, the model of the absolute and relative dynam­
ics of spacecraft in formation flying is described. Both absolute and relative
orbital dynamics are described using Cartesian coordinates, in order to facil­
itate the addition of perturbations to the model, while attitude dynamics are
described using the quaternion parametrization.

25



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

2

26 2. Spacecraft Relative Orbit and Attitude Dynamics

2.1. Introduction
In order to develop new results within this research, the fundamental dynamic mod­
els in use are explained in this chapter. The models used to describe the dynamics
of two satellites in orbit, a chief and a deputy spacecraft, are introduced.

The chapter starts with the description of the reference frames needed for this
work. From here, the attitude and orbit dynamics of a single spacecraft in orbit
using quaternions and Cartesian coordinates, respectively, are introduced. Next, the
attitude and orbit dynamics of two spacecraft in orbit are described. The dynamics
of a second spacecraft, or deputy, are described from the point of view of a Chief
spacecraft. Here, it is assumed that the absolute dynamics of the Chief are known.

This leads to a complete state, constituted by the absolute dynamics of the Chief
and the relative dynamics of the Deputy with respect to the Chief, that constitute
the scenario analyzed in this thesis. Perturbations are part of the complete state,
but are described in the next chapter.

Due to the fact that the coupling of orbit and attitude dynamics for the formation
flying spacecraft introduced in the next chapter relates physical states described
on different reference frames, all transformations needed on the ensuing chapters
are introduced at the end of this chapter. All transformations are described using
the spacecraft states introduced in this chapter. This is done because both the
observability analysis in chapter 5 and the Extended Kalman Filter of chapter 6
require the linearization of all dynamics as a function of the states.

2.2. Representation of Dynamics
In order to describe the dynamics of two spacecraft in formation, there is a wide
body of knowledge that includes different approaches. The work of Sullivan et
al. [85], makes a description and categorization of the existing relative motion
dynamics models. Here, closed­form analytical models are classified by the state
representation used to parametrize it. At a broad level, models may be categorized
in two broad approaches. First, models that use the translational representation
of the relative state of a deputy spacecraft with respect to a chief in rectilinear or
curvilinear coordinates. A second approach is the one that parametrizes the relative
dynamics using the orbital element­based states. Here, the relative state is made
up of linear or nonlinear combinations of the chief and deputy orbital elements.
Within these two categories, the relative dynamics are further characterized by the
reference orbit regime of applicability, for example nearly­circular orbits or orbits
of arbitrary eccentricity. Another distinction is done when the description uses of
nonlinear models or linearization assumptions.

In Figure 2.1 the classification of [85] is illustrated. Here, a subset of the sur­
veyed models is chosen to represent the state of the art of the closed­form solutions
of different state­space representations, briefly described here for reference.

Orbital dynamics models consider Keplerian refer to the models where the fol­
lowing assumptions are done [86]:

• There are no external or internal forces except gravity.
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Figure 2.1: Categorization of closed­form relative dynamics models from [85]
.
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• The gravitating bodies are spherical.

• There are no tidal forces.

• The primary’s mass is much larger than the orbiting body’s mass.

• The gravitational force is Newtonian.

In the category of Keplerian, near circular models, the Clohessy and Wiltshire
model [43] used the Keplerian assumptions to derive a linearized form of the equa­
tions of relative motion, for spacecraft in close formation. Here, the linearization is
done by retaining only the first­order terms in the Taylor expansion of the nonlinear
differential gravity Keplerian orbit models. The resulting equations are know as the
Hill­Clohessy­Wiltshire equations (HCW).

From the HCW equations, works like [87] derive extensions of the model that
incorporate effects like the Earth oblateness J2 perturbation [85].

In the case of translational states, with Keplerian orbits, but assuming that the
orbits have arbitrary eccentricities, the Yamanaka and Ankersen model [88] uses a
fundamental integral solution written in terms of Kepler’s equation to construct the
state transition matrix (STM) of the closed­form solution. This result is considered
the state­of­the­art solution for linear propagation of relative position and velocity
in eccentric orbit, and it is planned to be used in the proposed Proba­3 from ESA
[85].

In the case of representations that use orbital element states, the ”GAM model”
[89] revisits the description of the relative motion between satellites flying in near­
circular low­Earth­orbits by describing the motion through relative orbital elements,
taking into account both the Earth’s oblateness and the differential drag perturba­
tion.

The works of [90], [91] and [92] consist of analytical solutions that include
the effects of the reference orbit eccentricity and differential perturbations used to
arrive at a description using differential orbital elements.

A different method from both broad categories, shown in Figure 2.1 is the rela­
tive motion model including J2 and J3 via Vinti’s intermediary [93].

In this thesis, the model used for the parametrization of the spacecraft orbit
dynamics consist of a non­Keplerian rectilinear coordinates model. The selection
of this spacecraft parametrization of dynamics is mainly based on three factors:
the first factor is the convenience of the model description to incorporate exter­
nal perturbations. External perturbations from, e.g. atmospheric drag, are the
source of coupling between orbit and attitude dynamics analyzed in this disserta­
tion. Therefore, they need to be incorporated directly to the dynamics equations.
Orbital elements are not used here, because, even when there are models using
orbital elements incorporating perturbations like the one presented in [84], nev­
ertheless they rely on an approximation of the perturbing effect, not their direct
physical expression.

The second factor is preference for classic parametrization over newly explored
approaches. This is justified because a widespread knowledge of the parametriza­
tion. At the same time, the successful use of a classic approach to answer the re­
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search questions in this thesis is considered a fundamental step before proceeding
with other dynamics parametrization. For example, a parametrization not selected
for this work is the use of dual numbers to describe orbit and attitude dynamics
of spacecraft, as done in [94] for control purposes. Nevertheless, dual numbers to
parametrize spacecraft absolute and relative pose is considered a promising field
and can be a future research field based on this dissertation.

The third factor is that the approach used for this thesis does not require any
simplification to be used for any kind of complex scenario, since it is not linked to
e.g. circular orbits.

In this research, the attitude of spacecraft is described using the quaternion
representation, due to its extended use in the satellite attitude dynamics community.
At the same time, because it allows to describe the attitude rate of change using
the rotation rate, this approach allows the addition of any source of torque using
its direct physical description, a requirement imposed in this research.

The absolute orbit dynamics of the chief is described using Cartesian coordi­
nates, related to an Earth­centered inertial frame. For the case of the relative
dynamics, a spacecraft­centered frame is used to describe the relative dynamics of
the deputy spacecraft with respect to its chief.

A fundamental assumption in this research is that all reference frames used are
known by the chief spacecraft.

2.2.1. Reference Frames
In order to describe spacecraft dynamics, the definition of the reference frames
to be used is fundamental. Their selection obeys many criteria. For example, the
selection of the frame may depend on the measuring scenario: the relative position
of a ”Deputy” spacecraft is described using a frame fixed to a ”Chief” spacecraft.
The attitude relative dynamics are described with respect to the body frame of the
spacecraft from which measurements are done, due to the fact that the attitude
sensors are fixed to its body. Other frames may be related to celestial bodies (the
Earth, the sun), or to the position of stars (when using a Star Tracker). For example,
in [48] an inertial frame is used to describe spacecraft orbit relative dynamics, and
body frames are used to describe the attitude relative dynamics. Nevertheless, for
this work, a frame fixed to and co­moving with the Chief spacecraft, as the one
used in [86] is used to describe the relative orbit dynamics.

In order to describe the complete orbit and attitude dynamics of two space­
craft flying in formation, different frames are used. Due to the fact that this thesis
is related to cross­relations between orbit and attitude states described in differ­
ent frames, several transformations are necessary to describe all existing relations
between the system states.

If a single inertial frame is used to describe all dynamics of the two satellites,
all attitude dynamics would have to be translated to this frame description, leading
to an unconventional, not particularly suited, attitude description. For example,
given the fact that attitude sensors are usually attached to the spacecraft body, the
use of a body frame to describe the dynamics description would be, in any case,
unavoidable for estimation purposes. The use of a body frame for the description
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of orbit dynamics would lead to similar kind of difficulties.
Finally, due to the fact that, for this work, it is necessary to analytically determine

the linearization of all dynamics with respect to the spacecraft states (Eq. 2.30), all
rotations are described as a function of such states.

In the sequel, the frames that are used in this work are described. All the
rotations necessary in order to properly describe the complete coupled dynamics
are described in Section 2.6 since the rotation depends on the state definitions done
later in this Chapter.

Inertial Frame
Let ℐ denote a inertial geocentric Cartesian, right­handed coordinate frame. The
𝑥­axis is directed to the vernal equinox direction, the 𝑧­axis is parallel to the axis of
rotation of the Earth and the 𝑦­axis completes a right­hand orthogonal axis frame
[95, p. 365]. In this work, ℐ is denoted the Inertial Frame. In the following ℐ will
be the only considered inertial frame without loss of generality.

Euler­Hill Frame
Let ℰ denote a local­vertical, local­horizontal (LVLH) rotating, right­handed, coordi­
nate frame fixed to the chief spacecraft (S/C 1) . It is called the Euler­Hill frame (see
Fig. 2.2). In ℰ, the 𝑥­axis points from the S/C 1 center of mass radially outwards,
the 𝑧­axis points in the direction of the S/C 1 orbital angular momentum, and the
𝑦­axis completes the frame [86, Ch.4].

Body Frames
Consider two spacecraft, S/C 1 (chief) and S/C 2 (deputy), orbiting the Earth.
Let ℬ1 and ℬ2 denote the spacecraft­centered Cartesian right­handed coordinate
frames with origins at the spacecraft centers of mass of S/C 1 and S/C 2 respec­
tively. For the body frames, the z­axis points in the direction of the highest moment
of inertia, and the x and y­axes are parallel to the area vectors of the faces of the
spacecraft (see Fig. 2.3 ).

2.3. Single Spacecraft Dynamics
In this section the orbit and attitude kinematics and dynamics of a single spacecraft
are defined. Kinematics are defined as aspects of motion that can be analyzed
without the consideration of forces or torques [96]. If forces or torques are involved
the description is in the realm of dynamics.

2.3.1. Single Spacecraft Attitude
The description of the orientation of an object is a mathematical problem that has
been studied since Euler, and has subsequently been developed by scholars like
Jacobi, Hamilton, Cayley, Klein, Rodrigues and Gibbs [40].

The proper selection of the method to describe the attitude of the system and
the appropriate reference frame to use depends greatly on the application to be
used.
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Figure 2.2: Definition of the Orbital Frame (ℰ)

Figure 2.3: Definition of the Body Frame (ℬ)
.
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In this work, it will always be assumed that spacecraft are rigid body systems.
Nevertheless, all results from this thesis may be applied to flexible body system with
little changes. In [40] a list of consideration about rigid body attitude coordinates
is listed:

1. A minimum of three coordinates is required to describe the relative angular
displacement between two reference frames.

2. Any minimal set of three attitude coordinates will contain at least one geo­
metrical orientation where the coordinates are singular, namely at least two
coordinates are undefined or not unique.

3. At or near such a geometric singularity, the corresponding kinematic differ­
ential equations are also singular.

4. The geometric singularities and associated numerical difficulties can be avoided
altogether through a regularization. Redundant sets of four or more coordi­
nates exist which are universally determined and contain no geometric singu­
larities.

In order to avoid those singularities, the parametrization of attitude using quater­
nions has been selected in this work to describe the attitude of spacecraft.

Attitude Kinematics
Consider two reference frames𝒩 and ℬ defined using an orthonormal right­handed
set of unit vectors �̂�𝑛𝑛 ≡ [�̂�𝑛𝑛1, �̂�𝑛𝑛2, �̂�𝑛𝑛3]𝑇 and �̂�𝑏𝑏 ≡ [�̂�𝑏𝑏1, �̂�𝑏𝑏2, �̂�𝑏𝑏3]𝑇. Let the three angles 𝛼1𝑖
be the angles between the first coordinate �̂�𝑏𝑏1 and the axes of �̂�𝑛𝑛. The cosines of
these angles are called the direction cosines of �̂�𝑏𝑏1 relative to the ℬ frame [40]. The
unit vector �̂�𝑏𝑏1 can be projected onto �̂�𝑛𝑛 as

�̂�𝑏𝑏1 = cos(𝛼11)�̂̂��̂�𝑛1 + cos(𝛼12)�̂̂��̂�𝑛2 + cos(𝛼13)�̂̂��̂�𝑛3 (2.1)

These angles are illustrated in Figure 2.4 Expanding this result for the three unit
vectors of 𝑎𝑎𝑎, it is possible to describe the relation between the two vectors as

�̂�𝑏𝑏 = [
𝑐𝑜𝑠(𝛼11) 𝑐𝑜𝑠(𝛼12) 𝑐𝑜𝑠(𝛼13)
𝑐𝑜𝑠(𝛼21) 𝑐𝑜𝑠(𝛼22) 𝑐𝑜𝑠(𝛼23)
𝑐𝑜𝑠(𝛼31) 𝑐𝑜𝑠(𝛼32) 𝑐𝑜𝑠(𝛼33)

]𝑛𝑛𝑛 = 𝐷𝐷𝐷�̂̂��̂�𝑛 (2.2)

,
where the matrix 𝐷𝐷𝐷 is called the direction cosine matrix (DCM).
The DCM is a parametrization of the attitude of a body with respect to a reference

frame𝒩. There are other parametrizations that may be more convenient depending
on the application. These applications are summarized in Table 2.1.
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Figure 2.4: Direction cosines. Source [40]
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Attitude Description using Quaternions
In this work, the selected parametrization for the description of attitude is the
quaternion, often also known as the ”Euler­Rodrigues” parameters [96]. Quater­
nions have multiple advantages in comparison to other attitude parametrizations.
For example, on the Euler angle parametrization the propagation of attitude is not
smooth. This smoothness is however fundamental for the proper performance of
estimation methods like the Kalman Filter.

Another well­known attitude parametrization is the aforementioned rotation ma­
trix between two frames, where usually one inertial frame is being used as a refer­
ence. The disadvantage of this method is that it leads to a description of attitude
using nine non­independent elements, and it obeys six constraints imposed by the
orthogonality of the attitude matrix.

The least amount of elements that may be used to describe attitude without
singularities is four. Starting from the fact that any rotation may be described
using a single rotation axis and an angle describing the rotation about this axis, the
quaternion is defined by 4­elements, with a vector part 𝑒𝑒𝑒 and scalar part 𝑞 given
as [96, 97]

𝑞𝑞𝑞 = [ 𝑒𝑒𝑒𝑞 ] (2.3)

where

𝑒𝑒𝑒 = �̂�𝑒𝑒 sin (𝜗), 𝑞 = cos (𝜗) (2.4)

with �̂�𝑒𝑒 being a unit vector defining an axis of rotation (or Euler axis) and 𝜗 being
the angle of rotation around this axis. This parametrization has only one constraint.

Let Ξ(𝑞𝑞𝑞) denote

Ξ(𝑞𝑞𝑞) = [ 𝑒𝑒𝑒× + 𝑞1113
−𝑒𝑒𝑒𝑇 ] with 𝑒𝑒𝑒× = [

0 −𝑒3 𝑒2
𝑒3 0 −𝑒1
−𝑒2 𝑒1 0

] . (2.5)

From here, we can define the kinematics of a spacecraft using quaternions
as [39]

�̇�𝑞𝑞 = 1
2 Ξ(𝑞𝑞𝑞)𝜔𝜔𝜔. (2.6)

The quaternions used for rotation purposes are quaternions with a unit norm,
by the definition given in equation 2.4 [96]. By using a unit vector as the axis
of rotation, there is only one way to describe a single rotation using this method.
For estimation purposes, the quaternions parametrization has the problem that its
elements are not­linear independent. Several versions of the Extended Kalman
Filter (EKF), as the additive EKF, or the Multiplicative EKF, among others, have been
developed to overcome this problem (see [97] for a survey in nonlinear attitude
estimation methods).
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Attitude Dynamics
The fundamental equation of attitude dynamics describes the variation of the angu­
lar momentum vector 𝑑𝐿𝐿𝐿/𝑑𝑡 to an applied torque 𝜏𝜏𝜏 [39, Chap.16] in the spacecraft
body frame (ℬ)

𝑑𝐿𝐿𝐿
𝑑𝑡 = −𝜔𝜔𝜔

×𝐿𝐿𝐿 + 𝜏𝜏𝜏 (2.7)

and the torque defined as

𝜏𝜏𝜏 ≡
𝑛

∑
𝑖=1
𝑑𝑑𝑑×𝑖 𝐹𝐹𝐹𝑖 , (2.8)

with 𝜔𝜔𝜔 being the instantaneous angular velocity vector of the body, and 𝐹𝐹𝐹𝑖 the
applied force vector located in a point 𝑑𝑑𝑑𝑖 from the point of view of the center of
mass of the body. 𝐼𝐼𝐼 is a symmetric 3x3 moment of inertia tensor, with

𝐿𝐿𝐿 = I𝜔𝜔𝜔. (2.9)

In this work, 𝐼𝐼𝐼 is assumed a constant matrix.
Using (2.9) in (2.8) it is possible to arrive at an expression for attitude dynamics

used in this work

I
𝑑𝜔𝜔𝜔
𝑑𝑡 = −𝜔𝜔𝜔

×I𝜔𝜔𝜔 +𝜏𝜏𝜏. (2.10)

A spacecraft in an orbit about the Earth is subject to various torques. There
are torques originated from the spacecraft and its environment, leading to gravity­
related torques, torques due to atmospheric solar radiation or electromagnetic field.
Here, we assume that one of the angular torques affecting spacecraft is due to the
fact that the gravitational field is not uniform over the spacecraft’s body. This leads
to a gravitational torque about the mass center [98]. If the following assumptions
are made

• only the Earth body is considered,

• the Earth a spherically symmetrical mass distribution,

• the spacecraft is small compared to its distance from the mass center of the
Earth,

• the spacecraft consist of a single body,

the gravitational torque in the inertial frame is given by

𝜏𝜏𝜏𝑔 = 3
𝜇
𝑟5𝑟𝑟𝑟

×I𝑟𝑟𝑟 (2.11)

with 𝜇 = 398600.4405 ± 0.001 km3s−2 the gravitational coefficient of Earth, 𝑟𝑟𝑟
is the position of the spacecraft with respect to the center of the Earth. When this
torque is expressed in ℬ, then it is given by
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𝜏𝜏𝜏𝑔 = 3 𝜇𝑟5 (𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)
×(I𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟). (2.12)

Another torque affecting spacecraft at very low attitudes is the atmospheric
drag torque. The effect of atmospheric drag is the focus of this thesis and thus it
is described in more detail in the next chapter.

2.3.2. Spacecraft Orbit Dynamics
If the mass of a satellite is considered negligible compared to Earth’s mass, and
under the assumption that the Earth is spherically symmetric, the acceleration �̈�𝑟𝑟 of
a satellite is given by the Newton’s law of gravity [41]

�̈�𝑟𝑟 = −𝐺𝑀𝐸𝑟3 𝑟𝑟𝑟 (2.13)

where 𝐺𝑀𝐸 is known as the gravitational coefficient of the Earth and given by

𝜇 = 𝐺𝑀𝐸 = 398600.4405 ± 0.001 km
3s−2 (2.14)

Due to its rotation the Earth is not a perfect sphere. Its form is approximately
the one of an oblate spheroid with an equatorial diameter that is about 20 km larger
than the polar diameter [41]. If the Earth form is approximated to an oblate sphere,
the effect caused by the oblateness perturbation is called 𝐽2 effect [40]. This effect
is considered negligible in this research due to the fact that only equatorial orbits
are used. Another force affecting spacecraft at very low attitudes is the atmospheric
drag perturbation. The effect of atmospheric drag is the focus of this thesis and
thus it is described in more detail in the next chapter.

2.4. Relative Spacecraft Dynamics
Here the relative orbit and attitude dynamics of a follower (deputy) spacecraft are
described with respect to a leader (chief) satellite.

2.4.1. Relative Spacecraft Attitude
Let 𝜔𝜔𝜔 denote the angular velocity vector of the frame ℬ with respect to ℐ projected
along ℬ. Let 𝑞𝑞𝑞, with vector part 𝑒𝑒𝑒 and scalar part 𝑞, denote the quaternion of the
rotation from ℐ to ℬ. Let 1113 be the identity matrix in ℝ3.

Finally, define �̃�𝑞𝑞 = (�̃�𝑒𝑒, �̃�) and �̃�𝜔𝜔 as the relative quaternion and relative angular
velocity vector, respectively, of S/C 2 with respect to S/C 1, defined as

�̃�𝑞𝑞 = (𝑞𝑞𝑞ℬ1)−1 ∗ 𝑞𝑞𝑞ℬ2 (2.15)
�̃�𝜔𝜔 = 𝜔𝜔𝜔2|ℬ2 − 𝜔𝜔𝜔|ℬ2 (2.16)

with 𝑞𝑞𝑞ℬ2 the quaternion of rotation from ℐ to ℬ2 and 𝜔𝜔𝜔2|ℬ2 the rotation rate of ℬ2
with respect to ℐ projected in ℬ2. Here, 𝑞𝑞𝑞−1 and ∗ denote the quaternion inverse and
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composition operations, respectively [39, App. D]. According to [48] the attitude
dynamics of the follower spacecraft relative to the leader spacecraft is given by

̇�̃�𝜔𝜔 = I−12 {I2 [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] × [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] − I2 [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] × �̃�𝜔𝜔
−I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 [(I1𝜔𝜔𝜔) × 𝜔𝜔𝜔 +𝜏𝜏𝜏1] + 𝜏𝜏𝜏2} , (2.17)

with I2 is the inertia tensor of the deputy spacecraft around its center of mass
in the frame ℬ2, and 𝐷𝐷𝐷(�̃�𝑞𝑞) denotes the matrix of the rotation from ℬ1 to ℬ2, i.e.:

𝐷𝐷𝐷(�̃�𝑞𝑞) = (�̃�2 − �̃�𝑒𝑒𝑇�̃�𝑒𝑒)1113 + 2�̃�𝑒𝑒�̃�𝑒𝑒𝑇 − 2𝑞�̃�𝑒𝑒×. (2.18)

2.4.2. Relative Spacecraft Orbit
Let 𝑟𝑟𝑟 and 𝑟𝑟𝑟2 be the position vector of the center of mass of a chief and a deputy
spacecraft, respectively, measured from the center of the Earth, and let �̃�𝑟𝑟 and �̃�𝑣𝑣
denote the relative position and velocity vectors of S/C 2 with respect to S/C 1 ,
i.e,

�̃�𝑟𝑟 = 𝑟𝑟𝑟2 −𝑟𝑟𝑟 (2.19)

�̃�𝑣𝑣 = 𝑑�̃�𝑟𝑟
𝑑𝑡 . (2.20)

Let (�̃�𝑥 , �̃�𝑦 , �̃�𝑧 , �̃�𝑥 , �̃�𝑦 , �̃�𝑧) denote the components of �̃�𝑟𝑟 and �̃�𝑣𝑣 respectively.
Taking Eq. 2.13 to describe the position of each spacecraft, we have that [86]

̇�̃�𝑣𝑣 = −𝜇�̃�
𝑟𝑟
�̃�3 +

𝜇𝑟𝑟𝑟
𝑟3 (2.21)

In order to express the relative acceleration in ℰ, it must be considered that [86,
Ch.4]

̈�̃�𝑟𝑟 = 𝑑2�̃�𝑟𝑟
𝑑𝑡2 + 2ΩΩΩ

×𝑑�̃�𝑟𝑟
𝑑𝑡 +

𝑑ΩΩΩ
𝑑𝑡

×
�̃�𝑟𝑟 +ΩΩΩ×(ΩΩΩ×�̃�𝑟𝑟) (2.22)

where ΩΩΩ denotes the angular velocity vector of frame ℰ relative to frame ℐ.
Due to the definition of the orbital frame, we have that

ΩΩΩ|ℰ = ΩΩΩ = [
0
0
Ω
] . (2.23)

Expressing Ω as a function of the spacecraft states, we have that

Ω = |𝑟𝑟𝑟×𝑣𝑣𝑣|
|𝑟𝑟𝑟|2 , (2.24)

Ω̇ = (𝑟𝑟𝑟×𝑣𝑣𝑣)𝑇(𝑟𝑟𝑟×�̇�𝑣𝑣)
|𝑟|2|𝑟𝑟𝑟×𝑣𝑣𝑣‖ − 2 ∗ |𝑟𝑟𝑟×𝑣𝑣𝑣|𝑟

𝑟𝑟𝑇𝑣𝑣𝑣
|𝑟𝑟𝑟|4 , (2.25)
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and the position vector of the Chief in ℰ is

𝑟𝑟𝑟 = [
𝑟
0
0
] . (2.26)

If (2.23), (2.26) and (2.22) are substituted in (2.21), it yields to the following
equations of relative orbital motion in ℰ

̇�̃�𝑟𝑟 = �̃�𝑣𝑣 (2.27)

̇�̃�𝑣𝑣 =
⎡
⎢
⎢
⎣

𝜇
𝑟2 −

𝜇(𝑟+�̃�𝑥)
𝛼3 + 2Ω�̃�𝑦 + Ω̇�̃�𝑦 + Ω2�̃�𝑥 + Δ𝑎𝑝𝑥

−𝜇�̃�𝑦𝛼3 − 2Ω�̃�𝑥 − Ω̇�̃�𝑥 + Ω
2�̃�𝑦 + Δ𝑎𝑝𝑦

−𝜇�̃�𝑧𝛼3 + Δ𝑎𝑝𝑧

⎤
⎥
⎥
⎦
. (2.28)

with

𝛼 = √(𝑟 + �̃�𝑥)2 + �̃�2𝑦 + �̃�2𝑧 (2.29)

and differential external forces given by Δ𝑎𝑝𝑎𝑝𝑎𝑝 = [Δ𝑎𝑝𝑥 , Δ𝑎𝑝𝑦 , Δ𝑎𝑝𝑧]
𝑇.

2.5. Formation Flying Dynamics
Consider two spacecraft, S/C 1 (chief) and S/C 2 (deputy), orbiting the Earth.

Under the assumption of rigid bodies, the orbital and attitude dynamics of the
two satellites is governed by the following system of equations [39, Ch. 16], [86,
Ch. 4]

�̇�𝑥𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�𝑟𝑟
�̇�𝑣𝑣
�̇�𝑞𝑞

I1 �̇�𝜔𝜔
̇�̃�𝑟𝑟
̇�̃�𝑣𝑣
̇�̃�𝑞𝑞
̇�̃�𝜔𝜔

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣𝑣𝑣
− 𝜇
𝑟3𝑟𝑟𝑟 + 𝑎𝑎𝑎𝑝1
2 Ξ(𝑞𝑞𝑞)𝜔𝜔𝜔

−𝜔𝜔𝜔×I1𝜔𝜔𝜔 +𝜏𝜏𝜏1
�̃�𝑣𝑣

𝑝𝑝𝑝(𝑥𝑥𝑥) + Δ𝑎𝑝𝑎𝑝𝑎𝑝
1
2 Ξ(�̃�𝑞𝑞)�̃�𝜔𝜔

g(𝜔𝜔𝜔1, �̃�𝜔𝜔, �̃�𝑞𝑞)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.30)

where

𝑝𝑝𝑝(𝑥) =
⎡
⎢
⎢
⎣

𝜇
𝑟2 −

𝜇(𝑟+�̃�𝑥)
𝛼3 + 2Ω�̃�𝑦 + Ω̇�̃�𝑦 + Ω2�̃�𝑥

−𝜇�̃�𝑦𝛼3 − 2Ω�̃�𝑥 − Ω̇�̃�𝑥 + Ω
2�̃�𝑦

−𝜇�̃�𝑧𝛼3

⎤
⎥
⎥
⎦
, (2.31)

with differential external forces are given by Δ𝑎𝑝𝑎𝑝𝑎𝑝 = [Δ𝑎𝑝𝑥 , Δ𝑎𝑝𝑦 , Δ𝑎𝑝𝑧]
𝑇 and

g(𝑥𝑥𝑥) = I−12 {I2 [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] × [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] − I2 [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔] × �̃�𝜔𝜔
−I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 [(I1𝜔𝜔𝜔) × 𝜔𝜔𝜔 +𝜏𝜏𝜏1] + 𝜏𝜏𝜏2} . (2.32)
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Table 2.2: Description of rotations

From To Notation / (Inverse rotation notation) Components
of the state
dependency

ℐ ℰ 𝐷𝐷𝐷|ℰℐ /(𝐷𝐷𝐷|
ℐ
ℰ) 𝑟𝑟𝑟,𝑣𝑣𝑣

ℐ ℬ1 𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)/(𝐷𝐷𝐷(𝑞𝑞𝑞)) 𝑞𝑞𝑞
ℬ1 ℬ2 𝐷𝐷𝐷(�̃�𝑞𝑞)/(𝐷𝐷𝐷𝑇(�̃�𝑞𝑞)) �̃�𝑞𝑞
ℐ ℬ2 𝐷𝐷𝐷(�̃�𝑞𝑞)𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)/(𝐷𝐷𝐷(𝑞𝑞𝑞)𝐷𝐷𝐷𝑇(�̃�𝑞𝑞)) 𝑞𝑞𝑞, �̃�𝑞𝑞

Here, Ω denotes the absolute value of the angular velocity between the frames ℐ
and the ℰ, and 𝑎𝑎𝑎𝑝 and 𝜏𝜏𝜏1 represent the external force and torque vectors perturbing
the dynamics of S/C 1, while Δ𝑎𝑝𝑎𝑝𝑎𝑝 represents the differential acceleration affecting
the relative orbital dynamics and 𝜏𝜏𝜏2 the total torque acting on the deputy spacecraft.

This model can therefore incorporate any external forces (e.g. J2 , solar pres­
sure, control forces), or torques (e.g. gravitational torques, control torques) in­
fluencing the spacecraft dynamics. For this reason, this equation is valid for any
orbiting two­spacecraft system, no matter its altitude, relative distance, inclination,
or how elliptical their orbits are. In this work, the external forces (𝑎𝑎𝑎𝑝, Δ𝑎𝑝, 𝜏𝜏𝜏1 and
𝜏𝜏𝜏2) are associated to atmospheric drag only. They are the source of coupling be­
tween orbit ant attitude dynamics, due to the fact that the atmospheric drag effect
depends of the orientation of the spacecraft. The full description of this effect is
the subject of Chapter 3.

2.6. Transformations of Reference Frames
Several rotations between frames are needed in this work in order to derive the
expressions for the spacecraft state and its perturbations. Most of these frames are
accelerating frames. Due to this fact, the kinematics of rotating frames also have to
be taken into account in the description of the states of this work. These rotations
are listed on Table 2.2.

These rotations are illustrated in Figure 2.5.

2.6.1. Rotation from the Inertial to the Euler­Hill Frame
In order to rotate a vector from the Earth­centered inertial frame ℐ to the Euler­Hill
frame centered in the chief spacecraft (ℰ), the absolute position 𝑟𝑟𝑟 vector and the
velocity vector 𝑣𝑣𝑣 are used. These frames are used to describe the dynamics of the
Chief spacecraft and the relative dynamics of the Deputy spacecraft with respect to
the Chief, respectively.

Euler rotations are used to derive the corresponding rotation matrices, but these
derivations are done such that all matrices are functions only of the state compo­
nents of the dynamics derived defined for this work, given by equation 2.30. Classi­
cally, these rotation matrices use trigonometric functions as part of their expression.
These trigonometric functions are expressed as a function of the state components,
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frame

Body 
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Figure 2.5: Rotations necessary to describe the relative dynamics of two spacecraft using Cartesian
coordinates and the quaternion description of attitude.
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enabling the possibility of linearization of the equations of the dynamics with re­
spect to the states in a straightforward way. This linearization is necessary for the
observability analysis done in Chapter 5 and the use of the Extended Kalman Filter
of Chapter 6.

Using a ”1­2­1” Euler rotation [39], with the first rotation is given by a rotation
of the 𝑥 axis by an angle 𝜑, lets replace the trigonometric functions by

cos𝜑 = 𝑟3
√𝑟22 + 𝑟32

, sin𝜑 = − 𝑟2
√𝑟22 + 𝑟32

. (2.33)

For this reason, the first rotation is given by

𝐷𝐷𝐷(𝜑) = 1
√𝑟22 + 𝑟32

[
√𝑟22 + 𝑟32 0 0

0 𝑟3 −𝑟2
0 𝑟2 𝑟3

] . (2.34)

The second rotation is given by an angle 𝜃 as

cos𝜃 = 𝑟1
√𝑟12 + 𝑟22 + 𝑟32

= 𝑟1
𝑟 (2.35)

sin𝜃 = − √𝑟22 + 𝑟32

√𝑟12 + 𝑟22 + 𝑟32
= −√𝑟2

2 + 𝑟32
𝑟 . (2.36)

So

𝐷𝐷𝐷(𝜃) = 1
𝑟 [

𝑟1 0 √𝑟22 + 𝑟32
0 𝑟

−√𝑟22 + 𝑟23 0 𝑟1
] . (2.37)

Expressing the third rotation requires the velocity vector expression after the
first two rotations. Lets define this velocity vector as

𝑣𝑣𝑣′ = 𝐷𝐷𝐷(𝜃)𝐷𝐷𝐷(𝜑)𝑣𝑣𝑣 (2.38)

meaning that

𝑣𝑣𝑣′ = 1
𝑟

1
√𝑟22 + 𝑟32

[
𝑟1 0 √𝑟22 + 𝑟32
0 𝑟

−√𝑟22 + 𝑟32 0 𝑟1
] [
√𝑟22 + 𝑟32 0 0

0 𝑟3 𝑟2
0 −𝑟2 𝑟3

]𝑣𝑣𝑣.

(2.39)
The angle required for the third rotation 𝜓 is given as a function of 𝑣𝑣𝑣′ as

cos𝜓 =
𝑣𝑣𝑣′𝑦

√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2
, sin𝜑 = 𝑣𝑣𝑣′𝑧

√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2
. (2.40)
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This leads to

𝐷𝐷𝐷(𝜓) = 1

√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2
[
√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2 0 0

0 𝑣𝑣𝑣′𝑦 𝑣𝑣𝑣′𝑧
0 −𝑣𝑣𝑣′𝑧 𝑣𝑣𝑣′𝑦

] . (2.41)

The full transformation to rotate a vector from ℐ to ℰ as a function of the space­
craft system states is therefore

𝐷𝐷𝐷|ℐℰ = 𝐷𝐷𝐷(𝜓)𝐷𝐷𝐷(𝜃)𝐷𝐷𝐷(𝜑) =

1
𝑟

1
√𝑟22 + 𝑟32

1

√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2
[
√𝑣𝑣𝑣′𝑦2 +𝑣𝑣𝑣′𝑧2 0 0

0 𝑣𝑣𝑣′𝑦 𝑣𝑣𝑣′𝑧
0 −𝑣𝑣𝑣′𝑧 𝑣𝑣𝑣′𝑦

]

[
𝑟1 0 √𝑟22 + 𝑟32
0 𝑟

−√𝑟22 + 𝑟32 0 𝑟1
] [
√𝑟22 + 𝑟32 0 0

0 𝑟3 𝑟2
0 −𝑟2 𝑟3

] . (2.42)

Rotation Rate from the Inertial to the Euler­Hill Frame
It is known that the rotation of ℰ with respect to ℐ described in ℰ Ω|ℐ→ℰℰ is normal
to its ℰ frame. For this reason it may be described as

Ω|ℐ→ℰℰ = [
0
0
�̇�
] (2.43)

where �̇� is the true anomaly of the spacecraft. It is necessary to express this
value in the Cartesian coordinate frame that its being used to represent the absolute
dynamics of the spacecraft. Since

Ω|ℐ→ℰℰ = 𝑟
𝑟𝑟×𝑣𝑣𝑣
𝑟2 (2.44)

the true anomaly is obtained as

�̇� = |𝑟
𝑟𝑟×𝑣𝑣𝑣
𝑟𝑟𝑟2 | . (2.45)

2.6.2. Rate of Change of Vectors in Rotating Frames
In this work, frames like the Euler­Hill frame and the body frames are accelerating
frames. In order to express the rate of change of a vector firstly defined in an
inertial frame in a rotating frame, the rotation rate between these frames has to be
taken into account.
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Let 𝑎𝑎𝑎|ℐ be any vector on an inertial frame ℐ. Now, lets assume that there is a
non­inertial rotating frame 𝑁 and denote this vector projected in this frame as 𝑎𝑎𝑎|𝑁.
Then, there exist a rotation matrix 𝐴𝐴𝐴 relating the vector in both frames such that

𝑎𝑎𝑎|𝑁 = 𝐴𝐴𝐴 𝑎𝑎𝑎|ℐ . (2.46)

For convenience, from now on, we denote 𝑎𝑎𝑎|𝑁 as 𝑎𝑎𝑎. The derivative of 𝑎𝑎𝑎 in this
expression is due to the time variation of both 𝑎𝑎𝑎|ℐ and 𝐴𝐴𝐴, where the variation of
𝐴𝐴𝐴 results from the change of orientation of the two reference systems. For this
reason, we have that [39, Ch. 16]

𝑑𝑎𝑎𝑎
𝑑𝑡 =

𝑑𝐴𝐴𝐴
𝑑𝑡 𝑎𝑎𝑎|ℐ +𝐴𝐴𝐴

𝑑 𝑎𝑎𝑎|ℐ
𝑑𝑡 . (2.47)

Given the fact that

𝑑𝐴𝐴𝐴
𝑑𝑡 = Ω

×𝐴𝐴𝐴, (2.48)

with ΩΩΩ = [Ω𝑢 , Ω𝑣 , Ω𝑤]𝑇 the rotation rate of 𝑁 with respect to ℐ and Ω× the
skew­symmetric matrix

Ω× = [
0 Ω𝑤 −Ω𝑣

−Ω𝑤 0 Ω𝑢
Ω𝑣 −Ω𝑢 Ω

] . (2.49)

Given that 𝑎𝑎𝑎 = 𝐴𝐴𝐴 𝑎𝑎𝑎|ℐ then

𝑑𝑎𝑎𝑎
𝑑𝑡 = �̇�𝑎𝑎 = Ω

×𝑎𝑎𝑎 + ∘𝑎𝑎𝑎, (2.50)

with
∘𝑎𝑎𝑎 the derivative of 𝑎𝑎𝑎|ℐ projected in the non­inertial frame 𝑎𝑎𝑎|ℐ, that is

∘𝑎𝑎𝑎 = 𝐴𝐴𝐴𝑑 𝑎
𝑎𝑎|ℐ
𝑑𝑡 . (2.51)

The apparent acceleration due to the rotation of a frame with respect to another,
shown in equation 2.50 is known as the Coriolis effect. It has to be taking into
account whenever a vector expressed in an accelerated frame is transformed into
another frame, for example between any inertial to any body frame, or from an
inertial frame to an Euler­Hill frame.



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

3
Atmospheric Perturbations of

Relative Dynamics

This chapter describes how the atmospheric drag force and torque consti­
tute a source of coupling between attitude and position for both the absolute
and the relative dynamics of spacecraft. The expressions of the atmospheric
perturbations of a deputy spacecraft as a function of its relative dynamics
with respect to a chief spacecraft are derived. This allows to handle complex
mission scenarios, such as formations with spacecraft that differ in their ro­
tational states, or rendez­vous with uncontrolled objects with purposes of de­
bris removal. Finally, the difference is shown between this advanced model
for timely varying cross­section areas of the spacecraft and a model where
the effective area of the spacecraft does not vary with time.

45
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3.1. Introduction
The atmospheric drag perturbs both the orbit and the attitude of the spacecraft.
Its effect depends on the cross­sectional area of the spacecraft and is modeled as a
force in orbit dynamics and as a torque in attitude dynamics. Typically, due to its low
magnitude, many applications use the average of the effective areas of spacecraft to
approximate its effect. This method may not be suitable for precision applications.
In this chapter, spacecraft are modeled as a composition of flat rectangular areas
in order to calculate the effect of the atmospheric perturbation. This model takes
into account the coupling between orbit and attitude because the variation of the
effective area of the spacecraft depends on attitude, and because the atmospheric
density depends on the distance of the spacecraft to the center of the Earth, thus
the orbit. Both the absolute and differential drag effect on the dynamics are derived
in analytical form here. Finally, how this coupling may vary the atmospheric drag
perturbation depending on the variable spacecraft attitude is illustrated at the end
of the Chapter.

3.2. Atmospheric Drag as a Source of Coupling
The strongest non­gravitational perturbation of orbital dynamics for altitudes below
approximately 750 km is atmospheric drag. This is true for missions at an altitude
of around 300 km for both absolute [99] and relative orbital dynamics [100]. An
overview of the magnitude of the atmospheric drag in LEO compared to other effects
is provided in Figure 3.1 for absolute dynamics and Figure 3.2 for relative dynamics.
In this section, the effect of the atmospheric drag on satellite formations on low
orbits, considered the largest non­gravitational force acting on spacecraft relative
dynamics, is described.

The acceleration produced by atmospheric drag on a single spacecraft is classi­
cally modeled as

𝑎𝑎𝑎𝑎 = −
1
2
𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑚 𝐴𝑒𝑓𝑣2𝑠 �̂�𝑣𝑣𝑠 , (3.1)

where 𝜌(𝑟𝑟𝑟) is the atmospheric density, 𝑚 is the mass of the spacecraft, 𝑣𝑣𝑣𝑠
the velocity of the spacecraft surface with respect to the atmosphere and �̂�𝑣𝑣𝑠 =
𝑣𝑣𝑣𝑠/|𝑣𝑣𝑣𝑠| a unit vector, 𝐶𝐷 the drag coefficient of the spacecraft, and 𝐴𝑒𝑓 the effective
area of the spacecraft, with the dynamics described using the inertial frame. This
expression assumes that the variation of the effective area is small enough to be
considered constant, and that the drag coefficient is constant across the complete
external surface of the spacecraft.

The velocity of the spacecraft surface with respect to the atmosphere is given
by

𝑣𝑣𝑣𝑠 = 𝑣𝑣𝑣 −𝑣𝑣𝑣𝑎𝑡 , (3.2)

where 𝑣𝑣𝑣𝑎𝑡 represents the velocity of the atmosphere. If it is assumed that the
atmosphere corotates with Earth with an angular velocity given by 𝜔𝐸𝜔𝐸𝜔𝐸 then
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Figure 3.1: Order of magnitude of various perturbing accelerations of a satellite orbit [41].
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Figure 3.2: Order of magnitude of various differential perturbations for close near­circular formation as
a function of spacecraft separation [100].

𝑣𝑣𝑣𝑎𝑡 = 𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟. (3.3)

Take a spacecraft with a specific geometric form, for example, the one shown
in Fig. 3.3. If lift and normal forces are neglected, the torque produced by the
atmospheric perturbation on the 𝑖­th area of a spacecraft is given by

𝜏𝜏𝜏𝑎,𝑖 = −
1
2𝐶𝐷,𝑖𝜌(𝑟𝑟𝑟)𝐴𝑖𝑣

2
𝑠 (𝑑𝑑𝑑×𝑖 �̂�𝑣𝑣𝑠), (3.4)

with 𝑑𝑑𝑑𝑖 the distance between the center of pressure of the area 𝑖 and the center
of mass of the spacecraft .

In order to characterize how the effect of the atmospheric perturbation depends
on the geometry of the spacecraft, its effective area is calculated. In general, the
effective area of a spacecraft 𝐴𝑒𝑓 is given by the surface integral (3.5)

𝐴𝑒𝑓 = ∫
𝑆
(𝑛𝑛𝑛𝑇𝑑𝐴�̂�𝑣𝑣𝑠)𝑑𝐴, (3.5)

with 𝑛𝑛𝑛𝑑𝐴 the vector normal to the differential area 𝑑𝐴. In many applications,
the surface of the spacecraft may be accurately represented by a finite set of flat
areas, as shown in Figure 3.3. If a spacecraft is sufficiently modeled as a number of
planes, only the component that is perpendicular to the area will have an perturbing
effect. Its magnitude, per area, is equal to the projection of the velocity vector of
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na,1 

na,3 

na,2 

Area 1 Area 2 

Area 3 

Figure 3.3: Representation of a spacecraft as a composition of areas

the surface in the norm of the 𝑖­th area of the spacecraft, 𝑛𝑛𝑛𝑖𝑇𝑣𝑣𝑣𝑠,𝑖. This means that
the total effective area is given by

𝐴𝑒𝑓 =
𝑠

∑
𝑖=1
𝐴𝑖(�̂�𝑛𝑛𝑇𝑖 �̂�𝑣𝑣𝑠), (3.6)

where 𝑠 is equal to the amount of planar surfaces composing the spacecraft,𝐴𝑖
the magnitude of area 𝑖 amd �̂�𝑛𝑛𝑖 a unit vector perpendicular to the area 𝑖.

When a spacecraft is modeled as a number of planar surfaces, it is possible
to insert 3.6 in 3.1, and take into account that every planar surface may have a
different value of drag coefficient (𝐶𝐷) to determine the acceleration produced by
the atmospheric drag force.

This leads to the expression of the total atmospheric drag acceleration when the
spacecraft is modeled as a set of areas

𝑎𝑎𝑎𝑎 = −
1
2𝜌(𝑟𝑟𝑟)(

𝑠

∑
𝑖=1
𝐶𝐷,𝑖𝐴𝑖(�̂�𝑛𝑛𝑇𝑖 �̂�𝑣𝑣𝑠)) 𝑣2𝑠 �̂�𝑣𝑣𝑠 . (3.7)

In an similar fashion, the torque effect produced by the atmospheric drag when
the spacecraft is described as a set of areas is given by

𝜏𝜏𝜏𝑎 = −
1
2𝜌(𝑟𝑟𝑟)

𝑠

∑
𝑖=1
𝐶𝐷,𝑖𝐴𝑖(�̂�𝑛𝑛𝑖𝑣𝑣𝑣𝑠)(𝑑𝑑𝑑𝑖 ×𝑣𝑣𝑣𝑠), (3.8)

with 𝑑𝑑𝑑𝑖 the distance between the center of pressure of area 𝑖 and the center of
mass of the spacecraft.
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vat 

na,1 

va 

Figure 3.4: Representation of interaction of atmosphere particles with surface of a spacecraft. Specular
reflection is assumed.

From (3.7) and (3.8) it can be seen that, apart for a case where a satellite is
a perfect sphere, the equations present a dependency between orbit and attitude
dynamics. In the case of the dynamic coupling due to the atmospheric drag force
affecting the orbit dynamics, the effective area of the spacecraft is a direct function
of the attitude via the vector �̂�𝑛𝑛𝑖. In the case of the atmospheric drag torque,
the magnitude of the torque affecting the satellite depends on the altitude of the
spacecraft via the atmospheric density 𝜌(𝑟𝑟𝑟), hence, it is a direct dependency on its
orbit. In this work, the dependency between atmospheric drag force and attitude
is the source of coupling studied in Chapters 6 and 7.

3.3. Single Spacecraft Atmospheric Drag Perturba­
tion

In the previous chapter the complete space­state system under analysis was pre­
sented. The previous section explained how to model the determination of the
effective area of a spacecraft. Now, in this section, the expressions are derived
for the acceleration due to atmospheric drag projected on the inertial frame, and
for the torque perturbation on the body frame, showing the cross relation between
orbit and attitude dynamics. With this, the dynamics model necessary for this work
is complete.

The rotation matrices used here between reference frames were described and
derived in section 2.6. For notation purposes, expressing a vector 𝛼𝛼𝛼 like 𝛼𝛼𝛼|ℬ, 𝛼𝛼𝛼|ℐ
and 𝛼𝛼𝛼|ℰ, represents its projection in the reference frames ℬ,ℐ and ℰ respectively.

Using (3.7), the normal vector to every 𝑖 area of the spacecraft 𝑛𝑛𝑛𝑖 is well known
in the spacecraft body frame ℬ. For this reason, from now on, it will be assumed
that 𝑛𝑛𝑛𝑖|ℬ = 𝑛𝑛𝑛𝑖. In order to determine the expression of 𝑛𝑛𝑛𝑖 in the inertial frame ℐ,
the fact that 𝑞𝑞𝑞 is the rotation quaternion from the inertial to the body frame of the
spacecraft is used. From this, we obtain

𝑛𝑛𝑛𝑖|ℐ = 𝐷𝐷𝐷𝑇(𝑞𝑞𝑞) 𝑛𝑛𝑛𝑖|ℬ = 𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖 . (3.9)
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From here, if (3.9) and (3.3) are replaced in (3.7) the complete expression of
the atmospheric acceleration perturbation affecting the spacecraft is given by

𝑎𝑎𝑎𝑎 = −12
𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑚

𝑠

∑
𝑖=1
𝐴𝑖 {(𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)

𝑇 (𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟)} (𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟). (3.10)

In the case of the atmospheric drag torque affecting the spacecraft, it needs to
be expressed in ℬ. We have that the velocity of the spacecraft surface is known in
ℐ as 𝑣𝑣𝑣𝑠 = 𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑎𝑡 = 𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟. In order to obtain its value in ℬ it is necessary to
make a rotation such that

𝑣𝑣𝑣𝑠|ℬ = 𝐷𝐷𝐷(𝑞𝑞𝑞)𝑣𝑣𝑣𝑠 = 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟). (3.11)

Replacing Eq. 3.11 in 3.8 we arrive to the expression of the atmospheric drag
torque affecting the spacecraft in ℬ

𝜏𝜏𝜏𝑎 = −12𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑠

∑
𝑖=1
𝐴𝑖 (𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟))𝑑𝑑𝑑×𝑖 [𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟)] . (3.12)

3.4. Differential Atmospheric Drag Perturbations
In order to describe the effect of the differential atmospheric drag perturbations
effects in the frames where the dynamics states of Eq. 2.30 are defined, it is
necessary to describe them using the frames ℰ for orbit dynamics and ℬ for attitude
dynamics.

3.4.1. Forces
We take the vector of the acceleration caused by the atmospheric drag acceleration
( 3.1), in order to derive the expression for the differential drag Δ𝑎𝑝𝑎𝑝𝑎𝑝 affecting the
relative dynamics as a function of the states. For the deputy spacecraft, we have

𝑟𝑟𝑟2|ℰ = 𝑟𝑟𝑟|ℰ + �̃�𝑟𝑟 (3.13)

𝑣𝑣𝑣𝑠,2|ℰ = 𝑣𝑣𝑣|ℰ + �̃�𝑣𝑣 − 𝑣𝑣𝑣𝑎|ℰ , (3.14)

where 𝑟𝑟𝑟2 is the position of spacecraft 2 with respect to the center of Earth and
𝑣𝑣𝑣𝑠,2 is its velocity with respect to the atmosphere. Here �̃�𝑟𝑟 is in the frame ℰ, but the
notation is dropped because the state is defined in this frame already. To determine
the relative position vector of the second spacecraft, the definition of this frame
leads to 𝑟𝑟𝑟|ℰ = [𝑟, 0, 0]𝑇, so

𝑟𝑟𝑟2|ℰ = [
𝑟 + �̃�𝑥
�̃�𝑦
�̃�𝑧

] . (3.15)



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

3

52 3. Atmospheric Perturbations of Relative Dynamics

Taking the orbital rate of the reference orbit as Ω leads to

𝑣𝑣𝑣|ℰ = [
�̇�
𝑟Ω
0
] = [

𝑟𝑟𝑟𝑇𝑣𝑣𝑣
𝑟

𝑟 |𝑟𝑟𝑟
×𝑣𝑣𝑣
𝑟𝑟𝑟2 |
0

] . (3.16)

To determine the expression for the velocity of the atmosphere projected in ℰ,
the rotation between ℐ and ℰ is used

𝑣𝑣𝑣𝑎|ℰ = 𝐷𝐷𝐷|
ℰ
ℐ 𝑣𝑣𝑣𝑎 = 𝐷𝐷𝐷|

ℰ
ℐ (𝜔𝐸𝜔𝐸𝜔𝐸× 𝑟𝑟𝑟2|ℰ) = 𝐷𝐷𝐷|

ℰ
ℐ (𝜔𝐸𝜔𝐸𝜔𝐸× [

𝑟 + �̃�𝑥
�̃�𝑦
�̃�𝑧

]) , (3.17)

where 𝐷𝐷𝐷|ℰℐ is the rotation matrix from ℐ to ℰ. This rotation can be obtained using
the guidelines described in [101].

From here, it is possible to obtain

𝑣𝑣𝑣2|ℰ = [

𝑟𝑟𝑟𝑇𝑣𝑣𝑣
𝑟

𝑟 |𝑟𝑟𝑟
×𝑣𝑣𝑣
𝑟𝑟𝑟2 |
0

] + �̃�𝑣𝑣 − 𝐷𝐷𝐷|ℐℰ (𝜔𝐸𝜔𝐸𝜔𝐸× [
𝑟 + �̃�𝑥
�̃�𝑦
�̃�𝑧

]) . (3.18)

Finally, an expression for the vector normal to any area 𝑖 of spacecraft 2, 𝑛𝑛𝑛2,𝑖|ℰ,
is required. This vector is known in the body frame of the deputy spacecraft ℬ2.
The projection of this vector in ℰ is given by

𝑛𝑛𝑛2,𝑖|ℰ = 𝐷𝐷𝐷|
ℰ
ℐ 𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)𝐷𝐷𝐷𝑇(�̃�𝑞𝑞)𝑛𝑛𝑛2,𝑖 , (3.19)

where 𝑛𝑛𝑛2,𝑖 is the normal vector to the area 𝑖 of S/C 2 in ℬ2.
Substituing (3.15), (3.18) and (3.19) in (3.7) we have all the elements necessary

to express the atmospheric drag acceleration of the second spacecraft relative to
the first spacecraft using the states of the system (2.30). The differential drag is
then expressed as

Δ𝑎𝑝𝑎𝑝𝑎𝑝 = Δ𝑎𝑝𝑎𝑝𝑎𝑝|ℰ = 𝑎𝑎𝑎𝑎,2|ℰ − 𝐷𝐷𝐷|
ℰ
ℐ 𝑎𝑎𝑎𝑎,1|ℐ , (3.20)

where the frame notation is dropped from Δ𝑎𝑝𝑎𝑝𝑎𝑝 for simplification purposes and
with 𝑎𝑎𝑎𝑎,1|ℐ = 𝑎𝑎𝑎𝑎,1 derived in the previous section.

3.4.2. Torques
The expression of the atmospheric drag torque affecting the deputy spacecraft pro­
jected in ℬ2 as a function of the states of the system is determined in this section.

Taking the expression of the atmospheric drag torque (3.8) to determine the
absolute value of 𝑟𝑟𝑟2, the result from (3.15) may be used. Also, both the normal
vectors to the areas �̂�𝑛𝑛𝑖 and the distance vector between the center of pressure and
the center of mass per area 𝑑𝑑𝑑2,𝑖 projected in ℬ2 are assumed to be known. Given
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this condition, in order to compute the torque affecting spacecraft 2, it is only left
to determine the velocity of the deputy spacecraft with respect to the atmosphere
projected on ℬ2. Since

𝑣𝑣𝑣𝑠,2|ℬ2 = 𝐷𝐷𝐷(�̃�𝑞𝑞)𝐷𝐷𝐷(𝑞𝑞𝑞) (𝑣𝑣𝑣 + �̃�𝑣𝑣|ℐ − 𝑣𝑣𝑣𝑎|ℐ) , (3.21)

with

�̃�𝑣𝑣|ℐ = 𝐷𝐷𝐷|ℐℰ �̃�𝑣𝑣 + (Ω|
ℐ→ℰ
ℐ )

×
𝑟𝑟𝑟 = 𝐷𝐷𝐷|ℐℰ �̃�𝑣𝑣 +

(𝑟𝑟𝑟×𝑣𝑣𝑣)×
𝑟2 �̃�𝑟𝑟 (3.22)

𝑣𝑣𝑣𝑎,2|ℐ = 𝜔𝜔𝜔×𝐸𝑟𝑟𝑟2 = 𝜔𝜔𝜔×𝐸 (𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℐ
ℰ �̃�𝑟𝑟) , (3.23)

the final expression for the deputy spacecraft velocity with respect to the atmo­
sphere is

𝑣𝑣𝑣2|ℬ2 = 𝐷𝐷𝐷(�̃�𝑞𝑞)𝐷𝐷𝐷(𝑞𝑞𝑞) (𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℐℰ �̃�𝑣𝑣 +
(𝑟𝑟𝑟×𝑣𝑣𝑣)×
𝑟2 �̃�𝑟𝑟 −𝜔𝜔𝜔×𝐸 (𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℐ
ℰ �̃�𝑟𝑟)) .

(3.24)

By substituting (3.15) and (3.24) in (3.7) it is possible to arrive at the expression
of the atmospheric drag torque affecting the deputy spacecraft as a function of the
states expressed in frame ℬ2.

3.5. Magnitude of the Atmospheric Drag
In order to show how the atmospheric drag model that takes into account the
coupling between orbit and attitude dynamics of spacecraft influences the satellite
dynamics, the propagation of these effects over one orbit using the models derived
in this section is shown.

Consider a two­spacecraft system orbiting the Earth with dynamics described in
(2.30). These two spacecraft follow a circular equatorial orbit with an initial altitude
of 300 km in an along­track configuration with a relative distance of 1000 km.

These spacecraft are both 3 unit (3U) CubeSats, with 1 unit, or 1U, representing
a 10𝑥10𝑥10 cm3 volume, in a configuration leading to 30𝑥10𝑥10 cm3 satellites.

The conditions of the dynamics and the spacecraft characteristics used in the
propagation are given in Table 3.1. Two different initial conditions are used in
the simulations for the rotation state: one with no initial rotation for any of the
spacecraft, and one with an initial rotation for both of them. These initial conditions
are used to assess the impact of the rotation when coupling is taken into account.

It is assumed that both spacecraft are in a circular orbit. It is also assumed
that the atmospheric density is known, given by its value at solar radiation max­
imum, 3.96𝑥10−11 kg/m3. Propagation is performed using a Variable­step ode45
(Dormand­Prince) integrator with a maximum step size of 0.01 s. In Figure 3.5 the
propagation of the magnitude of different accelerations due to atmospheric drag
is shown. It can be seen how the effect differs when the spacecraft has an initial
rotation condition and when it doesn’t. For comparison purposes, the magnitude of



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 72PDF page: 72PDF page: 72PDF page: 72

3

54 3. Atmospheric Perturbations of Relative Dynamics

Table 3.1: Configuration of the dynamics of the system under study.

Initial Conditions.
Spacecraft S/C 1 S/C 2
Position [km] [300 + 𝑅𝐸, 0, 0] (300 + 𝑅𝐸)[cos𝜃2, sin𝜃2, 0]
Velocity [km/s] [0, 7.7142, 0] 7.7142[− sin𝜃2, cos𝜃2, 0]
Attitude quaternion [0, 0, 0, 1] [0, 0, 0, 1]
Rotation rate for the rotating case [rad/s] [0, 𝜋/18, 0] [0, 0, 𝜋/18]
True anomaly 𝜃 [rad] 0 𝑅𝐴/(𝑅𝐸 + 𝑅𝐴)
Along­track separation (𝑅𝐴) [km] 1000

Spacecraft mechanical characteristics.
Mass (m) [kg] 3.6 3.6
Inertia matrix (I) [kg.m2] diag[0.055, 0.055, 0.017] diag[0.055, 0.055, 0.017]
Drag coefficient (𝐶𝐷) 2.3 2.3
Spacecraft volume [cm3] 10x10x30 10x10x30

the effect of the atmospheric drag force if the spacecraft has a non­varying effective
area of 0.03 m2 (the largest of the sides of the spacecraft rectangular shape) and
0.01 m2 (the smallest of the sides of the spacecraft rectangular shape) is shown.
For reference, the propagation of the dynamics of the attitude states of the space­
craft for this propagation is shown in Figure 3.6.

It may be seen from Figure 3.5 that the average acceleration of a single space­
craft is approximately 2.3 x 10−5 N/kg. The variation about that average is ap­
proximately ±0.3×10−5 N/kg caused by coupling. This means that in this case, the
coupling effect on absolute acceleration are about 15% for the non­rotating case.

Now, the propagation of the magnitude of the differential atmospheric drag
under the same conditions is shown in Fig. 3.7. This effect is the fundamental
in this research work, given the fact that if both spacecraft have a very similar
atmospheric drag perturbation, the average of its effect may be enough to model
drag for most applications. Nevertheless, if the differential drag effect increases, it
is shown that for precision applications, its consideration may have an impact for
estimation purposes.

It is clear, again, how the difference in initial conditions affect the magnitude of
the differential drag. The effect of rotation creates a differential drag magnitude
larger than the case where no initial rotation is used. The average effect with
no initial rotation is 5.18×10−7 N/kg, but in the initial rotation case its average is
3.87×10−6 N/kg. This means that the magnitude of the differential atmospheric
drag effect is only 13% in the case of no initial rotation compared to the initial
rotation case. For reference purposes, in 3.8 the propagation of the relative attitude
states is shown.

Nevertheless, for both cases, there is a differential drag. In the case with no
initial rotation, it may be clearly seen in 3.8 that a small rotation due to the pertur­
bation itself is present, creating a differential drag effect.

Both figures demonstrate how the atmospheric drag acceleration is affected by
the attitude of the spacecraft, even with small spacecraft as a three­unit CubeSat.
In Chapters 5 and 6, the effect of this perturbation in terms of its observability and
estimation is analyzed.



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

3.5. Magnitude of the Atmospheric Drag

3

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Orbits

0.5

1

1.5

2

2.5

3

M
ag

ni
tu

de
 o

f t
he

 a
tm

os
ph

er
ic

 d
ra

g 
ac

ce
le

ra
tio

n 
(N

/k
g)

10-5

With initial rotation
no initial rotation

Constant effective area 0.03 m2

Constant effective area 0.01 m2

Figure 3.5: Propagation of the atmospheric drag acceleration over one orbit for the conditions given by
Table 3.1.
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Figure 3.6: Propagation of attitude states over one orbit for the conditions given by Table 3.1.
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Figure 3.7: Propagation of the differential atmospheric drag acceleration over one orbit for the conditions
given by Table 3.1.
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Figure 3.8: Propagation of the differential atmospheric drag acceleration over one orbit for the conditions
given by Table 3.1.
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4
Linearized State Model

In this chapter, the derivation of the linearization of the absolute and rela­
tive spacecraft dynamics perturbed by atmospheric drag is presented. The
results given here are necessary to prepare for the observability analysis
and the estimation implementation of the next chapters. The obtained par­
tial derivatives are a valuable source of information. Their propagation pro­
vides a first measure of the coupling between orbit and attitude absolute and
relative dynamics.

59
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4.1. Introduction
The description of the absolute and relative dynamics of two spacecraft flying in
formation, taking into account the coupling due to atmospheric drag, as introduced
at Chapters 2 and 3 is fundamentally nonlinear.

Due to the complexity of the description of relative dynamics presented in the
previous chapters, it is hardly possible to use nonlinear methods to accomplish
the goal of this thesis work. Typically, any direct use of nonlinear dynamics for
estimation and control requires a case­to­case analysis that is out of the scope of
this research. Nevertheless, the linearization of the system under analysis enables
to use the methods proposed in this work: the Observability Gramian (OG) for
the observability analysis (Chapter 5), and the Kalman Filter (KF) for estimation
purposes (Chapter 6).

The OG method requires that the system under analysis to be a linear time­
variant system. For this reason, the linearization of the nonlinear system under
study is mandatory for the application of the OG. On the other part, nonlinear sys­
tems states may be estimated by using an extension of the KF, called the Extended
Kalman Filter (EKF). The EKF uses the linearization of a nonlinear system in order
to define the equations of the filter.

Nonlinear dynamic systems are linearized around nominal values of their state
and control signal vectors. The linearized equations describing the dynamics of
a system are considered sufficient if the difference between the nominal and the
actual solution can be described by a set of linear differential equations, called linear
perturbation equations [102], described in this Chapter in detail.

In the following section, the results of the derivation that lead to the analytic
expressions of the linearization of the spacecraft dynamics system, described in
Chapter 2 (2.30), are presented.

For a more comprehensive analysis, linearization with respect to both 𝐽2 and the
gravitational torque effect are included in this chapter. Although they are not the
main focus of this thesis, its documentation is fundamental in order to expand this
work to non­equatorial orbits in the future.

4.2. Linear Perturbation Equations
When a system is linearized, the approximation is considered good if the difference
between the full non­linear equations and the linearized equations can be described
by a system of linear differential equations, called linear perturbation equations
[102]. The approximation may be done by a Taylor series expansion of the nonlinear
system.

Taking the following space­state model of a nonlinear system [102, 103]

�̇�𝑥𝑥(𝑡) = 𝑓𝑓𝑓(𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡) +𝐺𝐺𝐺(𝑡)𝑤𝑤𝑤(𝑡), (4.1)

and its associated measurement model

𝑧𝑧𝑧(𝑡) = ℎℎℎ(𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡)) + 𝑣𝑣𝑣(𝑡), (4.2)
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with 𝑥𝑥𝑥 ∈ ℝ𝑛 the system state, 𝑢𝑢𝑢(𝑡) ∈ ℝ𝑙 a deterministic quantity representing
the input of the system, 𝑧𝑧𝑧 ∈ ℝ𝑚 the output of the measurement system, 𝐺𝐺𝐺(𝑡) a
matrix in ℝ𝑛𝑥𝑛, and finally 𝑤𝑤𝑤(𝑡) ∈ ℝ𝑛 and 𝑣𝑣𝑣(𝑡) ∈ ℝ𝑚 representing the state and
output perturbations, assumed to be zero­mean Gaussian noise processes. This
means that the errors are not correlated so that

𝐸 {𝑣𝑣𝑣𝑘(𝑡)𝑣𝑣𝑣𝑇𝑗 (𝑡)} = {
0 𝑘 ≠ 𝑗
𝑅𝑘(𝑡) 𝑘 = 𝑗 (4.3)

𝐸 {𝑤𝑤𝑤𝑘(𝑡)𝑤𝑤𝑤𝑇𝑗 (𝑡)} = {
0 𝑘 ≠ 𝑗
𝑄𝑘(𝑡) 𝑘 = 𝑗 (4.4)

where 𝐸 {𝑎} represents the expected value of variable 𝑎. For this reason 𝑄𝑄𝑄(𝑡)
and 𝑅𝑅𝑅(𝑡) constitute diagonal matrices. These equations represent the system to be
linearized.

Take the nonlinear system of equation (4.1) and (4.2). If this system is expanded
around a nominal state 𝑥𝑥𝑥∗ and control vector 𝑢𝑢𝑢∗, let

𝛿𝑥𝑥𝑥(𝑡) = 𝑥𝑥𝑥(𝑡) − 𝑥𝑥𝑥∗(𝑡), 𝛿𝑢𝑢𝑢(𝑡) = 𝑢𝑢𝑢(𝑡) − 𝑢𝑢𝑢∗(𝑡). (4.5)

Then, using the Taylor expansion, it may be represented as [102]

𝑓𝑓𝑓(𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡) = 𝑓𝑓𝑓(𝑥𝑥𝑥∗(𝑡),𝑢𝑢𝑢∗(𝑡), 𝑡) + 𝐹𝐹𝐹𝑥[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡]𝛿𝑥𝑥𝑥 +𝐹𝐹𝐹𝑢[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡]𝛿𝑢𝑢𝑢(𝑡)
+𝒪, (4.6)

where 𝐹𝐹𝐹𝑥 ∈ ℝ𝑛×𝑛,𝐹𝐹𝐹𝑢 ∈ ℝ𝑛×𝑙 are the Jacobian matrices with 𝑛 being the number
of states and 𝑙 being the number of control variables and 𝒪 representing the higher
order terms in the state. This means that

𝐹𝐹𝐹𝑥[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] =
𝜕
𝜕𝑥𝑥𝑥𝑓𝑓𝑓[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥∗1

𝜕𝑓1
𝜕𝑥∗2

⋯ 𝜕𝑓1
𝜕𝑥∗𝑛−1

𝜕𝑓1
𝜕𝑥∗𝑛

𝜕𝑓2
𝜕𝑥∗1

𝜕𝑓2
𝜕𝑥∗2

⋯ 𝜕𝑓2
𝜕𝑥∗𝑛−1

𝜕𝑓2
𝜕𝑥∗𝑛

⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑥∗1

𝜕𝑓𝑛
𝜕𝑥∗2

⋯ 𝜕𝑓𝑛
𝜕𝑥∗𝑛−1

𝜕𝑓𝑛
𝜕𝑥∗𝑛

⎤
⎥
⎥
⎥
⎥
⎦

, (4.7)

𝐹𝐹𝐹𝑢[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] =
𝜕
𝜕𝑢𝑢𝑢𝑓𝑓𝑓[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑢∗1

𝜕𝑓1
𝜕𝑢∗2

⋯ 𝜕𝑓1
𝜕𝑢∗𝑛−1

𝜕𝑓1
𝜕𝑢∗𝑛

𝜕𝑓2
𝜕𝑢∗1

𝜕𝑓2
𝜕𝑢∗2

⋯ 𝜕𝑓2
𝜕𝑢∗𝑛−1

𝜕𝑓2
𝜕𝑢∗𝑛

⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑢∗1

𝜕𝑓𝑛
𝜕𝑢∗2

⋯ 𝜕𝑓𝑛
𝜕𝑢∗𝑛−1

𝜕𝑓𝑛
𝜕𝑢∗𝑛

⎤
⎥
⎥
⎥
⎥
⎦

, (4.8)

with 𝐹𝐹𝐹𝑥[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] is called the state transition matrix [41] and 𝐹𝐹𝐹𝑢[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡]
the partials of the dynamics with respect to the control variable. Here the notation
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𝜕𝑓𝑖
𝜕𝑢∗𝑗

= 𝜕𝑓𝑖
𝜕𝑢𝑗

|
𝑢𝑗=𝑢∗𝑗

(4.9)

is used for simplicity purposes. Please recall that in this thesis, if there is a
vector 𝑎𝑎𝑎 = [𝑎1𝑎2𝑎3]𝑇, then 𝑎×𝑎×𝑎× is given by the matrix

𝑎×𝑎×𝑎× = [
0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] . (4.10)

4.2.1. Derivation of the Linearized System
Let this system be linearized around a nominal value of the state 𝑥𝑥𝑥∗(𝑡) and the input
𝑢𝑢𝑢∗(𝑡). Then

𝑑
𝑑𝑡𝛿𝑥𝑥𝑥(𝑡) = 𝛿�̇�𝑥𝑥(𝑡) = �̇�𝑥𝑥(𝑡) − �̇�𝑥𝑥

∗(𝑡) = 𝑓(𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡) − 𝑓(𝑥𝑥𝑥∗(𝑡),𝑢𝑢𝑢∗(𝑡), 𝑡) +𝐺𝐺𝐺(𝑡)𝑤𝑤𝑤(𝑡).
(4.11)

If (4.6) is substituted in (4.11) and the higher order terms are neglected, the
following equation is obtained

𝑑
𝑑𝑡𝛿𝑥𝑥𝑥(𝑡) = 𝐹𝐹𝐹𝑥[𝑥𝑥𝑥

∗(𝑡),𝑢𝑢𝑢∗(𝑡), 𝑡]𝛿𝑥𝑥𝑥 −𝐹𝐹𝐹𝑢[𝑥𝑥𝑥∗(𝑡),𝑢𝑢𝑢∗(𝑡), 𝑡]𝛿𝑢𝑢𝑢 +𝐺𝐺𝐺(𝑡)𝑤𝑤𝑤(𝑡). (4.12)

For more details on the linearization theory, the reader is referred to [102].

4.3. Spacecraft Dynamics Linearization
For this work, only the State Transition Matrix 𝐹𝐹𝐹𝑥[𝑥𝑥𝑥(𝑡),𝑢𝑢𝑢(𝑡), 𝑡] will be derived. The
linearization of the measurements model (4.2) is not necessary, due to the fact that
it is assumed that the states can be measured directly, and 𝐹𝐹𝐹𝑢[𝑥𝑥𝑥∗(𝑡),𝑢𝑢𝑢∗(𝑡), 𝑡] is not
required because all the analysis is done assuming that no control is being applied
on the spacecraft. The reason for this is that the focus of this research is only the
effect of the coupled orbit­attitude dynamics representation. If done otherwise, the
model of the measurements and control may affect the observability analysis, and
it would be difficult to differentiate the effects from the dynamic coupling from the
effects of the measurement or the control method.

4.3.1. Linearization of the Absolute Dynamics
The partial derivatives of the unperturbed absolute dynamics are well known, and
shown in Table 4.1 for completeness (See [61] for the details on their derivation).
The atmospheric drag torque and force partial derivatives are derived for this work.
In this work, all scenarios assume a constant, known value of the atmospheric
density. Hence the partial derivatives with respect to the density are always null.
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Table 4.1: Absolute Orbital and Attitude State Partial Derivatives. Source [61]

𝜕�̇�𝑟𝑟
𝜕𝑟𝑟𝑟 0 𝜕�̇�𝑞𝑞

𝜕𝑟𝑟𝑟 0
𝜕�̇�𝑟𝑟
𝜕𝑣𝑣𝑣 𝐼3

𝜕�̇�𝑞𝑞
𝜕𝑣𝑣𝑣 0

𝜕�̇�𝑟𝑟
𝜕𝑞𝑞𝑞 0 𝜕�̇�𝑞𝑞

𝜕𝑞𝑞𝑞
1
2 Ω(𝜔𝜔𝜔)

𝜕�̇�𝑟𝑟
𝜕𝜔𝜔𝜔 0 𝜕�̇�𝑞𝑞

𝜕𝜔𝜔𝜔
1
2 Ξ(𝑞𝑞𝑞)

𝜕�̇�𝑣𝑣
𝜕𝑟𝑟𝑟

3𝜇
𝑟5 𝑟𝑟𝑟𝑟𝑟𝑟

𝑇 − 𝜇
𝑟3 𝐼3 +

𝜕𝑎𝑎𝑎𝑎
𝜕𝑟𝑟𝑟

𝜕�̇�𝜔𝜔
𝜕𝑟𝑟𝑟 𝐽−1 𝜕𝜏𝜏𝜏𝑔𝜕𝑞𝑞𝑞

𝜕�̇�𝑣𝑣
𝜕𝑣𝑣𝑣

𝜕𝑎𝑎𝑎𝑎
𝜕𝑣𝑣𝑣

𝜕�̇�𝜔𝜔
𝜕𝑣𝑣𝑣 0

𝜕�̇�𝑣𝑣
𝜕𝑞𝑞𝑞

𝜕𝑎𝑎𝑎𝑎
𝜕𝑞𝑞𝑞

𝜕�̇�𝜔𝜔
𝜕𝑞𝑞𝑞 𝐽−1 𝜕𝜏𝜏𝜏𝑔𝜕𝑞𝑞𝑞

𝜕�̇�𝑣𝑣
𝜕𝜔𝜔𝜔 0 𝜕�̇�𝜔𝜔

𝜕𝜔𝜔𝜔 −I−1𝜔𝜔𝜔×I+ I−1 [(I𝜔𝜔𝜔)×]

Atmospheric Drag Force
The expression for the atmospheric drag force which influences the dynamics of
the Chief spacecraft projected in ℐ derived in the previous chapter (Equation 3.10)
and repeated here for convenience, is given by

𝑎𝑎𝑎𝑎 = −12
𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑚

𝑠

∑
𝑖=1
𝐴𝑖 {(𝐷𝐷𝐷𝑇(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)

𝑇 (𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟)} (𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟). (4.13)

The partial derivatives of 𝑎𝑎𝑎𝑎 with respect to the absolute state components are
presented in Table 4.2.

Table 4.2: Partial derivatives of the atmospheric drag

𝜕𝑎𝑎𝑎𝑎
𝜕𝑟𝑟𝑟

𝜌(𝑟𝑟𝑟)
2𝑚

𝑘

∑
𝑖=1
𝐶𝑖𝐴𝑖

{((𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)𝑇𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)(𝜔𝜔𝜔×𝐸) + (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)(𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)𝑇(𝜔𝜔𝜔×𝐸)}

− 1
2𝑚 (

𝑘

∑
𝑖=1
𝐶𝑖𝐴𝑖 {(𝐷(𝑞𝑞𝑞)𝑇𝑛𝑛𝑛𝑖)

𝑇 (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)} (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))
𝜕𝜌(𝑟𝑟𝑟)
𝜕𝑟𝑟𝑟

𝜕𝑎𝑎𝑎𝑎
𝜕𝑣𝑣𝑣 − 𝜌(𝑟

𝑟𝑟)
2𝑚

𝑘

∑
𝑖=1
𝐶𝑖𝐴𝑖 (((𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)𝑇𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)𝐼3 + (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)(𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)𝑇)

𝜕𝑎𝑎𝑎𝑎
𝜕𝑞𝑞𝑞 − 𝜌(𝑟)2𝑚

𝑘

∑
𝑖=1
𝐻(𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))𝐶𝑖𝐴𝑖(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)((𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)𝑇

3

∑
𝑗=1

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,𝑗]
𝜕𝑞𝑞𝑞 �̂�[𝑗])

𝜕𝑎𝑎𝑎𝑎
𝜕𝜔𝜔𝜔 0

where
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𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,1]
𝜕𝑞𝑞𝑞 = 2 [

𝑞1 −𝑞2 −𝑞3 +𝑞4
𝑞2 𝑞1 −𝑞4 −𝑞3
𝑞3 𝑞4 𝑞1 𝑞2

] (4.14)

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,2]
𝜕𝑞𝑞𝑞 = 2 [

𝑞2 𝑞1 𝑞4 𝑞3
−𝑞1 𝑞2 −𝑞3 𝑞4
−𝑞4 𝑞3 𝑞2 −𝑞1

] (4.15)

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,3]
𝜕𝑞𝑞𝑞 = 2 [

𝑞3 −𝑞4 𝑞1 −𝑞2
𝑞4 𝑞3 𝑞2 𝑞1
−𝑞1 −𝑞2 𝑞3 𝑞4

] . (4.16)

Atmospheric Drag Torque
The expression for the atmospheric drag torque influencing the dynamics of the
Chief spacecraft projected in ℬ and derived in the previous chapter is given by

𝜏𝜏𝜏𝑎 = −12𝐶𝐷𝜌(𝑟𝑟𝑟)
𝑠

∑
𝑖=1
𝐴𝑖 (𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟))𝑑𝑑𝑑×𝑖 [𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝐸𝜔𝐸𝜔𝐸×𝑟𝑟𝑟)] . (4.17)

The partial derivatives of 𝜏𝜏𝜏𝑎 with respect to the absolute states are presented
in Table 4.3.

Table 4.3: Partial derivatives of the atmospheric drag torque

𝜕𝜏𝜏𝜏𝑎
𝜕𝑟𝑟𝑟

𝜌(𝑟𝑟𝑟)
𝑠

∑
𝑖=1
𝐴𝑖𝐶𝑖 ((𝑛𝑛𝑛𝑖𝑇𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))(𝑑𝑑𝑑×𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)𝜔𝜔𝜔×𝐸)

+(𝑑𝑑𝑑×𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))(𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)𝜔𝜔𝜔×𝐸)))+

𝜌(𝑟𝑟𝑟)
𝑠

∑
𝑖=1
(𝐴𝑖𝐶𝑖 (𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)) (𝑑𝑑𝑑×𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)))

𝜕𝜌(𝑟𝑟𝑟)
𝜕𝑟𝑟𝑟

𝜕𝜏𝜏𝜏𝑎
𝜕𝑣𝑣𝑣 𝜌(𝑟𝑟𝑟)

𝑠

∑
𝑖=1
𝐴𝑖𝐶𝑖 ((𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))(𝑑𝑑𝑑×𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)) + (𝑑𝑖𝑑𝑖𝑑𝑖×𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))(𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)))

𝜕𝜏𝜏𝜏𝑎
𝜕𝑞𝑞𝑞

𝜌(𝑟𝑟𝑟)
𝑠

∑
𝑖=1
𝐴𝑖𝐶𝑖 (𝑛𝑛𝑛𝑇𝑖 𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)

3

∑
𝑗=1
(𝑑𝑑𝑑×𝑖 (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))[𝑗]

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,1]
𝜕𝑞𝑞𝑞 +𝐷𝐷𝐷(𝑞𝑞𝑞)(𝑑𝑑𝑑×𝑖 (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟))

3

∑
𝑗=1
(𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)[𝑗]

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,𝑗]
𝜕𝑞𝑞𝑞 )

𝜕𝜏𝜏𝜏𝑎
𝜕𝜔𝜔𝜔 0
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The 𝐽2 Effect
The 𝐽2 effect projected in ℐ, as described in [40], is given by

𝑎𝑎𝑎𝐽2 = −
3𝜇𝑟𝑟𝑟2𝐸
2𝑚𝑟4 𝐽2 ((1 − 5

𝑟2𝑧
𝑟2)

𝑟𝑟𝑟
𝑟 + 2

𝑟𝑧
𝑟 �̂�𝑧𝑧) (4.18)

with 𝑚 the mass of the spacecraft, 𝑟𝑟𝑟𝐸 being the Equatorial radius of Earth, 𝑟 the
absolute value of the position 𝑟𝑟𝑟, 𝑟𝑧 the z­axis component of the 𝑟𝑟𝑟 state, �̂�𝑧𝑧 = [0, 0, 1]𝑇,
𝜇 the gravity coefficient of the Earth, and 𝐽2 the first zonal harmonic for Earth.

Its partial derivatives are given here for completeness.

Table 4.4: 𝐽2­effect partial derivatives

𝜕𝑎𝑎𝑎𝐽2
𝜕𝑟𝑟𝑟 −32𝜇𝐽2

𝑟𝑟𝑟2𝐸
𝑟4 ((1 − 5

𝑟23
𝑟2 ) (

1
𝑟 𝐼3 −

𝑟𝑟𝑟𝑟𝑟𝑟𝑇
𝑟3 ) +

𝑟𝑟𝑟
𝑟 (5

𝑟23𝑟𝑟𝑟𝑇
𝑟4 − 10 𝑟3�̂�𝑧𝑧

𝑇

𝑟2 ) + 2(−
𝑟3�̂�𝑧𝑧𝑟𝑟𝑟𝑇
𝑟3 + �̂�𝑧𝑧�̂�𝑧𝑧𝑇

𝑟 ))+

6𝜇𝐽2𝑟𝑟𝑟2𝐸 ((1 − 5
𝑟23
𝑟2 )

𝑟𝑟𝑟
𝑟 − 2

𝑟3
𝑟 �̂�𝑧𝑧) (

𝑟𝑟𝑟𝑇
𝑟6 )

𝜕𝑎𝑎𝑎𝐽2
𝜕𝑣𝑣𝑣 0
𝜕𝑎𝑎𝑎𝐽2
𝜕𝑞𝑞𝑞 0
𝜕𝑎𝑎𝑎𝐽2
𝜕𝜔𝜔𝜔 0

Gravitational Torque Effect
Any nonsymmetrical object of finite dimensions in orbit is subject to a gravitational
torque because of the variation in the Earth’s gravitational object over the object
[39]. If a spherical mass distribution of the Earth is assumed, this torque, projected
in frame ℬ, is given [39] as

𝜏𝜏𝜏𝑔 = 3 𝜇𝑟5 (𝑟𝑟𝑟|ℬ)
×(I 𝑟𝑟𝑟|ℬ). (4.19)

Recall that in this work it has been assumed that 𝑟𝑟𝑟 = 𝑟𝑟𝑟|ℐ. This means that
𝑟𝑟𝑟|ℬ = 𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟 so

𝜏𝜏𝜏𝑔 = 3 𝜇𝑟5 (𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)
×(I𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟). (4.20)

Its partial derivatives are given here for completeness.

𝜕𝜏𝜏𝜏𝑔
𝜕𝑟𝑟𝑟 = 3𝜇 { 1𝑟5 [((𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)

×(I𝐷(𝑞𝑞𝑞))) − ((I𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)×𝐷(𝑞𝑞𝑞))] + (𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)× (I𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟) (−5𝑟
𝑟𝑟𝑇
𝑟7 )}

(4.21)

𝜕𝜏𝜏𝜏𝑔
𝜕𝑣𝑣𝑣 = 0 (4.22)
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𝜕𝜏𝜏𝜏𝑔
𝜕𝑞𝑞𝑞 = 3 𝜇𝑟5 ((𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)

× (I
3

∑
𝑗=1
𝛽𝑗(𝑞𝑞𝑞)𝑟𝑗) − (I𝐷(𝑞𝑞𝑞)𝑟𝑟𝑟)× (

3

∑
𝑗=1
𝛽𝑗(𝑞𝑞𝑞)𝑟𝑗)) (4.23)

𝜕𝜏𝜏𝜏𝑔
𝜕𝜔𝜔𝜔 = 0 (4.24)

where

𝛽1(𝑞𝑞𝑞) = 2 [
𝑞1 𝑞2 −𝑞3 −𝑞4
−𝑞4 𝑞3 𝑞2 −𝑞1
𝑞3 𝑞4 𝑞1 𝑞2

] (4.25)

𝛽2(𝑞𝑞𝑞) = 2 [
𝑞4 𝑞3 𝑞2 𝑞1
𝑞1 −𝑞2 𝑞3 −𝑞4
𝑞2 −𝑞1 𝑞4 𝑞3

] (4.26)

𝛽3(𝑞𝑞𝑞) = 2 [
−𝑞3 𝑞4 −𝑞1 𝑞2
𝑞2 𝑞1 𝑞4 𝑞3
𝑞1 −𝑞2 −𝑞3 𝑞4

] . (4.27)

4.3.2. Linearization of the Relative Dynamics
The linearization of the relative dynamics is based on the relative dynamics model
presented in Chapter 2. For the purposes of this work, specially for the derivation of
these derivatives, the expressions for relative dynamics were derived in the previous
chapter as a function of the states only. This means, for example, that the angular
velocity of the orbital frame with respect to the inertial frame was given always in
terms of those states, and no simplifications were assumed. Therefore, the results
presented here will be of use for the analysis of observability and controllability of
relative spacecraft dynamics in future research.

It is noted that due to the lengthy derivation and for clarity purposes, in this
work the partial derivatives of the rotation matrices is not given. Nevertheless,
they are considered in the propagation of dynamics done in the next chapters.

Unperturbed Relative Dynamics
The unperturbed relative dynamics refer to the relative dynamics obtained in Chap­
ter 2, without considering perturbations. Perturbations, due to their complexity,
are considered separately.
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Table 4.5: Orbital relative dynamics state partial derivatives with respect to absolute states.

𝜕 ̇�̃�𝑥
𝜕𝑟𝑟𝑟 −2𝜇 (𝑟𝑟𝑟

𝑇

𝑟4 ) − 𝜇 [
1

[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]
3/2 + 3(

(𝑟+�̃�𝑥)2

[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]
5/2)]

𝑟𝑟𝑟𝑇
𝑟 + 2

𝜕
𝜕𝑟𝑟𝑟 (Ω) �̃�𝑦

+ 𝜕
𝜕𝑟𝑟𝑟 (Ω̇) �̃�𝑦 + 2Ω

𝜕
𝜕𝑟𝑟𝑟 (Ω) �̃�𝑥 +

𝜕Δ𝑎𝑝𝑥
𝜕𝑟𝑟𝑟

𝜕 ̇�̃�𝑦
𝜕𝑟𝑟𝑟 3𝜇�̃�𝑦 (

𝑟+�̃�𝑥
[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]

5/2)
𝑟𝑟𝑟𝑇
𝑟 − 2

𝜕
𝜕𝑟𝑟𝑟 (Ω) �̃�𝑥 −

𝜕
𝜕𝑟𝑟𝑟 (Ω̇) �̃�𝑥 + 2Ω

𝜕
𝜕𝑟𝑟𝑟 (Ω) �̃�𝑦 +

𝜕Δ𝑎𝑝𝑥
𝜕𝑟𝑟𝑟

𝜕 ̇�̃�𝑧
𝜕𝑟𝑟𝑟 3𝜇�̃�𝑧 (

𝑟+�̃�𝑥
[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]

5/2)
𝑟𝑟𝑟𝑇
𝑟 +

𝜕Δ𝑎𝑝𝑧
𝜕𝑟𝑟𝑟

𝜕 ̇�̃�𝑣𝑣
𝜕𝑣𝑣𝑣 2𝜕Ω𝜕𝑣𝑣𝑣 [

�̃�𝑦
�̃�𝑥
0
] + 𝜕Ω̇

𝜕𝑣𝑣𝑣 [
�̃�𝑦
�̃�𝑥
0
] + 2Ω𝜕Ω𝜕𝑣𝑣𝑣 [

�̃�𝑥
�̃�𝑦
0
] + 𝜕Δ𝑎𝑝𝑎𝑝𝑎𝑝

𝜕𝑣𝑣𝑣

Table 4.6: Orbital relative dynamics state partial derivatives

𝜕 ̇�̃�𝑥
𝜕�̃�𝑥

− 𝜇
[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]

3/2 + 3
𝜇(𝑟+�̃�𝑥)

[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]
5/2 �̃�𝑥 + Ω2 +

𝜕Δ𝑎𝑝𝑥
𝜕�̃�𝑥

𝜕 ̇�̃�𝑥
𝜕�̃�𝑦

3( 𝜇(𝑟+�̃�𝑥)
[(𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 ]

3/2) �̃�𝑦 + Ω̇ +
𝜕Δ𝑎𝑝𝑥
𝜕�̃�𝑦

𝜕 ̇�̃�𝑥
𝜕�̃�𝑧

3𝜇�̃�𝑧
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+ 𝜕Δ𝑎𝑝𝑥
𝜕�̃�𝑧

𝜕 ̇�̃�𝑦
𝜕�̃�𝑥

3𝜇�̃�𝑥�̃�𝑦
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

− Ω̇ +
𝜕Δ𝑎𝑝𝑦
𝜕�̃�𝑥

𝜕 ̇�̃�𝑦
𝜕�̃�𝑦

−𝜇 1
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )3/2

+ 3𝜇�̃�2𝑦
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+ Ω2 +
𝜕Δ𝑎𝑝𝑦
𝜕�̃�𝑦

𝜕 ̇�̃�𝑦
𝜕�̃�𝑧

3𝜇�̃�𝑦�̃�𝑧
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+
𝜕Δ𝑎𝑝𝑦
𝜕�̃�𝑧

𝜕 ̇�̃�𝑧
𝜕�̃�𝑥

3𝜇�̃�𝑥�̃�𝑧
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+
𝜕Δ𝑎𝑝𝑦
𝜕�̃�𝑥

𝜕 ̇�̃�𝑧
𝜕�̃�𝑦

3𝜇�̃�𝑦�̃�𝑧
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+ 𝜕Δ𝑎𝑝𝑧
𝜕�̃�𝑦

𝜕 ̇�̃�𝑧
𝜕�̃�𝑧

3𝜇�̃�2𝑧
((𝑟+�̃�𝑥)2+�̃�2𝑦+�̃�2𝑧 )5/2

+
𝜕Δ𝑎𝑝𝑦
𝜕�̃�𝑧

𝜕 ̇�̃�𝑣𝑣
𝜕�̃�𝑣𝑣 [

0 2Ω 0
−2Ω 0 0
0 0 0

]
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Table 4.7: Attitude relative dynamics state partial derivatives

𝜕I2�̃�𝜔𝜔
𝜕𝑟𝑟𝑟 −(I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 )

𝜕𝜏𝜏𝜏1
𝜕𝑟𝑟𝑟 +

𝜕𝜏𝜏𝜏2
𝜕𝑟𝑟𝑟

𝜕I2�̃�𝜔𝜔
𝜕𝑣𝑣𝑣 −(I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 )

𝜕𝜏𝜏𝜏1
𝜕𝑣𝑣𝑣 +

𝜕𝜏𝜏𝜏2
𝜕𝑣𝑣𝑣

𝜕I2�̃�𝜔𝜔
𝜕𝑞𝑞𝑞 −(I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 )

𝜕𝜏𝜏𝜏1
𝜕𝑞𝑞𝑞 +

𝜕𝜏𝜏𝜏2
𝜕𝑞𝑞𝑞

𝜕I2�̃�𝜔𝜔
𝜕𝜔𝜔𝜔 −(�̃�𝜔𝜔 +𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔)×(I2𝐷𝐷𝐷(�̃�𝑞𝑞)) + (I2(�̃�𝜔𝜔 +𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔))𝐷𝐷𝐷(�̃�𝑞𝑞)× + �̃�𝜔𝜔×(I2𝐷𝐷𝐷(�̃�𝑞𝑞))

−(I2𝐷𝐷𝐷(�̃�𝑞𝑞)I−11 ) ((I1𝜔𝜔𝜔)× −𝜔𝜔𝜔×I1 +
𝜕𝜏𝜏𝜏1
𝜕𝜔𝜔𝜔 ) +

𝜕𝜏𝜏𝜏2
𝜕𝜔𝜔𝜔

𝜕I2�̃�𝜔𝜔
𝜕�̃�𝑟𝑟

𝜕𝜏𝜏𝜏2
𝜕�̃�𝑟𝑟

𝜕I2�̃�𝜔𝜔
𝜕�̃�𝑣𝑣

𝜕𝜏𝜏𝜏2
𝜕�̃�𝑣𝑣

𝜕I2�̃�𝜔𝜔
𝜕�̃�𝑞𝑞 [− [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔]× + (�̃�𝜔𝜔×)]

⎡
⎢
⎢
⎢
⎣

I2

⎡
⎢
⎢
⎢
⎣

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[1,∶](�̃�𝑞𝑞)

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[2,∶](�̃�𝑞𝑞)

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[3,∶](�̃�𝑞𝑞)

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

+ (I2 [𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔 + �̃�𝜔𝜔])×

⎡
⎢
⎢
⎢
⎣

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[1,∶](�̃�𝑞𝑞)

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[2,∶](�̃�𝑞𝑞)

𝜔𝜔𝜔𝑇 𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[3,∶](�̃�𝑞𝑞)

⎤
⎥
⎥
⎥
⎦

− ⎛⎜

⎝

I2

⎡
⎢
⎢
⎢
⎣

(I−11 (−𝜔𝜔𝜔×(I1𝜔𝜔𝜔) + 𝜏𝜏𝜏1))𝑇
𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[1,∶](�̃�𝑞𝑞)

(I−11 (−𝜔𝜔𝜔×(I1𝜔𝜔𝜔) + 𝜏𝜏𝜏1))𝑇
𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[2,∶](�̃�𝑞𝑞)

(I−11 (−𝜔𝜔𝜔×(I1𝜔𝜔𝜔) + 𝜏𝜏𝜏1))𝑇
𝜕
𝜕�̃�𝑞𝑞𝐷𝐷𝐷

𝑇
[3,∶](�̃�𝑞𝑞)

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

+ 𝜕𝜏𝜏𝜏2
𝜕�̃�𝑞𝑞

𝜕I2�̃�𝜔𝜔
𝜕𝜔𝜔𝜔 −(�̃�𝜔𝜔 +𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔)×I2 + (I2(�̃�𝜔𝜔 +𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔))× − (I2𝐷𝐷𝐷(�̃�𝑞𝑞)𝜔𝜔𝜔)× +

𝜕𝜏𝜏𝜏2
𝜕�̃�𝜔𝜔

where

𝐷𝐷𝐷𝑇[1,∶](𝑞𝑞𝑞) = 2 [
𝑞1 −𝑞2 −𝑞3 𝑞4
𝑞2 𝑞1 𝑞4 𝑞3
𝑞3 −𝑞4 𝑞1 −𝑞2

] (4.28)

𝐷𝐷𝐷𝑇[1,∶](𝑞𝑞𝑞) = 2 [
𝑞2 𝑞1 −𝑞4 −𝑞3
−𝑞1 𝑞2 −𝑞3 𝑞4
𝑞4 𝑞3 𝑞2 𝑞1

] (4.29)

𝐷𝐷𝐷𝑇[1,∶](𝑞𝑞𝑞) = 2 [
𝑞3 𝑞4 𝑞1 𝑞2
−𝑞4 𝑞3 𝑞2 −𝑞1
−𝑞1 −𝑞2 𝑞3 𝑞4

] (4.30)

Differential Atmospheric Drag Force

Taking the expression for the atmospheric drag force projected in the ℐ frame de­
rived (3.20), this leads to
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𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕𝑟𝑟𝑟 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

{(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

𝜌(ℎ𝑖) exp(
ℎ𝑖 − |𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝐻𝑚
)( 𝑟𝑟𝑟𝑇

|𝑟𝑟𝑟|𝐻𝑚
+ 1
𝐻𝑚

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑟𝑟𝑟 ) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) ((𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))

(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑟𝑟𝑟 + Ω|ℐ→ℰℰ

×
+ 𝜕Ω

|ℐ→ℰℰ
×

𝜕𝑟𝑟𝑟 𝑟𝑟𝑟 + 𝜔×𝐸𝑡 +
𝜕𝜔×𝐸𝑡 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝜕𝑟𝑟𝑟 ) +

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇

(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑟𝑟𝑟 + Ω|ℐ→ℰℰ

×
+ 𝜕Ω

|ℐ→ℰℰ
×

𝜕𝑟𝑟𝑟 𝑟𝑟𝑟 + 𝜔×𝐸𝑡 +
𝜕𝜔×𝐸𝑡 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝜕𝑟𝑟𝑟 )} (4.31)

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕𝑣𝑣𝑣 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

{(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

(𝜌(ℎ𝑖) exp(
ℎ𝑖 − |𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝐻𝑚
)(𝜕 𝐷

𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑣𝑣𝑣 )) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) (𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

((𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇 (𝐼3 +
𝜕 𝐷𝐷𝐷|ℰℐ
𝜕𝑣𝑣𝑣 + 𝜕Ω

|ℐ→ℰℰ
×

𝜕𝑣𝑣𝑣 𝑟𝑟𝑟)) +

(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇 (𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

(𝐼3 +
𝜕 𝐷𝐷𝐷|ℰℐ
𝜕𝑣𝑣𝑣 + 𝜕Ω

|ℐ→ℰℰ
×

𝜕𝑣𝑣𝑣 𝑟𝑟𝑟)} (4.32)
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70 4. Linearized State Model

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕𝑞𝑞𝑞 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟)

{(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

[(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

𝑇 𝜕 (𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)
𝜕𝑞𝑞𝑞 ]}

(4.33)

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕𝜔𝜔𝜔 = 0 (4.34)

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕�̃�𝑟𝑟 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

{(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

𝜌(ℎ𝑖) exp(
ℎ𝑖 − |𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝐻𝑚
)( (𝑟

𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟)𝑇

|𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟|𝐻𝑚
𝐷𝐷𝐷|ℰℐ) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) [((𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))

(𝜔×𝐸𝑡 𝐷𝐷𝐷|
ℰ
ℐ ) + (𝑣𝑣𝑣 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇

(𝜔×𝐸𝑡 𝐷𝐷𝐷|
ℰ
ℐ )]} (4.35)

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕�̃�𝑣𝑣 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟)

{((𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇(𝑣𝑣𝑣 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑣𝑣|ℰ + Ω|

ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))) 𝐷𝐷𝐷|

ℰ
ℐ +

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)) (𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)𝑇 𝐷𝐷𝐷|

ℰ
ℐ }
(4.36)

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕�̃�𝑞𝑞 = 1

2
𝐶𝐷,2𝐴𝑑,𝑖
𝑚2

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟)

{(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

(𝑣𝑣𝑣 + 𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣|ℰ + Ω|
ℐ→ℰ
ℰ

×
𝑟𝑟𝑟 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))

𝑇 𝜕(𝐷𝐷𝐷(𝑞𝑞𝑞 ⊕ �̃�𝑞𝑞)𝑛𝑛𝑛2,𝐴)
𝜕�̃�𝑞𝑞 }

(4.37)
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4.3. Spacecraft Dynamics Linearization

4

71

𝜕 𝑎𝑎𝑎𝑎,2|ℐ
𝜕�̃�𝜔𝜔 = 000 (4.38)

Differential Atmospheric Drag Torque
Taking the expression for the atmospheric drag torque projected in the ℬ frame,
repeated here for convenience

𝜏𝜏𝜏𝑎,2|ℬ = 1
2𝐶𝐷,2𝐴𝑑,𝑖𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟) (𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟)))) . (4.39)

Then, we get

𝜕𝜏𝜏𝜏𝑎,2
𝜕𝑟𝑟𝑟 = 1

2𝐶𝐷,2𝐴𝑑,𝑖 {(𝑛𝑛𝑛
𝑇
2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

𝜌(ℎ𝑖) exp(
ℎ𝑖 − |𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝐻𝑚
)( 𝑟𝑟𝑟𝑇

|𝑟𝑟𝑟|𝐻𝑚
+ 1
𝐻𝑚

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑟𝑟𝑟 ) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) (𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑟𝑟𝑟 + 𝜔×𝐸𝑡 + 𝜔×𝐸𝑡

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑟𝑟𝑟 )) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) (𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑟𝑟𝑟 + 𝜔×𝐸𝑡 + 𝜔×𝐸𝑡

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑟𝑟𝑟 ))} (4.40)

𝜕𝜏𝜏𝜏𝑎,2
𝜕𝑣𝑣𝑣 = 1

2𝐶𝐷,2𝐴𝑑,𝑖𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟) {(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑣𝑣𝑣 + 𝐼3 +𝜔𝜔𝜔×𝐸

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑣𝑣𝑣 )) +

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜕 𝐷
𝐷𝐷|ℰℐ �̃�𝑣𝑣
𝜕𝑣𝑣𝑣 + 𝐼3 +𝜔𝜔𝜔×𝐸

𝜕 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟
𝜕𝑣𝑣𝑣 ))} (4.41)
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𝜕𝜏𝜏𝜏𝑎,2
𝜕𝑞𝑞𝑞 = 1

2𝐶𝐷,2𝐴𝑑,𝑖𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟) {(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞)
3

∑
𝑗=1

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,𝑗]
𝜕𝑞𝑞𝑞 (𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))[𝑗]) +

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞)
3

∑
𝑗=1

𝜕𝐷𝐷𝐷(𝑞𝑞𝑞)[∶,𝑗]
𝜕𝑞𝑞𝑞 (𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))[𝑗])} (4.42)

𝜕𝜏𝜏𝜏𝑎,2
𝜕�̃�𝑟𝑟 = 1

2𝐶𝐷,2𝐴𝑑,𝑖 {(𝑛𝑛𝑛
𝑇
2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

𝜌(ℎ𝑖) exp(
ℎ𝑖 − |𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟

𝐻𝑚
)( (𝑟

𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟)𝑇

|𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟|𝐻𝑚
𝐷𝐷𝐷|ℰℐ) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) (𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜔𝜔𝜔×𝐸 𝐷𝐷𝐷|
ℰ
ℐ ))) +

𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|ℰℐ �̃�𝑟𝑟) (𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝜔𝜔𝜔×𝐸 𝐷𝐷𝐷|
ℰ
ℐ )))} (4.43)

𝜕𝜏𝜏𝜏𝑎,2
𝜕�̃�𝑣𝑣 = 1

2𝐶𝐷,2𝐴𝑑,𝑖𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟) {(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞) 𝐷𝐷𝐷|ℰℐ )) + (𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞) 𝐷𝐷𝐷|ℰℐ ))} (4.44)

𝜕𝜏𝜏𝜏𝑎,2
𝜕�̃�𝑞𝑞 = 1

2𝐶𝐷,2𝐴𝑑,𝑖𝜌(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟) {(𝑑𝑑𝑑×2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟))))

(𝑛𝑛𝑛𝑇2,𝐴
3

∑
𝑗=1

𝜕𝐷𝐷𝐷(�̃�𝑞𝑞)[∶,𝑗]
𝜕�̃�𝑞𝑞 (𝐷𝐷𝐷(𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))[𝑗]) +

(𝑛𝑛𝑛𝑇2,𝐴(𝐷𝐷𝐷(�̃�𝑞𝑞 ⊕𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|
ℰ
ℐ �̃�𝑟𝑟))))

(𝑑𝑑𝑑×2,𝐴
3

∑
𝑗=1

𝜕𝐷𝐷𝐷(�̃�𝑞𝑞)[∶,𝑗]
𝜕�̃�𝑞𝑞 (𝐷𝐷𝐷(𝑞𝑞𝑞)(𝐷𝐷𝐷|ℰℐ �̃�𝑣𝑣 + 𝑣𝑣𝑣 + 𝜔×𝐸𝑡(𝑟𝑟𝑟 + 𝐷𝐷𝐷|

ℰ
ℐ �̃�𝑟𝑟)))[𝑗])} (4.45)
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where

𝜕𝐷𝐷𝐷(�̃�𝑞𝑞)[∶,1]
𝜕�̃�𝑞𝑞 = 2 [

�̃�1 �̃�2 −�̃�3 −�̃�4
−�̃�4 �̃�3 �̃�2 −�̃�1
�̃�3 �̃�4 �̃�1 �̃�2

] (4.46)

𝜕𝐷𝐷𝐷(�̃�𝑞𝑞)[∶,2]
𝜕�̃�𝑞𝑞 = 2 [

�̃�4 �̃�3 �̃�2 �̃�1
�̃�1 −�̃�2 �̃�3 −�̃�4
−�̃�2 −�̃�1 �̃�3 �̃�4

] (4.47)

𝜕𝐷𝐷𝐷(�̃�𝑞𝑞)[∶,3]
𝜕�̃�𝑞𝑞 = 2 [

−�̃�3 �̃�4 −�̃�1 �̃�2
�̃�2 �̃�1 �̃�4 �̃�3
�̃�1 −�̃�2 −�̃�3 �̃�4

] (4.48)

4.3.3. Matrix Multiplication Partial Derivative
The linearization of the dynamics of the relative attitude of spacecraft requires the
derivation of the partial derivatives of matrices that are included in the state for
which the linearization is done. This section describes the way to obtain the partial
derivatives that depend on the variable to be derived when it is multiplied with a
vector. This method was derived for this work, since no equivalent methods were
found. This is useful to derive rotation matrices that depend directly on the states.

Assume the existence of vectors 𝑥𝑥𝑥 ∈ ℝ𝑛, 𝑣𝑣𝑣 ∈ ℝ𝑚 and a matrix𝑀𝑀𝑀(𝑥𝑥𝑥) ∈ ℝ𝑝×𝑚. If
the derivative of, e.g.

𝜕 (𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣)
𝜕𝑥𝑥𝑥 , (4.49)

is needed, the use of the chain rule is not straightforward. Due to the fact that
𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣 ∈ ℝ𝑛 , so the result needs to be an element of ℝ𝑛×𝑛.

The problem can be solved in two different ways presented here for reference.

4.3.4. Method 1: Row operations method
Model the matrix multiplication as a series of vector multiplications in each row

𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣 =
⎡
⎢
⎢
⎣

𝑀𝑀𝑀(𝑥𝑥𝑥)[1,∶]𝑣𝑣𝑣
𝑀𝑀𝑀(𝑥𝑥𝑥)[2,∶]𝑣𝑣𝑣

..
𝑀𝑀𝑀(𝑥𝑥𝑥)[𝑝,∶]𝑣𝑣𝑣

⎤
⎥
⎥
⎦
∈ ℝ𝑝 (4.50)

with 𝑀𝑀𝑀[𝑖,∶] being the 𝑖­th row of matrix 𝑀𝑀𝑀(𝑥𝑥𝑥). This means that each element
𝑀𝑀𝑀[𝑖,∶]𝑣𝑣𝑣 is a scalar. Then

𝜕(𝑀[𝑖,∶]𝑣𝑣𝑣)
𝜕𝑥𝑥𝑥 = 𝑣𝑣𝑣

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)𝑇[𝑖,∶]
𝜕𝑥𝑥𝑥 , (4.51)

where 𝜕𝑀𝑀𝑀𝑇
[𝑖,∶]/𝜕𝑥𝑥𝑥 has the form of a typical vector partial derivative. Therefore,
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𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣
𝜕𝑥𝑥𝑥 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑣𝑣𝑣𝑇 𝜕𝑀
𝑀𝑀(𝑥𝑥𝑥)𝑇[1,∶]
𝜕𝑥𝑥𝑥

𝑣𝑣𝑣𝑇 𝜕𝑀
𝑀𝑀(𝑥𝑥𝑥)𝑇[2,∶]
𝜕𝑥𝑥𝑥
..

𝑣𝑣𝑣𝑇 𝜕𝑀
𝑀𝑀(𝑥𝑥𝑥)𝑇[𝑛,∶]
𝜕𝑥𝑥𝑥

⎤
⎥
⎥
⎥
⎥
⎦

. (4.52)

4.3.5. Method 2: Column operations method
The matrix­vector multiplication can be also expressed as

𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣 = 𝑣1𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,1] + 𝑣2𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,2] + ... + 𝑣𝑚𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,𝑚], (4.53)

with 𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,𝑖] being the 𝑖 column of matrix 𝑀𝑀𝑀(𝑥𝑥𝑥). Then, it is clear that for each
element

𝜕𝑣𝑖𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,𝑖]
𝜕𝑥𝑥𝑥 = 𝑣𝑖

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,𝑖]
𝜕𝑥𝑥𝑥 . (4.54)

This leads to

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)𝑣𝑣𝑣
𝜕𝑥𝑥𝑥 = 𝑣1

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,1]
𝜕𝑥𝑥𝑥 + 𝑣2

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,2]
𝜕𝑥𝑥𝑥 + ... + 𝑣𝑚

𝜕𝑀𝑀𝑀(𝑥𝑥𝑥)[∶,𝑚]
𝜕𝑥𝑥𝑥 . (4.55)

Clearly, both methods are identical in their final result. Nevertheless, one may
be more convenient than than the other depending on the case. Both of them are
used to arrive at the partial derivatives derivations presented in this chapter.

4.4. Verification
Due to the error­prone analytical derivation of the partial derivatives, their verifica­
tion is fundamental. In order to do this, the analytic results of the partial derivatives
are propagated and compared with the results from a numerical propagation. The
method for the numerical propagation is described here.

4.4.1. Difference Quotient Approximations
The analytical calculation of partial derivatives in this chapter is prone to errors due
to their complexity. The method of difference quotient approximation is presented
here to determine the partial derivatives numerically.

For a given initial state 𝑦𝑦𝑦0 and a nominal coefficient 𝛼, the dynamic equation
partial derivative is obtained from the first­order different quotient [41]

𝜕𝑦𝑦𝑦(𝑡)
𝜕𝛼 ≈ 𝑦

𝑦𝑦(𝑡,𝑦𝑦𝑦0, 𝛼 + Δ𝛼) − 𝑦𝑦𝑦(𝑡,𝑦𝑦𝑦0, 𝛼)
Δ𝛼 , (4.56)

where the parameter 𝛼 + Δ𝛼 is used to vary the trajectory of 𝑦𝑦𝑦. As the authors
of [41] describe, the major drawback of the approach lies in the difficulty of choos­
ing a proper value for the parameter increment Δ𝛼. In this work, its selection is
considered sufficient if it leads to a relative error of less than 0.1%.
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Table 4.8: Initial conditions for the dynamics of the system under study. for an along­track separation
(𝑅𝐴) of 1000 km. Two initial rotation rate cases will be used for comparison purposes. The angular
separation between the two spacecraft, given that they are in the same orbit, is their difference in true
anomaly, a function of 𝑅𝐴 (here Earth radius 𝑅𝐸 = 6, 371 km ).

State S/C 1 S/C 2
Position [km] [300 + 𝑅𝐸, 0, 0] (300 + 𝑅𝐸)[cos𝜃2, sin𝜃2, 0]
Velocity [km/s] [0, 7.7142, 0] 7.7142[− sin𝜃2, cos𝜃2, 0]
Attitude quaternion [0, 0, 0, 1] [0, 0, 0, 1]
Rotation rate for the rotating case [rad/s] [0, 𝜋/18, 0] [0, 0, 𝜋/18]
True anomaly 𝜃 [rad] 0 𝑅𝐴

𝑅𝐸+𝑅𝐴

Table 4.9: Increment parameters for the numerical integration of the partial derivatives. These incre­
mented parameters are used for both the absolute and the relative states

Absolute and Relative State Value
Δ𝑟𝑟𝑟,Δ�̃�𝑟𝑟 (m) 1
Δ𝑣𝑣𝑣,Δ�̃�𝑣𝑣 (m/s) 0.01
Δ𝑞𝑞𝑞,Δ�̃�𝑞𝑞 0.01
Δ𝜔𝜔𝜔,Δ�̃�𝜔𝜔 (rad/s) 0.001

4.4.2. Verification Scenario
The scenario selected is based on two spacecraft flying in formation, with an along
track separation of 1000 km at a 300 km altitude circular and equatorial orbit. Their
complete initial dynamics are described in Table 4.8.

The calculation of the numeric partial derivatives is done using the difference
quotient approximation presented in the previous section. The selection of the
increment parameter for the numerical integration is presented in Table 4.9.

4.4.3. Sample Results of the Verification
In Figure 4.1 the numerically and the analytically propagated derivatives for 𝜕�̇�𝑣𝑣/𝜕𝑟𝑟𝑟
are shown and the difference between the symbolic and the numerical propagation.
Clearly, in this case, the error is six orders of magnitude smaller than the magnitude
of both the numeric and symbolic propagation. For this reason, the verification is
consider satisfactory.

The atmospheric drag partial derivatives obtained here were also verified using
numerical propagation. The acceleration due to the atmospheric drag in the ℐ frame
is given by

𝑎𝑎𝑎𝑎 = −12
𝜌(𝑟𝑟𝑟)
𝑚

𝑠

∑
𝑖=1
𝐶𝑖𝐴𝑖 {(𝐷𝑇(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)

𝑇 (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)} (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟). (4.57)

The variation of atmospheric drag with respect to the velocity is given by
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10-6 Analytical Propagation
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10-6 Numeric Propagation
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Figure 4.1: Propagation of the analytical and numeric partial derivative 𝜕�̇�𝑣𝑣/𝜕𝑟𝑟𝑟 as an example of the
verification
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Figure 4.2: Propagation of the numerical variation of the atmospheric drag force with respect to the
velocity. The derivation of the third component is not shown due to the fact that the propagation is
done in an equatorial orbit.

𝜕𝑎𝑎𝑎𝑎
𝜕𝑣𝑣𝑣 = −𝜌(𝑟

𝑟𝑟)
2𝑚

𝑘

∑
𝑖=1
𝐶𝑖𝐴𝑖 (((𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)𝑇𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)𝐼3 + (𝑣𝑣𝑣 −𝜔𝜔𝜔×𝐸𝑟𝑟𝑟)(𝐷𝐷𝐷(𝑞𝑞𝑞)𝑛𝑛𝑛𝑖)𝑇) . (4.58)

The propagation of the numerical variation and the analytical expressions of this
partial derivative of atmospheric drag acceleration is shown in Fig. 4.2 and 4.3. The
difference between the analytical and the numerical propagations is then shown in
Figure 4.4. The error is nine order of magnitude smaller than the magnitude of the
propagation of the partial derivatives. Hence the verification is consider satisfactory.
Here, the propagation is shown in two coordinates, due to the fact that the both the
atmospheric drag force and the velocity are zero in the axis that is perpendicular to
the spacecraft orbit, for an equatorial orbit.

For a more general verification of the atmospheric drag partial derivatives ex­
pressions, Figure 4.5 shows for example the results of the numerical and analytical
propagation of the partial derivatives with respect to the orbit absolute states, and
the differences between both of them. Here, it is clear that in the worst­case sce­
nario, the error is six orders of magnitude smaller than the magnitude of the partial
derivatives propagations, proving one more time that the verification is sucessful.
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Figure 4.3: Propagation of the symbolic variation of the atmospheric drag force with respect to the
velocity.The derivation of the third component is not shown due to the fact that the propagation is done
in an equatorial orbit.
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Figure 4.4: Differences in the analytical and numerical results of the of the atmospheric drag force with
respect to the velocity. The derivation of the third component is not shown due to the fact that the
propagation is done in an equatorial orbit.
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Figure 4.5: Verification result of the atmospheric drag force acceleration partial derivatives with respect
to the absolute orbit state.
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5
Observability of Coupled

Orbit and Attitude Dynamics

In this chapter, the Observability Gramian is used as a tool to determine
how the consideration of coupling between position and attitude influences
the observability of absolute and relative states of the spacecraft attitude
and orbital dynamics. Scenarios where observability of all states is only
possible by taking into account coupling are of special interest in the analysis
presented here.

81
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5.1. Introduction
The answer of the first research question of this work ”How can the coupling be­
tween attitude and orbit dynamics affect the observability of the relative dynamics
of spacecraft?” leads to the necessity to determine how different environmental
factors affect the observability of the dynamic states of two spacecraft in the for­
mation. Answering how these factors affect observability by the use of methods
that would only lead to the conclusion on whether a system is observable or not
would be unsatisfactory.

Nevertheless, the application of the OG method offers an evaluation that does
not only allow to conclude whether a system is observable or not, but also shows
the observability level of any analyzed system, and enables the comparison of two
observable systems. This is enabled by the fact that the ratio between the high­
est and the lowest eigenvalue of the OG is a numerical quantity that indicates the
observability level of a system. Take for example two systems that are both ob­
servable. The highest/lowest eigenvalue ratio indicates numerically which of the
two systems is better observable, thus helping to conclude, as it is shown in one
case in this chapter, if the rotation of the satellite improves the observability of the
system with limited measurement conditions. Nonlinear methods such as the use
of Lie Algebra to determine the observability of the system only lead to the conclu­
sion of whether a system is observable or not, with no possibility to compare the
observability of two or more systems. Such comparisons are not possible, to the
best knowledge of the author, with any known nonlinear observability method.

5.2. Observability Analysis of Spacecraft Dynamics
When working on estimation problems, it is important to assess how the observ­
ability of spacecraft relative dynamics is affected by factors like the geometry of
the formation or the sensor configuration or the mathematical model of a system
dynamics.

For this purpose, different methods of system theory have been used for the
evaluation of the observability of spacecraft dynamics. For example, a linear time
invariant (LTI) method is used in [79]. In [80] and [81] the nonlinear relative
dynamics are directly evaluated via the Lie algebraic observability method.

However, these methods only determine if the system is observable or not. They
do not provide any information indicating how observable a system is.

To overcome this shortcoming, one possible solution is the use of the Observ­
ability Gramian (OG) method. The OG is a linear time variant method. Here, we
make use of the linearized time­variant version of the nonlinear system to make
use of the OG. This methodology enables the possibility to determine the level of
observability of a system under evaluation. The use of the Observability Gramian
for spacecraft dynamics observability evaluation is not new, but is limited to few
publications like [79] and [82]. Here the focus is given on how the sensor design
and positioning affect the observability level of the estimation system.

It is important to notice that the value of the Observability Gramian resides on
the fact that it does not only provide a numerical ratio of the observability level of a
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system under evaluation. Instead, as shown in [80], the inverse of the Observability
Gramian is directly related to the highest bound of the covariance of the error via
the dilution of precision (DOP) based covariance forecast.

Achieving full observability of spacecraft dynamics systems under limited sens­
ing configurations is an area of increasing interest for researchers. In [63] it is
presented how full observability of the orbital elements of a single spacecraft is
achieved by using magnetometers and sun sensor data only. In [83], the authors
show how the orbital elements of a relative spacecraft configuration can be ob­
served by using only relative position measurements. In these cases, observability
is demonstrated by directly showing the estimation results. This method, however,
provides limited information about the level of observability of such cases, since the
improvement in estimation is not only constrained by observability itself, but also
to the performance of the estimation method itself.

The present chapter evaluates the observability of spacecraft relative position
and attitude. The contribution of this research consists in investigating, using the
OG as a tool, to what extend the coupling effects between orbit and attitude dy­
namics can be advantageously exploited for estimation purposes. We use a simple
yet common configuration of two spacecraft in along track formation flying in low
Earth Orbit (LEO) as a case study defined in Chapter 2. Here the atmospheric drag
perturbation presented in Chapter 3 constitutes the source of dynamic coupling
between orbital and attitude absolute and relative dynamics.

We are able to show that in constrained sensing configurations, this considera­
tion may not only enable full observability, but reveals how the observability level
varies with respect to the area of the spacecraft and the initial dynamics conditions
due to the coupling effect caused by the atmospheric drag.

The proposed system can easily be extended to any number of spacecraft, and
as such, constitutes a tool for the evaluation of how the coupling between relative
attitude and orbital dynamics can improve the performance of the estimation of
their dynamics.

5.3. The Observability Gramian
Take a linear time­variant system (LTV) with the form

�̇�𝑥𝑥(𝑡) = 𝐴𝐴𝐴(𝑡)𝑥𝑥𝑥(𝑡), (5.1)
𝑧𝑧𝑧(𝑡) = 𝐻𝐻𝐻(𝑡)𝑥𝑥𝑥(𝑡) + 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡), (5.2)

where 𝑥𝑥𝑥 ∈ ℝ𝑛 is the state, 𝑧𝑧𝑧 ∈ ℝ𝑚 is the output resulting from the measure­
ments, 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡) ∼ 𝑁(0,R(𝑡)) with R(𝑡) ∈ ℝ𝑚 its variance matrix , and time­variant
matrices A(𝑡) ∈ ℝ𝑛𝑥𝑛 ,H(𝑡) ∈ ℝ𝑚𝑥𝑛. The solution for the state has the form
𝑥𝑥𝑥(𝑡) = ΦΦΦ(𝑡, 𝑡0)𝑥𝑥𝑥(𝑡0), with ΦΦΦ(𝑡, 𝑡0) being the state transition matrix.

For this system, the Observability Gramian (OG) III(𝑡, 𝑡0) ∈ ℝ𝑛×𝑛 is defined as
[77, Ch. 7]

III(𝑡, 𝑡0) = ∫
𝑡

𝑡0
ΦΦΦ(𝜏, 𝑡)𝑇𝐻𝐻𝐻𝑇(𝜏)𝑅𝑅𝑅−1(𝜏)𝐻𝐻𝐻(𝜏)ΦΦΦ(𝜏, 𝑡)𝑑𝜏. (5.3)
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An LTV system is observable if III(𝑡, 𝑡0) is positive definite. According to [104],
the magnitude of each eigenvalue of the OG gives an indication of the degree
of observability of the system. The ratio between the largest and the smallest
eigenvalue is defined as the observability index, also known as condition number.
The observability degree refers to the fact that some states yield higher output
norms from the output signal than others [105, Ch.4].

With III(𝑡, 𝑡0) defined, the linear time­variant observability condition results in the
definition [80]:

Definition: The 𝑛𝑡ℎ order, linear time­varying version of the system of Equation
5.3 is said to be locally observable if, and only if, the matrix III(𝑡, 𝑡0) is rank 𝑛.

5.3.1. Determination of the Observability Grammian
In this thesis, the state space representation of the dynamics given by equation
2.30 has the general form

�̇�𝑥𝑥 = f(𝑥𝑥𝑥, 𝑡). (5.4)

With 𝛿𝑥𝑥𝑥 = 𝑥𝑥𝑥 −𝑥𝑥𝑥∗ we have the discretized perturbation state­variable model associ­
ated with the linearized version of the nonlinear system (5.4) as described in detail
in Chapter 4.

𝛿�̇�𝑥𝑥 = 𝐹𝐹𝐹𝑥(𝑥𝑥𝑥∗, 𝑡)𝛿𝑥𝑥𝑥, (5.5)

where 𝐹𝐹𝐹𝑥 is a 𝑛 × 𝑛 Jacobian matrix; i.e.

𝐹𝐹𝐹𝑥(𝑥𝑥𝑥∗, 𝑡) =
⎡
⎢
⎢
⎣

𝜕𝑓1(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕𝑓1(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕𝑓𝑛(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⎤
⎥
⎥
⎦
, (5.6)

and x∗ represents the nominal trajectory. In this work, the gradient of the nonlinear
system is numerically propagated in order to obtain a local linearized representation
of the dynamics, enabling the use of the Observability Gramian for observability
analysis purposes. Chapter 4 of this work details the derivation of the gradient of
the nonlinear system under analysis. These results are used in this chapter for the
propagation of the Observability Gramian.

5.3.2. Coupling Elements in the Transition Matrix
In order to determine the Observability Gramian, it is necessary to compute the
transition matrix of the nonlinear system described in the previous section. When
coupling between orbital and attitude dynamics is taken into account, the gradient
matrix of the system in equation [2.30] has the form
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𝜕�̇�𝑥𝑥
𝜕𝑥𝑥𝑥 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 𝜕�̇�𝑟𝑟
𝜕𝑣𝑣𝑣 0 0 0 0 0 0

𝜕�̇�𝑣𝑣
𝜕𝑟𝑟𝑟

𝜕�̇�𝑣𝑣
𝜕𝑣𝑣𝑣

𝜕�̇�𝑣𝑣
𝜕𝑞𝑞𝑞 0 0 0 0 0

0 0 𝜕�̇�𝑞𝑞
𝜕𝑞𝑞𝑞

𝜕�̇�𝑞𝑞
𝜕𝜔𝜔𝜔 0 0 0 0

𝜕�̇�𝜔𝜔
𝜕𝑟𝑟𝑟

𝜕�̇�𝜔𝜔
𝜕𝑣𝑣𝑣

𝜕�̇�𝜔𝜔
𝜕𝑞𝑞𝑞

𝜕�̇�𝜔𝜔
𝜕𝜔𝜔𝜔 0 0 0 0

0 0 0 0 0 𝜕 ̇�̃�𝑟𝑟
𝜕�̃�𝑣𝑣 0 0

𝜕 ̇�̃�𝑣𝑣
𝜕𝑟𝑟𝑟

𝜕 ̇�̃�𝑣𝑣
𝜕𝑣𝑣𝑣

𝜕 ̇�̃�𝑣𝑣
𝜕𝑞𝑞𝑞 0 𝜕 ̇�̃�𝑣𝑣

𝜕�̃�𝑟𝑟
𝜕 ̇�̃�𝑣𝑣
𝜕�̃�𝑣𝑣

𝜕 ̇�̃�𝑣𝑣
𝜕�̃�𝑞𝑞 0

0 0 0 0 0 0 𝜕 ̇�̃�𝑞𝑞
𝜕�̃�𝑞𝑞

𝜕 ̇�̃�𝑞𝑞
𝜕�̃�𝜔𝜔

𝜕 ̇�̃�𝜔𝜔
𝜕𝑟𝑟𝑟

𝜕 ̇�̃�𝜔𝜔
𝜕𝑣𝑣𝑣

𝜕 ̇�̃�𝜔𝜔
𝜕𝑞𝑞𝑞

𝜕 ̇�̃�𝜔𝜔
𝜕𝜔𝜔𝜔

𝜕 ̇�̃�𝜔𝜔
𝜕�̃�𝑟𝑟

𝜕 ̇�̃�𝜔𝜔
𝜕�̃�𝑣𝑣

𝜕 ̇�̃�𝜔𝜔
𝜕�̃�𝑞𝑞

𝜕 ̇�̃�𝜔𝜔
𝜕�̃�𝜔𝜔

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.7)

In this expression, the elements marked by boxes are the coupling terms be­
tween orbital and attitude dynamics. Hence, if there is a change of the degree of
observability of the system, it means that the relative values of these elements are
significant with respect to the elements that already existed when the coupling was
not taken into account.

An example is the variation of the relative acceleration with respect to the relative
orientation 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞. As explained before, the atmospheric drag is the strongest
nonlinear acceleration affecting spacecraft in formation in orbits as low as 300 km
altitude. This drag is a linear function of the effective area of each spacecraft
(eq. 4.57). If there is a variation of the relative orientation �̃�𝑞𝑞, in cases where both
spacecraft are of non­spherical shape, this implies that at least one of the spacecraft
effective areas has changed, thus varying the total differential acceleration affecting
the formation.

5.4. Scenario
We consider a two­spacecraft system orbiting the Earth with dynamics described
in equation (2.30). These two spacecraft follow a circular equatorial orbit with an
initial altitude of 300 km in an along­track configuration with a relative distance of
1000 km. The use of this orbit is justified by its applicability in distributed space
systems (DSS) missions ranking from Earth­observation to gravity measurement.
This orbit is of use also for future DSS missions to limit the debris density.

The conditions of the dynamics and the spacecraft mechanical characteristics
used in the propagation are given in Table 5.1. Two different initial conditions are
used in the simulations for the rotation rate: one with no initial rotation for any of
the spacecraft, and one with an initial rotation for both of them. They are used to
asses the impact of the rotating conditions on the observability when coupling is
taken into account.

Given that the spacecraft are in a circular orbit, it will be assumed that the at­
mospheric density is known and constant, and is given by its value at solar radiation
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Table 5.1: Configuration of the dynamics of the system under study.

Initial Conditions
Spacecraft S/C 1 S/C 2
Position (km) [300 + 𝑅𝐸, 0, 0] (300 + 𝑅𝐸)[cos𝜃2, sin𝜃2, 0]
Velocity (km/s) [0, 7.7142, 0] 7.7142[− sin𝜃2, cos𝜃2, 0]
Attitude quaternion [0, 0, 0, 1] [0, 0, 0, 1]
Rotation rate for the rotating case (rad/s) [0, 𝜋/18, 0] [0, 0, 𝜋/18]
Initial along­track separation (𝑅𝐴) 1000 km

Spacecraft mechanical characteristics.
Mass (m) 3.6 kg 3.6 kg

Inertia matrix (I) [
0.055 0 0
0 0.055 0
0 0 0.017

] kgm2 [
0.055 0 0
0 0.055 0
0 0 0.017

] kgm2

Drag coefficient (𝐶𝐷) 2.3 2.3

Table 5.2: Values of maximum Atmospheric density as a function of the altitude (see [36], inside its rear
cover, for complete table).

Altitude (km) 300 350 400 450
Maximum atmospheric density (kg/m3) 3.96𝑥10−11 1.66𝑥10−11 7.55𝑥10−12 3.61𝑥10−12

maximum (see Table5.2).
The gradient matrix (eq. 5.7) of the system under study is numerically propa­

gated. With this it is possible to obtain the transition matrix of the linearized system
ΦΦΦ(𝑡, 𝑡0) used in the OG propagation (eq. 5.3). The linearization is done in every
evaluation step, emulating a linear­time­variant system.

Given that the present work focuses on the impact of the dynamics model on
observability, a simple measurement model is used: direct measurements of the
states with no noise. It is assumed that this scenario has no noise for a better un­
derstanding of the coupling effect itself without other effects affecting the Gramian
results. In order to do this, the R matrix is assumed to be an identity matrix of
proper size. Nevertheless, when the accuracy of sensors has to be taken into ac­
count, accounting for the noise level of the sensors is mandatory. Modifications of
these assumptions, such as more complex sensor scenarios may be added easily
by modifying the matrix H and R of Eq. 5.2.

Different measurements scenarios are defined to evaluate their impact in the
observability (Table 5.3). Here, the first two cases (1 and 2) are the extreme cases
where only one sensor is measuring a single relative state, in order to evaluate the
impact of that single state measurement on the complete observability result. Case
3 is a case where it is assumed that the system has position sensors (absolute and
relative). In this case, all observability results related to attitude are attributed to
coupling. In analogy to case 3, case 4 only includes absolute and relative attitude
measurements. Case 5 includes only relative measurements, in order to evaluate as
well the observability of the absolute states with this indirect measurement. Case
6 includes all sensors considered in the previous cases.

In this work, we focus on cases like 1 from Table 5.4 instead of more typical
measuring configurations like case 6, because the former shows clearly the effect
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Table 5.3: Measurement configurations. An ”x” indicates a measurement of the state.

Case 𝑟𝑟𝑟 𝑣𝑣𝑣 𝑞𝑞𝑞 𝜔𝜔𝜔 �̃�𝑟𝑟 �̃�𝑣𝑣 �̃�𝑞𝑞 �̃�𝜔𝜔 Description
1 x Only relative position
2 x Only relative attitude
3 x x All position measurements
4 x x All attitude measurements
5 x x All relative measurements
6 x x x x All available measurements

Table 5.4: Variation of the area of the spacecraft for sensitivity analysis.

Area Configuration size [cm3]
1 30x 10 x 10
2 60 x 20 x 20
3 120 x 30 x 30
4 240 x 40 x40

of coupling in observability while in the latter the effect is marginal. For example,
when �̃�𝑞𝑞 is directly measured, both �̃�𝑞𝑞 and �̃�𝜔𝜔 are fully observable. Instead, when the
only measurement available is �̃�𝑟𝑟, only �̃�𝑟𝑟 and �̃�𝑣𝑣 are fully observable, and the only
way �̃�𝑞𝑞 may become observable is through the coupling (see the related explanation
about the element 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 in section 5.3.2), thus revealing the magnitude of how
the coupling consideration affects the observability.

Different spacecraft areas are used as a parameter to see how the observability
is influenced by the consideration of coupling. Cuboid­shaped spacecraft are used
with areas shown in Table 5.4.

To properly interpret the results of this work, it is necessary to normalize the
states [106]. This normalization is done based on the work of [104, p.84]. In it, in
equation 3.39, the author describes that the dimensional system may be related to
the nondimensional system via

A = 𝐶X = 𝑑𝑖𝑎𝑔 (1𝐿 ,
1
𝐿 ,
1
𝐿 ,
1
𝑉 ,
1
𝑉 ,
1
𝑉 , ...)X (5.8)

with X describing the state of the dimensional system, and A the resulting nondi­
mensional system state vector. Here, 𝐿 is given in position units, and 𝑉 in velocity
units, and so on. The factors used to normalize the states in this work are summa­
rized in Table 5.5

Different normalizers have been used for orbital relative states compared to the

Table 5.5: Normalization factors. The quaternion states do not require normalization.

State Normalization divisor Representation
𝑟𝑟𝑟 Semimajor Axis of the orbit 𝑎
𝑣𝑣𝑣, �̃�𝑣𝑣 Magnitude of maximum velocity √𝜇/𝑎
𝜔𝜔𝜔, �̃�𝜔𝜔 Maximum assumed rotation rate 𝜋/18 rad/s
�̃�𝑟𝑟 Initial distance between spacecraft 1000 km
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orbital absolute states due to their difference in magnitude in this work.

5.5. Results and Analysis
5.5.1. Gradient Variation under Coupled Dynamics
The origin of the influence of the coupling between the attitude and the orbital
dynamics of the system, reflected in the Observability Gramian (OG) results, can be
traced to the elements of the gradient matrix of the nonlinear system that would
not exist if the coupling consideration is not present, as described in section 5.3.2.
Thus, before using the OG, the gradient matrix of the system under consideration
(Eq. 5.7) provides a tool to explore the influence of the coupling between orbital
and attitude dynamics of the system.

For a first approach to illustrate the coupling between orbital and attitude dy­
namics, the result of the gradient matrix both using coupling and no­coupling in the
dynamics model is propagated for one orbit. When the coupling is taken into ac­
count, the atmospheric drag model described in Chapter 3 is used. When coupling
is not taken into account, it is assumed that the effective areas of the spacecraft
are constant and their values are assumed to be the maximum possible given the
spacecraft configurations (see Table 5.4). Due to the fact that the magnitude of
the atmospheric drag torque depends on the altitude (a direct dependency on the
orbital states), we assume no atmospheric drag torque for the non­coupling case.

The first propagation is done using two spacecraft with the dimensions of a
3­unit CubeSat (Configuration 1 of Table 5.4) and an initial non­zero rotating rate
(as defined in Table 5.1). These results are shown in Figure 5.1 (no coupling) and
Figure 5.2 (with coupling). In the second propagation, a spacecraft with a larger
surface area is used (Configuration 4 of Table 5.4 for both satellites). The result of
these propagations for the uncoupled and coupled case is illustrated in Figure 5.3
and Figure 5.4 respectively . In it is shown the approximately largest value of the
propagation of the gradient matrix of the system when the coupling consideration
is not taken into account and when it is taken into account, respectively. These
graphics give visually an idea of how the coupling affects the magnitude of the
gradient elements, how new elements appear in the gradient, and the magnitude
of such elements. With this, we can get insight of the influence of the coupling in
the system.

In both cases, it can be observed that taking into account coupling does not
alter significantly the maximum values of the elements of the gradient that already
existed for the non­coupling case. This is caused by the difference of magnitude
between the gravitational attraction force, that is at least five orders of magnitude
larger than the atmospheric perturbation. Nevertheless, the coupling consideration
does create new elements that influence the observability degree of the system,
like 𝜕�̇�𝑞𝑞/𝜕𝑟𝑟𝑟. These elements explain the differences in the observability evaluations
of next section.

When the results of area configurations 1 and 4 are compared, it can be ob­
served that all the elements that only exist when coupling is used, increase their
magnitude linearly as a function of the increase of the areas of the spacecraft (all
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Figure 5.1: Maximum value of the gradiant matrix of the space state system under study for case 1,
area configuration 1, rotating, when coupling is not taken into account. Values are shown in a logarithm
scale.
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Figure 5.2: Maximum value of the gradiant matrix of the space state system under study for case 1, area
configuration 1,rotating when coupling is taken into account. Values are shown in a logarithm scale.
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Figure 5.3: Maximum value of the gradiant matrix of the space state system under study for case 1,
area configuration 4, rotating, when coupling is not taken into account. Values are shown in a logarithm
scale.
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∂
v̇

∂
q̇

∂
ω̇

∂
˙̃ r

∂
˙̃ v

∂
˙̃ q

∂
˙̃ ω

Figure 5.4: Maximum value of the gradiant matrix of the space state system under study for case 1, area
configuration 4, rotating when coupling is taken into account. Values are shown in a logarithm scale.
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these elements are 32 times larger for area configuration 4 compared to area con­
figuration 1), leading to the conclusion that for the scenario under analysis, only
the ratio 𝐴/𝑚 influences the coupling components propagation results. This linear
dependency was verified for all area configurations on Table 5.4. This is expected
because the magnitude of the increment of the coupling elements, depending on
the requirements of a mission, may create a non negligible influence on the observ­
ability results, as it will be shown in the next section.

To illustrate how the gradients vary in detail, take as an example the propagation
of 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞. This element is only present in the gradient matrix, and hence in the
observability analysis, if coupling is considered. In Fig. 5.5 and 5.6 the propagation
of this elements is shown for one orbit with and without an initial rotation rate. It
is important to notice that this element is not zero even when the initial conditions
of rotation are null for both spacecraft due to the influence of the atmospheric drag
torque. It can be observed that if the maximum value in both cases does not vary
significantly it does not imply that their behavior is the same.

Let us compare the case of area configuration 1 with the case where we use
area configuration 4 illustrated for the component 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 in fig. 5.7 and 5.8. The
maximum value of the result is linearly dependent on the maximum possible value
of the effective area (a factor of 32), as explained before. In this scenario, this
coupling element may be considered significant with respect to the other elements
of the gradient for estimation purposes.

5.5.2. Observability using Observability Gramian Eigenvalues
As mentioned in Section 5.3, the ratio between the highest and the lowest eigen­
values of the OG provides a direct measurement of the degree of observability of
a system. Using this property, the eigenvalues of the system under study under
different measurement scenarios are determined. The results are normalized with
respect to the highest eigenvalue, to ease the interpretation of the results.

First, an analysis is done with only one element of the state observable (either
�̃�𝑟𝑟 or �̃�𝑞𝑞) to investigate the impact of coupling. Later, we compare the impact of the
different measurement cases and the orbit altitude on the observability.

Evaluation 1: Relative Position or Relative Attitude Measurement Only
First, let us assume a scenario where only the relative position (�̃�𝑟𝑟) or the relative
attitude (�̃�𝑞𝑞) between the two spacecraft are directly measured, and the other ele­
ments of the state are estimated from there. Clearly, it is impossible to have a fully
observable system unless the coupling is taken into account.

Fig. 5.9 and 5.10, show the results of the normalized eigenvalues when the
system is initially not rotating and when it is initially rotating for different spacecraft
area configurations at an altitude of 300 km. It is obvious that the observability is
increased as a direct function of the spacecraft area.

Now, take the eigenvalue with the lowest magnitude (eigenvalue 24). For both
cases, this eigenvalue is related to the absolute position of the leader spacecraft.
Its magnitude is low due to the fact that the dependency of 𝑟𝑟𝑟 with respect to �̃�𝑟𝑟 in
a nearly­circular orbit (it is important to remember that the orbit is not perfectly
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circular due to the perturbation of drag) is very small.
Presumably, other scenarios with a non­circular orbit, causing that the variation

of the atmospheric perturbation with respect to 𝑟𝑟𝑟 increases, would increase the
observability of this state. This result is out of the scope of this study, and will be
explored in the future.

For the propagation of measurement case 2, with results shown in Fig. 5.10,
the lowest eigenvalues are related to the relative position �̃�𝑟𝑟 (the lowest one), the
absolute position 𝑟𝑟𝑟, the relative velocity �̃�𝑣𝑣 and the velocity of the spacecraft �̃�𝑣𝑣,
in that order. This is expected since the measurements of �̃�𝑞𝑞 tell little about the
absolute and relative position and velocity.

It is visible that in the left case of Fig. 5.9, that we call ”Case A” most eigenvalues
increase considerably as a result of the increase in spacecraft area.

Evaluation 2: Changes in Measurements Configuration
It has been shown in previous works, like [82], that the measurement configura­
tion influences the degree of observability of the relative dynamics of spacecraft.
Nevertheless, a complex dynamics model with coupling between orbit and attitude
has never been considered in these analyses. To determine its effect in this sce­
nario, the OG has been propagated with the different measurement configurations
described in Table 5.3, using Area Configuration 4 and with both spacecraft initially
rotating for various altitudes. The results are shown in Fig. 5.11.

Clearly, given the fact that drag is the perturbing agent generating the coupling,
when coupling affects observability (all cases but case 6), the observability is better
for lower altitudes. This effect is analyzed in more detail in the next subsection.

In this scenario, the altitude measurements cases (cases 2 and 4), both absolute
and relative provide better observability results than the position measurements
cases (cases 1 and 3). This is given due to the fact that in each propagation altitude
does not vary significantly (initial circular orbit), but the effective area also varies
constantly, thus giving more elements for observability evaluation. Nevertheless,
checking if this is the case in a highly elliptical orbit may be a result of a future
evaluation.

For measurement case 6, where there is no necessity to take into account the
coupling effect to guarantee full observability, the condition number of the OG shows
that there is no variation in the level of observability with respect to the variation
of the altitude. This happens because the elements in the gradient that enable
observability in this case are very large (gravity force), and the contributions of
the coupling­generating elements to increase the observability (perturbations) are
negligible in comparison.

Evaluation 3: Observability Sensitivity with Respect to Altitude
To have a more accurate notion on how the observability is affected by altitude, an
evaluation of the variation of the eigenvalues with respect to different altitudes is
done (Fig. 5.12). This example shows that for the limited observability conditions
of measurement case 1 (Table 5.3), the rotation of the spacecraft does increase the
level of observability of the system. Taking into account that the atmospheric den­
sity at 300 km altitude is only one order of magnitude larger than its value at 450 km
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(see Table 5.2), other elements have to be considered to explain the difference in
magnitude of the smallest eigenvalue. The orbital velocity is not the factor affecting
either, because it is not even one order of magnitude larger (approximately 7.73 at
300 km altitude versus 7.64 km/s at 450 km altitude). The increase in the lowest
eigenvalue is even more pronounced when the spacecraft is rotating. What is the
relation between the physical factors and the increase in observability may be the
subject to future research.

5.6. Remarks
The OG has been employed as a tool to evaluate the dependency of the observ­
ability on the dynamics of relative dynamics of spacecraft. It has been shown that
the coupling, created by the atmospheric drag for spacecraft in formation in LEO,
enables observability of the complete state not possible without such coupling.
Furthermore, the sensitivity of the degree of observability has been analyzed with
changing altitude and spacecraft mechanical characteristics. As a result, new ele­
ments on the gradient of the dynamics are appearing, creating a significant change
on the observability of the system.

The cases of limited observability, where only the relative position of the space­
craft or the relative attitude of the spacecraft are measured, are of special interest in
this work. They show that full observability is achieved, not possible in the scenario
under study without such coupling.

Although this effect has been presented in previous publications, in this research
a method was proposed that allows to quantitatively compare how different condi­
tions may change the observability in a methodical way. This contrasts to the use of
the propagated estimating results as a comparison method, where other elements
(as the performance of the selected estimator itself) may have an influence on the
result.

The OG method also helps to determine in the design phase of missions which
sensor scenario benefits the most from this coupling. This information is therefore
very valuable for the relative spacecraft dynamics estimation implementation, as
well as the design of sensor suites for formation flying missions.
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Figure 5.5: Variation of 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 when the system is not initially rotating for one orbit on a spacecraft
system with area configuration 1 (smallest)
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Figure 5.6: Variation of 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 when the system is initially rotating for one orbit on a spacecraft system
with area configuration 1 (smallest).



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

5.6. Remarks

5

95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

∂
v
/
∂
q

Orbits

 

 
(1,1)
(1,2)
(1,3])
(1,4)
(2,1)
(2,2)
(2,3)
(2,4)
(3,1)
(3,2)
(3,3)
(3,4)

Figure 5.7: Variation of 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 when the system is initially not rotating for one orbit on a spacecraft
system with area configuration 4 (largest)
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Figure 5.8: Variation of 𝜕 ̇�̃�𝑣𝑣/𝜕�̃�𝑞𝑞 when the system is initially rotating for one orbit on a spacecraft system
with area configuration 4 (largest)
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Figure 5.9: Variation of the eigenvalues with respect to spacecraft area for measurement case 1 (only
relative position) at an altitude of 300 km. Left: with no initial rotation. Right: with initial rotation.

Figure 5.10: Variation of the eigenvalues with respect to spacecraft area. Measurement case 2 (only
relative attitude) at an altitude of 300 km. Left: with no initial rotation. Right: with initial rotation.
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Figure 5.11: Observability degree vs to altitude for measurements described on Table 5.3

Figure 5.12: Eigenvalues variation vs altitude. Measurement case 1 (only relative position), Area Con­
figuration 1 (30x10x10 cm). Left: with no initial rotation. Right: with initial rotation.
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6
Estimation of Coupled Orbit

and Attitude Dynamics

In this chapter, the Extended Kalman Filter is used as a tool to determine
how drag­induced coupling between position and attitude influences the ob­
servability of the spacecraft relative attitude and orbital dynamics.

99
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In previous years the assumption that relative spacecraft orbital and attitude
dynamics are not coupled has been deemed accurate enough for estimation and
control purposes [43, 45–47]. Nevertheless, recent works are taking into account
the joint representation of attitude and orbital dynamics for improved guidance,
navigation and control performance.

In [48, 49] the gravity­induced mutual coupling between orbital and attitude dy­
namics is taken into account when solving a spacecraft relative dynamics tracking
problem using nonlinear control techniques. In [50] the coupling effect generated
by the gravity gradient and the solar pressure is considered in the spacecraft for­
mation control system for a space interferometry mission. Similarly, in [51] it is de­
scribed how the gravity gradient, solar pressure and atmospheric drag are a source
of coupling between attitude and orbital dynamics. Later, this dynamics model is
applied for control purposes in [52]. Furthermore, the coupling effect generated by
actuation is considered in [53–57]. The modeling of dynamics affected by coupling
in deep space missions is reported in [58, 59].

A joint relative orbital and attitude dynamics representation for estimation pur­
poses is not new [64, 70, 107]. However, unlike the cited control application exam­
ples, none of these took the coupling between orbital and attitude dynamics into
account. This simplification is typically well justified when the magnitude of this
coupling effect is negligible.

Nevertheless, the dynamic coupling between orbit and attitude dynamics for
estimation purposes was considered as early as 1982 [1]. In this work, a dynamic
coupling given by both the gravity gradient and the atmospheric perturbation for
a single spacecraft with very high area to mass ratio in a very low orbit (a low­
eccentricity orbit at 250 km altitude) was considered.

Since this time, most of the focus of research between orbit and attitude dynam­
ics for estimation purposes was focused on measurement­related coupling, such as
vision­based navigation (VISNAV). For example, in [71] the 𝐽2­term in the Earth’s
gravitational potential is taken into account to estimate the relative pose using an
Unscented Kalman Filter, and in [72] a similar work is done using a Cubature Predic­
tive Filter. In these papers, the dynamics are estimated using an arbitrary reference
center within the satellite. A similar assumption of measurements from an arbitrary
feature point of the spacecraft is done in [73]. Due to the fact that this coupling is
not related to any force, it is considered a kinematic coupling. Multiple works take a
similar approach in considering the measurement model as the source of coupling
between orbit and attitude relative dynamics [64, 65, 67–69, 108, 109].

Another example of objects in orbit where the coupling is taken into account for
purposes of estimation is the tracking of Space­Debris with High Area­to­Mass ratio
from terrestrial telescopes [62]. In this work, an Unscented Kalman Filter is used
for the observation of the orbit and attitude of objects near the Geostationary orbit
(GEO), where the effect of the solar pressure is not negligible.

Nevertheless, to the best of our knowledge, no work has been published yet
where the coupling between the attitude and orbital dynamics caused by external
perturbations is adopted in spacecraft relative dynamics models to improve their
estimation accuracy, in a similar fashion as it has been used for control purposes.
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There are many estimation methods for states. The Least­Squares (LSQ) Esti­
mators, or Kalman Filters, named after R. Kalman who developed it in 1959 [102],
are some of the best known.

The present chapter evaluates how such coupling affects the spacecraft relative
position and attitude estimation, in order to answer the second research question
”How can the coupling between attitude and orbit dynamics be used to improve the
performance of estimation for relative dynamics of spacecraft?” This work presents
a similar objective as [1] but this time in the realm of relative pose dynamics. The
contribution of this research consists in investigating, using a spacecraft dynamics
estimator, to what extent the coupling effects between orbit and attitude dynamics
can be advantageously exploited for estimation purposes. The focus of this re­
search is the evaluation of the coupled relative pose physical model, and for this
reason, a very well known Extended Kalman Filter (EKF) method is the estimator of
choice. The selection of the EKF is justified by the fact that its use is very common
for spacecraft dynamics. As such, it provides a representative well­known tool to
determine and analyze the results when coupling is taken into account in order to
improve the spacecraft relative orbit and attitude estimation.

We use a simple yet common configuration of two spacecraft in along track
formation flying in low Earth Orbit (LEO) as a case study. Here the atmospheric
drag perturbation constitutes the source of coupling between orbital and attitude
absolute and relative dynamics. The proposed system can easily be extended to
any amount of spacecraft, and as such, constitutes a tool for the evaluation of
whether and how the coupling between relative attitude and orbital dynamics can
improve the performance of the state estimation. It is investigated if the estimation
convergence is improved and to which extent when the coupling consideration is
taken into account. The approach of this work, where an improvement of the
dynamics model is proposed, may be seen as complementary to the approach where
new mathematical methods are proposed in order to improve the relative dynamics
of spacecraft.

6.1. States Observation Modeling
Due to the fact that we want to study the impact of coupling on the estimation
of spacecraft relative dynamics, it is necessary to define which measurements will
be used to estimate the spacecraft states. The most simple assumption that may
be used for this purpose would be that ”pseudo­measurements” of the states are
available, i.e. it is possible to measure the states directly. Actual sensors exist that
provide comparable measurements, for example, GPS or relative GPS in the case
of position dynamics.

There are two reasons for this assumption. First of all, a more complex mea­
surement model may interfere with the estimation results, thus not allowing to
focus only on the effects of the estimation performance given by the better dy­
namical model. A second reason is to reduce to a minimum the sources of error in
the results not related to the simulation itself that may appear if a more realistic
measurement model is used. Implementation of more sophisticated measurement
models to use with the proposed model may be done both for an EKF as well as for



544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez544941-L-bw-Jimenez
Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020Processed on: 16-6-2020 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

6

102 6. Estimation of Coupled Orbit and Attitude Dynamics

any other filtering algorithm to be used with the coupled dynamics model.
In this work, the measurement model 𝑧𝑧𝑧(𝑡) assumes that the position and attitude

states are directly measured, so that

𝑧𝑧𝑧(𝑡) =
⎡
⎢
⎢
⎣

1113 0003×3 0003×4 0003×3 0003×3 0003×3 0003×4 0003×3
0004×3 0004×3 1114 0004×3 0004×3 0004×3 0004×4 0004×3
0003×3 0003×3 0003×4 0003×3 1113 0003×3 0003×4 0003×3
0004×3 0004×3 0004×4 0004×3 0004×3 0004×3 1114 0004×3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑟𝑟𝑟
𝑣𝑣𝑣
𝑞𝑞𝑞
𝜔𝜔𝜔
�̃�𝑟𝑟
�̃�𝑣𝑣
�̃�𝑞𝑞
�̃�𝜔𝜔

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡),

(6.1)
leading to a direct measurement of the states 𝑟𝑟𝑟,𝑞𝑞𝑞, �̃�𝑟𝑟, �̃�𝑞𝑞 with noise 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡) ∼ 𝑁(0, 𝑅),

with a covariance 𝑅 ∈ ℝ14𝑥14 matrix.

6.2. The Extended Kalman Filter
In this work, an EKF is used to test the effect of coupling in spacecraft relative
dynamics estimation. Since our focus is on the improvement of state estimation
using the dynamic coupling, the use of newer estimators is not necessary and we
focus on the standard EKF.

Take a model of the dynamics based on equation 2.30 and a measurement model
based on equation 6.1

�̇̇��̇�𝑥 = 𝑓(𝑥𝑥𝑥, 𝑡) + 𝜈𝜈𝜈𝑥(𝑡), (6.2)
𝑧𝑧𝑧(𝑡) = ℎℎℎ(𝑥𝑥𝑥(𝑡), 𝑡) + 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡), (6.3)

where 𝑥𝑥𝑥 ∈ ℝ𝑛 is the state, 𝑧𝑧𝑧 ∈ ℝ𝑚 is the output resulting from the measure­
ments, 𝜈𝜈𝜈𝑥(𝑡) ∼ 𝑁(0, 𝑄(𝑡)) the process noise, representing the deviation of the
model to the truth. The linearization of this equation is done around a nominal
state 𝑥𝑥𝑥∗ where 𝑥𝑥𝑥 ∈ ℝ with 𝛿𝑥𝑥𝑥 = 𝑥𝑥𝑥 − 𝑥𝑥𝑥∗ lead us to a discretized perturbation state­
variable model associated with the linearized version of the nonlinear system 2.30
as described in [102].

𝛿�̇�𝑥𝑥 = 𝐹𝐹𝐹𝑥(𝑥𝑥𝑥∗, 𝑡)𝛿𝑥𝑥𝑥 + 𝜈𝜈𝜈𝑥(𝑡), (6.4)
𝛿𝑧𝑧𝑧 = 𝐻𝐻𝐻𝑥(𝑥𝑥𝑥∗, 𝑡)𝛿𝑥𝑥𝑥 + 𝜈𝜈𝜈𝑧𝑧𝑧(𝑡), (6.5)

where 𝐹𝐹𝐹𝑥 is an 𝑛 × 𝑛 Jacobian matrix and 𝐻𝐻𝐻𝑥 an 𝑚 × 𝑛 matrix ; i.e.

𝐹𝐹𝐹𝑥(𝑥𝑥𝑥∗, 𝑡) =
⎡
⎢
⎢
⎣

𝜕𝑓1(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕𝑓1(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕𝑓𝑛(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⎤
⎥
⎥
⎦
,𝐻𝐻𝐻𝑥(𝑥𝑥𝑥∗, 𝑡) =

⎡
⎢
⎢
⎣

𝜕ℎℎℎ1(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕ℎℎℎ1(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕ℎℎℎ𝑛(𝑥𝑥𝑥∗)
𝜕𝑥1

⋯ 𝜕ℎℎℎ𝑛(𝑥𝑥𝑥∗)
𝜕𝑥𝑛

⎤
⎥
⎥
⎦

(6.6)
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Here, no input forces are taken into account. If necessary, the linearization
should also be done around the corresponding input.

The implementation of a discrete (EFK) for the nonlinear system of equations 6.2
and 6.3 using the linearization of equations 5.5 and 6.5 is based on two processes:
prediction and measurement update.

6.2.1. Prediction
Prediction uses the last estimated state �̂�𝑥𝑥(𝑘, 𝑘) to obtain a prediction of the value of
the state 𝑥𝑥𝑥 in time 𝑘 + 1 by using the analytical model of the state. The predicted
state is called �̂�𝑥𝑥(𝑘 + 1, 𝑘)

�̂�𝑥𝑥(𝑘 + 1, 𝑘) = �̂�𝑥𝑥(𝑘, 𝑘) + ∫
𝑡𝑘+1

𝑡𝑘
𝑓𝑓𝑓(�̂�𝑥𝑥(𝑘 + 1, 𝑘),𝑢𝑢𝑢∗(𝑡), 𝑡)𝑑𝑡. (6.7)

6.2.2. Measurement Update
Correction uses the measurements of the state at time 𝑘+1 to update the prediction
and finally arrive at the estimated state �̂�𝑥𝑥(𝑘 + 1, 𝑘 + 1) and its covariance matrix
𝑃𝑃𝑃(𝑘 + 1, 𝑘 + 1) . The weight of the prediction and the correction is determined by
the gain matrix 𝐾𝐾𝐾(𝑘 + 1).

�̂�𝑥𝑥(𝑘 + 1, 𝑘 + 1) = �̂�𝑥𝑥(𝑘 + 1, 𝑘) +𝐾𝐾𝐾(𝑘 + 1) {𝑧𝑧𝑧(𝑘 + 1) − ℎℎℎ(�̂�𝑥𝑥(𝑘 + 1, 𝑘), 𝑘 + 1)} (6.8)
𝑃𝑃𝑃(𝑘 + 1, 𝑘 + 1) = [111𝑛 −𝐾𝐾𝐾(𝑘 + 1)𝐻𝑥𝐻𝑥𝐻𝑥(𝑘 + 1, 𝑘)]𝑃𝑃𝑃(𝑘 + 1, 𝑘) (6.9)

where

𝐾𝐾𝐾(𝑘 + 1) = 𝑃𝑃𝑃(𝑘 + 1, 𝑘) [𝐻𝑥𝐻𝑥𝐻𝑥(𝑘 + 1, 𝑘)𝑃𝑃𝑃(𝑘 + 1, 𝑘)𝐻𝑥𝐻𝑥𝐻𝑥𝑇(𝑘 + 1, 𝑘) +𝑅𝑅𝑅(𝑘 + 1)]
−1

(6.10)

𝑃𝑃𝑃(𝑘 + 1, 𝑘) = ΦΦΦ(𝑡, 𝑡0)𝑃𝑃𝑃(𝑘, 𝑘)Φ𝑇Φ𝑇Φ𝑇(𝑡, 𝑡0) +𝑄𝑄𝑄(𝑘 + 1, 𝑘) (6.11)

ΦΦΦ(𝑡, 𝑡0) = 𝑒𝐹𝐹𝐹𝑥(𝑡−𝑡0) (6.12)

and 𝑅𝑅𝑅(𝑘+1),𝑄𝑄𝑄(𝑘+1, 𝑘) and𝐻𝑥𝐻𝑥𝐻𝑥(𝑘+1, 𝑘) are the linearized versions of 𝑅𝑅𝑅(𝑡),𝑄𝑄𝑄(𝑡)
and 𝐻𝐻𝐻𝑥(𝑡). Please be aware that the equations here do not include an input func­
tion. For the most general form of the equation and details about the derivation of
the linearized version of the matrices 𝑅𝑅𝑅(𝑘+1),𝑄𝑄𝑄(𝑘+1, 𝑘) and 𝐻𝑥𝐻𝑥𝐻𝑥(𝑘+1, 𝑘) we refer
the reader to [102].

6.3. Spacecraft Relative Dynamics Estimator
6.3.1. Scenario
Take two spacecraft orbiting the Earth with dynamics described in equation 2.30.
These two spacecraft follow a circular equatorial orbit with an initial altitude of
300 km in an along­track configuration with a relative distance of 1000 km. An
equatorial orbit is selected in order to avoid taking into account the 𝐽2 effects on
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Table 6.1: Configuration of the dynamics of the system under study.

Initial Conditions
Spacecraft S/C 1 S/C 2
Position (km) [300 + 𝑅𝐸, 0, 0] (300 + 𝑅𝐸)[cos𝜃2, sin𝜃2, 0]
Velocity (km/s) [0, 7.7142, 0] 7.7142[− sin𝜃2, cos𝜃2, 0]
Attitude quaternion [0, 0, 0, 1] [0, 0, 0, 1]
Rotation rate for the rotating case (rad/s) [0, 𝜋/18, 0] [0, 0, 𝜋/18]
Initial along­track separation (𝑅𝐴) 1000 km

Spacecraft mechanical characteristics.
Mass (m) 3.6 kg 3.6 kg

Inertia matrix (I) [
0.055 0 0
0 0.055 0
0 0 0.017

] kgm2 [
0.055 0 0
0 0.055 0
0 0 0.017

] kgm2

Drag coefficient (𝐶𝐷) 2.3 2.3

Table 6.2: Sensors accuracy

Sensor Noise variance
Relative position ±100 𝑚
Attitude quaternion ±0.1

the dynamics model. This altitude is selected because in this orbit a strong signal
of the coupling due to the atmospheric drag is obtained. Its use is justified by
its applicability in distributed space systems (DSS) missions ranking from Earth­
observation to gravity missions. This orbit is of use also for future DSS missions
that may avoid debris by best placed in very low orbits. The drag coefficients (𝐶𝐷)
of both spacecraft are equal and assumed to have the same dimensions as the ones
used in the simulation of the formation flying mission proposed by TU Delft in the
framework of the QB50 mission [99].

The parameters used in the scenario are given in Table 6.1. It is assumed
that the atmospheric density is known, and is given by its values at solar radiation
maximum (see [36]).

The accuracy of the pseudo­measurements is defined on Table 6.2.
In order to demonstrate the effect of coupling, two EKF are used: one that

includes the coupling dynamics in the model described by equation 2.30. This
estimator is called for now on the ”Coupled Estimator”. Another estimator was
implemented for comparison purposes. In this one, the model assumes that the
areas of the spacecraft are constant, equal to the largest possible facing area of
both satellites, and no dynamic coupling is considered. This estimator is called here
the ”Uncoupled Estimator”.

Two different kinds of satellites, by size, are used on this research. The first
kind of spacecraft is a 3­unit Cubesat, one of the smallest forms proposed for co­
operative missions, for example in the QB­50 mission [99]. These satellites have
a 30x10x10 cm cuboid form. For comparison purposes, another ”large spacecraft”
is used. The size of the ”large spacecraft” is defined as a cuboid with the same
ratio between sides of the CubeSat configuration, while at the same time having a
size comparable to a large spacecraft used for formation flying missions. With this
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Table 6.3: Test cases area configuration for the spacecraft

Configuration size (𝑐𝑚3)
CubeSat (3U) 30 x 10 x 10
Large Spacecraft 240 x 40 x 40

Table 6.4: Process noise configuration for the coupled and uncoupled estimator.

𝑛𝑟𝑟𝑟 10−9 𝑛�̃�𝑟𝑟 10−9
𝑛𝑣𝑣𝑣 10−9 (Calibrated) 𝑛�̃�𝑣𝑣 10−9 (Calibrated)
𝑛𝑞𝑞𝑞 10−7 𝑛�̃�𝑞𝑞 10−7
𝑛𝜔𝜔𝜔 10−5 𝑛�̃�𝜔𝜔 10−5

purpose, the ”large spacecraft” is set up as a cuboid where each side is 8 times
larger than every side of the CubeSat configuration. Under these assumptions, the
”large spacecraft” size is similar in size to the spacecraft used for the Grace mis­
sion (length = 312.2 cm, height = 72 cm, bottom width = 194.2 cm, top width =
69.3 cm) [110]. For reference, their sizes are described on Table 6.3.

The process noise to be used in the implementation of the EKF is fundamental
for the proper performance of both estimators. The noise matrix to be used in the
model 𝑄𝑄𝑄(𝑘) is given as

𝑄𝑄𝑄(𝑘 + 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑄𝑄𝑄𝑟𝑟𝑟 0003×3 0003×4 0003×3 ⋮ 0003×3 0003×3 0003×4 0003×3
0003×3 𝑄𝑄𝑄𝑣𝑣𝑣 0003×4 0003×3 ⋮ 0003×3 0003×3 0003×4 0003×3
0004×3 0004×3 𝑄𝑄𝑄𝑞𝑞𝑞 0004×16 ⋮ 0003×3 0003×3 0003×4 0003×3
0003×3 0003×3 0003×3 𝑄𝑄𝑄𝜔𝜔𝜔 ⋮ 0003×3 0003×3 0003×4 0003×3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0003×3 0003×3 0003×4 0003×3 ⋮ 𝑄𝑄𝑄�̃�𝑟𝑟 0003×3 0003×4 0003×3
0003×3 0003×3 0003×4 0003×3 ⋮ 0003×3 𝑄𝑄𝑄�̃�𝑣𝑣 0003×4 0003×3
0003×3 0003×3 0003×4 0003×3 ⋮ 0004×3 0004×3 𝑄𝑄𝑄�̃�𝑞𝑞 0004×3
0003×3 0003×3 0003×4 0003×3 ⋮ 0003×3 0003×3 0003×4 𝑄𝑄𝑄�̃�𝜔𝜔

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.13)

where 𝑄𝑄𝑄𝛼 = 𝑛2𝛼1113 with 𝛼 = {𝑟𝑟𝑟,𝑣𝑣𝑣,𝑞𝑞𝑞,𝜔𝜔𝜔, �̃�𝑟𝑟, �̃�𝑣𝑣, �̃�𝑞𝑞, �̃�𝜔𝜔} and 𝑄𝑄𝑄𝛽 = 𝑛2𝛼1114 with 𝛽 = {𝑞𝑞𝑞, �̃�𝑞𝑞}.
The values for each of these process noises used for this simulation are given in
Table 6.4.

For spacecraft estimation purposes, incorporating the non­modeled perturbation
effects in the dynamics model as part of the process noise is a common practice
(this is done for example in [64]). For this reason, in order to know if, and to what
extend the ”Coupled Estimator” leads to a better estimation, the magnitude of the
velocity process noise of the uncoupled estimator is adjusted until the estimation
reaches its best performance. In this way, the process noise is used to simulate the
atmospheric drag for the ”Uncoupled Estimator”. This is the reason why the velocity
process noise is indicated in Table 6.4 as ”Calibrated”. The best possible uncoupled
estimator is defined as the one that leads to the lowest average estimation error
after five orbits. The estimation error Δ�̃�𝑟𝑟𝑢 is defined as the error between the real
dynamics and the dynamics predicted by the Uncoupled Estimator.
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In order to determine the ”calibrated” magnitude of the velocity noise, the fol­
lowing procedure is used:

1. The initial value for both 𝑛𝑣𝑣𝑣 , 𝑛�̃�𝑣𝑣 is set to be the largest magnitude of the
atmospheric drag force 𝑎𝑎𝑎𝑎 at the evaluating altitude. For example, on the
300 km orbit propagation, for the largest spacecraft, the largest absolute
value of the atmospheric drag force was calculated to be 9.9170 ⋅ 10−4 N.

2. The estimator is propagated for five orbits.

3. The magnitude of Δ�̃�𝑟𝑟𝑢 is calculated.

4. The magnitudes of 𝑛𝑣𝑣𝑣 , 𝑛�̃�𝑣𝑣 is incremented and decremented in steps of 10% of
their initial value until the minimum value of the average of Δ�̃�𝑟𝑟𝑢 for the fifth
orbit is obtained. For example, in this case, for the incremented process noise,
we use 𝑛𝑣𝑣𝑣 = 10.9087, that constitutes 10%more than the initial process noise
use.

5. This increment and decrement continues until the lowest value for Δ�̃�𝑟𝑟𝑢 is
found. For this example, the value of the process noise that lead to the
lowest error was 6.9419 ⋅ 10−4 (a 30% decrement from the initial value).

Hence, the calibration procedure is based on the minimization of Δ�̃�𝑟𝑟𝑢 via the
calibration of the velocities process noise. This calibration is done every time the
area or the altitude is changed.

The objective of this procedure is to compare the Coupled Estimator with the
best possible Uncoupled Estimator. With this, it is shown that even in the best
possible assumption of the perturbation as a white­Gaussian noise, the Coupled
Estimator shows a better performance in terms of convergence and precision.

6.3.2. Results and Analysis
In this section, it will be shown how the model taking into account the coupling
between relative position and attitude impacts the performance of the estimation
of orbital relative dynamics. For this, two variables are evaluated: the change in
the spacecraft effective area and the change in the spacecraft set altitude. Take
into account the fact that the mass of the spacecraft is not changed for any of the
simulations, the change of area may be interpreted here also as the change of the
area­mass ratio.

Here, the improvement on the estimation results is shown via the difference of
the estimation error between the coupled and the uncoupled estimator, and also by
showing the accumulated variance of both estimators, via the accumulative effect of
the estimation convergence. This simulation is carried out over five orbits, showing
clearly the best convergence of the coupled estimator.

Scenario 1: Variation of the spacecraft effective area
In order to evaluate the effect of the effective area of the spacecraft in forma­
tion, this work uses four different area configurations, all with a rectangular form,
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Table 6.5: Variation of the area of the spacecraft for sensitivity analysis

Area Configuration Area [𝑐𝑚3]
1 30 x 10 x 10
2 60 x 20 x 20
3 120 x 30 x 30
4 240 x 40 x 40
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Figure 6.1: Relative position estimation results for a 2­spacecraft formation with 3­unit Cubesat config­
uration.

starting from a 3­unit Cubesat configuration (30x10x10 cm), one of the smallest
area configurations proposed for formation flying missions. This base configuration
was selected due to its popular use in spacecraft constellation projects like Planet
Labs constellation [18]. From here, areas are incremented to determine the sen­
sitivity between its variation and the estimation performance. The areas used are
summarized on Table 6.5.

Results using the smallest satellite (a 3 unit Cubesat configuration) are shown
in Figure 6.1, and the largest in Figure 6.2, both in a circular orbit with an altitude
of 300 km. Here it is shown that even in the smallest spacecraft area case, coupled
estimator outperforms the ”Best Uncoupled Estimator”.

Figure 6.3 shows how the variance after the fifth orbit differs for the uncoupled
and the coupled case, and its variability with the spacecraft area, as a parameter of
the performance of the estimator with respect to the spacecraft area. For reference,
the values shown in this figure are the values after five orbits of the ”accumulated
variance” value shown on Figure 6.2 and Figure 6.3. Here, as expected, it is clear
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Figure 6.2: Relative position estimation results for the large spacecraft case.
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Figure 6.3: Variance of the error after five orbit with respect to the spacecraft area at a 300 km altitude.

that with a larger area, the difference between the coupled and the uncoupled
estimator is higher. With an increment of about 32 times between the smallest and
the largest area, the difference between variances for the smallest spacecraft is
10.849 m, but for the largest spacecraft it is 28.651 m, a factor of about three.

Here it is also shown that even for the smallest spacecraft evaluated, the coupled
estimator shows an improvement on the estimation performance. These differences
are significant for most Earth Observation missions proposed in present times.

Scenario 2: Variation of the spacecraft altitude
In order to study the effect of coupling for different spacecraft, the orbits of the
two­satellites, both with the largest spacecraft area (Area 4 of Table 6.5) are prop­
agated in circular orbits with different altitudes. The estimation performance of this
configuration in a 300 km altitude orbit was already illustrated in the first scenario
in Figure 6.2.

Take now the results of increasing the spacecraft altitude, shown in Figure 6.4 for
350 km altitude and in Figure 6.5 for 650 km altitude. Both figures show that even
for a 650 km orbit, the coupled estimator leads to non­negligible improvements on
the estimation performance of the dynamics.

Figure 6.6 shows the result of the final value of the accumulated variance after
five orbits for the coupled and the uncoupled estimator with respect to the altitude.
It is evident that even at 650 km altitude, the coupled estimator leads to better re­
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Figure 6.4: Variance of the error after five orbit at 350 km altitude.
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Figure 6.5: Variance of the error after five orbits at 650 km altitude.

sults. Nevertheless, the difference between both estimator considerably diminishes
at this altitude.

The main variable affecting here the estimation performance is the atmospheric
density, that changes from a value of 3.96 ⋅ 10−11 kg/m3 for the 300 km altitude
to 2.64 ⋅ 10−13 kg/m3, a magnitude 250 times higher for the former compared to
the latter. Nevertheless, this is not the only variable affecting the estimation per­
formance. For reference, the variation of the atmospheric density is also illustrated
in Figure 6.6. At a lower altitude, the velocity to remain in a circular orbit is higher,
hence the effect of the atmospheric perturbation is further increased. For this, it is
very difficult to compute the direct relation between the physical variables and the
increment in performance due to the altitude changes. The accumulated variance
after five orbits for the 300 km altitude is 34.2 m for the coupled case, and of 62.9 m
for the uncoupled case, a difference of almost 30 meters in variation. Nevertheless,
for the 650 km altitude evaluation, the variance is 20.8 m for the coupled case and
24.2 m for the uncoupled case. With this, it may be concluded that fundamentally
for all cases evaluated here, the difference between estimators is not significant
beyond 700 km altitude.

6.4. Remarks
The work of this chapter shows how the coupling between orbit and attitude dy­
namics caused by the atmospheric drag force and torque improves the estimation
of relative dynamics of spacecraft. For this, the effectiveness of the ”Coupled esti­
mator” (an estimator considering such physical effect) is shown.

For comparison purposes, another estimator where the perturbation was sim­
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ulated using only white­Gaussian noise, is used. Using white Gaussian noise to
simulate the perturbation effect is a common practice in spacecraft dynamics esti­
mation. Due to the fact that it may be argued that the selection of the magnitude
of this noise may affect the validity of the comparison, the magnitude of the white­
Gaussian noise was adjusted until the lowest average error after five orbits was
obtained in the estimation process. Even under this condition, the ”Coupled Esti­
mator” shows a better estimation performance.

For a case of a very low orbit, a 300 km altitude orbit, even with two CubeSat
flying in a along­track configuration, the improvement shown by the use of the
coupled estimator is significant, leading to an improvement of 6.9 m in the average
position estimation compared to the ”best uncoupled estimator”.

Changes in estimation performance are even observed for altitudes of as much
as 650 km, where for a 240x40x40 cm spacecraft, an improvement of 3.5 m in the
average of the error in the estimation of relative position is shown. Nevertheless,
when altitudes over 700 km are used in our simulations, the difference in negligible,
as expected.

This work shows and quantifies the improved estimation performance of rel­
ative dynamics of spacecraft using a orbit­attitude model closer to reality, and a
method to be applied to different formation flying configurations. Also, since this
work uses nonlinear orbit and attitude dynamics equations is not limited to circular
or near­circular orbits as would be the case when the Clohessy­Wiltshire equations
([43]) were used. The use of more complex models has been restricted in the
past due to computation constraints. However, the latest improvements in elec­
tronics computing performance, both in velocity and in power consumption, lead
to the possibility of using more complex spacecraft dynamics models in on­board
spacecraft computers with no additional risk.

Future work may take into account other spacecraft formation flying configura­
tion with different densities, elliptic orbits, and other effects, like the gravity gradi­
ent in different relative pose configurations, the diurnal effect of the atmosphere,
as well as the use of other estimation techniques that provide a better operation
performance when models of spacecraft nonlinear dynamics are used.
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7
Conclusions and Outlook

7.1. Summary
This dissertation describes the effect of a sophisticated model of spacecraft dynam­
ics where the coupling between attitude and orbital dynamics via the atmospheric
drag influences estimation of the relative states of a distributed space system. The
scenario used for the analysis consist of two satellites in orbit around the Earth.
The dynamics of the first satellite, known as the Chief, are described as a function
of its absolute orbit and attitude. The motion of the second satellite, known as the
deputy, is described using its relative dynamics with respect to the chief spacecraft.
The description of the dynamics of the deputy may be used to expand the model
to any number of spacecraft flying in formation, because any additional spacecraft
relative dynamics can be described using the Chief as its reference.

In order to describe the atmospheric drag force and torque as the source of
coupling, spacecraft geometries are described as a set of areas, and for this work,
rectangular spacecraft are assumed. Despite its apparent simplicity, this model
may be generalized to any spacecraft form. The atmospheric drag perturbation is
described for the chief spacecraft using its absolute states, and the differential drag
is described using the relative dynamic states. The expressions describing differ­
ential drag under the aforementioned conditions were not found in the scientific
literature, thus they were first derived here.

The use of the Observability Gramian (OG) as a tool for the evaluation of the ob­
servability level of the system required the linearization of the absolute and relative
dynamics. The linearization of the model of absolute and differential atmospheric
drag force and torque was derived in Chapter 3. This tool allows to analytically de­
termine which of the states affects the observability, specially the partial differential
of the orbit states with respect to attitude states, and constitute a tool for further
analysis. Chapter 4 presents the analytical linearization of all states, including the
atmospheric drag perturbation. These results are necessary for the determination
of the OG.

113
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Chapter 5 and 6 describe the main results of this thesis work. In Chapter 5,
the OG is used to determine the effect of coupling in spacecraft dynamics in the
observability level of the system. It is shown that coupling not only enables full
observability for limited sensing configurations, but reveals how the observability
level of the dynamic system varies with respect to spacecraft parameters and their
initial dynamics conditions. In this scenario, variation of the observability level
up to three orders of magnitude are observed due to the effect of the variation
of these parameters. The proposed methodology constitutes a tool to obtain a
numerical evaluation on how the use of sophisticated dynamics models and sensing
configurations impact the observability of relative dynamics of spacecraft.

In Chapter 6, the Extended Kalman Filter (EKF) is used to analyze how the drag­
induced coupling of relative orbit and attitude affects the estimation accuracy of the
relative spacecraft states. Here, a scenario is assumed that uses an equatorial low­
Earth orbit (LEO), to focus on the drag­induced coupling and avoid an interplay with
gravity­induced coupling, e.g. from the J2 effect. The atmospheric perturbation is
the largest non­gravitational perturbation affecting the spacecraft dynamics at alti­
tudes below 700 km. An EKF accounted for the dynamic coupling, called ”coupled
estimator”, is compared to an ”uncoupled estimator”, which simulates the drag per­
turbation as white noise only. It is shown how the uncoupled estimator can be
calibrated to provide a fair comparison to the results of the coupled estimator. It is
shown that even with the best calibration possible, the coupled estimator provides
superior estimation errors as compared to the result of the uncoupled. A sensitiv­
ity analysis is performed with various area­to­mass ratios and spacecraft altitudes
which reveals that even for small 3­U CubeSats, significant improvements can be
obtained taking the dynamic coupling into account. Furthermore, improvements of
the estimation errors have been shown for altitudes below 650 km.

7.2. Conclusions
New demands are arising for distributed space systems, where several spacecraft
work together in a single mission. Examples are formations which constitute vir­
tual instruments or rendez­vous missions with uncooperative space debris objects.
These demands cause new challenges and solutions for spacecraft engineering,
such as new sensor technology and improved algorithms and processors. In order
to make the best use of those developments, the dynamic models that describe the
relative motion of involved spacecraft need to be improved as well.

For spacecraft relative dynamics, little progress has been made in the impact
of the coupling between orbit and attitude dynamics in the observability of the
system. Most research focuses instead on the measurement model and technology.
Also, little attention has been given to the use of the Observability Gramian in
the assessment of spacecraft observability. The current work provides innovative
contributions to these shortcomings of the body of knowledge.

The exploration of the effect of coupling for control purposes has been the
subject of increasing attention the last years. Nevertheless, to the best knowl­
edge of the author, no work has been published, before the thesis presented here,
where the coupling between the attitude and orbital dynamics caused by external
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perturbations is adopted in spacecraft relative dynamics models to improve their
estimation accuracy. This simplification is typically justified, in the preparation of a
mission, by assuming that the magnitude of this coupling effect is negligible.

Conclusions and key innovations of this thesis are two­fold: first, it is shown how
even limited measurements scenarios may lead to full observability, if the coupling
between orbit and attitude dynamics is taken into account. Secondly, it is shown
via the EKF that even in full observability situations, accounting for the coupling
leads to better estimation results, compared to an uncoupled estimator where the
perturbations were assumed to be white­Gaussian noise and calibrated to their best
possible performance.

How can the coupling between attitude and orbit dynamics affect the observ­
ability of the relative dynamics of spacecraft? (Research question 1). It has been
observed in Chapter 5 that, when a fully observable system is used and perfect
measurements are assumed, the dynamic model does not increase the observabil­
ity of the system. Nevertheless, observability is improved under limited observable
scenarios, depending on the condition of the system. The OG has been employed
as a tool to evaluate the dependency of the observability on the dynamics of rela­
tive motion. It has been shown that the coupling, created by the atmospheric drag
force for spacecraft in formation in LEO, enables full observability of the state, not
possible without such coupling. Furthermore, the degree of observability has been
analyzed for various orbits and spacecraft mechanical characteristics. As a result,
new elements on the gradient of the dynamics are appearing in an analytical model
of the partial derivatives, creating a significant change in the observability of the
system.

The cases of limited observability, where only the relative position of the space­
craft or the relative attitude of the spacecraft are measured, are of special interest
on this work. They show that full observability is achieved, not possible in the
scenario under study without such coupling.

This thesis proposed the use of the OG method, allowing to compare how dif­
ferent scenarios change the observability conditions in a methodical way. This
contrasts to the use of the propagated estimating results as a comparison method,
where other elements (as the configuration and effectiveness of the selected esti­
mator itself) may have an influence on the result.

The OG method also helps to determine during mission analysis and design
which sensor scenario benefits the most from the consideration of coupling. This
information is valuable for the implementation of the estimation of relative space­
craft dynamics, as well as the design of sensor suites for formation flying missions.

How can the coupling between attitude and orbit dynamics be used to improve
the estimation of the relative dynamics of spacecraft? (Research question 2). The
effects of the coupling elements of the system gradient are observed also when
estimation is done using the Extended Kalman Filter (EKF). Here, even in full ob­
servability situations, accounting for the dynamic coupling leads to better estimation
results, even when an uncoupled reference estimator is optimized for minimum er­
rors. This means that in situations where the Observability Gramian leads to the
same observability rank, especially situations of full observability, the sophisticated
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model of dynamics used in the model of the estimator leads to more stable, smaller
estimation errors. This is even true for CubeSat spacecraft, where the area to mass
ratio is unfavorable as compared to missions using large spacecraft. The reason
for this improvement in estimation performance, not visible in the OG analysis for
fully­observable scenarios with coupling is that measurements have an associated
noise in the EKF. It is in those cases that the more precise model improves the
estimation performance.

7.3. Outlook
The Observability Gramian, used to evaluate the drag­induced coupling between
orbit and attitude dynamics for formations, proposed in this thesis, provides a pow­
erful tool to study any other kind of perturbation, like the J2­gravity effect or solar
radiation pressure. It likewise allows to study more complex mission scenarios,
such as highly elliptic orbits. These effect are well known, but their influence in
observability has never been analyzed using a tool with the numerical evaluation
capabilities of the OG.

Also, the use of the OG may be expanded to any number of spacecraft flying in
formation, by describing any additional spacecraft dynamics relative to the dynamics
of a chief spacecraft using the same equations presented here for the deputy.

The present work may be further improved by using more advanced models
of the variation of the atmospheric density. A more sophisticated density model
may allow better estimation performance if the density is defined as a state of
the system. A spacecraft geometry taking advantage of the knowledge of this
physical effect to improve the estimation of density may be a direct application of
the results of this work. Another use of advanced atmospheric density models is
that they would enable the use of the OG analysis in cases where the orbits are
highly elliptic. In those cases, the change of atmospheric drag density influences
highly the differential of the attitude states with respect to the orbit states, leading
to an increase in the coupling effect.

The future use of the Controllability Gramian (CG) in an analogue way as the
use of the OG is considered to have high potential. Coupling in control is related
directly to the effect of any actuator affecting both orbit and attitude, for example,
propulsion not aligned with the center of mass or pressure. Although, this has been
subject of previous studies, nevertheless, none of themmade use of the advantages
of the OG to assess the degree of controllability of a system. Also, the combination
of the effect of the actuator when the coupling effect of the perturbation is taken
into account may lead to more precise solutions for the estimation and control of
spacecraft, via the analysis of both the Observability and the Controllability Gramian.

Future areas of exploration may arise from taking into account the computational
and power requirements when used with sophisticated models of estimators as the
one proposed in this work. Such knowledge would enable space systems engineers
to make a proper trade­off analysis where the increment in performance is analyzed
as a function of the use of computational resources, leading to more informed
decisions about an optimized mission design.
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