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A Classification Method for Driver Trajectories during
Curve-Negotiation

Sarah Barendswaard1, Daan M. Pool2, Erwin R. Boer1 and David A. Abbink1

Abstract— When taking a curve, drivers follow their own
unique trajectory. Most driver style classifiers in literature are
based on inertial inputs, denoting whether a given driver is
aggressive or calm. However, this does not give any indication
of a drivers trajectory style, i.e. whether a driver is curve
cutting. To fill this void, this paper introduces a novel rule based
classifier that categorises seven different trajectory styles. The
classifier is applied to data from a fixed-base driving simulator
study in which 45 subjects drove on three roads, comprising
three different velocities: 25, 50 and 80 km/h, with three
corresponding radii: 20, 80 and 204 m. The results show that
some classes are more prevalent than others, with biased outer
curve negotiation performed by a majority of the subjects and
with no drivers classified as centerline drivers. The proposed
trajectory classifier is shown to exhibit high levels of consistency,
with 93% of drivers exhibiting consistent trajectory classes
for at least 66% of the right curves driven and 84% exhibits
consistent trajectory classes for atleast 66% of the left curves
driven. Where this consistency indicates a potential for gener-
alising the classification results to other curves. Additionally,
this classifier can be used to adapt trajectory-driven advanced
driver assistance systems, thereby serving as an alternative to
driver modelling.

I. INTRODUCTION

Driver-style classification is emerging as a critical factor in
driver assessment and profiling [1], road safety [2], human-
centered advanced driver assistance (ADAS) systems [3], and
even driver-modeling [4]. Driver assessment and profiling
is important for power management [5] where calm drivers
consume less fuel than aggressive drivers in the same scenar-
ios [6]. Unsurprisingly, there is also a relationship between
driving style and road safety [2], with 23% of deaths in
traffic being related to ’aggressive’ driving styles [7]. This
has been a motivation for the development of a number
of different ADAS, of which personalised implementations
explicitly adapt their algorithm to a given driver style [8].

A number of different ways to classify human driver
styles have been proposed ranging from classifying groups
of people [9] to differentiating between individual peo-
ple [10] and different genders [11]. Studies on supervised
classification techniques have based the definition of their
classes on the friction circle [12], or a subjective Driver-
Style-Questionnaire (DSQ) [11], or a rule-based decision
tree on throttle aggressiveness [13]. Whereas unsupervised
techniques use feature extraction techniques such as Principle
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Component Analysis [14] in combination with hierarchical
clustering [15].

Most data-mining efforts to classify human driver style
have focused on inertial behaviour (i.e. gas pedal deflection,
throttle, braking, acceleration) [11], [14], [16] [10], [12] [13]
[15] [9]. Where sometimes thresholds are defined to indicate
whether drivers show a particular level of agressiveness [9]
[12], however a drivers level of inertial behaviour can change
in a single manouvre. Studies find that a single driver exhibits
multiple styles for a single manouvre (segmented into mul-
tiple time windows), sometimes showing three times more
clusters than drivers [17] or that there are 5 segments where
a single driver shows different inertial behaviour within a
given curve [18]. Moreover, these inertial classifications do
not directly distinguish between different trajectories nor can
they categorise these i.e. curve-cutting style: an output that
can directly be used with trajectory driven ADAS. Alterna-
tively: trajectory classification is inherently consistent for a
single manoeuvre, and can categorise different trajectories.

Trajectory classification has been attempted by [19], by
using identified parameters of a driver model and the steering
angle as the features for classification. The results have
shown poor discriminative properties due to the use of
steering wheel angle as an input feature, where steering
wheel deflection is proven to be a bad metric to discriminate
between drivers lateral position [4]. Conversely, a naturalistic
driver study describes different drivers by indicating a driver
trajectory typology in curves [20]. However, this typology is
without any numerical quantification.

To bridge this gap, this paper introduces a newly developed
numerical trajectory classifier in curves. It is based on lateral
position on a road, before and during a curve as features,
defining a rule-based curve-trajectory classifier of driver
behaviour. The rules depend on where the driver is before
curve entry (i.e. above, on or below the centerline) and
how many transitions the drivers trajectory makes across the
centerline band during the curve. To show the effectiveness
of the proposed trajectory-based classification, the classifier
is applied to a large dataset collected from 45 subjects, that
drove over three different curves at a constant lateral accel-
eration and constant speed in a dedicated driving simulator
experiment.

This paper is structured as follows: details of the rule-
based classifier are described in Section II-A. The details
of the human-in-the-loop driving experiment performed for
data collection is elaborated in Section II-B. Finally the
results and conclusion are presented in Sections III and IV,
respectively.
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Fig. 1: The proposed rule-based classes in Figure 2 for a trajectory during curve negotiation.
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Fig. 2: A decision tree illustrating the rule-based classifier deduced from knowledge of the driver trajectories found in this
paper. The centerline band is taken at ±0.1m from centerline.

II. METHODOLOGY

A. Rule-based Classifier

The proposed rule-based classifier uses the lateral position
on the road slat at different instances on a known curvature
profile κ, to define the classes, as illustrated in Fig. 1. These
trajectory shapes are the result of the rules presented in
the decision tree illustrated in Fig. 2. Where the rules are
knowledge-based, i.e. are based on observation of the types
of trajectories drivers take when driving a curve in the driving
simulator. The possible lateral positions are defined relative
to the road centerline at two different instances: before and
during a curve. The root node looks at curve entry, where
you can either be on the inner or outer part of the curve. The
first decision node tackles the number of transitions along
the centerline band that can be made during the curve. The
second decision node determines whether you have stayed

within the centerline band, where this is only of concern if
you have made 0 transitions along this band.

Where you are during curve entry is important as it could
indicate whether you have an intention to cut the curve [21].
How many transitions along the centerline is defining of
how the curvature of the trajectory differs from that of the
centerline [22]. The choice of having transitions across a
band of ± 0.1 m rather than the centerline line is made
such that drivers who significantly cross this region are
distinguished. The value of ± 0.1 m is chosen as it was
found to be the average standard deviation of straight lane
driving in previous studies [3].

B. Dataset

The dataset used to test the proposed classification comes
from 45 subjects driving three different curves in a fixed-
based driver simulator experiment. The details of the road
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Fig. 3: The tested curves c1, c2 and c3, shown in birds eye-
view as a function of global Xg and Yg coordinates, and the
corresponding curvature profiles κ.

TABLE I: The designed curve radii, car velocities and peak
lateral acceleration of the three curves tested.

Condition Radius Velocity (km/h) alat (ms−2)
c1 R= 20 25 2.41
c2 R= 80 50 2.41
c3 R= 204 80 2.41

design and experimental procedures are given next.
1) Road Design: A single-lane curve-driving study tested

three different road profiles. The radii and respective ve-
locities tested are listed in Table. I. The three different
car velocities are chosen as limit velocities in Dutch traffic
rules [23]. The corresponding radii are chosen such that all
roads have a maximum centerline lateral acceleration of 2.41
ms−2, which is the maximum lateral acceleration for road
design [24].

The curves are designed to be clothoidal as illustrated
in Fig. 3. 10-second straight section intervals were inserted
inbetween curves and within each curve the clothoidal sec-
tions at curve entry and exit lasted 2 seconds. The maximum
curvature section lasted chosen to last 2 seconds making the
total time in the curve 6 seconds. Each curve was repeated
10 times, i.e. 5 right curves and 5 left curves, in alternating
order.

2) Control Task: Subjects performed a curve negotiation
(lateral control) driving task in a fixed-base simulator at
a fixed speed. A heavy sedan of 1.8 m wide was used
to visually simulate the vehicle on a single lane road. A
vehicle dynamics identical to previous investigations [3]
approximated by a bicycle model, was controlled, in a
simulation environment with apparatus identical to previous
investigations [3].

3) Experimental-setup and Procedure: Before participat-
ing in the experiment, participants signed a consent form.
The conditions outlined in Table I were presented in ran-
domised order to each subject. During each round the par-
ticipants were given a familiarization run of 160 s before
collecting data for each condition.

4) Subjects and Instructions: The experiment was per-
formed by 45 subjects between the age of 18 and 31 years
(average of 22 years and standard deviation of 3.1 years). The
range of driver experience was between 0 (no years of driving
with drivers license) and 10 years, with an average of 3.3
years and a standard deviation of 2.7 years. All participants
were all instructed to drive as they normally would and to
hold their hands on the steering wheel at a ”ten to two”
position.

III. RESULTS

A. Class Outcomes

The outcome of the classifier on a dataset of 45 drivers
on 3 different curves is illustrated in Fig. 4. Showing the
lateral position slat starting 3 seconds before curve entry
and ending 3 seconds after curve exit, for all 7 classes.
Curve entry and exit are indicated by a vertical grey line,
the centerline is indicated at position slat = 0 and the
effective road boundaries are illustrated by the grey bars,
also indicating whether it is on inner or outer side of the
curve. This graph shows that within the dataset collected, a
rich variety in driver trajectory styles exists even in a rather
homogeneous test group. Nevertheless, not all classes are
are found to occur, no instances of the center-line driving
(4) class are found for both right and left curves. Moreover,
some classes are more prevalent than others as is shown
with the percentage occurence in Fig. 5. For left curves,
class 5 (biased outer curve negotiation) occurs 60% for c1,
48% for c2 and 44% for c3. On the other hand class 7
(severe counter curve cutting) occurs 7% for only c3. For
right curves class 2 (curve cutting) and 3 (biased inner curve
negotiation) are the most frequently occurring, contributing
up to 96% together for c3. Some classes seem to correlate
with curvature, for example: class 1 (severe curve cutting)
occurs more frequently for larger curvature, whereas class 2
(curve cutting) occurs more frequently for smaller curvature.
Seeming that some class 2 (curve cutting) drivers switch to
class 1 (severe curve cutting) for increasing curvature.

B. Effect of Curve Direction

A clear difference between right and left curves can be
seen in Fig 5. For right curves class 2 (curve cutting) and
3 (biased inner curve negotiation) are most prevalent (86%
occurence together on average), whereas for left curves class
5 (biased outer curve negotiation) and 2 (curve cutting)
are most prevalent (69% occurence together on average).
Seeming that class 3 and 5 switch places for right and left
curves. On observing these two classes, it can be seen that
both trajectories lie on the negative side of the road as seen
in Fig. 4 (which is on the right side of the road). This
prevalence of a driver driving on the right (negative) side of
the road stems from the drivers straight road bias found to
be on average -0.1 m [3]. Drivers’ lateral position is biased
to the right side of the road, which makes the inner part
of a right curve and the outer part of a left curve. This
causes left curves to naturally often be biased outer curve
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Fig. 4: The average and standard deviation of the outcomes of the classification for each class in the lateral position (slat)
domain, respectively. The outcome of the classifications is shown for each curve respectively.
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Fig. 7: The differences in average alat in the curve, given for
all curves driven. A line at 2.41 ms−2 is outlined to represent
alat when the centerline of the curve would be followed.

C. Driver Consistency Across Curves

Overall consistency of drivers gives an indication of how
generalisable the classification results are when applied to
different curves. Fig. 6 illustrates pie charts that give the
number of drivers who are consistent in their trajectory
class across 3 curves, semi-consistent: consistent across 2
curves and non-consistent: not consistent across all three
curves. It can be seen that drivers are more consistent in their
trajectory class for right curves, with 62% being consistent,
31% being semi-consistent and 7% inconsistent. For left
curves 44% are consistent, 40% semi-consistent and 16%
inconsistent. Where the most inconsistent curve negotiation
styles are found for the sharpest curve (c1), as can be seen
in the class occurrence distribution in Fig. 5. This difference
from c1 could be a result of having a curvature much
larger than c2 and c3 as shown in Fig. 3. Where c2 has
a curvature 2.5 times larger than c3, c1 has a curvature
that is 10 times larger than c3. With c1 being the most
demanding curve, demanding the largest steering inputs, a
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difference in skill due to the elevated demand may be a factor
that influences this inconsistency. Therefore the classification
results can be more reliably generalisable between curves
with similar curvature, or steering demands. Hence in a
real-world application such as a trajectory driven ADAS,
reclassification of driver trajectories on curves with similar
curvature may not be necessary.

D. Discussion

The fact that class 4 (centerline driving) is not found to
occur is interesting given that most driver models assume
drivers enter the curve at the centerline [25] [26] [27].
Interestingly, if we were to classify trajectories coming from
a driver model, with a zero curve entry bias, it would not
classify using the proposed classifier in this paper. The
knowledge based on empirical-drivers did not result in a root
node including centerline, rather lateral position should either
be positive or negative. This shows a mismatch between
empirical and modelled driver trajectories. Moreover, the
philosophy of control-theoretic driver models always aiming
to reduce lateral deviation from the centerline seems to have
no ground from naturalistic data, suggesting that designing
the control reference to be a ’driver trajectory’ makes more
sense [28], for efficient modelling.

In terms of trajectory shape, it can be argued that classes
2 (curve cutting) and 3 (inner curve negotiation) are not very
different from each other, especially in right curves. In fact,
what seems to distinguish between them is a consistent lateral
displacement. This is also reflected in the corresponding
average lateral acceleration in Fig. 7, where class 1 (severe
curve cutting) and 7 (severe counter curve cutting) are
clearly distinguished (medians 0.5 ms−2 apart), classes 2
(curve cutting), 3 (inner curve negotiation), 5 (outer curve
negotiation) and 6 (counter curve cutting) have medians with
only 0.08 ms−2 apart. This can be explained by the fact
that alat does not vary with any consistent bias on a trajec-
tory. Moreover, the difference between class 1 and 7 stems
from drivers taking larger-than-centerline radii trajectories
for class 1 and smaller-than-centerline radii trajectories for
class 7. However, when curves become longer, the maximum
and minimum radii achievable tend towards that of the
centerline value, meaning that the longer the curve, the
difference in lateral acceleration achievable between class 1
and 7 will tend to zero [22]. This means that trajectory-based
classification provides better discriminative abilities for this
dataset, whereas a classifier based on lateral acceleration
could obscure such refined differences in driver trajectory,
as acceleration is not only ’blind’ to consistent bias but
also becomes increasingly indifferent between trajectories in
longer curves.

IV. CONCLUSION

A novel rule-based classifier that categorises 7 different
trajectory styles is introduced. The classification is applied to
a dataset of 45 drivers negotiating three different curves, each
with a different curvature and velocity. The classification

results show that curve cutting and biased inner curve negoti-
ation are the most prevalent classes for right curves, making
up for 86% of class occurence on average. Biased outer
curve negotiation and curve cutting are the most prevalent
classes for left curves, making up 69 % of class occurence
on average. Across different curves drivers show high levels
of consistency: 93% are consistent for at least 2/3rd of
the right curves driven, whereas 84% are consistent for at
least 2/3rd of the left curves driven. This consistency gives
an indication of how generalisable the classification results
are when applied to different curves. Additionally, the new
trajectory classifier can directly be used in any personalised
ADAS, especailly trajectory driven ADAS, thereby providing
an alternative to driver modelling.
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